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Abstract 

Electrophoresis is the separation of charged particles under an applied electric field and is 

applied for macromolecules such as DNA, proteins, RNA and peptides through a solvent.  It has been 

one of the most widely used analytical separation techniques since the early 1900s. Traditionally, 

capillary zone electrophoresis and gel electrophoresis have been used in laboratories, however, with 

the advent of the Lab-on-a-Chip (LOC) and the Micro Total Analysis System (𝜇TAS) concepts in the 

early 1990s, the focus has been on shrinking the entire laboratory with all its functions onto a microchip. 

The miniaturization of traditional, cumbersome laboratory equipment onto microchip devices offers the 

potential for decreased analysis times, reduced sample volumes, reduced operating and manufacturing 

costs, as well as portability. However, such downsizing necessitates a fundamental study of microscale 

fluid transport, microchip design, channel geometries, and sample manipulation and detection methods.  

This thesis reports theoretical and numerical investigations into microfluidic transport in 

protein and DNA separation. The thesis begins with a background chapter about electrophoresis, 

reviewing the fundamentals concepts of operation in microchannels. Different chip designs and electric 

potential configurations are discussed as well as the concepts of electroosmotic and electrophoretic 

velocities, diffusivity, and separation resolution.  

Next, the dimensional problem formulation is provided for a basic cross-linked chip, including 

an injection and a separation channel by assuming slip boundary conditions on the channel walls. This 

assumption is made after considering the details of the ion distribution in the electric double layer 

(EDL) adjacent to the walls as provided by the detailed derivation of the Poisson-Boltzmann equation 

from a statistical approach as presented in Appendix A.  The non-dimensional formulation of the 

problem, as determined in Appendix B, was used to guide the numerical simulations and further 

analysis, using two numerical tools: Ansys CFX 15.0 and Matlab R2017. 

 With the significant role that sample plug shape and size play, with regard to separation, the 

quality of the sample was investigated. A model was developed for evaluating the sample shape and 

size at the intersection of the injection and separation channels of cross-linked microchannels. A shape 

factor was developed to quantify the sample plug shape and size.  A variety of sample plug shapes was 

analyzed and criteria to assess the sample plug were identified. Higher quality sample plugs result in 

increased separation resolution and this is predominantly possible when a rectangular sample plug is 

achieved at injection.  
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A new definition of the separation resolution was developed which considers the detector 

sensitivity and the peak-to-valley magnitude of the sample species concentration. In the conventional 

definition of resolution, a significant distance between the adjacent peaks of concentration graphs, 

relative to the sum of peak half-widths, represents good separation. However, such a definition ignores 

the drop from the initial sample concentration, which plays a significant role in identification of sample 

peaks. Therefore, a new factor, the ratio of peak-to-valley magnitude to the detector sensitivity, is 

introduced. This modified resolution represents a clearer demonstration of resolving sample 

constituents and shows resolution improvement. 

The grid independence and validation studies were performed to validate the numerical 

predictions with results available in the literature.  For the spatial grids, the grid at the 50𝑥50 𝜇𝑚2 

cross, in the primary design, was examined from a coarse mesh of 10𝑥10 cells to 60𝑥60 cells. The 

results show that the numerical solution for three electric, flow and concentration fields are grid 

independent when the cross has 40𝑥40 mesh cells within 0.5% error, second order accuracy. For the 

transient concentration field, the time scale was examined from 0.01𝑠 to 0.0005𝑠. The solution was 

independent of the temporal step when the time step was 0.001𝑠 with 0.35%, first order accuracy. The 

spatial and temporal grid-independent results were validated with experimental results in the literature 

for the injection of a single constituent sample. The validation demonstrated the accuracy of the 

implemented numerical simulations and showed promising results for further analysis of injection and 

separation.  

Having established a confident numerical model, results are then presented providing more 

analysis for electric potential configurations at injection and separation.  The basic geometry is 

modified to a new design with channels of equal lengths and a reduced width of the separation channel 

to 50% of that of the original. Further, it was discovered that under certain conditions a steady-state 

sample plug shape is formed at the cross; this revelation led to a two-step injection procedure that was 

subsequently implemented for injecting the sample plug to the separation channel. Different separation 

configurations are studied for this procedure and results show an improved separation resolution, by 

both the conventional and modified definitions. With the high quality sample achieved, the effect of 

potentials at the side reservoirs of separation channel was studied for separation. The results show 

increasing these potentials to 25%− 40% of the driving potential for separation increases the 

resolution.  

Conclusions are drawn in the final chapter with regard to the contributions made and 

development activities taken during the course of this research. With the modified chip design including 
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channels of equal lengths and a narrowed separation channel, and by implementing the two-step 

injection procedure, the ideal rectangular plug was achieved. The separation resolution was improved 

by the two-step process and thresholds of potential configurations at separation for achieving higher 

resolution were identified. 
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Chapter 1 

 

1.1 Introduction  

 

As the entropy of the world is increasing, mixing and chaos can feel natural. On the other hand, 

much effort is devoted to separating and sorting mixed systems. 

 

Separation scientists have developed different separation techniques with much success in industrial scale 

applications such as the oil industry and food processing. For biological samples, separation science is 

focused on laboratories, which, with the advent of micro- and nanofluidics, are being revolutionized to “lab-

on-a-chip” devices with all their promising potential to deal with small sample amounts and several 

advantages like portability, reduced analysis time, and lower costs. 

 

However, miniaturizing separation techniques is not just a matter of downsizing. Physical transport 

phenomena can be drastically different at microscopic length scales, necessitating theoretical and 

computational examination. 

 

1.2 Research Motivation 

 

Microfluidics and Lab-on-a-chip (LOC) devices serve as a platform for many diagnostic, clinical, 

biomedical, nutritional, cosmetic and forensic applications. Indeed, miniaturization of conventional devices 

to microchip scale, enables sample manipulation and study to be performed much faster, with significantly 

lower sample size and cost. LOC systems for diagnostic applications are rapidly developing higher 

performance for sample injection, separation with high resolution, and improved detection sensitivity. 

Sample separation is the heart of DNA and protein based diagnostic assays and purification methods for 

biologics, particularly in the development of customized, portable devices for personalized health-care 

diagnostics and point-of-use production of treatment. 

DNA screening and separation of DNA and protein have been improved through microfluidic chip based 

electrophoretic separation with the precise control of the injected sample shape and volume for separation. 

Although numerous microfluidic chips have been reported for DNA and protein separation, a 
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comprehensive understanding of the physics that dominates sample injection and separation is still lacking, 

which calls for systematic studies on the parameters that influence these processes.  

1.3 Research Objectives 

 

This thesis reports the theoretical and computational investigations of on-chip electrophoretic 

separation. This thesis is to apply an injection and separation model to a cross-link microchip to study 

protein and DNA separation. Experimental and numerical studies revealed that the sample plug shape and 

size play a significant role in improving the separation resolution. To achieve our main goal of producing 

a rectangular sample plug at the intersection of the injection and separation channels, we conducted studies 

with various applied potentials and chip designs. With the significant role of the injected sample plug in the 

separation process, this study quantifies the shape and size of the sample plug. Moreover, to assess the 

separation performance. A modified definition of resolution is proposed that better identifies the quality of 

the sample separation. This modified definition includes peak-to-valley magnitude of the sample species 

concentration. In addition to assessing sample shape and separation quality, new separation procedures and 

chip geometries are to be explored with the objective of sample separation optimization. In support of the 

above, the work performed in this thesis is both theoretical and computational.  

 

1.4 Thesis Outline 

 

Having introduced the research motivation and research objectives, the rest of this chapter lays out 

the thesis outline. 

Chapter 2 reviews the background and relevant literature on electrophoresis separation in microfluidic 

chips, including an overview of the separation techniques in molecular biology, capillary electrophoresis to 

the present electrophoretic chips. The first phenomenon considered is electrophoresis, where an applied 

electric field moves charged macromolecules (such as DNA) through a solvent. This is a very natural idea; 

however, the results of doing this simple act are often surprising and depend on many parameters such as 

physical properties, geometrical conditions, and applied electric fields. 

 

The review outlines the fundamentals of electrophoresis separation and the various mechanisms used to 

separate and detect different biochemical samples through microfluidic networks. Moreover, different 

geometries of the microchannel networks as well as some common configurations for applied electric 
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potentials are addressed. Moreover, the separation resolution, a few detection methods, ways to improve 

detection and finally other separation techniques are addressed briefly. 

  

Chapter 3 formulates the problem’s four parts: the electric field, flow field, concentration, and energy fields. 

The initial chip geometry and dimensional forms of governing equations and boundary conditions, 

assuming an electric double layer (EDL), are presented first, then the thin EDL is neglected and its effect 

is reflected on flow boundary conditions.  

 

Several parts of this thesis refer to a cross-linked microchannel. It includes injection and separation 

channels, a cross at the intersection of those channels, and four reservoirs for loading sample and buffer 

solutions. Initially, the channels are filled with the buffer solution. Then, by applying the electric potentials, 

the sample is electrokinetically loaded until it reaches the cross. Once the sample is at the cross, the electric 

potentials are applied on the separation channel. 

For greater ease, all the equations and boundary conditions are non-dimensionalized. For this purpose, the 

choice of reference parameters is first discussed in detail. Also presented is the choice of time and length 

scales to be implemented in the numerical simulation of the problem. Regardless of the choice of time and 

length scales, the number of parameters are the same and in accordance with Buckingham-Pi theorem.  

Following the non-dimensionalization, the details of the numerical simulation tool and solver, ANSYS 

CFX, are presented.  

 

Chapter 4 is the main contribution of this thesis and evaluates the injection and separation. The required 

fundamentals of on-chip electrophoretic separation of a DNA and protein sample are presented in the first 

four chapters. Many techniques proposed for this goal and successful separation have been reported in the 

literature. All addressed the role of a good shape for the injected sample as it results in a high separation 

resolution.  This begged the questions “What is a good shape for the sample plug?” and “What is a high 

resolution for resolving sample components?” 

My supervisors, Prof. Schneider and Prof. Ren, and I attempted to answer these questions by quantifying 

the sample plug shape at the cross. We presented the parameters for quantifying the sample plug shape and 

introduced a “shape factor” as an individual parameter for assessing the shape of the plug. Results of a 

Matlab code for the possible shapes at the cross are presented and the shape factor model is assessed with 

experimental results in literature. We studied five different plug shapes by controlling the applied electric 

potentials/fields at injection and investigated the effect of time to stop injection on the sample plug shape. 

Following the separation analysis for these five cases, we introduced a modified separation resolution that 

includes the conventional resolution and the factor of detector sensitivity. 
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Chapter 5 provides the analysis of the injection and separation. First, the grid independency of the solution 

is discussed.  Then, the injection model is validated with experimental results in literature. At injection, in 

addition to the applied electric potential as a key controlling parameter, the effects of separation channel 

width and the injection channel length are also studied. We modified the chip design and much simulation 

work was done to develop a shape factor model for sample injection prior to switching to separation and 

resolving sample constituents. For the final chip geometry, different configurations of applied electric 

potentials at injection are presented, and we achieved a rectangular sample plug shape through a two-step 

injection procedure. For such an ideal plug, different configurations of applied electric potentials at 

separation are analyzed. At the onset of separation analysis in Chapter 6, the shape factor-resolution 

correlation was not certain, but the final results in this chapter show the study of this correlation for different 

configurations. 

 

 The last chapter, Chapter 6, summarizes this work and outlines recommendations to further improve the 

separation performance of microfluidic devices in electrophoretic separation analysis. 

 

The distribution of ions and electric potential in electric double layers in microchannels and non-

dimensionalization of problem formulation, more details are provided in appendices. Appendix A looks at 

the electric double layer and its effect on problem formulation. The fundamentals of probability and ion 

distribution in an electric double layer (EDL), that is, the thin ion layer adjacent to the microchannel wall, 

are presented. To find out the distribution of ions and electric potential, the derivation of the Poisson-

Boltzmann equation is provided. This appendix clarifies theoretical microfluidics from the statistical and 

classical thermodynamics perspective. The Poisson-Boltzmann equation is derived in this work because 

microfluidic literature lacks a detailed derivation of this equation all in one place. This derivation fills the 

gap between theoretical and experimental studies in a comprehensive way. Solutions to this equation are 

provided, with the assumptions, and finally, simplifications are addressed to reflect the effect of the EDL 

as a finite slip wall in the velocity boundary conditions. 

Appendix B presents the non-dimensional form of the problem formulation, governing and boundary 

conditions, discussed in Chapter 3. It is explained why the equations for three electric, flow and 

concentration fields can be decoupled. All the geometric, electric, flow and concentration parameters are 

presented. The choice of time and length scales are thoroughly discussed. 

Appendix C provides the copy right permissions for the figures used for validation studies in this thesis. 
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Chapter 2 

Background 

2.1 Literature Review  

Electro-osmotic flow (EOF), or the fluid motion through the application of an electric field, was 

first reported by Reuss [1] in 1809 in experiments that demonstrated that water could be made to percolate 

through porous clay diaphragms. The observed mobility of water occurred because the clay particles (and 

many other solid substrates such as glass, silicon, polymeric materials, minerals of various kinds, etc.) 

acquire a surface charge when in contact with an electrolyte. The immobile surface charge in turn attracts 

a cloud of free ions of the opposite sign, creating a thin (1–10 𝑛𝑚) layer of mobile charges next to the 

surface charge, which is called an electric double layer (EDL). In the presence of an external electric field, 

the fluid in this charged layer (the Debye layer) acquires a momentum which is then transmitted to adjacent 

layers of fluid through the effect of viscosity. If the fluid phase is mobile, it causes the fluid to flow (electro-

osmosis) [2]. In late 1800, Helmholtz [3] also conducted experiments on a glass tube containing aqueous 

salt solution and  observed the fluid motion under the applied electric field. Through this work, he pioneered 

the governing principles of electroosmotic flow. 

 

Electrophoresis is the science of a variety of separation techniques based on different migration speeds of 

ions and/or charged particles under the influence of an applied electric field. The migration velocity of an 

ion is determined by two factors: the intensity of the electric field and the electrophoretic mobility. The 

former is a user-controlled parameter, and the latter is a characteristic of the ions in the given sample.  

