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Abstract 

Gas-phase tomography refers to a set of techniques that determine the 2D or 3D distribution of a 

target species in a jet, plume, or flame using measurements of light, made around the boundary of 

a flow area. Reconstructed quantities may include the concentration of one or more species, 

temperature, pressure, and optical density, among others. Tomography is increasingly used to 

study fundamental aspects of turbulent combustion and monitor emissions for regulatory 

compliance. This thesis develops statistical methods to improve gas-phase tomography and reports 

two novel experimental applications. 

 Tomography is an inverse problem, meaning that a forward model (calculating measurements 

of light for a known distribution of gas) is inverted to estimate the model parameters (transforming 

experimental data into a gas distribution). The measurement modality varies with the problem 

geometry and objective of the experiment. For instance, transmittance data from an array of laser 

beams that transect a jet may be inverted to recover 2D fields of concentration and temperature; 

and multiple high-resolution images of a flame, captured from different angles, are used to 

reconstruct wrinkling of the 3D reacting zone. Forward models for gas-phase tomography 

modalities share a common mathematical form, that of a Fredholm integral equation of the first-

kind (IFK). The inversion of coupled IFKs is necessarily ill-posed, however, meaning that 

solutions are either unstable or non-unique. Measurements are thus insufficient in themselves to 

generate a realistic image of the gas and additional information must be incorporated into the 

reconstruction procedure. 

 Statistical inversion is an approach to inverse problems in which the measurements, 

experimental parameters, and quantities of interest are treated as random variables, characterized 

by a probability distribution. These distributions reflect uncertainty about the target due to 

fluctuations in the flow field, noise in the data, errors in the forward model, and the ill-posed nature 

of reconstruction. The Bayesian framework for tomography features a likelihood probability 

density function (pdf), which describes the chance of observing a measurement for a given 

distribution of gas, and prior pdf, which assigns a relative plausibility to candidate distributions 

based on assumptions about the flow physics. Bayes’ equation updates information about the target 
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in response to measurement data, combining the likelihood and prior functions to form a posterior 

pdf. The posterior is usually summarized by the maximum a posteriori (MAP) estimate, which is 

the most likely distribution of gas for a set of data, subject to the effects of noise, model errors, 

and prior information. The framework can be used to estimate credibility intervals for a 

reconstruction and the form of Bayes’ equation suggests procedures for improving gas 

tomography. 

 The accuracy of reconstructions depends on the information content of the data, which is a 

function of the experimental design, as well as the specificity and validity of the prior. This thesis 

employs theoretical arguments and experimental measurements of scalar fluctuations to justify 

joint-normal likelihood and prior pdfs for gas-phase tomography. Three methods are introduced to 

improve each stage of the inverse problem: to develop priors, design optimal experiments, and 

select a discretization scheme. First, a self-similarity analysis of turbulent jets—common targets 

in gas tomography—is used to construct an advanced prior, informed by an estimate of the jet’s 

spatial covariance. Next, a Bayesian objective function is proposed to optimize beam positions in 

limited-data arrays, which are necessary in scenarios where optical access to the flow area is 

restricted. Finally, a Bayesian expression for model selection is derived from the joint-normal pdfs 

and employed to select a mathematical basis to reconstruct a flow. Extensive numerical evidence 

is presented to validate these methods. 

 The dissertation continues with two novel experiments, conducted in a Bayesian way. 

Broadband absorption tomography is a new technique intended for quantitative emissions 

detection from spectrally-convolved absorption signals. Theoretical foundations for the diagnostic 

are developed and the results of a proof-of-concept emissions detection experiment are reported. 

Lastly, background-oriented schlieren (BOS) tomography is applied to combustion for the first 

time. BOS tomography employs measurements of beam steering to reconstruct a fluid’s optical 

density field, which can be used to infer temperature and density. The application of BOS 

tomography to flame imaging sets the stage for instantaneous 3D combustion thermometry. 

 Numerical and experimental results reported in this thesis support a Bayesian approach to gas-

phase tomography. Bayesian tomography makes the role of prior information explicit, which can 

be leveraged to optimize reconstructions and design better imaging systems in support of research 

on fluid flow and combustion dynamics. 
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Chapter One  
Introduction to Gas Sensing by Tomography 

Gas-phase tomography is a class of imaging tools which estimate the spatial distribution of a target 

species using optical instruments placed around the periphery of a flow area. Quantities of interest 

may include the volume fraction, temperature, pressure, mass density, refractive index, or bulk 

velocity of a gas, depending on the measurement modality. All forms of gas tomography are based 

on a model of radiative transport through a participating medium. Measurement models for the 

techniques discussed in this dissertation simplify to a common integral equation, which enables a 

unified approach to imaging. The aim of this work is to advance the Bayesian framework for this 

class of problems by way of theoretical developments and practical demonstrations. 

 Gas sensing technologies feature widely in science and engineering. Details about the 

motivation for spatially-resolved gas diagnostics are discussed below, followed by an overview of 

alternative techniques. The story of tomography is told through a historical survey of its medical 

and mathematical foundations along with a comprehensive review of the literature on gas-phase 

applications. The introduction closes with a summary of the structure and purpose of subsequent 

chapters. 

1.1 Motivation for Gas-Phase Tomography 

1.1.1 Researching turbulence 

First, and most basically, gas tomography is used to aid the fundamental study of turbulence. 

Turbulent phenomena are ubiquitous in natural fluid flow and engineering environments; turbulent 

flows are marked by tumultuous motion—rotational, diffusive, and dissipative [1]—with random, 

coherent structures that span many scales of length and time. Research on turbulence has prompted 
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famous unsolved questions that lie at the heart of mathematics and elegant engineering simulations 

that predict fluid motion with a high degree of accuracy. Most models of turbulent behaviour 

follow from the Navier-Stokes equations, which describe the changing state of an idealized 

continuum fluid subject to viscous forces. Mass, momentum, and scalar conservation are enforced 

by a set of coupled partial differential equations, where the motion, scalars, and turbulent stresses 

within a fluid are unknown, resulting in an underdetermined system. 

 Numerous closures to the Navier-Stokes equations have been proposed for specific flow 

regimes. Closures developed for numerical solutions, such as large-eddy simulations (LESs), 

average the Navier-Stokes equations in space to facilitate discrete representation of the flow field 

and reduce the computational cost of simulation. In Reynolds-averaged Navier-Stokes simulation 

(RANS), the equations are averaged in time to simplify turbulent stresses.5 Averaged equations in 

LES and RANS involve subgrid or Reynolds stress terms that must be modelled. Historically, the 

development of turbulence models has been driven by empirical observation: these models feature 

constants that need to be specified by experimental data or direct numerical simulation [2]. 

Moreover, the vorticity fluctuations that constitute turbulence induce 3D variation and, as a result, 

instantaneous turbulent dynamics are inherently 3D [3]. Statistical approaches to the simulation of 

turbulence, such as those based on probability density functions (pdfs) [4] and “smart” subgrid 

stress [5] methods, require time-resolved measurements of flow quantities. Tomographic methods 

can realize the high spatiotemporal resolution required to devise and specify models of turbulence. 

Furthermore, multi-modal experiments that include a tomographic component can provide data on 

several variables, simultaneously, used to generate conditional statistics for a conditional moment 

closure [6]. 

1.1.2 Characterizing combustion 

Second, and closely related to the first motivation, gas tomography is applied to characterize and 

control reacting flows: principally those involving combustion. Understanding flame dynamics 

poses challenges beyond turbulence modelling per se and has major implications for energy 

consumption patterns. Combustion is the primary source of energy for transportation and a leading 

source of electricity. Improving the conversion efficiency of combustion through the design of 

                                                 
5 Direct numerical simulation is an alternative to LES and RANS where the timestep and grid resolution are sufficiently 

small to fully resolve a continuum model of turbulent flow [365]. However, the substantial computational burden of 

this approach limits the range of practical applications. 
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novel devices lowers transportation and electricity costs, thereby improving standards of living 

[7–9]. Moreover, developments such as pressure gain combustors [10], coal gasifiers [11], and 

alternative clean fuels [12] reduce targeted products of combustion (i.e., pollutants), which have 

harmful health and environmental effects. Simulations of turbulent flames are key to the design 

and operation of commercial combustion devices [13,14], but combustion modelling involves 

substantial challenges. Difficulties arise from the strong non-linear coupling of kinetic and 

transport mechanisms, called turbulence-chemistry interactions, due to overlapping timescales 

[15]. Similar complexities are introduced by the interdependence of reaction mechanisms, scalar 

transport, and radiative heat transfer, called turbulence-radiation interactions [16]. 

 Industrial engines, boilers, and turbines are designed to promote turbulent combustion to 

improve mixing and heat transfer. Turbulence-chemistry and turbulence-radiation interactions are 

key to flame ignition and stabilization; the formation of NOx and soot; the onset of flash back, 

engine knock, and cyclic variations in gas turbines; and the overall efficiency of energy conversion. 

Burner performance depends on these effects. Accurate simulations are therefore required to 

optimize burner design. Flame simulations are compared to experimental data from representative 

lab-scale flames in order to ensure validity. These data are obtained from a variety of diagnostics, 

including gas tomography [17].6 

1.1.3 Monitoring emissions 

Finally, gas tomography is a key tool for remote sensing of hazardous or environmentally-harmful 

emissions. The need for remote sensing is driven by the increased production of gas-phase 

pollutants that impact human health and safety, ecological stability, and long-term climate patterns. 

Examples include the aerosolized SO2 and NO2 generated by fossil fuel power stations, which are 

converted to sulphuric and nitric acids that further decompose into toxic compounds [18]. 

Sulphuric aerosols cause human respiratory morbidity; and subsequent acidic products damage 

nearby soil [19]. Power stations must scrub and monitor effluent gas flows to minimize these 

effects. Anthropogenic sources of hydrocarbon gasses, owing largely to the extraction, processing, 

and consumption of fossil fuels, contribute positive radiative forcing due to the greenhouse 

effect—amplified by feedback mechanisms [20]. Atmospheric CO2 is of primary interest since it 

                                                 
6 Validation data sets include mean and fluctuating components of velocity, temperature, and species concentrations; 

power spectra thereof; and quantities that require spatially-resolved measurements such as gradients (to gauge 

dissipation), length scales, and strain, vorticity, and dilation fields. 
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is the principal product of combustion and exhibits a long atmospheric lifetime. There is also a 

significant focus on CH4 and NO2 emissions, as their mass-based greenhouse warming potential 

is 86 and 268 times greater than that of CO2 over a 20-year period, respectively [21]. National 

regulatory agencies such as the EPA have issued rules to limit emissions of CH4, NO2, volatile 

organic compounds (VOCs), and other toxic molecules: to promote health and meet global climate 

commitments [22]. Regulations mandate that polluters monitor their emissions to ensure 

compliance. Reported emissions inform inventories, themselves used to benchmark climate 

models. Primary targets of industrial regulation include emissions from factory chimneys, flare 

stacks, and landfills. These flows are often intermittent, spatially distributed, and physically 

inaccessible. Optical tools to quantify emissions are thus required to measure the release of 

hazardous gasses, inform scientific models of plume dispersion, and devise mitigation strategies. 

1.2 Gas Flow Measurement Technologies 
Numerous diagnostics have been developed to measure the presence and state of a gaseous species: 

to aid the fundamental study of turbulence, validate combustion simulations, and quantify harmful 

emissions. What follows is an outline of these tools, with attention to their advantages and 

drawbacks relative to tomography, and an overview of a central technology: chemical species 

tomography (CST). 

1.2.1 Invasive probes 

High-precision measurements of a gas are often made with an invasive device which is physically 

inserted into the flow field. Such probes are typically responsive to local quantities, though some 

record bulk measurements, instead. 

 Most invasive sensors record an electrical gradient due to a pressure difference, heat flux, or 

mechanical motion to infer a gas parameter. A multiplicity of techniques are available to fluid 

dynamists and combustion modellers to measure quantities of interest. For instance, velocity data 

may be obtained by hot wire anemometry, in which convective heat losses from a wire to a 

surrounding flow are used to calculate the fluid velocity, or with a pitot tube, where the gauge 

pressure at the inlet of a small pipe is related to velocity along the inflow direction. Measurements 

of temperature are typically made with a fine-wire thermocouple, electrical resistance device, or 

thermistor. Thermocouples have two wires, made of different metals, which generate a voltage 

difference across a reference junction in proportion to the temperature of the thermocouple. By 

contrast, electrical resistance devices and thermistors measure temperature using a circuit with a 
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temperature-dependent resistor and constant current source. Gas concentration data may be 

determined through contact methods—e.g., using a ceramic semiconductor sensor, pellistor, or 

electrochemical sensor—or by processing a sample of the fluid with a flame ionization detector or 

photoionization detector. 

 Physical methods to probe a gas suffer from a common set of drawbacks, reflecting the fact 

that the presence of a probe in the flow field perturbs the quantity of interest [23]. Under some 

circumstances, the probe has a predictable effect on measurements that is counteracted with a 

correction factor. For instance, pitot tubes displace a portion of the flow, thereby changing its 

velocity at the tube inlet. A correction term is derived from analysis of the streamline gradients 

about the entry nozzle [24]. Similarly, thermocouples measure their own temperature—not that of 

the surrounding fluid—and heat transfer at the interface must be modelled to obtain a fluid 

temperature. Other forms of interference are more severe. Wires for thermometry and ceramic 

semiconductors introduce thermal and catalytic disturbances in a flame, altering the local balance 

of turbulent transport, chemical kinetics, and radiative transfer. These effects may quench the 

flame around a sensor, substantially altering temperature and concentration measurements. 

Moreover, flames are frequently stabilized by recirculation currents; probes can interrupt this 

motion and cause a global instability. Further forms of physical interference include the 

accumulation of particulate matter on a sensor—such as soot, which builds up a thermal 

resistance—and devices can be degraded or destroyed by a harsh environments: high temperature, 

highly corrosive, large loads, and so on. 

 More fundamentally in the context of 2D and 3D measurement, invasive probe data are 

inherently local, or else relay aggregate quantities (e.g., bulk velocity in pipe flow). Key 

distributions must be found by interpolation between multiple measurements, which exacerbates 

the perturbation effects and often prevents instantaneous measurement, altogether. Statistical 

techniques such as kriging have been used to interpolate point data but these procedures are subject 

to considerable spatial uncertainty [25,26]. Non-invasive methods are thus employed to obtain 

comprehensive spatial information about gas parameters without disturbing the flow field or 

damaging the measurement apparatus. 

1.2.2 Line-of-sight absorption spectroscopy 

Advances in laser technology and spectral light sensing have enabled a suite of optical diagnostics 

for gas and combustion processes—many quantitative and most non-invasive. These tools offer 
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high-sensitivity to the target species; fast response times, appropriate for real-time control; and 

non-invasive in situ measurement capabilities. Spectroscopy operates on the principles of light-

matter interaction, based on quantum interactions and governed in aggregate by the radiative 

transfer equation (RTE). Light travelling through a gas is absorbed, emitted, and scattered as a 

function of its wavelength and the state of the medium. Optical line-of-sight (LOS) measurements 

are combined with a model of the target species to infer parameters of interest. 

 Photonic absorption and emission by a gas molecule are related to its chemical structure and 

internal energy. Transitions between rotational, vibrational, and electronic states give rise to 

spectral lines. Light is measured in the UV/visible, mid-infrared (IR), or near-IR range, depending 

on the target.7 In LOS absorption spectroscopy, emission and in-scattering are negligible and the 

RTE simplifies into the Beer-Lambert law, which describes the attenuation of monochromatic light 

by an absorbing medium in terms of a local spectral absorption coefficient (itself a function of the 

molecular composition and thermodynamic state). Illumination from a background source or 

ambient light is recorded by a photon detector and measurements comprise a reference signal, 

made without the absorbing species, and attenuated signal. The path-integrated absorption 

coefficient between the source and detector is calculated from the ratio of the reference intensity 

to the attenuated intensity. Key parameters of a gas process are inferred from the mean coefficient. 

Moreover, additional components of the RTE may be included as required, as emission and 

scattering become salient. 

 Measurements for LOS gas sensing are either spectrally resolved, monochromatic, or 

broadband in nature. Costs typically scale with increasing spectral resolution (and spatial 

resolution in the case of imaging devices) and the optimal modality depends on the application. 

For instance, single-species measurements of concentration in an isothermal, isobaric environment 

can be made with a broadband source and detector, e.g., a thermal lamp and photon detector. Most 

such arrangements are enclosed, as in Ref. [27], but open path broadband systems have also been 

demonstrated, e.g., Ref. [28]. A majority of open path devices are spectrally-resolved in order to 

minimize the effects of interference by an unknown absorber. These systems are either active, with 

illumination provided by the experimental apparatus, or passive, using ambient light (e.g., solar 

radiation). Differential optical absorption spectroscopy (DOAS) is an example of Beer-Lambert-

                                                 
7 See Chapter 5 for a detailed discussion of absorption transitions and the calculation of spectral lineshapes. 
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type detection that features spectral measurements made with an array of solid state photon 

detectors or a Fourier transform IR (FTIR) spectrometer [29]. Differential absorption light 

detection and ranging (DIAL) is another high-precision form of LOS spectroscopy, based on 

backscattered laser light [30]. In DIAL, a laser and detector are collocated and pointed towards the 

atmosphere. The laser is pulsed and some of its light collides with target molecules; a portion of 

scattered light returns to the source. Scattering can alter the wavelength of light, depending on the 

nature of the collision (elastic or inelastic); and the wavelength and travel time are used to gauge 

the state of a target and the distance to a gas feature, respectively. DOAS and DIAL systems have 

been used to measure NH3, NO2, SO2, and VOCs in the C2 to C22 range, including alkanes, alkenes, 

aromatics, benzene, and toluene [31–37]. 

 High-temperature scenarios—e.g., products in a shock tube, coal gasifier, or ram jet—require 

coefficient data for at least two wavelengths to disambiguate the effects of temperature and 

concentration. Two-line thermometry uses the ratio of line strengths from two transitions to obtain 

a gas temperature. Given the temperature, either line may be used to calculate the species 

concentration. Today, this method is conducted with multiplexed lasers or a tunable diode laser 

(TLD) [38]. TDLs generate monochromatic light at a wavelength that scans a spectral range in 

response to an injection current. Direct absorption spectroscopy (DAS) features a simple injection 

current (with a ramp or sinusoidal function); and wavelength modulation spectroscopy (WMS) 

consists in modulating the injection current and taking the ratio of the measurement signal’s first 

and second harmonics, obtained with a lock-in device [39]. WMS harmonics are sensitive to the 

curvature of absorption features rather than absolute absorption, as in DAS. The modulation 

technique is robust to beam distortion, window fouling, and thermal noise, all typical of harsh 

high-temperature, high-pressure environments [40]. Fluctuations in the gas state may be combined 

with knowledge about the measurement environment to infer velocity and mass flux data. Recent 

experiments include the measurement of density, velocity and mass flux of air in a gas turbine 

[41], temperature and concentration of H2O from engine exhaust [42], mass flux of O2 in a wind 

tunnel [43], and in situ concentration and temperature of H2O in an optical engine [44,45]. 

 Line-of-sight spectroscopy can generate accurate data about jets, plumes, and flames, 

including the line-averaged composition, pressure, temperature, velocity, or mass flux of a process. 

The technique has been deployed for remote sensing over very long distances as well as the in situ 

characterization of combustors. However, the single-LOS approach to spectroscopy is limited by 
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strong assumptions about the distribution of gas along the measurement path. The absorption 

coefficient is presumed to be uniform throughout the target, either throughout the path or within a 

finite slab (as in DIAL, for instance). When the distribution is non-uniform and the temperature is 

constant, estimates of volume fraction correspond to a path-integrated mean along a LOS. But in 

the case of a non-uniform gas in a variable-temperature environment—common to reacting 

flows—the line-averaged absorption coefficient resists easy interpretation because of the non-

linear effects of temperature and pressure on absorption spectra. Spatial resolution is required to 

extract local estimates with a clear physical meaning.8 

1.2.3 Laser-induced fluorescence 

Fluorescence is the emission of light by a molecule that has been excited by radiation. Laser light 

energizes an orbital electron, which jumps to an elevated state without changing its spin. There are 

several mechanisms by which the electron may return to its ground state, including vibrational 

relaxation, electronic transfer to a colliding molecule, and spontaneous photonic emission (i.e., 

fluorescence).9 Laser-induced fluorescence (LIF) is a mature gas and combustion diagnostic in 

which a short laser pulse excites a target species and cameras record the resulting fluorescence. 

Several arrangements of LIF have been demonstrated, which feature point, planar (PLIF), and, 

recently, volumetric (VLIF) measurement [46–48]. In PLIF, a system of lenses forms light from 

the laser into a sheet to simultaneously stimulate molecules in a plane that transects the gas/flame. 

Fluorescence from this plane is captured by a camera facing the laser sheet. The resulting image 

is a near-instantaneous cross section of the excited species. VLIF entails mechanized optics that 

sweep the laser sheet through a volume of the domain while the camera records successive planes. 

Alternatively, VLIF can be achieved by using lenses to form the laser light into a volume; multiple 

cameras image emission this volumetric emission from different perspectives and a computed 

tomography algorithm is employed to resolve the 3D source distribution. 

 Laser-induced fluorescence has been employed to study intermediate radicals in hydrocarbon 

combustion such as OH*, CH*, and HCO*, which provide a measure of turbulent chemistry at the 

flame front [49]. CN [50] and NO [51] intermediates reveal the progression of nitrogen reactions; 

and further PLIF studies have focused on CH2O
* [52], H2

* [53], and O2
* [54]. Recent advances in 

                                                 
8 Under idealized (exceedingly rare) conditions—i.e., a gas of uniform composition that varies only in temperature—

rich, spectrally-resolved LOS data for a single path can be used to recover the distribution of temperature along the 

path [366]. This is made possible by the directional-dependence of self-absorption effects. 
9 Additional mechanisms involved in the relaxation of excited electrons are described in Schulz and Sick [367]. 
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LIF include the use of a wavelength modulated laser pulse [55]. PLIF and VLIF require 

considerable optical access since the combustion must be open to the laser sheet and cameras. 

While this approach is feasible for laboratory flames and special optical engines, many combustors 

cannot be modified to accommodate spatially-resolved LIF. Moreover, the introduction of a tracer 

can influence combustion through the formation or vapourization of droplets and LIF poses 

considerable costs and safety hazards relative to non-laser based alternatives. 

1.2.4 Raman-Rayleigh scattering and CARS 

Scattering phenomena are also exploited for quantitative gas sensing. During collisions between a 

photon and molecule, an orbital electron may “assume” an intermediate quantum state known as a 

virtual state. Electrons transition through virtual states, returning to a ground state; the molecule 

effectively absorbs and instantaneously emits a photon, which is said to have been “scattered.” 

Most electrons return to their original state such that incident and scattered photons have the same 

energy—this exchange amounts to an elastic collision called Rayleigh scattering. Some electrons 

relax to an elevated energy level, scattering a photon with less energy than the incident photon, 

which yields a Stokes line. Other electrons relax to a less energetic state, scattering a more energetic 

photon that yields an anti-Stokes line. Collisions that result in Stokes and anti-Stokes lines entail 

net energy transfer between the molecule and photon and are said to be inelastic. Inelastic 

scattering of this type is called Raman scattering. The relative intensity of light due to Rayleigh 

scattering and Stokes and anti-Stokes lines depends on the energy of incident light and the state 

and molecular structure of gas molecules at the measurement point. The abundance of target 

molecules is thus inferred from the spectral signature of scattered light. 

 Electrons preferentially absorb light aligned with an electronic transition, jumping to an 

elevated state rather than interacting with a virtual state to scatter a photon. Absorption is followed 

by vibrational relaxation and fluorescence, which is more efficient than scattering, thereby 

corrupting the Rayleigh signal. However, scattering may occur whether or not incident light is 

aligned with a valid transition. Interference by fluorescence is commonly overcome by tuning the 

laser to avoid valid transitions. At the same time, the efficiency of scattering through a virtual state 

is proportional to λ-4, where λ is the wavelength of incident light. Increasing power to the TDL 

therefore reduces the probability of Rayleigh and Raman scattering. Some experiments use a multi-

pass approach to resolve this issue [56], with many optical paths intersecting the measurement 

point, or temporal gating to avoid measurement of the relatively fast fluorescence signal [57]. 
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 The molecular number density and temperature of a target can be computed from a Rayleigh 

line, alone [58]. However, the spectral characteristics of Raman scattering are highly-sensitive to 

the mixture composition, temperature, and pressure at the measurement location. Combined 

Raman-Rayleigh diagnostics are employed to obtain robust concentration data for multiple species 

as well as temperature and pressure [59]. More recently, the Raman-Rayleigh technique has been 

combined with PLIF, called Raman-Rayleigh-LIF. Raman-Rayleigh measurement yields absolute 

data at a reference point, which anchors the scale of PLIF images. The result is simultaneous, 

quantitative, 2D images of temperature and key radical number densities [60]. 

 Coherent anti-Stokes Raman spectroscopy (CARS) is a related diagnostic that uses the same 

transition mechanisms as basic Raman-Rayleigh devices. In CARS, pump and stokes lasers are 

multiplexed; the laser wavelengths are tuned such that their beat frequency is aligned with the 

energy difference between a ground state and vibrational eigenstate. These states become coupled 

as a result and molecules in the measurement area exists in a coherent superposition of the ground 

and elevated states. A third laser—or probe beam—excites the coherent system, scattering through 

a virtual state to produce an anti-Stokes line. These anti-Stokes lines are more energetic than 

standard Rayleigh lines, which are filtered out in CARS. The resulting signal omits the 

fluorescence that corrupts Raman-Rayleigh data. CARS is widely used to obtain point-

measurements of volume fraction, temperature and pressure in laboratory experiments and has 

been applied to turbines, industrial combustors, and natural gas engines [61]. 

 Raman-Rayleigh scattering and CARS are used to obtain high-precision, non-invasive 

measurements of number density and temperature in reacting flows. However, these diagnostics 

feature limited spatial resolution on their own and multi-diagnostic setups are incredibly 

expensive: with multiple lasers, beam splitters, interferometers, and high-speed cameras required 

as well as full optical access to the probe volume. Spatially-resolved spectroscopy with a Raman-

Rayleigh component is normally restricted to advanced applications in specialized labs. 

1.2.5 Schlieren imaging 

Schlieren imaging refers to a suite of optical tools that take advantage of the refraction of light 

through a variable index flow field to visualize density gradients. The speed of light in a medium 

is given by its refractive index (or “optical density”), which depends on the medium’s local mass 

density and chemical composition. Fermat’s principle holds that the travel time of a photon 

between two points is invariant to small changes in the path. From this statement it can be deduced 
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that smooth variation in the refractive index generates curved photon trajectories. Rays bend away 

from regions of higher density or towards lower density. As a fluid fluctuates, the phase of light 

can be seen to shift in response. These “streaks” of visible light are recorded and give the schlieren 

imaging its name.10 

 Several optical arrangements have been devised to record the schlieren effect for the purpose 

of flow visualization.11 The standard approach aligns the flow with the Fourier plane of a Fourier 

optical correlator. A knife edge is placed at the focus of the second lens, in front of a camera, to 

mask half of the spatial frequency spectrum, making phase differences visible in the image. Lens-

and-grid schlieren apparatuses shine light through a large grid of lenses and then through the flow. 

The light is received by a secondary system of lenses, with a negative cut-off grid positioned within 

the latter system to filter half the spatial frequencies. Alternatively, shadowography is based on 

the direct observation of shadows cast by refraction in a fluid onto a distant background plane. 

And background-oriented schlieren (BOS) uses time-resolved images of a background plane with 

a printed pattern, positioned behind the flow, in combination with image processing tools to infer 

disruption of the image by the fluid. 

 Early developments in the method were limited to the qualitative assessment of fluid 

structures made visible by the schlieren effect. In the 1930s, Hubert Schardin proposed a 

theoretical foundation for schlieren phenomena, used for quantitative analysis [62]. A 

straightforward approach to quantitative schlieren involves tracking the size and movement of 

fluid structures with computer vision tools for velocimetry. For instance, Hargather et al. [63] 

conducted schlieren-based velocimetry of a boundary layer in a supersonic wind tunnel. Rich data 

about density and temperature can be inferred from the refractive index field. Geometric optics 

relates gradients in optical density to the magnitude of light deflections and the Gladstone-Dale 

equation describes the relationship between mass and optical density. Deflections can be 

determined in several ways: with monochromatic light and reference measurements to relate 

intensity to the refractive index [64]; by replacing the knife edge with a colour-grid cut-off, such 

that the magnitude of the phase shift correlates to colour in the image, called rainbow schlieren 

                                                 
10 The name schlieren derives from schliere, the German word for streak, first used to describe deflectometry by 

August Toepler in the 1860s. 
11 Notably, the first of schlieren technique was reported by Robert Hooke in 1665 [330]. The apparatus used a large 

lens to focus light from a candle through the flow field (a hot air plume above another candle) and small viewing 

aperture. Inhomogeneities in the heated plume were visibly apparent through the viewing window. 
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[65]; or by directly measuring deflections, as in BOS [66]. These techniques have been applied to 

study supersonic flow around a 2D wedge plate [67], the density of a microjet [68], and the 

oscillating wave structure in the wake behind a sphere [69], among other applications. 

1.2.6 Chemical species tomography 

Gas-phase tomography is an imaging technique that generates 2D or 3D estimates of a gas 

distribution using multiple LOS measurements, each tracing a unique path through the flow area. 

Under minimal scattering conditions,12 measurements of light are governed by a Fredholm IFK. 

Non-scattering LOS tomography of this kind is called hard-field tomography, or chemical species 

tomography in the gas sensing context.13 Path-integrated measurements in gas tomography share 

a mathematical form with the X-ray measurements of medical imaging. As a result, the standard 

approach to computed tomography can be used to reconstruct the spectral absorption coefficient 

or emission source term. Reconstructed quantities are related in turn to the concentration, 

temperature, or pressure of a target species. Figure 1.1 shows a sample schematic for 2D CST, 

with LOS measurements over a ground truth distribution and discrete reconstruction. 

 Chemical species tomography is flexible with respect to the number of measurements required 

to image a flow field and compatible with a broad range of existing optical diagnostics. Two-

dimensional gas distributions can be computed from as few as 20-40 optical paths, which enables 

                                                 
12 Such conditions are achieved when the signal is dominated by the absorption of background light (typically light 

from an active source) or radiative emission from the gas. 
13 CST is a term for hard-field gas-phase tomography that originates with Carey et al. [130]. Alternative terms include 

agile tomography, line-of-sight-absorption infrared tomography, etc.—each with a somewhat distinct meaning. CST 

is general, grouping diagnostics by their mathematical properties, and neatly divides into modality- and algorithm-

based categories. This document employs “CST” to refer to non-scattering gas tomography based on coupled IFKs. 

a)  b)  

Figure 1.1: Sample schematic for absorption CST: a) measurement of light attenuation by a gas and 
b) reconstruction using a discrete representation of the target. 
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quantitative imaging of an enclosed process or large-scale emissions flux with minimal 

instrumentation. Alternatively, a laboratory camera array—where each pixel constitutes a 

measurement, resulting in a total of ~105-106 equations—can generate time-resolved 3D 

reconstructions with sub-millimetre resolution. CST algorithms accommodate non-scattering 

forms of LOS spectroscopy, flame chemiluminescence, and LIF measurements. Furthermore, there 

is a direct relationship between CST and gas-phase tomography by schlieren imaging, discussed 

in Chapter Six. CST devices are categorized in terms of their measurement principle. Systems that 

measure attenuated light are termed absorption CST and those based on images of thermal 

emission by gas molecules, chemiluminescence, or LIF are called emission CST. 

 Industrial applications and scientific campaigns that make use of CST are more and more 

common. The technique is adopted because it generates accurate images of internal flow structures, 

robust to the availability of optical access, at a relatively low cost, due to the advent of inexpensive 

opto-electronic components. Moreover, the powerful computing resources now available permit 

real-time monitoring of a gas process by CST. This unique set of advantages renders gas-phase 

tomography well-suited to the study of turbulent transport and flame dynamics, control of 

industrial processes, and quantitative measurement of hazardous emissions. 

 This dissertation reports the application of Bayesian inference, a statistical framework for 

inverse analysis, to CST. Furthermore, two novel applications of gas-phase tomography are 

discussed. Readers will learn of the utility of Bayesian algorithms compared to state-of-the-art 

classical alternatives: for optimizing beam arrays, selecting an appropriate discretization scheme, 

and generating accurate images of a turbulent flow. Moreover, broadband absorption CST is 

presented as a novel low-cost approach to emissions measurement. Finally, BOS tomography is 

applied to combustion imaging for the first time. 

1.3 Survey of Gas-Phase Tomography 
Modern tomographic imaging spans applications from fundamental combustion research [70] to 

crack detection in concrete [71], from 3D cell microscopy [72] to the characterization of quantum 

states [73]. These techniques are diverse in their targets and modes of operation but united in form: 

all tomography consists in the reconstruction of a function from its projections, where the function 

represents a physical quantity of interest and projected data is generated by a penetrating wave 

(i.e., electromagnetic radiation). The first application of tomography was medical imaging, which 

brought together 2D radiography, advances in mathematical transformations, and computer 
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technology. The fundamental research was conducted first by mathematicians, who were unaware 

of the technological implications of their work, and subsequently by medical physicists, in fierce 

competition to engineer a viable commercial device. Gas-phase tomography is a direct product of 

this history and shares a mathematical foundation with medical imaging. A brief digression on the 

discoveries and developments leading up to CST is thus worthwhile. This survey of CST begins 

with a historical account of tomography, followed by an overview of reconstruction and a 

comprehensive account of absorption and emission experiments. Finally, the outlook for gas-phase 

tomography is discussed, with particular attention on the contributions of this dissertation. 

1.3.1 Origins of tomography 

Simple tomographic systems are based on measurements of the transmission or emission of light 

along a straight path. Measurements from multiple perspectives are combined to produce an image 

of the unknown distribution. 

 Johann Radon proposed a transform of an arbitrary function—in 2D or 3D, based on line 

integrals of the function—as well as the corresponding inversion in 1917 [74]. Today, these are 

called the Radon and inverse Radon transforms. The Radon transform can be interpreted as a 

mathematical representation of tomographic measurement; the inverse transform is thus applied to 

reconstruct an unknown function from its projections.14 Similarities between the Radon transform 

and X-ray measurements were noticed early on by medical researchers who had spent the past few 

decades experimenting with radiography. X-rays were first reported by Wilhelm Röntgen in 1895 

and the phenomenon was quickly adopted by physicians to assist medical diagnoses. Early 

attempts to extract 3D information from X-ray images employed multiple images, captured by 

manually moving an X-ray tube and film cassette around a target—e.g., published in 1915 by Carlo 

Baese and in 1922 by Andre Bocage—but these experiments failed to resolve internal structures 

from projection data. 

 Years later, in 1957 (though not published until 1963), Allan Cormack united of X-ray 

imaging with the mathematical inversion of Radon. Motivated by the potential radiological 

applications, Cormack developed a version of the inverse Radon transform that was subject to the 

physical constraints of X-ray imaging. He then built a device to measure projections, 

                                                 
14 It is noteworthy that Radon’s motivation was entirely mathematical, concerning partial differential equations; 

potential physical applications were not apparent to him [79]. The first application of the Radon transform on record 

was an initial value problem, concerning hyperbolic homogeneous equations with constant coefficients [368]. 
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reconstructing an aluminum cylinder in 1957 and pork cutlet with aluminum inserts in 1963. 

Independent of Cormack, Godfrey Hounsfield devised an approach to reconstruction using a 

pixelated representation of the X-ray target and a series of linear equations to approximate the 

coupled path integrals. Hounsfield assembled the first computed tomography scanner in 1967. The 

inaugural test of this device made 28,000 measurements through a preserved brain—a task that 

took over nine days to complete! Instead of using a transform-based algorithm like Cormack, 

Hounsfield opted for an algebraic algorithm, similar in form to the algebraic algorithms used in 

most contemporary tomography experiments. Reconstruction was carried out on an EMIDEC 1100 

transistor computer, lasting 2.5 hours, resulting in an 80×80 pixel image. The reconstruction bore 

a clear resemblance to the preserved brain tissue, a major achievement in the progression of 

tomographic imaging. 

 Subsequent developments in the technology were rapid, driven in large part by the substantial 

commercial incentives. By the mid-1970s, manufacturing conglomerates like General Electric had 

begun to produce tomographic X-ray scanners at scale. These scanners were used as non-invasive 

means to identify lesions, tumors, blood clots, and other ailments. In 1979, the significance of 

computed tomography was acknowledged with the awarding of a Nobel Prize to Cormack and 

Hounsfield. The 1980s saw advances in laser diagnostics and imaging technologies; researchers in 

other fields began to realize the potential for computed tomography as a scientific diagnostic and 

experimental demonstrations soon followed. 

1.3.2 Reconstruction algorithms 

Measurements in gas-phase tomography are line-integrated quantities that depend on the unknown 

distribution of an absorption coefficient or radiative source term. Reconstruction of the unknown 

function from line-integrated data is an ill-posed inverse problem, meaning the problem is either 

underdetermined, in which case infinitely many images can fully explain the projections, or 

sensitive to small changes in the data, such that measurement noise produces large perturbations 

which distort the image. 

 This section reviews the techniques devised to address ill-posedness in gas-phase tomography, 

which divide into analytical and algebraic algorithms. Mathematical details that are relevant to this 

thesis are presented in Chapter Two. 
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1.3.2.1 Analytical techniques 

Analytical techniques derive from the inverse Radon transform and express the reconstruction as 

a direct function of the projections. Colloquially, back projection is said to “smear” the data back 

along the measurement line. Projections are combined to form an image of the object in sinogram 

space, which corresponds to a Radon transform of the unknown distribution. A complete Radon 

transform requires an infinite set of line-integrals so interpolation is required to supplement the 

sinogram data. Back projection approximates the hypothetical integral over the full set of 

projections from the inverse Radon transform with a sum over the actual measurements. The sum 

features a frequency filter to reduce blurring and noise amplification, which are inherent to the 

inversion. As a result, the approach is often called filtered back projection. 

 Back projection was independently developed by Bracewell and Riddle in 1967 [75] and 

Ramachandran and Lakshminarayanan in 1971 [76]. Shepp and Logan later introduced a widely-

used low-pass filter (as well as the famous phantom of a head section) [77].15 The text of Herman 

[78] is frequently cited in CST papers as the source of the back projection algorithm; and readers 

of this thesis are directed to the text of Deans [79] for a complete account of analytical algorithms 

for tomography. Analytical algorithms require a dense measurement array with regular projections, 

typically using a fan-beam or parallel-beam arrangement. It is challenging to achieve the setup 

required for analytical back projection in gas-phase tomography; and few such algorithms have 

been developed for gas imaging with a limited field of view. Therefore, when CST practitioners 

employ back projection, they normally adopt algorithms from the medical imaging literature. 

1.3.2.2 Algebraic techniques 

Algebraic algorithms formulate projection as matrix-vector multiplication, starting with 

discretization of the flow field. The domain is represented using a finite basis—typically square 

pixels that contain a uniform concentration of gas, by assumption—and a discrete measurement 

operator is constructed, accordingly. The result is a linear system of equations, with one variable 

per basis function and one equation per measurement, which is iteratively solved. Stefan Kaczmarz 

proposed an iterative solution to matrix systems called the method of projections in 1937 [80]. The 

procedure was independently discovered by Gordon et al. [81] in 1970 for the purpose of medical 

imaging. They christened their method the algebraic reconstruction technique (ART), which has 

                                                 
15 “Phantom” refers to a ground truth distribution. 
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become the standard term of art. Algebraic reconstruction is similar in effect to back projection: 

each iteration distributes a measurement residual along the corresponding LOS. The approach 

offers several advantages over analytical algorithms in the gas sensing context. The ART can be 

used for reconstruction regardless of the arrangement of optical paths; the technique is more robust 

to measurement noise; and ART algorithms are more-readily adapted to incorporate prior 

information about the measurements and gas process. 

 Reconstruction by the ART, alone, yields sparse, non-physical solutions under limited-data 

conditions that are common in CST. As such, numerous modifications have been proposed, many 

of which are specific to a restricted set of experimental conditions. For instance, Shepp and Vardi 

[82] formulated reconstruction as a stochastic problem to account for measurement noise. 

However, their algorithm did not alter information about the target distribution and the results were 

substantially similar to ART reconstructions [83]. Multiplicative ART (MART) was proposed 

alongside the ART by Gordon et al. [81]. MART modifies the ART using an exponential weighting 

of the residual, which has been shown to maximize the entropy of the reconstructed image, 

effectively promoting smoothness [84]. Numerous other iterative algorithms that promote smooth 

solutions have been proposed, e.g., Refs. [85–89]. Additional techniques include a wavelet 

algorithm [90], level-set approach [91], statistical methods [92], and a non-linear technique that 

incorporates hyperspectral features of the measurement [93]. 

1.3.3 Experiments in absorption tomography 

1.3.3.1 Initial developments 

Two-dimensional gas tomography with lasers was first proposed by Chen and Goulard [94] and 

Wang [95] in 1976. The authors described the similarity between the extinction of X-rays in 

medical imaging and absorption of light by gas molecules; both papers proposed a two-step 

procedure to determine the temperature and concentration of a target using a Boltzmann ratio (i.e., 

two-line thermometry). Chen and Goulard [94] and Wang [95] each used an algebraic algorithm, 

tailored to their study, and numerically demonstrated their approach. Four years later, Emmerman 

et al. [96] reported the first experimental test of absorption CST. The authors probed a free-shear 

turbulent jet, composed of 90%-10% CH4-Ar, with a 3.39 μm He-Ne laser. They spread the laser 

into a horizontal sheet and attenuated light was resolved into LOS measurements by an uncooled 

Pb-Se detector array. This procedure was repeated at 12 equally-spaced projection angles and the 

mean absorption coefficient was reconstructed using filtered back projection. Other early 
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experiments include that of Santoro et al. [97] in 1981 and Bennett et al. [98] in 1984. Santoro’s 

group [97] conducted another experiment with a He-Ne laser and CH4-Ar jet while Bennett et al. 

[98] reconstructed I2 vapour in a free-shear jet. They measured attenuation of an Ar+ laser, divided 

into a fan-beam array, and reconstructed the I2 distribution with a back projection algorithm for 

fan-beam projections from the medical imaging literature. 

 Ray and Semerjian [99] were the first researchers to report the results of flame imaging by 

absorption tomography. The pair used a continuous-wave dye laser to determine the temperature 

and concentration of Na in a seeded premixed flat flame. Hall and Bonczyk [100] detected the 

temperature and volume fraction of soot produced by a C8H18-air diffusion flame from the 

absorption of near-IR radiation. Broadband light from a W filament lamp was detected at 1,000 

nm to avoid scattering by the soot; reconstructions were obtained using a Fourier algorithm with a 

modified Shepp-Logan filter. Spectral scanning with a TDL was introduced to absorption CST in 

1992 with the work of Ouyang et al. [101], who imaged CO2 above an axisymmetric flame. TDLs 

enable spectrally-resolved measurements of a molecule’s transition features, improving reliability 

over monochromatic data. Kauranen et al. [102] modulated their TDL signal (as in WMS) to 

further improve the accuracy of absorption data. The authors report 2D distributions of O2 in an 

air jet. 

 Innovations that refined the spectral resolution of CST data were accompanied by efforts to 

improve temporal resolution. In 1992, Beiting [103] engineered a device to record data from 

multiple fan-beam projections in 200 ns, which he deployed for time-resolved 2D absorption 

tomography. Light from Nd:YAG and tunable dye lasers was multiplexed and measured with a 

lock-in detector to obtain the two spectral intensity values required for two-line thermometry. He 

reconstructed the distribution of C4H6O2 in an atmospheric plume using filtered back projection. 

During the remainder of the 1990s, several other groups established and honed absorption CST 

experiments. Shimizu and Saki [104] measured temperature and number density above a premixed 

C3H8-air flame, Chung et al. [105] and Torniainen and Gouldin [106] reconstructed a CH4 jet, 

McNesby et al. [107] and Baum et al. [108] investigated CO products in and above flames by 

absorption tomography, Kessler et al. [109] used a TDL for CST of O2 (reconstructing temperature 

and concentration), and Greenberg and Ku [110] imaged the soot volume fraction in a cross section 

of a laminar diffusion flame. 
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1.3.3.2 Laboratory-scale jets and flames 

Continued work on laboratory-scale absorption CST has focused on reconstructing multiple 

parameters, simultaneously, and improving accuracy. 

 High-enthalpy flows have been the primary target of recent absorption tomography 

experiments. Following Refs. [104,107,108,110], Wondraczek et al. [111] and Villarreal and 

Varghese [112] imaged CH4-air flames from a flat flame burner. Wondraczek et al. [111] 

constructed an apparatus for 2.5D tomography using a difference frequency generation (DFG) 

laser to measure mean absorption on a plane-by-plane basis;16 and Villarreal and Varghese [112] 

used a TDL with a modulated injection current to resolve the temperature and volume fraction of 

CO2. Kasyutich and Martin [113] mounted a distributed feedback (DFB) laser and scanning mirror 

on movable carriages, equipped with servo motors. They generated five fan-beam projections with 

11 beams, each, and estimated the distribution of H2O. Bryner et al. [114] and Busa et al. [115] 

reported the construction of an absorption CST device at the University of Virginia, for use in a 

scramjet combustor. Bryner et al. [114] tested the system on a flat flame burner and Busa et al. 

[115] combined the device with stereoscopic PIV to measure the mass flux of vapour. Song et al. 

[116] multiplexed the signals from DFB lasers at 1344.9 and 1388.1 nm to image temperature 

above a gas-field furnace. The authors attached the furnace to a stepper motor, moving the furnace 

between measurements, and obtained time-averaged data for 49 paths. Similar such experiments 

were conducted by Wang et al. [117], using a square burner; Liu et al. [118], who reported real-

time imaging of a turbulent swirl flame; and a number of studies of CH4-air combustion: from a 

Bunsen flame [119] or flat flame burner [120–123]. 

 Non-linear algorithms are increasingly applied to reconstruct multiple parameters from 

instantaneous spectrally-resolved measurements. Ma et al. [124] deployed the first CST system 

designed for non-linear reconstruction. Light was generated by a TDL scanning from 1,333 to 

1,377 nm at 200 Hz, resulting in dense spectral data. Six beams were shone through a plane above 

the square flame target, produced by a H2-air Hencken burner and encased in a N2 coflow. 

Simulated annealing was used to obtain 2D distributions of water vapour and temperature. The 

authors’ objective function was the residual between spectral data for all six paths and a discrete 

Beer-Lambert model, parametrized by temperature and concentration vectors. An et al. [125] 

                                                 
16 In 2.5D CST, slices of a volume are treated independently and a 3D reconstruction is built-up from 2D images. 
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improved the resolution of this device, using 30 beams to acquire 15×15 pixel images of 

temperature and water vapour. Later, An et al. [126] modified the algorithm, introducing a 

compressed sensing technique and testing the device on a high-temperature water vapour flow. 

Much subsequent research has focused on non-linear algorithms, which are discussed in Chapter 

Two. 

 Several papers feature non-reacting turbulent gas jets, including Rahim et al. [127] and Wang 

et al. [128]. The former seeded an air jet with plastic baffles and measured the line-average density 

of baffles along 76 lines-of-sight. Wang et al. [128] swept light from four TDLs along an 11° arc 

in 100 ms to generate intersecting fan-beam projections. They used this system to measure 

instantaneous distributions of NH3 based on an absorption feature at 1,500 nm. Recent work by 

Halls et al. [129] used an Nd:YAG burst mode laser to illuminate a free-shear air jet, seeded with 

acetone tracer. The scene was imaged with seven high-speed cameras and the authors computed 

time-resolved sequences of the jet to follow the evolution of turbulent structures. Free-shear 

turbulent gas jets, as in Refs. [103,106,127–129], support the fundamental study of turbulence and 

are ideal targets for the covariance estimation method described in Chapter Three. 

1.3.3.3 In situ tomography of combustors and exhaust monitoring 

Combustion efficiency depends on ignition timing and the relative abundance of air and fuel 

throughout a combustion cycle. Information about mixing is critical to the design and operation of 

internal combustion engines, gas turbines, and commercial boilers, but these devices are enclosed, 

which limits visibility. Moreover, modifying combustors to obtain optical access with full-field 

diagnostics like LIF can alter mixing characteristics and engine performance and restricts the 

maximum pressure. As a result, significant effort has been devoted to minimally-invasive in situ 

combustion imaging by absorption CST. 

 Internal combustion engines have been a particular focus of this research. Carey et al. [130] 

developed a system for in situ CST of the air/fuel ratio in a piston using micro-optic components 

to access the chamber. The group constructed a pressurized chamber for the combustion of C8H18. 

Fiber cables directed multiplexed light at 1,550 and 1,700 nm from custom diode lasers to the 

piston and then from the piston to a data acquisition system. The collimating lens and detection 

optics were embedded in the piston wall to minimize alterations to the chamber geometry. McCann 

et al. [131] and Hindle et al. [132] reported early applications of the device in 2001, featuring the 

algebraic reconstruction of data from 33 and 32 optical paths, respectively. In 2005, Wright et al. 
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[133] improved the signal reliability and measurement frequency, introduced a modified 

Landweber reconstruction algorithm, and fitted their system to a production engine [134]. 

Subsequently, Wright et al. [135] reported in situ reconstructions of the air/fuel ratio in a four 

cylinder production engine, resolved at 3° crank angles. More recently, in 2015, Terzija et al. [136] 

used this in-cylinder device to image fuel droplets and vapour concentration distributions a direct 

injection system; and in 2017 Tsekenis et al. [137] adapted the system to monitor LNG combustion 

in a large-bore piston from a marine engine. Independent of the group of McCann, Kawazoe and 

Whitelaw [138] used a He-Ne laser to probe the gas distribution in a cylinder outfitted with quartz 

windows. 

 Absorption CST has also been applied to other types of combustors. Gillet et al. [139] 

developed a system for in situ CST in the premixing chamber of a gas turbine in 2004. Light at 

3.39 μm was generated by a He-Ne laser and shone through the enclosure, accessed through large 

sapphire windows. Six projections, each with 25 parallel optical paths, were imaged with a CCD 

camera; CH4 distributions were algebraically reconstructed. In 2008, Lindstrom et al. [140] 

measured the shock train structure of supersonic combustion in a research cell from two view 

angles. Because of the view restriction, measurement data was severely limited. The authors 

supplemented their experimental data with eigenfunctions from a CFD simulation (similar to the 

approach of Torniainen and Gouldin [106]). Following developments made by the laser 

diagnostics group at the University of Virginia, Busa et al. [141,142] tested a coupled CST-

stereoscopic PIV device to measure the mass flow of water vapour in a scramjet to diagnose 

combustion efficiency. 

 Species concentration and temperature data for exhaust from an engine can also be used to 

gauge the quality of combustion. Hot spots indicate problems with mixing and exhaust temperature 

is correlated with the formation of pollutants like NOx. Moreover, distributions of NH3 following 

urea injection in an exhaust aftertreatment indicate the efficiency of a selective catalytic reduction 

(SCR). Kamimoto and Deguchi [143] detected the concentration and temperature of H2O in 

exhaust from a gasoline generator. Ma et al. [144] used their non-linear CST device to resolve 

temperature and H2O volume fraction in the exhaust of a J85 jet engine at 50 kHz. More recently, 

the FLITES consortium—convened by researchers at the Universities of Manchester, Edinburgh, 

Southampton, and Strathclyde, along with industrial partners and the EPSRC—developed a system 

for high-speed imaging of CO2 and temperature in the exhaust of a commercial jet engine. They 
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constructed a 126-beam measurement array with a modulated TDL source and applied their system 

to experimental phantoms and jet engine exhaust [145–148]. Recently, Stritzke et al. [149] used a 

DFB laser to monitor NH3 in the SCR system of a commercial diesel engine by absorption CST. 

1.3.3.4 Environmental monitoring 

Demand for remote sensing tools has grown in response to research on radiative forcing by 

greenhouse gasses and the health effects of toxic emissions such as VOCs. As a result, absorption 

CST devices have been developed to quantify emissions fluxes distributed over large areas as well 

as to monitor volcanic activity. 