The history of electrophoresis is rooted in 1937 when Tiselius [4] , the Chemistry Nobel prize winner in 

1948, developed this method into one of the most used analytical separation techniques in analytical 

chemistry. Then capillary electrophoresis (CE), where electrophoretic separation is performed in capillaries 

of 10 − 100𝜇𝑚, turned into a common separation technique and became well established.  Later on, with 

the advent of micro-total analysis systems (μ-TAS) and device miniaturization, microchip capillary 

electrophoresis was developed and attracted attention in many fields such as pharmaceuticals, biology, 

energy and nutrition. Reduced analysis time (a few minutes) and lower sample and reagents consumption 

(picoliters and microliters) are the primary benefits of miniaturization in devices for analytical separation. 

High sample throughput is also possible by using arrays of microchips by fabricating multiple chips. These 

are significant merits in comparison to the conventional slab gel electrophoresis, which is a time consuming 

laborious procedure for DNA or protein sample separation.  



 

6 

Electrokinetic phenomena have been mentioned in the literature from the beginning of the 19th century. In 

1808, Reuss [1] discovered electrokinetic flow through a capillary. Then in 1964, Burgreen and Nakache 

[5] provided a theoretical work on the fundamentals of electrokinetics in capillaries with rectangular cross 

sections which mainly focused on charge and potential distribution. The detailed derivation of the P-B 

equation was not presented. In 1965, Rice and Whitehead [6], presented the net charge density in a capillary 

based on the Boltzmann distribution. In 1982, Neukirchen et al. [7] presented experimental results on high 

resolution micro-scale protein analysis but did not address the underlying theory. In 1995, Finkelstein et al. 

[8] showed why protein structures follow the Boltzmann distribution which emphasizes the importance of 

a thorough understanding of the Boltzmann equation. Later in 1998, Patankar and Hu [9] presented an 

excellent numerical study of electroosmotic flow for a cross-linked microchannel, considering the EDL in 

their simulations. The driving force is determined by the applied electrical field and the ion density of the 

working fluid, described the Poisson-Boltzmann (P-B) equation. The P-B equation has been used in many 

books and publications, but no detailed derivation is available in the microfluidic literature at one place. 

Kirby and Bruus , [10] [11], provided a derivation of the Poisson equation in their books, but there is a 

dearth of understanding in microfluidics when it comes to the derivation of the Boltzmann equation from a 

statistical thermodynamics perspective. However, understanding this, derivation provides insight into the 

ion distribution in the nanometer-scaled electric double layer (EDL) in microchannels, and a solid 

justification for replacing the EDL influence with slip boundary conditions in the solution of the Navier-

Stokes (N-S) equation for the prediction of the bulk region  flow field. The N-S equations are applicable to 

most Newtonian fluids such as those commonly used in microfluidic applications. Derivation of the P-B 

equation requires the knowledge of Statistical Physics and Thermodynamics, Chemical Engineering, 

Mathematics, and Mechanical Engineering. The strongly interdisciplinary nature is reflected by the lack of 

a detailed derivation in the microfluidic literature. This fundamental study is motivated by the need to fill 

this gap and to establish the basis for further experiments. The intellectual merit and broader impact of this 

study will be to narrow the research regarding specific health issue applications that comes from the non-

dimensionalized governing equations, parametric studies, and precise boundary conditions.  

A survey of the microfluidics literature shows that devices used in electrophoresis separation are largely 

designed based on experimental study [12]–[15]. Examples include the chip designed for protein pre-

concentration [16], the chip for acupuncture sample injection in capillary electrophoresis (CE), designed 

by Ha and Hahn in 2016 [17], and the novel instrumentation for potentio-statically controlled voltammetry 

applied in the presence of high external voltages and electric fields by  Zaino et al. [18]. Experimental 

studies are, however, expensive, and usually much iteration is usually needed to achieve an optimized 

design for one particular application. The performance of experiments also requires lab facilities, 

experimental apparatus, test material, and knowledge of chip fabrication.  
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Computational fluid dynamics (CFD) simulation is a useful tool for reducing both the time and cost of 

experiment. Numerical simulation in microfluidics can be performed by considering several mutually 

independent cases. Identifying such cases in turn requires knowledge of the important governing parameters 

for the problem. Understanding these parameters minimizes the number of cases that need consideration, 

which in turn, minimizes the cost associated with microchip design. An optimized simulated design can 

then be verified and refined with experimental studies. Patankar and Hu pioneered the use of numerical 

simulation in electroosmotic flow [9]. They studied the electroosmotic injection characteristics of a cross-

channel device for capillary electrophoresis and observed that the desired rectangular shape of the sample 

plug at the intersection of the cross-channel can be obtained when the injection is carried out at high electric 

field intensities. Bianchi et al. performed finite element simulation of electroosmotic flow at a T-Junction 

[19]. A physical and numerical study of various injection systems in microfluidic chips was presented by 

Fu et al. [20],  and for the evolution of the resulting sample plug, good agreement between simulation and 

experimental results was obtained. In Electrophoresis 2015 [21], a computer simulation study described 

the impact of complex mobilities on electrophoretic separation. An analytical and parameterized model was 

presented for examining the effects of Joule heating on analyte dispersion in electrophoretic separation 

microchannels [22]. 

 

Valuable experimental results are available in literature, however, little research is carried out through 

numerical analysis in this field, and yet the literature lacks a general model for on-chip separation of DNA 

and protein. According to literature, one key factor that plays a significant role in the efficiency of on-chip 

electrophoresis separation is the initial shape of the sample plug at injection [23]–[27]. For microchips 

involved in separation, injection is a key step in efficient analysis.  Patankar and Hu [9] stated that the shape 

of the inserted sample is an important parameter that influences the resolution of the separated zones during 

the electrophoresis and depends primarily on the electroosmotic flow pattern at the intersection of the 

channels. Mohammadi and Santiago [28] presented shape optimization techniques for minimizing 

dispersion in extraction and separation fluidic devices using the control parameter. This parameter may be 

either the potential differences applied during the pinching and pull-back steps, or the turn geometries 

devoted to keeping the dispersion minimal by reducing the skew of the advected band. The  literature shows 

that a distorted sample plug has a negative impact on the quality of separation [29], [25],[24] and optimal 

injection depends on the shape and size of the sample plug at the intersection of injection and separation 

channels during injection [30].  The shape of the sample plug depends primarily on the electroosmotic flow 

pattern at the intersection of the channels and plays an important role in determining the separation 

resolution.  
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In this thesis, I start with the background of electrophoretic separation including gel electrophoresis, and 

capillary electrophoresis, then focus on microchip electrophoresis with the ultimate goal of Lab-On-Chip 

(LOC) systems. Over hundreds of publications are available in literature in microfluidic electrophoretic 

separation for biological samples in particular DNA and protein. Because of the charged nature of these 

molecules, they migrate with different pace, depending on their charge and size, under the applied electric 

field. This causes the separation of different constituents of such biological samples. To analyze the 

efficiency of separation, different research areas have been extensively developed, including: Choice of 

chip material and surface properties [31] [32], type of background electrolyte (buffer solution) [33], pre-

concentration methods for samples with low initial concentration [34]–[36], chip design at injection and 

separation [37]–[42], electric potential configurations [43]–[47], detection methods [48]–[52] and the shape 

and size of the sample plug at injection prior to separation.  Shape and size of the sample plug at injection 

is the main focus of this research. Much research is being carried out on microchip electrophoretic 

separation, few studies have examined sample shape from a theoretical perspective and a detailed analysis 

of the effect of sample plug shape at injection on separation efficiency is still lacking.  In literature, it is 

stated to be difficult to attain a rectangular and narrow sample shape only by adjusting electric voltages. 

This goal is achieved in the current research and in Chapter 4 I present the role of sample plug shape 

thoroughly, and the effective factors in evaluating good injection.  
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2.1.1 Electrophoretic Separation 

Figure 1 shows the conventional method for sample separation, gel electrophoresis, which suffers 

from several disadvantages. Despite the ability to resolve the components of complex samples, it suffers 

from the low speed of separation, which is limited by Joule heating due to the applied high electric fields. 

Poor dissipation of Joule heat in slab systems, the cumbersome and time-consuming preparation process, 

and poor reproducibility have motivated the capillary electrophoresis approach in sample separation. These 

issues are solved in microchip electrophoresis requiring a thorough study of downsizing. 

 

 

Figure 1: Conventional gel electrophoresis (Wikimedia) 
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2.1.2 Capillary Electrophoresis 

 

The schematic of CE is shown in Figure 2. In CE, both ends of a capillary are immersed in buffer 

reservoirs that include the electrodes that provide electrical contact between the high voltage power source 

and the capillary. Then one of the buffer reservoirs is replaced by the sample reservoir, and by applying the 

electric field, the sample is loaded onto the capillary. After sample injection the reservoirs are replaced 

again, and the electric field is applied to process separation. 

Close to the end of the capillary, a detector is installed to detect sample components through UV, 

fluorescent, mass spectroscopy or other detection techniques.  

 

 

Figure 2: Schematic of capillary electrophoresis 

 

A typical capillary has the internal diameter of 20 − 100 𝜇𝑚 and length of 20 − 100 𝑐𝑚 [53]. The high 

surface-to-volume ratio of capillaries allows the dissipation of Joule heat generated from large applied 

electric fields, which is shown in detail in section 3.3.4.  As a result of its ability to dissipate heat, capillary 

electrophoresis can deal with up to 30𝐾𝑉/𝑚 when in contact with the ambient temperature [53]. Moreover, 

downsizing from gel electrophoresis to capillary and microfluidic electrophoresis results in low sample and 

reagent (buffer) consumption, on the order of nano to picoliters, and rapid analysis time, on the order of 

minutes instead of days and weeks. 
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2.1.3 Microfluidic Separation Chips 

For microchip electrophoresis, much research has been done on chip geometry. The most common 

design is the cross-linked chip, which includes the injection and separation channels as well as sample and 

buffer reservoirs, as shown in Figure 3 and Figure 4. Both figures show a microchip consisting of the 

injection and separation channels, arranged in a cross shape.  Fluid reservoirs are placed at each end of the 

channels two for the sample and buffer solution (electrolyte solution) and the other two as the waste 

reservoirs. To apply the electric fields, electrodes are positioned in all the reservoirs to make connections 

with the high voltage power source. First the buffer solution is injected into the channels; then, the electric 

potentials are applied at the injection channel reservoirs, and the sample is loaded electrokinetically until it 

reaches the cross or the intersection of the channels. This cross is the main part of the sample injector. Once 

enough sample plug is available at the cross, it is subjected to separation through the application of an 

electric field along the separation channel.  To achieve a better sample plug shape, consequently a higher 

separation resolution, side electric fields offer additional control during the injection and separation steps. 

The on-chip detection of the separation of sample components (constituents) is made in the final part of the 

separation channel. 

 

 

Figure 3: Sample chip configuration for electrophoretic separation 

 

 

Figure 4: Schematic of injection and separation in cross-linked channels; 
 S:Sample, B: Buffer, SW: Sample waste, and BW: Buffer waste 
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The goal of electrophoretic separation is to achieve high separation efficiency, that is, to ensure that system 

can resolve sample constituents based on their different electrophoretic mobilities. To achieve an efficient 

system, much effort should be dedicated to the injection step prior to starting the separation. In that 

respective, the initial size of the sample as well as its initial concentration have a significant effect on 

separation resolution. Band broadening of the sample happens due to the longitudinal diffusion from the 

interface sides of both the sample and buffer. Shorter separation time gives the sample less time to diffuse. 

A short sample plug results in less overlapping of sample components and consequently better resolution; 

however, very short sample plugs need pre-concentration to achieve detection sensitivity.  

 

Designing an optimal injector necessitates a detailed study of the size and the shape of the sample plug at 

the cross, which is the main objective of this thesis. It is necessary to have an insight into the distribution 

of charges in the microchannel, in the bulk flow region and in the thin layer adjacent to the wall, (EDL). 

2.1.3.1 Electric Double Layer (EDL) 

To benefit from microchips by performing biological, medical, diagnostics, etc. tests, requires an 

understanding of the physics of the problem and its governing equations. In a microchannel, where an 

electrolyte solution is adjacent to a charged surface (a dielectric surface with static charges), the counter-

ions in the solution are attracted to the surface while the co-ions are repelled from the surface; as a result, 

an electric double layer is formed where a net charge difference exists. Considering glass and water, silica 

is brought into contact with an aqueous solution; therefore, depending on the PH value of the electrolyte 

solution, the surface could have positive, neutral or negative charges. If the channel surface is negatively 

charged (such as with deionized water), the net charge would be positive keeping the bulk of the liquid far 

away from the wall electrically neutral [54] an EDL is thus formed, and then the electric field in the double 

layer results in a potential difference across it [55].  

Figure 5 shows what we call an electric double layer consisting of two regions: the first (Stern) layer is 

compact, and acts as an inner region with ions that tightly adhere to the surface. The second layer is 

composed of mobile ions which, due to the Coulomb force, are attracted to the surface charges next to the 

wall. This second layer is named the diffuse layer and includes free ions which move in the fluid under the 

influence of an external electric field, causing bulk electroosmotic flow (EOF). The rigid, stationary ions 

attached to the wall in the Stern layer, create a potential difference with diffuse-layer mobile ions. The 

electric potential on the interface surface of the Stern and diffuse layers, or at the solid-liquid interface is 

called the “Zeta potential”, ζ .  Factors such as the solution concentration, PH value, and ionic concentration, 

as well as temperature, may affect the Zeta potential.  
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Figure 5: Electric Double Layer(EDL) in microchannels 

 
With a better insight into the electric double layer, we have to determine out the distribution of charges and 

the electric potential in order to determine ion and concentration distributions. At equilibrium, the ion 

distribution represents the most probable state in the EDL and also in the bulk flow. Classical 

thermodynamics is inherently limited in explaining the microscopic behavior of even the simplest 

thermodynamic system [56] and is deficient for the atomic behavior of materials. Therefore, it is necessary 

to understand some basic concepts of probability and statistical thermodynamics, such as microstates and 

macrostates of energy, distinguishable and indistinguishable particles, and Lagrangian multipliers. 

Knowing the exact position and momentum of atoms and particles is not an easy task given the huge number 

of atoms on the order of 1023. Consequently, finding the energy of individual atoms as defined by quantum 

mechanics approaches is a different approach from that of continuous system properties in classical 

thermodynamics. The objective here is to find the distribution of ions, in equilibrium, in the presence of an 

applied electric field. Moreover, to find the electric potential distribution, Poisson's equation should be 

solved in two regions - the EDL and the bulk flow - following a fundamental law in physics, Coulomb's 

law. Electro-osmotic flow (EOF), a key feature in CE, is the movement of the bulk flow and sample 

components in the capillary, regardless of their charge or size. For capillaries made from silicon groups, 

the negatively charged capillary wall attracts the positive charges in the solution; therefore, an electric 

double layer (EDL) is formed as shown in Figure 6 . The applied electric field causes the movement of the 

cations of the diffuse part of the EDL towards the cathode. Due to the cations movement, the molecules of 

the bulk solution are dragged too, and EOF occurs. The magnitude of EOF velocity depends on the intensity 

of the applied electric field, as well as the EOF mobility which is affected by parameters such as surface 

potential, the PH and ionic strength of the buffer solution, and the temperature and capillary surface 

properties, preferably with permanent coating modifications.   