 Cuccoli et al. [150] first remarked on the possibility of using TDLs for large-scale CST, 

motivated by the need to monitor urban pollution. They proposed a suitable suite of molecular 

targets, instrumentation, and an experimental setup and then simulated the diagnostic. Shortly 

thereafter, in 2003, Belotti et al. [151] applied the technique to map the distribution of CO2 above 

Solfatara, a volcanic crater near Naples. The authors measured the transmission of IR radiation at 

1,580 nm over 15 paths—each roughly 1 km long. A TDL and photodiode detector were collocated 

at one end of the path with a retroreflector at the other end: to return light from the laser to the 

detector. Mean transmittance data was algebraically reconstructed. The group of Platt at the 

University of Heidelberg has since made considerable contributions to DOAS tomography. Pundt 

et al. [152] carried out an experimental campaign using multiple long-path DOAS devices to map 

NO2 emissions along a highway in southwest Germany in 2005. Pundt and Mettendorf [152] 

designed an active DOAS system for this study: with a halogen lamp to produce light, 

spectrometers for detection, and retroreflectors to focus light from the source back towards the 

detectors. General et al. [153] modified the device for airborne tomography (i.e., measurements 

were conducted inside an airplane). Heue et al. [154] used this approach for airborne mapping of 

NO2 in an industrial region of South Africa. And Frins et al. captured the atmospheric distribution 

of NO2 over Heidelberg [155] and distributions of NO2 and SO2 over Montevideo [156–158] by 

long-path DOAS tomography. 

 DOAS tomography has been deployed by a number of other groups to monitor volcanic 

emissions. Kazahaya et al. [159] reported the use of a passive system with spectrometers designed 

to measure UV/visible light. They mapped SO2 concentrations over the Miyakejima volcano. 

Wright et al. [160] measured the distribution of SO2 over Mt. Etna, and Johansson et al. [161] 

measured SO2 and NO2 emissions—at Mt. Etna and then at a power plant in Aragon, Spain. 
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Krueger et al. [162,163] visualized volcanic emissions of SO2 and SiF4 at Popocatépetl in Mexico. 

They used a scanning interferometer, articulated with stepper motors, for measurement and 

reconstructed the emissions with a Tikhonov-based smoothing algorithm. Further measurements 

of CO2 emissions at Solfatara were carried out by Queißer et al. [164]. 

 A number of additional CST experiments with environmental targets have been reported in 

the literature. Rusch and Harig developed a system to capture spectrally-resolved 2D IR images of 

a scene using a scanning mirror and interferometer [165]. The authors used this device to record 

NH3 plumes emanating from an industrial stack from two vantage points. These views were 

combined to reconstruct the 3D plume structure [166] with a novel CST algorithm [167]. Dobbler 

et al. [168,169] described a set of TDLs and retroreflectors that can generate 40 paths across a 

carbon storage field. They measured the spatial distribution of time-averaged CO2 emissions over 

an area of approximately 1 km2 and period of 200 hrs. Seidel et al. [170] deployed another TDL 

system to measure the H2O released by permafrost. And CST was again used to detect a CO2 

source by Levine et al. [171] with the system of Dobbler et al. [168]. The largest application of 

CST to date, in terms of spatial scale, has been the aerosol reconstruction experiment of Garay et 

al. [172]. This group used IR data from NASA’s Terra satellite to image a smoke plume from a 

wildfire in California and compared their results to data from a ground-based LIDAR experiment. 

There were 337 paths through 441 pixels, each 1.1 km2 in size. The group used an algorithmic 

reconstruction approach and reported results that were in good agreement with the LIDAR 

measurements. 

1.3.3.5 Other applications 

Additional applications of absorption tomography are worth mentioning and feature less common 

targets. Zhang et al. [173] reconstructed the temperature and atomic number density of Ar in the 

exhaust plume of a 3 kW arcjet thruster. They used a diode laser, tuned to 810 nm, to probe the 

plume. The laser-detector pair was mounted on a translation stage, moved during the experiment 

to obtain projections through three axial planes. Zhang et al. [173] assessed the response of Ar 

emissions to the arcjet’s discharge current and mass flow rate. 

 Absorption CST was applied to measure the concentration of water vapour in a packed bed 

adsorption column by Salem et al. [174] in 2005. They split light from a TDL into three sheets 

with equiangular spacing, resolved into 384 measurements by a set of InGaAs detector arrays. 

Images of the vapour temperature and concentration were obtained by algebraic reconstruction. A 
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3D version of this diagnostic was developed by tSaoir et al. [175,176], who used the technique to 

monitor a vapour-phase hydrogen isotope exchange. 

 Multi-phase flow is another CST target: Schleicher et al. [177] devised a system to resolve 

dye in single-phase flow with a tracer as well as phases in a bubbly flow. The probe volume was 

illuminated by a system of 256 LEDs; transmitted light was recorded by 32 detectors at 4.5 kHz. 

Chen et al. [178] measured phase distributions in a multi-phase flow, as well, using the attenuation 

of light from a near-IR laser source. 

1.3.4 Experiments in emission tomography 

Emission CST uses measurements of light to estimate the 2D or 3D radiative source term 

distribution in a reacting gas. Light from the flow field is primarily generated by thermal emission 

or the relaxation of radicals produced by intermediate chemical reactions. The dominant source 

depends on the nature of the flow and spectral range of the data. 

1.3.4.1 Thermal emission 

The first papers on thermal emission tomography were those of Uchiyama et al. [179] and Hino et 

al. [180], published in 1985 and 1987, respectively. Uchiyama et al. [179] measured IR emission 

from a CH4-air flame generated by a circular burner. They used a mechanical chopper and lock-in 

detector to isolate the signal, detected by a photoconductive sensor, from light between 1,000 and 

5,000 nm. Intensity in this band was reconstructed by back projection. The resulting “intensity 

source” distribution was correlated to a flame temperature using thermocouple data from discrete 

locations. The intensity source map was converted to a temperature distribution using this 

correlation. Uchiyama et al. [179]’s semi-empirical technique was justified by assuming an 

optically thin flame with negligible variation in the absorption coefficient over the spectral range 

of the detector and temperature range of the flame.17 Hino et al. [180] reconstructed visible 

radiative emission from plasmas in a fluorescent lamp and Geissler tube. The lamp served as a test 

case, based on visible emission by Hg; the Geissler tube was pressure-controlled and emission by 

N2 molecules was collected with and without a magnet beside the tube, to disturb the discharge 

condition. Average intensity was detected by a CCD array from 68 projection angles. Spectral 

                                                 
17 The spectral absorption coefficient is expected to vary considerably throughout this flame due to variation in 

composition (with the additional complication of collision broadening) and temperature. Breakdown of the author’s 

assumption can be seen in the graph of measured temperature vs. reconstructed intensity (Fig. 9). However, the paper 

merits recognition as the first attempt at emission tomography. 
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profiles of Hg and N2 emission were used to select the measurement wavelengths—isolated with 

an interferometric filter—and data were algebraically reconstructed. Later, in 2004, Wan et al. 

[181] conducted 3D plasma tomography based on thermal emission from an Ar-arc plasma. They 

used a novel algebraic algorithm with a smoothing component to reconstruct the UV source at 420 

and 425.9 nm. The authors calculated the temperature and number density of Ar+ throughout the 

volume in a post-processing stage. 

 Much of the research on emission CST has focused on the pyrometry of sooting flames. In 

this work, thermal emission from soot particles at two or more wavelengths is fit to Planck’s 

distribution to infer the temperature and density of soot particles.18,19 Early experiments normally 

featured an axisymmetric flame, though many already employed a general 2D algorithm for 

reconstruction. Fischer and Burkhardt [182] used CCD cameras equipped with a filter to image a 

candle flame in the visible RBG bands, reporting a 3D estimate of the temperature distribution; Ha 

and Choi [183] used a similar approach, only with a C3H8-air flame. Best et al. [184] and Bates et 

al. [185] documented early uses of FTIR measurement for emission CST in 1991 and 1993, 

respectively. Dense spectral data was transformed into mean volume fraction distributions of soot 

and other species (e.g., CO2, C2H2). Both tests were conducted on a laminar C2H4-air diffusion 

flame. These papers all used a cold, dark environment, assuming negligible background 

illumination. In 2001, Correia et al. [186,187] modified the tomography algorithm to account for 

radiation from a furnace wall; they also applied a correction for self-absorption, relaxing the 

assumption of an optically thin medium. The authors computed 3D temperature distributions for 

an axisymmetric flame in a semi-industrial furnace, with a single CCD array, and unsteady flame 

in open air, with four cameras. Luo and Zhou [188] and Huajian et al. [189] deployed a similar 

system on two occasions: using four cameras to estimate a 2D temperature distribution in a 

pulverized coal combustor in 2005 [188] and 11 cameras to capture the 3D distribution of 

temperature in an arch-fired coal furnace in 2009 [189]. 

 During the mid-2000s, researchers developed sensors for time-resolved measurement of 3D 

flame fronts based on broadband measurements of emission. Most of these studies looked at visible 

                                                 
18 The procedure assumes that the optical properties of soot cancel out in the ratio of spectral intensity data. However, 

soot is known to have complex spectral properties and the assumption can break down, considerably affecting 

reconstructions of temperature and volume fraction. 
19 In the two-wavelength case, an analytic formula for two-line thermometry may be used (i.e., the Boltzmann ratio). 
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emission by the flame, thus combining thermal emission and chemiluminescence. Ihrke and 

Magnor [190] reconstructed emission source data for a small laboratory flame using eight cameras 

with a RGB sensor; results were used to generate realistic flames for computer visualizations. 

Bheemul et al. [191–193] imaged a similar target with three equally-spaced monochromatic CCD 

devices. They subsequently employed this data to quantify geometric features of the reaction zone 

(volume, length, circularity, surface area, and orientation). In 2005, Brisley et al. [194] used a 

monochromatic CCD to capture instantaneous distributions of temperature in a C4H10-air flame by 

two-line thermometry. And, in 2005 and 2007, Gilabert et al. [195,196] simulated back projection 

and algebraic algorithms and used the system of Bheemul et al. [191] to reconstruct temperature 

in coal- and gas-fired combustion processes. More recently, in 2012, Huang et al. [197] built a 

system to measure emission by soot at multiple wavelengths from two angles with a high-speed 

camera. Their 3D reconstruction algorithm included a correction for self-absorption and resolved 

the temperature and volume fraction of soot in an unsteady C3H8-air diffusion flame. 

1.3.4.2 Chemiluminescence emission 

In 1988, shortly after the introduction of thermal emission tomography by Uchiyama et al. [179] 

and Hino et al. [180], Hertz and Faris [198] conducted the first emission CST experiment, focused 

on the radiation emitted by excited radicals in a flame. The authors restricted measurements to a 

narrow spectral range with a 410 nm bandpass filter. This range was selected to isolate emissions 

from excited CH* in the reaction zone of two premixed flames: with CH4-O2 fuel and C3H8 fuel. 

Three projections were simultaneously measured with a single intensified diode array by 

multiplexing the emission signals. An algebraic technique was employed to reconstruct the flame 

fronts. Leipertz et al. [199,200] then created a system to limit NOx generation in a brown coal 

firing process. The system used CST images of the flue gas to diagnose the abundance of NH* and 

CN*, which are intermediate components in the liberation of nitrogen and thereby correlate to the 

formation of NO. Measurements were obtained with a cooled CCD array and UV filter; 

reconstructed 2D distributions were generated for CH*, OH*, CN*, and C2
*. 

 Chemiluminescence-based CST began to proliferate in the mid-2000s due to the decreased 

price of camera and computing resources. In 2005, Ishino and Ohiwa [201] devised a custom multi-

lens system with a broadband CCD (400 to 600 nm, detecting mostly OH*) to image 

chemiluminescence from a turbulent flame. They achieved 40 simultaneous views at 500 Hz. 

High-speed 2D imaging of OH* in a turbulent diffusion flame was later conducted by Anikin et al. 
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in 2010 [202] and 2012 [203] using Kepler telescopes, arranged in a semicircle, to direct emission 

from the flame onto a CCD detector. Worth and Dawson [204] imaged the OH* distribution of two 

interacting flames with 15 cameras. The authors validated their reconstructions with cross sectional 

images from a parallel OH-PLIF experiment. And Floyd et al. [205,206] used commercial cameras 

and mirrors to generate time-resolved 3D estimates of a CH4-O2 flame from a matrix burner and 

turbulent opposed jet flame. The authors imaged CH* instead of OH*, which is corrupted by self-

absorption because of the longevity of ground state OH outside the reacting zone. 

 The group of Ma at Virginia Tech has conducted a large number of emission CST 

experiments. Beginning in 2013, Cai et al. [207] established an emission CST device and 

investigated the effects of viewing angles on reconstruction accuracy. Kang et al. [208] conducted 

a similar study in 2014, using fiber-based endoscopes instead of CCDs to capture 

chemiluminescence. And, also in 2014, Li and Ma [209] reported 3D CST images of CH* from a 

highly-turbulent swirl flame using five cameras. Their system had a temporal resolution of 1 kHz. 

The group has conducted emission CST in parallel with Mie scattering [210] and PLIF 

measurements [211] to cross-validate these diagnostics. Another group that is active in emission 

CST of chemiluminescence is that of He at the Nanjing University of Science and Technology. 

Since 2015, they have established a multi-camera system for CST [212], at first using 12 cameras 

and later 15; devised a numerical procedure to compensate for overexposure [213]; applied a 

correction to the measurement model [214]; and developed a custom filter to simultaneously image 

CH* and C2
* with an RGB sensor [215]. The latter development is particularly significant as the 

point-wise ratio of chemiluminescence from different radicals correlates to the local heat release 

rate, which permits quantitative heat release rate imaging via chemiluminescence CST. He’s group 

used an unsteady premixed C3H8-air diffusion flame to test their system. 

 Other CST experiments featuring chemiluminescence include the reconstruction of CH* in the 

CH4-air flame from a Meker burner [216]; OH* in a laminar premixed H2-air flame [217]; and CH* 

in a turbulent swirl flame [218]. Further work, published by Wiseman et al. [219], described a 

novel approach to quantifying the flame front geometry with emission CST data. And Alviso et al. 

[220] used a CST apparatus with an intensified CCD camera and system of narrow band filters to 

simultaneously reconstruct distributions of OH*, CH*, and C2
*. 
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1.3.4.3 Aerospace applications 

Emission CST has been most frequently applied to the study of phenomena in laboratory-scale 

flames but can also be used for in situ monitoring and on-line control purposes. In particular, 

numerous aerospace applications have been reported. Herding et al. [221] imaged OH* emission 

in a shear coaxial injector to investigate flame structure and stability near the injector. Sivathanu 

et al. [222] used two imaging spectrometers to measure light along fan-beam paths through a solid 

rocket propellant plume above an Al diffusion flame. Their spectral measurements, resolved over 

from 1,300 to 4,800 nm, were used to reconstruct radiation from particulate matter in the plume. 

And Ma et al. [223] investigated the shape of the ignition kernel and combustion stability in a 

Mach-2 cavity combustor, subject to two fuel conditions. Ma’s system used eight lenses, 

positioned throughout the combustor, and two fiber-based endoscopes, with an exposure time of 

49 μs and measurement frequency of 20 kHz. 

1.4 Outlook for CST 
The trend in gas-phase tomography is towards increasing the number of optical paths, precision of 

measurements, and temporal resolution of the data. Recent publications feature novel modalities 

[224] and applications [225], high resolution images [219], and irregular domains that resist easy 

optical access [149]. This progress was enabled by the decreasing cost of the electronics, optical 

components, and computing resources needed for tomographic imaging—trends that are expected 

to continue. As a result, while there were only a handful of gas tomography experiments reported 

in the 1980s, well over one hundred papers on CST have been published since 2010. Current efforts 

in CST research are focused on the development of sophisticated algorithms, to incorporate 

specific information about a flow field into reconstructions, and the formal quantification of 

uncertainty. Statistical imaging methods are well-suited to meet these research challenges. 

1.5 Overview of the dissertation 
This work reports developments and applications of the Bayesian framework for gas-phase 

tomography over the course of seven chapters. Following on from the introduction, Chapter Two 

reviews the physics of measurement and mathematics of reconstruction for gas tomography and 

presents the Bayesian framework for CST. 

 Bayesian imaging begins with likelihood and prior pdfs, predicated on the assumption that 

accurate pdfs will yield accurate reconstructions. Chapter Three presents a justification for joint-

normal priors in the context of turbulent targets. Moreover, a theoretical analysis of self-similarity 



 

29 

 

in turbulent jets is employed to construct an advanced prior for round free-shear flow. The form 

of Bayes’ equation suggest methods for model selection and designing experiments: Chapter Four 

develops these ideas to fruition for hard-field tomography. Bayesian functions for optimal 

experimental design are proposed and compared to existing deterministic criteria. Following this, 

a statistical approach to model comparison is introduced to select a discretization scheme, mode 

of interpolation, and prior from measurement data in a numerical experiment. 

 Chapters Two through Four focus on the fundamentals of Bayesian tomography. The 

dissertation continues with experimental developments, conducted in a Bayesian way. Broadband 

absorption CST is a new technique, intended for quantitative emissions detection using spectrally-

convolved absorption signals. Chapter Five provides a theoretical basis for the method and reports 

the results of a proof-of-concept emissions detection experiment. Chapter Six concerns BOS 

tomography, in which the refractive index of a fluid is reconstructed from measurements of beam 

steering. The diagnostic is enhanced with a modification to measurement model and applied to 

combustion imaging for the first time. 

 Finally, Chapter Seven provides a synopsis of the theoretical and experimental contributions 

described in this work. The case for Bayesian methods in gas-phase tomography is recapitulated 

and the dissertation closes with recommendations for future work. 
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Chapter Two  
Bayesian Chemical Species Tomography 

Tomography is a canonical inverse problem. Projections are an indirect observation of the quantity 

of interest (the forward problem) and a mathematical model of projection is inverted to estimate 

this quantity from a set of observations (the inverse problem). The forward problem in gas-phase 

tomography is the calculation of intensity at a detector for a known distribution of gas. The inverse 

problem—reconstruction—involves estimating the gas distribution from a set of intensity data. 

Gas-phase tomography requires an equation to describe radiative transfer in the medium as well 

as a finite representation of the gas. CST divides into absorption and emission modalities and 

emission CST is further divisible into thermal and chemical modes. This chapter begins with a 

detailed summary of the measurement physics for absorption and emission CST, which simplify 

into a unitary forward model.  

 Direct inversion of the forward model is either underdetermined or unstable, meaning the 

measurements are insufficient in themselves to obtain a realistic reconstruction. Consequently, 

CST algorithms need supplemental information about the measurements and flow field to generate 

physically-plausible images of the gas parameters. Classical techniques of computed tomography 

implicitly include this information, by regularizing measurements in frequency space, with 

analytical algorithms, or physical space, with algebraic algorithms. This chapter describes both 

methods, paying particular attention to the inherent role of prior assumptions. Following the 

introduction to classical reconstruction, the ill-posed nature of tomography is proved. 

 Statistical inversion is an alternative approach to inverse analysis in which the assimilation of 

measurement data and prior assumptions is explicit. The method employs Bayes’ equation to 
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incorporate prior knowledge into the reconstruction procedure in a statistically-robust manner. 

Critically, the form of Bayes’ equation itself suggests methods for: improving reconstructions 

through advanced priors, discussed in Chapter Three; designing experiments, discussed in Chapter 

Four; and selecting models, also discussed in Chapter Four. The final section of this chapter 

reviews the philosophical foundations and formalisms of Bayesian tomography. 

2.1 Measurement Physics for Gas-Phase Tomography 

2.1.1 Radiative transfer in a participating medium 

Engineering analyses that involve radiative transfer through a participating medium commonly 

employ the RTE to compute aggregate light-matter behaviour. In classical form, the RTE is a first-

order integral-differential equation that accounts for the accumulation and attenuation of intensity 

along a path by photonic absorption, emission, and scattering. The intensity of light, I, is 

parametrized by its wavelength, λ, or wavenumber, η = λ-1; location, u; and direction, v. Iη(u,v) is 

the spectral radiative intensity—that is, radiative power per unit area along v, solid angle Ω, and 

wavenumber η [227]. Figure 2.1 shows a differential control volume and the light-matter 

interactions involved in the RTE. 

 The change in radiative energy through a differential volume, ΔQη = [Iη(u + du,v) – 

Iη(u,v)]dAdΩ, equals the sum of gains and losses due to absorption, emission, and in- and out-

scattering: ΔQη,abs + ΔQη,emit + ΔQη,in + ΔQη,out. Attenuation along the element by absorption and 

out-scattering events is given by ΔQη,abs = −κa,ηIη(u,v)dudAdΩ and ΔQη,out = −κs,ηIη(u,v)dudAdΩ, 

respectively, where κa,η and κs,η are the spectral absorption and scattering coefficients [226]. (The 

extinction coefficient, βη = κa,η + κs,η, makes the final expression more compact.) Kirchhoff’s law 

states that the spectral absorption coefficient and emissivity are equal when a medium is in local 

 
Figure 2.1 Schematic of the radiative energy balance in a differential volume along a LOS, showing 
absorption, emission, and in- and out-scattering; adapted from Ref. [226]. 
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thermal equilibrium (LTE).20 Given εη = κa,η, the expression for emission in the volume is ΔQη,emit 

= κa,ηIb,η[T(u)]dudAdΩ, where Ib,η is the spectral emission at η from a blackbody at temperature T. 

Scattering behaviour is characterized by a phase function, Φη(v·v′), which describes the solid 

angle-weighted portion of light traveling along v that scatters in the direction v′. The contribution 

of in-scattering is found by integrating the incident intensity at u that is redirected along v, 
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 Evaluating the RTE is greatly complicated by scattering. The scattering coefficient and phase 

function depend on the scattering regime, which changes with the size of a particle, its molecular 

structure, and the wavelength of incident light. Hard-field gas tomography features molecular 

gasses and IR or UV/visible light; measured wavelengths thus greatly exceed the particle size.21 

As a result, scattering is negligible, βη ≈ κa,η, and ΔQη,in ≈ 0. The scattering coefficient, κs,η, is 

unused so the absorption coefficient, κa,η, is denoted κη for the remainder of this dissertation. 

Moreover, when scattering is neglected, the remaining terms in Eq. (2.2) are directionally-aligned 

so the directional dependence of Iη is dropped from the notation, as well. The non-scattering RTE 

is integrable along a LOS from u = 0 to L, resulting in the expression 
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where Sη is a radiative source term that combines thermal emission and spontaneous emission due 

to the relaxation of excited electronic states. Equation (2.3) is further simplified and rearranged to 

obtain modality-specific measurement models for absorption and emission CST. 

                                                 
20 LTE assumes that spatial and temporal temperature are small enough to preserve the formal definition of 

temperature. More precisely, in volume elements on the scale of spatial temperature gradients, molecular velocities 

roughly adhere to a Maxwell-Boltzmann distribution. LTE is a realistic assumption for most CST experiments. 
21 Soft-field tomography features a high-energy source with rays that are subject to scattering by a molecular target. 

For instance, terahertz-based atmospheric tomography or medical imaging with X-rays. In transitional cases, in-

scattering remains negligible and scattered rays are filtered out by the detector. Hard-field reconstruction techniques 

are thus used in transitional scenarios [369]. 
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2.1.2 Absorption CST 

Absorption tomography involves the attenuation of light by a cold gas, meaning thermal emission 

from the gas is negligible compared to the source intensity at the measurement wavenumber. 

Figure 2.2 depicts the attenuation of a background source by a gas. In this scenario, the RTE 

reduces to the Beer-Lambert law, 
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Equation (2.4) is re-arranged to form a Fredholm IFK, which defines an absorption measurement, 
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The kernel of this IFK is unity, which enables the analytical inversion of coupled measurements. 

Iη at L is the active measurement and Iη at 0 is a reference intensity, produced by a calibrated light 

source (such as a TDL) or background illumination. Measurement paths extend from a source at u 

= 0 to a detector at u = L;22 reference measurements are made without the gas so κη is null along 

the LOS. Tunable and two-colour systems can infer Iη(0) from the intensity at a nearby 

wavenumber such that Iη(0) and Iη(L) are simultaneously recorded. This procedure mitigates the 

effects of beam steering, window fouling, and fluctuations in the source intensity. 

 The spectral absorption coefficient is the reconstructed parameter in absorption CST but is 

not itself the quantity of interest. Two- or three-dimensional estimates of κη must be related to the 

distribution of physical properties by spectroscopic modelling. Typically, the composition, 

                                                 
22 Some DOAS devices use ambient light that originates far away from the detector, in which case a “fictional” source 

is located immediately outside the imaging domain. 

 
Figure 2.2: Absorption measurement along a LOS showing attenuation of the source intensity by 
the absorption coefficient, κη. Absorption CST reconstructs the spatial distribution of κη, which is 
post-processed to determine physical parameters (e.g., volume fraction, temperature, pressure). 
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temperature, and pressure of a mixture are of primary interest, though some practitioners use 

absorption CST in tandem with PIV to estimate the velocity and mass flux of a flow [142]. 

 Gas molecules can transition between a large variety of energy states, with translational, 

rotational, vibrational, electronic, and nuclear components.23 Of these, rotational and vibrational 

transitions are the most salient to absorption CST. The former component relates to the angular 

momentum of a molecule while the latter refers to the vibration of atoms in a polyatomic system. 

Rotational and vibrational transitions are often coupled and referred to as rovibrational transitions. 

Molecules may absorb an incident photon and jump to a higher state, provided the energy of the 

photon is aligned with the difference between energy levels of the transition. Potential transitions 

are clustered around specific energies that reflect the structure and state of interacting molecules. 

Distinct transitions result in a spectral line, with a finite width and distinct shape, and the bond 

energies and geometric configurations of different species result in a unique pattern of lines. These 

“spectral signatures” form the basis of spectroscopy—described in detail in Chapter Five. 

 Line-by-line parameters for rovibrational and electronic transitions are used to calculate the 

absorption coefficient for a gas based on its temperature and partial pressure. The reconstructed 

coefficient, κη, is thereby used to infer the gas state. Spectroscopic models specify transitions 

between a lower state, i, and an upper state, j, designated ij for absorption or ji for emission. 

Transitions are described in terms of their overall line intensity, Sij, and lineshape, f. Typically, η 

is the measurement wavenumber; ηij is the centreline, equal to the transition energy in 

wavenumbers (Ej – Ei = hcηij, where c is the speed of light and h is Planck’s constant); and χ, p, 

and T are the mole fraction, pressure, and temperature of the molecule. 

 The centreline indicates the characteristic energy of a transition but there is a non-zero 

probability that photons with an energy close to ηij will be absorbed due to line broadening effects. 

Several mechanisms contribute to broadening and determine the lineshape of a transition. Natural 

broadening is a consequence of Heisenberg’s uncertainty principle, which limits the combined 

precision of the energy and lifetime of an excited state. This effect is minimal on its own but is 

amplified through molecular collisions, which reduce the lifetime of excited states. Collisional 

broadening depends on the frequency of collisions and composition of a mixture. Doppler 

broadening is predominantly a high-temperature phenomenon. The wavelength of light is relative 

                                                 
23 Translational energy is bulk molecular motion; electronic energy depends on the orbital position and spin of 

electrons in the gas; and the nuclear component refers to energy levels in the nucleus (spin energies, etc.). 
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to the velocity of colliding particles. As a result, the distribution of molecular velocities, which 

depends on their temperature, affects the photon energies associated with a transition.24 Pressure 

and Doppler effects also shift the centreline of a transition. Chapter Five provides further details 

on these phenomena and gives their lineshape functions. 

 Reconstructed values of κη reflect the sum of absorption coefficients for molecules present in 

a mixture. Species-specific coefficients are themselves a sum of transition-specific coefficients, 

κη,ij: κη = Σij(κη,ij) gives the rate of absorption of incident intensity at η. Transition-specific 

coefficients equal 

 ,

B
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p

T
f

k



  , (2.6) 

where kB is the Boltzmann constant.25 The total absorption coefficient for a species is proportional 

to the species concentration (i.e., κη ∝ χ) and the ratio of two lines is independent of concentration 

and pressure. CST experiments often feature a target that is roughly isothermal and isobaric, in 

which case the volume fraction of the target is χ = (kBT/Sijf)·κη. 

 Significant temperature variation in the target gas is common in absorption CST of flames and 

exhaust gasses. Data about the concentration and temperature of a target species can be extracted 

by careful selection of one or more measurement wavenumbers. Two-line thermometry—based 

on the temperature dependence of the ratio of spectral lines—is often used to calculate a gas state. 

The spectral line intensity is 
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where Ia is the natural terrestrial isotopic abundance, Aji is the Einstein A coefficient, gj is the 

statistical upper weight of the transition, Q is the total internal partition sum, c2 = h/kBT is the 

second radiation constant, and Ei is the lower-state energy [228]. In order to determine a local 

temperature, one takes the ratio of κη at two lines, η1 and η2: R = κη2/κη1. An expression for 

                                                 
24 Natural, collisional, and Doppler broadening are local effects. Collisions also induce narrowing [370], which is only 

observable under rare conditions. Nearby molecules (usually in a liquid or solid state) can alter the spacing of energy 

levels, e.g., in ionic liquids. And full-field electric effects such as Stark broadening can alter the lineshape, as well. 

Collision and Doppler broadening dominate in the CST context. 
25 Equation (2.6) expresses the line intensity as a function of temperature and lineshape as a function of the 

measurement wavenumber but in reality both values are complex functions of the energy states in a transition, 

temperature and pressure of the gas, and molecular composition of a mixture. 
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temperature is derived by substituting Eqs. (2.6) and (2.7) into R and re-arranging the result to 

isolate T, 
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where Tref is a reference temperature (typically 296 K) [229]. Finally, the target concentration is 

calculated using either wavenumber, 
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Estimating pressure requires a two-step procedure [230]. The first step involves hyperspectral 

reconstruction, where images of κη are computed for many wavenumbers. Second, the 

reconstructed absorption spectra at each basis function is used to estimate χ, p, and T by non-linear 

regression. 

2.1.3 Emission CST 

Emission tomography is based on the conversion of thermal or electronic energy in a fluid into 

light by spontaneous emission, illustrated in Figure 2.3. Background radiation over the spectral 

range of the detector is typically neglected (i.e., Iη(0) ≈ 0) and the RTE reduces to 
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The nested integral in Eq. (2.10) accounts for the absorption of radiation emitted in the probe 

volume, usually due to self-absorption,26 which depends on the optical density of the medium. 

CST of thermal emission and chemiluminescence are both prone to self-absorption effects, though 

experiments are designed to mitigate this effect. Optically thin media satisfy 
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26 Self-absorption refers to emission and re-absorption by molecules from the same species. It is possible but 

uncommon for emission produced by intermediate radicals to be attenuated by a broadband absorber outside the 

reaction zone. Self-absorption is difficult to model as the distribution of a ground state species is not easily detected 

by emission CST. 
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A good heuristic in the CST context is to assume the target is thin when this integral is less than 

0.025. Under these conditions, the measurement model is 
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which is the same Fredholm IFK as the equation for absorption CST. In contrast to absorption 

tomography, Eq. (2.12) does not transform of the detected quantity with a logarithm so broadband 

emission signals are linear. Parameters of interest in emission CST include the temperature and 

volume fraction of soot, geometry of a reaction zone, and local heat release rate. The relationship 

between these properties and the radiative source term depends on the mode of emission. 

2.1.3.1 Thermal emission 

Random molecular motion due to thermal energy results in a large number of collisions that follow 

a predictable distribution. Photonic emission is a mechanism for energy conservation and the 

acceleration and deceleration of charge associated with thermal motion produces thermal emission. 

Thermal radiation from an ideal emitter (or a blackbody) is given by Planck’s law, 
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where c1 = 2hc-2 and c2 are the first and second radiation constants. Equation (2.13) also shows 

Wien’s approximation, which holds at high temperatures. Emission for a non-ideal body is the 

product of blackbody emission and a spectral emissivity, which equals the spectral absorption 

coefficient per Section 2.1.1. Measurements of thermal radiation for emission CST are made in 

the near-IR and visible range at wavenumbers selected to limit interference by chemiluminescence. 

Therefore, the source term for thermal emission CST is Sη = κη Ib,η. 

 
Figure 2.3: Emission measurement along a LOS showing the accumulation of intensity due to the 
radiative source, Sη. Emission CST reconstructs the spatial distribution of Sη, which reveals 
combustion structures and may be post-processed to determine physical parameters (e.g., soot 
volume fraction). 
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 Soot temperature and volume fraction are the primary quantities of interest in thermal 

emission scenarios [197]. Both properties are inferred from Sη by modelling κη. The spectral 

absorption coefficient of soot is approximated by the Rayleigh equation, 

 6 ( )v mf E   , (2.14) 

where fv is the volume fraction, E = [(m2 − 1)/(m2 + 2)] is the soot absorption fraction, and m = n 

− ik is the complex index of refraction.27 Typically, the refractive index, n, and extinction 

coefficient, k, are computed with a curve fit (e.g., Huang et al. [197] use fits from Chang and 

Charalampopoulos [231]). Next, the radiative source is reconstructed at two wavenumbers, η1 and 

η2, which are converted to a temperature by a two-colour method—similar to Eq. (2.8). In this 

approach, the ratio Sη1/Sη2 is expressed using Wien’s approximation and re-arranged to isolate T, 
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Finally, the volume fraction is determined by solving Eq. (2.14) for fv at either measurement 

wavenumber, 
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 There is considerable uncertainty about the optical properties of soot, particularly at high 

temperatures, which affects the accuracy of temperature and volume fraction estimates based on 

Eqs. (2.15) and (2.16) [232]. Moreover, detecting Sη requires κη to be large, contradicting the 

assumption of an optically thin medium.28 Several studies have introduced modifications to the 

tomography algorithm to approximate Eq. (2.10), such as Refs. [189,197,223]. Historically, most 

researchers have not employed a correction procedure, however, and reconstructions based on 

Eq. (2.12) do not compare favourably to thermocouple data. 

                                                 
27 Equation (2.14) applies to soot aggregates that are much smaller than the measurement wavelength, which holds 

true in the near-IR-to-visible range. 
28 That is, if κη is small enough to satisfy Eq. (2.11) then the accumulation of intensity from a source where Sη = κη Ib,η 

is difficult to detect. 
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2.1.3.2 Chemiluminescence emission 

The other source of radiation in emission CST is chemiluminescence, which consists of light 

produced by the relaxation of reaction intermediates rather than heat. Chemiluminescence requires 

an exothermic reaction—to supply the energy required to yield excited intermediates—and 

chemical pathways that produce radicals with limited opportunities for thermal relaxation. Some 

such molecules quickly emit a photon in order to return to their ground state (chemiluminescence); 

others may be de-excited by collisional quenching. Emission from the radical, i, is governed by a 

rate equation, 

 
,i i iNI A  . (2.17) 

where Ai and Ni are the Einstein A coefficient and molar density of i, respectively [233]. Here, Iη,i 

is the photon emission intensity, which has units u/cm3-s (where u is a mole of photons). 

Transitions in chemiluminescence involve the same energy states as absorption. As with 

absorption lines, the emission intensity is distributed about a narrow spectral band, centred on η, 

which depends on the chemical properties of i. The emission energy, hcη, equals the energy of 

transition between the radical’s ground and excited states. (Combustion radicals typically emit 

chemiluminescence in the UV/visible range.) Cumulative intensity along a LOS is given by the 

line integral over Iη,i. Provided the target is optically thin, the radiative source term is Sη = Iη,i, 

where η is tuned to image a particular intermediate. 

 Chemiluminescence tomography is primarily a combustion diagnostic and considerable 

attention has focused on characterizing the relationship between select intermediates and flame 

properties. The most common radicals in hydrocarbon flames are OH*, CH*, C2
*, and CO*. 

Emission from these species centres on multiple peaks, the bulk of which lie in between 275 to 

525 nm. Several prominent CH* and C2
* peaks reside in the visible spectrum and can be imaged 

by commercial cameras. 

 Excited combustion radicals exist at low concentrations due to the small volume of the 

reaction zone and high rate of collisional quenching. The population of an excited species is thus 

limited by the production rate and quantitative information can, in principle, be extracted from the 

intensity. However, in practice, unknown distributions of the corresponding ground state 
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molecules and variable quenching rates render this inference intractable.29 Nevertheless, the ratio 

of excited radicals is highly correlated to the local heat release rate, which is an important variable 

in the study of combustion. The correlation depends on the fuel and mode of combustion. 

Simulation of common pathways (such as CH + O2 → CO + OH*, C2 + OH → CO + CH*, etc. 

[234]); 1D flamelet data are used to model this correlation and extract information from the ratio 

of local chemiluminescence data. Recent progress in chemiluminescence tomography has 

demonstrated the simultaneous 3D reconstruction of multiple radicals [215], clearing a path for 

quantitative tomographic imaging of the heat release rate in a turbulent flame. 

2.2 Classical Reconstruction Algorithms 
Governing equations for absorption and emission CST have the same mathematical form, which 

they share with the X-ray attenuation equation used in medical imaging. Classical reconstruction 

algorithms from the computed tomography literature can therefore be applied to both CST 

modalities. This section presents reconstruction with respect to projections of an arbitrary 2D 

function, f, which represents either κη or Sη. 

2.2.1 Analytical algorithms 

2.2.1.1 Fourier slice theorem 

Analytical expressions for reconstruction exploit the relationship between an unknown distribution 

in physical space and its projections, which are the measured quantity in tomography. This 

connection is helpfully illustrated by the Fourier slice theorem—itself closely connected to the 

Radon transform, discussed in Chapter One. Moreover, the Fourier slice theorem provides the 

basis for filtered back projection. 

 The theorem considers a function, f, and its projections. Figure 2.4 depicts a sample function 

with a set of parallel-beam projections for a fixed view (i.e., variable axial distances, s, at a fixed 

angle, θ). Measurements of f, denoted b, are line integrals akin to Eqs. (2.5) and (2.12). For 

convenience, these measurements are represented in terms of an integration over the entire domain, 

 
2

) ( , ) ( cos( ) sin( (, ) )b s f x y x y s dxdy      , (2.18) 

where δ is the Dirac delta function and the coordinates (s, θ) pick out a LOS through f, as illustrated 

in Figure 2.4. The 1D Fourier transform of a projection is 

                                                 
29 As an example, while OH* emits a strong signal, ground state OH is plentiful outside the flame front, resulting in 

self-absorption and a corrupted signal. 
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  ( , ) ( , )exp 2B b s i s ds       . (2.19) 

Next, the definition of a projection is substituted into Eq. (2.19). Note that Eq. (2.19) is only 

nonzero when s equals x·cos(θ) + y·sin(θ), which is the distance from the origin at (x, y). As such, 

s can be replaced with this distance, resulting in an explicit transform of the projections in terms 

of f, 

  
2

( , ) ( , )exp 2 [ cos( ) sin( )]B f x y i x y dxdy          . (2.20) 

Equation (2.20) employs a continuous set of projections along s in (−∞, ∞) at a fixed view angle. 

Computing B for θ ϵ [0, π] yields a full transformation of the function. By definition, the 2D Fourier 

transform of f is 

  
2

( , ) ( , )exp 2 ( )F u v f x y i ux vy dxdy    . (2.21) 

From Eqs. (2.20) and (2.21) it can be seen that the 1D Fourier transform of a projection, B, contains 

the same information as the 2D Fourier transform of f: B(ω, θ) = F[ω·cos(θ), ω·sin(θ)]. Equation 

(2.20) thus implies that projections along a view angle correspond to a line in the Fourier transform 

of f and the relationship between (u, v) and (ω, θ) indicates a coordinate transform that relates these 

quantities. The unknown function can thus be recovered from its projections by taking the inverse 

2D Fourier transform of the full set of projections. It is worth mentioning that this set of projections 

amounts to a Radon transform, ℛf, which is expressed in terms of the (s, θ) coordinate system; 

moreover, ℛf(s, θ) = b(s, θ). 

 Intuitively, the discrete sinogram of a function can be constructed by sampling projections at 

dense, regular intervals of s and θ. This sinogram can then be transformed back into a spatial 

 
Figure 2.4: 2D schematic of projection measurements for an arbitrary function, f(x,y), which 
represents κη or Sη. 
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function. Figure 2.5 depicts this progression with a sample distribution; its discrete Radon 

transform, constructed from noisy projections; and an estimate of f, recovered by way of the 

inverse Radon transform. The procedure illustrates the key insight of tomography: radiative 

projections can be mathematically manipulated to reveal the internal structure of an object. 

However, the exact inverse Radon transform requires an infinite set of projections and the inverse 

transform is corrupted by noise—even minimal noise. Therefore, in practice, analytic algorithms 

must employ a filtered representation of the sinogram. 

2.2.1.2 Filtered back projection 

Filtered back projection can be derived from the Fourier slice theorem by applying a coordinate 

transform and simplifying the inverse operation to account for the symmetry of projections. Cai 

and Kaminsky [235] present a single expression that includes both the projection model and 

filtered inversion, 

    
Filter

0

Fourier transform of a projection

Inverse Fourier transform

Back projection

( , ) ( , ) exp 2 exp 2f x y b s i s ds i s d d



             , (2.22) 

where |ω| acts a ramp filter in frequency space.30 Back projection amounts to “smearing” 

measurements back along the corresponding lines-of-sight. On its own, this procedure reconstructs 

                                                 
30 The frequency term arises from the transformation of the integral to frequency coordinates: dudv = ωdωdθ. The 

absolute value function follows from b(s,θ+π) = b(−s,θ) and B(ω,θ+π) = B(−ω,θ). These relationships permit the 

integration over θ to be restricted to [0,π] given |ω|. 

a)  b)  c)  

Figure 2.5: Overview of analytic reconstruction: a) a 2D sample function, f(x,y); b) the Radon 
transform of f in sinogram space (s,θ), with 0.5° spacing between projections and 0.5% Gaussian 
noise; and c) the inverse Radon transform. 
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bulk features of an image but is subject to blurring. Blur arises due to the finite nature of the 

projection data. Low-frequency components of the sinogram are oversampled relative to high-

frequency components, themselves overwhelmed by noise, which further contributes to blur. 

Hence, filter functions are used to regularize the data in sinogram space. 

 In practice, the number of measurement angles are limited and individual lines-of-sight have 

finite width. Integrals over sinogram space are thus replaced by summation over the projections. 

Shepp and Logan [77] proposed an analytical solution, 
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where J is the number of measurement angles, K is the number of projections for a given view, a 

is the axial spacing between projections, and the function ϕ weights the contribution of data from 

each beam at (x, y).31 Equation (2.23) requires a dense set of projections to adequately sample the 

sinogram space and estimates remain sensitive to measurement noise, regardless—as can be seen 

in Figure 2.5. Various filters have been developed to overcome these limitations. However, it is 

difficult to establish a filter’s effect on the spatial characteristics of reconstructions and the 

analytical approach does not generalize to arbitrary measurement setups. These factors motivate 

algebraic techniques. 

2.2.2 Algebraic methods 

2.2.2.1 Discretization 

Algebraic reconstruction requires a finite representation of the unknown quantity to enable 

computational solutions. The CST equations are linear so the set of integral equations for a system 

of optical paths can be approximated by matrix-vector multiplication. Basis functions are selected 

to represent the gas and support the measurement operator. The most common CST bases are 

square pixels and cubic voxels in 2D and 3D domains, respectively. By assumption, pixels and 

voxels contain a uniform concentration of the unknown distribution. Numerous alternative 

schemes have been proposed and the ideal grid resolution and mode of interpolation depends on 

the measurement array and application. Chapter Four discusses high-order interpolation in CST 

and introduces a technique for basis selection. 

                                                 
31 Several ϕ functions have been proposed and similar expressions to Eq. (2.23) have been derived for fan- and cone-

beam arrangements. See Herman [78] for an overview of analytical algorithms for computed tomography. 
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 Figure 2.6 shows a pixelated 2D CST domain along with an emitter-detector pair. The domain, 

Ω, is defined as a separable Hilbert space and the unknown distribution, x, is a Ω-valued vector 

that represents κη or Sη.
32 By construction, pixels are orthonormal and span Ω. The resulting basis, 

Φ(n), consists of n basis functions, ϕj. In a pixel-wise basis, ϕj equals 1 inside the jth pixel and 0 

elsewhere. The continuous distribution, x, is approximated by a low-dimensional representation, 
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where αj is a coefficient that gives the value of x in the jth pixel.33 Distributions are described by 

the vector x ϵ ℝn, where x = {αj}. Projection of x onto an n-dimensional subspace, Φ(n), is given by 

the coefficients αj = ⟨x, ϕj⟩, where ⟨·,·⟩ is the inner product operator. 

 Equations (2.5) and (2.12) are linear IFKs and therefore compatible with the summation in 

Eq. (2.24). CST measurements for the discrete distribution, x, are approximated by summing the 

path integrals along a LOS for each basis function, called a ray-sum, 
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where u is a position along the ith LOS from 0 to L and ri is an indicator function that relates the 

location u along the ith path to a position in the element ϕj. The vector b ϵ ℝm, where b = {bi}, 

                                                 
32 This definition enables rigorous classification of alternative bases, which is useful when comparing discretization 

schemes, as in Chapter Four. 
33 Pixels and other finite element schemes employ basis functions with compact support such that the coefficients have 

a straightforward physical interpretation (i.e., αj gives the value of x at some location). However, this is not always the 

case, as in radial basis functions and sample-based eigenfunctions. 

 
Figure 2.6: Discrete absorption CST domain, Ω, with pixelated elements, δΩ, and the LOS between 
an emitter and detector. 
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gives the set of projections that correspond to the m optical paths in a CST system. For pixels and 

voxels that contain a uniform concentration of x, the path integral in Eq. (2.25) equals the chord 

length of the ith LOS through the jth pixel: Aij, as shown in Figure 2.6.34 

 Line integrals over the basis functions are carried out for each optical path to construct a 

discrete measurement operator, 

  
0

( )j

L

i j i uA du  r . (2.26) 

Computing Eq. (2.26) for each of the functions for each LOS yields the ray-sum matrix, A ϵ ℝm×n. 

The result is a linear system, Ax = b, and algebraic reconstruction consists in the inference of a 

gas state, defined by the vector x and basis Φ, subject to an observation, b. 

2.2.2.2 Algebraic reconstruction technique 

Algebraic reconstruction refers to a class of algorithms that reconstruct a function in discrete form 

from its sinogram, b. The basic formula proceeds from an initial guess, x(0) (often a zeros vector), 

which is iteratively updated, 
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where k is the current iteration, λ is a relaxation parameter, bi is the ith projection, and ai is the ith 

row of A, arranged as a column vector. Each iteration of Eq. (2.27) propagates the ith residual back 

along the corresponding LOS, similar to filtered back projection. Therefore, only pixels transected 

by a beam will change from the initial guess. This simple form of the ART is not ideal for 

applications where the number of pixels exceeds the number of projections. 

 The ART converges to the minimum norm least squares solution, xLS = A#b, where A# = 

(ATA)-1AT is the pseudoinverse of A. However, for dense arrays with an overdetermined ray-sum 

matrix, the least squares solution is subject to noise-related artifacts, similar to back projection 

algorithms. Early iterations contribute low-frequency components to x. Spatial frequencies in 

updates, x(k + 1) – x(k), progressively increase as the measurement residual approaches zero. This 

progression results in a phenomenon called semi-convergence. Elfving et al. [236] analytically 

demonstrated that high-frequency contributions from later iterations are more noise-affected than 

                                                 
34 The cross section of a beam in the probe volume may be non-trivial, depending on the modality. In such a case, the 

integral yields the fraction of a pixel’s area or voxel’s volume that is transected by a beam. 
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contributions from early steps. Moreover, since early iterations of x(k) are smooth they are likely 

to exhibit spatial features that are typical of gasses. Practitioners halt Eq. (2.27) prior to 

convergence to improve the accuracy of a reconstruction. However, it is difficult to establish the 

optimal stopping criteria without prior knowledge that is specific to experimental conditions (e.g., 

the number and arrangement of beams, spatial frequencies expected of x, etc.). 

 Two modifications of the ART bear mentioning. First, iterations of the simultaneous ART 

(SART) update x(k) with information from all of the residuals, at once, with an emphasis on 

corrections to the centre of the domain [237]. This approach enables fast ART-type convergence 

without explicit computation of the inverse operator. It is advantageous to avoid calculation of A# 

in cases where the dimension of the problem is very large, as in the 3D systems in Chapter Six. 

For such arrangements, the convergence time of Eq. (2.27) is prohibitively long and neither A# nor 

its factorizations can be stored in memory, which prevents LU- and QR-type solutions to the matrix 

system. Second, the multiplicative ART was devised to maximize the information entropy of 

reconstructions. Smooth distributions have greater information entropy than discontinuous 

distributions and, as a result, the MART promotes realistic physical features in CST images.35 By 

introducing an assumption about the relationship between elements of x, MART serves as a 

precursor to the Bayesian method introduced at the end of this chapter. 

2.2.2.3 Limited-data and full-rank tomography as ill-posed inverse problems 

It has been mentioned several times that tomographic reconstruction is an ill-posed inverse 

problem. The concept of an ill-posed problem is implicit in the definition of a well-posed problem, 

commonly understood in terms of the criteria set out by Jacques Hadamard in 1902 [238]. 

According to Hadamard, a problem is well-posed if it meets the following conditions: 

1. Existence: a solution must exist; 

2. Uniqueness: the solution must be unique; and 

3. Stability: the solution must change continuously with changes to the initial conditions.36 

Tomographic reconstruction necessarily violates the last two criteria in one way or another, which 

is why additional measures must be taken to ensure the accuracy of reconstructions. Chapter One 

                                                 
35 There is a noteworthy connection, here, between the information and thermodynamic entropy of a distribution. This 

relationship can be seen in the formal definitions of both forms of entropy, which are both proportional to the 

expectation of log(pi), where pi is the probability of the ith state. 
36 That is, small changes in the data should not yield disproportionately-large changes in the solution. 
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introduced the categories of limited-data and full-rank CST, which are ill-posed for distinct 

reasons. 

 Limited-data CST features fewer projections than basis functions, typically having m < 100 

measurements because of optical access restrictions, high equipment costs, or both. At the same 

time, instantaneous estimates of κη or Sη in an unsteady flow require a large number of basis 

functions to properly represent the gas dynamics. When the number of basis functions is small—

for instance, a 10×10 pixel basis, Φ(100)—features of the flow are poorly-resolved in the projection 

of x onto Φ, called xexact, which is the best-case reconstruction using Φ. Moreover, for a pixel- or 

voxel-wise basis, such as Φ(100), the assumption of a uniform concentration of gas within the pixels 

breaks down and xLS is unlikely to resemble xexact. However, given a large number of pixels, 

adequate to capture the flow field dynamics but exceeding the number of measurements, A must 

be underdetermined. Formally, rank(A) ≤ m < n. Rank-deficiency means that A has a non-trivial 

null space and an infinite set of candidate vectors, {x}, can fully explain any data vector, b. 

Limited-data CST thus violates uniqueness, Hadamard’s second criterion. 

 Full-rank CST, as its name implies, features a dense measurement array, arranged in such a 

way that rank(A) = n. Since the system is full-rank, there is a unique least squares solution and the 

inference of x for A and b will satisfy Hadamard’s existence and uniqueness criteria. However, 

full-rank CST operators must be overdetermined due to the geometry of ray-sums (i.e., many 

nearly-collinear rays are required to get independent information about interior basis functions). 

Moreover, projections are subject to noise and thus imply incompatible information about the 

domain. The measurement IFKs damp frequencies in x and therefore amplify frequencies when 

inverted, resulting in large artifacts. 

 To illustrate this damping effect, consider the definition of an IFK, 
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where b is the data, K is a kernel that incorporates the measurement physics, and f is the unknown 

function [239]. (In CST, K = 1.) Next, consider the function fp(t) = sin(2πpt), where p = 1, 2, … 

Irrespective of the kernel, the Riemann-Lebesgue lemma demonstrates that 
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That is, the map from f to b diminishes high-frequency components such that b is smoother than f 

[239]. Accordingly, the inverse map from b to f necessarily amplifies frequencies in b; frequency 

amplification for the near-collinear ray-sums implies that A has a very large condition number. 