 



 

14 

 

Figure 6: Driving force in Electric Double Layer (EDL) 

2.1.3.2 Geometries of electrophoretic chips and injectors 

 

Different chip configurations have been reported in the literature, and the design of the chips has 

undergone significant development. The schematics of a few cases are shown in Figure 7. Surveying the 

literature shows that the chip configurations (channel geometries) are mixed up with electric potential 

(electric fields) configurations in some cases. A map of both of these key factors in electrophoretic 

separations are briefly discussed in this section and Section 2.1.3.4. In Figure 7, type “a” is a simple cross-

linked chip, which is the most common geometry implemented in electrophoretic separation so far. It is an 

appropriate and easy-to-fabricate chip for the purpose of separation, and with the cross size on the order of 

the width of the channels, the sample plug volume is controllable by the applied electric fields [57] [58]. 

The type “b” configuration is called a double-T chip. In 1994, Effenhauser et al. [59]  implemented this 

geometry to ensure a low baseline signal as a consequence of preventing sample leakage from the two T 

junctions of the injection channel during separation. Later, in 2003, the double-T injection geometry was  

used in sample pre-concentration applications like Jung et al.’s research in Stanford [60]. In such geometry, 

the minimum size of the sample plug is limited to the length in which a sample is trapped between two T 

channels, which could have negative effects on the detection of sample-constituent separation. Type “c“, 

the double-cross injection chip, is the geometry  Fu et al. [61] designed for their research. They showed that 

the proposed system is not only capable of performing the same function as the single-cross injection system 

but is also able to generate sample plugs of different volumes. Their chip results in slightly better separation 

detection. Zhuang et al. [29] showed the results of a double-focusing injection configuration, similar to type 

“d”, used to generate regular and non-distorted sample-plug shapes and deliver the variable-volume sample 

plugs by electrokinetic focusing. They claimed that the detection peak in the proposed injection system is 

uniform regardless of the position of the detection probe in the separation channel, and the peak resolution 

is greatly enhanced. Type “e”, similar to what Tsai et al. [62] and Fu et al. [63], was presented as a new 

design with an expansion chamber located at the inlet of the separation channel. Both groups demonstrated 
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that for a particular expansion ratio and expansion length, the peak intensities of the sample are sharp and 

clearly distinguishable. 

More-complicated designs, like the serpentine separation channel and arrays of microchannels, are 

addressed in a review paper by Dolnik et al.[39]. 

 

 

Figure 7: Schematic of channel geometries ( solid arrows: injection and dashed arrows: separation) 

 

2.1.3.3 Microchannel Dimensions  

 

According to literature, the typical channel depth is 10 − 50 𝜇𝑚 and the width of the channels are 30 −

200 𝜇𝑚.([64]–[66]). Table 1 shows the dimensions of the channels and chip material for a few cases in 

literature. 

 

Table 1:  A few references for channel dimensions in literature 

 Length Width 

(𝜇𝑚) 

Depth 

(𝜇𝑚) 

Reference Chip 

Material Injection Separation 

1 280 mm 70 mm 30 10 Fan and  Harrison [66] Glass 

2 150 𝜇𝑚 90 𝜇𝑚 30 10 Patankar and Hu computations [9] Glass 

3 13 mm 50 mm 100 20 Zhuang et al. [67] silica glass 

4 12.5 mm 12.5 mm 120 20 Xuan et al. [58] PDMS 

5 20 mm 37 40 18 Wang et al.[68] PDMS 



 

16 

2.1.3.4 Electric potential/field configurations at injection and separation 

 

Several voltage-controlled (electric field-controlled) configurations have been reported in the 

literature to improve the sample plug shape and consequently the separation resolution. 

The first row in Figure 8 , shows an uncontrolled simple/direct injection method. The sample disperses into 

the separation channel, and depending on the width of the sample plug and the concentration drop,  while 

passing by the detector, could result in poor resolution. Ideally, the rectangular plug at the cross provides 

the best separation resolution due to one-dimensional diffusion at the interface of the sample and buffer. 

The effect of sample shape is thoroughly discussed in Chapter 4.  The applied electric fields at injection are 

the controlling feature of the shape of the sample plug. Therefore, to limit the dispersion of the sample into 

the separation channel at injection, the pinched/focusing/triangular injection configuration [64] is applied, 

as shown in the second row of Figure 8. In this injection method, pinching voltages are applied to the buffer 

reservoirs of the separation channel during the sample injection phase. The pinching electric forces 

counteract the diffusion of the sample into the separation channel. In the following separation phase, back 

voltages are applied at the sample and sample waste reservoirs of the injection channel to draw the injected 

extra sample back to the reservoirs, preventing sample leakage into the separation channel during 

separation. The drawback of the pinched injection method is the difficulty of determining the exact amount 

of sample, but it has good injection reproducibility. A narrow sample zone in this configuration will be 

resolved better than the uncontrolled sample zone. The third-row configuration shows a floating injection 

configuration [64], in which the sample is migrated in injection phase with no voltage control at the buffer 

reservoirs of the separation channel. The separation is controlled similar to in the pinched configuration to 

avoid leakage. During floating injection, due to the diffusion of the sample into the separation channel and 

also the duration of floating voltages, more high-concentration sample is pushed to the separation channel.  

Thus, the floating method forms a compromise between reproducibility and detection sensitivity.  

Another configuration, shown in the last row of Figure 8, represents so-called gated-injection [69] . In 

contrast with previous configurations, gated injection has a permanent flow of the sample and buffer 

solution, each making a 90-degree turn flow at separation, whereas the buffer flow is interrupted at 

injection. The gated valve is capable of dispensing sample plugs of variable volume and provides 

unidirectional flow in the separation channel. The continuous buffer flow in separation prevents sample 

leakage into the separation channel. The periodic sample injection from a continuous flow of the analytes 

is advantageous, especially for coupling the electrophoresis process with on-chip derivatization [70]. 

Besides the fast injection, it is also possible to change the sample for continuing injection. However, the 

very limited volume of the sample results in poor detection sensitivity. The gated configuration also requires 

two HV sources and two HV switches. 
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Figure 8: Schematic of voltage-controlled configurations, S:sample, SW: sample waste, B:buffer, BW: 

buffer waste; solid arrows: sample, dotted arrows: buffer 

 

2.1.3.5 Limits of applied electric fields, electric safety 

 

Increasing the applied voltages or indeed the electric fields has some benefits in electrophoretic 

separation. A higher electric field moves the sample faster and decreases analysis time. Giving the sample 

less chance to diffuse through faster migration, can also improve the separation resolution and resolved 

peaks. However, in very high electric fields, the Joule heat may not be dissipated efficiently. High 

temperature can result in sample denaturation, decreased viscosity, which leads to increase in EOF and ion 

mobility as well as faster sample diffusion, resulting in band broadening and loss of resolution. The 

electrical fields typical in microfluidic applications are on the order of 10 𝑘𝑉/𝑚, with the typical channel 

dimensions on the order of 10 𝑚𝑚, the potential differences between reservoirs will be on the order 

of 100𝑉. High electric fields are not only detrimental to biological samples, but can also cause the 
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electrolytes to lose their dielectric properties. They can also cause chip breakage due to a high local 

electric field and consequent high local temperature.  

2.2 Electroosmotic and electrophoretic mobilities 

As previously discussed, once the voltages are applied to the reservoirs of the separation 

channel, the electroosmotic flow is created, causing bulk flow movement from the injection point 

towards the cathode when the walls are negatively charged. Based on their differing mobilities or 

velocities, all sample components are carried with the buffer solution in a migration order which 

depends on the difference between the electroosmotic and electrophoretic mobilities (Figure 9). EOF 

is generated at the surface-solution interface, and the relative velocity between each component and 

buffer flow leads into the separation of sample components.  

 

Figure 9: Schematic of separation of sample components due to their different electrophoretic mobilities 

Electrophoretic mobility is the migration characteristic of the charged particles under an applied electric 

field. For a charged particle, the balance of electrical force and liquid viscous drag force are presented in 

Figure 10. The electrophoretic mobility will be proportional to the applied electric field as well as the net 

charge of particles. Since drag force is an opposing force, it will be inversely proportional to the viscosity 

of the liquid.  

 

 

Figure 10: The balance of electrical and viscous forces on a particle 

 

In a low conductivity liquid with viscosity 𝜂 , where the migration velocity of the particle is  𝑢⃗ 𝑒𝑝ℎ , the drag 

force in the Stokes flow around the spherical particle equals to 𝐹 𝑑𝑟𝑎𝑔 = −6𝜋𝜂𝑎 𝑢⃗ 𝑒𝑝ℎ, where 𝑎 is the Stokes 

radius of the particle. On the other hand the driving electrical force equals to 𝐹 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑍𝑒𝐸⃗ , where 𝑍𝑒 
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is the total net charge of the analyte. The balance of the forces on the moving particle is as Σ𝐹 =  𝐹 𝑑𝑟𝑎𝑔 +

 𝐹 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 0; therefore, the electrophoretic velocity appears as 

𝑢⃗ 𝑒𝑝ℎ =
𝑍𝑒

6𝜋𝜂𝑎
𝐸⃗  (1) 

The coefficient of the electric field on the R.H.S of (1) is defined as electrophoretic mobility 

𝜇𝑒𝑝 =
𝑍𝑒

6𝜋𝜂𝑎
 (2) 

 which shows the motion of a charged particle in an electrolyte solution under the applied electric field 

𝜇𝑒𝑝 =
𝜈 𝑒𝑝

𝐸⃗ 
 (3) 

Atkinson [71] provided experimental values for ionic mobilities for small ions in aqueous solutions at low 

concentrations. Bruus and Kirby, [10] [11], reproduced the table of electrophoretic mobilities for a few ions 

like  𝐻+ , 𝐾+, 𝑁𝑎+ and 𝐶𝑙−, 𝑂𝐻− ranging from (36.2 − 20)𝑥10−8 [
𝑚2

𝑉.𝑠
]. For 𝑍 = 1, 𝜂 = 1 𝑚𝑃𝑎. 𝑠 and 𝑎 =

0.2 𝑛𝑚, 𝜇𝑒𝑝 = 4𝑥10
−8[

𝑚2

𝑉.𝑠
]. Figure 11 shows the size comparison of DNA and protein particles and other 

biological assemblies. In this research, Fluorescein and Rhodamine are used instead of biological samples 

and their electrophoretic mobilities are taken as −3.3 × 10−8 [
𝑚2

𝑉.𝑠
] and −1.65 × 10−8 [

𝑚2

𝑉.𝑠
] respectively. 

 

 

Figure 11: Comparison of various biological assemblies and technological devices 

 

In addition to the size of particles, equation (2) shows the significance of the charge to size ratio, as shown 

in Figure 12, is an important factor in the mobility of a particle. In an electrophoretic separation, based on 

Newton’s second law, the particle acceleration under the applied electric field equals 𝑎 = 𝐸⃗ 𝑞/𝑚 , which 

shows the role of charge to mass ratio in electrophoretic separation. 
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Figure 12: Charge to size ratio is the principle of the electrophoretic separation 

 

This ratio shows that for the purpose of biological sample separation through electrophoresis, the smallest 

particles with the highest charge move faster in the separation channel. For DNA sample particles, which 

are negatively charged, shorter DNA molecules move faster than longer ones. Proteins, which are more 

complicated and carry both positive and negative charges, generally separate based on their charge, which 

is determined by the PH of the sample solution. 

The electoosmotic mobility of a solution,𝜇𝑒𝑜𝑓 =
𝜈⃗⃗ 𝑒𝑓𝑜

𝐸⃗ 
, is defined as 

𝜇𝑒𝑜𝑓 =
−𝜖𝜁

𝜂
   (4) 

where, 𝜖 is the relative electric permittivity of material, 𝜁is zeta potential and is an experimentally observed 

quantity that has units of volts, and 𝜂 is the viscosity of the fluid. In this thesis the electroosmotic mobility 

of buffer solution is set to 4.5𝑥10−8  [
𝑚2

𝑉.𝑠
]. According to Kirby, [10], a typical magnitude observed for 

electroosmotic mobility in aqueous systems is on the order of 1𝑥10−8 [
𝑚2

𝑉.𝑠
]. He provided a table for different 

wall materials like glass, silicon, PDMS and polycarbonate, 1𝑚𝑀 of 𝑁𝑎𝐶𝑙 buffer solution at neutral pH, 

with 𝜇𝑒𝑜𝑓 in range of (1 − 3) 𝑥10−8 [
𝑚2

𝑉.𝑠
]. It is noted that the permittivity of the region can be measured 

with respect to the vacuum permittivity, i.e. 𝜖 = 𝜖𝑟𝜖0, where 𝜖𝑟 is the relative permittivity and 𝜖0 is the 

permittivity in a vacuum. 

In comparison with the velocity profiles in a microchannel in the pressure driven flow, EOF velocity is a 

plug like, which is the main reason for using electrokinetic transport to achieve the plug shape sample at 

injection (Figure 13). Pressure driven flows will add more Taylor-Aris dispersion effect, in which a shear 

flow can increase the effective diffusivity of species. Essentially, the shear acts to diffuse the concentration 

distribution in the direction of the flow, by enhancing the rate at which it spreads in the flow direction. 
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Figure 13: Velocity profiles of EOF versus pressure driven flow 

 

Taking the effect of both electroosmotic and electrophoretic mobilities into account, the apparent velocity, 

which is the observed velocity of the sample components, is expressed in (5). Figure 14 demonstrates that, 

depending on the charge of the particle, the electrophoretic and electroosmotic velocities could be in the 

same or opposite directions. 

 𝜈  = (𝜇𝑒𝑜𝑓 + 𝜇𝑒𝑝)𝐸⃗  (5) 

 

Figure 14: Observed velocity  as the result of electroosmotic and electrophoretic velocities 

 

Therefore, for particles with negative charge, which migrate in the opposite direction of the applied electric 

field, the difference in the magnitude of EOF and EP mobilities is the pace at which the sample components 

pass by the detector. 

One way to measure EOF mobility is to monitor current method. With the important role of electroosmotic 

velocity in EOF and EP separation, accurate measurements of electroosmotic mobility are significant. The 

earliest measurement method reported in the literature relies on the injection of an electrically neutral 

compound, followed by the recording of its migration time through capillaries [72]. This measurement 

method is independent of the electrolyte or channel walls. However, a fluorescent marker method will be a 

more precise method, but suffers from issues in detecting the fluorescent agent. The most widely used 

method so far is the current monitoring method, which measures the electrophoretic current change as 

electrolytes of different ionic strengths fill the microchannel [73] [74]. The time required to reach a steady-

state separation current is used to calculate EOF mobility. The reported precision for average EOF rates 

measured by this method in CE and microchip CE ranges between 5% and 15%. Based on a similar 
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measurement principle, conductivity detection monitors the change in bulk solution conductivity between 

two electrodes, when an analyte band passes through the electrode gap. 

 

 

Figure 15: Principle of the electroosmotic mearsurement with current monitoring method  
(1𝜇𝐴 current→10𝑚𝑉 voltage drop) [75] 

2.3 Diffusivity 

At the interface of the biological sample and the solvent (buffer solution), diffusion plays an 

opposing role in the separation of sample constituents. In electrophoresis separation, diffusivity and 

electrophoretic mobility are related phenomena and can be calculated from one another. Diffusivity is a 

measure of random motion of species because of random thermal molecular motion, Brownian motion. 

Electrophoretic mobility is a measure of species’ motion because of an electric field. Moreover, diffusion 

plays a key role when there is a concentration gradient between the sample and buffer solution.  The 

dependence of the diffusion coefficient on the viscosity can be modeled by the Stokes-Einstein relation. 

According to this equation, the diffusion coefficient is related to particle mobility, as shown below 

where, μ is the "mobility" of a particle under applied electric field, 𝐾𝐵 is the Boltzmann constant (Appendix 

A) and 𝑇 is temperature. There are two ways of defining diffusion coefficient based on the Stokes-Einstein 

relation: One is diffusion of spherical particles through a liquid with low Reynolds number 

𝐷 =
𝐾𝐵𝑇

6𝜋𝜂𝑎
  ( 7) 

where, 𝑎 is the radius of the particle and 𝜂  is the buffer viscosity, and the other way is through electrical 

mobility equation, for diffusion of charged particles  with 𝜇𝑒𝑝 mobility which based on the balance of 

electrical and drag forces becomes 

𝐷 =
𝜇𝑒𝑝𝐾𝐵𝑇

𝑞
  ( 8) 

  𝐷 = 𝜇𝐾𝐵𝑇 
( 6) 

https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Electric_charge
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In Chapter 3, we show how diffusivity is related to concentration gradient. For the diffusion of a single 

solute, the diffusion constant 𝐷, diffusivity, determines how fast a concentration diffuses a certain distance. 

For example, the diffusivity of sugar molecules in water or 30-base-pair DNA molecules in water is 

respectively 5𝑥10−11 or 4𝑥10−11 [
𝑚2

𝑠
]. The diffusivity in all simulations in this thesis is 4.37𝑥10−10 [

𝑚2

𝑠
].  

2.4 Separation Resolution 

The conventional definition of resolution is explained in this section; however, in Chapter 4 a 

modified definition of that is introduced and discussed in details. In electrophoretic separation, resolution 

is defined as the efficiency of resolving sample components. Experimentally, when the sample components 

go through the separation process and pass by the detector, the distance between the adjacent peaks as well 

as the distance between the baselines of those peaks are good benchmarks of resolving sample components. 

Giddings [76] was one of the pioneers to address the definition of resolution in terms of the number and 

height of theoretical plates in electrophoresis. Later Jorgenson et al. [77] expanded the definition of 

Giddings’ resolution to a parameter involving the applied electric field as well as sample properties such as 

electrophoretic mobilities and diffusion coefficient. Luckey et al. [78] also determined the resolution by the 

width of DNA bands in capillary gel electrophoresis. There are much research carried out in elektrophoretic 

separation which pointed out to the definition of resolution. A few could be named as the research presented 

by Effenhauser et al. [59] for a high-speed gel electrophoretic separation due to very high electric fields of 

2300 𝑉/𝑐𝑚 in DNA sequencing. Molho et al., [40], Bharadwa et al., [79], David Ross, [80], Viefhues et 

al., [81] and Simhadri et al. [82] all addressed the same definition of resolution as separation efficiency in 

electrophoresis. As shown in Figure 16, the resolution is defined as the ratio of the distance between the 

centers of two adjacent peaks to the average of the base widths for those peaks, therefore: 

𝑅𝑠 =
Δ𝑥

0.5 ∗ (𝑤𝐵,1 +𝑤𝐵,2)
 (9) 

 

Figure 16: definition of resolution for two adjacent peaks 
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However, with no clear edges at the interface of the sample and the buffer solution, measuring the base 

width is not possible experimentally. For this purpose, by seeing the peaks clearly the full width at half 

maximum is applied. To correlate the base width with the width at half maximum point, a Gaussian 

concentration distribution with standard deviation of 𝜎𝑖 is assumed for each component. For such 

distribution, the width of the baseline for 95.4% of the distribution is 4𝜎𝑖 and 𝑤𝐻𝑀,𝑖 = 2.35𝜎𝑖. Therefore, 

the definition of resolution in terms of full-width at half maximums becomes (√2𝑙𝑛2)
Δ𝑥

 (𝑤𝐻𝑀,1+𝑤𝐻𝑀,2)
 or: 

𝑅𝑠 =
Δ𝑥

0.85 (𝑤𝐻𝑀,1 +𝑤𝐻𝑀,2)
 (10) 

As shown in Figure 17, for a Gaussian distribution, 4𝜎 encompasses the base width for 95.4 %, such that 

the peaks overlap by 2.3 % ((100 % −  95.4 %)/2). This indicates that 2.3 % of the peak intrudes into 

the adjacent peak for a resolution of one. Similarly, a resolution of 1.5 indicates a difference in retention 

time of 1.5 ×  4𝜎 =  6𝜎, which corresponds to  99.7% of the distribution and an overlap 

of 0.15 % ((100 % −  99.7 %)/2). 

 

 

 

Figure 17: Peak overlaps for a Gaussian distribution in resolutions of 1 and 1.5 
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To achieve a good separation of sample components, the detection method and sensitivity of the detector 

play key roles. For the purpose of separation resolution, chapter 5, an introductory knowledge of detection 

methods is presented in the following. 

2.4.1 Detection methods 

 

Identification of the unknown analytes is carried out by comparing the recorded UV/Vis absorption 

spectrum with spectral libraries. The detection is a single point detection at separation channel; however, 

whole-column imaging detection (WCID) can be applied for specific applications [83] [84]. 

 

UV absorption: This traditional indirect detection method is very popular in electrophoresis. It employs 

strongly UV-absorbing fluorescent markers, but has high limits of detection because the shallow channel 

sizes demand small path lengths. The fluorescent markers are added to the entire buffer to provide a uniform 

background signal, then in the separation channel, the non-fluorescent sample displaces the fluorescent 

buffer, and the local reduction in the signal marker ions indirectly detects the sample of interest [53] [85]. 

In addition to its low sensitivity due to small depth of microchannels and therefore small path wave length, 

this method is susceptible to false identifications due to the presence of system peaks [86]. 

 

Laser Induced Fluorescent (LIF): The history of micro total analysis systems shows that fluorescence 

detection has been the most-popular detection method for microfluidic platforms. Fluorescent labeling has 

been used due to its high sensitivity and ease of application in microfluidic devices [64]. In electrophoresis, 

the most common detection method for fast separations is LIF, which necessitates sample derivatization 

with fluorescent material if the sample of interest is not a native fluorescent material. After derivatization, 

a laser is used to induce fluorescence for intensity measurement. This method has high sensitivity. However, 

scattering of light from microchannels can cause noise and decrease signal-to-noise ratios. Moreover, due 

to lack of fluorophore nature in most of the analytes, derivatization is required, which is time consuming 

and has some sample compatibility challenges.  

 

Miniaturizing both UV and LIF detection systems is problematic for portable devices, whereas 

electrochemical detection aligns well with miniaturization goals because small electrodes can be 

fabricated to work on chip. 

 

Electro-Chemical Detection (ECD): This alternative to optical detection methods in rapid electrophoretic 

separations suits microchips well, has high sensitivity and requires no derivatization.  It can be carried out 
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for different detection modes: amperometry, voltammetry, conductometry, and potentiometry. Among 

these modes, amperometric detection is the most popular ECD method for on-chip electrophoresis due to 

its easy operation and minimal background-current contributions. [87]. This method is based on measuring 

oxidation or reduction currents of the analytes on a working electrode and is therefore restricted to electro-

active species [88]. Its main drawback is that noise from the separation of electrodes and high voltage 

sources must be minimized. After grounding the separation voltage before the electrodes, no EOF and 

consequent band-broadening due to diffusion occurs [89]. 

 

Mass spectrometry (MS): Another useful method in analytical chemistry is mass spectrometry by coupling 

the microchip with a mass spectrometric detector. However, the detection of low mass samples, coupling 

of the separation channel to the mass spectrometer and the micro-scale fabrication of ionized interfaces are 

still challenging. 

 

2.4.2 Ways to improve limits of detection and flow visualization 

 

 Many macroscale-flow visualization techniques have been successfully adapted to microscale flows. 

Particle-based or dye-based visualization with different methods of acquiring data and flow analysis have 

been developed for microfluidics applications, including Laser Doppler Velocimetry (LDV), Particle Streak 

Velocimetry (PSV), Particle Image Velocimetry (PIV), all in microscales and using fluorescently labelled 

particles with the challenges of micro-size particles. Due to their small size however, molecular tracers have 

much higher diffusion coefficients than micro-sized particles, which can lower the spatial resolution and 

velocity resolution of the measurements [90]. On the other hand, in dye-based measurements, the 

electrokinetic migration of the charged dye species should be considered. A few dye-based methods are 

Laser-Induced Fluorescence (LIF), Flow Tagging Velocimetry (FTV), and Molecular Tagging Velocimetry 

(MTV). The mechanism in all these techniques is based on fluorescent characteristic of the labelling/tagging 

dyes. A photon is absorbed by the fluorophore, increases its energy to an excited state, and remains in that 

state for a finite period of its lifetime. Then, the absorbed energy of the fluorophore starts dissipating, and 

finally the fluorophore releases the photon of energy and returns to its ground state. For dye-free detection, 

new phluorophores like silver nanoclusters (Ag NCs) are used as labelling material and are even smaller 

than semiconductor quantum dots. Yeh et al. [91] , showed that theses nanoclusters have better photo 

stability and brightness than commonly used organic dyes. Yang and Vosch [92] also presented 

DNA/AgNC probes as simple and inexpensive tools for rapid, specific, and sensitive detection of micro 

RNAs, which is an important field of research in disease diagnosis. 
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Photo-bleaching or losing fluorescence properties due to over exposure is also an issue in these flow 

visualization or detection methods [93].  To overcome this issue, Caged-fluorescent dye method is applied 

to fluorophore molecules with additional chemical groups that cause rendering non-fluorescent effect. A 

caged fluorophore is “uncaged” by exposure to certain electromagnetic radiation that breaks the bonds 

attaching the caging groups. With a photolysis process, the original fluorescent dye is then recovered, and 

it can be tracked indefinitely using ordinary fluorescence imaging approaches. David Sinton [94] clearly 

explains the variety of microfluidics methods as briefly mentioned above. 

2.5 Other Techniques to Couple with Electrophoresis 

 

As previously mentioned, in electrophoretic separation, based on Newton’s second law, the particle 

acceleration under the applied electric field is  𝑎 = 𝐸⃗ 𝑞/𝑚 , which represents the charge to mass ratio. Since 

the charge of DNA is proportional to its size, the q/m ratio remains constant for different DNA sizes. Thus, 

with no buffer, all the DNA particles (small to large) move at the same pace. Adding a sieving matrix like 

the buffer solution creates different resistances to different-sized DNA fragments; therefore, size-based 

separation occurs. In electrophoretic separation, the right choice of buffer is essential. First of all, a buffer 

must be selected that does not interfere with the detectability of the sample components and maintains 

solubility of the sample. If UV absorbance detection is used, the buffer should result in low-absorbance at 

the desired detection wavelength. If electrochemical detection methods are used, the buffer should be 

compatible with the sample and also have a stable background conductivity. The pH of the buffer should 

also be close to neutral and increasing the pH to between 4 and 9 results in increasing the EOF. According 

Landers et al. [95] increasing the buffer pH from 8.61 to 11.64 results in identifying a greater number of 

peaks, i.e. five peaks for a sample with five peptides.  So, at a given pH, the choice of buffer effects the 

separation resolution due to the buffer’s electroosmotic mobility. Moreover, buffer concentration has a 

significant effect on mobility. This effect has been reported in the literature several times. Bruin, et al. [96] 

studied overall mobility versus buffer concentration. Nashabeh and El-Rassi [97]also presented data on 

buffer concentration effects on mobility. In the results presented by Issaq et al. [33], the migration time of 

any solute increases and the separation factor improves with increasing concentration. The linear 

relationship between solute migration time and the square root of concentration suggests that the migration 

time will double for every four-fold increase in buffer concentration. The bigger the difference in the net 

mobility of two neighboring solutes, the larger their separation factor at higher concentrations.  

Issaq et al. [33] determined the maximum applied voltage that works best for each buffer concentration. 

The maximum buffer concentration and applied voltage was determined for each buffer concentration, then 
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Ohm’s law (current versus voltage curve) was plotted. From each plot, the maximum voltage at which the 

curve begins to deviate from linearity was recorded. The generated data was then plotted as maximum 

voltage versus buffer concentration. The results represents a practical guide for the selection of buffer 

concentrations and applied voltages for phosphate and acetate buffers. 

 

2.5.1.1 Free Flow Electrophoresis (FFE) 

Another technique used in separation of biomolecules based on sample electrophoretic mobilities 

is Free Flow Electrophoresis (FFE). An electric field is applied perpendicularly to the direction of flow to 

deflect analytes into distinct streams [98][99]. In FFE, pressure is used to drive a sample stream though a 

planar separation channel. Unlike CE, sample injection, separation, and collection can take place 

continuously because the direction of the separation is different from that of the bulk flow. The continuous 

nature of this technique provides a high-throughput separation mechanism. This technique could be coupled 

with electrophoretic separation as two-dimensional separation to promise separation of sample constituents 

with marginal electrophoretic mobilities. Figure 18 shows a Schematic of capillary electrophoresis vs. free-

flow electrophoresis. 