Measurements are always noise-laden and discretization implies a model error, which has a similar 

effect to noise. Simple least squares inversion is therefore subject to non-physical artifacts that 

arise from small perturbations in b. In this way, full-rank CST necessarily violates stability, 

Hadamard’s third criterion. 

 Both limited-data and full-rank CST fall short of the criteria for of a well-posed problem. 

Conceptually, ill-posed inverse problems lack sufficient information to obtain a unique, stable 

solution. Either there are too few measurements or noise eradicates necessary components of the 

signal. In this light, regularization amounts to the inclusion of additional information about a 

problem, implicitly or explicitly, to improve the accuracy of solutions. The challenge of 

reconstruction in CST can be described as an information deficit that must be supplemented by 

prior assumptions. 

2.3 Bayesian Framework for Tomographic Imaging 
Statistical inversion is an approach to inverse problems in which prior information about an 

observed system is brought to bear on estimates of the system parameters using Bayesian statistics. 

Inverse problems are formulated in epistemic terms: information is extracted from measurements 

to update one’s existing knowledge of the system parameters [240]. In this framework, all 

quantities—inferred parameters, measurements, physical constants, and so on—are conceived as 

random variables with an associated pdf. Randomness represents both variation that is inherent to 

the physical system, such as the probabilistic emission of a photon or turbulent fluctuations in a 

fluid, and epistemic uncertainty: about the system state, the mathematical form of physical models, 

fundamental parameters, and the like. This approach is well-suited to ill-posed inverse problems 

because the information used to regularize an inversion is given explicit representation. 

Researchers can directly interrogate the assumptions used to generate a reconstruction in Bayesian 

CST and quantify the uncertainty of an estimate. Moreover, the Bayesian framework itself suggests 

possibilities for regularizing and optimizing experiments, demonstrated in later chapters of this 

work. 

 This section introduces the concept of Bayesian updating, in which prior assumptions about a 

flow field are brought into line with measurement information. Updating requires likelihood and 
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prior pdfs to calculate a posterior distribution and likelihood and prior pdfs for CST are described, 

below. Finally, the posterior pdf is sampled to come up with a representation of the target 

distribution, akin to classical reconstruction. The chapter ends with a brief discussion of Bayesian 

reconstruction for gas-phase tomography. 

2.3.1 Bayesian updating 

Probability density functions characterize the behaviour of a continuous random variable. The 

function, π(y), returns the relative likelihood that a random process, Y, will result in a specific 

outcome, y.37 Pdfs have inverse units to y and integration of π(y) over a subset of Y’s possible 

outcomes, e.g., [y1, y2], gives the probability that y ϵ [y1, y2]. Integration over all possible 

realizations of Y must equal unity, called the law of total probability. In Bayesian statistics, 

knowledge about a random process (such as the distribution of a gas in CST) is quantified with a 

prior pdf, πpr(x). The prior describes the relative likelihood of candidate vectors, x, based on a 

priori information about the gas, which can include previous measurements. For instance, πpr(x) 

may assign a greater value to smooth distributions or promote discontinuities, predetermined 

spectral features, etc. In principle, the prior should account for all relevant knowledge about the 

system parameters. 

 Following an observation, b, information about x is updated according to Bayes’ equation, 
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where π(x|b), π(b|x), and π(b) are the posterior, likelihood and evidence functions. The likelihood 

pdf encodes the measurement model: i.e., π(b|x) returns the chance of observing b when the system 

state equals x, reflecting the uncertainty about b due to noise and accuracy of the measurement 

model. Since b has already been observed, π(b) is a constant scalar that normalizes the numerator 

to conserve total probability, 

 pr( ) ( | ) ( )d   
x

b b x x x . (2.31) 

The posterior, π(x|b), gives the probability density for a set of parameters, x, given the 

measurement data, b, subject to prior information about the gas. 

                                                 
37 This relative likelihood may be called a probability density or density or, in less formal terms, a chance or likelihood 

(both of which are also understood in a relative sense). 
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 Equation (2.30) updates information in the prior based on measurement data, illustrated in 

Figure 2.7 for a 1D system. The update is properly-weighted to account for variance in the 

measurement process and one’s confidence in the prior information. Posterior probabilities 

describes the information one has about a system following an observation; π(x|b) is considered a 

comprehensive solution to the inverse problem in itself. However, in high-dimensional problems—

such as tomographic imaging—it is difficult to represent the posterior in a comprehensible manner. 

Point estimates of x are used to visualize π(x|b), such as the MAP estimate shown in Figure 2.7. 

2.3.2  Likelihood functions 

The likelihood pdf specifies the chance of observing the data based on a presumed system state by 

way of the measurement model. Measurements are subject to noise and model error, both of which 

affect parameter estimates. Noise refers to random signal perturbations caused by physical 

processes in the system, itself, and measurement electronics. Model error arises from the 

discretization scheme and simplifications applied to the governing equations. These phenomena 

are grouped together in an overall error term, e ϵ ℝm, where e = enoise + emodel. Due to the cumulative 

effects of error, there is some chance that a range of system states, {x}, will yield the observation 

b, quantified by π(b|x). Key factors that contribute to enoise and emodel are enumerated below to 

motivate an explicit form for the likelihood pdf. 

 Gas-phase tomography features noise from three types of physical variation. Fluctuations in 

the light source in absorption CST; shot noise, produced by quantization of the source medium, 

a)  b)  c)  

Figure 2.7: Sample 1D Bayesian update: a) prior information about x; b) probability of observing b 
for different values of x, maximized by the maximum likelihood estimate (MLE); and c) successive 
posterior distributions for five observations of b, along with the MAP estimate. 
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detector mechanism, and gas; and thermal motion in the circuitry of amplifiers.38 Variation in the 

optical power of a laser, called relative intensity noise, can arise due to cavity vibrations and 

quantization effects in the gain medium. Relative intensity noise occurs in state-of-the-art TDLs, 

regardless of variation in the injection current, though current controllers can contribute to the 

effect. The power spectrum of this source exhibits 1/f behaviour; and, while relative intensity noise 

is best modelled as a pink source, normally-distributed (white) noise serves as a conservative 

baseline [241]. 

 Shot noise is a consequence of the discrete nature of electric charge and photonic interactions 

with the light source, photodetectors, and gas. Emission and absorption are inherently probabilistic 

and natural variation in the number events over a measurement interval affects the number of 

photons incident on a detector. Moreover, the quantized nature of absorption, emission, and 

detection resembles a discrete counting process. Processes of this sort follow a Poisson 

distribution, the limit of which is a Gaussian distribution with a mean and variance equal to the 

rate constant (in this case, the number of detected photons).39 Shot noise can have a similar effect 

to relative intensity noise at very high frequencies (~1 MHz). However, shot noise exhibits a 

current density orders of magnitude below that of relative intensity noise at lower frequencies 

(< 1 kHz) [241]. 

 Thermal noise, also called Johnson-Nyquist noise, arises due to the disruption of electrons in 

a system’s circuitry by random thermal motion in the wires. At any given instant, these disruptions 

add up to a net charge with a magnitude proportional to the wire’s temperature (effectively 

independent of the signal). The power spectrum of thermal noise is relatively constant—

approximating white noise—but eventually decays to zero. However, the decay occurs at a 

frequency far higher than those resolved in CST measurements, with an onset around 50 GHz. 

Johnson-Nyquist noise is close in form to an independent and identically distributed (IID) normal 

random variable [242]. The influence of thermal noise is typically less than that of shot noise 

though similar in magnitude [241]. 

 Finally, model error comes from: i) differences between the measurement model and physical 

process of measurement; and ii) the projection of x onto a finite subspace. Certain aspects of (i) 

                                                 
38 Electromagnetic interference is another form of noise that is marginal in the context of gas-phase tomography due 

to the frequencies of interest and typical data acquisition electronics. 
39 Incident photons are distributed as a Poisson random variable, scaled by the detector’s quantum efficiency. 
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are knowable, in principle—e.g., error due to simplification of the RTE into the Beer-Lambert law. 

However, scientific models are coarse-grained descriptions of reality and some measure of residual 

uncertainty will inherent limit any inference. More practically, (ii) is the dominant source of model 

error in CST and can be quantified using an approximation errors approach. Approximation errors 

are discussed in Chapter Four; for the purposes of this section, it is sufficient to note that one can 

numerically assess their magnitude and distribution. 

 Aggregate error in hard-field tomography is treated as an additive process [240],40 which 

corresponds to the model bmod = Ax + e. Subject to the hypothesis that the system state is x, bmod 

= bmeas and 

 meas exact e b Ax . (2.32) 

The Bayesian paradigm treats error as a random variable and assumptions about the distribution 

of noise and model error are used to construct an explicit likelihood pdf. The form of this pdf is 

typically joint-normal. Gaussian distributions are ubiquitous in statistical inference, both because 

they are easy to manipulate and as a consequence of the central limit theorem.41 The corresponding 

likelihood pdf is 
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where Γe is the covariance of error vector; Le = chol(Γe
-1), where chol(·) returns the Cholesky 

factor; and det(·) is the determinant operator. 

 Error is often assumed to be IID with model error as the leading source of uncertainty, in 

which case Γe = σ2I, where σ is the standard deviation of error. (For an IID model of e, absent an 

estimate of var(emodel), σ can be selected such that variation in e overwhelms correlations observed 

in the noise.) However, Eq. (2.33) can accommodate other forms of noise and model error, 

approximating non-Gaussian noise with the addition of a mean error, e̅, and complex covariance 

structure. This flexibility, in conjunction with the fact that uncertainty about x dominates overall 

uncertainty, justifies the use of Eq. (2.33) for the tomography likelihood. 

                                                 
40 Other treatments are possible but uncommon. These include multiplicative error, bmod = AxE, where E is a diagonal 

matrix with the vector e along the diagonal, and an arbitrary error function, in which e = bmeas – f(x,e) [240]. 
41 The central limit theorem states that the mean of a population drawn from an arbitrary distribution with a finite 

variance will be normally distributed. 
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2.3.2.1 Prior functions 

Constructing a prior is the most critical step in Bayesian CST, and often the most challenging. The 

prior contains explicit assumptions about variation in the gas; developing a formal model of the 

system that conforms to the definition of a pdf disciplines inverse analysis. But knowledge about 

an experiment is frequently qualitative in nature, and it can be difficult to systematically synthesize 

a priori information. Fortunately, considerable effort has been devoted to developing Bayesian 

functionals for prior pdfs in gas-phase tomography. Practitioners can thus begin their analysis with 

an established prior, making modifications as additional information accumulates. 

 Turbulent behaviour is a focus of much CST research. Flow and combustion variables in flame 

fronts, free-shear jets, internal pipe flows, and the like exhibit stable mean distributions. However, 

high-intensity flow fields feature instantaneous distributions, subject to random instabilities, and 

turbulent fluctuations are properties of interest in fundamental turbulence modelling and 

combustion simulation. Turbulent variables are commonly considered as a random process [2]. 

Ideally, given perfect knowledge of the flow conditions, the prior would conform to the 

distribution of these fluctuations. Motivated by this observation, gas processes are modelled as a 

joint-normal variable, which can be made to closely resemble the behaviour of turbulent flows. 

Chapter Three discusses the validity of this approximation at length. 

 By assumption, x ~ (µ, Γx), where µ and Γx are the mean and spatial covariance of x, 

respectively. Knowledge of x is necessarily incomplete so one must rely on estimates of µ and Γx. 

Uncertainties in Γx are amplified to account for epistemic uncertainty. The joint-normal treatment 

of x results in a standard form for the prior pdf, 
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where Lx = chol(Γx
-1), as with Le. Absent specific information about the flow field, µ is initialized 

with a zeros vector. 

 
Figure 2.8: Random draws from a Tikhonov prior (λ = 10) on a 30×30 square-pixel grid. 
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 The distribution of variance should also conform to information about the gas. Spatial 

smoothness is a common starting point when the structure of Γx is unknown. Daun [88] proposed 

a smoothness prior for CST with a covariance structure based on the first-order Tikhonov matrix. 

In this approach, the Cholesky factorization of Γx is directly constructed. For a pixel basis, the 

element-wise definition of Lx is 
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where ni is the number of pixels bordering the ith pixel, dij is the pixel-wise distance from i to j, 

and σx is the presumed average standard deviation of the flow. Lx is symmetric so Γx = Lx
-2, and 

Figure 2.8 gives a qualitative sense of the spatial information of a Tikhonov prior with five random 

draws on a 30×30 grid with λ = 10. As with the µ, more sophisticated covariance data can 

incorporated into the prior as it becomes available. 

2.3.3 Visualizing the posterior pdf: Bayesian reconstruction 

It was noted above that the posterior pdf is considered the solution to an inverse problem in 

statistical inversion. This section includes brief notes on the representation, calculation, and 

interpretation of the posterior, along with a sample reconstruction. 

 Joint-normal likelihood and prior pdfs are desirable—provided they can adequately 

characterize the measurement error and variation in a system—because they result in a tractable 

expression for the posterior. Equations (2.33) and (2.34) are joint-normal pdfs, the product of 

which is also joint-normal, and there is an explicit formula for π(x|b) as a result. Substituting 

π(b|x)·and πpr(x) into Eq. (2.30) gives an expression that is proportional to the posterior pdf, 
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 It is not always possible to derive such a formula in Bayesian inference. (In fact, analytical 

expressions for the posterior are uncommon in large-scale inverse problems.) For instance, 

hierarchical Bayesian estimation infers prior parameters (such as σx) along with x, simultaneously. 

As a result, the form of π(x|b) depends on the data and is not known, a priori. Sampling methods 

are therefore required to populate a discrete representation of the probability space. (These 

methods include Markov chain Monte Carlo sampling with a Metropolis Hastings kernel, Gibbs 
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sampling, etc.) Discrete representation of the posterior, like analytical expressions, are difficult to 

interpret. 

 Point estimates of the posterior pdf are routinely employed to represent the posterior pdf. 

Bimodal posterior distributions are uncommon in Bayesian CST and mean measures of the 

posterior over-smooth features of interest (especially in the limited-data context due to the 

flexibility of the likelihood function). This dissertation employs the MAP estimate, xMAP, to 

visualize the posterior. The MAP estimate is the value of x that maximizes π(x|b) and is the most 

common point-estimate in Bayesian CST. For a joint-normal likelihood and prior, the MAP 

estimate also maximizes Eq. (2.36), 
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The Euclidean norm in Eq. (2.37) is non-negative and contains all instances of x in the expression 

for the posterior, minimizing the argument of the norm will maximize π(x|b). Therefore, the MAP 

is found by least squares minimization of an augmented linear system, 
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Equation (2.38) is the Bayesian form of reconstruction for CST with joint-normal likelihood and 

prior pdfs. 

 Figure 2.9 shows a set of sample reconstructions, computed with Eq. (2.38) for a limited-data 

array using an independent uniform prior and Tikhonov smoothness prior. The uniform prior 

contains no information about the mean of x or correlation between the pixels. As a result, only 

pixels that are transected by a beam are updated (as with the simple ART). By contrast, the 

a)  b)  c)  d)  

Figure 2.9: Sample estimates based on measurements from a limited-data array (m = 32) using a 
30×30 pixel grid. Reconstructions were computed with an IID prior and Tikhonov prior (λ = 10). 
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Tikhonov prior promotes smooth distributions, as can be seen in the random draws in Figure 2.8. 

Clearly, bringing the prior into line with expectations about the flow field increases the accuracy 

of reconstructions. 

 Following reconstruction, the posterior covariance matrix can be computed to determine 

credibility intervals for x (see Chapters Four and Five). It is worth emphasising that this procedure 

does not imply that the true mean of x will fall in the 95% confidence interval 95% of the time, 

however. The posterior represents an epistemic position, based on strong modelling assumptions. 

Confidence intervals reflect one’s state of knowledge about the flow field but do not guarantee the 

accuracy of the inference. As such, some caution against over-interpreting π(x|b) is warranted. 

Nevertheless, the Bayesian approach to CST is a powerful lens. The remainder of this thesis 

illustrates how a statistical frame of mind, based on the techniques introduced in this chapter, can 

suggest modes of regularizing and designing experiments that improve on state-of-the-art classical 

techniques. 
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Chapter Three  
Covariance Estimation for Tomography of a Turbulent Flow 

Turbulent behaviour is a common feature of fluid flows in natural and engineering environments. 

Dispersion models of turbulent plumes are used to monitor emissions and detailed simulations of 

turbulent combustion enable the design of efficient IC engines. A large number of CST 

experiments require instantaneous images of turbulent flows to inform models and simulations. 

Turbulence is marked by chaotic motion that spans a range of length and time scales: vortices roll 

up into large coherent eddies that dissipate energy down to smaller and smaller scales until 

ultimately depleted by viscous forces. The study of turbulence is largely probabilistic in nature 

because statistical properties of the flow field remain steady and predictable in spite of erratic 

fluctuations, which are difficult to forecast. Statistical regularities of turbulent phenomena can be 

exploited to improve tomography of an unsteady flow. This chapter illustrates the synergy between 

probabilistic descriptions of turbulence and Bayesian imaging in two ways. First, it is shown how 

moments of the pdfs in a self-preserving flow are related, which informs CST imaging of a free-

shear jet. Second, the quasi-joint-normal distribution of fluctuations is established, a fact that is 

subsequently used to estimate the variance of a complex process. 

 The concept of self-similarity in free-shear flow is a major finding of research on fluid 

dynamics with direct implications for CST. Self-similarity applies to the pdf of dynamic variables 

in fully-developed jets and plumes, suggesting a connection between the mean of a target (which 

is relatively easy to reconstruct) and higher moments of the pdf. In particular, the variance of a 

quantity can be inferred from the mean distribution and subsequently incorporated into the prior 

to improve the accuracy of future estimates. This chapter begins with a review of the theoretical 
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framework for self-similarity along with experimental evidence from the fluid mechanics 

literature. Later in the chapter, a procedure is developed to leverage self-similarity in the pdf of a 

passive scalar for Bayesian CST. First, it is noted that the combined effects of advection and 

diffusion imply a smooth average flow field; this observation is used to compute a robust estimate 

of the mean from time-averaged LOS data. Next, mean concentration data are mapped to the 

variance of scalar fluctuations. The distribution of variance is used to build a covariance matrix 

for the prior. Finally, instantaneous estimates of the gas parameters are computed with this prior. 

 More generally, following on the discussion of Chapter Two, it is argued that the distribution 

of fluctuations projected onto a CST basis will be roughly joint-normal. This form is especially 

advantageous given the joint-normal likelihood pdf. Gaussian distributions are self-conjugate and 

the combination of a joint-normal likelihood and prior yields a joint-normal posterior pdf. 

Computation of the MAP estimate is linear as a consequence of this shared form, resulting in an 

analytic expression for the posterior covariance. The linear formulation of CST is essential to full-

rank covariance estimation; and the posterior covariance matrix is the basis for the Bayesian 

design-of-experiment and model selection techniques developed in Chapter Four. 

 Reconstructions obtained by direct inversion of a full-rank operator are corrupted by noise 

and model error. High-frequency components in the data are amplified by the inverse smoothing 

kernel—a problem compounded by the nearly-collinear nature of full-rank arrays—and prior 

information is required for reconstruction. Complex structures are a common occurrence in full-

rank CST studies: the probe volume may feature interacting flames or mixing behaviour near an 

inlet, which do not satisfy to the assumptions made in self-similar covariance estimation. 

Nevertheless, statistical properties of the LOS data converge over time, and the target covariance 

can be directly estimated due to the linear system that follows from the joint-normal pdfs. A 

method is presented to approximate model errors and estimate the covariance matrix in full-rank 

CST. This estimate is included in a prior—as in the self-similar case—which is used to reconstruct 

successive measurements. 

 Numerical experiments were conducted to demonstrate the effect of the prior covariance on 

reconstruction errors in gas-phase tomography. Bayesian estimates of concentration in a turbulent 

jet and the reaction rate in a turbulent flame were compared to ground truth distributions in terms 

of the normalized Euclidean distance. Moreover, the structural similarity (SSIM) index was 

introduced as an alternative measure of quality for CST images. Both metrics established that 
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reconstructions informed by an estimate of the covariance matrix were more accurate than 

reconstructions obtained with a smoothing prior. The SSIM index distinguished the accuracy of 

CST images better than the Euclidean distance. Increased accuracy due to the use of a covariance 

estimate was especially dramatic in the test designed to mimic a real-time industrial imaging 

scenario, relevant to many CST practitioners. 

3.1 Turbulence Theory for CST 
Several aspects of turbulence theory are important to CST practitioners. This section begins with 

an account of self-similar behaviour in turbulent jets followed by a review of their governing 

equations. Analytical scale functions for the scalar field are presented, including a novel expression 

of the variance distribution in terms of the mean profile. Empirical measurements that verify the 

existence of a self-similar regime are used to fit the analytical profiles. Finally, arguments are 

presented to justify the use of a joint-normal prior pdf in gas-phase tomography. 

3.1.1 Phenomenology of self-preserving jets 

Self-similarity, also called self-preservation, refers to a dynamic equilibrium where the mean and 

higher-order moments of flow variables evolve together. When this occurs, dynamic variables 

(velocity, temperature, etc.) have the same relative value at the same relative location [243]. 

Profiles of velocity, temperature, and the like can therefore be expressed in terms of scale functions 

that only depend on one dimension of the flow. Correspondingly, the governing equations become 

independent of this dimension. When the conservation and transport equations are 2D or 

axisymmetric, for a semi-infinite or round flow, respectively, they simplify into ordinary 

differential equations. Manipulation of the governing equations in self-similar form can reveal 

important relationships between flow variables. These results are used to predict characteristics of 

a turbulent fluid flow’s asymptotic state. 

 There are a broad range of conditions under which a turbulent flow approaches a self-

preserving or partially self-preserving equilibrium. Properties that are subject to a similarity 

analysis usually include mean and root-mean-square (rms) distributions of velocity, temperature 

and transported scalars. More fundamentally, pdfs of fluctuating variables become self-preserving, 

themselves, along with power spectra, dissipation rates, and correlation functions. Self-

preservation of these latter quantities implies self-preservation in the mean and rms profiles of a 

fluid. Crucially, once the lower moments of a turbulent pdf attain similarity, they can be 

incorporated into a Bayesian prior to improve the accuracy of CST images. Two canonical 
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examples of self-similar flows are free-shear jets and wakes, which are common laboratory fluid 

targets and feature widely in industrial settings. The phenomenology of turbulent jets is of 

particular interest in the CST context. Therefore, self-similarity in gas-phase jets is the principal 

focus of this chapter. 

 Figure 3.1 shows a cross section of a round turbulent jet issuing into a quiescent medium and 

a schematic that illustrates jet flow regimes. Jets are divided into three axial zones [2]. The jet 

develops from a potential core in the near field, surrounded by an annular mixing region; near field 

behaviour is a strong function of the inlet conditions. Once the mixing region subsumes the core, 

the jet is said to have entered a transitional state or intermediate region. Finally, the jet reaches a 

self-similar equilibrium that defines the far field, in which axial gradients are dominated by radial 

gradients. The onsets of transitional and fully-developed behaviour are characterized in terms of 

an axial distance normalized by the nozzle diameter, called a relative diameter. These transitions 

typically occur about 7 and 70 diameters downstream from the inlet, respectively [245]. Jets are 

also divided into three concentric regions: the centerline, shear, and outer region. Flow along the 

centerline is predominantly axial while the shear region involves substantial radial motion. The 

near field shear region has a strong radial gradient around the potential core, resulting in vortex 

generation and roll-up. Vortices combine in the intermediate field to form large, visible eddies that 

decay into smaller eddies and eventually vanish. The transition to complete self-preservation is 

marked by successive similarity in the jet’s moments [243]. Mean profiles of velocity become 

similar early on, followed by transported scalars, then rms profiles, and so on with higher-order 

a)  b)  

Figure 3.1: Cross sections of a round turbulent jet: a) PLIF image from Ref. [244]; and b) schematic 
of a round jet showing its development and constituent regimes, adapted from Ref. [245]. 
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moments.42 Experimental measurements have shown that mean and rms distributions can achieve 

weak self-preservation in the near field [246].43 

 Transition dynamics and the evolution towards a jet’s equilibrium state depend on the rate of 

entrainment of ambient fluid at the shear layer. Classical descriptions of turbulent jet flow are 

based on Kolmogorov’s theory of turbulence, which supposes that small-scale turbulence is 

statistically isotropic [247]. On this model, turbulent phenomena are inherently local and jets 

continually readjust towards a universal equilibrium, which only depends on the rate of momentum 

addition. (Townsend [247] famously summarized this view with the phrase “turbulence forgets its 

origins.”) Therefore, classical jets are modelled in terms of a point source of momentum at a virtual 

origin with no mass flux, regardless of the actual inflow conditions. Governing equations for an 

axisymmetric jet are transformed, accordingly, using appropriate scale functions for mean and rms 

distributions, resulting in a set of ordinary differential equations. The scale functions contain 

empirical constants which ought to be identical for all jets that share a momentum flux. Careful 

studies have found that a large range of round jets are well-modelled by the classical approach 

[248]. However, further reviews of experimental data noted inconsistent similarity parameters in 

some jets, attributable to differences in their initial conditions [243,245,249]. In particular, 

variation in the mass flux, inflow velocity profile, and global density ratio can affect the location 

of the virtual origin, rate of axial expansion, and constants in the scale functions [250,251].44 Based 

on these observations, it has been widely accepted that the classical description of self-preservation 

presents an incomplete picture of jet dynamics. 

 In light of the evidence against universal self-similar jet dynamics, George [243] re-analyzed 

self-preservation in turbulent jets and wakes with an explicit focus on the initial conditions. He 

proposed three forms of self-similarity: 

1. Jets may be fully self-preserving at all orders of turbulent moments and scales of motion; 

2. Jets may be partially self-preserving, up to a certain moment or spatial scale; or 

                                                 
42 The scalar field approaches self-preservation more slowly than do velocity components as the former is more 

sensitive to turbulent structures. According to Sreenivasan and Antonia [273], “in homogeneous shear flows the scalar 

field attains a semblance of universality only if the velocity field in its entirety is universal (not just one of its 

components).” 
43 Here, weak similarity refers to a condition where flow variables can be collapsed onto a scale distribution but the 

scale functions are not necessarily in sync with one another. 
44 The boundary layer thickness at the origin determines the nature of vortex generation and thereby roll-up, pair-up, 

and eddy characteristics, which propagate through the jet. Or, per Nathan et al. [250], “a jet never forgets.” 
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3. Jets may be locally self-preserving, in which case the profiles scale with local quantities 

but the governing equations do not admit to a self-preserving solution [243]. 

By conjecture, all turbulent jets will approach one of these three states, determined by the initial 

conditions. On this view, the surplus spreading observed in some jets is thought to arise from 

additional shear at the nozzle. For instance, a smooth contraction nozzle results in a quasi-uniform 

(i.e., top hat) profile while a long straight pipe yields fully-developed inflow. The top hat profile 

features greater shear at the interface, which promotes the formation of vortices in the near field. 

These vortices are thought to roll-up into eddies that propagate throughout the flow, causing 

stronger engulfment of ambient fluid in the far field [245]. 

 Intuitively, according to George [243], jets can only enter a fully self-preserving equilibrium 

when the classical self-similar solution satisfies the governing equations.45 Nevertheless, absent 

such conditions, jets tend as close as possible towards full self-preservation. At a minimum, jets 

approach local self-preservation, in which scale functions describe the far field profiles but their 

relative balance is not necessarily synchronous. When similarity profiles are out of sync, the axial 

form of the scale variable cannot be analytically determined and must be measured, instead. As 

will be shown later, all three forms of self-preservation are suitable for covariance estimation. 

3.1.2 Self-similar governing equations 

The Reynolds decomposition is used to analyze turbulence in terms of mean variables and their 

fluctuating components. For instance, the velocity vector, u(x, t), is decomposed into u̅(x, t) + 

u′(x, t), where u̅ and u′ are the mean and fluctuating quantities of u = (u, v, w)T at a certain location, 

x = (x, r, θ)T, and time, t.46 Mean variables are an idealized quantity, defined as the average value 

in an ensemble, which is a hypothetical set of duplicate flows with identical boundary conditions. 

(Ensemble statistics converge on the corresponding pdf.) For instance, the mean velocity is 

 [ ] ( )E d




  u u u u u , (3.1) 

                                                 
45 Self-similar solutions do not exist when the density varies appreciably across the flow. However, as a jet develops, 

density gradients diminish and ultimately disappear. As such, density gradients become buoyancy-driven, which 

renders self-similar solutions mathematically tractable (realized via the Boussinesq approximation). 
46 The overbar and prime notation designate the mean and fluctuating elements of a flow variable. Moreover, it should 

be noted that this section features some overlap in notation. Flow field notation introduced in Section 3.1.2 does not 

carry on throughout the text. 
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where E is the expectation operator and π(u) is the pdf of u.47 More generally, the shape of a 

turbulent pdf is characterized in terms of its moments, 

 1( ) ( )n

n x x dx  




  , (3.2) 

where µ1 is the mean and µn is the nth moment for n > 1. The mean is taken about zero, as in 

Eq. (3.1), and successive moments are taken about the mean. These describe the spread of a 

distribution (variance, µ2), its lopsidedness (skewness, µ3), flatness (kurtosis, µ4), and so on. For a 

statistically stationary process, u̅ is a function of location, only. 

This chapter considers tomographic reconstruction of a passive scalar, transported by a round, 

incompressible, momentum-driven jet. Lubbers et al. [252] presented a standard similarity analysis 

for this class of fluid flow, adapted below. Similar analyses can be found in the work of Dahm and 

Dimotakis [253], Richards and Pitts [248], Mi et al. [254], Carazzo et al. [255], and Shin et al. 

[256], among others. First, governing equations are derived for the jet from the cylindrical form of 

the Navier-Stokes equations by neglecting viscous and body forces, applying the boundary layer 

approximation, and averaging. The resulting expressions for continuity and momentum are 
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, (3.3) 

where u and v are the axial and radial components of velocity and the averaged product of u′ and 

v′ is a Reynolds stress term. The same procedure is applied to the scalar transport equation, 

 
1 ( )c c rv c

u v
x r r r

    
  

  
. (3.4) 

By definition, dynamic variables in a self-similar flow can be collapsed using scale functions. The 

scale functions of a round jet are expressed in terms of a dimensionless radius, ξ = r/L(x) (shown 

in Figure 3.1b), where L is a characteristic length scale. Typically, for a round jet, L is the radial 

distance that satisfies u̅(x, r) = u̅(x, 0)/2. Alternatively, per George [243], L can be derived in terms 

of the momentum flux and inlet profile; the scale may also be an arbitrary local value. 

 The functional form of similarity profiles are largely empirical but it is possible to comment 

on the existence, structure, and interrelation of self-similar variables by manipulating Eqs. (3.3) 

                                                 
47 By contrast, actual estimates of u̅ are from multiple measurements of u in a single flow at different times or locations. 
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and (3.4). Towards this end, velocity and Reynolds stress terms are written as the product of an 

axial scale and dimensionless radial function, 

 ( , ) )( ) (u x U x f   and ( , ) )( ) (u v x U x g     , (3.5) 

where U and U′ are scales for the mean velocity and velocity fluctuations. Typically, U is taken to 

be the mean centreline velocity. The streamfunction, ψ, is defined by the relations 
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 
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1
v

r r





 (3.6) 

and can be expressed in terms of a jet’s scales and scale functions: ψ(x, ξ) = UL(x)2·F(ξ), where 

F′(ξ)/η = f(ξ). Substituting the streamline function into Eqs. (3.3) and (3.4) and rearranging the 

result yields a statement of momentum conservation in terms of the scale functions, 
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. (3.7) 

Integrating the momentum equation across an axial plane generates an expression for the 

conservation of axial momentum flux. Namely: the product function UL(x) must be a constant. 

Moreover, it can be shown that Eq. (3.7) only admits to a solution when 
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, (3.8) 

where c1 is a constant [2]. Equation (3.8) is a formal expression of the classical assumption that 

turbulent jets exhibit a constant, linear spreading rate in the self-similar regime. According to 

Tennekes and Lumley [3], the mean velocity and velocity fluctuation scales are approximately 

equal, i.e., U = U′, resulting in a universal spreading rate that coheres with classical theory. By 

contrast, the analysis of George [243] and a large body of observations suggest that, in fact, the 

mean and fluctuating velocity scales are not necessarily equal and c1 is replaced with some function 

of x that depends on the inlet velocity profile. 

 Next, scale functions are introduced to collapse the scalar concentration and corresponding 

turbulent stress, h and k. Here, ξc = r/Lc(x) is introduced, where Lc is a radial length scale for the 

concentration field. The mean passive scalar and turbulent stress terms are modelled as 

 (( (, )))c cc x C x h   and ( , ( ) () )c cv c x U x kC      , (3.9) 
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where C and C′ scale the mean scalar and scalar fluctuation profiles. The net scalar flux is found 

by integrating Eq. (3.4) across an arbitrary axial plane, 
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 , (3.10) 

where u0 and c0 are the mean velocity and concentration at the inlet and A0 is the area of the nozzle 

exit. The similarity profiles in Eqs. (3.5) and (3.9) are inserted into Eq. (3.10). Based on this 

expression, the radial length scale for concentration, Lc, must equal the radial velocity length scale, 

L, in order for a self-similar solution to exist. Rather, ξc = ξ, meaning concentration and velocity 

will exhibit the same spreading rate. This model is useful for multi-modal tomographic 

reconstruction; e.g., simultaneous CST and PIV [142]. Next, velocity and concentration terms in 

Eq. (3.4) are replaced with their self-preserving equivalents. Simplification of this expression 

results in a transport equation for the concentration profile, 
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where c2 is a constant. Concentration dynamics in the far field become independent of the inlet 

conditions when Eq. (3.11) admits to a self-similar solution, which requires U = U′ and C = C′ 

such that c2 is a universal constant [2]. 

 Estimating a covariance matrix in Bayesian CST requires a variance scale function. The 

quantity of interest in this case is the transported scalar, c, and its variance. In the boundary layer 

approximation, the transport of scalar fluctuations is governed by 

 2
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, (3.12) 

where X is the molecular destruction of scalar fluctuations, 

 
22 ( )X D c   , (3.13) 

and D is a diffusion constant. As with preceding similarity variables, the scale functions, m and n, 

are introduced to collapse the distribution of scalar fluctuations, resulting in 

 ( ) )( ) (,c c x C xC m       and ( )( (, ) )v c c x U C nC x        . (3.14) 

Finally, substitution of these functions into Eq. (3.12) gives the transport equation of scalar 

variance in terms of self-similar profiles, 
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As with Eqs. (3.7) and (3.11), solutions to Eq. (3.15) are only possible for a constant spreading 

rate and comparable mean and fluctuating scales: U = U′ and C = C′ [2]. When jets do tend towards 

a fully self-preserving equilibrium, a suitable function, m, will express the distribution of variance 

in the radial direction throughout the jet and scale with C′C′. However, even when jets do not 

approach such a state, concentration fluctuations remain well-modelled by m, according to George 

[243], scaled by an arbitrary local variable instead of C′C′. 

3.1.3 Analytic scale functions 

Evolution of a round, isothermal jet transporting a passive scalar is governed by Eqs. (3.3) and 

(3.4). Equations (3.7), (3.11), and (3.15) describe the velocity, concentration, and concentration 

fluctuations in the jet as members of a self-preserving equilibrium. According to George [243], 

jets converge towards this equilibrium when the governing equations are solved by self-similar 

profiles that are consonant with Eqs. (3.5), (3.9), and (3.14). Of particular interest in Bayesian CST 

are the functions h and m, which correspond to the structure of the first two moments of the 

concentration pdf and can be used to develop a prior. Section 3.1.2 demonstrated constraints on 

the existence of a self-similar solution. Further analysis of the governing equations reveals the 

expected form of and relationship between concentration scale functions, later used for covariance 

estimation. 

3.1.3.1 Mean profiles for velocity and concentration 

Early solutions to the mean jet equations were based on the turbulence models of Prandtl and 

Taylor. Prandtl [257] assumed conservation of momentum in the jet during mixing, resulting in an 

eddy viscosity term, ε. He proposed two equations for ε, relating the Reynolds stress terms to mean 

flow properties. Tollmien [258] used Prandtl’s first mixing length model to solve the jet equations. 

The model predicted that the kinematic eddy viscosity would vanish at the centre of the jet (i.e., 

εP1 = lP
2|du̅/dη|, where lP is Prandtl’s mixing length), contradicted by experimental findings. Görtler 

[259] derived the velocity profile for Prandtl’s second equation, which has a constant eddy 

viscosity (i.e., εP2 = k·u̅0·b(x), where k is a constant of proportionality and b scales the inlet 

velocity). Taylor’s closure was based on the assumption of vorticity conservation in the jet, 

producing an eddy viscosity term, analogous to Prandtl’s only applied to vorticity transport (i.e., 

εT = lT
2|∇u̅|, where lT is a vorticity mixing length). Howarth [260] used this approach to calculate 
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velocity and temperature fields for a turbulent jet. Distributions based on the theories of Prandtl 

and Taylor roughly capture mean jet behaviour, and mixing length models remain important in 

turbulence education. However, the solutions of Tollmien [258], Görtler [259], and Howarth [260] 

neglect the variance of axial velocity in the momentum equations, which has been shown to play 

a substantial role in the evolution of turbulent jets and wakes. 

 Reichardt [261] reformulated the governing equations by averaging them without applying a 

Reynolds decomposition; he thereby avoided explicitly modelling fluctuations. The resulting 

expressions for momentum and scalar transport are 
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He made the assumption that 
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where Λu and Λc are axial scale functions for velocity and concentration, given by 
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The constants bu and bc scale the velocity and concentration similarity profiles. In the previous 

section, it was remarked that scales that share the form of bu and bc must be proportional to x in 

order to permit a self-preserving solution. A physical basis for Eqs. (3.17) and (3.18) can be derived 

from three assumptions about the jet: i) the mean flow is predominantly axial, ii) the turbulent 

intensity is small, and iii) radial velocity fluctuations are proportional to the mean velocity [262]. 

Substituting Eqs. (3.17) and (3.18) into Eq. (3.16) yields a system of differential equations, 
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Equation (3.19) is solved by functions of the form K/b·exp{-(r/b)2}, with a constant, K, that 

depends on the corresponding source strength (momentum for Ku, concentration for Kc). Radial 

scale functions are obtained by normalizing this solution by the mean centreline value, which 

cancels out source-related terms, 

  2

0( ) ( ) expf h      , (3.20) 
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where β0 is an empirical constant, related to the jet’s radial length scale.48 (The constant, β0, 

includes the axial scale, bu or bc, and is not necessarily the same for the scale functions f and h.) 

3.1.3.2 Profile for scalar fluctuations 

Chatwin and Sullivan [263] proved the existence of a family of solutions for the scalar variance 

profile, m. These functions depend on the mean concentration and nature of molecular diffusion 

in a jet. The solutions are predicated on the assumption of uniform concentration at the outlet, c0, 

and negligible molecular diffusion. (The latter assumption is physically untenable, but is relaxed 

following the derivation.) Under these conditions, the pdf of concentration is 

  0( ) ( , ) ( ) 1 ( , ) ( )c y x y c x y          , (3.21) 

where the argument, y, is a concentration and θ is an intermittency indicator, defined as the 

probability that c(x, ξ) > 0. The mean concentration is calculated using Eqs. (3.1) and (3.21), 
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Similarly, the scalar variance is 
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It follows from Eq. (3.22) that θ = c̅/c0, which can be substituted into the expression for variance, 
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Equation (3.24) is maximized when c̅ = c0/2, which is offset from the centreline. This behaviour 

coheres with empirical scale profiles for c′c′. However, as mentioned above, Eq. (3.24) neglects 

diffusion, which counteracts the production of fluctuations and augments pressure scrambling 

                                                 
48 The Gaussian form for f and h is ubiquitous in the literature on self-similar jets. However, Pope [2] suggests the 

form f(ξ) = (1 + βξ 2)-2, based on the solution of Görtler [259]. This choice leads to an analytical solution for the mean 

radial velocity but underpredicts mean axial velocity at the edge of the jet. 
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[264]. Therefore, Chatwin and Sullivan [263] proposed a pair of constants: β1, to account for the 

effects of diffusion on mean flow properties; and β2, to account for statistical properties of the 

velocity field. The authors’ diffusion-adjusted equation for scalar variance is 

  2 1( , ) ( , ) ( ) ( , )c c x c x C x c x        , (3.25) 

where C is the axial concentration scale from Section 3.1.2. Since h = c̅/C and m = c′2/C2, Eq. (3.25) 

can be adapted into a novel expression of m in terms of h, 

 2

2 1( ) )( ( )m hh        . (3.26) 

3.1.4 Empirical scale functions 

Numerous studies have reported experimentally- and numerically-derived self-preserving 

distributions for turbulent jets. Figure 3.2 and Figure 3.3 present the standard forms of f, g, h, and 

m, derived from the work of Birch et al. [265], Dowling and Dimotakis [249], Panchapakesan and 

Lumley [266], Antoine et al. [264], and references therein. These papers report experimental data 

a)  b)  

Figure 3.2: Empirical scale profiles for a round turbulent jet: a) mean velocity profile and b) Reynolds 
stress profile; showing data from Antoine et al. [264]. 

a)  b)  

Figure 3.3: Empirical scale profiles for a round turbulent jet: a) mean scalar profile and b) scalar 
variance profile; showing data from Antoine et al. [264]. 
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for jets of water, heated air, He, CH4, C2H4, C3H6, and C3H8; issued into a reservoir of water, air, 

or N2, resulting in a range of Schmidt numbers;49 and having a Reynolds number from 5,000 to 

50,000.50 Several inlet velocity profiles were tested by alternatively using a smooth contraction, 

convergent, or long pipe nozzle. Measurements of concentration, temperature, and velocity were 

made using tracer LIF, Rayleigh laser thermometry, hot-wire anemometry, resistance 

thermocouples, or oil smoke light scattering; and radial distributions of key quantities were 

measured at multiple axial planes, located 10 to 105 diameters downstream from the inlet. 

 Equations (3.20) and (3.26) were used to plot f, h, and m in Figure 3.2 and Figure 3.3, with β0 

= 0.813 for f and β0 = 0.622, β1 = 1.181, and β2 = 0.192 for h and m.51 Data in these figures 

demonstrate that scaled quantities of velocity and concentration are consistent across a wide range 

of conditions and measurement positions, even for measurements in the intermediate field. The 

existence of robust scale functions confirms the self-preserving nature of round, free-shear 

turbulent jets and support the use of self-similarity for covariance estimation. 

3.1.5 Gaussian form of the pdf 

Thus far, this chapter has demonstrated that self-similar profiles can describe the variance of a 

scalar quantity in a free-shear jet in terms of the mean profile. A full pdf is necessary to calculate 

the posterior distribution in Bayesian CST, which constitutes a quantitative measure of uncertainty 

about the parameters of interest. Ideally, given perfect knowledge about the macroscopic boundary 

conditions of a turbulent flow, the prior would assume the form of turbulent fluctuations about the 

mean distribution. Therefore, it is instructive to consider the characteristics of fluctuations in a 

typical gas process. Chapter Two presented Bayesian CST with a joint-normal prior pdf; 

justification for this choice is presented below. 

 It has been widely observed in research on turbulence that fluctuating quantities follow a 

distribution that is near-Gaussian [267].52 Under certain conditions, fluctuations may exhibit sub- 

or hyper-Gaussian behaviour, in which the tails are under- or over-pronounced [268]; the 

distribution of certain quantities may also be skewed. Deviations from Gaussian distribution are 

                                                 
49 The Schmidt number is the dimensionless ratio of the viscous to molecular diffusion rates, Sc = μ/ρD. 
50 The Reynolds number is the (dimensionless) ratio of inertial to viscous force, Re = ρuL/μ. 
51 The Reynolds stress scale function was fit to a polynomial-exponential function suggested by Hussein et al. [371], 

which was not analytically motivated: g(ξ) = (0.103ξ 3 – 0.101ξ 2 + 0.082ξ – 0.004)·exp{–1.361ξ 2}. 
52 See the temperature and velocity distributions reported by Tavoularis and Corrsin [372] (Figures 21 and 22) and the 

scalar pdfs in Dowling and Dimotakis [249] (Figures 27 to 29). 
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commonly observed in turbulent stresses, fluctuations that are orthogonal to the primary flow 

direction, and double correlations. The mechanisms responsible for these distributions are not 

always clear, though many instances of non-Gaussianity arise due to external intermittency—i.e., 

interaction with an erratic boundary condition [269]—and internal intermittency, associated with 

non-isotropic features at very small scales. The choice of a Gaussian prior is typically well 

supported, even in the case of non-Gaussian fluctuations, because projection of the flow field onto 

a basis amounts to an averaging procedure. 

 Batchelor [267] summarized the traditional argument for normally-distributed fluctuations 

and presented experimental evidence. He showed how simple assumptions about the Fourier 

coefficients of a turbulent variable could be combined with the central limit theorem to establish 

an idealized model of Gaussian fluctuations. The analysis makes use of the integral timescale, T, 

based on the autocorrelation function, R, defined as 

 ( ) [ ( , ) ( , )]R E c t c t     x x  and 
0

1
( )

(0)
T R d

R
 



  . (3.27) 

First, a large number of measurements of a scalar concentration, c(x, t), are made over the interval 

0 ≤ t ≤ tn, where the measurement interval is much longer than T. The Fourier expansion of the 

scalar fluctuations is 
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According to Brun and Pumir [270], the Fourier coefficients, an and bn, are normally distributed 

though not necessarily independent. This result is illustrated by considering the definition of the 

coefficients (here the argument for an will stand in for both), 
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Equation (3.29) is equivalent to a sum of m integrals, 

 

/

,

1 1( 1) /

2 2 2
( , )co( ) (s )

n

n

it mm m

n n i

i in n ni t m

c c
nt

a c t dt a
t t t



 

 
    

 
  x , (3.30) 

where 1 << m. The terms an,i and bn,i are independent averages of the nth frequency component of 

the scalar fluctuations, provided the segment duration, tn/m, is sufficiently long relative to T. Long 

wavelength modes (i.e., n ≈ 1) may be correlated, reflecting the presence of integral-scale 
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structures advecting through the measurement position. However, as the interval, tn, approaches 

infinity, integral-scale coefficients decay to zero, leaving only terms that are effectively 

independent random variables. The sum of a large number of independent random variables is 

normally distributed, per the central limit theorem. Therefore, an and bn are necessarily Gaussian. 

Moreover, it has been shown that var{an} = var{bn} = En, which is the turbulent energy at the 

wavelength corresponding to the nth mode of the Fourier expansion [271]. 

 The characteristic functions of an(c′)cos(2πnt/tn) and bn(c′)sin(2πnt/tn) are denoted Gn
(a) and 

Gn
(b). Manipulation of Gn

(a) and Gn
(b) can reveal the distribution of scalar fluctuations; these 

functions are defined as 
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respectively, where En·cos2(2πnt/tn) and En·sin2(2πnt/tn) are the variance of the cosine and sine 

terms in Eq. (3.28). Since an and bn are independent, the characteristic function of the concentration 

fluctuations, G(c), is the product of Gn
(a) and Gn

(b) for n from 1 to infinity. This product can be 

expanded in logarithmic scale, corresponding to a sum, 
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Equation (3.32) is the characteristic function of a Gaussian variable having a variance equal to the 

sum of En for n from 1 to infinity. As such, assuming a sufficiently long measurement interval, the 

scalar fluctuations should follow a normal distribution with zero mean. 

 
Figure 3.4: Pdf of the normalized centreline concentration in a C2H4 jet (Re = 5,000, measured at x/d 
= 20, 40, 60, and 80), indicated with blue dots, and C3H6 jet (Re = 16,000, measured at x/d = 30 and 
90), indicated with red dots; data from Ref. [249]. 
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 Figure 3.4 shows normalized concentration pdfs for a C2H4 jet with a Reynolds number of 

5,000 and C3H6 jet with a Reynolds number of 16,000 [249]. The data exhibit the predicted 

Gaussian behaviour. Fully-developed turbulence features large-scale eddies that are random in 

nature and effectively uncorrelated. As a result, the Fourier coefficients are approximately 

independent and the assumption of Gaussian scalar fluctuations is valid for several standard 

deviations [271]. The jets measured to generate the data for Figure 3.4 exemplify the ideal 

conditions that result in normally-distributed fluctuations. 

 Lockwood and Moneib [272] measured the first four moments of temperature pdfs at 

numerous positions throughout a self-similar jet. (The temperature pdf is a good surrogate for the 

pdf of transported scalars.) They found the flatness and skewness parameters approached Gaussian 

values of zero and three (i.e., μ3 = 0 and μ4 = 3 for a normal distribution) as the jet transitioned into 

its self-preserving equilibrium. But the scalar pdfs deviated from a normal distribution in some 

regions—i.e., μ3 and μ4 deviated substantially from zero and three—particularly in the near field 

of the jet and far from the centreline. Internal intermittency, a major cause of non-Gaussian 

fluctuations, is associated with the presence of small-scale coherent structures such as vortex tubes 

[273]. Typically, these structures produce sub-Gaussian tails [268]; however, in the presence of a 

large mean gradient, the combined effects of advection and molecular diffusion can yield a scalar 

pdf with exponential tails [274–276]. Large scale structures that arise due to interaction with 

external features can also generate fat-tailed distributions. 

 Non-Gaussian behaviour of this kind is observed in high-frequency, high-precision point-

measurements. However, the target variable in gas-phase tomography is projected onto a finite 

basis, where each basis function effectively averages the flow. Fluctuations are correlated in space 

and time so the effect of projection on the distribution of fluctuations is not directly analogous to 

the central limit theorem—though it is directionally similar. For instance, the sum of perfectly 

correlated random variables will follow the same distribution as the variables, per se, while the 

sum of IID random variables will converge towards a normal distribution. Sums of correlated 

variables with finite variance will interpolate between these limiting conditions, depending on the 

correlation function and extent of averaging. Turbulent fluctuations have a pdf that is reasonably 

close to Gaussian, to begin with, and this averaging effect will diminish non-Gaussian features. 

 In summary, there are strong reasons to prefer the joint-normal form for prior pdfs in gas-

phase tomography: 
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1. Simple assumptions about the nature of turbulent variables suggest a Gaussian distribution 

of fluctuations, a priori; 

2. Experimental evidence confirms that scalar pdfs in jets tend towards a Gaussian 

distribution as the flow asymptotes towards its self-similar equilibrium; 

3. Non-Gaussianity predominantly features in the tails of scalar pdfs, and tail probabilities 

play a small role in the joint-estimation of a large number of spatial variables that span the 

entire flow field; 

4. Projection of the target variable onto a basis is akin to an averaging procedure that will 

diminish non-Gaussian aspects of a turbulent pdf; and 

5. Insofar as the precise distribution of fluctuations projected onto the basis is unknown, the 

normal distribution is an appropriate, high-entropy choice that reflects general knowledge 

about the variation of turbulent quantities and uncertainty about the true distribution. 

3.2 Estimating covariance structure in gas-phase tomography 
Gas-phase tomography is an ill-posed inverse problem that requires prior information to obtain 

accurate estimates of x at an acceptable spatial resolution, even if the linear system is fully-

determined. Bayesian CST incorporates additional knowledge about a process into reconstructions 

by way of a prior pdf. It has been argued here that passive scalars in a turbulent flow, projected 

onto a finite basis, roughly follow a joint-normal distribution about µ ϵ ℝn, where µ = E[x], with 

covariance Γx ϵ ℝn×n, where Γx = E[xxT]. As a result, πpr(x) should take the joint-normal form and, 

together, the arguments µ and Γx fully specify the prior. Basic covariance relationships can be 

derived from first principles; for instance, a smoothness prior, where Γx is obtained from the first-

order Tikhonov matrix, and total variation (TV) prior, which promotes smooth regions separated 

by sharp discontinuities. Advanced numerical simulations that mirror experimental conditions can 

also be used to produce a covariance matrix. But simple priors often lack the specificity needed to 

resolve salient flow features and simulation may require more detailed information about the target 

than is known. 

 Covariance estimation in CST consists in approximating Γx from time-resolved 

measurements, generating an estimate of µ in the process. Like instantaneous reconstruction, 

covariance estimation requires LOS data as well as with supplemental information in order to 

determine the mean vector and covariance matrix. Fortunately, the statistical nature of µ and Γx 

enables the use of constraints derived from the fluid mechanics literature: in particular, the self-
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preserving scale functions from Section 3.1.3 and Gaussian fluctuations from Section 3.1.5. 