 

Figure 18: Schematic of capillary electrophoresis vs. free-flow electrophoresis 

2.5.1.2 Field-Amplified Sample Stacking (FASS)  

 

Buffer conductivity and conductivity gradient are studied in much research to improve separation. 

A one-dimensional analogy holds in resistive electrical networks and electroosmotic and electrophoretic 

transport in microchannels with long axial-to-radial dimension ratios. In such an analogy, Kirchhoff’s 

current and voltage laws can be used to predict flow rates in a network of electroosmotic channels under 

applied voltages at the reservoirs at the end of channels.  All of the current, and hence all of the flow, 

entering a node must also leave that node, and the resistance of each part of the network can be determined 

by knowing the cross-sectional area, the conductivity of the liquid buffer, and the length of that part.  One 
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way to improve the limits of the detection in on-chip electrophoresis, especially for low concentration 

samples, is Field-Amplified Sample Stacking (FASS), shown in Figure 19. Additionally, an on-line pre-

concentration process can be integrated for sample analytes. Sample pre-concentration offers higher 

sensitivity assays, robust electrokinetic injection schemes, and the use of detection modes less sensitive 

than fluorescence, such as electrochemical detection [2]. This technique was first discussed by Mikkers et 

al. [100] and also presented by Santiago’s group at Stanford [101]. In FASS, conductivity gradients between 

the injected sample and the background buffer are leveraged to increase sample concentration. However, a 

major challenge in applying FASS to on-chip assays is the initial setup of high conductivity gradient 

boundaries in the region of the injected sample volume. Jung et al. [101] overcame this challenge by 

facilitating a porous polymer structure in the separation channel. This porous structure enabled them to use 

a pressure-injection scheme for the introduction of a high-conductivity gradient in the separation channel 

and thus prevented the flow instabilities associated with high-conductivity gradient electrokinetics. 

 

Figure 19: Schematic of Field-amplified Sample Stacking (FASS) technique to for increase the 

concentration of sample [102] 

2.5.1.3 Isotachophoresis (ITP) 

Another technique used to increase separation by means of heterogeneous buffer solutions is 

Isotachophoresis, whereby a sample is sandwiched between a trailing buffer and a leading buffer, and so 

sample ions move faster than the trailing buffer but slower than the leading buffer Figure 20. Then, under 

the applied electric fields, sample zones are formed based on their electrophoretic mobilities. With defined 

conductivity boundaries, each zone migrates at a certain velocity, and ions in that zone migrate with the 

same velocity; therefore, the phenomenon is called Isotachophoresis. This method is presented in several 

studies [103]–[106]. 
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Figure 20: Isotachophoresis 

2.5.1.4 Isoelectric focusing (IEF) 

 
Utilizing heterogeneous buffers allows varying many physical properties to be varied, including 

the buffer pH. Isoelectric focusing (IEF), is another electrophoretic technique which employs a background 

buffer containing molecules that can be either negatively charged, neutral, or positively charged, depending 

on the buffer pH. The pH at which a molecule is neutral is called the isoelectric point, or pI. Under an 

applied electric field, a pH gradient is formed along the channel. When a sample is injected into a channel 

filled with buffer, the sample migrates up to a location where the sample pH equals to the pI of its molecules.  

Thus IEF concentrates initially dilute amphoteric samples and separate out their constituent parts according 

to their isoelectric point. Because of this behavior, IEF is often used as the first dimension of 

multidimensional separations [107] [34]. 

 

Figure 21: Isoelectric focusing (IEF) 

Another technique in electrophoretic separation, by controlling the non-physical parameters, is 

temperature-gradient focusing (TGF). 

 

2.5.1.5 Temperature gradient 

Another method of sample stacking is Temperature Gradient Focusing (TGF), whereby an axial 

temperature gradient applied axially along a microchannel produces a gradient in electrophoretic velocity. 

When opposed by a net bulk flow, charged analytes focus at points where their electrophoretic velocity and 
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the local, area-averaged liquid velocity sum to zero. More details of this method are presented in studies by 

Ross and Locascio [108] and also by Shameli et al. [109], [110]. 

 

In the next chapter, the problem formulation for the electrokinetic migration of the sample in the 

microchannels is provided. To understand the details of the thin electric double layer adjacent to the 

microchannel walls and its effect on the bulk flow, the distribution of ions and electric potential are 

discussed in detail in Appendix A.  
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Chapter 3   

Problem Formulation 

3.1 Introduction 

In this chapter, problem formulation for the cross-linked microchannels is presented. Assuming the 

Electric Double Layer (EDL), all the governing equations and boundary conditions are provided. Then in 

the following chapter, more details of the EDL are addressed. Then, the problem formulation in non-

dimensional form is presented when the effect of EDL is seen on boundary conditions. 

3.2 Chip Configuration 

 

For the electrophoretic separation in microchannels, a sample is injected from the injection channel 

by an applied voltage, with electroosmosis as the driving force. The applied potential is switched from the 

injection channel to the separation channel, then, after the sample is situated in the separation channel, the 

sample species start to separate based on the differences in their electrophoretic velocities. Figure 22 shows 

the geometry of the cross-channel, which is the first geometry studied this research.  

 

Figure 22: Cross-channel geometry of the microchip 
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3.3 Problem Formulation, Dimensional Governing Equations and Boundary 

Conditions  

 

As discussed previously, Electroosmotic flow (EOF) problem can be modeled by considering electric 

body force term, exerted on ions appearing in right hand side of Navier–Stokes equation. This force is 

observed by applying external electric potential on any electrolyte fluid. In other words, by applying an 

external electric field in presence of EDL, ions motion begins and the external electric field interaction with 

EDL forms an electrokinetic body force on bulk flow which is considered as body force term in right hand 

side of fluid momentum equation. Since governing equations are coupled and the effect of EDL is narrowly 

confined to the wall (Appendix A), we have to solve ∇2𝜙 = 0 for externally applied electric field as well 

as mass and momentum equations. In the Appendix A, the details of ions distribution in EDL, the Poisson-

Boltzmann equation and three solutions to that are presented.  Here, we first show the governing equations 

and the way potential distribution affects our fluid flow and how it is reflected in body force term in fluid 

momentum equation. 

As shown in Figure 22, a common geometry for separation of DNA or protein sample is the crossing 

microchannels. The horizontal channel is considered for sample injection and the vertical channel for 

sample separation.  To have an efficient, high resolution separation, a rectangular shape for the sample plug 

at the intersection of the channels is desired.  

The governing equations to be considered are the following: 

1. Electric field  

2. Flow field including continuity and momentum  

3. Concentration field (solved for each species) 

4. Energy field 

In order to perform numerical simulations for electrophoretic separation, three sets of governing 

equations must be solved: electric potential equation, flow field equations and concentration equations. In 

Section 3.3.4, it is shown that energy equation is not solved when Joule heating is negligible.  

3.3.1 Electric Field Equation 

 

In problems with a thin electric double layer (EDL), on the order of nanometers, the double layer 

equations are not solved for ion and potential distribution. However, the effect of the EDL is imposed on 

the bulk flow as a slip boundary condition, similar to a conveyer layer moving with the electroosmotic 

velocity. Initially, the microchannels are filled with buffer solution, and then the sample material is injected 

from 𝑅1. The sample is a solute within the buffer so the basic fluid properties are those of the buffer. Since 

the sample concentration is on the order of μmol and the buffer’s is on the order of mmol, the electrical 
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conductivity of the buffer dominates.  Diluting the sample with buffer solution, there is no electrical 

conductivity difference between sample and buffer, and also in the region with zero electric charge density 

for the bulk flow, i.e., 𝜌𝑒 = 0, the potential equation becomes Laplace’s equation, ∇2𝜙 = 0, which, in two 

dimensional space, is the following: 

  𝜕
2𝜙

𝜕 𝑥2
+
𝜕2𝜙

𝜕 𝑦2
= 0 (11) 

Potentials are applied at the reservoirs of the injection channel during the injection phase, while the 

reservoirs of the vertical channel are set to floating or specified voltages, according to the desired 

configuration to attempt to shape the injected sample. The walls of the channels are electrically insulated. 

Thus, the boundary conditions to apply to solutions to (11) are: 𝜙𝑅1 = 𝜙1  , 𝜙𝑅3 = 𝜙3 for 𝑅1, 𝑅3   and   

𝜕𝜙𝑅2

𝜕𝑦
=
𝜕𝜙𝑅4

𝜕𝑦
= 0 (floating) or 𝜙𝑅2 = 𝜙2 , 𝜙𝑅4 = 𝜙4  (specified) for 𝑅2, 𝑅4. For the channel walls, we 

have  
𝜕𝜙

𝜕𝑛
|
𝑤𝑎𝑙𝑙𝑠

= 0. 

3.3.2 Flow Field Equations 

 

The continuity equation for an incompressible Newtonian fluid is ∇⃗⃗ ∙ 𝑉⃗ = 0.  For momentum 

equation we should take electric force into account which is due to net charge density and applied electric 

field, so electroosmotic body force shows up in general Navier-Stokes equation (12). 

𝜌 [
𝜕𝑉⃗ 

𝜕𝑡
+ (𝑉⃗ . ∇⃗⃗ )𝑉⃗ ] = −∇⃗⃗ 𝑝 + 𝜇∇2𝑉⃗ + 𝜌𝑒𝐸⃗  

(12) 

Knowing 𝑉⃗  as the flow velocity, 𝑝 as pressure, 𝜇  the dynamic viscosity, 𝜌  density and 𝜌𝑒  the charge 

density, we show how we can neglect some terms based on our so-far understanding of the problem. In 

Appendix A we show that net charge density, 𝜌𝑒, is zero everywhere except in the very thin electric double 

layer near wall. On the other hand, there would be no body force term for the bulk flow in (12). The gravity 

force is neglected because of the small height of microchannel being about one fifth of the channel width.  

Before delving into the flow field boundary conditions, the effect of electrical body force term and EDL on 

the flow field boundary conditions must be discussed. We discuss the details of EDL and its effect on flow 

field boundary conditions in Appendix A and showed that for the microscale devices, the EDL is very thin 

and on the order of nanometers. For such a thin double layer, we do not care about the flow details inside 

the EDL and solve the problem by using an equivalent asymptotic approach. Therefore, the Coulomb forces 

are ignored outside the double layer and EDL effect is seen as a slip wall boundary condition, which is 

defined by electroosmotic mobility. Assuming no EDL in the microchannel, to solve for the fluid flow 

velocity and pressure, we have to solve the continuity and momentum equations for the incompressible 
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Newtonian fluid in simplified forms of  ∇⃗⃗ ∙ 𝑉⃗ = 0 and [
𝜕𝑉⃗⃗ 

𝜕𝑡
+ (V⃗⃗ ∙ ∇⃗⃗ )𝑉⃗ ] = −∇𝑃 + 𝜇∇2𝑉⃗  , which leads to the 

following component forms: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0  (13) 

𝜌 [
𝜕𝑢

𝜕𝑡
+ (𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)] = −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

 ∂𝑥2
+
𝜕2𝑢

∂𝑦2
)   

𝜌 [
𝜕𝑣

𝜕𝑡
+ (𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
)] = −

𝜕𝑃

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

∂𝑦2
+
𝜕2𝑣

∂𝑦2
)   

 

(14) 

The reservoirs are set as openings with the flow direction normal to the boundaries and the specified 

atmospheric pressure(𝑃 − 𝑃𝑎)|𝑅1−4 = 0. The reservoirs are openings because there is no flow driving force 

at the reservoirs; velocities are the result of the applied electric field on the EDL and the influence of the 

incompressible continuity equation. In addition, No flow is crossing the channel walls anywhere in the 

normal direction, so, at 𝑅1 and 𝑅3,  
𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑥
= 0, and at 𝑅2 and 𝑅4,   

𝜕𝑣

𝜕𝑦
=
𝜕𝑢

𝜕𝑦
= 0.   

As depicted in Figure 23 electric boundary layers are set to two sides, one is the wall or charged 

surface and the other one is somewhere far away from wall or say bulk flow along channel center line. On 

the wall side, we know the surface potential and the no-slip velocity boundary. Whereas along the channel 

center line we have a zero potential but the velocity is unknown. So to do an equilibrium analysis in EDL, 

focusing on the direction normal to the wall, we both derive and solve P-B equation. For a negatively 

charged surface, for ions in EDL there are two forces competing: 1- The electro static forces attracting 

positive ions to the wall as well as repelling  negative ions to the bulk flow and 2- diffusive forces which 

increase the tendency of the ions to diffuse in the flow like the red dye diffused in water. So, attracting 

electrostatic force would be balanced with smoothing out diffusive force in equilibrium.  

 

Figure 23: EDL boundary conditions 
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At the cross sectional ends of the channel, there is no tangential velocity. However, at the walls, tangential 

velocities deserve more attention because of effect of electric double layer. And this slip-velocity at the 

wall is indeed due to effect of electric double layer. 

𝑉𝑡|𝑤𝑎𝑙𝑙 = −
𝜖𝜁

𝜇
𝐸⃗ 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙         (15) 

Therefore, for the slip walls, the velocity boundary condition at channel walls of injection and separation 

channels are the electroosmotic velocities along the walls, V∥ = 𝜇
𝑒𝑜
𝐸∥ 

 and normal to the walls 𝑉⊥=0. The 

electric field during the injection phase is 𝐸𝑥 = −𝜕𝜙/𝜕𝑥 (more details in A).  The wall velocities for the 

separation phase are 𝑣𝑤𝑎𝑙𝑙𝑠 = 𝜇𝑒𝑜𝐸𝑦, where 𝐸𝑦 = −𝜕𝜙/𝜕𝑦 is the electric field during the separation phase. 

Therefore, the velocity components are 𝑢𝑤1,3 = 𝑢𝑒𝑜|𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 / 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛,𝑣𝑤1,3 = 0and 𝑢𝑤2,4 = 0 , 

 𝑣𝑤2,4= 𝑣𝑒𝑜|𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 / 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛. Initially, there is no fluid motion, i.e. 𝑢, 𝑣|𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0. 

 

3.3.3 Concentration Field Equation 

 

For a multi-species sample, the concentration equation for each species is  
𝜕𝑐𝑖

𝜕𝑡
+ 𝑉⃗ ∙ ∇⃗⃗ 𝑐𝑖 = 𝐷𝑖∇

2𝑐𝑖 , 

which becomes, for each species: 

𝜕𝑐𝑖

𝜕𝑡
+ (𝑢 + 𝑢𝑒𝑝,𝑖) 

𝜕𝑐𝑖

𝜕𝑥
+ (𝑣 + 𝑣𝑒𝑝,𝑖)

𝜕𝑐𝑖

𝜕𝑦
= 𝐷𝑖 (

𝜕2𝑐𝑖

𝜕𝑥2
+
𝜕2𝑐𝑖

𝜕𝑦2
)  (16) 

where the electrophoretic velocities are 𝑢𝑒𝑝,𝑖 = −𝜇𝑒𝑝,𝑖𝐸𝑥 and  𝑣𝑒𝑝,𝑖 = −𝜇𝑒𝑝,𝑖𝐸𝑦 and play a key role in the 

separation of species in a sample. As noted earlier, during the injection phase, the sample is injected from 

𝑅1 with a specified concentration, 𝑐𝑖,𝑅1 = 𝑐0  [𝑚𝑜𝑙/𝑚
3]. 𝑅2 and 𝑅4 are filled with buffer solution with zero 

concentration, 𝑐𝑖,𝑅2,𝑅4 = 0. 𝑅3 is the waste reservoir for the injection phase into which we keep injecting 

the buffer and/or sample in the horizontal channel, so the concentration there has a zero gradient, i.e. 

𝜕𝑐𝑖

𝜕𝑥
|
𝑅3
= 0 . It is worth mentioning that the condition 𝑐𝑖,𝑅2,𝑅4 = 0 holds for the inflow boundary conditions 

at  𝑅2,4 in the case of applying specified voltages. If outflow conditions occur at these reservoirs, the floating 

condition holds at these boundaries,  
𝜕𝑐𝑖

𝜕𝑦
|
𝑅2,𝑅4

= 0.  No flow crosses the walls, and the walls are 

impermeable, i.e., 
𝜕𝑐𝑖

𝜕𝑛
= 0. Initially, the channels are filled with buffer with zero concentration, i.e., 

𝑐𝑖|𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 

 



 

37 

3.3.4 Energy Equation 

 

Energy conservation is not considered in this problem. The reason is that by applying high electrical 

potential, high dissipation rate is observed due to thermal conductivity of channel walls and high surface-

to-volume ratio in microchannels. Therefore, the effect of Joule heating can be neglected and generally we 

do not consider energy conservation equation except in special situations. Figure 24 shows the heat transfer 

generated and dissipated in/from fluid element in the microchannel. 

 

 

Figure 24: Heat transfer from fluid in microchannel 

 

Having heat transfer equation in (17), and considering temperature gradient along 𝑦 direction and generated 

heat due to applied high potential along the channel, then the generated heat would be dissipated to the 

surrounding area through fluid surface. Assuming insulated wall surfaces for the channel, then: 

+𝑘𝐴
𝜕2𝑇

𝜕𝑦2
+ 𝑝̇∀= 0  

(17) 

𝑘 is conductive heat transfer coefficient, 𝐴 and ∀ are area and volume respectively and 𝑝̇ is heat generation 

which equals to 𝐽𝐸⃗ , where 𝐽is the current density and 𝐸⃗  is the applied electric field. Convective heat transfer 

is not considered, since it cools down the fluid and transfers heat out of the system and the transient heat 

transfer slows down the heating up in the system, therefore: 

𝑘𝐴
𝜕2𝑇

𝜕𝑦2
+ 𝐽𝐸∀= 0  

(18) 

Scaling above equation with volume, we get: 

𝑘
𝐴

∀

𝜕2𝑇

𝜕𝑦2
+ 𝐽𝐸 = 0  

(19) 

So, the net heating is dependent on: 

 electrical field (ΔV/Length) 

 current (ΔV/resistance =  ΔV *cross sectional area*electric conductivity of fluid/Length 

 conductivity of chip material (and natural convection if applicable) 
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 ambient temperature (considered to be constant)  

 surface to volume ratio 

Taking the non-dimensional form of equation (19), where 𝑇∗ = 𝑇 − 𝑇𝑎; 𝑇𝑎 is ambient temperature, we get: 

𝑘
𝐴

∀

𝜕2𝑇∗

𝜕𝑌2
+ 𝐽𝐸 = 0  

(20) 

Integrating above equation with respect to 𝑌, we have: 

𝜕𝑇∗ 

𝜕𝑌
= −

∀

𝑘𝐴
𝐽𝐸𝑌 + 𝐶1 

(21) 

By second integrating, we reach: 

𝑇∗ = −
∀

2𝑘𝐴
𝐽𝐸𝑌2 + 𝐶1𝑌 + 𝐶2 

(22) 

Assuming that the channel material is less conductive than the fluid flow makes the maximum temperature 

at the center of channel. Moreover, the wall temperature is equal to ambient temperature. So, the boundary 

conditions are 

𝜕𝑇∗ 

𝜕𝑌
|
𝑌=0

= 0 → 𝐶1 = 0 
(23) 

𝑇∗|𝑌=𝑤 = 0 → 𝐶2 =
∀

2𝑘𝐴
𝐽𝐸𝑤2 

𝑤 is the channel width here; therefore, 

𝑇∗ =
∀

2𝑘𝐴
𝐽𝐸𝑤2(1 −

𝑌

𝑤
) 

(24) 

 So at the center of channel, fluid temperature would be 

𝑇∗|𝑌=0  =
∀

2𝑘𝐴
𝐽𝐸𝑤2 

(25) 

But due to high ratio of surface to volume, or  
∀

𝐴
= 𝑤. So, the fluid center temperature becomes 

𝑇∗|𝑌=0  =
1

2𝑘
𝐽𝐸𝑤3 

(26) 

So, equation (26) shows that 𝑇∗ at the center of channel is proportional to the 𝑤3 which is in order of 

10−18 which even for high electric fields possible is a good proof that the generated heat is dissipated to 

the surrounding and joule heating effect could be neglected and we do not solve energy equation. 
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3.4 Conclusions 

 

This chapter provides the problem formulation for the cross-linked channels. The governing equations and 

boundary conditions are presented for four decoupled fields: electric, flow, concentration and energy fields, 

in dimensional form. It is briefly explained why the effect of the thin electric double layer on the bulk flow 

in microchannel is reflected on the slip velocity boundary conditions. 

 

In Appendix A, we provide more details of EDL and ion distribution there. We present the derivation of 

Poisson-Boltzmann equation from statistical approach to show the electric potential and ion distribution in 

the electric double layer of microchannels. In Appendix B, we continue with non-dimensionalization of the 

problem to find the parameters involved and to provide the design for controlling the shape of the sample 

plug at the cross by the applied electric potentials. The discussion in Appendix B justifies our problem 

formulation in the current chapter. The details of the distribution of charges in the EDL and bulk flow in 

microchannels clarifies using the Laplace equation for the zero charge density in the bulk flow for the 

electric potential distribution and also implementing the slip boundary condition for the flow field. 

Moreover, at the end of this chapter it is explained why Joule heating effect is neglected and we do not 

solve the energy equation. Appendix B could be taken as the section following the discussion of problem 

formulation in third chapter, but in Appendix B, all that problem formulation are discussed in non-

dimensional form. We did the non-dimensionalization of the problem to know the parameters involved the 

problem and to know the length and time scales in the problem. For the cross-shaped microchannel, which 

is used in this research to control the sample plug shape in the vicinity of the cross, we study the role of the 

applied voltages and other involved dimensionless parameters, such as Reynolds number, Peclet number, 

electrokinetic mobilities and velocities. To do a comprehensive non-dimensionalization of the problem, I 

discussed the possible choices of reference values for length scale, electric potential, velocity, and 

concentration and, in particular, the use of a convective time scale is compared with that of a diffusive time 

scale. Finally, the wall electroosmotic velocity, the convective time scale, and the injection/separation 

channel width are adopted for non-dimensionalization of the problem. In addition to the non-

dimensionalization of the problem, I presented some details of the numerical simulation tool and solver, 

ANSYS CFX. I summarized the main points into the discretization method, implemented solver, the 

structure of grids, simulation set-up procedure, boundary conditions, and convergence criteria for each field. 

All the discussions hold true for both injection and separation phases, with minor differences which depend 

on the flow direction and in particular the choice of a horizontal or vertical injection. 
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Now that the problem formulation is set and we laid the foundation for better understanding of the 

problem and parameters involved to control the sample shape at the cross, we start the injection and 

separation evaluation in the following chapter. We continue this research with the main objective of 

achieving an ideal rectangular sample plug shape at the cross at injection and quantify the sample plug 

shape and size and assessment parameters in the next chapter. 
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Chapter 4 

Injection and Separation Evaluation  

 

4.1 Introduction 

 

 One key factor that plays a significant role in the efficiency of on-chip electrophoresis separation 

is the initial shape of the sample plug at injection [23]–[27]. For microchips involved in separation, injection 

is a key step in efficient analysis. Much research is being carried out on microchip electrophoretic 

separation, but detailed analysis of the effect of sample plug shape at injection on separation efficiency is 

still lacking.  In literature, it is stated to be difficult to attain a rectangular and narrow sample shape only 

by adjusting electric voltages. This goal is achieved in this research and this chapter presents the role of 

sample plug shape thoroughly, and the effective factors in evaluating good injection are addressed 

quantitatively. Among all different microchip geometries used in electrophoretic separation, cross-linked 

geometry is very common, for the reasons discussed in section 2.1.3.2. For such a geometry, the chip is 

first filled with the buffer solution and then the sample is injected from the sample reservoir into the 

injection channel. In electrokinetic transport, where no external pressure is applied, the sample migrates 

along the injection channel due to the applied electric field. When a sample approaches the intersection of 

injection and separation channels, the cross, the electric potentials are switched from injection to separation 

mode and the sample is pushed into the separation channel. The goal is to have the ideal rectangular sample 

plug at the cross, with no leakage of the sheath (buffer) flow into the injection channel from side channels. 

As the sample migrates along the injection channel prior to the separation mode, an interface between pure 

sample and pure buffer is observed, and causes along-stream diffusion. Once the sample reaches the cross, 

the cross-stream diffusion starts, and depending on the side-applied electric fields in the separation channel, 

different shapes of sample plug are achieved. The initial shape of the sample plug prior to separation greatly 

affects the separation efficiency, as discussed in detail in 4.4. Ideal rectangular injection shapes result in 

better separation resolution and in order to quantify such a plug shape, a shape factor study is carried out 

and presented in this chapter. Different parameters needed to be taken into consideration in this study, 

including the parameters used to quantify the sample plug shape and size by defining a shape factor for 

shape evaluation. Following the shape factor, the time to stop injection, the definition of separation 

resolution and the correlation of shape factor and resolution are presented. This chapter addresses the 

applied electric field configurations at injection and separation.  



 

42 

4.2 Literature Review  

Assessment of injection and separation is a key factor in designing microchips in electrophoresis 

separation. Capillary zone electrophoresis (CZE), compared to traditional liquid chromatography 

separations, is an analytical technique used to separate samples into their individual components based on 

their differential migration in a capillary under an applied electric field. In microfluidics, rectangular chips 

are replaced the capillaries which necessitates the sample transport phenomena. Patankar and Hu [9] were 

pioneers who studied the electroosmotic injection characteristics of a cross-channel device for capillary 

electrophoresis. They stated that the shape of the inserted sample is an important parameter that influences 

the resolution of the separated zones during the electrophoresis and depends primarily on the electroosmotic 

flow pattern at the intersection of the channels. Mohammadi and Santiago [28] presented shape optimization 

techniques for minimizing dispersion in extraction and separation microfluidic devices using the control 

parameter. This parameter may be either the potential differences applied during the pinching and pull-back 

steps, or the turn geometries devoted to keeping the dispersion minimal by reducing the skew of the 

advected band. The  literature also shows that the shape of a sample plug delivered into the separation 

channel has a great impact on high-quality separation performance, and a distorted sample plug has a 

negative impact on the quality of separation [29], [25],[24]. Optimal injection depends on the shape and 

size of the sample plug at the intersection of injection and separation channels during injection [30].  Fu et 

al. [46] identified severe sample leakage in the floating sample injection method when high voltage 

gradients were established. They showed how sample leakage effect increased the signal baseline by 

increasing the number of injection runs, and reduced separation efficiency. They found that the shape of 

the delivered sample plug depends primarily on the electroosmotic flow pattern at the intersection of the 

channels and plays an important role in determining the resolution of the electrophoresis analysis.  

 

Despite the notable contributions of the various injection schemes discussed above, few studies have 

examined sample shape from a theoretical perspective. Research still lacks the development of a sample 

injection model for on-chip electrophoretic separation. This chapter first focuses on the injection and the 

shape of the sample at the cross, then presents the effect of that shape on the separation resolution. 

4.3 Shape Factor Introduction 

 

Figure 25 shows how the two components of a double-species sample pass by the detector in the 

separation channel and also presents the possible shapes achieved at the intersection of injection and 

separation channels. An ideal sample plug is a clear-cut rectangle with only one-dimensional diffusion at 

the interface of the sample and the buffer solution. Such a shape is not easily achieved due to the diffusion 
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of the sample at the cross and the applied electric fields. Depending on the electric fields applied in the 

injection and separation channels, the sample could appear in rectangular or trapezoidal shapes. In Figure 

25 a summary of the definition of the sample plug shape and size in correlation with peak concentration 

and high separation resolution is presented.  The optimal injection size should be small enough to avoid 

wide overlapping bands, yet large enough to provide an adequate detection signal. From those parameters 

involved in the problem discussed in 0, the goal is to control the sample plug shape by means of the applied 

electric potentials, to achieve an almost rectangular shape. In this respect, it is worth analyzing the shape 

of the sample and the plug width at the cross at injection, prior to switching to separation phase. Following 

that, shape factor parameters are analyzed to quantify sample plug shapes and sizes. 

 

 

Figure 25: Possible sample plug shapes at the cross 

 

 

Figure 26: Sample plug shape optimization 
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4.3.1 Development of a Shape Factor-Guiding Principles 

Assuming that injection is carried out in the horizontal channel with symmetric applied electric 

fields in both sides of the separation channel, we analyze the top half of the sample shown in Figure 27.  

Since there is no exact edge at the interface of the pure sample and the buffer solution, the analysis is studied 

for the 50% concentration (Half-Maximum) contour line. This is an arbitrary choice to some extent, but 

with detection consideration this line is the most stable one and less likely to wander due to diffusion to the 

buffer solution from both sides. It is thus the best location for analyzing the sample plug shape. 

Experimentally, it is also easier to measure this line to compare the sample concentration and noise peaks. 