Estimates of the mean and covariance are inferred from multiple measurements and subsequently 

used for instantaneous imaging. Covariance estimation produces a prior that is at once 

theoretically-motivated and specific to the flow conditions. Techniques for estimating µ and Γx 

depend on the nature of the information deficit (i.e., the rank of the tomography system) and class 

of fluid flow. This section presents two methods to estimate the covariance of a passive target, 

both viable in the limited-data context; and a general method for covariance estimation in full-rank 

CST, which can be applied to irregular flow structures. 

3.2.1 Limited-data covariance estimation 

Limited-data tomography is characterized by rank(A) < n such that an infinite set of vectors can 

minimize the forward model. It is always possible to introduce a coarse basis for which A is full-

rank (in the extreme case: a single pixel will always be full-rank) but this is a superficial solution 

because low-resolution images cannot represent features of interest in the flow and model error 

substantially corrupts coarse systems, regardless. At first glance, limited-data covariance 

estimation should pose a greater challenge than instantaneous reconstruction because Γx has n2 

parameters—by comparison the inference of x has n unknowns. One solution involves constructing 

an approximate covariance matrix from K estimates, for b(1), b(2), …, b(K), 

 ( ) ( )

1

[ ]
1 K

k k T

kK 

 x
Γ x x , (3.33) 

where x(k) is the kth reconstruction. However, some previous estimate of Γx is required to obtain 

x(k) and the covariance produced by Eq. (3.33) will reflect errors that stem from the initial prior.53 

Clearly, inferring Γx with an underdetermined operator is a hopeless task absent substantial 

information about the true covariance structure. 

 Many CST experiments feature a momentum-driven free-shear target (e.g., Refs. 

[103,106,127–129,141]). Section 3.1 provides theoretical and experimental evidence that members 

of this class of fluid flow progress towards a self-preserving equilibrium. Fully-preserving 

equilibria are marked by similarity in all moments of pdfs for the dynamic variables, which are 

interrelated. Moreover, it is possible to obtain a robust estimate of the mean distribution—i.e., the 

                                                 
53 This approach incorporates information from multiple measurements to reconstruct a single shot and seemingly 

could improve the quality of limited-data CST images. However, the covariance information used to reconstruct x(k)—

implicit or explicit—dominates the structure of the covariance estimate from Eq. (3.33). 
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first moment—by limited-data gas-phase tomography. Therefore, an estimate of the mean, µ ≈ x̅, 

can be combined with similarity relations to estimate Γx. This section describes two procedures to 

determine the spatial distribution of variance, v ϵ ℝn, where vj = var(xj), followed by a technique 

to determine Γx from v. 

3.2.1.1 Estimating variance in terms of scale functions 

Covariance estimation takes advantage of the stability of statistical properties in turbulent flow. 

For high-speed gas-phase tomography, this assumption is valid so long as changes to the inflow 

conditions and ambient environment occur at the integral timescale. The scale function approach 

to covariance estimation requires an additional assumption: the target must issue from a round (or 

small) nozzle into a quiescent medium. In this case, it is possible to parametrize the flow with the 

mean scale, h, to estimate the mean target distribution, µ. According to Eq. (3.9), the distribution 

of concentration can be represented as C(x)h(ξ). Neither C nor the precise size and position of the 

jet are known, but these parameters can be determined from LOS data by imposing a subspace 

restriction on the inference via h. 

 To begin, the mean scalar profile for a single jet or plume is expressed in terms of an arbitrary 

position and scale within the measurement plane. Equation (3.20) is re-written for a CST domain, 
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where (x, y) is a position in the domain, (x0, y0) is the axial centre of the flow, and L is the radial 

length scale. Next, ray-sums are computed using Eq. (3.34) as a basis, resulting in the operator 

A(x0, y0, L). Since reconstructions are linear, the average scalar distribution can be directly inferred 

from mean LOS data, 
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where K is the number of measurement shots. Parameters for the mean profile are found by non-

linear regression, 

  
0

2

0 0 0 0
,

2
, ,

( , , , ) arg min ( , , )
oC x y L

C x y L x y L C Ab . (3.36) 

It is not necessary to specify the spreading coefficient since β0 and L2 are perfectly convolved in 

this expression (i.e., the fraction β0/L
2 is sufficient for covariance estimation). Equation (3.36) 
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involves the inference of four parameters from time-averaged LOS data. For any practical 

measurement array, the inference will be overdetermined. Results from Eq. (3.36) are used to 

estimate the mean: μ ≈ Ch. 

 Ray-sums can be computed by high-order integration over Eq. (3.34), but this is a 

computationally-demanding procedure. An alternative approach is to precompute ray-sums for a 

finite basis, Φ(n), which yields the operator A(n). A discrete form of h, h(x0, y0, L) = {hj}, is 

calculated by projecting Eq. (3.34) onto Φ(n) 

 (, , )j j j jhh xh y  , (3.37) 

where (xj, yj) is the centre of mass of the jth basis function; the approximation holds for high-

resolution bases with compact support. Using Eq. (3.37) to obtain h, ray-sums across the mean 

scale function are computed by matrix-vector multiplication, A(n)h. Computing A(x0, y0, L) in this 

way is generally faster than the direct numerical approximation and results in minimal error, given 

a high-resolution basis. 

 Following estimation of the target’s axial centre and radial scale, the relationship between h 

and m in Eq. (3.26) is used to calculate the distribution of variance in the measurement plane. 

Similar to h, a discrete form of the variance scale function, m = {mj}, is populated with elements 

given by the scale function, 

     2 2

2 1 ex 2p expj j jm      , (3.38) 

where ξj
2 = [(xj – x0)

2 + (yj – y0)
2]·β0/L

2. If the measurement plane is well past the near field, β1 and 

β2 can be determined by regressing Eq. (3.26) to empirical variance data, as in Section 3.1.4 (i.e., 

β1 = 1.181, and β2 = 0.192). Otherwise, these coefficients are included in the regression to scale 

Γx, described below. Finally, the variance of the target is 

 2 Cv m , (3.39) 

where C′2 is an unknown scale. The variance scale vector, m, is valid for jets and plumes that have 

achieved similarity in the first two moments of the concentration pdf, which may occur in the near 

field in some instances. However, Eq. (3.39) does not require a universal spreading rate nor an 

analytical solution for the axial scale since C′2 is treated as an arbitrary parameter. As such, this 

procedure applies to all three similarity regimes proposed by George [243]. 



 

78 

 

 The procedure described thus far concerns a single jet or plume. Extending the technique to 

multiple sources is achieved by the principle of superposition. The scalar diffusion equation is 

linear so the mean and variance of a passive scalar may be approximated by a linear combination 

of scalar profiles [277]. The mean distribution of K sources is given by summation, 

  ( ) ( ) 2 ( ) 2

0 0

1

exp ( ) ( )
K

k k k

j j j

k

h x x y y


      , (3.40) 

where (x0
(k), y0

(k)) is the axial position of the kth source and β(k) is a convolved spreading 

parameter/radial scale. The variance scale function is extended in a similar way. The minimization 

based on Eq. (3.40) has 4K parameters, which would normally be smaller than the typical number 

of beams, even in limited-data CST. However, when the number of sources is unknown, 

hierarchical estimation of h and m becomes ill-posed because any single source is closely 

approximated by the sum of several sources and vice versa. As a result, the stability of a multi-

source regression is a strong function of the measurement arrangement, number of sources, and 

prior knowledge about the target. 

3.2.1.2 Estimating variance by assuming a proportional relationship 

Environmental applications of CST frequently feature emissions from a distributed area or 

unknown number of point sources. Profiles for any given source may be distorted by a crosswind. 

As a result, scale functions from the self-similarity analysis in the beginning of this chapter cannot 

be employed to estimate v. However, it remains possible to estimate the variance with a simple 

model of the flow field. 

 The model assumes the second moment of the scalar pdf will be a function of the square of 

the first moment. Regions of high concentration deviate the most from ambient conditions and 

must be maintained by some momentum- or buoyancy-driven source, upstream from the 

measurement plane, resulting in a relatively large mass flux. By contrast, regions of low 

concentration are nearer to the entrainment zone and feature lower-magnitude velocity 

fluctuations. Gradients of the mean and rms velocity fields feature in the scalar variance production 

term. High scalar variance should therefore track regions of high concentration. Equation (3.25) 

suggests that this relationship will take the form vj ∝ β + (β/2 – x̅j)
2, where the parameter β has a 

complex relationship to the source of the target. Absent detailed information about the inflow 

conditions and velocity field, a simple assumption is suggested: β = max(x̅j
2) and 
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  2 2max ( / 2 ) , / 8   C   xv . (3.41) 

The minimum value of β/8 is selected to prevent non-physical (i.e., negative) values of v and to 

account for uncertainty about the precise edge of the flow. 

 Equation (3.41) requires an estimate of the mean distribution, x̅, which can be reconstructed 

from time-averaged data, b̅, and a smoothness prior. The initial structure of Γx is thus determined 

by Eq. (2.35); x̅ is the MAP estimate, based on b̅ and calculated with Eq. (2.38); μ ≈ x̅; and v is 

found with Eq. (3.41). 

3.2.1.3 Completing an estimate of the covariance matrix 

Estimates of v computed with Eq. (3.39) or (3.41) include a constant of proportionality, C′2, which 

remains to be determined, and the variance does not itself account for the flow’s correlation 

structure. The correlation matrix implicit in a Tikhonov prior exhibits full field covariance, where 

variables are substantially correlated with each other variable. This behaviour is not representative 

of autocorrelation functions observed in fluid flows. Instead, Vecherin et al. [278] suggest the use 

of a square-exponential autocorrelation matrix, Γsq, 
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where dij is the physical distance between the centre of mass of the functions ϕi and ϕj and b̂ is a 

correlation length: b̂ = b/[–ln(c)]1/2, where c ϵ (0, 1) is the correlation between fluctuations 

separated by the physical distance, b. 

 The variance is divided into a diagonal standard deviation matrix, S, with elements sjj = vj
1/2/C′. 

Correspondingly, Γx ∝ SΓsqS
T, where C′2 is the unknown constant of proportionality. This constant 

should be selected to ensure that the measurement variance implied by C′2SΓsqS
T matches the 

observed variance, Γb = E[bbT] – b̅b̅T. A relationship between the measured and modelled 

covariance is inferred from the relationship E[bbT] ≈ E[(Ax)(Ax)T] = A(μμT + Γx)AT. The trace 

operator is employed to match the total variance of these quantities, which results in a final 

estimate of the covariance of x, 
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Both limited-data techniques require an estimate of µ to estimate the covariance matrix. Together, 

µ and Γx complete the prior pdf. While this procedure is designed for limited-data tomography—

as limited-data experiments are more likely to feature self-similar targets—it can also be employed 

in the full-rank context. 

3.2.2 Full-rank covariance estimation 

Full-rank gas-phase tomography involves a dense measurement array and basis arranged such that 

rank(A) = n. The measurement operator must be overdetermined because the ray-sums include 

multiple overlapping components by construction: i.e., a large number of similar paths is required 

to obtain a linearly-independent combination of functions near the centre of the measurement 

plane. The overdetermined system and unstable inverse smoothing kernel of a full-rank system 

yield an ill-conditioned operator. Measurement noise and model error cannot be avoided; 

reconstructions obtained by direct pseudoinversion are therefore corrupted by non-physical 

artifacts. Bayesian inference diminishes this effect and improves the accuracy of CST images by 

incorporating a priori information about the flow field into the reconstruction procedure. The 

previous section describes a technique to estimate µ and Γx if the target is a passive scalar and 

transport is governed by advection and diffusion. Full-rank CST systems are often used to image 

turbulent flames (e.g., Refs. [186,187,191,192,202–206]), which violate the assumptions made in 

Section 3.2.1. Tomography of a complex process with a dense measurement array thus calls for a 

unique approach to covariance estimation. 

 Covariance estimates are predicated on the stability of flow field statistics. Ideally, absent 

measurement noise and model error, when rank(A) = n, the covariance matrix can be expressed in 

terms of the mean data, b̅, and measurement covariance, Γb, 
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Unfortunately, Eq. (3.44) is prone to the same sources of error as xLS = A#b; only more so because 

the pseudoinverse is squared. Close inspection of Γb explicates the effects of discretization error 

and noise on direct covariance estimation, which can be counteracted. 

 Conceptually, the data is decomposed in terms of exact and error components, 

 exact disc noise  b b e e , (3.45) 
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where bexact is the product of A and xexact, itself the projection of x onto Φ; edisc is the discretization 

error, i.e., the difference between a hypothetical noise-free measurement and bexact; and enoise is the 

measurement noise. Regularization adds information that improves the direct inversion, pushing 

solutions from A#b towards A#bexact; meanwhile, reconstruction errors derive from A#(edisc + enoise). 

While the vectors edisc and enoise are unobservable, a large set of measurement data can be used to 

infer average properties of edisc and enoise. Information about these vectors can be used, in turn, to 

augment Eq. (3.44) and stabilize the direct estimation of Γx. 

 For a stationary process, the observed measurement covariance will asymptote towards the 

true value. That is, given a sufficiently long interval, noise has a minimal effect on estimates of Γb 

≈ Σk(b
(k)[b(k)]T)/K – b̅b̅T. The number of measurements required for adequate convergence depends 

on the intensity of noise, variance of the process, and discretization scheme. The expected outer 

product, E[bbT], can be broken up into its constituent parts per Eq. (3.45), 
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The interaction between the idealized data, bexact, and the discretization error, edisc, is denoted Eint. 

For centred, IID noise, Eq. (3.46) simplifies further, 

 
ex disc noise int[ ]T TE    bb Γbb EΓ Γ . (3.47) 

 Under noise-free conditions, the spatial and measurement covariance are related by the 

expression Γx = A#Γex(A
#)T. In reality, noise corrupts estimates of Γex due to the ill-conditioned 

operators. However, provided that Γb has converged, suitable models of Γdisc, Γnoise, and Eint can 

be devised to better approximate Γex. Using this approach, estimates of Γx are found by 

 # #

disc noise int( )( )T  x bΓ A Γ Γ Γ AE . (3.48) 

Measuring the covariance of electronic noise from a data acquisition device is straightforward. 

Recording data for an empty domain (for absorption CST) or steady phantom (for emission CST) 

yields a measurement covariance matrix that approximates Γnoise, which is typically much smaller 

than Γb for an active process. Far more important, however, are the covariance matrix that 

characterizes discretization error, Γdisc, and Eint, the expected interaction between bexact and edisc. 
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 Approximation errors and model reduction are used to estimate Γdisc and Eint [279]. Similar to 

the “proportional variance” procedure in Section 3.2.1.2, the first step involves reconstruction of 

a large set of estimates using a smoothness prior and non-negativity constraint. The resulting 

population of estimates is X = {x(k)} for k = 1, …, K. These reconstructions feature artifacts, either 

due to noise or over-smoothing, and do not capture the flow field statistics with a high degree of 

precision. However, even rough approximation errors can stabilize the inference [240]. Next, 

spline interpolation is used to project X onto a high-resolution basis; the projected population is 

called X̃ (with realizations x̃
(k)). The quasi-continuous operator, Ã, returns ray-sums across x̃

(k) by 

high-order interpolation. For ymeas = Ã(x̃
(k)) and yexact = Ax(k), discretization error vectors and the 

corresponding covariance are estimated using eappx = ymeas – yexact and 

 2 appx

disc

appx[ ( ) ]TE dΓ e e , (3.49) 

where d is a constant that scales the discretization errors. Likewise, the interaction matrix is 

roughly given by 

 exact

t

ppx

in

a([ ) ] TE dE y e , (3.50) 

where d is the same constant. Error vectors in Eqs. (3.49) and (3.50) have been centred. 

 The structure of Γdisc and Eint, computed using Eqs. (3.49) and (3.50), should tend towards 

that of the true discretization error and its expected interaction with bexact. However, the constant 

d is not known. As with the limited-data technique, a suitable scale for the parameter is identified 

using observed variance and covariance data, 
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Finally, an estimate of Γx is produced by first using Eq. (3.51) to solve for d and then substituting 

the products of Eqs. (3.49) and (3.50) into Eq. (3.48). However, the correlation structure of this 

estimate is less robust than the variance so the structure of Γsq is employed, instead. This procedure 

allows CST practitioners to exploit the covariance data present in a large set of measurements to 

improve instantaneous reconstructions. 
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3.3 Numerical validation of covariance estimation 

3.3.1 Measurement arrays 

Two beam arrangements and bases were devised to represent limited-data and full-rank CST 

experiments, typical of those found in the literature. The limited-data arrangement is depicted in 

Figure 3.5a, with four projections of six paths, rotated by 45° increments, and a beam spacing of 

1/8th the domain width. This setup was designed to resemble an emitter-detector pair for 

absorption CST, such as those of Wright et al. [133] or An et al. [125]. The full-rank arrangement 

in Figure 3.5b simulated a row of pixels from a semicircle of CCD arrays, as in Upton et al. [280] 

or Lv et al. [217]. Thirty cameras were spaced 8.3° apart, collecting light from a 12° fan, resolved 

into 45 paths per camera. 

 Square-pixel bases were employed to represent both estimates. The coarse basis, Φ(a), 

comprised a 400 pixel grid; the fine basis, Φ(b), had 900 pixels. The latter can alternatively 

represent a 2D plane or slice of voxels from a quasi-3D (or 2.5D) experiment. Operators 

correspond to a beam arrangement and basis, indicated in the superscript in that order: e.g., A(1a) 

is the operator for the limited-data arrangement with support Φ(a). The rank of each operator was 

numerically verified: rank(A(1a)) = rank(A(1b)) = 24, rank(A(2a)) = 400, and rank(A(2b)) = 900, 

confirming that operators for the dense array spanned both bases. 

 Ground truth measurements were calculated by high-order interpolation of vertex data from a 

LES and IID noise was added to generate b. Noise vectors were drawn from a normal distribution 

with zero mean and a standard deviation equal to 1% of max(b̅) (in effect, a conservative 

approximation to Poisson noise). Ground truth vectors were obtained by projecting vertex data 

from a LES onto the appropriate basis at each timestep. 

a)  b)  

Figure 3.5: Beam arrangement schematics: a) 24-projection limited-data arrangement and b) two 
projections from a full-rank arrangement with array geometry shown, where α is the angular 
projection width and β is the angular spacing between projections. 
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3.3.2 Round free-shear turbulent jet 

The first set of phantom data was obtained from a LES of a free-shear momentum-driven jet of 

CH4 flowing into a reservoir of quiescent N2. The simulation was conducted for this thesis with 

Fire Dynamics Simulator (FDS) [281] using the domain pictured in Figure 3.6a. The domain was 

a 6 m rectangular prism with a 1.5 m square base at standard pressure and temperature. CH4 entered 

the domain through a 0.2 m circular port at the centre of the base with an inlet Reynolds number 

of 3,000. The computational grid comprised 4 million cubic voxels, with open surfaces applied to 

the boundaries; the Dynamic Smagorinsky approach was used to model subgrid-scale diffusion. 

Concentration data at the voxel vertices in a measurement plane, located 1 m upstream from the 

entrance, was reported at 0.01 s intervals. Thirty seconds of data was collected (i.e, 3,000 shots), 

beginning at 3.75 s in physical time, at which point the jet was fully-developed in the measurement 

plane. 

 Numerous simulations were conducted to ensure that integral-scale features in the jet 

phantoms were emblematic of turbulent jet structures. Grids of increasing resolution were tested, 

with inner diameter-to-grid width ratios of ID/Δx = 5, 10, 15, and 20. Distributions of CH4 were 

projected onto Φ(a) and Φ(b) to verify that the jet statistics were constant in the tomography domain. 

An analysis of the power spectra of concentration fluctuations revealed the expected -5/3 decay 

slope, showing that fluctuations were resolved well into the inertial subrange, below the resolution 

of the tomography bases. Finally, comparisons were made to the experimental measurements of 

Birch et al. [265]. The centreline and axial decay of mean and fluctuating components of CH4 in 

the LES were in good agreement with the trends reported in Ref. [265]. 

a)  b)  

Figure 3.6: Computational domains to generate phantoms for CST by LES: a) FDS domain for an 
axisymmetric momentum-driven jet and b) OpenFOAM® domain for a Delft jet-in-hot coflow flame. 
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3.3.3 Delft jet-in-hot-coflow flame 

The second phantom set represented a turbulent flame target, with reaction rate distributions from 

the LES of Labahn and Devaud [282]. The simulation used conditional source-term estimation of 

a Delft jet-in-hot coflow flame, benchmarked against experimental data from Oldenhof et al. [283]. 

The computational domain, shown in Figure 3.6b, was a 0.225 m tall cylinder with a 0.08 m radius. 

Inlet conditions were derived from experimental mean velocity and temperature conditions with a 

no slip boundary applied to the cylinder wall. The grid consisted of 1.5 million non-uniform cells, 

concentrated around the centreline—near the nozzle, in particular—resulting in a filter width 

below the Kolmogorov length scale. Turbulent features in the measurement plane were judged to 

be well-resolved. Vertex data of the methane reaction rate (a proxy for the intensity source term) 

was reported at 284 timesteps. 

3.3.4 Test matrix 

Four tests were devised to assess the limited-data and full-rank covariance estimation techniques. 

The first two tests resembled a limited-data CST study of jet behaviour. Test 1 used phantoms from 

the CH4 jet, measured with the limited-data beam arrangement. CH4 distributions were projected 

onto Φ(a) to establish ground truth vectors and reconstructions were computed with A(1a). In this 

test, a non-negativity prior was employed to compare the limited-data covariance estimation 

technique to best-practice Tikhonov reconstruction [88]. Due to the large dimension of x, 

computation time for the constrained least squares algorithm exceeded the typical duration of a 

CST measurement interval, preventing real-time applications. Test 2 duplicated the conditions of 

Test 1, only excluding the non-negativity prior such that reconstructions could be quickly 

computed, in sync with the measurements. 

 Two further tests were devised to evaluate the full-rank technique for covariance estimation. 

Test 3 considered phantoms from the CH4 jet, measured with the full-rank array (similar to the 

full-rank jet study of Wang et al. [128]). Covariance data was estimated for experiments of 

increasing duration, lasting 0.1, 2.5, and 30 s, to test the hypothesis that converged measurement 

statistics enable full-rank covariance estimation. Plots of Γdisc and Eint and successive estimates of 

Γx were generated using Φ(a) to illustrate key trends (corresponding matrix plots for Φ(b) were too 

dense to visually distinguish the salient features). Next, the full-rank procedure from Section 3.2.2 

was conducted in full with A(2b). Finally, Test 4 simulated emission tomography to demonstrate 

the utility of covariance estimation for a complex process. The test was carried out with CH4 
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reaction rate phantoms from the flame LES and measured with the full-rank array; reconstructions 

were computed with Φ(b). Since the number of snapshots in the flame LES was limited, noise was 

added to the true Γnoise and Eint matrices, based on the quality of those estimates in Test 3, to 

approximate the estimates that could be obtained in a long experiment. Corrupted matrices were 

used to calculate Γx via Eq. (3.48) and reconstructions were carried out with A(2b). In addition to 

the covariance estimate and smoothing priors, Tests 3 and 4 featured reconstructions for an IID (or 

uniform) prior. The uniform prior illustrated the amplification of noise and model error by 

pseudoinversion of a full-rank operator. 

3.3.5 Error metrics for numerical studies of gas-phase tomography 

The standard measure of accuracy in gas-phase tomography is the normalized Euclidean distance 

between the ground truth and reconstructed images, 
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where x and y correspond to xexact and xMAP, respectively. However, the utility of distance metrics 

is considerably reduced with increasing dimension. In particular, the Euclidean distance of out-of-

flow artifacts diminishes relative to the magnitude of xexact with additional parameters. This is a 

classic problem in computer vision and other fields that model large data sets (e.g., deep learning). 

Numerous alternative metrics have been developed to address this concern. 

 One such alternative is the SSIM index. This measure was designed to reflect apparent 

changes in image quality by emphasizing differences in the structural information of a scene. The 

index compares the variance and covariance of windows in an image, 
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where x and y are xexact and xMAP, interchangeably (as the SSIM index is symmetrical). In 

Eq. (3.53), μx is the mean of x, μy is the mean of y, σx
2 is the variance of x, σy

2 is the variance of y, 

and σxy
2 is the covariance of x and y. The constants, c1 = (k1L)2 and c2 = (k2L)2, stabilize the 

denominator, where L = 2b – 1 is range([x; y]) and b is the number of bits per element. Typically, 

k1 = 0.01 and k2 = 0.03 [284]. The SSIM index was designed to be sensitive to apparent structural 

differences between high-dimensional vectors, including low-contrast features, which makes the 

metric well-suited to fluid applications. The index has also been shown to track perceptive 
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similarity [285]. Note that e ϵ [0, ∞), where smaller scores are better, and SSIM ϵ [0, 1], where 

higher scores are better. 

3.4 Results and discussion 

3.4.1 Limited-data covariance estimation 

Covariance estimation for Tests 1 and 2 began with a minimization of the residual between ray-

sums over the scaled similarity profile, C′·h(x, y; β0/L
2), and the time-averaged data, b̅. This was 

accomplished by minimizing Eq. (3.36) for a small set of measurements. Figure 3.7 shows the 

mean data residual, ||b̅(k + 1) – b̅(k)||2, where b̅(k) is the average data from the first shot to the kth shot. 

Also depicted is the spreading parameter from the regression, β0/L
2. This figure illustrates that 

convergence of the residual is a proxy for convergence of the regression, as expected. Covariance 

estimation is performed once b̅ has stabilized.54 The spreading parameter in Figure 3.7 and 

empirical constants from Section 3.1.4—β0 and β1 and β2, respectively—were used to compute the 

scalar variance profile, m. Next, Eq. (3.43) was employed to estimate Γx. Finally, estimates in Test 

1 were computed with MATLAB’s lsqnonneg function and estimates in Test 2 were computed by 

simple matrix-vector multiplication. 

 Convergence of the mean data residual is a function of the variance of the jet and number and 

position of measurements. The scale function parameters stabilized after 0.5 s of physical time. 

Reconstructions were carried out in MATLAB, run on an Intel® Core™ i7-4600U CPU at 2.10 

GHz. The net estimation time was 3.29 s, including the duration of physical measurement (from 

                                                 
54 The procedure may be repeated to update μ and Γx if drift is observed in the mean measurement. 

 
Figure 3.7: Running residual of the average data and the radius used to scale h. The estimate 
converged after 0.5 s of physical time. 
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the LES) and the time required to compute μ, Γx, and Lx. Mean reconstruction times for the 

different priors were comparable in all cases. Test 1 reconstructions took 2.75 s using the 

covariance estimate and 2.76 s using the smoothness prior. Test 2 reconstructions took 3.25⋅10-4 s 

using the covariance estimate and 1.71⋅10-4 s using the smoothness prior. Computation times for 

Test 2 fell well within the interval required to resolve integral-scale features of interest. As such, 

statistics from the Test 2 results reflect accuracies that can be achieved in real-time limited-data 

CST (which may be used for online feedback and control purposes). 

 

Table 3.1: Euclidean Distance and SSIM Distributions for Tests 1 and 2 

Prior 

Test 1 Test 2 

Euclidean SSIM Euclidean SSIM 

Mean Dev. Mean Dev. Mean Dev. Mean Dev. 

Cov. Est. 0.181 0.033 0.842 0.041 0.182 0.034 0.832 0.048 

Tikhonov 0.232 0.043 0.643 0.367 0.367 0.063 0.375 0.055 

 

 Figure 3.8 and Figure 3.9 show representative images from the non-negative and real-time 

limited-data tests, respectively, and Table 3.1 lists the reconstruction accuracy statistics. 

Tomographic images based on the self-similarity prior captured considerably more detail than 

Tikhonov reconstructions in both tests, which is readily apparent in the figures. Both error metrics 

reflect this difference, though the SSIM index showed greater sensitivity than the normalized 

Euclidean distance. Tikhonov images lacked the inner-jet structure apparent in covariance estimate 

 
Figure 3.8: Representative estimates from Test 1, reconstructions with a covariance estimate 
captured jet structures better than Tikhonov estimates. 
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images; and out-of-jet artifacts in the Tikhonov results overstate the flow area. The quality of 

reconstructions obtained with a data-based estimate of Γx is particularly noteworthy considering 

the extremely-limited measurement information. Only 24 lines-of-sight were used to specify the 

prior and estimate instantaneous distributions of CH4. Estimating Γx under these conditions was 

made possible by the subspace restriction used to calculate x̅ and the relationship between the first 

two moments of the jet’s CH4 concentration pdf. 

 Results from the limited-data tests illustrate the utility of the Bayesian framework. 

Reconstruction accuracy improved as the prior covariance was brought in line with the true jet 

statistics, using a procedure made possible by fluid mechanics theory. This finding held true with 

and without a non-negativity prior. Moreover, estimating Γx considerably reduced the penalty of 

removing the non-negativity prior, improving the quality of reconstruction under realistic on-line 

imaging conditions. 

3.4.2 Full-rank covariance estimation 

Full-rank tests began with approximation of the model error covariance and interaction terms. 

First, the population of reconstructions, X, was obtained for the full set of measurements using 

smoothing and non-negativity priors. Reconstructions were then projected onto a high-fidelity 

mesh of vertices by spline interpolation, resulting in a quasi-ground truth population, X̃. 

Differences between modeled measurements for the coarse grid, yexact = Ax(k), and relatively 

continuous grid, ymeas = Ã(x̃
(k)), were used to estimate Γdisc and Eint via Eqs. (3.49) and (3.50). 

 
Figure 3.9: Representative estimates from Test 2; as with Test 1, the use of a covariance estimate 
improved the accuracy of reconstructions. Computation times for Test 2 were well within 100 Hz, 
sufficient for real-time applications. 
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 Figure 3.10 shows diagonal terms of the ground truth and approximate covariance matrix, 

Γdisc, and interaction matrix, Eint. Key features of the true bulk structure were effectively recovered 

by the interpolation procedure. Peaks in Γdisc represent pixels in which substantial fluctuations are 

distorted by the basis and peaks in Eint connect this distortion to variation in the continuous 

measurement operator. Together, these matrices relate fluctuations in the data to expected 

reconstruction errors due to the discretization scheme. Γdisc and Eint were used to inform an 

estimate of Γx via Eq. (3.48). The accuracy of Γx is related to the stability of Γb; estimates of Γb 

for a stationary progress towards the expected value as the measurement interval increases. Given 

a converged measurement covariance and suitable models of Γdisc and Eint, Eq. (3.48) should 

produce viable estimates of Γx.55 

 Covariance estimates were computed for numerical tests of increasing duration. Figure 3.12 

illustrates the effect of test duration on the accuracy of Γx. The results show a clear trend: continued 

measurement stabilized the inversion in Eq. (3.48) and improved the accuracy of covariance 

estimates. Noise has a persistent effect, however, and the approximation error procedure is 

imperfect. As a result, minor inaccuracies persist in the covariance estimate, regardless of the test 

duration (these inaccuracies can be seen in Figure 3.12c). Nevertheless, the final estimate of Γx 

closely matched ground truth statistics of the flow field, showing that it is possible to recover the 

spatial covariance matrix from LOS data in a long experiment with a full-rank system. 

                                                 
55 Note that reconstruction artifacts were present in both X and its projections, X̃, affecting estimates of Γdisc and Eint. 

However, these effects were secondary compared to the benefits of capturing the general structure of such errors and 

their interaction with the discretization scheme [279]. 

a)  b)  

Figure 3.10: Approximating model error: a) diagonal of exact and estimated Γdisc matrices and b) 
diagonal of exact and estimated Eint matrices. Models captured the salient bulk structure (location 
of peaks), with a normalized Euclidean distance error of 0.35 and 0.36 for Γdisc and Eint. 
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 Practitioners can monitor the difference between Γb
(k + 1) and Γb

(k) in real time to ensure that 

the measurement covariance has converged. The utility of Γb relates to the condition number of A, 

which is a function of the measurement array and basis. Ideally, the experiment should continue 

until σb1
–1/2 is less than the condition number of A, where σb1 is the first singular value of the 

residual matrix, Γb
(k + 1) – Γb

(k). (The inverse square of the condition number is a good tolerance 

since Eq. (3.48) features left- and right-multiplication by A#.) 

 Images from Tests 3 and 4 are shown in Figure 3.12 and Figure 3.11 and Table 3.2 gives 

statistics for the reconstruction errors. Images obtained using the full-rank covariance estimate 

 
Figure 3.11: Representative estimates from Test 3; the use of a covariance estimate produced the 
best results while the smoothing prior blurred features about the jet’s edge. Pseudoinversion of the 
full rank operator amplified noise. 

a)  b)  c)  

Figure 3.12: Covariance estimates for experiments of increasing duration, lasting a) 0.1 s, b) 2.5 s, 
and c) 30 s. Accuracy improved with additional data, with a normalized Euclidean distance error of 
1.20, 0.66, and 0.21 for (a), (b), and (c), respectively. 
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outperformed the smoothing prior Tests 3 and 4; moreover, both of these priors outperformed the 

uniform prior. Artifacts due to Tikhonov regularization were qualitatively-similar in the limited-

data and full-rank simulations. Tikhonov errors are marked by over-smoothing of internal 

structures and over-estimation of the target boundary, which reflects the full-field covariance 

implicit in the Tikhonov matrix. By contrast, reconstructions informed by an estimate of Γx 

captured accurate detail throughout the flow, especially at the periphery. 

 

Table 3.2: Euclidean Distance and SSIM Distributions for Tests 3 and 4 

Prior 

Test 3 Test 4 

Euclidean SSIM Euclidean SSIM 

Mean Dev. Mean Dev. Mean Dev. Mean Dev. 

Cov. Est. 0.167 0.051 0.842 0.040 0.300 0.064 0.614 0.058 

Tikhonov 0.173 0.043 0.657 0.056 0.433 0.085 0.284 0.039 

Uniform 0.743 0.152 0.230 0.056 0.742 0.102 0.195 0.027 

 

 Results from the final test reinforce the findings of the limited-data tests. Accurate covariance 

information improves the quality of reconstructions, especially in the case of a complex process. 

Differential performance of the covariance estimate and Tikhonov priors was more pronounced 

with increasing complexity of the flow field. This trend is due to the full-field covariance implicit 

 
Figure 3.13: Representative estimates from Test 4; results were similar to Test3: the covariance 
estimate gave the best reconstructions, Tikhonov estimates were over-smoothed, and uniform 
estimates generally failed to resolve the flame front. 
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in the Tikhonov matrix, which was less compatible with sharp discontinuities in the flame front 

phantoms than with the smooth jet structures. (Neither flow is well-modelled by a full-field 

covariance, however.) Taken together, results from the jet and flame studies suggest that 

covariance data from the measurements should be incorporated into CST reconstructions. 

3.4.3 Comparing accuracy metrics for a CST study 

The normalized Euclidean distance between image vectors is the standard measure of error in CST. 

Distance metrics diminish the impact of structural perturbations that may be of interest to CST 

practitioners. The SSIM index is an alternative to the Euclidean distance, which remaps errors to 

emphasize structural differences between images, even in low-contrast regions. Errors in CST 

include low-contrast blurring of internal flow structures and poorly-resolved flow boundaries, 

readily apparent in the reconstructions in Figure 3.8, Figure 3.9, Figure 3.11, and Figure 3.13. It 

was hypothesized that the SSIM index could better identify such errors than the normalized 

Euclidean distance. 

a)  b)  

Figure 3.14: Histograms of a) Euclidean distances and b) SSIM indices for Test 3 reconstructions. 

a)  b)  

Figure 3.15: Histograms of a) Euclidean distances and b) SSIM indices for Test 2 reconstructions. 
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 Table 3.1 and Table 3.2 show significant differences between the mean SSIM indices for 

covariance estimate and Tikhonov-based reconstructions in all four tests. These results agree with 

the qualitative differences apparent in the reconstructions. The same pattern held for Euclidean 

distances in the full-rank tests, though Euclidean distance scores for the covariance estimate and 

Tikhonov reconstructions were considerably more similar in Tests 1 and 3. Histograms of the 

normalized Euclidean distance and SSIM index for Test 2 are shown in Figure 3.15; Figure 3.14 

shows the same histograms for Test 3. These plots illustrate the ability of the SSIM index to 

discriminate structural differences that are clearly visible in the reconstructions. 

 The utility of an error metric in CST depends on the objective of an experiment. However, it 

is generally desirable for quality metrics to be sensitive to common forms of error. The normalized 

Euclidean distance becomes less useful with increasing resolution and clearly neglects important 

errors in CST reconstructions. Moreover, these errors are clearly captured by the SSIM index, as 

evidenced by the qualitative reconstruction quality and spread of SSIM indices. It is therefore 

suggested that the SSIM index is often a preferable measure of accuracy in the CST context, 

relative to the normalized Euclidean distance. 

3.5 Conclusions 
A large portion of CST experiments feature turbulent jets and flames. Turbulence is often 

characterized by unstable fluctuations and stable statistical properties. The statistical regularities 

of turbulent flows can be useful in the context of Bayesian gas-phase tomography, which requires 

a prior pdf to quantify assumptions about the target. Ideally, given full knowledge about a flow’s 

boundary and initial conditions, the prior pdf should assume the form of turbulent fluctuations. As 

such, estimates of the distribution of fluctuations in a flow can be used to construct a prior that 

will improve the accuracy of Bayesian reconstructions. This chapter began with an overview of 

self-similarity in turbulent jets, which is a classic finding of research on turbulence. An extended 

argument was presented in support of the assumption that fluctuations, projected onto the basis, 

will follow a joint-normal distribution. Together, these results were used to develop procedures 

for estimating the covariance matrix of a target in limited-data and full-rank scenarios. Four 

numerical tests were conducted to verify the performance of reconstructions based on these 

procedures. 

 Self-preserving jets feature pdfs that have a consistent structure, which stretches out as the 

flow evolves. The scale profiles derived in Section 3.1.3 enable CST practitioners to image the 
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variance of scalar fluctuations via LOS data. First, a regression is performed to locate the position 

and scale of the mean distribution of concentration. Next, the relationship between the first two 

moments of the scalar pdf are leveraged to estimate the target variance. This structure is combined 

with a square-exponential autocorrelation function to complete an estimate of the covariance 

matrix, which is finally scaled using the measurement covariance. An extension of this method is 

proposed for multiple sources and an alternative approach is developed for an arbitrary first 

moment. Two limited-data tests were conducted to verify the covariance estimation procedure 

based on self-similar scale functions. Reconstructions were compared to Tikhonov estimates (i.e., 

a smoothness prior) with and without a non-negativity constraint. Images reconstructed with a self-

similarity covariance estimate were more accurate than Tikhonov reconstructions in both tests. 

Moreover, improvements were especially pronounced absent the non-negativity prior, which 

resembles real-time imaging conditions. 

 Covariance estimation for a gas jet or plume based on scale functions can be conducted 

regardless of the rank of the tomography system. However, CST experiments commonly target 

turbulent flames, which exhibit sharp discontinuities at the flame front and are not amenable to a 

similarity analysis. These experiments typically feature a dense measurement array, resulting in a 

full-rank system. Reconstructions obtained by direct inversion of a full-rank operator are corrupted 

by noise so prior information is still required and covariance estimation can be used to improve 

the prior. Therefore, a method was developed using approximation errors to stabilize direct 

estimation of the target covariance. As with the limited-data case, numerical tests were conducted 

to verify the algorithm’s performance. LES phantoms of a turbulent jet and flame were measured 

using a dense array and reconstructions were performed with a covariance estimate, Tikhonov 

matrix, and uniform prior. Images computed with the covariance estimate were superior in both 

tests. Moreover, differences between the accuracy of jet and flame reconstructions showed that the 

utility of accurate covariance data increased with the complexity of the target. 

 Finally, the standard error metric in CST (the normalized Euclidean distance) was compared 

to the structural similarity index. Distance metrics are known to become less useful as the 

dimension of vectors is increased. By contrast the SSIM index remaps the classic CST error to 

emphasize structural differences between the ground truth and reconstructed vectors. Both metrics 

verified the superior performance of reconstructions based on a covariance estimate. However, the 
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SSIM index was shown to better distinguish the visual quality of CST images than did the 

normalized Euclidean distance. 
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Chapter Four  
Statistically-Optimal Gas-Phase Tomography 

Reconstruction accuracy in gas-phase tomography depends on the arrangement of optical paths in 

the probe volume, magnitude of model error, and validity of the prior information associated with 

the inverse algorithm. Each of these elements interacts with the discretization scheme in a complex 

manner. The freedom to adjust the measurement operator, beam arrangement, finite basis, and 

prior pdf in CST results in a large design space, featuring numerous convoluted trade-offs. 

Previous research on the design of measurement systems for gas-phase tomography has applied 

classical objective functions to choose between candidate beam arrays; and studies that compare 

discretization schemes have been observational in nature. Bayesian updating is an approach to 

inverse analysis that can be used to re-interpret classical design-of-experiment (DOE) techniques, 

taking account of parameter uncertainty and including prior information. This chapter first 

demonstrates how the statistical approach to tomography improves objective functions for 

experimental design by incorporating information about the reconstruction algorithm and target 

distribution into the function. In the second section, a rigorous mathematical framework is 

developed from Bayes’ equation to compare alternative bases for reconstruction. 

 Research on experimental design in industrial tomography is driven by advances in opto-

electronic components, which have made it possible to instrument fluid enclosures with a flexible 

arrangement of measurement paths at a low cost. For instance, Carey et al. [130] multiplexed 

modulated diode lasers; shone the light through a piston along 28 paths using fiber optic cables 

and micro-optic lenses, embedded in the chamber wall; and recovered the absorption signals with 

lock-in detectors. The number of paths through such a domain is restricted by the need to preserve 
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the piston’s structural integrity and heat transfer properties but the precise arrangement of beams 

is relatively unconstrained. Salem et al. [174], Terzija et al. [89], and Stritzke et al. [149] provide 

further examples of limited-data CST experiments: on a packed bed adsorber, lab-scale plume, and 

exhaust system, respectively. Motivated by this work, considerable attention has focused on the 

mathematics of optimal experiments in limited-data CST. Reconstruction with a rank-deficient 

operator is a strong function of the regularization scheme and previous approaches to choosing the 

beam array neglected the crucial role of a prior information. The first section of this chapter 

reviews the existing literature on DOE in CST and presents a Bayesian algorithm to optimize the 

position of optical paths in limited-data tomography. Structural relationships between the 

deterministic and Bayesian objective functions are noted and numerical tests are presented to 

verify the superior performance of the Bayesian algorithm. 

 Some initial discretization scheme, or set of candidate discretizations, is required to optimize 

the measurement array for CST imaging. Upon the selection of an arrangement and completion of 

an experiment, however, the discretization basis is free to vary. The ideal basis to represent a gas-

phase flow field depends on the scale of structures in the gas and density of measurement paths. 

These aspects of an experiment are not known with perfect precision prior to measurement and 

may deviate from prior expectations in actuality. For this reason, the optimal basis for an 

experiment can depart from the initial choice. Ideally, data from the experiment could be combined 

with prior information about the flow field to select an appropriate basis to estimate the target 

distribution during reconstruction. However, no general method has been proposed to establish the 

relative utility of discretization schemes for a set of measurement vectors in limited-data CST. 

 Reconstruction accuracy is also sensitive to the discretization scheme in full-rank 

experiments. Full-rank systems are necessarily overdetermined due to their large number of 

collinear ray-sums, which are required to obtain unique information about internal basis functions. 

Dense arrays are implemented by placing multiple cameras around the flow field, e.g., the 24-

camera setup of Mohri et al. [218], or directing laser light through a domain with scanning optics 

and mirrors, described in detail by Tsekenis and Polydorides [286]. The relative position of optical 

paths in a full-rank CST system is not easily modified, but the condition of the measurement 

operator can be changed by adjusting the grid resolution. Previous studies examined the 

relationship between the discretization scheme, number of views, and accuracy, by comparing 

experimental reconstructions [218]. However, the space of possible bases and views is infinite and 
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most CST practitioners employ heuristic methods to discretize the probe volume. Therefore, as 

with limited-data CST, a mathematically-rigorous approach to discretization in full-rank CST is 

desired in order to navigate the trade-offs between resolution and accuracy in the context of 

posterior uncertainty. 

 The second section of this chapter addresses the need to quantify the utility of finite bases in 

limited-data and full-rank CST. Together, the discretization scheme, measurement operator, and 

likelihood and prior pdfs constitute a model of the flow field. Bayesian inference can be 

conditioned on the model, which is treated as an unknown quantity. Different models are then 

compared using a Bayes factor, which is a ratio of the candidate models’ model likelihood. This 

chapter describes the first application of Bayesian model comparison to CST: to select a 

measurement operator and grid resolution for reconstruction. Moreover, as the prior is itself a 

component of the model, it is shown how Bayesian model comparison, informed by measurement 

data, can be applied to identify the covariance structure of a target. The technique is demonstrated 

with numerical tests based on an advanced simulation of a catalytic reduction. This scenario is 

motivated by the recent CST experiment of Stritzke et al. [149], which featured extremely 

restricted measurement conditions. Model likelihoods are presented in logarithmic form and 

decomposed. Finally, it is shown how components of the model likelihood relate to reconstruction 

accuracy. 

 Results from the DOE and model selection tests demonstrate how Bayesian imaging can be 

used to obtain accurate reconstructions, even under restrictive measurement conditions. The 

Bayesian framework for CST implies a statistical approach to experimental design and model 

selection, which improve on classical techniques and support the use of Bayesian methods in gas-

phase tomography. 

4.1 Design of Limited-Data Tomography Experiments 

4.1.1 Deterministic design-of-experiment techniques 

Several methods have been proposed to assess the quality of limited-data arrays in hard-field 

tomography. These include qualitative methods, equations based on intuition about the 

reconstruction algorithm, and advanced metrics that follow from a formal derivation. Existing 

procedures for beam optimization, summarized below, are united by the fact that they neglect prior 

information about the flow field. 
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4.1.1.1 Uniform sinogram sampling 

Rattey and Lindgren [287] presented a Fourier analysis of the 2D Radon transform to identify an 

appropriate grid and measurement spacing for medical imaging by limited-data X-ray tomography. 

Their results were obtained for a regular array of optical paths, i.e., a parallel- or fan-beam 

arrangement. Terzija et al. [89] interpreted this analysis for irregular beam arrangements in gas-

phase tomography, where the target is more amenable to simple priors (such as a smoothness prior) 

and the fluid area may be enclosed, which prevents periodic sampling by a mobile measurement 

hub (typical of medical imaging devices). Based on their interpretation of Rattey and Lindgren 

[287], Terzija et al. [89] argued that reconstruction with the modified Landweber algorithm 

effectively interpolates data in sinogram space. 

 As discussed in Chapter Two, each optical path is associated with a set of sinogram 

coordinates, (s, θ), and Terzija et al. [89] sought measurement arrays that uniformly-sampled a 

large region of sinogram space. They conducted tests of candidate beam arrangements with a series 

of phantoms. The authors considered uniform and irregular 32-beam arrays and an irregular 27-

beam array, all shown in Figure 4.1 with the corresponding sinogram coordinates. Euclidean 

distance statistics were computed for these systems and the relationship between the sinogram 

a)  b)  c)  

d)  e)  f)  

Figure 4.1: Beam geometry (a-c) and sinogram plots (d-f) for three limited-data measurement arrays 
from Terzija et al. [89]: a,d) a regular 32-beam array, b,e) an irregular 32-beam array, and c,f) an 
irregular 27-beam array. 



 

101 

 

plots and reconstruction accuracy was discussed in qualitative terms. The authors concluded that 

the performance of an array was related to its coverage of sinogram space. 

 Terzija et al. [89] presented their beam selection procedure as a heuristic method but did not 

propose a metric to quantify the coverage of sinogram space by candidate arrays. Daun [288] 

analyzed the sinogram point plots in Figure 4.1 using a point set discrepancy, which measures the 

uniformity of a distribution of points. He computed the discrepancy for each array and 

reconstructed Gaussian phantoms with Tikhonov and modified Landweber algorithms. There was 

no correspondence between the discrepancy rank and reconstruction statistics, irrespective of the 

algorithm used for reconstruction. 

4.1.1.2 Minimizing regularization error with the resolution matrix 

The concept of a resolution matrix is based on a perturbation analysis, in which the regularized 

inversion of a linear system is manipulated to explicitly attribute reconstruction errors to noise and 

regularization. Twynstra and Daun [289] derived a resolution matrix for Tikhonov-regularized 

CST. First, they presented the regularized inverse, 

 # 2 1( )T T T A A L L AA , (4.1) 

where L is the first-order Tikhonov matrix from Chapter Two and λ is a regularization parameter. 

The reconstruction, xTK, is found by right-multiplying the data by the regularized inverse, xTK = 

A#b. The noisy data, b, can be decomposed, 

 exact meas exact meas   b b e Ax e , (4.2) 

where bexact is an idealized measurement, defined as Axexact, and emeas is a general error term, given 

by the residual b – bexact.56 As in Chapter Three, xexact is the projection of the ground truth 

distribution onto the basis. Using Eqs. (4.1) and (4.2), the Tikhonov estimate is found to be 

 TK # exact # meas exact # meas   x A Ax A e Rx A e , (4.3) 

where R = A#A is the resolution matrix. This quantity describes how the measurement operator 

and Tikhonov matrix modify the idealized projection, xexact, in reconstruction. Next, the residual, 

eTK, is presented in terms of the resolution matrix, 

 TK exact TK exact # meas( )    e x x I R A ex . (4.4) 

                                                 
56 By this definition, emeas contains both noise and model error. 
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The first term in Eq. (4.4) describes the direct contribution of regularization to reconstruction error 

and the second term describes the amplification of measurement error by A#. Amplification errors 

can also be expressed in terms of the resolution matrix: –RAT(AAT)-1emeas. 

 The measurement array determines the structure of the resolution matrix, which plays a role 

in regularization error and the amplification of measurement noise. In a full-rank experiment, there 

is a trade-off between regularization and amplification errors. By contrast, in limited-data 

tomography, the operator has a non-trivial null space and eTK is dominated by (I – R)xexact. 

Twynstra and Daun [289] conjectured that reconstruction accuracy in limited-data CST would be 

maximized by selecting a measurement array to minimize (I – R)xexact, which suggests a 

“resolution matrix objective function,” 

 
2

1 2
( ) ( )DF  A I R A . (4.5) 

The authors used a set of LES phantoms to test parallel-beam, fan-beam, and unstructured arrays. 

Reconstructions were computed by first-order Tikhonov regularization and errors were compared 

to Eq. (4.5). Twynstra and Daun [289] found that beam arrangements selected according to FD1 

tracked reconstruction errors. 

4.1.1.3 Maximizing physical coverage with a grid weight 

Algebraic reconstruction, used in most CST experiments (and almost all limited-data scenarios), 

effectively distributes measurements back along the corresponding optical path. Each sweep of the 

basic ART algorithm updates pixels once for each beam that that transects the pixel. Following 

this observation, Song et al. [290] reasoned that candidate beam arrays should be compared in 

terms of their coverage of pixels. The authors proposed an objective function to quantify this 

coverage, 
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where n is the number of pixels and m(j; A) is the number of beams transecting the jth pixel.57,58 

FD2 maximized by beams that effectively cover the measurement plane. The effect of this metric 

can be understood by considering an individual optical path. Rays contribute to FD2 by transecting 

                                                 
57 The function m(j; A) returns the number of non-zero entries in the jth column of A. 
58 Song et al. [290] present the double summation in Eq. (4.6), which is equivalent to the simplified expression on the 

right-hand side. 
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pixels; but the marginal contribution of this intersection to FD2 is diminished as more measurement 

paths cross a pixel. In contrast to the work of Terzija et al. [89], FD2 promotes broad coverage of 

the flow field in physical space as opposed to sinogram space. 

 Equation (4.6) was motivated by the concept of back projection but the precise form of the 

FD2 was not derived by mathematical analysis of the ART. Song et al. [290] simulated their 

approach with a Gaussian phantom and modified ART, with smoothing applied to x at each step. 

They found their objective function was maximized by the beam arrangement that minimized 

reconstruction error. However, the correlation between FD2 and the reconstruction statistics was 

not reported. 