Considering a symmetric sample at the cross, we evaluate half of the sample either the top or right half 

depending on weather the injection is performed horizontally or vertically. For the typical plugs shown in 

Figure 25, the sample plug is characterized with a quadratic function; however, a higher order curve fit 

results in higher accuracy. We study the quadratic fit on the sample width at 50% concentration contours, 

normalized by the channel width and defined for the sample plug width as 

 𝑌 = 𝑊𝑠𝑝(𝑋) = 𝐴0 + 𝐴1𝑋 + 𝐴2𝑋
2.  

To quantify sample plug shape, characterization parameters are introduced in Table 2 for microchannels 

with a channel width of 𝑊. To be independent of channel dimensions, these parameters are in normalized 

form, where 𝑋 =
𝑥

𝑊
 ; =

𝑦

𝑊
 , and the part of the sample to study at the cross is confined to  𝑋[−0.5, 0.5] as 

shown in Figure 27. 

 

 

Figure 27: A sample concentration contour for a horizontal injection 
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Table 2: Shape factors (parameters) used to characterize sample plug shape 

Parameter Definition 

𝑾̅̅̅𝒔𝒑  

Mean width of sample 

plug  

𝑾̅̅̅𝒔𝒑 =
∫ 𝑊𝑠𝑝𝑑𝑋      
0.5

−0.5

∫ 𝑑𝑋      
0.5

−0.5
 
= 𝐴0 +

𝐴2
12

 

 

𝝈   

Standard deviation 𝝈 = √
∫ (𝑊𝑠𝑝 − 𝑊̅𝑠𝑝)

2
𝑑𝑋

0.5

−0.5

𝑊 
 
1

𝑊̅𝑠𝑝
= √

15𝐴1
2 + 𝐴2

2

180
 
1

𝑊̅𝑠𝑝
 

𝑺𝒚𝟏  

First moment about 

channel centre line  

𝑺𝒚𝟏 =
𝑋
𝑚𝑤
(1)

𝑋
𝑚𝑤̅
(1)

1

0.5𝑊 
=

𝐴1

6𝑊̅𝑠𝑝
 

𝑚𝑤
(1)
= ∫ (𝑊𝑠𝑝 − 𝑊̅𝑠𝑝)𝑋

 𝑑𝑋 
0.5

−0.5
;  𝑚𝑤̅

(1)
= ∫ 𝑊̅𝑠𝑝𝑑𝑋      

0.5

−0.5
 

 

𝑺𝒚𝟐
  

 
1

4
×Second moment arm 

about channel centre line  

𝑺𝒚𝟐  =
1

4

𝑋
𝑚𝑤
(2)

𝑋
𝑚𝑤̅
(2)
=
1

4
√

𝐴2

15𝑊̅𝑠𝑝 
 

𝑚𝑤
(2)
= ∫ (𝑊𝑠𝑝 − 𝑊̅𝑠𝑝)𝑋

2 𝑑𝑋      
0.5

−0.5
  ;  𝑚𝑤̅

(2)
= ∫ 𝑊̅𝑠𝑝𝑋

2𝑑𝑋 
0.5

−0.5
 

𝑺𝒚 : RMS of 𝑆𝑦1and 𝑆𝑦2 𝑆𝑦 = √𝑆𝑦1
2 + 𝑆𝑦2

2  

𝒘̅𝒔𝒑: Actual mean width 

of sample plug 
𝑤̅𝑠𝑝 = 2𝑊̅𝑠𝑝𝑊 

 

In the definition of 𝑆𝑦1 , 𝑋
𝑚𝑤
(1) and 𝑋

𝑚𝑤̅
(1) are the first moment arms about the center line of the channel 

for a sample plug and a uniform plug, respectively. The normalizing factor 
1

0.5𝑊 
 assumes that all the sample 

is located at either edge of the channel. The same holds for 𝑆𝑦2 as the second moment arm about the center 

line of the channel. Respectively, 𝑋
𝑚𝑤
(2) and 𝑋

𝑚𝑤̅
(2) are also the second moment arms for a sample plug and 

a uniform plug. Based on the preliminary results, the second moment arm is divided by a factor of 4 to 

bring 𝑆𝑦1 and 𝑆𝑦2 into the same order of magnitude. It is worth mentioning that all the values for shape 

factor parameters in Table 2 are in normalized form, except the actual mean width of the sample plug. To 

get the actual mean width, the normalized mean width of the sample should be multiplied by two times of 

the channel width, here 50 𝜇𝑚. What we defined for the normalized mean width was for the top half of 

the sample plug with a symmetric shape; therefore, we double 𝑊̅𝑠𝑝𝑊 to get the actual sample plug width. 
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Figure 28 shows some possible shapes for the top-half of the sample plug at the cross during injection in 

the horizontal channel. Shape factors are in normalized form and based on different values for 𝐴0, 𝐴1 

and 𝐴2. First,  𝐴0 = 1, 𝐴1 and 𝐴2 changing from −2 to 2. Then more shapes are presented for higher 

values of these coefficients. To see which parameter is mostly characterizing the shape of the sample, we 

analyze the values of 𝜎. The smaller the 𝜎, the closer the shape is to the ideal rectangular plug shape. 

Figure 29 shows different possible shapes presented in Figure 28 but based on ascending 𝜎. 
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 1 2 3 4 5 

 

 

1 
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5 

     

Figure 28 : Different shapes at the top-half of sample plug at the cross (A0 = 1) 
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3-3 2-3 4-3 1-3 5-3 

     

1-2 1-4 2-2 2-4 3-2 

     

3-4 4-2 4-4 5-2 5-4 

     

1-1 1-5 2-1 2-5 3-1 

     
3-5 4-1 4-5 5-1 5-5 

     

Figure 29 : Different shapes based on ascending σ in rows, row-column box numbers from  Figure 28  
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As mentioned in Table 3 in addition to 𝝈, another parameter, 𝑺𝒚 , is defined as 𝑺𝒚 = √𝑺𝒚𝟏
𝟐 + 𝑺𝒚𝟐

𝟐 to see the effect of 

both 𝑺𝒚𝟏and 𝑺𝒚𝟐 on the shape of sample plug simultaneously. The results show the values for 𝑺𝒚 is on the ascending 

order while 𝝈 is increasing. Only one exception is observed for box 4-3 which 𝑺𝒚 is decreasing. 

Table 3: Parameters values based on increasing 𝛔 

Box # (Figure 29) Ascending 𝜎 𝑆𝑦1 𝑆𝑦2
  𝑆𝑦 = √𝑆𝑦1

2 + 𝑆𝑦2
2 

3_3 0 0 0 0 

2_3 0.07 0 0.06 0.06 

4_3 0.08 0 0.03 0.03 

1_3 0.13 0 0.08 0.08 

5_3 0.18 0 0.1 0.10 

1_2 0.28 -0.14 0.08 0.16 

1_4 0.28 0.14 0.08 0.16 

2_2 0.28 -0.15 0.06 0.16 

2_4 0.28 0.15 0.06 0.16 

3_2 0.28 -0.17 0 0.17 

3_4 0.29 0.17 0 0.17 

4_2 0.33 -0.18 0.07 0.19 

4_4 0.33 0.18 0.07 0.19 

5_2 0.39 -0.2 0.1 0.22 

5_4 0.39 0.2 0.1 0.22 

1_1 0.51 -0.29 0.08 0.30 

1_5 0.51 0.29 0.08 0.30 

2_1 0.54 -0.3 0.06 0.31 

2_5 0.54 0.3 0.06 0.31 

3_1 0.58 -0.33 0 0.33 

3_5 0.58 0.33 0 0.33 

4_1 0.64 -0.36  0.07 0.37 

4_5 0.64 0.36 0.07 0.37 

5_1 0.72 -0.4 0.1 0.41 

5_5 0.72 0.4 0.1 0.41 
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Figure 30 provides us with more shapes with a higher resolution on 𝜎 ≤ 0.2. Having 𝜎 = 0.2 is arbitrary but it is observed 

that samples with 𝜎 ≤ 0.2 have good shapes. To quantify the optically good shapes, the range of 𝜎 ≤ 0.2 looks 

reasonable. With such a range for standard deviation, 𝑆𝑦 as a parameter showing the effect of both 𝑆𝑦1and 𝑆𝑦2 is smaller 

than 0.13. 
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E2 E3  E4  E5 E7 

     

E8 E9 E10  E11 E12 

     

E13  E14  E15 E18 E20 

     

E21 E23  E24  E25 

    

Figure 30 : More shapes with  0 ≤ σ ≤ 0.2 
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For a better resolution of 𝜎, some extra shapes are provided with smaller steps for the coefficient of linear term, i.e. 𝐴1 and 

based on an ascending order of standard deviation 𝜎 the results are shown in Figure 31. The results show that 𝜎 and 𝑆𝑦 are 

following the same trend with more significant difference at more deviated shapes, i.e. larger 𝜎’s. To find the ratio of 𝜎/𝑆𝑦 

two methods of averaging or least square fitting by setting the y intercept to a zero or non-zero value are applied. The former 

provides us with a ratio of 1.65 and the latter with 1.73 (in case of a zero y-interception); therefore, for the sake of an easier 

evolution for the sample plug, we take a value of 1.7 as a number in between the above mentioned results. Figure 32 shows 

the trends of 𝜎 and the overlapping values for 1.7 𝑆𝑦. This means in order to quantify the sample shape, it is sufficient to 

characterize the shape of the sample with one parameter, 𝜎  and all other three parameters of , 𝑆𝑦1, 𝑆𝑦2 and 𝑆𝑦 are taken 

into account in the evaluation. 

 

Figure 31: Trends of ascending σ, Sy1, Sy2 and Sy for 50 different shapes 

 

 

Figure 32: Trends of ascending σ and Sy = 1.7 σ for 50 different shapes 

Figure 33 shows how the shape of the sample looks when 𝜎 ≤ 0.2. 
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Figure 33: Zoom of Trends for ascending σ[ 0 ≤ σ ≤ 0.2], Sy1, Sy2 and Sy 

 

So far the shapes of sample were presented for𝐴0 = 1 and more shapes are shown in Figure 34  for higher 𝐴0. Increasing 

 𝐴0 results in higher values of sample mean width; therefore the values of 𝜎 and 𝑆𝑦   decrease. Figure 35 shows three more 

shapes with increased 𝐴2 to four resulting in increasing 𝜎 and 𝑆𝑦  .  

 

 

 

 

 



 

54 

 1 2 3 4 5 

 

1 
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Figure 34 : More sample shapes of Figure 28 with A0 = 2 

 

   

   

Figure 35 : Extra sample shapes for A2 = 4 
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Figure 36 shows a comparison of four cases by making 𝐴0 double. All shows that 𝜎 ≤ 0.2 and 𝑆𝑦  ≤ 0.13  is valid for 

good shapes. 

 

  

  

  

  

Figure 36 : Left to right comparison of four random cases for  A0 = 1 vs A0 = 2 

 

  

4.3.2 Conclusion for the Shape Factor Value 

 

The study of the shape factor for analyzing sample plug shape and size shows that among different shape evaluation factors, 

the standard deviation 𝜎 is a reasonable factor for such purpose. It shows us how much a sample plug is deviated from the 

mean width supposed as a rectangular plug. So, by fitting a quadratic function of 𝑌 = 𝑊𝑠𝑝(𝑋) = 𝐴0 + 𝐴1𝑋 + 𝐴2𝑋
2, 𝜎 ≤

0.2 provides good shapes when 𝐴0 = 1. As shown in parameters of Table 2, changing 𝐴0 only changes the size of the 

sample, not its deviation form from the mean width plug. 

 



 

56 

4.3.3 Assessment of Shape Factor Model with Experiments in Literature 

 

In order to verify the value of the shape factor for evaluating good shapes at injection, several injected shapes 

from experimental results reported in the literature are analyzed. Figure 37 shows the results of research by Fu et al. in 

2003 on electrokinetic focusing injection on microfluidic devices. They compared concentration profiles for different 

focusing ratios in a double-cross injection system with 80 𝜇𝑚-wide microchannels. 

 

 

Figure 37 : Experimental results of Fu et al. [61] for verification of shape factor model  

 

Figure 38 shows the curve fitting results and shape factor 𝜎 for the shapes “a” to “d” in Figure 37 and shows how shapes 

“a” and “c” which are less deviated from the sample mean width provide smaller shape factors below 0.2. 

  

 

Figure 38 : Experimental results of Fu et al. [61] for verification of shape factor model 

 

In Figure 39 to Figure 42 we applied the shape factor model to more experimental results to verify the good shapes 

have 𝜎 ≤ 0.2. Taking the injection in 𝑋 direction, the results show smaller 𝜎 for the shapes which are less deviated from 

their mean width plug. 
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Figure 39 : Shape factor model on experimental results of Ren et al. [111]  

  

 

 

 

Figure 40 : Shape factor model on experimental results of Bousse et al. [30]  

 

 

 

 

 
 

Figure 41 : Shape factor model on experimental results of Chang et al.[112] 
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Figure 42 : Shape factor model on experimental results of Taylor et al.[25] 

 

4.3.4 Injection and Separation of 5 Cases  

 

From this section to the end of the thesis, the injection is carried out in vertical channel. This is for the purpose of 

a symmetric control on the sample plug shape at the cross. To see the effect of shape factor on separation efficiency, five 

cases, A to E, with triangular (pinched) or trapezoidal (dispersed) shapes at the cross are studied. Two outcomes of this 

study are finding the correlation between the shape factor and separation resolution and also the identification of the 

configuration of applied electric fields leading to good shapes.  

For the purpose of finding the correlation between shape factor and resolution, the double-species sample is first loaded at 

injection channel.  The earliest time when the high-concentration part of the sample covers the majority of the cross is taken 

as the stop-injection time. Then the electric fields are switched to the separation mode and by setting the detection spots in 

three points along the separation channel, the separation resolution is calculated for the two species. This study shows the 

better sample shape at injection, the better resolve the sample components. The five cases A to E as shown in Figure 43 are 

studied. For each case, the electric field configuration, velocity fields, the sample plug shape at the cross and the shape 

factor 𝜎 as an indicator of the electrophoretic injection are presented. To provide more clarity, the results of case B are 

discussed in more details and in the following the comparison of the cases will be addressed. All the simulation results are 

based on the time step of 0.001𝑠 and 40 × 40 grids at the cross as shown in the grid independency discussed in 5.2. More 

details of numerical simulation is discussed in Appendix B. 
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Figure 43: General map of  cases A to E, Applied Electric fields, Sample plug shapes at injection  
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4.3.5 Time to stop injection 

 

For the non-steady shapes at the cross, as time goes by, more sample disperses into the separation channel, therefore, the 

time to stop the injection affects the shape of the sample and consequently the separation resolution. In this section, we did 

a study on this issue for one of the five cases presented in Figure 43.  In Figure 44, different time frames of the migration 

of sample along the injection channel are presented for case B. With the applied electric field shown in Figure 43 and the 

electroosmotic mobility of  4.5𝑒 − 8 [𝑚2/𝑉𝑠] , it takes 6.6𝑠 that enough amount of high concentration sample covers the 

cross. Stopping injection sooner than this time and switching to separation results in sensitivity problem due to the lack of 

high concentration part of the sample at the cross. On the other hand, delaying in switching to separation gives the sample 

more time for diffusion, which results in poor resolution. In Figure 44, From the shape of the sample plug at 𝑡 = 6.4 to 7𝑠, 

𝑡 = 6.6𝑠 is the best time to stop the injection.  First, the high concentration part of the sample entered the cross and second 

, it is not dispersed much into the separation channel. Therefore, the concentration results at this time are implemented as 

the initial condition for the separation simulations. 