4.1.1.4 Minimizing the collinearity of ray-sums 

Ray-sums in gas-phase tomography are a linear approximation to the measurement operator, 

specific to the reconstruction basis. The maximum rank of the ray-sum matrix for a set of m beams 

in a limited-data system is m, but an infinite set of arrangements can share this rank. Optical paths 

with similar sinogram coordinates have many near-parallel ray-sums, which can be problematic in 

reconstruction because similar row vectors are susceptible to noise in inversion, even if the primary 

source of reconstruction error is regularization. Moreover, collinear rows contain redundant 

information. Arrays with unnecessary collinear beams fail to capitalize on information that could 

potentially be extracted by a better arrangement with the same number of rays.59 Yu et al. [291] 

proposed a metric to minimize the angle between rows of the ray-sum matrix (i.e., the angle 

between the vectors with support Φ), 

  3( ) max ( )DF  A O A I , (4.7) 

where O ϵ ℝm×m contains the cosine of the angle between ray-sums with each other sum, θij. The 

element-wise definition of O is 

 cos( ) 




T

i j

ij ij

i j

O 
a a

a a
, (4.8) 

where ai and aj are the ith and jth row of A. FD3 is zero for a set of orthogonal ray-sums and unity 

for any arrangement with a set of duplicate rays. 

                                                 
59 Alternatively: nearly-collinear ray-sums can be eliminated with minimal effect on the reconstruction accuracy. This 

can significantly reduce the cost of measurement in scenarios that require modifications to a fluid enclosure, as in the 

experiments of Carey et al. [130] and Stritzke et al. [149]. 
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 Yu et al. [291] conducted numerical tests using three phantoms: a superposition of two 

Gaussian peaks, separated by a random offset; a Gaussian peak and square platform; and a third 

phantom, devised to resemble a turbulent flame. A large number of random arrays were generated 

and reconstructions were computed with a simple ART algorithm as well as Tikhonov 

regularization. The authors compared the quality of reconstructions to Eqs. (4.5) and (4.7) and 

concluded that the collinearity metric was a better predictor of accuracy than the resolution matrix 

function, FD1. 

4.1.2 Bayesian approach to the design-of-experiments 

Design-of-experiment techniques in the previous section were all motivated by the reconstruction 

algorithm in some way, but do not reflect expectations about the experiment. Yet some information 

about the target process and geometry of the probe volume is always known, and this knowledge 

can be usefully incorporated into the objective function. The Bayesian formulation of tomography 

is predicated on the role of prior information and Bayes’ equation suggests a superior approach to 

experimental design. 

 Conceptually, optimal beam arrays for tomography are those that maximize confidence in the 

reconstructed image, based on a statistical model of tomographic inversion. Bayesian DOE begins 

with an expression for the posterior covariance, which quantifies joint-uncertainties in the 

reconstructed parameters as a function of the measurement array and prior pdf. Next, an 

appropriate mapping is selected to generate a scalar summary of the posterior. Ideally, this metric 

(or summary statistic) corresponds to one’s overall confidence in the reconstructions. The 

summary statistic is calculated for candidate arrangements using a fixed prior;60 it is hypothesized 

that the posterior confidence will track the average accuracy of CST images. This section describes 

the calculation of a posterior covariance matrix and traditional summary statistics, used to 

construct a Bayesian objective function. Finally, Bayesian DOE formulas are compared to the 

deterministic objective functions from the previous section. 

4.1.2.1 Calculating a posterior covariance matrix 

Bayesian reconstruction yields a posterior pdf, π(x|b), which quantifies the relative probability of 

candidate vectors subject to an observation and prior assumptions about the flow field. Chapter 

                                                 
60 Experiments are designed before measurement so the prior must be constant (whereas the prior may be updated 

between reconstructions in real time imaging or post-processing). As such, the differential uncertainty between the 

prior and posterior covariance is only due to the information gained from a measurement. 
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Two presented joint-normal likelihood and prior pdfs for gas-phase tomography, π(b|x) and πpr(x), 

which were further explored in Chapter Three. The joint-normal prior is conjugate to the joint-

normal likelihood such that the posterior is also joint-normal. One important consequence of this 

shared form is that analytic expressions of the posterior mean and covariance can be expressed in 

terms of the likelihood and prior parameters. The posterior pdf is 
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in which the MAP estimate is the mean, Γx|b is the posterior covariance, and Lx|b = chol(Γx|b
-1). 

According to Bayes’ equation, the posterior pdf is proportional to the product of π(b|x) and πpr(x), 
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Arguments in Eqs. (4.9) and (4.10) all reside in the exponential terms and must be equal to satisfy 

the proportionality in Eq. (4.10). The L-norm notation signifies a square system, 
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which implies that 

 
MAP 1 MAP 1 1

|( ) ( ) ( ) ( ) ( ) ( )T T T         x b e xx x b Axx Γ x Γ b A μ Γx x μx . (4.12) 

Terms in Eq. (4.12) are expanded and regrouped by order of x multiplication, which yields an 

explicit expression for the posterior, 

  
1

1 1

|

T


  x b e xΓ Γ ΓA A . (4.13) 

Substituting Γx|b into Eq. (4.12) and solving for xMAP results in an alternative equation for Bayesian 

MAP estimates, 

  MAP 1 1

| ( )   T

x b e xx Γ b ΓA Γ b μ . (4.14) 

 The posterior covariance in Eq. (4.13) is only a function of the measurement operator, error 

model, and prior covariance. It should be noted that the data is not included in this expression and, 

as a result, Bayesian functions to optimize the beam arrangement can be developed using Γx|b. 

4.1.2.2 Summary statistics of the posterior 

Bayesian DOE proceeds by first quantifying the information that can be extracted from an 

observation (relative to prior assumptions about the inference) and then adjusting the measurement 
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setup to maximize this information—thereby maximizing the accuracy of parameter estimates. 

One resource for characterizing informative gain is the posterior covariance matrix. Values of Γx|b 

account for variance and correlation that is: i) inherent in the parameters of interest, encoded in the 

prior, and ii) propagated through to parameter estimates by inversion, originating from noise and 

model error. It can be difficult to comprehend the implications of Γx|b as a whole, especially if 

there are many parameters, the parameters of interest are intrinsically correlated, or the 

measurement operator convolves information about individual parameters. Each of these 

complications arises in gas-phase tomography so an appropriate summary of the posterior 

covariance is necessary to quantify the informative of CST measurements. 

 Several criteria have been developed to relate Γx|b to statistical attributes of the parameter 

estimates. The most prevalent of these are A-optimality, which minimizes the average variance of 

the MAP estimate, and D-optimality, which minimizes the spread of the posterior ellipse, 

accounting for both the variance and covariance of estimates. Further alternatives are available. 

For instance, E-optimality assigns a relative importance to the parameters, G-optimality minimizes 

the maximum variance of estimates, and so on. See Atkinson et al. [292] for a complete overview 

of optimality criteria in statistical experimental design. The Bayesian objective function for A-

optimality is 

 
1( ) tr ( )BF M M   x|bΓ  (4.15) 

and the D-optimality function is 

 
2( ) det ( )BF M M   x|bΓ . (4.16) 

 Equation (4.16) accounts for parameter correlations that stem from the prior or ray-sums, 

where the latter convolves information about elements of x. However, in limited-data CST, the 

operator is rank deficient by definition and the prior covariance is often degenerate. In this case, 

Eq. (4.13) must be approximated by pseudoinversion. FB1 is more robust to numerical artifacts in 

the posterior covariance than FB2 and, for this reason, the former criterion is preferred for the 

design of limited-data CST systems. Examples of degenerate priors include sample-based priors 

in which the flow does not occupy every pixel; first-order Tikhonov regularization (i.e., a 

smoothness prior); and linear approximations to the TV norm, discussed in Chapter Six.61 In cases 

                                                 
61 The presence of a degenerate prior does not pose a problem for CST imaging because reconstruction is based on the 

augmented system, which is overdetermined when the measurement operator and prior are combined. 
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where a suitable positive-definite prior is available, the determinant of Γx|b is a superior metric to 

the trace. 

4.1.2.3 Relationship to deterministic techniques 

Equations (4.5) to (4.7) were not developed to accommodate specific information about the flow 

field, whereas Eqs. (4.15) and (4.16) are explicit functions of the prior covariance matrix. Priors 

can be constructed to reflect the assumptions used to derive FD1 and FD3; the resulting functions, 

FB1 and FB2, can be compared to their deterministic counterparts. Doing so reveals similarities 

between the deterministic and Bayesian metrics and highlights the latter’s ability to augment FD1 

and FD3 with flow-specific information. 

 Twynstra and Daun [289] obtained an expression of the resolution matrix for CST with 

Tikhonov regularization, often employed in the Bayesian framework as a smoothness prior. 

Adopting this prior, the corresponding posterior covariance is 
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where Le is the Cholesky factor of the error covariance matrix and L is the first-order Tikhonov 

matrix. Equation (4.17) is substantially similar to the resolution matrix, though FD1 and FB1 differ 

in several ways. First, FB1 is weighted by the effects of noise and model error while FD1 is not; and 

second, there is no clear statistical interpretation of the norm of I – R, whereas the trace of 

Eq. (4.17) minimizes the variance of parameter estimates, by construction (insofar as L conforms 

to the spatial covariance of the flow). As such, while FB1 with a smoothness prior and FD1 will 

exhibit broadly similar trends, the Bayesian metric can be expected to provide some improvement 

over the resolution matrix. Moreover, since specific information about the distribution of variance 

in the flow field is almost always known, it is preferable to employ FB1 using an estimate of Γx 

that features a more realistic distribution of variance than the Tikhonov prior. 

 Comparison of the Bayesian functions with FD2 and FD3 is also instructive. FD1 assumes spatial 

smoothness whereas FD2 and FD3 make no assumptions about the flow field, which is equivalent 

to an IID prior covariance in Bayesian CST. (This prior is also realized by zeroth-order Tikhonov 

regularization, in which Γx = λ-2I, where λ-2 is the average variance of the flow field.) Consistent 

with the minimal assumptions implicit in FD2 and FD3, using σm
2 = λ-2 = 1 such that Le = Le = I, 

the Bayesian functions become 
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 1

1 tr ( )   
T

BF A A I  and 1

2 det ( )   
T

BF A A I . (4.18) 

FD2 effectively counts the number of beams crossing each pixel, discounting duplicate beams in a 

heuristic manner. The Bayesian functions in Eq. (4.18) consider the outer product of ray-sums, 

ATA,62 which also tabulates the contribution of ray-sums at each pixel. However, A- and D-

optimality measures of ATA + I are statistically-motivated whereas Eq. (4.6) does not follow from 

a principled derivation. Rather than discounting additional beams in an arbitrary way, the outer 

product of A considers the length of beams throughout the pixels such that linearly-independent 

rows of A are explicitly preferred. 

 The matrix O of FD3 can be found by normalizing the elements of AAT by ||ai||·||aj||. This 

procedure neglects the length of rays through the domain, considering only their relative direction 

in ℝm. Beams that cross a single pixel are considered no worse than beams that traverse the entire 

domain.63 Moreover, the max operator in Eq. (4.7) eliminates most of the information about the 

beam arrangement that is encoded in O. FD3 only considers the most collinear pair of rays, which 

results in a non-convex objective function that may feature a non-unique minima, depending on 

the basis and number of rays. As such, while O contains useful information about the general 

suitability of a measurement array, the information is underutilized by FD3; similar information is 

naturally incorporated in the Bayesian framework. 

 Deterministic objective functions for DOE in limited-data CST are motivated by the 

reconstruction algorithms but are not readily-adapted to specific information about the flow field. 

By contrast, the Bayesian objective functions are designed to maximize the informative content of 

CST measurements in the context of prior knowledge about a process. FB1 and FB2 share key 

structural features with each of the deterministic functions, which can be seen by substituting 

minimally-informative priors into Eqs. (4.15) and (4.16). Moreover, the trace and determinant of 

Γx|b relate to statistical attributes of the reconstructions, while the norm and max operators do not. 

All of these observations lend support to the use Bayesian functions in the design of CST 

experiments. 

                                                 
62 Ray-sums are row vectors so ATA is an outer product of the rays while AAT is an inner product. 
63 For instance: beams crossing a single corner pixel are orthogonal to any beam that does not intersect that corner and 

nearly-orthogonal to all other beams. FD3 does not penalize such rays though they self-evidently represent a poor 

choice of position. 
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4.1.3 Simulating experimental design for limited-data CST 

Three sets of phantoms were developed to represent a turbulent target: two iterations of a turbulent 

jet, called jet 1 and jet 2, and draws designed to mimic large-scale isotropic turbulence, called 

uniform. Figure 4.2 shows random draws that typify the phantom sets. Measurements for candidate 

arrays were obtained by high-order interpolation of the ground truth phantoms and reconstructions 

were computed with a 400-pixel basis. Deterministic objective functions were compared to 

Tikhonov-based reconstruction errors and the A-optimal Bayesian DOE function was compared 

to Bayesian reconstruction errors. The same prior was used for optimization and reconstruction. 

 Two scenarios were devised to appraise the performance of DOE functions. First, structured 

arrays were optimized with the deterministic functions and FB1. Beams were arranged into 

conventional fan-beam and parallel-beam projections, parametrized by a single variable. The 

second test featured unstructured arrays, providing a useful test of the objective functions by 

exploring a large space of arrangements. Beam positions in the unstructured arrays were free to 

vary, independently, so long as each path transected the measurement plane. A genetic algorithm 

was developed to reduce the chance of stopping at a local minima. 

4.1.3.1 Generating the turbulent phantoms sets 

Jet phantoms were based on the LES from Chapter Three, which featured a round, momentum-

driven CH4 jet. Two separate simulations were started from a unique random seed and run for 20 

s with a reporting timestep of 0.01 s. Both phantom sets contained 1,000 frames, from t = 3.75 s 

to 13.75 s in physical time, projected onto a 2,500-pixel ground truth basis. The 3.75 s delay 

represented several flow-through periods, selected to ensure fully-developed flow in the 

measurement plane. Phantoms for jet 1 were taken directly from the FDS output files, with no 

modifications made to the flow field. CH4 distributions for jet 2 were scaled by 50% and offset 

from the centre of the measurement plane by Δx = Δy = -0.25 m. The second jet was transformed 

to test the effects of large-scale structure and asymmetry in the probe volume on the opjective 

functions’ performance. 

   

Figure 4.2: Three sample concentration distributions from each phantom set. 
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 Uniform phantoms were intended to resemble a large-scale quasi-isotropic flow field, 

reminiscent of an emissions tomography scenario (e.g., Vecherin et al. [278]). Moreover, spatial 

homogeneity is an ideal test case for the Tikhonov reconstruction algorithm and deterministic 

objective functions, which effectively presume spatial invariance in all moments of the target pdf. 

Isotropic distributions were drawn from a Gaussian random field with a uniform mean of 0.5 

(interpreted as a CH4 mole fraction) and square-exponential covariance. Elements of the 

covariance matrix were 

 2 2

,

ln(0.05)
0.2 exp

21.5
U ij ijd

  
  

  

 , (4.19) 

where 0.2 is a pixel-wise standard deviation, 0.05 is the correlation over 21.5 pixels, and dij is the 

distance between the centroid of pixels i and j. As with jets 1 and 2, the uniform set comprised 

1,000 phantoms, supported by the same 2,500-pixel basis. 

 All three phantom sets were divided into two, equally-sized subsets. The first subset, called 

the sample-based subset, was used to generate sample-based priors; the second, called the 

reconstruction subset, was used to simulate CST experiments. Slice data from the jet simulations 

was sequential whereas uniform phantoms were independent in time. This difference did not affect 

the results, however, since both algorithms were stationary. 

4.1.3.2 Optimization of structured beam arrays 

Figure 4.3 shows the structured measurement arrays from Twynstra and Daun [289]. In the first 

array, three 11-beam fan projections were rotated in 120° increments. The spread of the fan was 

parametrized by the angle α. A second format consisted of four 8-beam parallel projections, rotated 

a)  b)  

Figure 4.3: Structured array geometry: a) a three-projection fan-beam array with an angular spacing 
parameter, α, and b) a four-projections parallel-beam arrangement with a spacing parameter, ω. 
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in 45° increments. Beam positions were determined by a spacing parameter, ω, which represented 

a fraction of the domain width. Fifty uniformly-spaced values of α ϵ [0.01, 0.07], in radians, and 

ω ϵ [0.075, 0.125] were scored using all three deterministic functions as well as FB1, calculated 

with a sample-based prior. 

4.1.3.3 Optimization of unstructured beam arrays 

Unstructured measurement arrays with 32 beams were scored using FD1, FD2, FD3, and FB1 for all 

three phantom sets. Beam positions were defined by sinogram coordinates. The space of possible 

arrangements was explored using a genetic algorithm, tailored to the study. 

 The genetic algorithm was initialized with a random arrangement of optical paths, called a 

seed, which was systematically modified to form a population of spawn arrays. The combination 

of the seed and spawn arrays formed a generation. Measurement arrays in each generation were 

assigned a fitness score by the DOE functions and the array with the best score was chosen to seed 

the next generation. This process was repeated until a single array was selected to seed 50 

successive generations. Generations comprised 33 unique arrangements, including the seed. 

Spawn arrays were constructed as follows: one randomly-selected beam was adjusted in the first 

spawn, two randomly-selected beams in the second, and so on, with all 32 beams repositioned in 

the final spawn. All rays had equal probability of being repositioned; if selected, rays were 

assigned a new orientation by uniform draws of s and θ, from (–0.5, 0.5) and (0, π), respectively. 

 Four unstructured optimizations were run with the genetic algorithm. In the first test, FD1 was 

used to select the array and reconstructions were calculated for all three phantom sets. In the next 

three tests, FB1 was used to score arrays with a sample-based prior for the jet and uniform 

phantoms, separately. Every seed and spawn in every test was assigned a fitness score with FD1, 

FD2, FD3, and FB1. Two hundred and fifty phantoms were reconstructed for each candidate array 

using both the Tikhonov regularization and Bayesian techniques. The genetic algorithm was 

designed to explore a large space of beam arrangements and reconstruction statistics were 

compared to the DOE functions for different flow conditions and prior assumptions. Results were 

used to gauge the general correspondence between FD1, FD2, FD3, and FB1 and the accuracy of CST 

images. 
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4.1.4 Results and discussion 

4.1.4.1 Structured projection tests 

The deterministic objective functions do not consider flow-specific prior information so each 

function exhibits a single trend with α and ω, irrespective of the target. Plots of FD1, FD2, and FD3 

vs. α and ω are shown in Figure 4.4, along with the corresponding reconstruction errors for jet 1. 

The objective functions were normalized by their range and FD2 was inverted to illustrate the 

relevant trend, as this function was designed to be maximized. Also shown in Figure 4.4 are 

correlations between each objective function n and the mean reconstruction errors for jet 1. 

Statistics for all three phantom sets are presented below in Table 4.1. 

 Low values of the reconstruction error represent narrow projections; beams were more evenly-

spaced across the domain at maximum values of α and ω. Performance of the structured arrays in 

a deterministic setting improved as α and ω were increased, increasing coverage of the domain by 

the optical paths in turn. This trend was captured by the resolution matrix function of Twynstra 

and Daun [289] and grid weight function of Song et al. [290], both of which exhibited correlations 

greater than 0.9 for all three flows. However, there was little correspondence between the 

maximum collinearity function of Yu et al. [291] and reconstruction error, regardless of the target. 

FD1 and FD2 prefer beam arrangements that broadly cover the measurement plane, which are ideal 

when little information about the flow is known. By contrast, FD3 only depends on the most 

collinear pair of ray-sums and does not directly relate to coverage of the domain. This metric was 

a)  b)  

Figure 4.4: Comparison of the deterministic DOE functions and reconstruction statistics for jet 1 
obtained with the a) three-projection fan-beam arrangement and b) four-projections parallel-beam. 
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quite sensitive to the transition of paths across pixel boundaries, which produced a superposition 

of consistent but opposing trends with the accuracy metric. Figure 4.4a shows that the maximum 

collinearity decreased from α = 0.01 to 0.045 rad but increased thereafter, resulting in zero 

correlation between FD3 and ||e||2. FD3 was significantly correlated to reconstruction error for the 

parallel projections; but the correlation was negative, opposite the intended relationship. 

 

Table 4.1: Reconstruction Statistics for the Fan- and Parallel-Beam Optimization Tests 

Case 
Jet 1 Jet 2 Uniform 

||eopt||2 R2 Diff. ||eopt||2 R2 Diff. ||eopt||2 R2 Diff. 

FD1 
Fan 0.383 0.971 32% 0.431 0.967 43% 0.135 0.965 12% 

Par. 0.342 0.954 31% 0.410 0.947 41% 0.140 0.904 9% 

FD2 
Fan 0.614 -0.931 58% 0.793 -0.934 69% 0.252 -0.924 53% 

Par. 0.444 -0.918 47% 0.598 -0.927 60% 0.195 -0.914 35% 

FD3 
Fan 0.461 0.001 58% 0.667 -0.184 50% 0.182 -0.041 35% 

Par. 0.426 -0.764 47% 0.409 -0.767 56% 0.186 -0.841 32% 

FB1 
Fan 0.260 0.717 

- 
0.246 0.947 

- 
0.119 0.886 

- 
Par. 0.237 0.998 0.242 0.893 0.127 0.960 

 

 Figure 4.5 shows the Bayesian DOE function and mean reconstruction errors for all three 

target flows using both projections. Statistics for these tests are included in Table 4.1 along with 

the deterministic results. Unlike the deterministic functions, trends in FB1 depend on explicit prior 

assumptions about the flow. When the spatially-uniform sample-based prior was employed, FB1 

reproduced the results of FD1 and FD2. This correspondence supports the analysis in Section 4.1.2.3 

 
Figure 4.5: FB1 vs. reconstruction error for the fan-beam and parallel-beam projections. 
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that shows a close connection between the deterministic and Bayesian DOE functions, assuming 

minimal prior information.64 By contrast, the Bayesian function exhibited unique trends over α 

and ω for the jets. Sample-based priors imply approximate bounds for the target, and FB1 acted to 

align the spread and width of the fan and parallel projections within the flow area. FB1 and the 

reconstruction error were highly-correlated for each target set. Moreover, the Bayesian algorithm 

improved the accuracy of reconstructions across the entire parameter space for both arrangements 

compared to Tikhonov regularization. Table 4.1 summarizes the percentage difference in 

reconstruction error between optimal deterministic and Bayesian arrangements, identified by FD1, 

FD2, FD3, and FB1. 

 In several cases, the correlation between the reconstruction error and FB1 was slightly lower 

than the same correlations for FD1 and FD2. The most significant such instance occurred for jet 1, 

where FB1 had a correlation of 0.72 compared to 0.97 and -0.93 for FD1 and FD2, respectively (a 

maximum difference of 26%). The remaining lower correlations for FB1 were within 8% of the 

resolution norm correlation. Several factors mitigate the importance of differences between these 

correlations. First, trends in the Bayesian reconstruction errors were non-linear; nevertheless, FB1 

captured the salient features of ||e||2 vs. α and ω. Moreover, the correlation statistic understates the 

correspondence between reconstruction accuracy and FB1 in such cases, as in the fan-beam test for 

jet 1. This feature was illustrated by the fact that FB1-based optimization approximately identified 

the optimal spacing parameter for each combination of projection type and prior, regardless of the 

correlation. Second, the dynamic range of ||e||2 was much smaller for the Bayesian algorithm than 

the Tikhonov algorithm. 

 

Table 4.2: Range of Reconstruction Errors in the Structured Optimization using the Deterministic 
and Bayesian Algorithms 

Flow 
Deterministic Range Bayesian Range 

Fan Beams Parallel Beams Fan Beams Parallel Beams 

Jet 1 0.23 (0.38 to 0.61) 0.10 (0.34 to 0.44) 0.04 (0.26 to 0.30) 0.02 (0.24 to 0.26) 

Jet 2 0.36 (0.43 to 0.79) 0.19 (0.41 to 0.60) 0.04 (0.25 to 0.29) 0.02 (0.24 to 0.26) 

Uniform 0.12 (0.13 to 0.25) 0.06 (0.13 to 0.19) 0.17 (0.12 to 0.29) 0.06 (0.13 to 0.19) 

 

                                                 
64 The prior information implicit in the deterministic functions is accurate when the target is known to be isotropic, as 

was the case for the uniform phantom set. 
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 Table 4.2 reports the spread of errors for the structured tests. Given this context, Figure 4.4 

and Figure 4.5 demonstrate that FB1 captured more detailed information about variation in the 

reconstruction accuracy with α and ω than did FD1, FD2, or FD3. The Bayesian approach to the 

design of structured CST arrays and reconstruction produced optimal, flow-specific arrangements 

and accurate estimates of the target distribution. 

4.1.4.2 Unstructured array optimization 

Measurement arrays in limited-data CST are typically constrained to some sort of regular 

arrangement, motivated by theoretical analyses [287,293] and practical considerations [286]. 

However, decreasing component costs have improved the feasibility of irregular arrays and sparse 

arrangements often provide the sole means for optical access into fluid enclosures, such as pistons 

[130,133,137] and exhaust systems [149]. In the numerical context, relaxing constraints on the 

path arrangement also elucidates the predictive capacity of DOE objective functions. For these 

reasons, unstructured beam paths are routinely employed to test DOE functions for CST [89,289–

291,294]. 

 First, an unstructured optimization was conducted to replicate the results of Twynstra and 

Daun [289], using FD1 to select the seed array. Candidate arrays were scored by FD1, FD2, and FD3 

and errors were calculated for all three targets using 250 phantoms in each case. Figure 4.6 shows 

the relationship between FD1, FD2, and FD3 and Tikhonov-based reconstruction errors for each 

candidate array.65 From this figure, it can be seen that the objective function of Twynstra and Daun 

[289] tracked errors most consistently among the deterministic criteria. The function of Song et al. 

[290] exhibited reasonable correlations, as well, while the collinearity metric of Yu et al. [291] 

was considerably less predictive than either FD1 or FD2. Following the deterministic test, the 

optimization procedure was repeated using an A-optimal Bayesian function to select arrays for 

each phantom set with a target-specific prior. Measurements for every candidate array were 

reconstructed using both the Tikhonov and Bayesian algorithms. Correlations between the 

Bayesian functions and reconstruction error are shown alongside the deterministic correlations in 

Figure 4.6. 

                                                 
65 Yu et al. [291] compare FD1, FD2, and FD3 with arrays selected by an annealing algorithm, scored by FD3. They 

restrict the comparison to accepted arrays, limiting the space of candidates and biasing the correlation in favour of the 

selection function. Analyses in this chapter consider all of the randomly proposed arrangements to avoid this pitfall. 
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 Regardless of the phantom set, once beam positions were free to vary, the deterministic 

functions were less predictive of reconstruction accuracy than in the fan-beam and parallel-beam 

tests. All three objective functions performed worst for jet 2: a structured flow with asymmetric 

placement in the domain. Error correlations for FD2 and FD3 were greater for the uniform flow than 

for jet 1; and FD1 performed similarly-well for these phantoms. Deterministic DOE functions do 

not anticipate the location of structures in the flow field. Anisotropy in the target distributions thus 

caused lower correlations for jet 2. In general, as the information entropy of the target increases—

i.e., with more complex shapes, less uniformly-distributed in the measurement plane—FD1, FD2, 

and FD3 become less predictive of reconstruction accuracy. 

 Correlations between the Bayesian function and reconstruction accuracy were high for all 

three phantom sets. Moreover, the correlations were equivalent to the best-case deterministic 

results from the structured optimization tests. The reason for this improvement can be understood 

by considering the range of possible arrays in the structured test. Structured candidates with 

projections that happened to align with the flow area scored well using FD1 and FD2. Moreover, 

Bayesian reconstructions were relatively accurate for all of the structured arrays. When constraints 

on the beam positions were lifted, some of the candidates contained beams that did not intersect 

 
Figure 4.6: Comparison between objective function scores and average reconstruction errors for 
the unstructured array tests. Deterministic functions were compared to Tikhonov-based errors and 
the Bayesian metric was compared to sample-based reconstruction errors. The Bayesian function 
exhibited much stronger correlations for each flow. 
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the jet area, especially for the case of jet 2. These candidates performed poorly, irrespective of the 

reconstruction algorithm—such arrays were penalized by the Bayesian function but not by the 

deterministic functions. Bayesian scores were thus expected to track reconstruction error 

throughout the design space while the deterministic score was less appropriate for unrestricted 

beams and anisotropic targets. 

 Figure 4.7 shows unstructured arrays produced by the deterministic and Bayesian optimization 

tests. The arrangement in Figure 4.7a features fairly consistent coverage of the domain and is in 

good agreement with the isotropic information implicit in FD1. (That is, no pixels or regions are 

preferred over others.) Moreover, this array strongly resembles that of Twynstra and Daun [289], 

which confirms that the metric was correctly implemented. The spatial information encoded in the 

Bayesian functions is immediately apparent in the optimized arrays. Beams for the jet phantoms 

are distributed in a circle around the centre of the flow, with a larger circle for jet 1 than jet 2; and 

FB1 selected evenly-distributed beams for the uniform phantoms, much like the FD1. The Bayesian 

function selected beams in order to maximize linearly-independent sums of pixels with significant 

variance, neglecting low-activity pixels. Differences in the posterior variance of a pixel for two 

arrays reflects the relative uncertainty of that parameter. By constructing a prior with a rough 

estimate of the spatial distribution of variance, and incorporating that information into FB1, the 

Bayesian approach to DOE can optimize CST measurement systems more acutely than can 

existing deterministic procedures. And when little information about the flow field is known, the 

Bayesian functions and best-practice deterministic functions converge. 

 Finally, Figure 4.8 shows sample reconstructions using arrays selected by the deterministic 

and Bayesian optimization tests. In each case, the Bayesian function procedure produced superior 

images of the target flow, though improvement was marginal in the uniform case. Tikhonov-based 

a)  b)  c)  d)  

Figure 4.7: Unstructured arrays selected in a genetic optimization by a) FD1, the resolution matrix 
function and (b-d) FB1, the Bayesian function with a flow-specific prior for the b) jet 1, c) jet 2, and 
d) uniform phantom set. 
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reconstructions of the jet phantoms were overly-smooth, distorting the periphery of the jet. 

Bayesian reconstructions featured realistic fluctuations, by contrast. These images illustrate the 

utility of the Bayesian framework for CST. Knowledge about the distribution of a flow in the 

measurement plane is helpful in positioning measurement paths to maximize their informative 

content; and the same framework can be used to generate superior reconstructions. 

4.2 Bayesian Meshing, Basis Selection, and Prior Assignment 
Prior information can be used to identify a suitable basis and beam arrangement for an experiment. 

Unfortunately, experiments do not always conform to the experimenter’s expectations.66 In gas-

phase tomography, bulk motion of the ambient fluid can cause a gas jet to sway or flame to flicker; 

operating conditions in a piston are subject to change as parts wear and shift; injectors in a SCR 

system may be perturbed by vibrations in the exhaust manifold, altering the trajectory of a reacting 

species; and environmental monitoring scenarios are plagued by variation in wind conditions and 

atmospheric levels of the target molecule. All of these effects cause unexpected changes to the 

flow field and the aim of CST is precisely to observe such changes. While DOE procedures and 

fluid simulations are usefully employed to optimize the position of optical paths and selection of 

a basis prior to testing, actual measurement conditions may prove better-suited to some other 

model of the flow field. 

 Considerable research has been conducted on algorithms for gas-phase tomography (e.g., 

[86,90,235,293]) and the optimal design of CST experiments (e.g., [89,289–291,294]). Far less 

                                                 
66 This is said tongue-in-cheek, of course, as scientific progress consists in large part in revising models to transform 

unexpected results into expected results. 

   

Figure 4.8: Random draws from each phantom set along with the corresponding reconstructions 
using the beam array optimized with FB1 and FD1. 



 

119 

 

attention has been trained on the relationship between the discretization scheme and utility of 

reconstructions. Ideally, a discretization scheme should be flexible enough to represent the “true” 

solution for a large set of measurements. At the same time, the model’s degrees-of-freedom should 

be restricted in order to promote computational efficiency and limit parameter uncertainties, 

particularly in limited-data settings. The discretization scheme itself functions as a form of prior 

information, since the basis determines which attributes of the flow field can be represented. Select 

observational studies have investigated the effect of the basis on the visual quality of 

reconstructions, e.g., Mohri et al. [218], but none have proposed a general mathematical criterion 

for basis selection. There is therefore a need to systematically adjudicate between competing bases: 

in terms of the measurement model and density of basis functions, with respect to standard 

tomography metrics. 

 Bayesian model comparison is an approach to data analysis in which the model used to 

represent the data is itself an uncertain quantity. The parameters that specify a system state, the 

model relating those parameters to the data, and the prior used to regularize the inference are all 

free to vary. Numerous measures have been proposed to compare the inversion of a data set by 

different models. The practice of comparing models for inference is called model selection or 

model comparison. Models for gas-phase tomography comprise the basis used to represent a flow 

field, discrete approximation to the RTE, and prior pdf. In model comparison, these elements are 

adjusted and different combinations are judged on their ability to reconcile measurements and prior 

assumptions while minimizing uncertainty. This section develops Bayesian model comparison for 

tomography with joint-normal pdfs. Discretization schemes are proposed using the finite element 

method (FEM), and the section reports the first application of model selection to CST. 

4.2.1 Model comparison for CST 

Models in hard-field tomography are conceived as a discrete entity that consists of the 

measurement model/interpolation scheme; basis, Φ; and prior, πpr(x)—where the ith model is 

designated Mi. The approach to model comparison presented in this chapter follows from the 

framework set out by Kaipio and Somersalo [295]. They developed a general analysis of discrete 

subspaces of a Hilbert space, comparing the subspaces’ ability to represent solutions to a generic 

inverse problem in a Bayesian way. Sambrige et al. [296] conducted a similar analysis, using the 

evidence, π(b), to quantify the performance of models for a trans-dimensional geophysical inverse 

problem. Bayesian model selection does not require knowledge of a ground truth distribution. 
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Instead, observational data are employed to calculate a model likelihood, derived from Bayes’ 

equation. The technique is responsive to changes in experimental conditions and eliminates the 

need to simulate an experiment in order to pick an appropriate model. 

 The likelihood, prior, and posterior pdfs of Bayesian CST are repurposed for model selection, 

which quantifies the veridicality of a model [297].67 Selection begins with the introduction of a 

model likelihood, π(b|Mi), akin to the likelihood from Chapter Two, π(b|x). The model likelihood 

is used to gauge the probability that Mi can explain a set of measurements based on the posterior 

variance of parameter estimates. Model comparison consists of evaluating model likelihoods for 

different grid resolutions, interpolation schemes, etc., to identify models that are substantially 

“more probable” (i.e., having a greater likelihood). By hypothesis, discretization schemes that 

produce a greater model likelihood should provide a superior trade-off between parameter 

uncertainty and model error compared to “less probable” schemes. 

 Standard Bayesian model selection employs Bayes factors, presented below, to compare Mi 

and Mj. Log-scale model likelihoods are commonly used in high-dimension scenarios to stabilize 

the selection. This chapter shows how the log-model likelihood can be decomposed into key terms 

that illustrate the role of grid resolution and prior information in the performance of a CST model. 

4.2.1.1 Calculating model odds with Bayes factors 

Take ℳ = {Mi} to be the set of candidate models available to a CST practitioner. Bayesian model 

selection seeks the model that “most probably” generated the data set {b(k)} [297]. The model Mi 

ϵ ℳ that probably produced the data with minimal flexibility should, on average, yield the best 

inference because models that can reproduce measurements for a variety of conditions while 

minimizing posterior uncertainty are likely to bear a structural resemblance to the underlying 

physical system. This criterion amounts to maximizing the model posterior, which involves the 

inference of Mi, 
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In principle, it is possible to define a prior on the model space, πpr(Mi), to incorporate additional 

information about the physical system into the inversion. However, developing a properly-scaled 

prior pdf requires comprehensive, formal knowledge about possible approximations to the RTE, 

                                                 
67 Veridicality of a model meaning, under appropriate conditions: How well do competing models map onto reality? 
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bases, etc.—rarely available in CST. Models are thus treated as equally probable, a priori, which 

corresponds to the maximum likelihood formulation in Eq. (4.20) and ultimately gives rise to the 

Bayes factor. 

 Terms in Bayes’ equation, as presented in Eq. (2.30), are implicitly contingent on a model of 

the flow field. This contingency can be made explicit, 
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Equation (4.21) reveals that the model likelihood is already present in Bayesian CST in the form 

of the evidence.68 Substituting Eq. (4.21) into Eq. (4.20) provides an expression for the model 

posterior and likelihood in terms of the original pdfs, 
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The most probable model is found by maximizing Eq. (4.22) for models in ℳ. 

 Sampling methods are typically required to compute the model likelihood. However, the joint-

normal likelihood and prior pdfs imply a joint-normal posterior and Section 4.1.2.1 demonstrated 

that π(x|b) can be expressed in terms of the parameters of π(b|x) and πpr(x). As a result, there are 

exact expressions for all of the terms in Eq. (4.22) and the model likelihood is directly computable. 

Equation (4.22) is independent of x and constant for any b; evaluating Eq. (4.22) at the MAP 

estimate simplifies the expression, resulting in a closed-form formula for the model likelihood, 
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Non-linear formulations of CST, such as that of Ma et al. [124], feature non-Gaussian likelihood 

and posterior pdfs, in which case sampling methods are required to compute the model likelihood. 

Sampling the posterior for a non-linear inversion with a large number of measurements quickly 

becomes computationally-intractable. Nevertheless, while the pdfs for non-linear CST are not 

strictly Gaussian, they are frequently well-approximated as such and non-Gaussianity may take a 

similar form from model to model. The Laplacian approximation is invoked under such 

                                                 
68 Sambrige et al. [296] also exploit this relationship. 
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circumstances: the approximation holds that the posterior is roughly Gaussian about the MAP and 

the model likelihood is well-estimated by Eq. (4.23) [298].69 

 Models in ℳ, Mi and Mj, are compared by the ratio of model likelihoods, called a Bayes factor 
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Formally, Bij gives the odds that Mi produced the data vs. Mj. The model likelihood implicitly 

marginalizes all parameters of a model so Bij accounts for the fit of Mi and Mj to the data as well 

as the posterior uncertainty. Bayesian model selection concludes by identifying the model Mi ϵ ℳ 

that maximizes Eq. (4.24) when set against the available alternatives. For CST of a turbulent target, 

no single measurement is representative of the process. Selection thus proceeds with average 

Bayes factors for a set of measurements. 

4.2.1.2 Decomposition of the log-scale model likelihood 

Equation (4.24) involves a ratio of exponentials that contain the norms of a high-dimension vector. 

The norm can be quite large such that the model likelihoods approaches zero, introducing 

numerical instabilities into the comparison. Log-scale model likelihoods are frequently employed 

to stabilize the calculation of a Bayes factor, 
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The model in ℳ with the largest log-model likelihood will maximize Eq. (4.25). Alternatively, Bij 

is explicitly calculated: Bij = exp{Li – Lj}. 

 Given the linear formulation of CST (or Laplacian approximation to non-linear variants) and 

explicit expression of Li, the log-model likelihood can be decomposed into meaningful sub-

expressions. These factors illuminate the function of grid resolution and prior information in model 

accuracy. Four key components are defined. First, the measurement credence, 
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69 See Sipkens et al. [373] for an example of non-linear Bayesian model selection using the Laplacian approximation. 
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where λx|b
(k) and λx

(k) are the kth eigenvalues of Γx|b and Γx, respectively. V is half the log-scale 

difference between the constants that normalize the volume of the hyperellipses corresponding to 

Γx|b and Γx. The relative size of these “credibility ellipses” quantifies the differential knowledge 

about x due to measurement. The measurement credence is relative to the beam arrangement and 

covariance information specified in the prior. Next, a data fit 
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are introduced to quantify the capacity of a model to simulate the data set and support the prior, 

respectively. Remaining terms in Eq. (4.25) are grouped into a system constant, Csys, which cancels 

out in the calculation of a Bayes factor. The sum of the measurement credence, data fit, and prior 

fit gives the log-model likelihood: Li = V + D + P + Csys. 

 Results presented in Section 4.2.4 demonstrate that trends in V, D, and P are related to model 

efficacy. For instance, an accurate prior can enable the extraction of dense spatial information from 

a limited set of measurements (i.e., permitting a high grid-resolution), which is revealed by a 

relatively large credence. By contrast, when that prior is unspecific or incompatible with the target 

process, fit terms decrease as the grid is refined. The Bayes factor automatically weighs the trade-

off between the marginal cost of additional parameter uncertainty and marginal benefits of added 

resolution, optimizing for predictive power. 

4.2.2 Finite element method for CST 

One way to adjust the model in CST is to increase or decrease the resolution of the pixel basis used 

thus far in this work. Indeed, square-pixel and cubic-voxel bases are the most common 

discretization schemes for gas-phase tomography [235,299]. The concept of FEM discretization 

for CST is introduced below, to reduce model error and enable the comparison of different 

approximations to the RTE. 

 Pixel and voxel grids split the flow field into square or cubic regions that roughly contain a 

uniform concentration of the target species. While this approach has merits, including its simple 

implementation and the easy enforcement of bound constraints, the coarse pixel/voxel structure 

introduces error into the measurement model relative to several alternatives. Polydorides et al. 
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[300] recently proposed a cosine basis for CST, constructed from an infinite set of functions; the 

authors derived an error bound to guide truncation of the series. Their method’s performance 

depends on the compatibility between the first cosine function and mean gas concentration. 

Axisymmetric plumes, centred in the domain, are well-represented by a cosine basis, but this may 

not hold true for other flows such as asymmetric plumes, bifurcations, and the like. 

 Finite element meshes can easily accommodate complex geometries and support high-order 

approximations to the measurement physics. As a result, the FEM is common to numerous forms 

of tomography, including optical tissue [301], electrical impedance [302], and seismic [303] 

tomography. The classic uniform-pixel basis can be represented within the finite element 

framework. However, the assumption of spatially-uniform gas within the pixels leads to a coarse 

measurement model, especially in the context of low-resolution grids for limited-data tomography. 

This section presents the FEM for CST with three forms of piecewise polynomial support: 

constant, linear, and quadratic. While high-order bases account for the spatially-smooth variation 

expected of a gas, they also require more nodes per element than low-order bases. Furthermore, 

overly-smooth bases with dense support can exacerbate noise amplification, complicating the 

benefits of model error reduction. In view of these elaborate trade-offs, the finite element 

framework provides suitable proving grounds for model selection. 

 To begin, the CST domain is represented using a set of elements. Figure 4.9 shows a triangle 

element mesh for a 2D measurement plane, Ω, in global coordinates, (x, y). The domain is divided 

into triangular elements, δΩ. Also shown in Figure 4.9 is a single element in local element 

coordinates, (ξ, η), with nodes that correspond to different shape functions. Shape functions are 

 
Figure 4.9: Finite element domain for CST: a) circular domain in global coordinates, (x, y), with a 
single LOS and b) a single element in element coordinates, (ξ, η), with piecewise constant, c, linear, 
l, and quadratic, q, nodes. (Linear nodes also serve as the first three quadratic nodes.) 
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defined over the element to interpolate the target (i.e., κη or Sη) between the nodes. The number of 

functions and placement of nodes in an element depend on the interpolation scheme. 

 Recall the ray-sum approximation to the absorption and emission IFKs from Chapter Two, 
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where u is a position from 0 to L along the ith LOS. Here rj(u) is an indicator function that returns 

a position in local element coordinates for the element containing u. Each basis functions is 

associated with one of the triangle elements and the number of functions equals the number of 

nodes. (Functions are not specific to a node, however, as neighbouring elements share nodes in the 

linear and quadratic schemes.) The jth function has compact support and is equal to unity at the jth 

node such that αj directly represents κη or Sη at that point. Therefore, unlike other forms of 

representation, the FEM preserves a close connection between the physical quantity of interest and 

inferred parameters. 

 Nodal placement for the piecewise constant, linear, and quadratic bases are shown in Figure 

4.9. Global coordinates are related to local element coordinates by a linear transformation, 
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Basis functions for the triangle element mesh are 
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where Nj is a shape function, which depends on the mode of interpolation. The constant shape 

function, Nc, is one throughout the element containing node c, akin to a triangle formulation of the 

pixel basis. Linear shape functions are 
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and the quadratic shape functions are 
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Plots of the piecewise constant, linear, and quadratic shape functions for a single element are 

shown in Figure 4.10. 

 Integrals in Eq. (4.29) are easily computed because the basis functions are specific to an 

element and the sum of integrals along a LOS for an element, δΩ, equals the chord length of that 

LOS through δΩ, called CδΩ, pictured in Figure 4.9. Elements of the ray-sum matrix are 
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where ri corresponds to δΩ, the integral corresponds to the ith LOS, CδΩ is the length of the ith 

LOS through δΩ, and SδΩ normalizes the line integral over Φ in δΩ. The normalization constant is 
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Given a mesh with n nodes and system of m optical paths, Aij is computed for each node, for each 

LOS, to form the system Ax = b, as with the square-pixel and cubic-voxel bases. 

4.2.3 Simulating a CST model selection scenario 

4.2.3.1 Selective catalytic reduction phantoms 

Bayesian model selection for CST is demonstrated with a simulated experiment. The target is the 

distribution of NH3 in exhaust gases in the mixing pipe of a SCR after-treatment system. This 

scenario is motivated by the experiment of Stritzke et al. [149], in which the authors conducted 

CST on the exhaust system of a heavy-duty diesel engine. Their apparatus consisted of an array of 

tunable diode laser beams, which had a frequency aligned with a strong ro-vibrational transition 

of NH3 (near 2,200.5 nm). Eight beams were shone through the mixing pipe towards a set of 

photodiodes; the absorption signal was measured with a lock-in detector and amplification system. 

 
Figure 4.10: Shape functions for the constant, linear, and quadratic interpolation schemes for a 
triangle-element mesh. 
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Reconstructed distributions of NH3 were used to gauge the quality of mixing.70 CST of a SCR 

system is a good candidate for model selection as the number of measurements is limited by the 

geometry of the exhaust manifold (m = 8 in the case of Stritzke et al. [149]). Moreover, there are 

presently no such simulations in the literature to guide experimental mesh selection. 

 Chemical species tomography of NH3 in a SCR system was simulated using realistic phantoms 

from a LES. The LES and CST domains are shown in Figure 4.11. Turbulent phantom data, 

obtained from the model of Zöchbauer et al. [304]; the authors simulated an underbody exhaust 

system with a three-hold injector and static mixer. Simulations were conducted with STAR-CCM+ 

v.8.06 using the segregated transient SIMPLE solver. The CFD grid consisted of 3.2 million 

polyhedral cells, and an experimental study was conducted to validate the turbulence model. 

 Data from the LES was collected for K = 501 timesteps, corresponding to a physical sampling 

rate of 2,000 Hz. Collection took place from t = 0.1 to 0.125 s, such that statistics of the phantom 

were stable. The measurement plane in Figure 4.11a was located 0.1 m downstream from the static 

mixer and the NH3 volume fraction was obtained at each timestep for the quadratic nodes of the 

ground truth mesh, pictured in Figure 4.11b. Synthetic measurements were generated for the sparse 

array of Stritze et al. [149] to mimic the restrictive conditions of a limited-data CST experiment. 

Exact measurements were calculated by high-order integration over the ground truth domain and 

the data were corrupted with noise: bi = bi
exact·e, where e ~ (1, 0.032). This procedure is a 

conservative approximation to 3% shot noise, which follows a Poisson distribution. 

                                                 
70 Urea-water solution, injected into the exhaust stream, reacts with combustion products and yields NH3; treated 

gasses then enter the catalytic reduction chamber. Good performance is indicated by a large, even spread of NH3. 

a)  b)  

Figure 4.11: Geometry of a LES domain for a SCR simulation: a) domain from Zöchbauer et al. [304] 
and the measurement array of Stritzke et al. [149] and b) the 4422-node ground truth mesh. 
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4.2.3.2 Simulated model selection: meshing, testing, and scoring 

Twenty-five triangle-element meshes of Ω with increasing resolution were generated to test 

Bayesian model selection. Node arrangements were designated Φ(i) for i = 1,…,25; the number of 

elements ranged from 59 to 580. Meshes Φ(1) and Φ(25) are shown in Figure 4.12 along with the 

number of nodes required for piecewise constant, linear, and quadratic bases. Placement of the 

corner nodes was executed with DistMesh [305], and Delaunay triangulation was used to generate 

the element graph.71 Meshes in Figure 4.12 illustrate how triangle elements can easily 

accommodate an irregular domain. 

 Two model selection tests were conducted using the 25 meshes described above. First, tests 

were run to assess the utility of different priors. Priors were based on different combinations of 

two mean vectors, μ0 and μsmp, and two covariance matrices, Γtk and Γsq. Vectors μ0 and μsmp were 

a zeros vector and sample-based mean, respectively, and the covariance matrices had a zeroth-

order Tikhonov and square-exponential structure. All four combinations of μ and Γx were tested 

using a piecewise linear basis. The second test of model comparison featured the piecewise 

constant, linear, and quadratic bases using μsmp and Γtk. In each case, estimates were computed at 

all 501 timesteps. In order to provide a consistent baseline for comparison, reconstructions were 

compared to a projection of the ground truth using the SSIM index. 

 Results from of the model selection tests were used to select a mesh for the experiment. 

Finally, NH3 distributions were reconstructed using a sample-based prior, with μsmp and Γsmp, to 

                                                 
71 Note that the model space for this mesh scheme is infinite, and can be described by several hierarchical measures. 

 
Figure 4.12: Number of basis functions for meshes in a CST model selection study. 
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illustrate ideal reconstructions under noisy, limited-data imaging conditions. The sample-based 

covariance matrix is degenerate due to nodes that have no variance. This results in an infinite 

model credence and so Γsmp-based models cannot be included in the selection study. Nevertheless, 

the inference of x with μsmp and Γsmp is full-rank and results in highly-accurate reconstructions. 

4.2.4 Results and discussion 

Figure 4.13 shows sample reconstructions from the simulated experiment. Piecewise constant, 

linear, and quadratic estimates were computed with Φ(5), Φ(15), and Φ(25), respectively, using a 

sample-based prior, i.e., with μsmp and Γsmp. Sample-based estimates were highly-accurate despite 

the sparse structure of the measurement array and dense node arrangement of the meshes. 

Reconstructions captured the swirling motion in the concentration of NH3 due to the action of the 

static mixer. Sample-based reconstructions on Φ(25) had a mean SSIM index of 0.754 and standard 

 
Figure 4.13: Ground truth distributions of NH3 and the corresponding reconstructions on Φ(5), Φ(15) 
and Φ(25) with a piecewise constant, linear, and quadratic basis. MAP estimates were computed with 
a sample-based prior to illustrate the quality of best-case reconstructions for each grid. 

a)  b)  

Figure 4.14: Model selection applied to prior information: trends in the a) log-model likelihood and 
b) SSIM index vs. the number of basis functions. 
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deviation of 0.033. The piecewise quadratic CST model and μsmp were selected based on an 

analysis of log model likelihoods, calculated using noise-laden data. 

 Figure 4.14 shows trends in the log-model likelihood and SSIM index compared to the number 

of basis functions for the four combinations of μ0 and μsmp with Γtk and Γsq. Predictably, the quality 

of standard Tikhonov reconstructions (with μ0) degraded with increasing mesh resolution, as did 

μ0-based estimates with the square-exponential covariance. Increasing the number of parameters 

introduced posterior uncertainty, reducing the accuracy of reconstructions. However, switching 

from μ0 to μsmp improved the accuracy of estimates, reversing the trend of decreasing accuracy for 

higher-resolution grids. That is: including an estimate of the mean at additional nodes, along with 

an estimate of the covariance between nodes, was sufficient information to support the extra 

inference. As a result, for a stationary process with a smooth mean distribution, incorporating μsmp 

into the prior can permit the use of a high-resolution mesh such as Φ(25). Notably, log-model 

likelihood and SSIM index trends in Figure 4.14 were consistent for each of the priors. It is 

therefore reasonable to expect the log-model likelihood to predict the quality of reconstructions. 

 Figure 4.15 confirms the relationship between the model likelihood and reconstruction 

accuracy. Accuracy improved from piecewise constant to linear to quadratic bases, and improved 

with increasing mesh resolution, as shown in Figure 4.15b. A caveat: more nodes are required to 

support a quadratic basis than a linear basis for the same mesh. For instance, the linear basis of 

Φ(25) contains 322 nodes, compared to 1223 nodes for the quadratic basis. While the best results 

were obtained with a high-resolution quadratic mesh, it also required the greatest computation 

time. It may be desirable in some cases to select a coarser mesh to enable on-line imaging. 

a)  b)  

Figure 4.15: SSIM index vs. log model likelihood for a) different forms of prior information and b) 
piecewise constant, linear, and quadratic bases. 
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 Another important feature of model selection is that the likelihood does not distinguish 

between model classes. A class refers to models that share a discretization scheme and prior; 

meshes in a class may differ in density. Model classes are grouped together in Figure 4.15 by a 

dashed line. The figure depicts a strong relationship between log-model likelihood and the 

structural-similarity of estimates, both within a class and, largely, between classes. Therefore, it is 

reasonable to use trends in Li to choose the form of interpolation and prior information, as well as 

the optimal mesh density within a class. This procedure yields the CST model best-suited to a set 

of measurement data, without recourse to a simulated experiment. 

 Components of the log-model likelihood—V, D, and P—can inform on the trends in Li with 

respect to the mesh resolution and competing priors. Figure 4.16 illustrates the measurement 

credence, V, and fit, D + P, for a comparison between μsmp (model Mi) and μ0 (model Mj). Both 

models used the Tikhonov covariance and linear interpolation. The measurement credence is a 

deterministic function of the measurement array and finite basis. Loosely, the credence quantifies 

the information that can be extracted from a measurement using a given model, based on the 

expectations encoded in the prior. Since Mi and Mj employ the same basis and covariance, they 

share a measurement credence. Figure 4.16a shows the measurement credence increasing with 

mesh resolution. The trend is due to correlation structure of Γtk: additional parameters relate to 

each existing parameter. This relationship increases the confidence in additional parameters 

relative to cases where added parameters are unrelated to existing parameters. Fit components 

fluctuate with each measurement, reflected in the spread of fit terms in Figure 4.16a. The sample-

based mean improved the mean and variance of the fit compared to μ0. Fit terms can be used to 

a)  b)  

Figure 4.16: Comparison of μ0 and μsmp for increasing mesh density in terms of the a) log-model 
likelihood components and b) Bayes factor. Fit terms are grouped together, D + P. 
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check for model errors and the correspondence between the presumed and actual mean gas 

distribution. 

 Finally, Figure 4.16b shows the mean Bayes factor for each mesh resolution and the two sigma 

credibility interval. This figure clearly demonstrates that Mi is preferred to Mj, regardless of mesh 

density. There is also a significant upward trend in the Bayes factor, which follows from the 

relative log model likelihoods in Figure 4.14, supporting the claim that a robust estimate of the 

mean can enable CST imaging with a high-resolution mesh. 

4.3 Conclusions 
Tomographic images of a gas-phase target are sensitive to the measurement system and model 

used to represent the flow field. Limited-data CST experiments feature a small number of beams 

relative to the number of basis functions—commonly fewer than 100 LOS measurements for a 

system of several hundred variables, e.g., Refs. [89,136,149,224]. The arrangement of optical paths 

through the domain determines the spatial information that can be inferred about a target and the 

beam positions become increasingly important as the rank of a system decreases. As a result, 

optimal placement of the optical paths has been a focus of research on CST. This work reveals the 

complex relationship between the basis, reconstruction algorithm, measurement system, and 

reconstruction accuracy. Moreover, the basis is free to vary before and after an experiment, and 

can itself be optimized given a set of measurement data. The Bayesian framework for CST is 

naturally adapted to experimental design and selection of the basis, among other components of 

the tomography model. This chapter presents Bayesian functions to guide the design of gas-phase 

tomography arrays and model selection. Numerical tests were conducted to verify the performance 

of these procedures. 

 Deterministic methods for the design of CST experiments were reviewed to provide context 

for the Bayesian approach. Terzija et al. [89] proposed a heuristic for selecting a beam array. The 

authors argued that reconstruction amounts to interpolating CST data in sinogram space; it follows 

that for the best interpolation, arrangements should be selected to maximize the spread of sinogram 

coordinates. Quantitative assessment of the sinogram coverage hypothesis by Daun [288] found 

no relationship between the spread of coordinates and reconstruction accuracy. Three subsequent 

papers proposed objective functions for DOE in CST. Twynstra and Daun [289] developed a 

metric based on the resolution matrix for Tikhonov regularization; Song et al. [290] presented a 

grid weight function, motivated by the iterative action of the ART; and Yu et al. [291] devised an 



 

133 

 

operator to minimize the collinearity of the most similar pair of ray-sums. These criteria, denoted 

FD1, FD2, and FD3, did not incorporate expectations about the flow field. 

 Bayesian CST features a posterior covariance matrix, which contains information about the 

variation and correlation of reconstructed parameters. The posterior covariance is a function of the 

measurement array, error model, and prior assumptions about the flow field. In DOE analyses, the 

prior is fixed so differences in Γx|b for different arrays reflect uncertainties due to the array, itself, 

as opposed to variance and correlations inherent to the flow field. Measures of Γx|b have been 

devised to quantify the spread of the posterior pdf, which explicitly relate to statistical attributes 

of the reconstructions. Two Bayesian functions were proposed for the design of CST experiments: 

an A-optimal function, FB1, to minimize the variance of estimates, and a D-optimal function, FB2, 

to minimize the volume of posterior credibility ellipses. Section 4.1.2.3 showed that FB1 and FB2 

are structurally-similar to FD1, FD2, and FD3 given minimal prior assumptions about the flow field. 

However, the Bayesian metrics follow from a rigorous derivation, relating to confidence in the 

reconstructions, whereas the deterministic functions are essentially heuristic.72 Moreover, FB1 and 

FB2 can incorporate knowledge about the flow field through the prior covariance matrix. 

 Design-of-experiment functions for CST were evaluated with three sets of turbulent phantoms 

and two optimization scenarios. Phantom sets comprised a large, centred free-shear jet; a small, 

off-centre jet; and isotropic draws of a Gaussian random field. Flow fields contained different 

levels of anisotropy in order to test the effect of target structures on the predictive capacity of DOE 

functions. Structured and unstructured optimization scenarios were investigated. In the structured 

tests, fan-beam and parallel-beam projections were parametrized by a spacing variable. The 

unstructured test used a genetic algorithm to minimize FD1 and FB1 for all three phantom sets. 

Targets were reconstructed using both a Tikhonov algorithm and Bayesian algorithm with a 

sample-based prior (because deterministic functions were not expected to track Bayesian 

reconstruction accuracy and vice versa).73 

 The deterministic functions of Twynstra and Daun [289] and Song et al. [290] were predictive 

of reconstruction accuracy in the structured scenario while the function of Yu et al. [291] was not. 

                                                 
72 Ultimately, the norm of the resolution matrix, grid weight, and maximum collinearity each amounts to an arbitrary 

choice; whereas the Bayesian optimality criteria were derived from an analysis of the expected outcomes for a random 

variable [292]. 
73 This was numerically verified. Correlations between FD1, FD2, FD3 and Bayesian reconstruction scores and the 

correlation between FB1 and Tikhonov reconstruction scores were similarly low. 
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Results from the unstructured test revealed that the predictive capacity of FD1 and FD2 for the fan-

beam and parallel-beam arrays was specific to the particular combination of the structured 

projections and the 400-pixel basis. When beam positions were free to vary in the plane, FD1 and 

FD2 were only weakly correlated to reconstruction error. Correlations for the deterministic 

functions were weakest for jet 2, which underscores the importance of spatial information to the 

utility of DOE metrics. 

 Bayesian DOE functions were consistently predictive of reconstruction accuracy. Fan-beam 

and parallel-beam optimizations with FB1 featured a small range of error and non-linear 

relationships between the spacing parameter and reconstruction accuracy. Nevertheless, FB1 

consistently approximated the optimal arrangement. Naturally, the range of error was greater in 

the unstructured test. The genetic algorithm explored a large space of beam arrays, revealing a 

strong, general relationship between the Bayesian objective function and reconstruction accuracy. 

Bayesian correlations exceeded 0.93 for all three phantom sets, compared to a maximum 

deterministic correlation of 0.67. Optimal arrangements for the Bayesian functions were intuitive. 

Beam arrays for the jet phantoms were distributed around areas of high variance in the domain, 

with a large circle of beams centred around jet 1 and a tight circle around jet 2. The optimal array 

for FB1 with a uniform prior had beams that were evenly-distributed throughout the measurement 

plane, which closely resembled the array that minimized FD1. This result coheres with the 

comparison of FD1 and FB1 in Section 4.1.2.3. Absent flow-specific information, the Bayesian 

functions contain the same structural information as the deterministic functions. Reconstruction 

accuracy was consistently greater for the Bayesian estimates. And FB1 was the most predictive of 

error in the unconstrained scenario. These results suggest that the Bayesian framework for 

experimental design in CST is preferable to a deterministic approach. 

 Once a beam arrangement has been fixed and experimental measurements made, the model 

used to reconstruct a flow can optimized. CST models comprise the discretization scheme, 

measurement operator, and prior pdf. Bayesian inference is conditioned on the model, which is 

itself conceived as an unknown quantity. Models are compared using a Bayes factor that quantifies 

the odds of one model producing the data over another model, accounting for the effects of noise 

and uncertainty. The procedure assumes models that can generate the data from a constrained set 

of system states will yield robust parameter estimates. This chapter describes the first application 

of Bayesian model comparison to CST: to select a grid resolution, mode of interpolation, and prior. 
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 Bayesian model selection begins with a statement of Bayes’ equation where the model itself 

is an unknown quantity. In principle, a prior can be developed for the model space; but model 

priors require comprehensive information about the possible space of discretization schemes and 

priors. Absent detailed information about the model space (rarely available in the CST context), a 

uniform prior is selected and the model inference reduces to a maximum likelihood formulation. 

The model likelihood is equivalent to the evidence in the initial Bayesian formulation of CST; and 

the joint-normal pdfs, discussed in Chapter Two and Chapter Three, enable direct calculation of 

the evidence/model likelihood. Model selection involves the calculation of this likelihood for a set 

of candidate models and the model with the greatest likelihood for a set of measurements is said 

to have most probably generated the data—this model is selected, accordingly. Log-scale model 

likelihoods are used to stabilize the comparison and this chapter introduces a decomposition of the 

log-model likelihood. Three key components of the likelihood are related to model performance: 

the measurement credence, prior fit, and data fit. 

 Candidate models were generated using a finite element discretization scheme. Finite element 

meshes can support high-order interpolation and accommodate complex geometries. Meshes of 

increasing resolution were compared for three classes: using piecewise constant, linear, and 

quadratic interpolation. High-order bases approximate gas distributions better than low-order 

bases but require additional parameters, resulting in greater posterior uncertainty. Finite element 

meshes provide a good test case for model selection due to the trade-off between flexibility and 

uncertainty. The selection technique was demonstrated using a simulated SCR scenario. Phantoms 

were obtained from the LES of Zöchbauer et al. [304]; 25 meshes of increasing resolution were 

generated for the measurement plane; and absorption data were simulated for the eight-beam array 

of Stritzke et al. [149], which motivated the choice of a SCR scenario. 

 Models were constructed using the 25 meshes, three modes of interpolation, and four priors. 

Log-model likelihoods were calculated for each model and compared to the reconstruction 

statistics. Results of the model selection tests show that the model likelihood is a good predictor 

of reconstruction accuracy, both within a model class and between classes. The log-model 

likelihood can be used to select the form of mean and covariance information, resolution of the 

basis, and mode of interpolation. Moreover, the results illustrate how components of the model 

likelihood can be examined to explicate trends in the Bayes factor. In the SCR scenario, a sample-



 

136 

 

based prior supported the use of a high-resolution mesh and high-order basis (piecewise quadratic), 

resulting in accurate reconstructions of the NH3 concentration field. 

 This chapter demonstrated that Bayesian methods for DOE and model selection—derived 

from Bayes’ equation—are powerful tools for gas-phase tomography. Both methods take 

advantage of prior information to improve the accuracy of CST: optimizing measurement systems, 

and selecting a form of representation for gas imaging. 
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Chapter Five  
Broadband Absorption Chemical Species Tomography 

Chapters One through Four presented the fundamentals of Bayesian CST and theoretical 

developments that follow from the Bayesian framework. The next two chapters concern novel 

applications of gas-phase tomography, motivated by emissions detection and combustion 

monitoring scenarios, in turn. Methodological improvements are introduced in both cases and 

reconstructions are carried out with a Bayesian algorithm. This chapter presents a new technique 

for low-cost tomographic detection of emissions called broadband absorption CST. 

 Simple hydrocarbon molecules and VOCs from upstream oil and gas facilities make up a 

considerable portion of Canada’s greenhouse gas production [306]. VOCs from the Canadian 

energy sector grew by 24% from 1990 to 2013 due to increased production and now account for 

10% of the sector’s greenhouse inventory [307]. Gaseous emissions are released at each stage of 

fuel production, including by inefficient flare combustion; valve, seal, and pipe joint leaks; and 

evaporation from the surface of oil-water separators and tailings ponds. Methane from flaring is a 

primary contributor to the greenhouse warming effect and fugitive emissions such as benzene, 

toluene, ethylene, and xylene (BTEX) have an adverse influence on human health and ecological 

stability. Benzene is a potent carcinogen [308] and elevated BTEX levels near gas production 

facilities have been associated with symptoms including fatigue, headaches, dizziness, nausea, 

respiratory irritation and asthma [309,310]. Correspondingly, there is a strong interest in reducing 

CH4 emissions and the release of VOCs, particularly BTEX molecules because of their prevalence 

and acute adverse health effects. 



 

138 

 

 Canada, the United States, and other nations have enacted regulations that require polluters to 

quantify their emissions [311,312]. Accurate emissions inventories are needed to develop and 

enforce mitigation strategies and inform climate models. Flux totals from industrial sources are 

presently estimated using point-concentration measurements (e.g. flame ionizing detectors (FIDs) 

[313], catalytic pellistor sensors [312,314], semiconductor sensors [315], and closed-path 

absorption spectroscopy [316]) coupled with empirical emissions factors and mass balance 

calculations [317]. These practices are limited by the locality of point-concentration data—as 

discussed in the introduction—and yield markedly unreliable estimates [35,318]. Moreover, point-

measurement surveys are costly, time-consuming, and often require personnel to work in 

hazardous conditions. Stand-off optical methods for quantifying fugitive emissions, such as gas-

phase tomography, can generate the reliable, spatially-resolved measurements that are necessary 

to meet reporting requirements. 

 Chapter One provided a detailed overview of optical techniques for the remote sensing of 

emissions. These include DOAS, DIAL, TDL absorption spectroscopy by DAS or WMS, and 

broadband imaging with an IR camera. Industrial sources of fugitive emissions are typically 

anisotropic, distributed across a large area (e.g., the surface of an oil-water separator), and subject 

to change over time due to transient environmental conditions (temperature, humidity, wind speed, 

etc.). Many sources are characterized by bursts of activity that result in a thick-tailed distribution 

of mass flux over time. The bulk of emissions are released during short segments and it is important 

to develop diagnostics that are easily-adapted to long-term monitoring in order to properly 

characterize a VOC source. 

 Open path devices are well-suited to detect distributed fugitive emissions and broadband 

measurements can be safely conducted using low-cost commercial devices. Moreover, many of 

these devices are intrinsically safe, meaning they can be used at industrial facilities without 

modification. In principle, broadband LOS data contains the information necessary to carry out 

quantitative gas-phase tomography of an emissions source. However, the governing IFK for 

absorption CST is derived from the Beer-Lambert law, which applies to a monochromatic 

absorption coefficient. Broadband transmittances convolve spectral information; as a result, 

measurements are a non-linear function of the gas burden. An alternative procedure is required to 

reconstruct a gas-phase flow field from coupled open path broadband measurements. 
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 This chapter reports the development of such a procedure, starting from the fundamental 

model of IR absorption. Results from the first broadband absorption CST experiment are presented 

along with a Bayesian uncertainty analysis. Thermal emission and broadband detection units used 

in the experiment were constructed by Roger Tsang, as described in his master’s thesis [28]. Light 

from the emission unit was generated with an incandescent source (a silicon carbide globar) and 

transmittance measurements were made with photovoltaic detector equipped with a bandpass 

filter. The filter range was aligned with the main rovibrational C-H stretching band at 3.4 μm. 

While bandpass filters omit most incoming radiation, they combine light over a range that includes 

many spectral lines. The integral equation of interest is nested in an exponential function, which 

is convolved in broadband measurement, thereby producing a non-linear dependence on the 

emission burden. A transfer function was derived to infer the linear path-integrated concentration 

for a measurement line from the broadband transmittance. Transfer functions are specific to the 

target species over a set spectral range and this chapter presents functions for CH4, C2H4, and C3H8 

with bounds that corresponds to a commercial bandpass filter. Spectral data for CH4 and C2H4 

were calculated using a line-by-line model with parameters from the HITRAN database [228]. The 

C3H8 spectrum was obtained from a high-resolution spectral transmittance database [319]. 

 Finally, the broadband reconstruction technique was demonstrated by imaging a momentum-

driven C3H8 plume, perturbed by advection. LOS measurements were made with a 35-path array 

and linearized by the C3H8 transfer function. The Bayesian framework was employed to 

reconstruct the plume with a smoothness prior; and uncertainties were estimated in a Bayesian way 

by calculation of the posterior covariance matrix. Concentration measurements of the plume were 

made with a FID to validate the procedure. Tomographic data were in good agreement with the 

FID measurements. Results from this experiment support the development of broadband 

absorption CST for the quantification of anisotropic, time-varying hydrocarbon emissions. 

5.1 Broadband infrared spectroscopy 
Molecular spectra consist of lines, bands, and systems, which are convolved in broadband 

transmittance data. Narrow bandpass filters are selected to align with strong rovibrational 

transitions in a target species to generate a unique signal for tomographic reconstruction. Transfer 

functions that convert the signal into a linear measurement are derived from the filter bounds and 

spectroscopic features of the molecule of interest. In order to justify the form of the transfer 

function, it is necessary to understand the physical basis for optical gas detection. 
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 Spectroscopy exploits the interaction between light and matter to identify and characterize a 

species. Atoms contain charged and uncharged particles (protons, electrons, neutrons), arranged 

in a stable unit. An electric dipole moment arises when the charge about an atom or molecule 

accelerates during electronic reconfiguration, the bulk motion of a polar molecule, or the relative 

motion of its atoms. The accelerating charge perturbs the surrounding electromagnetic field, which 

acts upon the molecule, in turn. This mode of exchange facilitates the absorption, emission, and 

scattering of radiation. Light-matter interactions occur between specific energy levels, Ei and Ej, 

which correspond to the quantum states i and j. The shift in energy represents a spectral line: ΔE 

= Ej – Ei = hcηij, where ηij is the central wavenumber of the transition. 

 Spectral features are described in terms of the position, strength, and shape of spectral lines, 

which are illuminated by simple spectroscopic models. The internal energy of a molecule is 

commonly specified with respect to electronic, rotational, and vibrational components, Ei = Eelec + 

Erot + Evib, each associated with a characteristic energy range and corresponding model. IR lines 

arise from combined rotational and vibrational—rovibrational—transitions, whereas electronic 

transitions are more energetic and fall outside the scope of IR spectroscopy. This section reviews 

some fundamentals of IR spectroscopy and demonstrates the calculation of spectral bands for 

broadband tomography. The semi-classical treatment of spectroscopy in this chapter can be found 

in texts such as Banwell and McCash [320] and Hanson et al. [321] and rigorous quantum 

mechanical derivations are provided by Struve [322]. 

5.1.1 Rotational transitions 

5.1.1.1 Transition strength 

The energy of rotational transitions be understood by introducing an ideal diatomic molecule and 

relaxing the simplifications to approximate more realistic behaviour. Rotation of the molecule is 

modelled with a rigid rotor system, shown in Figure 5.1, where the atoms are point masses, m1 and 

m2, connected by a bond of length req = r1 + r2.
 74 Classically, the moment of inertia is 

 
2

rot eqI r , (5.1) 

where μrot is the reduced mass of the system, 

                                                 
74 For real atoms, m ~ 10-13 cm and r ~ 10-8 cm, so the point-mass assumption is justified. 
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 Molecules are represented by a wavefunction in quantum mechanics, and evolution of the 

wavefunction is governed by Schrödinger’s equation.75 Solving for the wavefunction of a diatomic 

rigid rotor yields the moment of inertia, 

 
rot

2
( 1)J

h
JI


  , (5.3) 

where ωrot is the angular velocity and J is the rotational quantum number. The rotor’s 

wavefunction only satisfies Schrödinger’s equation when J is an integer, meaning that the 

quantized nature of molecular states naturally follows from the governing equation. Rotational 

energy of a molecule in J, εJ, is typically calculated in terms of the corresponding wavenumber. 

Since radiative energy equals hcη, the rotational energy in wavenumbers is 

 2rot
rot 2
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



  , (5.4) 

where B is the rotational constant. Equation (5.4) says that rotational states which can be occupied 

by a rigid diatomic molecule—and which thereby give rise to rotational lines—are fully-

determined by fundamental constants, the rotor’s moment of inertia, and a quantum number, J. 

Transition probabilities can be calculated from the wavefunction, which reveals limitations on 

                                                 
75 The time-independent form of Schrödinger’s equation is d2Ψ/dx2 + (8π2m/h2)[E – U(x)]Ψ(x) = 0, where Ψ is the 

wavefunction [374], which describes the motion of a particle of mass m moving through a potential field, U. The 

probability that the particle will be measured in x + dx is given by ΨΨ*, where Ψ* is the complex conjugate of Ψ. 

 
Figure 5.1: Models of a diatomic atom: a rigid rotor model for pure rotational transitions and a 
vibrating rotor model for rovibrational transitions. 
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state transitions, resulting in so called selection rules.76 For a diatomic rigid rotor, the selection 

rule is ΔJ = ±1; the allowable rotational transition energies are: ΔεJ→J + 1 = 2B(J + 1). Energy levels 

and transitions of the rigid rotor are shown in Figure 5.2. While rotational transitions occur for all 

molecules, they are only observed by absorption or emission if rotation induces a dipole moment. 

 Simple molecules such as CO behave like a rigid rotor at low rotational energy levels. In 

reality, the bond length increases with rotational velocity and atomic vibrations affect the rotational 

momentum. Moreover, the rigid rotor only describes the rotation of diatomic molecules. Stretching 

effects are corrected with centrifugal and vibrational distortion terms; and the wavefunction for a 

non-rigid rotor relaxes the selection rules, permitting additional transitions. Similar analyses are 

conducted for triatomic linear molecules and 3D molecules with rotational symmetry [321].77 

These solutions are applied to predict the onset and spacing of rotational spectral lines in a wide 

array of molecules. Anomalies between predicted and observed transition energies are used to 

learn about molecular structures. 

5.1.1.2 Transition intensity 

Once the energy of a transition has been established, the probability of transition is calculated to 

determine the line strength. Rigid rotor transitions from J to J + 1 or J – 1 are equally probable for 

                                                 
76 The probability of transition from i to j is proportional to the integral of ΨiμdipΨj

* over the space elements, where 

μdip is the permanent electric dipole moment [374]. Valid transitions are indicated by a non-zero integral. 
77 Molecules have three principal axes of rotation, IA, IB, and IC, and are classified as linear rotors (IA ≈ 0, IB = IC), 

symmetric tops (IA ≠ 0, IB = IC), spherical tops (IA = IB = IC), and asymmetric tops (IA ≠ IB ≠ IC). Non-rigid corrections 

have been developed for linear rotors and symmetric tops, spherical tops are rotationally inactive (i.e., rotation does 

not produce a dipole moment), and transitions for asymmetric tops are only identified numerically or empirically. 

 
Figure 5.2: Energy levels for valid transitions of a diatomic rotor; pure rotational transitions in 
heteronuclear rotors generate microwave lines. 
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a given molecule but the line strength depends on the relative number of molecules in the lower 

and upper states. For a molecules in LTE, states are populated according to a Boltzmann 

distribution, 

 
0 B B

exp e
( 1)

xpJ JN E BhcJ J

N k T k T

   
      

 



 
, (5.5) 

where NJ is the number of molecules in J and J = 0 is the ground rotational state. The probability 

of transition also depends on the degeneracy of states. For rotational states, degeneracy is 

determined by the number of valid directions of the angular momentum vector, P = Iωrot, where 

the state corresponds to a constant magnitude, |P|. Substituting Eq. (5.3) into the definition of P 

reveals that the magnitude of P will take quantized values, 

 ( 1)
2

h
J J


 P . (5.6) 

The direction of P is also quantized. Integrating the rigid rotor wavefunction and its complex 

conjugate reveals that P may point in any direction such that the projection of P onto a reference 

vector is an integer multiple of h/2π [320]. There are 2(J + 1) such directions for any state, which 

results in a modification to the state populations, 
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 
, (5.7) 

where σsym is a symmetry factor and θrot = hcB/kB is a characteristic temperature, usually on the 

order of 1 K, which relates to the spacing of rotational lines.78 Pure rotational transitions reside in 

the microwave spectrum but rotational and vibrational transitions are intrinsically related and the 

rigid rotor model is thereby relevant to hydrocarbon spectra in the IR region. 

5.1.2 Vibrational transitions 

Vibrations in a diatomic molecule are modelled by replacing the rigid rotor with a simple harmonic 

oscillator. The mass-spring system features point-mass atoms, connected by a massless spring, 

oscillating in a frictionless plane; this model is depicted alongside the rigid rotor in Figure 5.1. 

Force due to atomic vibrations is given by Hooke’s law, 

                                                 
78 The symmetry factor describes the number of principle rotations for which the molecule appears identical. Consider 

the case of diatomic molecules: σsym = 2 for homonuclear rotors whereas σsym = 1 for heteronuclear rotors, since the 

molecule is asymmetric. 
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vib vib eq( )F k r r   , (5.8) 

where r is the separation of the atoms, req is the bond length at equilibrium, and kvib is the spring 

constant for the rotor (i.e., the bond energy). The potential energy of the system is 

 2

pot vib eq

1
( )

2
E k r r  . (5.9) 

 Figure 5.3a shows the energy potential for a simple harmonic oscillator. The frequency of this 

system in wavenumbers is 

 vib
vib

rot

1

2

k

c


 
 . (5.10) 

Solving for the wavefunction of the harmonic oscillator yields the total vibrational energy, 

 
vib vib( 1/ 2)vE   , (5.11) 

where v is the vibrational quantum number. Interestingly, the lowest vibrational energy level is 

ωvib/2 (i.e., molecules always contain vibrational energy). 

 As with rigid rotors, the oscillator’s wavefunction will only satisfy Schrödinger’s equation 

when v is an integer. Discrete energy levels for the simple harmonic oscillator accompany the 

energy potential in Figure 5.3a. Potential and kinetic energy follow a continuous curve but the total 

energy is restricted to angular frequencies that correspond to an integer value of v. The selection 

rule for a diatomic oscillator is Δv = ±1, in which case 

 
1 vib vib vib( 1 1/ 2) ( 1/ 2)v v v vE           . (5.12) 

Equation (5.12) holds for absorption and emission and predicts equally-spaced vibrational states.79 

 Real molecules deviate from the harmonic idealization in several ways, resulting in 

anharmonic vibrations. The most substantial correction is the altered potential—shown alongside 

the harmonic oscillator’s potential in Figure 5.3b—which reflects the possibility of dissociation 

and impossibility of nucleic contact.80 This potential modifies the wavefunction, resulting in the 

vibrational energy levels for an anharmonic oscillator, 

                                                 
79 Note that these vibrations are only visible when they induce a dipole moment, which is only possible in the case of 

a heteronuclear diatomic molecule because homonuclear diatomic rotors are symmetrical. 
80 One common semi-empirical potential is the Morse function: E = Deq[1 – exp{a(r – req)}]2, where Deq is the 

dissociation energy and a is a molecular constant. Correction terms in Eq. (5.13) are found by substituting the Morse 

function into Schrödinger’s equation. 
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 2 3

vib vib vib( 1/ 2) ( 1/ 2 )) (cE v x v v      , (5.13) 

where the anharmonicity constant, xc, is strictly positive. Selection rules are modified in the 

anharmonic case, introducing larger transitions (i.e., Δv > 1). However, since the population of 

molecules above ε0 is minimal at equilibrium, dominant transitions are positive: Δv = 1, 2, etc. The 

first vibrational transition yields the fundamental absorption band and subsequent transitions 

generate overtone bands. (Overtone bands are forbidden for simple oscillators but ubiquitous 

among real molecules.) 

 Vibrational state populations for molecules in LTE follow a Boltzmann distribution, 

 vib vib

0

1 exp expv v

N T T

N      
       

    
, (5.14) 

where θvib = hcωvib/kB is a characteristic temperature that relates to the strength of vibrational 

transitions, analogous to θrot; θvib is usually on the order of 1,000 K. The difference in magnitude 

between θrot and θvib is reflected in the position of spectral lines. While rotational lines occupy the 

microwave spectrum, vibrational transitions are active at IR energies. 

5.1.3 Rovibrational bands 

So far, rotational and vibrational transitions have been discussed independently. However, these 

transitions are typically coupled and can be combined in a linear fashion, which amounts to the 

Born-Oppenheimer approximation. This simplification results in the vibrating rigid rotor model of 

a)  b)  

Figure 5.3: Vibrational states and energy potentials for a diatomic molecule: a) vibrational levels for 
a simple harmonic oscillator and b) a semi-empirical potential for a real diatomic rotor (i.e., a Morse 
potential). 
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diatomic molecules.81 Ignoring the minimal contribution of centrifugal distortion, the energy of a 

vibrating rigid rotor in the rotational state J and vibrational state v is 

 
2

, vib vib( 1) ( 1/ 2) ( 1/ 2)J v cBJ J v x v       . (5.15) 

Anharmonic vibrations remain important to the spectrum and the quadratic correction term is 

retained in Eq. (5.15). Selection rules for coupled transitions are unchanged except that vibrational 

transitions with no rotational component (i.e., ΔJ = 0 and Δv ≠ 0) are forbidden for diatomic rotors. 

As mentioned in the previous section, the dominant vibrational transition is Δv = 1 (the 

fundamental band). In general, for Δv = 1, the rovibrational transition from the lower rotational 

state, Ji, to the upper state, Jj, is 
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. (5.16) 

 Figure 5.4 shows rovibrational energy levels and transition intensities for the fundamental 

absorption band of a simple diatomic rotor. Line positions were calculated with Eq. (5.16) and 

relative line intensities were found by combining Eqs. (5.7) and (5.14) using a rotational constant 

of 5 cm-1 and temperature of 300 K. The absorption band is divided into two branches: the R branch 

for ΔJ = 1 and P branch for ΔJ = –1. Non-linear molecules can feature vibrational transitions with 

ΔJ = 0, resulting in a central branch called the Q branch. Otherwise, the distance between the R 

                                                 
81 Of course, there is an inherent tension in the idea of vibration in a “rigid” rotor; nevertheless, the approximation is 

useful. Proper analysis of the dipole induced by a vibrating rotator increases the accuracy of line positions. 

a)  b)  

Figure 5.4: Rovibrational transitions for a diatomic rotor: a) transitions and line spacing for the 
fundamental band and b) an ideal rovibrational spectrum. 
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and P transitions is called the null gap. The line structure of overtone bands, where Δv > 1, is 

approximately the same as the fundamental band structure. Overtone lines are much less intense, 

however, typically reduced by a factor of 10 to 1,000. In the case of hydrocarbons R, Q, and P 

branches are evident in the rovibrational lines due to asymmetric stretching of C-H bonds. 

 Real molecules violate several of the assumptions used to construct the vibrating rigid rotor 

model. Correction terms are required to account for the energy of a non-rigid, anharmonically-

vibrating rotor. Moreover, alternative models must be developed to obtain the spectrum of 

triatomic rotors, spherical tops (e.g., CH4), and symmetric tops. Nevertheless, the basic band 

structure of a vibrating rigid rotor appears in the spectra of many molecules—including 

asymmetric tops such as C2H4 and C3H8. The onset, spacing, and relative strength of spectral lines 

determines the broadband absorption behaviour of a molecule and rotor analyses can structure 

observations of spectroscopic phenomena—including the position and strength of overtone bands. 

Hanson et al. [321] provide a complete treatment of spectroscopy models for engineers. 

5.1.4 Line strength 

5.1.4.1 Absorption probabilities 

Spectral lines are observable by three mechanisms: absorption, where the molecule jumps from 

the lower state to an upper state; and spontaneous or stimulated emission, where the molecule 

relaxes from an upper state to a lower state. These events occur in proportion to the number density 

of molecules in the transition states, Ni (lower) and Nj (upper), moderated by incident light at the 

transition wavenumber. Emission and absorption are inherently stochastic and transitions are 

characterized by the probability of an event over time, quantified by Einstein A and B coefficients. 

The A coefficient relates to spontaneous emission and B coefficients relate to absorption and 

stimulated emission. Innate transition probabilities are combined with the local distribution of 

molecules to calculate the propensity of a gas to absorb or emit light. This propensity is 

summarized by the absorption coefficient, κη, which is the reconstructed quantity in 

monochromatic absorption CST and forms the basis of the transfer function, as described in 

Section 5.2. 

 For very simple systems, such as a single hydrogen atom, the probability of spontaneous 

emission can be computed from quantum theory. In complex systems, however, aggregate 

behaviour is described by the Einstein coefficients, which are innate properties of a transition but 

must be empirically determined. To understand the function of these coefficients, consider a 
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system with two states: a lower state, 1, and upper state, 2. The transition rate due to spontaneous 

emission (usually in molecules per time) is N2A21.
82 Absorption and stimulated emission depend 

on the amount of incident light at the transition wavenumber, Iη.
83 The rate of absorption is 

N1(IηB12) and the rate of stimulated emission is N2(IηB21). Since the system only has two states, 

rates of relaxation and excitation must be equal in equilibrium: N1IηB12 = N2(A21 + IηB21). Intensity 

depends on the environment and the coefficients are not yet known. However, the relationship 

between A21, B21, and B12 can be seen by applying an energy balance to an isolated medium in 

LTE. Intensity is a function of the transition rates, 
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the ratio of states, N1/N2, follows the Boltzmann distribution; and emission by the medium follows 

the Planck distribution. Substituting these distributions into Eq. (5.17) reveals a connection 

between A and B coefficients, 
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where g1 and g2 are lower and upper statistical weights that account for degeneracy of the states. 

Note that the transition energy is related to the radiative energy, ΔE = hcΔη. Hence, for Iη at Δη, 

Eq. (5.18) leads to the Einstein relations, 
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c
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 . (5.19) 

 Equation (5.19) indicates that any one of A21, B21, and B12 can fully characterize the innate 

probability of an absorption- or emission-based transition between two states. (For instance, a large 

decay rate suggests both substantial absorption and substantial spontaneous emission.) Next, this 

information is related to the abundance of a target molecule and used to construct a quantitative 

spectroscopic model. 

                                                 
82 If the analysis is restricted to spontaneous emission then dN2/dt = –N2A21 and N2 ∝ exp{–A21t}. That is, the Einstein 

A coefficient is directly related to the radiative lifetime and half-life of an excited state. 
83 Here, the incident intensity, Iη, represents an average over all directions as well as the spectral range about the 

broadened transition line. 



 

149 

 

5.1.4.2 Developing the spectral absorption coefficient 

Einstein coefficients characterize the fundamental relationship between states—sometimes called 

the innate strength of a transition. The absorption coefficient from the Beer-Lambert law describes 

light attenuation due to absorption, minus the contribution of stimulated emission;84 the coefficient 

can be expressed in terms of B12 and B21. The energy balance of light over a differential path, of 

length du, is [323] 

 

Emission probability Absorption probability

2 21 1 12

2 21 1 12[ ] ( )
N B N B

du h du h N
I I h

I B B du
c c

N I
c

 

 


        . (5.20) 

The differential wavenumber, δη, indicates that absorption occurs over a finite (albeit 

infinitesimal) spectral width. (The next section shows how to determine the energy distribution of 

a transition—given by f—but the distribution is not required to calculate the relationship between 

a transition strength and absorption coefficient.) Rearranging Eq. (5.20) reveals the absorption 

coefficient, 
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For molecules in LTE, the Boltzmann distribution relates the populations in states 1 and 2 and the 

ideal gas law is used to compute the target molecule’s number density. Finally, the lineshape from 

Chapter Two accounts for the wavenumber differential, 
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where Q is the total internal partition sum. Separating the number density from the line intensity, 

Sij, is convenient in CST since κη is used to infer χ. This form of Sij is called the number density 

normalized line intensity. 

                                                 
84 The direction of spontaneous emission is uniformly distributed and its contribution to a collimated beam is 

negligible. As such, while line intensity is often expressed in terms of A21, the absorption coefficient, B12, is a more 

natural choice for absorption spectroscopy 
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5.1.5 Lineshape 

So far, transitions have been discussed in terms of a precise energy that corresponds to a single 

wavenumber. Transitions occur over a finite duration and have a finite energy due to the quantized 

nature of electromagnetic radiation, but these values are not infinitely precise. Instead, the 

uncertainty principle limits the combined precision of the time and energy associated with a 

transition. As a result, spectral lines have a natural width that is broadened by kinetic and electric 

effects. Lines are modelled in terms of their intensity and shape, which is itself a function of the 

state of the gas. The lineshape is normalized by the line such that f integrates to unity; the definition 

of the lineshape function is 
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Thus f only describes the distribution of energy about the line centre, ηij. Broadening mechanisms 

determine the shape of f. Dominant forms of broadening in CST are natural, collisional, and 

Doppler broadening, discussed below, which are collectively described by a Voigt profile. 

Lineshapes for these mechanisms can be seen in Figure 5.5. 

5.1.5.1 Natural broadening 

Spontaneous emission from j to i occurs over some duration, Δt, and releases some energy, ΔE = 

hcΔη. The characteristic duration for an excited state is its lifetime, τji = Aji
–1, and the uncertainty 

principle states that ΔEΔt ≥ h/2π. Therefore, transitions have an intrinsic spectral width, Δη = 

Aji/2πc; this result is said to be a lifetime limited phenomenon. Another way to understand natural 

broadening is to observe that any process with duration in the temporal domain—required by the 

uncertainty principle, in this case—has width in the frequency domain. 

 
Figure 5.5: Normalized lineshapes with a Lorentzian, Doppler, and Voigt profile. 
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 The persistence of an excited state is characterized by an exponential decay, parametrized by 

the A coefficients for that state: nupper ∝ exp{–At}.85 Hendrik Lorentz modelled spontaneous 

emission as a damped oscillator. He took the Fourier transform of the system to determine the 

corresponding distribution in frequency space. The resulting lineshape function is said to have a 

Lorentzian profile, 
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where Δη/2 is the full width at half maximum; for natural broadening, ΔηN = Aji/2πc. See 

Demtröder [324] for a derivation of fL. 

5.1.5.2 Collisional broadening 

Molecular collisions can induce a rovibrational transition, where a large number of collisions will 

appreciably reduce the lifetime of an excited state. Faster decay in the temporal domain 

corresponds to a broader profile in the frequency domain. Collisional broadening is thus a lifetime 

limited phenomenon, derivative of natural broadening. Collisions effectively decrease Δt and the 

lineshape for collisional broadening is the Lorentzian profile of Eq. (5.24). The collision-

broadened full width at half maximum depends on the chemical composition of a medium, 

 
C 2 ( )k k

k

p T    , (5.25) 

where p is the total pressure and χk and γk are the mole fraction and collisional broadening 

coefficient of the kth species. Temperature effects are approximated with a correlation, 
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where n is an empirical, transition-specific factor that can vary from –0.3 to 1 [40]. 

 Equation (5.25) is derived from analysis of the mean collision frequency between two 

arbitrary species. The derivation features a collisional cross-section that must be empirically 

determined. Complex models of collisional broadening for high-energy collisions account for 

changes to the potential wells of colliding particles. By contrast, Eq. (5.25) assumes a large 

interatomic distance at the point of transition, such that the energy difference is invariant to the 

shape of the potential. High-energy models are a function of the mixture composition and energy 

                                                 
85 The overall A coefficient for an upper state is the sum of transition-specific coefficients for all valid lower states, i. 
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states involved in a transition. Furthermore, high-temperature effects (e.g., due to shifted state 

populations and velocity distributions) are accommodated with speed-dependent lineshapes. 

 Collisional broadening dominates the shape of hydrocarbon emissions at standard conditions. 

5.1.5.3 Doppler broadening 

The Doppler effect is a general phenomenon in which a wavelength is shifted due to the relative 

velocity between the wave source and an observer. Electromagnetic radiation has a constant 

velocity, irrespective of the frame of reference, but the wavelength/wavenumber is a function of 

perspective: molecules travelling towards a light source see photons with a different energy than 

molecules travelling away from the source. This effect manifests in gas spectra in two ways. Bulk 

motion of a fluid introduces a coherent Doppler shift, where the initial lineshape is preserved but 

the line centre is shifted. By contrast, thermal motion within the fluid is characterized by the 

random motion of particles. The combined effect of Doppler-shifted light for particles moving in 

all directions is a broadened lineshape that relates to the gas temperature. 

 Molecules see light at a shifted wavelength, Δη = η(1 – vp/c), where vp is the component of a 

molecule’s velocity in the direction of a colliding photon. The velocity distribution determines the 

width and shape of Doppler broadening. Kinetic theory dictates that molecular motion due to 

thermal energy follows a Maxwellian distribution. Substituting the shifted wavelength into this 

distribution for a given lower energy state and normalizing the result produces the Doppler 

lineshape [320], 
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Equation (5.27) is a Gaussian distribution about the line centre, characterized by the temperature-

dependent Doppler width, 
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where m0 is the molecular mass of the target species. 

5.1.5.4 Voigt profiles 

Natural, collisional, and Doppler broadening are all present in gas-phase LOS measurements. Near 

standard conditions, natural broadening is minuscule compared to collisional and Doppler effects 
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(natural broadening is observable primarily due to its participation in collisional broadening). The 

Gaussian profile of Doppler broadening is relatively important about the line centre and the 

Lorentzian profile of collision broadening dominates the wings, illustrated in Figure 5.5. However, 

these mechanisms act independently of one another and the resulting lineshape, called a Voigt 

profile, is given by the convolution of Eqs. (5.24) and (5.27), 
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where a = ln(2)1/2ΔηC/ΔηD and w = 2 ln(2)1/2(η – ηij)/ΔηD. Equation (5.29) is solved using lookup 

tables or a correlation, such as that of Whiting [325]. 

5.1.6 Calculating absorption spectra 

Absorption and emission events are independent and most optical diagnostics rely on a large 

number of transitions and a target fluid in LTE. Under these conditions, which prevail in the 

emissions detection context, the absorption coefficient is a simple summation of the transition-

specific coefficients, κη,ij, for all valid transitions: 

 
,ij

ij
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Parameters to calculate the position, strength, and shape of spectral lines for common molecules 

are available in databases such as the high-resolution transmission (HITRAN) database [228]. 

Line-by-line parameters for complex molecules, including C3H8, are often unavailable, but κη can 

be inferred in many such cases using an empirically-derived transmittance profile. This study 

a)  b)  

Figure 5.6: Mid-IR absorption spectra: a) spectra for CH4, C2H4, and C3H8 and b) a line-by-line 
summation of individual CH4 transitions. Line parameters for CH4 and C2H4 were calculated using 
HITRAN parameters [228]; C3H8 spectra were inferred from PNNL absorbance data [319]. 
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employs a line-by-line model of κη for CH4 and C2H4 based on HITRAN parameters [228], and an 

empirical profile of κη for C3H8 using data from the vapour phase infrared spectral library [319]. 

Figure 5.6 shows absorption coefficient profiles for all three targets. Stretching of the C-H bond 

gives rise to rovibrational transitions in the mid-IR; the R/Q/P band structure derived from the 

rotor model is especially apparent in the CH4 spectrum. 

5.2 Broadband Absorption Transfer Function 
Direct absorption and wavelength modulation spectroscopy generate a spectrally-resolved 

measurement of Iη (or its harmonics), used to determine κη across an absorption feature. These 

features are sensitive to the abundance, temperature, and pressure of an absorbing gas. 

Spectroscopic models of the targets can be used to infer the composition and state of a mixture 

from DAS or WMS data. Moreover, per Chapter Two, the logarithm of monochromatic 

measurements, ln[Iη(0)/Iη(L)], is a linear function of the absorption coefficient, which enables 

reconstruction of κη by computed tomography. 

 Broadband measurements for open path IR spectroscopy are typically made with a bandpass 

filter and photovoltaic detector. The result is one transmittance per LOS (as opposed to a spectral 

profile), which convolves spectral features and has a non-linear dependence on the emissions 

burden. However, κη can be decomposed into a shape factor, Cη, and emissions volume fraction, 

χ. This decomposition is substituted into the expression for broadband transmittance to isolate an 

integral equation of χ. An empirical transfer equation relates transmittance data to the integral, 

which forms the basis of broadband absorption CST. Derivation of this function and the calculation 

and verification of target-specific transfer equations are described in Sections 5.2.2 and 5.3, 

respectively. 

5.2.1 Transmittance measurement 

Absorption data for broadband tomography is generated by light from a thermal source, attenuated 

by the target, passed through a bandpass filter, and measured with a photovoltaic detector. Power 

incident on the detector, located some distance, L, from the source, is 
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Terms in Eq. (5.31) can be categorized as relating to emission from the source, absorption by the 

gas, and spectral characteristics of the detector. Source terms include Ccfg, a geometric 
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configuration factor that accounts for the fraction of energy from the source that reaches the 

detector; εη, the spectral emissivity; and Ib,η, blackbody emission at the source temperature, Ts. 

Absorption by the gas is governed by the Beer-Lambert law and the detector is modelled using the 

product of τη, the filter’s spectral transmissivity, and dη, a function that describes the conversion 

of incident intensity into a voltage by the photodetector. Optics for collimation and focusing may 

have a spectral dependence, but the spectral effects of Ccfg are constant between the reference and 

absorption measurements and are neglected, accordingly. Thermal source materials are well-

modelled as gray bodies and the blackbody spectrum and detector function are roughly constant 

over the active range of a narrow bandpass filter. The filter function approximates a top-hat profile 

and, as a result, Eq. (5.31) simplifies into 
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where Cdet is an aggregate system constant and η1 and η2 are the bounds of the bandpass window. 

The system constant is 

 det cfg , ( )bI TC C d     , (5.33) 

where the product of εη, Ib,η, τη, and dη is an average over the active range of the filter. 

 Broadband transmittance measurements, Tr, are defined as the ratio of power attenuated by 

the gas, Pabs, to a reference power, Pref, made in the absence of the target (i.e., κη = 0): 
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The aggregate system constant cancels out in the calculation of Tr. Broadband transmittances are 

expressed in terms of Eq. (5.32), 
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In contrast to the monochromatic measurements featured in preceding chapters, Tr smears the 

path-integrated absorption coefficients from a range of η. An additional step is thus required to 

deconvolve the target distribution from coupled broadband LOS data. 
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5.2.2 Transfer function 

Targets in the context of ground-level emissions monitoring consist of a single species or well-

mixed composition that quickly equilibrates to ambient conditions. This commonality enables a 

key simplification of Equation (5.35). The absorption coefficient of a gas mixture is naturally 

weighted by the mole fraction of the constituent species, 
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where k refers to a species in the mixture and T0 and p0 are the ambient temperature and pressure. 

If the target composition is consistent throughout the imaging domain, the combined lineshapes 

can be isolated using a spectral shape factor, 
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defined such that 

 
mixC   . (5.38) 

 Equation (5.38) assumes the measurement plane contains a binary mixture of air and a target 

gas. The collisional broadening coefficients required to compute Eq. (5.37) are a mole fraction-

weighted sum of the self- and air-broadened half widths at half maximum. From Eq. (5.25), 

 
C, 0 self air[ )2 (1 ]ij p       (5.39) 

for each transition of the target, where χ = χmix. The contribution of air to κη in the IR range is 

negligible since N2 is effectively rovibrationally inactive. Substantial differences between γself and 

γair can invalidate Eq. (5.38), but these differences are naturally mitigated and the approximation 

is only problematic in special cases. Divergent γself and γair coefficients predominantly introduce 

errors into Cη when χ is small (i.e., when excited states in the target interact primarily with air 

molecules). Absolute errors in κη that stem from this difference are inherently minimized, since a 

small target volume fraction implies limited absorption. 

 Substituting Eq. (5.38) into Eq. (5.35) yields in the following expression for transmittance: 
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which features a path integral over the target concentration. The function G is defined as the path 

integral over χ, 
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which is a Fredholm IFK. The transmittance is expressed in terms of G, 
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Equation (5.42) demonstrates that the spatial distribution of χ with respect to u does not affect the 

broadband transmittance because χ does not affect the number density-normalized line strength 

(except through the broadening effects discussed above). The relationship between the path-

integrated emissions burden and Tr can be computed when the shape function of the target and 

spectral range of the bandpass filter are known. The inverse function, G1, is numerically tabulated 

and broadband absorption CST measurements are defined in terms of this inverse, 
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Here, b equals the path-integrated volume fraction of the target and G-1(Tr, Cη) is the linearizing 

“transfer function.” 

 A linear system for broadband absorption CST is constructed as follows. The ray-sum matrix, 

A, is unchanged—elements of A are line integrals over the basis that correspond to measurement 

paths. Transmittances are transformed by Eq. (5.43) to acquire a data vector, b, and elements of 

the unknown vector, x, consist of the local volume fraction of emissions, projected onto the basis. 

Bayesian inference can be directly applied to this system to estimate the distribution of emissions, 

and Cη can be scaled using T0 and p0 to determine the emissions burden in standard units (e.g., 

ppm). Linearization of the broadband transmittance data is valid under the following conditions: 

1. Absorption is the prevailing mode of radiative transfer; 

2. Self- and air-broadened collision half widths at half maximum are comparable; and 

3. Emissions are well mixed. 
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5.3 Constructing and calibrating measurement devices 

5.3.1 Emission and detection units 

A custom-built open path detection system was developed to make the multiple transmittance 

measurements needed to carry out broadband absorption CST. The prototype consisted of four 

transmitter-receiver pairs. Construction of these devices was headed by Roger Tsang, who selected 

the components and conducted calibration tests with assistance from the author of this thesis.86 

Transmission and detection units were assembled from low-cost, commercially-available 

components to facilitate the development of a large number of devices, capable of making time-

resolved measurements in future tests. The objective of the experiment was to determine the spatial 

distribution of a single species concentration (or that of a homogeneous mixture), not to distinguish 

the components of a mixture, which requires multiple broadband signals, at a minimum—

preferably spectrally-resolved data (e.g., using a TDL source or FTIR detector). Figure 5.7 shows 

a schematic of the transmitter and detector units, aligned with a gas cell for the calibration tests. 

 Transmitters were fitted with a 5 mm long, 1 mm diameter silicon nitride glowbar (HawkEye 

Technologies IR-Si243), positioned inside a parabolic reflector (Phoenix PA10.02) with an 

opening diameter of 97.8 mm. The assembly was housed in a cylindrical aluminum case and 

                                                 
86 An early prototype of the open path gas detection device was built by Nick Bodd, Ali Jahed, Shari King, and Peter 

Robertson as part of their MTE 481/482 capstone design project. The project was conceived as a BTEX detection 

campaign in collaboration with Imperial Oil Ltd. See Roger Tsang’s master’s thesis for further technical specifications 

and details on the design process [28]. 

 
Figure 5.7: Thermal emitter and broadband detector units for open path broadband measurement 
and a calibration schematic. The setup features an absorption cell that contains a controlled mixture 
of N2 and the target gas. 
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mounted on an adjustable tripod base. The filament was powered using a 12 V, 1.6 A supply, 

yielding a filament temperature of 1,443 K. Optimal positioning of the filament within the reflector 

was determined by a Monte Carlo ray-tracing procedure that maximized the fraction of collimated 

light. 

 Receivers consisted of a 25.4 mm (1”) diameter CaF plano-convex lens (ThorLabs LA5470-

E), which focused light through a bandpass filter (ThorLabs FB3250-500 IR) on to an uncooled 

InAs photovoltaic detector (Hamamatsu P10090-01). The detector had a near-uniform response 

over filter’s spectral window (i.e., dη was constant). Optical components were cage-mounted in an 

aluminum cylinder, itself mounted on an adjustable tripod. Detector voltages were amplified (TI 

LM358) and collected by a USB-6001 DAQ from National Instruments. Measurements made 

absent the target gas revealed normally-distributed noise with a standard deviation equal to 0.3% 

of the mean signal. 

 A removable assembly was designed to align the transmitter and receiver units. The device 

consisted of a visible diode laser, mounted over the transmitter, and mirror, mounted over the 

receiver. The assembly was removed prior to testing. 

5.3.2 Calibration procedure 

Transfer functions were established by examining the response of the transmitter/receiver system 

to controlled dilutions of CH4, C2H4 and C3H8 in a N2 atmosphere. Validation measurements were 

made using a gas cell, depicted in Figure 5.7, having a total path length of 81 cm between two 

sapphire windows, 38.1 mm (1.5”) in diameter. For each measurement, a flow of N2 and the target 

a)  b)  

Figure 5.8: Calibration results: a) manufacturer-supplied filter transmittance data, FTIR-measured 
filter reflectance data (inverted, see second y axis), and the transmittance results of a box filter 
regression; and b) modelled and measured transmittances for CH4, C2H4, and C3H8. 
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were fed through two ports. Composition of the gas cell’s contents was tuned using either a mass 

flow controller (CH4: Brooks SLA-5850S) or rotameters (C2H4, C3H8: Cole Parmer N102-05; N2: 

Cole Parmer N034-39). The volume fraction of the target species was adjusted from 0 (i.e., Pref) 

to 1, with 16 to 22 intermediate fractions. Measurements were recorded once Pabs was observed to 

be constant for five minutes in order to ensure the gas mixture had stabilized. Absorption data was 

compared to point-concentration measurements, made with a FID (ThermoScientific TVA-

1000A). 

5.4 Proof-of-concept Emissions Detection Experiment 

5.4.1 Developing the transfer functions 

Line-by-line parameters for CH4 and C2H4 are available in the HITRAN database [228]. 

Lineshapes were calculated with Eq. (5.22) using standard units of cm-1. κη was divided by 106 

ppm to obtain Cη. The shape factor function was calculated across η = 2,000 to 4,000 cm-1 at a 

resolution of 0.4 cm-1. Absorbance data for C3H8 were inferred from the high-resolution FTIR 

measurements reported in the vapour phase infrared spectral library [319]. These measurements 

were made using a 1 ppm·m burden of C3H8 at 296 K and pressures ranging from 0.45 to 12.10 

Torr. Absorbance data were scaled by ln(10)·106 cm-1 to obtain κη, assuming a linear function of 

partial pressure and negligible differences between the self- and air-broadened half widths at half 

maximum. 

 Figure 5.8a shows manufacturer-supplied transmissivity data for the filter, imposed on 

absorption spectra for pure CH4 at atmospheric conditions. The filter width is reported to a 

tolerance of ±0.10 μm and the centre wavelength to a tolerance of ±0.05 μm. Transmittance data 

 
Figure 5.9: Transfer functions for broadband absorption tomography of CH4, C2H4, and C3H8 for a 
523 cm-1 wide box filter, centred at 3,163 cm-1. 
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are sensitive to the precise onset and slope of the window due to the large number of spectral lines 

close to the lower threshold (~2,850 cm-1). Broadband transmittances are independent of the peak 

filter transmissivity, however, as the transmissivity is approximately constant for the bulk of the 

filter window. This observation justifies the inclusion of τη in the system constant, Cdet, which 

cancels out in Tr, amounting to a box model of the bandpass filter. 

 Filter bounds for the box model were inferred by conducting a non-linear regression between 

modeled and measured transmittances for dilutions of CH4, C2H4, and C3H8 in N2, ranging from 

0% to 100%. The regression produced a filter of width 523 cm-1, centred at 3,163 cm-1. This range 

was consistent with the filter’s reflectance profile, measured with a FTIR reflectometer (Surface 

Optics Corp. SOC-400), also shown in Figure 5.8a. Corresponding measured and modeled 

transmittances are plotted in Figure 5.8b. 

 The box filter from the regression was used to compute a database of Tr for the target species 

via Eq. (5.42) over a path-integrated concentration range from 1 to 106 ppm·m. This database was 

employed in turn to construct the transfer functions, G-1(Tr, Cη), plotted in Figure 5.9. G-1 is a 

monotonic map of broadband measurements to a linear, path-integrated concertation, suitable for 

tomographic reconstruction. 

5.4.2 Laboratory-scale tomography experiment 

The broadband absorption CST technique was evaluated by reconstructing a plume of C3H8 in an 

enclosed test space. This target is representative of ground source fugitive emissions (e.g., 

[326,327]), except at a smaller scale. The domain was 1×1 m in size with its origin at the centre. 

 
Figure 5.10: Domain geometry with the source location and FID measurement positions; contours 
of the interpolated C3H8 data are superimposed on the domain. Arrows indicate the fan position and 
direction of the advective flow. 
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Propane was supplied at 2.44 L/min and released vertically into the domain through a 7.62 cm (3”) 

diffuser, located at x = y = 0.21 m and z = 0.55 m. A small fan, placed level with the plume at x = 

y = 0.5 m, provided an advective flow with a speed of 2 m/s. The domain size was selected to be 

proportional to the size of the emissions source. Individual single-path measurements were 

conducted over a 10 m distance to verify that the light was effectively collimated by the 

transmission unit, and hence that the open path system could operate over distances relevant to 

field measurements. An FID was used to measure the average concentration of C3H8 at 13 discrete 

locations in the domain. Twelve measurements were made over a five second interval at each 

location. The average standard deviation across these measurements was 480 ppm, with a 

maximum standard deviation of 1,603 ppm. Figure 5.10 shows contours of a spline interpolation 

over the average FID data. 

 Transmittance measurements were carried out for a four-projection, 35-beam array, depicted 

in Figure 5.11a. Each projection of the base arrangement contained nine beams, centred in the 

domain with a 10 cm spacing. A single beam was excluded from one of the projections to 

accommodate the fan and the adjacent beams were crossed to partially compensate for the loss of 

spatial information. Transmittance measurements began with a 600 s reference, recorded at 2 Hz, 

after which C3H8 flow was introduced through the diffuser. Attenuated signals were recorded for 

600 s at 2 Hz. The transmittance data was transformed with the C3H8 transfer function. 

 The basis shown in Figure 5.11b comprised 402 square pixels and reconstruction was 

conducted using the Tikhonov smoothness prior in Eq. (2.35). A prior variance of λ-2 = 100 ppm2 

was selected according to the spectral technique of Daun [88]. This approach identifies the spatial 

uncertainty appropriate to a given measurement array and basis for single-shot reconstruction. 

a)  b)  

Figure 5.11: Schematic for broadband absorption CST: a) 35-path array and b) 402 pixel basis. 
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 Figure 5.12 contains the reconstructed C3H8 emissions plume, which aligns with the 

interpolated FID data in Figure 5.10. Table 5.1 lists mean concentration data, uncertainties for the 

five largest FID measurements, and the corresponding uncertainties for the broadband absorption 

CST estimate. These results demonstrate that FID measurements of C3H8 were broadly consistent 

with the reconstruction. Integral-scale fluctuations in the concentration of C3H8 resulted in large 

uncertainties in the FID measurements, which took place over a 60 s interval. Uncertainties for the 

reconstruction were smaller due to the longer measurement interval (600 s) and because the latter 

uncertainties apply to a spatial average over a basis function instead of a point-concentration. 

 

Table 5.1: Comparison of Concentration Data from FID Measurements and the Broadband 
Absorption CST Reconstruction 

Location FID Data [ppm] Reconstruction [ppm] 

x [mm] y [mm] Mean Std. Dev. Mean Std. Dev. 

-0.10 +0.10 2,894 725 3,514 275 

+0.00 +0.00 2,595 860 3,079 230 

-0.15 +0.15 1,952 931 2,594 285 

+0.20 +0.15 1,848 1,603 2,833 271 

+0.25 +0.10 1,691 863 1,916 288 

 

5.4.3 Uncertainty analysis 

Error in broadband absorption CST is divided into four categories: measurement noise, model error 

in the transfer function, regularization error due to the incompatibility of the prior and ground truth 

distribution, and discretization error. Transmittance measurements are derived from the ratio of 

 
Figure 5.12: Reconstruction of an advected C3H8 plume using broadband absorption CST. 
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two random variables—the mean absorption and reference data—designated Vabs and Vref. Figure 

5.14 shows a typical voltage trace used to obtain a transmittance. The distribution of fluctuations 

in the reference, indicative of electronic noise, roughly follows a normal distribution. Increased 

variation in the absorption trace is attributed to turbulent fluctuations in the C3H8 plume. These 

large fluctuations indicate transient behaviour on a time-scale longer than the FID measurement 

interval, which could be imaged by a time-resolved broadband absorption CST system. 

 Mean voltage traces are normally distributed, according to the central limit theorem. Standard 

deviations for the trace in Figure 5.14 are σabs = 1.9·10–3 V and σref = 2.8·10–4 V. Expanding the 

expression of variance for Vabs/Vref and neglecting higher order terms gives an expression for the 

variance of Tr, 

 
2 2 2 2

abs ref ref abs

4

ref
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V V

V

 



 . (5.44) 

Equation (5.44) was used to estimate the standard deviation of Tr for the signal in Figure 5.14: σTr 

= 3.1·10–5. The maximum standard deviation from the experiment was 1.6·10–4 for a transmittance 

of 0.974. Therefore, mean transmittance data were known to a high degree of precision. 

 Another source of error was the transfer function. Discrepancies between modelled and 

experimental transmittance data arose from the assumptions used to construct Eq. (5.42) (e.g., 

modeling the bandpass filter as a box). Errors due to the transfer function were estimated from 

discrepancies observed in the calibration test: i.e., computing the difference between the path-

averaged concentrations from G-1 for the measured and modelled transmittances with the largest 

residual. This procedure predicts a maximum discrepancy of 370 ppm·m for a C3H8 burden up to 

 
Figure 5.13: Map of the standard deviation from the posterior covariance estimate. 
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6,500 ppm·m (or 5.69%). Greater uncertainty is expected for higher burdens because partially-

transmitted lines at the filter wings—excluded by the box model—become more prevalent as 

dominant lines are saturated. 

 Finally, the tomographic reconstruction process is subject to errors associated with the 

discretization scheme and incompatibility between the prior and ground truth distribution. The 

effect of this error on reconstructed structures is estimated by computing the posterior covariance 

matrix using Eq. (4.13), with uncertainties of the transmittance and transfer function included in 

the measurement covariance. Figure 5.13 shows a contour map of the resulting posterior standard 

deviation for C3H8. Regions of high uncertainty in Figure 5.13 align with artifacts in the 

reconstruction, primarily concentrated about the corner x = y = –0.5 m. 

 Figure 5.15 illustrates the sensitivity of reconstructions to the density and arrangement of 

measurement lines. Different subsets of the measurement lines were used to reconstruct the plume. 

 
Figure 5.14: Voltages used to obtain a LOS transmittance measurement. 

 
Figure 5.15: Alternative reconstructions using a subset of the projections: a) half of each projection; 
b) the compliment arrangement to (a); and c) 18 randomly-selected lines. 
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These reconstructions roughly capture the location and magnitude of the peak concentration but 

differ about the plume’s margins. This limitation may be overcome with supplementary 

measurement lines or by developing a more sophisticated prior. A quantitative estimate of 

reconstruction uncertainty was obtained by analyzing the difference between ground truth plumes 

and tomographic reconstructions from Ref. [294], ensuring basis and regularization parameter 

parity. The mean net and maximum concentration errors were estimated to be 31% and 14%, 

respectively. 

5.5 Conclusions 
The need to develop stand-off measurement techniques for detecting and quantifying hydrocarbon 

emissions is motivated by their contributions to climate change and the numerous health and safety 

hazards presented to workers and the public at large. This chapter develops and applies the theory 

for broadband absorption CST, a novel approach to spatially-resolved emissions quantification. 

Previous deployments of CST were based on spectrally-resolved intensity data, in which the 

inferred absorption coefficient is related to a Fredholm IFK. Broadband measurements convolve 

this integral equation over the detector’s spectral range. This chapter reviews the spectroscopic 

models used to calculate and interpret the absorption coefficient and develops a transfer function 

to linearize broadband absorption data. The transfer function employs a shape function, obtained 

from a line-by-line model of the target or empirical absorbance data from the literature. The 

development of a device for broadband tomography is described and the results of a proof-of-

concept experiment are reported. 

 Tomographic imaging with broadband measurements occurs in three-stages. First, 

transmittance measurements are made. Next, these measurements are transformed into a path-

integrated. Finally, transformed data are tomographically reconstructed. A laboratory-scale 

experiment demonstrated the concept by imaging a plume of C3H8 emissions, shown in Figure 

5.12. The reconstruction was consistent with validation measurements from a FID survey, depicted 

in Figure 5.10, with numerical comparisons listed in Table 5.1. An analysis of errors in the 

reconstruction suggested similar levels of point-wise uncertainty in the extrapolated FID and CST 

estimates of C3H8. Uncertainty in the FID measurements arose due to the transient nature of the 

plume and inherent locality of the FID device. Tomographic uncertainties were primarily 

attributable to modelling errors in the transfer function and regularization error. 
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 Transmittance measurements are procedurally-straightforward. Both the reference and 

absorption signals are average quantities, robust to the measurement duration at relevant 

timescales, which limits the uncertainty about the transmittance. Moreover, the simplicity and low 

cost of the detection apparatus enable the simultaneous measurements needed to capture integral-

scale fluctuations over a large area. Real-time reference measurements could be established using 

a filter wheel or dual-band filter with a beam splitter and multiple detectors. Moreover, with the 

accumulation of measurement data over time, previous measurements could be used to improve 

the prior by way of covariance estimation. 

 Discrepancies between the theoretical and empirical transmittances, plotted in Figure 5.8b, 

underline the importance of filter selection. Modelling errors associated with the spectral 

dependencies in εη, τη, and Iη were the primary source of error in the technique. In particular, the 

onset of transmission in the filter—near 2,900 cm-1—was not known with precision. This 

limitation was evidenced by the discrepancy between manufacturer-provided transmission data 

and the reflectance measurement in Figure 5.8a. Target gasses featured different levels of 

absorption in this region. The spectral lines of C3H8 are dense and overlap substantially near the 

filter’s edge; CH4 also absorbs light around the onset, but less so than C3H8; conversely, the bulk 

of the C2H4 band lies well within the filter window. The amount of absorption at the filter boundary 

corresponded to box filter errors: 6.2%, 4.7%, and 3.4% for C3H8, CH4, and C2H4, respectively. In 

order to minimize this error, filter selection should minimize overlap between the transmission 

range and target absorption bands. 

 Uncertainties from the reconstruction procedure also contributed to errors in the recovered 

concentration distribution. Broadband absorption CST is based on a Fredholm IFK, identical to 

the monochromatic absorption equations, and general algorithmic improvements to limited-data 

CST can be applied to the broadband technique. One avenue for improvement lies in the 

development of flow-specific priors. Chapter Three demonstrated that estimates of the mean and 

covariance of a turbulent variable can notably improve reconstructions. Moreover, Chapter Four 

demonstrated that optimization of the measurement array using prior knowledge of the emissions 

distribution can also improve reconstructions. 

 Overall, results in this chapter demonstrate the potential for passive, open path, spatially-

resolved, emissions quantification using broadband data. FID measurements of a time-varying 

flow do not necessarily represent average features and must be extrapolated, leading to 
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considerable spatial uncertainty. Collecting FID measurements was labour-intensive and required 

direct physical access to the measurement points. By contrast, open path broadband absorption 

data can be remotely collected, without immediate physical access to the measurement plane. 

Tomographic reconstruction yields spatially-resolved concentration estimates through 

deconvolution rather than extrapolating labour-intensive probe data. As such, broadband 

tomography is a promising approach to emissions detection. 
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Chapter Six  
Background-Oriented Schlieren Tomography of Combustion 

Hard-field tomography operators comprise a set of line integrals that follow a straight path through 

the measurement domain. Fluids with large density gradients have corresponding gradients in their 

refractive index field, causing beam steering. Curved ray paths deviate from the straight trajectory 

of ray-sums, as constructed in previous chapters, which is a source of error in CST, but alternative 

modalities for tomographic imaging have been developed to exploit refraction. The deflection of 

rays by a gradient index medium is measured with schlieren optics or a computer vision algorithm 

and the deflections are used to reconstruct the refractive index field. Estimates of the index of 

refraction can be related to key state variables, such as density and temperature. BOS tomography 

is an emerging diagnostic that has been deployed to estimate the 3D temperature field in heated 

gas jets and the density field of incompressible flows. This chapter reports the first application of 

BOS tomography to combustion imaging, conducted within the Bayesian framework developed in 

previous chapters. 

 Turbulent flames are common in industrial combustors and feature complex interactions 

between turbulent transport, chemical kinetic, and radiative heating mechanisms [328]. 

Combustion simulations are used to predict burner performance, optimize efficiency, and 

minimize the production of NOx and soot. Simulations must be benchmarked against experimental 

measurements of temperature, velocity, species concentration, flame front geometry, and other 

parameters to ensure validity of the numerical model [17]. Data for benchmarking is obtained from 

physical probes or optical diagnostics. The latter are generally favoured since the former cannot 

provide sufficient spatial resolution to capture the structures of interest in a turbulent field. 
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Moreover, unlike physical probes, optical systems do not perturb reactions and transport processes 

in the flame. Optical combustion diagnostics often feature lasers, including LOS absorption 

spectroscopy, quantitative PLIF, and scattering techniques—Rayleigh/Raman thermometry and 

CARS—which have been combined to generate rich data sets for benchmarking. Laser diagnostics 

yield high-resolution measurements and advanced setups can simultaneously image multiple 

quantities [329]. At the same time, spatially-resolved laser-based measurements require intricate 

optics, controls, and data acquisition systems. Complex laser probes pose cost and safety concerns 

that limit the mobility of the apparatus and range of potential targets. More fundamentally, the vast 

majority of laser diagnostics are only capable of 2D measurement.87 

 Quantitative, volumetric measurements of combustion variables are required to obtain key 

statistics, including fluctuations in curvature, out-of-plane dissipation rates, and the destruction of 

flame wrinkling. The demand for instantaneous 3D data and the cost and complexity of laser 

diagnostics motivate the development of alternative devices for combustion sensing. 

Measurements of refraction have long been used to image temperature and density gradients in 

gases and liquids, and refraction-based tomography is an established approach for 3D fluid 

imaging [330]. Measurements are obtained by schlieren imaging or synthetic schlieren (BOS), 

which may be accomplished in several ways, outlined in Chapter One. Irrespective of the schlieren 

technique, rays pass through the probe volume along a curved path due to the variable speed of 

electromagnetic waves in the medium. Schlieren data consist of a pattern of light deflections 

relative to a reference image; visualizing the deflections provides a qualitative account of density 

and temperature. Quantitative data can be extracted from schlieren images through post-

processing, most commonly by tomography [62]. 

 Conventional schlieren rigs include an intricate arrangement of lenses and mirrors that focus 

light from a calibrated source onto a detector. These techniques pose similar cost and mobility 

challenges as laser sensors. BOS simplifies the optical setup required to infer the deflection data. 

In BOS imaging, a camera is focused on a background pattern, positioned behind the probe 

volume. Refraction, caused by the medium, distorts the scene and image processing tools identify 

the direction and magnitude of deflections from reference and deflected images. The resulting 

pixel-wise defections constitute a BOS image. Deflections are related to local variation of the 

                                                 
87 Advances in volumetric LIF and 3D absorption tomography are recent exceptions. 
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optical density in a fluid by a Fredholm IFK, similar to other forms of gas-phase tomography. 

Multiple BOS images from a unique perspective can be combined to reconstruct the refractive 

index field with a computed tomography algorithm. Of particular interest in the combustion 

context: reconstructions can be used to determine the location of the flame front, characterized by 

steep gradients in the estimate. 

 Atcheson et al. [331] reported the first demonstration of BOS tomography, which they 

employed to estimate the density of an unsteady gas flow. Subsequent studies followed suit, using 

multi-camera arrays to reconstruct the instantaneous density distribution in a natural convection 

flow, turbomachine, and free-shear gas jet [332–340]. For heated jets of a known composition, 

temperature is obtained by the ideal gas law. The initial formulation of Atcheson et al. [331] 

requires three stages: identification of the deflections, reconstruction of the refractive index 

gradients, and inference of the refractive index field from its gradients by Poisson integration. 

Nicolas et al. [338] introduced gradient operators into the measurement model to combine the 

second and third stage. The authors directly reconstructed the refractive index from BOS 

deflections; with the Poisson integration implicit in the inversion. 

 Recently, Lang et al. [341] used a single camera and phase-averaged measurements to infer 

the temperature of a swirling gas jet, heated by a coil, intended as a surrogate for swirl combustion. 

However, the BOS literature contains no reports of 3D combustion tomography. This chapter 

presents the first such application of BOS tomography. The technique was prototyped with a LES 

phantom, consisting of a realistic optical density field for a turbulent swirl flame. Inversion of the 

deflection data is an ill-posed inverse problem, similar to other forms of gas-phase tomography, 

and a Bayesian approach was used to incorporate prior information. Two priors were evaluated: a 

smoothing prior, based on a first-order Tikhonov regularization, and TV prior, intended to promote 

sharp gradients about the flame front. A proof-of-concept experiment was conducted on an 

unsteady laboratory Bunsen flame using 23 cameras to resolve accurate, instantaneous, 3D 

combustion structures. This chapter conclusively shows that BOS tomography can be applied to 

volumetric flame imaging. Moreover, BOS tomography is readily extended to time-resolved 

reconstruction and can provide important information about the evolution of complex structures 

in turbulent combustion. 
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6.1 Background-Oriented Schlieren Tomography 
Background-oriented schlieren tomography reconstructs the refractive index field, n, in a 

transparent medium from deflection patterns caused by gradients in n. Spatial variation in n is an 

effect of variation in the temperature and composition of a medium. Data vectors consist of 

deflections that are inferred from a pair of images: a reference image, captured through a uniform 

refractive index field, and distorted image, where ray paths are refracted by the target. Figure 6.1 

illustrates a BOS imaging scenario, highlighting the continuous and discrete models of refraction, 

and shows deflection sensing by BOS. 

 Reconstruction requires discretization of the probe volume, typically into cubic voxels that 

contain a uniform distribution of n, and a model that relates n to the deflections. The BOS equations 

act as a smoothing kernel and inversion amplifies noise in the deflection vectors, rendering 

reconstruction ill-posed. Supplemental information is required to generate physically-plausible 

estimates, as with absorption and emission CST. This section presents the imaging tool for 

deflection sensing, measurement model, and reconstruction algorithm for BOS tomography. 

6.1.1 Deflection sensing 

Absorption and emission CST employ measurements of intensity to reconstruct the target. BOS 

tomography is an optical diagnostic, usually applied to gas-phase fluids, based on radiative 

transport relations. However, measurements are the deflections observed in a background pattern, 

which must be identified by digital post-processing, as opposed to the raw intensity data required 

by absorption and emission modalities.88 

                                                 
88 Strictly speaking, most absorption and emission CST experiments require post-processing of the measurements. In 

principle, however, intensity/voltage data are sufficient. By contrast, BOS imaging is an advanced inverse problem in 

and of itself—there is no direct measure of deflections in synthetic schlieren. 

a)  b)  

Figure 6.1: Schematic for BOS imaging: a) top view with a continuous curved path and discrete 
approximation and b) BOS scene with a reference pattern (light dots) and deflected pattern (dark 
dots). 
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 Several techniques have been proposed to obtain deflection data, including cross correlation 

methods [67,342], which form the basis of PIV, and optical flow algorithms from the computer 

vision literature [343]. This chapter employs the latter approach, using the closure of Horn and 

Schunck [344]. Atcheson et al. [345] compared the performance of PIV and optical flow 

algorithms for fluid imaging by BOS. They found that gradient-based optical flow techniques were 

superior to the variational approach of Brox et al. [346] and the open source MatPIV toolbox [347]. 

Two classical gradient-based optical flow algorithms—Horn-Schunck and Lucas-Kanade—

feature a single regularization parameter, which limits the potential for over-tuning. 

 Optical flow determines the apparent motion in a sequence of images, illustrated by the 

moving dots in Figure 6.1b. Deflections relate successive frames, I(x, y, t1) and I(x, y, t2)—or I1 

and I2—the couplet (x, y) identifies a pixel, and Δt = t2 – t1. For convenience, visible features are 

identified with a pixel that is said to “move” between successive images. These algorithms were 

originally intended to sense the velocity of moving objects in a video, which requires the camera 

framerate, Δt. The quantity of interest in BOS is the 2D displacement field that transforms I1 into 

I2, resolved at each pixel (i.e., deflections); Δt is thus set to unity.89 

 Optical flow follows from two primary assumptions: the brightness of a pixel remains constant 

between the images, and displacements have a small magnitude. Apparent motion in the image is 

approximated with a Taylor series expansion that relates I1 to I2, 

   2

2 1( , ,( , , ) ) )(x y tI x y t I u I vI y t tIx t     , (6.1) 

where Ix = ∂I/∂x, Iy = ∂I/∂y, It = ∂I/∂t, u = ∂x/∂t, and v = ∂y/∂t. Equation (6.1) yields an 

underdetermined system of linear equations with the two unknown velocities, u and v, and one 

equation per pixel. The Horn-Schunck method closes the system for an entire image, Ω, by adding 

a global penalty term that penalizes sharp gradients in the vector field, 
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The Horn-Schunck parameter, α, controls the degree of smoothing, similar to λ in Tikhonov 

regularization. Equation (6.2) is approximately solved by taking its derivative with the Euler-

                                                 
89 Typically, the I1 frame is captured prior to an experiment and I2 frames are captured during the experiment. I1 is 

often a composite image that averages many reference frames. 



 

174 

 

Lagrange equation, setting the derivative to zero, and solving for u and v. This procedure yields an 

iterative expression for the deflections, 
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where u̅ k and v̅ k are the average displacements, u and v, for the kth iteration. Equation (6.3) 

generates pixel-wise deflections, which are then scaled by the physical size of pixels in the 

background image plane, 

 ( ) ( )x u y vs su vδ pp . (6.4) 

The width and height of a pixel in the background plane are sx and sy, given in world coordinates. 

Unit vectors, pu and pv, reside in the same plane and point in the direction of u and v, respectively.90 

The scaled deflection in Eq. (6.4) constitutes a BOS measurement for one pixel. 

6.1.2 Deflection model 

Refraction is modelled by the method of geometric optics.91 Optical paths obey a partial 

differential equation. When total refraction is small, deflections are approximated with an integral 

equation via the paraxial assumption, shown in Figure 6.1a. This chapter employs a cubic voxel 

basis to support the deflection equations. The IFK is computed along each LOS to construct a 

linear operator that relates the target field, n, to a set of deflections—similar to absorption and 

emission CST operators. 

6.1.2.1 Ray equation of geometric optics 

Geometric optics represents visible light waves as a complex-valued wavefunction, which 

simplifies into a superposition of sinusoidal waves of monochromatic radiation [348]. Spatial 

evolution of the wavefront is governed by a Helmholtz equation, which can be approximated by 

the eikonal equation because visible wavelengths are short compared to the characteristic length 

of fluctuations in n. Using this formulation, rays propagate normal to surfaces of constant phase, 

described by the ray equation of geometric optics, 
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90 pu and pv are determined during camera calibration. 
91 Advanced forms of the RTE use the ray equation of geometric optics to incorporate beam steering; in a sense, BOS 

tomography can be said to derive from fundamental relations of radiative transport. 
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The position of a hypothetical particle travelling along the ray path is u(x, y, z), ds is a differential 

distance along the path, and ∇ is the gradient operator. See Ref. [348] for a complete derivation of 

Eq. (6.5). The ray equation is reformulated as a system of first-order ODEs [349], 

 n
d

ds


u
v , 

d
n

ds


v
, (6.6) 

where v is the local ray direction scaled by n. Typically, in gas-phase applications, ||v||2 ≈ 1 [332]. 

Forward Euler discretization of Eq. (6.6) yields an iterative solution, 

 1i i is

n
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where Δs is a discrete step size. 

 Curved ray paths through a variable index medium are governed by Eq. (6.5) and ray-traced 

with Eq. (6.7) to simulate schlieren imaging, where Δs is conservatively selected to be 1/10th of 

the voxel length-scale. Fourth- and fifth-order Runge-Kutta approximations to Eq. (6.6) have also 

been employed to speed-up non-linear ray-tracing [350].92 

 The deflection vector in Figure 6.2a, δ = [δx δy δz]
T, is found by integrating Eq. (6.6) along 

the curved ray path, c, which can be seen in Figure 6.1a, 

 
c

nds δ . (6.8) 

Equation (6.8) is a set of three Fredholm IFKs, with one equation per direction per LOS—each 

similar to the IFKs for emission and absorption CST, except that the integral is carried out over a 

                                                 
92 Optical paths are straight in linear ray-tracing and curved in non-linear ray-tracing, travelling normal to surfaces of 

constant phase per the ray equation of geometric optics. 

a)  b)  

Figure 6.2: Side view of a BOS imaging scenario, featuring a) the coordinate system, distance to the 
target d, and a deflection with an out-of-plane component, which is not observable by deflection 
sensing; and b) a voxel and the path integral Sij for a LOS. 
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gradient of the quantity of interest. The gradient operator requires special attention in the 

reconstruction of n. 

6.1.2.2 Discrete operator for BOS tomography 

Atcheson et al. [331] proposed a two-step procedure to infer n by BOS tomography: first, obtain 

the deflection data; then independently reconstruct the refractive index gradients, ∇xn, ∇yn, and 

∇zn; and, finally, conduct a Poisson integration over these fields to estimate the refractive index, 

itself. Nicolas et al. [338] recently introduced discrete gradient operators into the forward system 

to compute n, directly. The authors’ approach implicitly carries out a Poisson integration during 

inversion of the augmented operator. This work adopts the direct method of Nicolas et al. [338] 

and introduces a general improvement to the BOS operator. 

 Estimates of n are defined over a finite basis (voxels, in this chapter) with a vector of 

coefficients, x ϵ ℝN, where N is the number of voxels. Deflections in the plane of the background 

pattern are small and the fluid is small relative to the experimental domain so ray paths remain 

nearly straight within the probe volume [332]. As a result, the ray path, c, in Eq. (6.8) is assumed 

to follow the original (straight) trajectory. Path integration over the ith LOS in the jth voxel gives 

the product of the coefficient—i.e., the local gradient of xj—and length of the LOS through that 

voxel—here called Sij (shown in Figure 6.2b). Components of the ith deflection in Eq. (6.8) are 
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where d is the distance from the centre of the probe volume to the background pattern, which can 

be seen in Figure 6.2a, and the (∇n)j terms are 1D gradients of n at the jth voxel. The distance d 

slightly differs for each LOS and should be individually calculated to properly scale the ray-sums. 

 Data for all three gradients are arranged into a single vector, b ϵ ℝ3M, where M is the total 

number of rays, with one ray per pixel per camera.93 The deflections are grouped together by 

direction, b = [δx
T δy

T δz
T]T, and the system, S ϵ ℝM×N, consists of chord lengths for each voxel 

along each LOS, scaled by the distance to the corresponding background, d.94 Using the technique 

                                                 
93 The number of pixels is an upper bound on the number of optical paths. However, the pixel trajectories are close 

together and deflection sensing is very noise-laden. Pixels and pixel-wise deflections are usually downsampled as a 

result. 
94 In effect, S is a scaled version of the ray-sum matrix for absorption and emission CST. 
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of Nicolas et al. [338], 1D finite difference matrices, Dx, Dy, and Dz, are included in the operator 

such that the relationship between the discrete index of refraction field, x, and deflections, b, is 
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Central differences are applied within the domain to generate the D matrices, with forward and 

backward differences applied at the boundaries. 

 Deflections computed with Eq. (6.8) and modelled with Eq. (6.10) contain a component that 

is orthogonal to the background plane, as depicted in Figure 6.2a. These components are 

unobservable, in principle, meaning the deflection model does not correspond to the measurement 

procedure. This shortcoming can be eliminated with a projection matrix, P ϵ ℝ3M×3M, which 

projects ray-sum components into the plane of the corresponding background image. P is 

constructed from individual projection matrices for each LOS, Pi. To generate Pi, first recall that 

the ith LOS is associated with a single background pattern. Two orthogonal unit vectors that lie in 

the plane of this background pattern are selected, v̂1 and v̂2.
95 A matrix, V ϵ ℝ3×2, is constructed 

from the couplet, V = [v̂1 v̂2], such that Pi = V(VTV)-1VT. The x, y, and z components of these 3×3 

matrices are grouped together to match the arrangement of the system in Eq. (6.10). Finally, the 

operator is 
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where observable deflections, b, are directly computed from a discrete distribution of optical 

density, x: Ax = b. 

6.1.3 Reconstruction 

Background-oriented schlieren tomography is an ill-posed inverse problem, akin to absorption and 

emission CST. The amplification of high-frequency components by the ray-sums is increased due 

to the presence of the 1D gradient operators. Supplemental information about the optical density 

                                                 
95 In practice, these vectors are the calibration vectors used to scale deflections for a LOS, pu and pv. However, any 

orthogonal unit vectors that lie in the plane of the background pattern will suffice. 
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field is included in the inversion using a Bayesian algorithm. The likelihood for BOS tomography 

is identical to the likelihood discussed in previous chapters.96 

 Two priors were considered for BOS tomography of flames: the Tikhonov smoothing prior 

from Chapter Two, πtk(x), and a TV prior, πtv(x)—introduced below—which permits sharp 

discontinuities in x. The bases considered in Sections 6.2 and 6.3  contain a very large number of 

voxels so reconstruction of the deflection data poses a unique set of computational challenges. 

Following discussion of the TV prior, this section reviews the method used to compute 3D 

estimates of the refractive index field. 

6.1.3.1 Priors for BOS tomography 

Classical Tikhonov regularization was developed to filter out high-frequency features that arise 

from inversion, attributable to noise and model errors. The Tikhonov prior pdf, based on the same 

operator, follows from the assumption that turbulent flow and combustion variables are subject to 

random fluctuations that follow a predictable distribution. Sets of turbulent flow quantities 

typically follow a joint-skew-normal distribution, modelled with a joint-normal pdf. The Tikhonov 

prior is given by Eq. (2.34), with μ = 0 and the L matrix defined in Eq. (2.35). 

 Total variation regularization, originally developed for image denoising [351], is intended to 

preserve the contrast of x: promoting smooth distributions—much like Tikhonov regularization—

but also permitting sharp discontinuities between distinct regions of the domain [352]. Flames 

feature large gradients at the periphery of reacting zones. The concept of a TV limit has thus been 

applied to discretize numerical simulations of combustion in order to generate high-contrast 

features that are characteristic of flame fronts [353]. Following from this motivation, TV 

regularization has been employed in flame tomography, e.g., in Ref. [207], but has not been used 

in the BOS context. 

 Total variation regularization is based on the TV norm. For a continuous 3D distribution of n 

in the probe volume, Ω, this norm is 

 
TV

nn d


   . (6.12) 

González et al. [354] proposed a Bayesian interpretation of TV regularization for discrete 3D 

inverse problems. In their formulation, the TV functional is 

                                                 
96 Full Bayesian treatment of the deflection sensing procedure could be developed to produce an advanced likelihood. 
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G    x D D xDx x , (6.13) 

where the parameter, β, operates as a diffusion constant. The corresponding pdf is 

  tv ( ) exp ( )G  x x . (6.14) 

The Tikhonov prior penalizes large, isolated gradients in x relative to continuous, small gradients. 

By contrast, Eq. (6.14) only penalizes the total sum of gradients. In this way, the TV prior allows 

for sharp discontinuities between relatively-smooth regions of x, which is the behaviour expected 

of scalar fields in combustion. 

 A final source of prior information is the concentration range function, which restricts the 

solution to [1, natm], where natm is the refractive index of air at atmospheric conditions. This value 

is expected to be the maximum since n decreases with increasing temperature and combustion 

products remain hot within the probe volume. The concentration range prior is 
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Posterior pdfs for the Tikhonov prior and TV prior are proportional to π(b|x)πtk(x)πcr(x) and 

π(b|x)πtv(x)πcr(x), respectively. 

6.1.3.2 Computational considerations 

Maximum a posteriori estimates for the Tikhonov and TV priors are denoted xTK and xTV. 

Calculation of the MAP estimate follows a unique procedure for the priors. For the Tikhonov prior, 

determining xTK is straightforward, whereas an iterative approach is required to compute xTV. 

 The posterior pdf for the Tikhonov prior is proportional to the product of Eqs. (2.36) and 

(6.15), which is maximized by xTK, 
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Equation (6.16) is solved by constrained least squares minimization of the augmented system. 

 The posterior pdf for the TV prior includes Eq. (6.13) in the exponential, resulting in a non-

linear system, 
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for x in [1, natm]. González et al. [354] directly maximized Eq. (6.17) using a Gauss-Newton 

optimization routine. However, the dimension of 3D tomography problems is typically well above 

100,000 and the direct approach can be prohibitively slow. One alternative is to employ a fast, 

iterative approximation to the TV norm, preserving the problem’s linear form [351]. Similar to the 

iterative Horn-Schunck approximation, the unique extrema of Eq. (6.17) is found by taking its 

derivative with the Euler-Lagrange equation, setting the derivative to zero, and solving for x. MAP 

estimates for the TV prior are thus approached by repeatedly solving a linear system, 
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In Eq. (6.18), ∇ is the discrete 3D gradient operator and x(k+1) is found by constrained least squares 

inversion of the augmented system. Steps of Eq. (6.18) quickly approach xTV. Convergence is 

accelerated further by setting x(0) to xTK. The effect of the TV norm is apparent in the structure of 

Eq. (6.18), which suggests that ∇2x should be zero at positions where the derivative of x is small—

smoothing out these regions of the estimate. Areas of x where the derivative is large are relatively-

unaffected by the iteration. 

 Constrained least squares solutions to Eqs. (6.16) and (6.18) are computationally-expensive 

due to the size of the systems. While the operators for BOS tomography are sparse, the 

pseudoinverse of the augmented systems in Eqs. (6.16) and (6.18) are not and the memory required 

to store and manipulate these matrices can render direct inversion intractable. The simultaneous 

iterative reconstruction technique (SIRT) does not require explicit inversion and can generate 

constrained least squares estimates for high-resolution BOS tomography [355]. 

6.2 Numerical Evaluation of BOS Tomography 

6.2.1 Simulating deflection imaging 

Validation of the deflection model and evaluation of the Tikhonov and TV priors were conducted 

by numerical simulation. Two scenes were constructed to test the algorithms, both shown in Figure 

6.3. In the first scene, a single camera was positioned 2.5 m from the background plane, which 

was rotated by 20°. The second scene had a system of 12 cameras, equally-spaced around a 165° 

arc at a radial distance of 0.5 m from the burner. Background images, 1.1891.682 m in size, were 

located 2 m from the burner, opposite the cameras. The cameras were simulated with a 659494 

pixel sensor (with 9.99.9 µm pixels) and assigned a focal length of 12 mm. A cubic hull with 
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0.15 m sides was placed at the centre of the domain to house refractive index distributions (i.e., 

phantoms). Five discretizations were tested, with 153, 303, 453, 603, and 753 voxels. Ground truth 

data in the domain was obtained by high-order interpolation of 753-voxel phantoms. 

 Reference images were generated by linear ray-tracing of the scene and deflection images 

were generated by non-linear ray-tracing through an inhomogeneous distribution of n. The latter 

procedure was carried out using Eq. (6.7) with a step size of Δs = 1.33⋅10-4 m. Diffraction-limited 

optics were simulated by applying a Gaussian blur kernel with a standard deviation of 0.85 px. 

Images from this procedure were stored as png files, which were then used as inputs to the optical 

flow algorithm. 

6.2.2 Refractive index phantoms 

Two phantoms were developed in order to i) test the impact of the projection matrix on model 

errors, ii) identify an appropriate regularization parameter for Horn-Schunck deflection sensing, 

and iii) benchmark the performance of Tikhonov and TV estimates. The first phantom was a 3D 

Gaussian bead of hot air, which produced highly-regular deflections to highlight systematic 

deviations in the discrete model. The second phantom was a turbulent swirl flame, generated by 

LES, with intricate small-scale features and substantial large-scale variation. Turbulent structures 

in this phantom were considerably more complex than those expected of a Bunsen flame. The swirl 

flame phantom was designed to provide a conservative sense of the potential to reconstruct an 

unsteady Bunsen flame. 

 The Gaussian phantom was composed of air at standard pressure with a temperature 

distribution given by 
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a)  b)  

Figure 6.3: Virtual BOS tomography scenarios: a) single-camera scene to test the projection matrix 
and deflection sensing tools and b) 12-camera scene to test reconstructions. 
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Equation (6.19) yields a maximum temperature of 1,000 K at the centre of the domain, which 

quickly decays to standard conditions within the probe volume. The density of air throughout the 

sphere was calculated using the ideal gas law. In general, the local density of a gas mixture is 

related to the local index of refraction by the Gladstone-Dale equation [356], 

 1n G  , (6.20) 

where the Gladstone-Dale coefficient for air over visible wavelengths is G = 2.26⋅10-4 m3/kg [357]. 

Equation (25) can be combined with the ideal gas law and a model of combustion products to infer 

the temperature field of reconstructions. Using this approach, temperature in the jth voxel is 

 ( )
( 1)

j i i i j

j i

T
p

Y M G
R x 

  , (6.21) 

where p is pressure, R is the universal gas constant, and xj is the reconstructed value of n in j. The 

sum is a volume fraction-weighted product of molecular mass and the Gladstone-Dale coefficient 

of the ith species in the jth voxel. 

 

Table 6.1: Molecular Weights and Gladstone-Dale Coefficients of Select Gases [357] 

Species Molecular Weight [kg/kmol] G×10-4 [m3/kg] 

CH4 16.04 6.15 

CO 28.00 2.67 

CO2 44.01 2.26 

H2 2.02 1.54 

H2O 18.02 3.12 

O2 32.00 1.89 

N2 28.01 2.38 

 

 The LES was developed by Andreas Rittler of the University of Duisburg-Essen to simulate 

combustion from the turbulent premixed TECFLAM swirl burner [358]. This flame features 

intricate, stochastic structures, representative of swirled premixed combustion, and has been 

compared to experimental data in the literature [358–360]. LES was carried out using PsiPhi [361], 

with an equivalence ratio of 0.83, swirl number of 0.75, and cold flow Reynolds number of 10,000. 

The domain was discretized into 30 million cells and required 50,000 core hours for a simulated 

time of 1.6 s. Combustion was modelled with the premixed flamelet-generated manifold, coupled 

with an artificial flame thickening method. Results were compared to experimental measurements 



 

183 

 

from Schneider et al. [362] and Gregor et al. [363] and the LES of Butz et al. [364]. The flame 

shape and recirculation zone at the centreline were representative of those reported in the 

aforementioned studies. Agreement between the LES data and experimental results support the 

use of this phantom as a test case to validate the BOS tomography procedure. 

 In order to compute the refractive index of the swirl flame, temperature and density of the 

flame and mass fraction of CH4, CO, CO2, H2, H2O, O2, and N2 were recorded. The volume 

fraction-weighted Gladstone-Dale coefficient throughout the domain was calculated with the 

species-specific values of G reported by Qin et al. [357], shown in Table 6.1. 

6.2.3 Model performance 

Figure 6.4 shows ground truth deflection vectors for the hot air sphere and swirl flame phantoms. 

Per Figure 6.3a, the camera was positioned 0.5 m from the centre of the phantom and aimed 

towards the centre of a background plane, located 2.5 m away. Space-related concerns generally 

restrict the number and orientation of background planes in BOS tomography and most cameras 

end up facing their target pattern at an angle. Therefore, the plane was rotated 20° clockwise about 

the image plane to generate the out-of-plane deflections that arise from the standard BOS model. 

After ray-tracing ground truth deflections for each phantom, measurement operators from Section 

6.1.2 were used to model the scene. This procedure was repeated with and without the projection 

matrix, P, resulting in two systems: Aprj and Astd, respectively, where Aprj = PAstd and Astd is the 

operator of Nicolas et al. [338] from Eq. (6.10). 

 Exact deflections were arranged as a measurement vector with the directional components 

grouped together: bexact = [δx
T δy

T δz
T]T. Modelled deflections were calculated with the 753-voxel 

 
Figure 6.4: Ground truth deflection vectors for the hot air sphere and swirl flame phantoms. Vectors 
are scaled by a factor of 2.5 to emphasize apparent motion in the visual field. 
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hull and errors were defined as the Euclidean distance of the residual, bexact – Axexact, normalized 

by the magnitude of bexact. Measurement vectors and model errors for both phantoms are shown in 

Figure 6.5. Deflections computed with Aprj exhibited limited error throughout the vector, with an 

error of 9.3% for the hot sphere phantom and 15.4% for swirl flame phantom. Corresponding errors 

for Astd were 25.1% and 26.6%. Model discrepancies were greater for the flame than the sphere—

both with and without the projection matrix—due to the relative complexity of the flame phantom. 

This difference occurs because gradients in the discrete approximation to the sphere were more 

accurate than gradients in the discrete approximation to the flame. 

 The standard model generated accurate data in the x and y directions but produced significant 

error in the z direction. By contrast, the performance of Aprj was more uniform, with lower overall 

error. The projection matrix accounts for the pose of the camera relative to the plane and thereby 

reduces model errors. To illustrate: in this case, while Astd computes vectors that lie primarily in 

the image plane, deflections apparent in the background pattern contain a considerable z 

component, which can be seen in Figure 6.5. In addition, there are small components of δ in the z 

direction due to the path integrals over ∇zn. These components are caused by inhomogeneous 

gradients in n along the z direction, which bend the phase front relative to the plane, regardless of 

its orientation. P eliminates unobservable deflections due to both effects and Aprj predicts more 

accurate deflections for xexact than Astd as a result. 

 Any discrepancies between the measurement model and underlying physics will introduce 

errors into reconstructions. These errors are amplified in tomography due to the inherently ill-

posed nature of inverting coupled IFKs. The standard BOS model does not restrict deflections to 

a)  b)  

Figure 6.5: Exact measurements and model error for phantoms with 753 voxel support: a) the hot 
air sphere (error reduced by 63% due to the projection matrix) and b) the TECFLAM swirl flame 
(error reduced by 42% due to the projection matrix). 
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the plane of the background pattern, resulting in the out-of-plane errors described above. However, 

a matrix, P, can be constructed to project modelled deflections into the target plane. It was found 

that the product PAstd reduced model error by 63% and 42% compared to Astd for the air sphere 

phantom and swirl flame phantom, respectively. The use of Aprj thus reduces the uncertainty in 

reconstructed parameters relative to Astd. 

6.2.4 Deflection sensing 

The same ray-tracing simulation was employed in order to evaluate the performance of Horn-

Schunck deflection sensing. Tests were run with both the Horn-Schunck and Lucas-Kanade 

algorithms to compare these techniques. Figure 6.6 shows errors in the optical flow deflections vs. 

α for both phantoms. Error ranged from 15.5% to 31.4% for the hot air sphere and 12.4% to 37.8% 

for the swirl flame for α in [0.05, 1.60]. The optimal value of α was 0.83 for the sphere test and 

0.38 for the swirl flame test. The trend in error vs. α followed a shallow trough around the 

minimum in both cases, which supports the use of a Horn-Schunck algorithm. By comparison, the 

Lucas-Kanade algorithm was less accurate and more sensitive to the regularization parameter. 

Minimum error in the Lucas-Kanade tests was 42.2% for a window size of 25 px; the error trace 

featured a steep well near the minimum (i.e., results were quite sensitive to the window size). 

Therefore, the Horn-Schunck algorithm was used for deflection sensing in the remainder of 

simulations and post-processing of experimental images. 

 Also shown in Figure 6.6 are Horn-Schunck-based vector plots for the phantoms. These were 

calculated from the blurred png images from the non-linear ray-tracing simulation using α = 0.8. 

Both plots exhibit a strong resemblance to the ground truth structures in Figure 6.4, with errors 

primarily distributed around the edge of the structures. Measurements in Figure 6.6 were calculated 

a)  b)  c)  

Figure 6.6: Optimizing deflection sensing: a) errors in the Horn-Schunck vectors and vector plots 
for the b) heated air sphere and c) swirl flame phantoms. 
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for a 400×400 px window in the centre of the sensor, which fully contained both phantoms, and 

downsampled by linear interpolation to a resolution of 100×100 px. The same treatment was 

applied to the LOS vectors used to generate the forward operator, A. 

6.2.5 Evaluation of Bayesian priors 

Following evaluation of the measurement model, the swirl flame phantom was reconstructed using 

the 12-camera setup in Figure 6.3b. First, the Tikhonov prior was tested using each discretization 

scheme, from 153 to 753 voxels, varying λ from 1⋅10-4 to 500. Reconstructions were computed with 

the SIRT algorithm to avoid explicit calculation of the inverse operator. The SIRT is often used 

for iterative regularization in tomographic reconstruction due to its semi-convergence behaviour 

[355]. However, since the augmented system in Eq. (6.16) already incorporates a priori 

information, the system is not ill-conditioned. As such, the SIRT algorithm was run for 15,000 

steps, which was sufficient to ensure convergence to a tolerance of 10-8. 

 Reconstruction accuracy was scored with respect to the 753-voxel ground truth phantom to 

control for the effects of dimension on inter-grid comparisons. The measurement model assumes 

uniform concentration in the voxels, which, accordingly, was the mode of interpolation used to 

upsample data from the coarse grids. Accuracy was measured with the SSIM index. 

 Figure 6.7 shows the results of the Tikhonov parameter study. All SSIM scores were above 

0.99, indicating a high degree of structural similarity throughout the tests. The range of indices in 

the study was 3.8⋅10-7, this small range was due to the very high dimension of x (i.e., 753 variables). 

Scores in Figure 6.7 are scaled to the range of scores in the study to emphasize relative trends. 

Reconstructions improved with increasing resolution of the discretization scheme and peaked in 

 
Figure 6.7: SSIM index scores for reconstructions based on the Tikhonov prior, calculated for 
smoothing parameters from λ = 1⋅10-4 to 500. 
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the range of λ = 1 to 10 for the 453-, 603-, and 753-voxel schemes. Optimal values of λ decreased 

with increasing grid resolution, which is consistent with the Bayesian interpretation of Tikhonov 

regularization. That is, the variance of voxels should increase with the grid resolution. 

 The TV prior parameter study was conducted using the swirl flame phantom and all five grids. 

The diffusion parameter, β, was varied from 1⋅10-4 to 10. Iterations of the TV prior were computed 

with Eq. (6.18), which was initialized using a Tikhonov reconstruction (i.e., x(0) = xTK), itself 

computed with the optimal value of λ indicated in Figure 6.7. Three iterations of x(k) were computed 

with 15,000 steps of the SIRT algorithm and reconstructions were scored by the SSIM index. 

 Figure 6.8 shows results of the TV parameter study for the 603 and 753 voxel hulls. These tests 

featured a range of SSIM scores of 8.4⋅10-8 and 8.0⋅10-8, respectively. The Euler-Lagrange 

approximation to the TV prior improved reconstructions relative to the Tikhonov prior for each 

iteration across several orders of magnitude of β for all five hulls. Continued iteration of the prior 

produced diminishing returns, with effective convergence after three steps. These results suggest 

that the TV prior provides robust improvement over the Tikhonov prior in the reconstruction of a 

flame scalar by permitting sharp gradients in the estimate. However, values of β that are very small 

effectively eliminate the influence of the prior, and values that are very large over-smooth the 

distribution, as with Tikhonov regularization. 

 Figure 6.9 illustrates the effect of Tikhonov and TV iterations with slices of the 3D swirl flame 

reconstructions on the 753-voxel grid. Measurement data for the reconstructions were obtained by 

Horn-Schunck deflection sensing; reference and deflection images were generated by the linear 

and non-linear ray-tracing algorithms. MAP estimates were computed with the Tikhonov prior, 

a)  b)  

Figure 6.8: SSIM index scores for reconstructions based on three iterations of the TV prior, 
calculated for β = 1⋅10-4 to 10. Results are shown for the a) 603 voxel hull and b) 753 voxel hull. 
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using λ = 1, followed by three iterations of the TV prior, with β = 0.01. Accuracy trends in Figure 

6.8 align with the visual quality of reconstructions in Figure 6.9. The initial Tikhonov estimate 

was itself accurate, capturing large-scale variation in the flame but over-predicting the extent of 

hot gases outside the flame. Iterative TV estimates preserved the large-scale structures and 

progressively refined small-scale features at the flame front. As a result, variation apparent in the 

third iteration of the TV prior was much closer to variation in the ground truth flame front than the 

Tikhonov reconstruction. This result was anticipated because the TV prior promotes information 

that is more compatible with combustion physics than the Tikhonov prior. Implementation of the 

iterative, linear approximation to the TV norm is straightforward. Therefore, the TV prior was 

employed to reconstruct experimental deflection data in Section 6.3. 

 Large-scale structures in the final TV reconstruction in Figure 6.9 appear substantially similar 

to those of the ground truth phantom, and the SSIM index assigned a large value (indicating similar 

residuals) to all of the reconstructions. Nevertheless, certain discrepancies are visible in the 

estimates and it is crucial to develop the means to assess the accuracy of optical density field 

estimates. Figure 6.10 shows a voxel-by-voxel comparison of the TV reconstruction and ground 

truth distribution in Figure 6.9, i.e., x(3) and xexact. As with the SSIM index, a simple correlation 

metric shows substantial similarity between the two vectors, with an observed correlation of 0.94. 

 
Figure 6.9: Index of refraction slices from the TECFLAM swirl flame phantom and the corresponding 
reconstructions. Iterations were initialized with a Tikhonov reconstruction (x(0) = xTK, λ = 5). 
Subsequent reconstructions, x(k), were computed with the TV prior (β = 0.01). 
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However, close inspection of Figure 6.9 reveals that the reconstructed index of refraction is prone 

to some non-physical variation, contributing to posterior uncertainties. 

 Joint-statistics for the reconstruction and ground truth phantom can elucidate the accuracy and 

precision of quantitative estimates from tomographic BOS. Figure 6.11 shows distributions of xexact 

conditioned on the estimate. The range of x(3) and xexact was divided into 1,000 bins and conditional 

distributions of xexact were obtained for x(3) = 1.00006, 1.00016, and 1.00026, corresponding to the 

10th, 50th, and 90th percentile of the range. The resulting pdfs, π(xexact|x(3) = P), are plotted in Figure 

6.11, which also lists the corresponding mean conditional-percentile of xexact. Tenth percentile 

estimates (at n = 1.00006) corresponded to a true optical density of 1.00005 on average, which 

equates to a temperature difference of 300 K. Estimates of x at the 50th and 90th percentile of the 

range were within 1.6 and 0.9 percentiles of the true mean density. These estimates exhibited a 

greater spread than the first distribution but implied a less substantial temperature difference. One 

standard deviation of the distributions in Figure 6.11b and c corresponded to 122 K and 28 K, 

respectively. Additional temperature sensitivity at the lower optical densities arose because Eq. 

(6.21) is singular for n = 1, which suggests a temperature of infinity. 

 Ideally, the distribution of n conditional on an estimate would be a delta function about the 

estimate (i.e., with no posterior uncertainty). At present, errors from the optical flow algorithm are 

the primary source of uncertainty in the reconstructions, as illustrated by the posterior distributions 

in Figure 6.11. These errors can obscure important features of the flame and reduce the spatial 

resolution of BOS tomography. However, reconstructed structures were clearly representative of 

the true distribution, as evidenced by the SSIM index, correlation, and visual similarity between 

 
Figure 6.10: Voxel-by-voxel comparison of x(3) and xexact; axes report a transformation of the 

refractive index, (n – 1)⋅104, and dashed lines indicate joint-comparison values: the 10th, 50th, and 
90th percentile of the range of n. 
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xexact and x(3). Probability distributions of n, conditional on the reconstruction, gave a reasonably-

bounded temperature range, suggesting BOS tomography can be usefully employed for flame 

imaging. 

6.3 Instantaneous 3D Imaging of a Laboratory Bunsen Flame 

6.3.1 Laboratory setup 

A Bunsen burner with an exit diameter of 15 mm and height of 88 mm was operated with open 

intake slots at the base to generate a premixed natural gas/air flame. The flame was neither encased 

in a housing nor co-flow and was left to flicker and drift due to ambient fluid motion. Figure 6.12 

depicts the laboratory setup and a photo of the flame set against a black background. Apparent in 

this photo are the wrinkled reacting zone and envelope of hot gases. 

 Twenty-three Basler acA645-100gm cameras were equally-spaced around a 165° arc 

surrounding the flame, focused on five background patterns, shown in Figure 6.12a. The cameras 

include a ½” Sony ICX414 659494 px monochromatic sensor with a pixel size of 9.99.9 µm 

a)  b)  c)  

Figure 6.11: Joint-statistics of the TV reconstruction and ground truth phantom, π(xexact|x(3) = P), 
where P is a percentile of x(3). Joint-comparisons include the a) 10th, b) 50th, and c) 90th percentile. 
Dashed lines are the conditional value of x(3). 

a)  b)  

Figure 6.12: Laboratory setup for BOS tomography: a) the 23-camera laboratory array, centred on a 
Bunsen burner and focused on textured background images, and b) image of the Bunsen flame 
against a black background, captured with a 300 µs exposure time. 
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Cameras were fixed in position by mounting them onto a single base plate at a fixed radius from a 

common origin, roughly corresponding to the burner’s outlet. This arrangement was previously 

used in an emission CST experiment with a swirl flame target [218]. A Kowa C-mount lens having 

a focal length of 12 mm was attached to each camera. The cameras’ peak spectral response was in 

the visible range, from 400 to 680 nm, and the aperture size was toggled between a maximum and 

minimum setting to achieve an f-stop of f/1.4 and f/16, respectively. Emission from the flame was 

negligible compared to the intense illumination of the background patterns. 

 Five dot speckle patterns, shown in Figure 6.12a, were printed on white A0 poster paper. The 

patterns each contained 7,500 black dots, 8 mm in diameter, positioned by a Poisson-disc sampling 

algorithm. Posters were arranged in a semicircle, approximately 2 m away from the burner. The 

background planes were lit, homogeneously, by twelve 200 W LED floodlights, resulting in 

240,000 lumens of illumination. Deflections in the BOS patterns due to refraction through the 

flame were visible to the human eye during the tests. 

 An emission CST experiment and simple LES of the Bunsen flame were conducted to validate 

the optical density estimates. The room was darkened for the CST test and the flame was imaged 

with the 23-camera setup using an f-stop of f/16 and long exposure time. Emission data was 

reconstructed according to the procedure of Floyd et al. [206]. 

6.3.2 Camera calibration 

Ray trajectories for each pixel were calculated using an idealized pinhole model. The pinhole 

camera system comprises an intrinsic matrix, K ϵ ℝ3×3, and extrinsic matrix, M ϵ ℝ3×4. M is 

constructed by augmenting a rotation matrix, R, and translation vector, t: M = [R -t], which 

describes the camera’s pose and location. The beam for the ith pixel was approximated by its 

primary ray, 

 1T

i i i i

r R K q , (6.22) 

where Ri and Ki are the rotation and intrinsic matrix for the camera containing i and qi is the 

location of the pixel on the sensor in homogeneous sensor coordinates. The translation vector is t 

= Rc, where c is the camera position (i.e., the origin of the ray in world coordinates). K consists 

of a homogeneous sensor origin, skew parameter, and u and v direction focal lengths. Given the 

matrices M and K, the equation for the ith ray is ci + uri, where u is a non-negative scalar. 
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 Stereo calibration of the 23-camera setup was conducted with MATLAB’s Computer Vision 

System Toolbox. A procedure was developed to obtain synchronous camera parameters and plane 

equations for the background patterns. Calibration was conducted in two steps. First, the cameras 

were fixed in place to determine their extrinsic parameters. For this step, the cameras were aimed 

at a small target, positioned above the burner. Next, the cameras were refocused on a larger target, 

placed directly in front of the speckle dot posters, and a second image set was recorded to 

determine the intrinsic parameters and plane equations. Calibration codes were written by Andreas 

Unterberger of the University of Duisburg-Essen, in collaboration with the author of this thesis, 

and photos of the target boards were captured with the assistance of Ying Jin of the Nanjing 

University of Science and Technology. 

6.3.2.1 Extrinsic parameters 

The target for extrinsic calibration was a checkerboard with 12 rows of 17 squares, 8×8 mm in 

size. Parameters were computed for a set of at least 20 images that were accepted by the calibration 

toolbox, each featuring a random orientation of the target. MATLAB’s stereo calibration algorithm 

[67] generates extrinsic matrices, Ma and Mb, for simultaneous images of the target from two 

cameras. The rotation matrices for the first pair of cameras were denoted R1 = Ra and R2 = Rb. 

Subsequent pairs were calibrated and rotated into the global system as follows: 

 
1i b a i R R R R , (6.23) 

 
Figure 6.13: Calibration photos from camera 11 for the f/1.4 and f/16 f-stop settings and 
corresponding ray-traced scenes. Outlines of the simulated target in the ray-traced scenes are 
superimposed on the calibration photos in blue and the global origin is plotted in red. 
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where Ra and Rb were extracted from Mi and Mi+1, respectively. Translation vectors were similarly 

transformed, 

 
1 ( )i i i b a   t t R t t . (6.24) 

Finally, the whole system was rotated and translated such that the primary ray of camera 12 pointed 

along z = -1 with the origin located approximately at the centre of the burner exit. 

6.3.2.2 Intrinsic parameters 

Intrinsic calibration was conducted to correct for lens aberrations and small differences in the focus 

of individual cameras. The first target was a checkerboard with 18 rows of 12 squares, 27.5×27.5 

mm in size. Calibration of the intrinsic parameters was conducted twice, once for each f-stop 

setting. 

 Figure 6.13 shows a sample set of second-stage calibration photos. Also shown are simulated 

images of the same scene, ray-traced with the calibration parameters and plane equations. The 

edge of the target (as determined by the ray-tracing procedure) is outlined in blue in the photo to 

highlight the close correspondence between the true and simulated target positions; the global 

origin is plotted in red. The aperture size had a considerable influence on the apparent focus of the 

images. As the aperture size was decreased from f/1.4 to f/16, the volume of rays for a single pixel 

was decreased. Moreover, the volume shape transitioned from conical to cylindrical. The edge of 

the burner appears blurry in the f/1.4 photo and sharp in the f/16 case, accordingly. It is desirable 

to minimize this bokeh effect in BOS imaging. 

 Small discrepancies between the plane equations were observed between estimates from 

different cameras, indicative of calibration errors. The magnitude of this error was greatest for ray-

traced positions in the background plane (i.e., furthest away from the camera); discrepancies within 

the visual hull were expected to be small. Camera-specific plane equations were used for each 

background, to minimize the effects of misalignment between the location of optical flow data and 

ray-sum trajectories. The mean and standard deviation of reprojection errors from the camera 

calibration was 0.18 px and 0.007 px. A previous study of the tomography system showed 

increasing accuracy with an increasing number of views for up to 24 cameras [218]. While these 

results support the accuracy of the calibration and ray tracing procedures, further study is required 

to quantify the relationship between reconstruction accuracy and calibration uncertainties in BOS 

tomography. 
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6.3.3 Results and discussion 

Two proof-of-concept experiments were conducted to establish the viability of BOS tomography 

as a practical combustion diagnostic. Both tests featured a premixed natural gas/air flame from a 

Bunsen burner with no coflow. The aperture size was varied between the tests to illustrate the 

effect of the blur in the probe volume on reconstruction accuracy. Images for the cameras were 

captured, simultaneously, with an exposure time of 300 µs at a sampling rate of 5 Hz. 

 Sub-regions of each sensor were selected to eliminate degenerate deflection vectors at the 

edge of the burner and minimize unnecessary ray-tracing, since the flame did not fill the cameras’ 

field-of-view. These regions, roughly 350×350 px in size, were downsampled to 125×125 LOS 

arrays, resulting in measurement vectors of dimension 3⋅1252. A cubic hull with 0.1 m sides, which 

fully contained the flame front, was discretized into a 603 voxel system. This system had a grid 

resolution of 1.67 mm, similar to the resolution of the 753 voxel system from the numerical study. 

Based on the results in Section 6.2.5, the flame was reconstructed using three iterations of the TV 

prior, with β = 0.01, starting from a Tikhonov reconstruction, with λ = 1. Each iteration was 

computed by 15,000 steps of the SIRT solver to ensure adequate convergence. 
 

 Figure 6.14 contains sample photos of the distorted background from camera 11 for both f-

stop settings. Deflections from the optical flow algorithm, downsampled to the 125×125 LOS 

array, are plotted in blue. The measurement sub-region is superimposed on the photo in white to 

highlight the deflections. Also shown are plots of the magnitude of downsampled deflections, 

which illustrate the position of refractive index gradients in the flame. The primary gradient is 

 
Figure 6.14: Photos from camera 11 for the small and large aperture tests, with measurement region 
and deflections superimposed, and downsampled deflection plots for the same measurements. 
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located about the edge of the hot gas envelope, with the flame front clearly visible within the inner 

structure, directly above the burner. Deflection magnitudes for the f/1.4 and f/16 apertures 

emphasize the effect of blur in the probe volume on the optical flow algorithm, established in 

Figure 6.13. Although the background is in focus at both f-stop settings, f/1.4 images feature larger, 

more conical ray bundles in the probe volume than f/16 images. The former setting thus obscures 

fine features within the flame and the wrinkled reacting zone appears clearer in the f/16 test. 

 Horizontal and vertical cross sections of an instantaneous reconstruction from the f/16 test are 

shown in Figure 6.15. Structures in this figure align with structures apparent in the photo in Figure 

6.12b and deflection vector magnitudes in Figure 6.14. The reconstruction features a hollow core 

within the flame front due to the high optical density of the cold, unburned gases. This mixture 

consisted primarily of N2, O2, and CH4 (roughly, 72%, 22%, and 5%, respectively), with an 

approximate density of 1.14 kg/m3 and ambient optical density of 1.000283. The envelope of hot 

products surrounding the flame front consisted mainly of N2, CO2, and H2O, along with CO and 

other trace gases. Density of the mixture was lower in this region because of heat released by the 

combustion process, thereby lowering the optical density, per Eq. (6.19). Figure 6.16 shows 

corresponding mean reconstructions. The measurement vector for mean estimates was obtained by 

averaging Horn-Schunck deflections for 50 successive frames. The horizontal cross sections are 

circular, reflecting the axisymmetric burner configuration. 

 Mean results from the f/16 experiment are compared to the Bunsen flame simulation and 

emission CST estimate in Figure 6.17. The LES was run using the same combustion model as the 

 
Figure 6.15: Cross sections of an instantaneous reconstruction from the f/16 test, computed with 
three iterations of the TV prior (x(0) = xTK with λ = 1, and β = 0.01 for x(1) to x(3)). 
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LES in Section 6.2.2 to provide a baseline for qualitative comparison to the experimental 

reconstructions. Instantaneous optical density fields from the simulated Bunsen flame exhibited a 

reacting zone with wrinkles on the same scale as those of the estimates in Figure 6.15. Emission 

from the flame peaked about the flame front and then quickly tapered off, resulting in a thin profile. 

By contrast, optical density is elevated far away from the reaction zone due to the extent of hot 

products and convective heating of the surrounding air. Regardless, mean reconstructions from the 

BOS and chemiluminescence tests suggest a common underlying flame structure. The height and 

width of flame fronts from the LES and CST test match the BOS reconstructions, which supports 

the use of BOS tomography to visualize 3D features of an unsteady flame. 

 Figure 6.18 shows instantaneous reconstructions from the f/1.4 test. Blurring effects are 

clearly apparent in the over-smoothed core and enlarged envelope of hot products. Furthermore, 

the peak magnitude of refractive index near the base of the flame is lower than that of f/16 

reconstructions, reflecting a lower overall magnitude of deflection vectors in the f/1.4 test. The 

 
Figure 6.16: Cross sections of the mean reconstruction from the f/16 test, computed with three 
iterations of the TV prior (x(0) = xTK with λ = 1, and β = 0.01 for x(1) to x(3)). 

  

Figure 6.17: Comparison of the Bunsen flame profiles from LES, BOS tomography for f/16 images, 
and chemiluminescence tomography. Side and top view cross sections are presented for x = 0 cm 
and y = 2 cm, respectively, showing close correspondence of the flames. 



 

197 

 

larger aperture reduced the exposure time required to obtain a clear image of the posters but blur 

in the probe volume, produced by the larger, more conical ray bundles accepted by the aperture, 

limited the accuracy of f/1.4 reconstructions. The aperture size should therefore be set to a 

minimum feasible value. 

 Local flame temperatures are extracted from the optical density field via the Gladstone-Dale 

relation, but temperature inference is complicated by the fact that G varies throughout the flame. 

There are three effective regimes of n within the probe volume: unburned gases, a thin reaction 

zone, and the envelope of combustion products. Variation of G within these regimes is negligible 

and the variation in between may sometimes be neglected, as well, depending on the mode of 

combustion [357]. In order to transform the estimates in Figure 6.15 into a temperature, one would 

need to either model the distribution of G or infer this parameter from the distribution of n with a 

segmentation algorithm, which is a topic for future research. Preliminary results were obtained for 

an optical density immediately outside the flame front in Figure 6.15, n = 1.0004. Substituting this 

value and a presumed combustion product mixture into Eq. (26) yields a maximum temperature of 

roughly 2,150 K and ambient temperature of 300 K. The latter value was in good agreement with 

the temperature of air in the lab and the peak value was consistent with prior expectations about 

the Bunsen flame. 

6.4 Conclusions 
Three-dimensional measurements of scalar fields in turbulent flames are vital to the development 

and validation of combustion simulations, which enable engineering solutions to numerous energy 

 
Figure 6.18: Cross sections of an instantaneous reconstruction from the f/1.4 test, computed with 
three iterations of the TV prior (x(0) = xTK with λ = 1, and β = 0.01 for x(1) to x(3)). 
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and climate challenges. Present optical diagnostics are either spatially-limited, such as 2D laser 

diagnostics, or qualitative, such as 3D emission CST. Emerging alternatives, including volumetric 

LIF, promise quasi-instantaneous, quantitative 3D data. VLIF systems require intricate, highly-

expensive setups that pose safety risks and suffer from limited mobility. Novel 3D diagnostics are 

thus of considerable interest to the combustion community. 

 Schlieren imaging responds to gradients in a refractive index medium, such as a flame, and 

can be used for quantitative tomography. BOS uses computer vision tools to identify the 

deflections, which greatly simplifies the technique. BOS tomography is a form of gas-phase 

tomography, previously employed to reconstruct the temperature and density of a gas-phase fluid. 

This chapter reports the first application of BOS tomography to combustion imaging. Moreover, 

the deflection model was improved with a projection matrix, shown here to reduce model errors 

by up to 63%. Tomography was conducted in the Bayesian framework developed in previous 

chapters; Tikhonov and TV priors were employed to reconstruct the flame front. A parametric 

study of the priors was conducted on a turbulent swirl flame phantom. Results showed that the TV 

prior yields improved reconstructions for a large range of the diffusion coefficient. Conditional 

statistics were employed to quantify posterior uncertainties. Numerical evaluation of BOS 

tomography supported its viability in the combustion imaging context. 

 Lastly, this chapter concludes with reconstructions of an unsteady, premixed natural gas/air 

flame from a Bunsen burner. Three iterations of the TV prior were conducted to generate accurate 

instantaneous 3D estimates of the flame’s refractive index field, used to infer the peak temperature. 

Such reconstructions reveal the evolution of turbulent structures in 3D and BOS tomography can 

provide quantitative data for benchmarking simulations. Benchmarking data will be obtained in 

future experiments by thermometry or post-processing the simulation to obtain a refractive index 

field. 
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Chapter Seven  
Progress and Outlook for Bayesian Gas-Phase Tomography 

Modelling turbulent phenomena, simulating combustion, and monitoring emissions are 

scientifically interesting tasks that play a critical role in major social challenges. Turbulence 

consists in multiscale motion in which energy is dissipated from large coherent structures to 

smaller and smaller swirls and vortices, ultimately exhausted by viscous forces at the molecular 

level. Continuum models of fluid flow require a dense computational grid, impractical in 

application-driven scenarios, or semi-empirical closure that approximates subgrid behaviour. 

Spatially-resolved measurements of turbulence are needed in the latter case in order to observe 

phenomena, develop models, and identify coefficients. Combustion further complicates matters 

since turbulent transport occurs at length- and time-scales that are common to chemical kinetics 

and radiative transport, thereby giving rise to non-linear interactions. Three-dimensional 

temperature and concentration data are used to validate flame simulations. Simulations are 

employed to engineer efficient burners and predict the combustion attributes of alternative fuels. 

Finally, emissions from oil and gas facilities, landfills, and industrial plants contribute to long-

term climate risks and can cause respiratory morbidity, cancer, and other ailments. Quantitative 

gas diagnostics are increasingly necessary to inform climate models and devise and enforce 

emissions mitigation strategies. 

 Each of these areas demonstrates a clear need for diagnostics that deliver robust, spatially-

resolved measurements of a gas-phase target. Numerous tools have been developed to serve this 

purpose, including LOS absorption spectroscopy, LIF, and gas-correlation imaging, among others. 

The present work concerns gas-phase tomography, a fast-growing class of imaging technologies 
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that can provide accurate estimates of a gas distribution when optical access is limited, and can 

resolve intricate turbulent structures in open laboratory conditions. Gas-phase tomography 

transforms measurements of light, made around the periphery of a domain, into a 2D or 3D image 

of key quantities, including the concentration of a target species, temperature, and pressure. The 

measurement model is derived from the RTE, in the case of CST, and the ray equation of geometric 

optics, for BOS tomography. CST is further divided into absorption and emission scenarios and 

the governing equations for all of these modalities—absorption and emission CST as well as BOS 

tomography—simplifies to a Fredholm IFK. Tomographic imaging, or reconstruction, is 

conducted by inverting the coupled IFKs for a series of measurements to estimate the unknown 

distribution with a finite representation of the flow field, called a basis. The inversion is necessarily 

ill-posed for one of two reasons: either the measurement array is too sparse to determine a unique 

estimate or the damping action of the IFK amplifies noise in inversion, giving rise to non-physical 

artifacts. Gas-phase tomography is thus an ill-posed inverse problem and requires supplemental 

information to generate physically-plausible estimates. 

 Statistical inversion uses Bayes’ equation to incorporate prior information into inverse 

problems like tomography. This dissertation applies the Bayesian framework to gas-phase 

tomography, drawing on the implications of Bayes’ equation to construct a sophisticated prior for 

a turbulent target, improve the design of limited-data CST systems, and select an optimal 

discretization scheme. Following these developments, two novel applications of gas-phase 

tomography were carried out in the Bayesian framework: a broadband form of absorption CST, 

for emissions monitoring; and the first application of BOS tomography to flame imaging. This 

chapter reviews the advances in Bayesian tomography, presented in Chapters Three and Four, and 

novel tomography experiments, reported in Chapters Five and Six. Finally, the dissertation 

concludes with some remarks on the implications of the Bayesian framework for tomography and 

avenues for future research. 

7.1 Developments in the Bayesian Framework for CST 
The Bayesian approach to reconstruction conceives measurements, quantities of interest, and 

physical parameters as random variables, characterized by a probability density function. The pdf 

represents one’s state of knowledge about a variable, accounting for both the variation intrinsic to 

a process—e.g., random fluctuations in a turbulent quantity—and uncertainties that arise from the 

inference. A likelihood pdf is constructed to quantify the chance of observing a data vector for an 
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arbitrary target, based on attributes of the noise and model errors; the prior quantifies the relative 

likelihood of different distributions, based on what was known before measurement. The latter 

function reflects expectations about a flow field, typically derived from transport equations or a 

simulation. Bayes’ equation relates the likelihood and prior pdfs to a posterior distribution, and 

statistical inversion amounts to working out the posterior pdf for a given data vector. 

Reconstruction culminates in calculating a point estimate to represent the posterior. Estimates can 

take several forms but reconstructions are typically defined to be the MAP estimate, which is the 

most probable distribution of gas given the observed data, subject to noise, modelling errors, and 

prior assumptions about the target. Tomographic imaging is carried out following one or more 

measurements and the specification of a likelihood and prior. 

 Measurements and physical parameters in Bayesian tomography are frequently modelled as 

joint-normal random variables. Per Chapters Two and Three, the joint-normal form is a good 

approximation to the true distributions. Given a joint-normal likelihood and prior, the posterior is 

also joint-normal. Several important developments in Bayesian tomography follow from this 

common functional form. Most fundamentally, arguments in the joint-normal likelihood, prior, 

and posterior pdf reside in an exponential function; MAP estimation is formulated accordingly as 

the least squares solution to a linear system. In addition, explicit representation of the posterior 

enables estimation of a summary statistic, used to improve the arrangement of optical paths, as 

well as the evidence (i.e., the probability density of a data vector), which is the key quantity in 

model selection. Chapter Three justifies the joint-normal prior pdf and develops priors for 

turbulent free-shear flows in limited-data and full-rank CST. Chapter Four derives Bayesian 

objective functions for DOE in CST as well as a model likelihood, later used for model selection. 

These contributions are reviewed, below. 

7.1.1 Turbulence modelling and advanced priors 

Constructing an appropriate prior pdf is a key task in Bayesian tomography. Reconstruction 

accuracy depends on the correspondence between true variation in the measurement domain and 

the functional form of the prior. Turbulent jets and flames are common targets in CST and, ideally, 

the prior should encode the distribution of fluctuations present in the flow field. Joint-normal pdfs 

are often employed to model turbulent quantities in CST but this choice is rarely questioned. 

Chapter Three includes an analysis of turbulent fluctuations and argues that they are adequately-

modelled as Gaussian. It was noted that reconstructions are represented in terms of a finite basis 



 

202 

 

that effectively averages fluctuations over a region of space, thereby suppressing non-Gaussianity; 

and non-Gaussian features are most prevalent in the tails, which have a limited effect on MAP 

estimates. Theoretical arguments for Gaussianity were supported with experimental results, 

showing scalar fluctuations in turbulent flows. Finally, epistemic uncertainty about the flow 

conditions and effect of projection onto the basis further justifies the choice of a high-entropy 

prior, especially since it leads to an analytically-tractable posterior. 

 The joint-normal pdf includes two arguments: a mean vector and covariance matrix. 

Typically, minimal assumptions about the flow field are used to derive these quantities, as in first-

order Tikhonov regularization. However, flow-specific information about the mean and covariance 

can be extracted from the measurements, subject to constraints that are motivated by the governing 

equations. Towards this end, scale profiles were derived for the first two moments of the pdf of a 

passive scalar in a round jet. The first profile operates as a subspace restriction during 

reconstruction of the mean concentration. A novel expression was presented for the second 

function, in which the variance profile is given in terms of the mean. The covariance matrix 

consists of the spatial distribution of variance combined with a spatial autocorrelation function. 

Separate techniques were developed to estimate this matrix for limited-data and full-rank CST. 

 Limited-data covariance estimation begins with reconstruction of the mean distribution from 

an average measurement vector. If the target is a free-shear jet, or combination of jets, the mean 

estimate is found in terms of the analytical scale function. Otherwise, the mean is reconstructed 

with a smoothness prior, given that advection-diffusion transport should yield a spatially-smooth 

average field. Once the mean is determined, the distribution of variance is calculated using the 

established relationship between the first two moments of the concentration pdf. Square-

exponential correlation structure is added to the variance and the resulting matrix is scaled to match 

the variance observed in the measurements. 

 Absent measurement noise and model error, full-rank covariance data can be directly obtained 

by inversion of the ray-sum matrix. Corruption by noise is unavoidable, of course, and individual 

measurements are always affected by noise. But the influence of unbiased noise diminishes in 

average quantities—including the observed measurement covariance—as the measurement 

duration is increased. The effects of model error, and the interactions between model error and 

noise, are determined using an approximation error method. Approximation errors are found by 

reconstructing the flow with a smoothing prior, projecting estimates onto a high-order basis, and 
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computing the expected difference between ideal measurements over a reconstruction and 

simulated “ground truth” measurement over the projected estimate. Interaction models obtained 

from this procedure stabilize direct estimates of the target covariance. Finally, the correlation 

structure is replaced with a square-exponential correlation function and the covariance matrix is 

scaled by the observed measurement covariance, as in the limited-data method. 

 Numerical tests were conducted to verify the performance of covariance estimation for 

tomography of turbulent flows. Phantoms were obtained by LES of two targets. The first flow was 

a round, turbulent, free-shear CH4 jet; the second was a turbulent CH4/air flame in hot coflow. 

Reconstructions computed with a data-based covariance estimate were consistently more accurate 

than first-order Tikhonov estimates. Results reported in Chapter Three strongly support the 

Bayesian interpretation of tomographic imaging. Selecting prior information that reflects genuine 

variation in the flow field improves the accuracy of reconstructions. Furthermore, the covariance 

estimation techniques in Chapter Three are applicable to a range of industrially-relevant targets 

and compatible with real-time imaging algorithms for limited-data gas-phase tomography. 

7.1.2 Design of limited-data arrays 

The amount of information that can be extracted from CST data is a strong function of the 

arrangement of optical paths in the domain. Physical enclosures that restrict optical access and the 

rise of inexpensive opto-electronic components motivate and enable the use of irregular beam 

arrays in CST. Recent research has focused on developing techniques to optimize beam positions 

in limited-data systems. Prior DOE work applied to CST was carried out in a deterministic 

framework, without attention to prior expectations about the flow field. The Bayesian approach to 

inverse analysis naturally lends itself to the design of measurement systems, with explicit reference 

to prior knowledge about the target. Bayesian DOE is a statistical approach to experimental design 

in which the information extracted from the data is maximized, subject to an analysis of 

measurement uncertainties. 

 Deterministic methods to optimize the array were universally motivated by the mathematics 

of reconstruction, though not all followed a strict derivation. For instance, the sinogram coordinate 

criterion was initially proposed as a qualitative metric. “Uniform coverage” of the sinogram space 

by the beam coordinates was recommended, based on a Fourier analysis of back projection. Later 

testing of this method found no correspondence between the spread of coordinates and accuracy 

of reconstructions. Three subsequent metrics were shown to predict the performance of CST 
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systems: the resolution matrix, grid weight, and collinearity objective functions. Respectively, 

these relate to the minimization of regularization error, maximum coverage of the measurement 

plane, and minimum overlap between components of the ray-sum matrix. However, none of the 

deterministic techniques included specific information about the flow field, nor were they related 

to statistical properties of the reconstructions. 

 Bayesian reconstruction with joint-normal pdfs entails an analytical expression for the 

posterior covariance matrix, which is a function of the measurement array and prior covariance. 

As noted in Chapter Four, measurement vectors are not required to compute this estimate. The 

posterior covariance describes the expected variance and covariance of reconstructed parameters 

due to inherent variation, encoded in the prior, and uncertainties that arise from the arrangement 

of optical paths. In a design context, expectations about the flow field are fixed and differences 

between the posterior covariance matrix for candidate arrays stem from interactions between the 

ray-sum matrix and prior. However, the posterior covariance can be difficult to interpret due to its 

high-dimension and complex correlation structures. Summary statistics have been derived to relate 

the posterior covariance matrix to average reconstruction outcomes. In particular, the A-optimal 

function minimizes the total variance of reconstructions and the D-optimal function minimizes 

posterior uncertainty, accounting for correlated parameters. Bayesian objective functions for DOE 

are based on a summary measure of the posterior covariance matrix. Limited-data CST arrays are 

constructed to minimize the A- or D-optimal function, depending on the rank of the prior. 

 One significant insight presented in Chapter Four concerns the functional similarity between 

Bayesian and deterministic objective functions. Deterministic functions implicitly rely upon 

minimal assumptions about the flow field. These assumptions were encoded in the Bayesian prior 

to compare the frameworks. The resolution norm was derived for Tikhonov regularization, which 

has a direct analog in Bayesian CST, and the combination of a zero-mean vector and a diffuse IID 

covariance matrix corresponds to the assumptions that underpin the grid weight and collinearity 

functions. Generating a posterior covariance matrix with these priors revealed substantial 

correspondence between the Bayesian and deterministic metrics. (Though Chapter Four notes the 

lack of a direct relationship between the grid weight or collinearity function and the accuracy of 

reconstructions.) This connection suggests that, absent information about a specific flow, both 

frameworks should achieve similar performance. However, some information about the 

distribution of variance in a given scenario is almost always known; the Bayesian function 
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incorporates this knowledge in a statistically-robust manner. Bayesian design metrics imply that 

accurate prior information should improve the accuracy of reconstructions and yield a superior 

measurement system when used to design an experiment. 

 Phantoms sets from the round jet in Chapter Three and an isotropic Gaussian random field 

were used to evaluate the DOE functions. Three types of phantoms were constructed: the 

unmodified jet; an affine transformation of the jet, scaled by 50% and repositioned in the domain; 

and the isotropic (or uniform) field. Two optimization scenarios were considered, having 

structured projections (fan and parallel) and unstructured arrays; a genetic algorithm was designed 

to explore a large space of beam arrangements in the latter case. Uniform tests effectively served 

as a control on the prior since the minimal a priori information implicit in the deterministic 

functions was accurate for these phantoms. 

 Bayesian reconstruction with a flow-specific prior produced estimates that were consistently 

more accurate than the Tikhonov reconstructions, having a smaller mean and range of errors. The 

deterministic functions performed well for the structured projections (excluding the collinearity 

metric), though this was in part coincidental, due to the position and size of the target in the domain 

and grid resolution. Performance of the deterministic functions was worst for the small, shifted jet, 

while the Bayesian function captured unique, flow-specific trends in each test. Results for the 

unstructured beam arrangements evidenced the strong connection between the Bayesian objective 

function and reconstruction statistics, whereas the deterministic functions performed poorly in this 

setting. Beams arrays that minimized the Bayesian function were intuitively distributed about 

regions of high variance for the jets and uniformly-distributed for the uniform phantoms. The latter 

arrangement was similar to that selected by the resolution matrix function, confirming the 

analytical comparison of the frameworks. From these tests it can be concluded that a Bayesian 

approach to DOE will properly adapt a measurement array to the prior and accurate priors can be 

used to optimize the design of CST systems. 

7.1.3 Model selection in gas-phase tomography 

At the point of reconstruction, beam positions are fixed but the discretization scheme, 

measurement model, and prior are not. Together, these elements constitute a model of the flow 

field and each plays a major role in the accuracy of CST estimates. The choice of basis and prior 

used to reconstruct a flow are often heuristic in nature or based on a simple simulation of the gas. 

However, measurements can reveal unexpected features in the target and a mathematically-
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rigorous approach to model selection—one which incorporates the data—is desirable in CST. 

Bayesian tomography is implicitly conditioned on a model of the flow; Bayesian model 

comparison makes this contingency explicit and derives an expression for the odds that a data set 

was produced by one model over an alternative model. Chapter Four develops Bayesian model 

comparison for gas-phase tomography for the first time and reports the results of a numerical 

experiment demonstrating the technique. 

 Numerous discretization schemes are available to CST practitioners. The most obvious degree 

of freedom is the grid resolution; the functional form of the basis is also open to selection. 

Traditionally, square pixels and cubic voxels are employed for CST; whereas general finite 

element schemes, with triangular or quadrilateral elements (prisms in 3D), are more common in 

other forms of tomography. Chapter Four employs the FEM with triangular elements for CST 

using piecewise constant, linear, and quadratic modes of interpolation. The number of nodes in an 

element depends on the interpolation scheme—hence, the same mesh will have a different number 

of basis functions for different modes of interpolation. Triangle-element meshes across a range of 

resolutions are easily adapted to oddly-shaped domains and this flexibility enables multiple forms 

of comparison, ideal for testing model selection in CST. 

 Bayesian model comparison treats the model as an unknown quantity, analogous to the gas 

distribution, measurement vector, and nuisance parameters. Statistical inversion is applied to the 

model. It is not normally possible to construct a proper prior pdf on the model space. Absent a 

specific model prior, it is appropriate to adopt a uniform pdf over the set of candidate models, 

leading to a maximum likelihood formulation of the model inference. The ratio of model 

likelihoods for a data set, called a Bayes factor, gives the odds that the first model produced the 

data relative to the second. This procedure accounts for the complicated trade-offs between the 

ability of high-resolution bases to mimic the data and the uncertainties associated with additional 

nodes. By hypothesis, models that are likely to have produced a set of data will feature parameters 

and measurement equations that correspond to true variation in the system. The use of such models 

should lead to a more reliable inference. Model likelihoods are implicit in the evidence of the 

Bayesian formulation of CST and can be explicitly calculated due to the joint-normal pdfs. 

 The model likelihood is typically cast in logarithmic scale because of the numerical 

instabilities associated with calculating a Bayes factor. In addition to this computational advantage, 

the analytical expression of the log-model likelihood suggests a useful decomposition. The log-
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model likelihood comprises four terms: a measurement credence, data fit, and prior fit, and system 

constant (which cancels out in the Bayes factor). The credence describes the information that can 

be extracted from a measurement and the fit terms quantify the correspondence between MAP 

estimates and the data and prior. These terms can supply CST practitioners with useful information 

about why some models outperform others. 

 Chapter Four concludes with a CST simulation to test model selection, designed to resemble 

a recent experiment featuring a very-limited set of measurements (with eight lines-of-sight), large 

number of basis functions (over 2,000), and triangle elements with linear interpolation. LES data 

was obtained for the distribution of NH3 in an exhaust flow, downstream from a urea injector and 

static mixer (part of a SCR system). Gas distributions were highly turbulent and the numerical 

model was verified with experimental measurements. Components of the log-model likelihood 

were calculated for all three modes of interpolation, meshes of increasing resolution, and priors 

with different mean vectors and covariance matrices. There was a strong relationship between the 

log-model likelihood and average structural similarity index for the reconstructions; trends in the 

component terms also matched key aspects of model performance. As with the advanced prior for 

turbulent flows in Chapter Three, and the DOE procedure in Chapter Four, model selection is a 

straightforward derivative of the Bayesian formulation of CST. Results of the model comparison 

tests further evidence the versatility and benefits of the Bayesian approach to inverse analysis 

applied to gas-phase tomography. 

7.2 Novel Applications of Gas-Phase Tomography 
Two experiments were conducted to expand the range of viable uses for gas-phase tomography. 

Specifically, techniques were developed to address the demand for low-cost, stand-off emissions 

diagnostics and instantaneous 3D flame data. First, a transfer function was devised to linearize 

broadband open path absorption measurements for CST, using a spectroscopic model of well-

mixed emissions at atmospheric conditions. Subsequently, the measurement model for BOS 

tomography was improved and the technique was applied to a combustion imaging scenario for 

the first time. Both experiments were carried out in the Bayesian framework, drawing on the 

advances from Chapters Two through Four. 

7.2.1 Broadband absorption CST 

Industrial hydrocarbon emissions cause adverse health and environmental effects and have hence 

drawn considerable interest from regulatory bodies. Ground source emissions quickly equilibrate 
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to atmospheric conditions and frequently feature well-mixed components. Moreover, such flows 

are dispersive and highly transient, making them difficult to characterize by point-concentration 

surveys. These conditions are ideal for CST diagnostics but the measurement equations for 

absorption CST are formulated for monochromatic intensity data. Monochromatic measurements 

either require a laser source or a spectrally-resolved detector, posing numerous cost and/or safety 

concerns at industrial sites. By comparison, broadband IR spectroscopy is conducted with low-

cost, commercially-available devices—often intrinsically safe—motivating the development of a 

measurement model for broadband absorption CST. 

 Radiation is absorbed and emitted by molecules as part of their transition between energy 

states. IR lines involve coupled transitions between rotational and vibrational modes of internal 

energy. Atomic arrangements determine which states may be occupied by a molecule and which 

transitions are valid. The shape and intensity of IR lines follow regular patterns, forming bands 

and overtone bands with distinct branches. These features are described by an absorption 

coefficient, defined in terms of a molecule’s quantum mechanical properties. Chemically-similar 

molecules have co-located bands. For instance, stretching of the H-C bond gives rise to a 

hydrocarbon absorption band at 3.4 μm, which is of particular interest in broadband spectroscopy 

and optical leak detection. As a result, while common targets such as CH4 are transparent in the 

visible spectrum, they are often observable with mid-IR radiation. 

 Broadband transmittances are defined as the ratio of the transmitted spectral intensity, 

integrated over the range of the detector, measured with and without the absorbing species. The 

intensity at each wavelength is the source intensity attenuated by Beer-Lambert-type absorption, 

which depends on the absorption coefficient described above. Chapter Five shows how the path-

integrated absorption coefficient for well-mixed atmospheric emissions can be decomposed into a 

path-integrated volume fraction and spectral shape function. Substituting this expression into the 

transmittance equation relates spectrally-convolved broadband data to an integral over the local 

emissions burden—isolated from the spectral shape. The integral is a Fredholm IFK, identical in 

form to the measurement equations for monochromatic absorption tomography. A transfer 

function relates broadband data to the IFK, which is the measurement equation for broadband 

absorption CST. Spectral shape functions are computed with a line-by-line model for simple 

molecules (and combinations thereof) or derived from an empirical absorbance profile for complex 
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targets. Shape functions are combined with the filter bounds to determine a transfer function, 

which may then be deployed to linearize transmittance measurements. 

 Broadband absorption CST was verified with a laboratory-scale emissions detection 

experiment. A series of open path detectors were constructed, with a collimated thermal source 

and broadband detector, equipped with a mid-IR bandpass filter. Transfer functions for CH4, C2H4 

and C3H8 were benchmarked with absorption measurements through a gas cell, filled with 

controlled mixtures of the target species. Bounds for a box model of the filter were determined by 

non-linear regression and confirmed with an FTIR reflectance measurement. A plume of C3H8, 

perturbed by advection, was imaged with a 35-path array; point-concentration measurements for 

validation were made with a FID. 

 Chapter Five concludes with a Bayesian analysis of posterior uncertainties in the 

reconstruction. An estimate of the posterior covariance matrix for the tomographic image was 

computed, along with standard errors for the FID data. The reconstructed C3H8 field was in 

agreement with the FID measurements. Uncertainty in the point-concentration data was large, due 

to integral scale fluctuations in the target and the spatial uncertainty associated with extrapolation. 

By comparison, broadband absorption CST is based on spatially-integrated data, recorded over a 

long interval, which mitigates the primary errors that accompany point-based emissions surveys. 

Broadband absorption CST was shown to be a promising technique for low-cost quantitative 

emissions detection. 

7.2.2 BOS tomography for combustion imaging 

Benchmarking procedures are required to build trust in numerical models of combustion. High-

resolution, high-frequency 2D data for validation is measured with laser diagnostics (often tracer 

LIF); but turbulent combustion is inherently 3D and measurements of flame structures and key 

combustion scalars—especially temperature—remain elusive. Recently, precision optics have 

been combined with a modulated laser source to obtain 3D temperature fields by volumetric LIF. 

However, this approach requires an intricate, expensive, and relatively immobile apparatus. 

Schlieren imaging is compatible with tomographic reconstruction and can resolve temperature 

fields through post-processing. Developments in BOS imaging have enabled schlieren-type 

tomography through the use of simple, low-cost devices. Pictures from commercial cameras are 

combined with a computer vision algorithm to extract deflections and reconstruct the refractive 

index field, which may then be used to infer the distribution of temperature or density in a fluid. 
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Chapter Six reports the first use of BOS tomography in the combustion context, setting the stage 

for low-cost 3D flame thermometry. 

 Background-oriented schlieren imaging employs pictures of a textured background, taken 

with and without the target, to determine the deflection of light by refraction in the probe volume. 

Deflections are related to refractive index gradients by the ray equation of geometric optics, which 

simplifies into a Fredholm IFK. Coupled IFKs form a tomographic operator in the same manner 

as absorption and emission CST; the optical density field is computed either indirectly, by 

conducting a Poisson integration over reconstructed gradient fields, or directly, by including 

gradient operators in the measurement model. Deflection sensing operates by image correlation or 

the method of optical flow. Horn-Schunck optical flow was chosen for this work; the technique is 

derived from a Taylor expansion of the deflections, assuming a small magnitude, and closed by 

integration over the image to regularize the field. Background planes for BOS tomography should 

fill the image and textured patterns are thus printed on large posters. Cameras outnumber the 

background planes and, as a result, most cameras face their target poster at an angle. Due to this 

offset, deflections contain a component that is orthogonal to the poster (realized as a difference in 

travel time). Chapter Six introduces a projection matrix that corrects for this effect such that the 

operator only describes deflection components that can be observed in the background plane. 

 Reconstructing the refractive index field from deflection data is ill-posed and requires 

supplemental information. The Bayesian framework for gas-phase tomography was applied in the 

BOS setting, using smoothness (Tikhonov) and TV priors. TV regularization promotes smooth 

regions, similar to the Tikhonov prior, but the TV norm also permits sharp discontinuities between 

distinct regions. Turbulent combustion features a wrinkled flame front and scalar fields exhibit 

large gradients about this region, suggesting the suitability of a TV prior. Computation of the TV 

norm is non-linear so an iterative approximation was adapted for the BOS operator, which 

constitutes the first use of TV regularization in BOS tomography. MAP estimates for both priors 

were computed with a SIRT routine to avoid explicit representation of the inverse operator. 

 Performance of the projection matrix and priors was assessed by simulating the BOS 

diagnostic. Two refractive index phantoms were developed, consisting of a Gaussian ball of hot 

air and a highly-turbulent swirl flame from a LES. Index of refraction fields were calculated from 

the Gladstone-Dale relation; and linear and non-linear ray-tracing was conducted to determine the 

ground truth deflections. The projection matrix reduced model errors by up to 63% by eliminating 
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unobservable deflection components. Synthetic images from a 12-camera system were used to 

evaluate the reconstruction procedure. Deflections produced by the flame phantom were inferred 

with Horn-Schunck optical flow and reconstructed using the Tikhonov prior, followed by three 

iterations of the TV prior. Five grid resolutions were tested—with 153 to 753 voxels—using a large 

range of smoothness and diffusion parameters. Reconstruction accuracy was highest following 

three iterations of the TV prior with the 753-voxel grid. An analysis of the posterior joint-statistics 

was conducted in order to compare best estimates of the refractive index to ground truth values. 

Reconstructions of the phantom by BOS tomography accurately captured structures in the flame 

and could be used to assess evolution of the reacting zone. 

 Finally, a flame-imaging experiment was performed to demonstrate the potential of BOS 

tomography as a combustion diagnostic. The target was an unsteady premixed natural gas/air flame 

from a Bunsen burner, simultaneously imaged by a 23-camera array. Radiative emission from the 

flame was minimal compared to the intense illumination of the speckle dot posters. The aperture 

size was toggled between two settings to test the influence of the bokeh effect on reconstructions, 

caused by thicker beams in the probe volume. Instantaneous and mean distributions were estimated 

using three iterations of the TV prior. Chemiluminescence tomography and a LES were conducted 

to verify the mean refractive index field. Bunsen flame structures imaged by the BOS system were 

in good agreement with the emission field and LES. Moreover, estimates of the ambient and peak 

temperatures—300 and 2,100 K, respectively—were calculated from the reconstruction using the 

Gladstone-Dale relation. Temperature estimates were in-line with expected values for the 

laboratory air and operating conditions of the Bunsen burner. 

7.3 Future Research on Gas-Phase Tomography 
Researchers’ interest in gas-phase tomography has increased since the advent of laser-based gas 

diagnostics in the 1970s, with a marked inflection in the mid-2000s and sustained growth since 

then. The cost of lasers, lenses, cameras, and computers dramatically decreased over this period, 

and the demand for rich data sets that describe internal flow structures rose, thanks to experiments 

in combustion, environmental monitoring, and basic research. These trends are expected to 

continue over the coming decades, ensuring future developments in CST technology, and an 

increasing range of applications. Notable recent progress includes the administration of large-scale 

tomographic surveys of hydrocarbon emissions, small-scale measurements of intricate flame 

dynamics, and real-time imaging of engine exhaust for on-line feedback and control purposes. 
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Cutting-edge demonstrations such as these are sensitive to the accuracy and precision of estimates 

and are therefore ideally-suited to Bayesian methods for gas-phase tomography. 

 This section focuses on two specific avenues for CST research: a two-step reconstruction 

procedure for hyperspectral data; and high-precision flame thermometry using BOS tomography. 

Both of which represent a natural progression of the work described in this thesis. 

7.3.1 Two-step hyperspectral CST with linear reconstruction 

Hyperspectral data comprise quasi-instantaneous, spectrally-resolved signals for several lines-of-

sight, measured by direct absorption or wavelength modulation spectroscopy. This data is used to 

reconstruct multiple parameters—usually the temperature and concentration of a target such as 

water vapour or CO2. Parameter estimates are obtained by non-linear regression of the 

hyperspectral data. The measurement model calculates the absorption coefficient at each pixel for 

a pair of temperature and concentration parameters and then takes ray-sums across the local 

spectra. Standard minimization algorithms are employed to identify the temperature and 

concentration distributions that minimize the residual. In principle, spectral information can 

supplement spatial information, decreasing the lines-of-sight needed to obtain a quality image of 

the flow field. However, non-linear hyperspectral reconstruction is computationally expensive, 

which limits the achievable resolution. For instance, 8×8 and 10×10 pixel grids are common, even 

for systems that have several dozen optical paths. 

 This thesis amply demonstrates that the joint-normal form of Bayesian CST can achieve 

accurate reconstructions using a large number of basis functions despite limited measurement 

information. Hyperspectral data can be reconstructed by the linear method for each wavenumber, 

independently, producing local spectra for a dense array of pixels. Following linear reconstruction, 

a spectroscopic regression could be conducted on a pixel-by-pixel basis. Each regression would 

minimize the residual between the local spectra—i.e., all of the reconstructed wavenumbers at the 

current pixel—and the modelled absorption coefficient, in terms of the temperature and partial 

pressure of one or more species. Wavenumber-specific priors could potentially be developed to 

exploit the unique spectral signatures of multiple targets and posterior uncertainties could be 

calculated to incorporate additional information into the spectroscopic inference. 

 The two-step technique for hyperspectral tomography relocates the spectroscopic model to a 

post-processing stage, thereby preserving the linear form of reconstruction. As a result, high-

resolution reconstructions can be generated without much computational effort. Moreover, 
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additional parameters can be calculated with the spectroscopic model at minimal cost since the 

local regression is overdetermined. (That is, there are only a handful of parameters—temperature 

and a partial pressure for each species—while both DAS and WMS can resolve many lines over a 

short interval.) These advantages suggest that hyperspectral CST with a two-step reconstruction is 

a promising alternative to non-linear methods. 

7.3.2 Flame thermometry by BOS tomography 

Background-oriented schlieren tomography serves as a simple, economical diagnostic for 

measuring instantaneous 3D flow structures with an array of cameras. The technique has been 

employed to resolve the temperature field of heated gas jets and this work used the mean 

reconstruction of an unsteady Bunsen flame to estimate its peak temperature. However, there is a 

non-linear relationship between optical density and temperature and the conversion becomes more 

susceptible to small artifacts at higher temperatures. (An optical density of one indicates an infinite 

temperature such that a constant level of noise implies a greater temperature uncertainty near one 

than at ambient conditions.) High-temperature applications such as flame imaging therefore 

require a precise reconstruction to generate instantaneous estimates of temperature and density. 

 The primary source of error observed in the BOS system was the optical flow procedure. 

Optical flow is an advanced inverse problem in itself and further attention to this step could 

improve the accuracy of deflection data, improving the quality of reconstructions, in turn. Research 

on optical flow algorithms in the computer vision literature has employed convolutional neural 

nets (a deep learning technique) to obtain accurate and precise results. This approach poses 

simulation and data-management challenges for BOS tomography. A large library of ground truth 

deflections would be needed for various flow and combustion fields. However, the principle is 

straightforward and existing techniques could be employed to improve deflection sensing. 

Moreover, given a library of deflection data, neural nets could be trained for each camera using 

the reference images from an experiment. The present work employs a simple implementation of 

an established algorithm for optical flow. Adopting modern methods represents low-hanging fruit 

for future research. 
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