 

 

Figure 44: Case B , time frames when the sample approaches the cross 

 

For the cases with triangular (pinched) sample shape at the cross, the electric fields in the separation channel during injection 

is so high that the high concentration part of the sample is stopped at the cross. For such cases with stabilized flow at the 

cross, the time when enough amount of high-concentration sample is at the cross considered as an appropriate time to stop 

injection. For the other cases, with trapezoidal (dispersed) shape, a similar observation as mentioned above is necessary for 

the sample approaching the cross to stop injection sooner than diffusion disperses the sample into the separation channel 

wings. Once the injection is stopped, the applied electric potentials at the reservoirs of the injection channel are switched to 

those of the separation channel. Doing so pushes the sample plug into the separation channel and the sample components 

start resolving due to their different electrophoretic mobilities. With the goal of a high separation resolution, the effect of 

shape factor on resolution is studied. After stopping the injection, the electrical potentials are switched to the separation 

mode, and for all the cases studied here the electric potential and field configuration at separation are as shown in Figure 

45. The applied potentials are based on experiments of Sinton et al. [113], for the uniform conductivity and non-dynamic 

loading case, which were adjusted by Kirchhoff’s law for the current chip. 
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Figure 45 Configurations of electric potential and field applied to five cases A to E 

 

 

For a double-species sample which are labelled with Rhodamine B and Fluorescein for the purpose of detection, the result 

of such applied electric field in separation appears as shown in the Figure 46 for case B from 𝑡 = 0.5 to 4𝑠. Due to showing 

the contours in one figure, Rhodamine B is presented with only the contour lines. Both components migrate along the 

separation channel under the applied electric field, and due to the difference in their electrophoretic mobilities they migrate 

with different pace which leads to their separation. 

 

Figure 46: Concentration contours for the separation of fluorescein and rhodamine in case B 

In order to calculate the separation resolution for a two-component sample (here Rhodamine B and Fluorescein) different 

detection spots along the separation channel were taken and the dimensionless concentration for each component, 

normalized by sample initial concentration, were measured at three points across the stream: top wall, center line and bottom 

wall where the origin is located at center of the cross and the microchannel width is 50 𝜇𝑚.  
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Figure 47: Case B- Spatial separation graphs for 𝑐∗ at 𝑡 = 1,2 and 4𝑠 for fluorescein and rhodamine along separation 

channel at 𝑦 = 0.025,0,−0.025 𝑚𝑚 , stopped inection time:6.6𝑠 

 

To calculate the resolution, two approaches for the concentration of the cross-stream locations of the sample components 

along the separation channel were taken: 1-calculating the average of the resolution for three points on top and bottom walls 

and center line; 2- calculating the resolution of averaged concentration for those points. Both approaches were tried for 

different detection spots along the separation channel.  Figure 48 shows that except in the vicinity of the cross or very close 
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to it, the concentration graphs are overlapping in both methods, and we take the second approach of averaged concentration 

as the base of our calculations for resolution. This is in accordance with the input of the detector as well. 

 

 

 

Figure 48: Case B- temporal separation graphs for averaged 𝑐∗  vs.  𝑐∗at 𝑦 = 0.025,0,−0.025 𝑚𝑚 atdetection spots 

of 𝑥 = 0.1,0.2 and 0.3𝑚𝑚 

 

Based on having the same resolution in the two approaches mentioned above, all the resolution values discussed in this 

chapter are calculated for the averaged non-dimensional concentration. So, for cases A to E studied in 4.3.4 for the shape 

factor, the results of separation are presented in Table 4. Non-dimensional concentration is plotted for all the cases along 

the separation channel at three detection spots which location on the center line is normalized by the channel width of 50. 

After analyzing the separation graphs of Table 4, and before delving into the details of improvements in the geometry, the 

injection and separation procedures, we assess the traditional definition of assessment in the following section. 
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Table 4: Comparison of fl (green) and Rh (red) separation for cases A- E along separation channel 

 Sample plug  𝜎 𝑡𝑠𝑡𝑜𝑝 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛  (𝑠) 𝑋 = 2 (𝑥 = 100 𝜇𝑚) 𝑋 = 4 (𝑥 = 200 𝜇𝑚) 𝑋 = 6 (𝑥 = 300 𝜇𝑚) 
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4.4 Assessment of Resolution 

In 2.4, the conventional definition of separation resolution is presented. However, this definition lacks the factor 

of detection sensitivity. In the detection of the resolved sample components, the fact that how far the components are 

migrating apart plays an important role in separation efficiency.  

4.4.1 Solution to Concentration Equation for a Finite Body 

In the conventional definition of resolution of 𝑅𝑠 = Δ𝑥/4𝜎, the diffusion distance reported in the literature is  𝜎2 =

2𝐷𝑡, which comes from the solution of concentration equation for a semi-infinite problem. (Appendix B) 

The current problem, with the interface of the sample and the buffer from two sides is an infinite problem. To see how much 

the peak of the sample concentration is dropped during migration along the separation channel, the concentration –

temperature analogy could be applied. For this purpose, Heisler charts show the temperature drop from the center of different 

bodies in a transient heat transfer, which could be applied to our concentration problem. Knowing the concentration of the 

center, ideally the original concentration, the concentration drop and diffusion distance could be calculated.  Indeed, we 

want to get the diffusion distance along the migration of the sample components in the separation channel. 

Heisler Charts do the same thing for finding the center temperature of a slab, sphere or cylinder when 𝐹𝑜 > 0.2. 

  As shown in Figure 49, in heat transfer, we have Fourier number and Biot numbers in these charts. Fourier number could 

be translated to mass transfer by 𝐷𝑡/𝐿2 and Bi number could be assumed as one. Basically, Bi number is the ratio of internal 

heat resistance to the surface heat resistance as (𝐿/𝐾𝐴)/(
1

ℎ𝐴
) which in our mass diffusion problem is almost one because of 

equal diffusion resistance at both sides of the interface. 

 

Figure 49: Heisler Charts for mid-plane temperature of a slab 
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So initially, as much as the peak drops the 50% points drops too. Making the analogy between the temperature and 

concentration is 𝜃 =
𝑇−𝑇∞ 
𝑇𝑐𝑟−𝑇∞ 

 , 𝑇𝑐𝑟 is the central temperature and T is the atmosphere temperature. Similarly, 

𝑐∗ =
𝐶 −𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐶0−𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 , where initially 𝑐𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the concentration at the interface of sample and buffer and could be assumed 

as 50% of the initial sample concentration. Over time, this concentration starts falling. 𝑐0 is the initial sample concentration. 

Having the Heisler charts based on  𝑐∗ over 𝐹𝑜 = 𝐷𝑡/𝐿2 and reading from 𝐵𝑖 = 1 , gives us the exact relation between 𝐿2 

and 𝐷𝑡. The problem for using these charts to get this exact solution is the unknown concentration at 50% point. 

 

4.4.2 Detection Sensitivity, Peak to Valley factor 

An important factor, which makes the detection and identification of peaks conceivable, is the difference between 

the amplitudes of the peaks. This has not been considered in conventional definition of the resolution, where only the 

horizontal distance between the peaks mattered. We introduce a new definition of resolution (Figure 50) that equals to the 

difference between the amplitude of the lesser of the peaks and the intersection of peak graphs, ideally the base line, 

normalized by the detectability threshold of the detector. This indeed is a sensitivity issue which depends on the threshold 

of the detector sensitivity as well as the original sample concentration in experimental measurements. Therefore, the 

conventional definition of separation resolution is modified by considering this peak-to-valley difference in a normalized 

form as expressed in (27) and the modified definition of resolution in (28). 

 

Figure 50: Peak to valley difference 

  

𝐹 =
Δ𝐻

Detectability threshold
 (27) 

 

𝑅𝑠,𝑚𝑜𝑑 = 𝐹 × 𝑅𝑠,𝑐𝑜𝑛. (28) 
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The results of the peak-to-valley factor assuming the detectability threshold of 0.1 for the modified resolution are presented 

in Table 5. Figure 51 and Figure 52  also show the trend of conventional and modified resolution for each configuration. 

These figures show that at the conventional definition of resolution, cases E, C and A provide higher resolutions. These 

cases are all in steady–state shapes which do not necessitate the observation for the time-to-stop injection.   

Table 5: Modified resolution for cases A to E 

Case Injection Shape Shape factor   𝑹𝒔,𝒄𝒐𝒏. 𝑭  𝑹𝒔,𝒎𝒐𝒅. 
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2 0.62 1.7 1.8 

4 1.01 1.8 1.81 

6 1.31 1.8 2.35 

 

B 

 

 

 

𝜎 = 0.19 

2 0.37 2 0.74 

4 0.77 6 4.62 

6 1.13 6.8 7.7 

 

C 

 

 

 

𝜎 = 0.24 

2 0.64 3.5 2.24 

4 1.09 4 4.36 

6 1.38 3.5 4.83 

 

D 

 

 

 

𝜎 = 0.12 

2 0.23 0.7 0.16 

4 0.51 3.8 1.93 

6 0.75 6.9 5.17 

 

E 

 

 

 

𝜎 = 0.82 

2 0.35 1.4 0.49 

4 1.19 1.2 1.43 

6 1.50 1 1.5 
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Figure 51: Conventional resolution 

 

 
Figure 52: Modified resolution based on no threshold for detectability and normalized detector 

spot by channel width (50𝜇𝑚) 
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4.5 Conclusions 

In this chapter we evaluated the injection and separation with two parameters respectively: 

Injection is assessed by the shape factor and separation by resolution. We introduced the shape-factor 

model to assess the sample plug shape at injection at the (cross) intersection of the injection and 

separation channels. After introducing the four parameters for analyzing the shape of the sample, i.e., 

sample plug mean width, standard deviation from the mean width, first and second moments, standard 

deviation 𝜎 was introduced as the sole parameter as a benchmark to assess the shape of the sample plug. 

To find out the acceptable range for this shape-factor, we presented various possible shapes at the cross 

and concluded 𝜎 ≤ 0.2 provides good shapes which are close to ideal rectangular shape. 

To do the sample shape analysis with this model, and for further validation of the results with the 

experiments in literature, we started with the microchip design, where sample was injected vertically, 

for a symmetric control of the sample plug shape as the purpose of this research. The applied electric 

potentials were in accordance with the referred experiment in literature, adjusted for the current chip 

geometry. In the preliminary study of the sample plug shape, we did the numerical simulations for five 

different cases and presented the results of the shape-factor for each case by curve fitting to the 50% 

line at the concentration contours and plugging the coefficients of the curve fitted function into our 

shape factor model. For those five different achieved shapes, we provided the injection results, the 

shape factor 𝜎 , spatial and temporal separation results, and the separation resolution 𝑅𝑠 , both in 

conventional and modified definitions. It is briefly explained that how diffusion of the sample into the 

buffer, vice versa, causes the peak concentration drop during separation and why the peak heights play 

a role in detecting the sample constituents. Addressing these issues, we modified the conventional 

definition of the resolution by adding a peak-to-valley factor for the concentration peaks which should 

be normalized by the detectability threshold, which indeed is a characteristic of the detector. We also 

studied the time-to-stop injection for the plugs which do not reach a pinched steady-state shape at the 

cross. The results show, the steady-state plugs maintain an unchanged shape factor after reaching the 

steady-state at the cross, which is an advantage in skipping the observation for time-to-stop injection. 

In the next chapter, first I show the convergence study of the single-constituent sample injection 

and validate the numerical simulation results with experiments available in literature, then I do further 

analysis for improving 𝜎  by modifying the geometry, injection and separation procedures. 
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Chapter 5 

Validation and Analysis 

5.1 Introduction 

In this chapter, I show the independency of the results from the grids in the numerical 

simulations. In addition to the grid independency, the results of the injection of a single-constituent 

sample is validated with experiments available in literature. Then Injection and separation analysis for 

the modified chip geometry and different configurations of applied electric potentials is provided. 

5.2 Convergence Study 

 

To examine the grid convergence for the solution, we show spatial (grid size) for electric and flow 

fields and both spatial and temporal (time-step) convergence for concentration field. This has to be 

proved in any computational problem to eliminate or reduce the influence of the number (size) of the 

grid on the computational results. Since the main objective of this thesis is the study of the shape of the 

sample at injection, or at the cross, so the mesh is generated by paying more attention to the 50 ×

50 𝜇𝑚2 region of the cross. To show the grid independency for discretization of the problem, this 

region was studied in six different structured meshes by starting from a coarse grid of 10 × 10 to the 

fine grid of 60 × 60 cells by adding 10 cells to each side for each case Figure 53, Table 6. To avoid 

large aspect ratios between the neighboring cells at the cross, the total number of grids increased as 

well. As shown in this figure, for the spatial grid at the region of interest in the problem, i.e. the cross, 

we started from a coarse mesh of 10𝑥10 cells at the cross to a finer mesh of 60𝑥60 cells, each time by 

adding ten cells to each side. For the time step, we started from a large time step of 0.1𝑠 and refined it 

to 0.01,0.001, and finally 0.0005𝑠. 
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Figure 53: Making the mesh  finer from 𝟏𝟎 × 𝟏𝟎 to 𝟔𝟎 × 𝟔𝟎 at the cross 

 

Table 6: Spatial grid refinement information 

No. of grids at the cross No. of Nodes No. of Cells Comment 

10x10 26730 12,140  
Steady state Electric  

and flow fields  
  

Transient 
concentration field 

20x20 64218 30,560 

30x30 123,566 59,760 

40x40 201,146 98,080 

50x50 392,802 192,500 

60x60 573,522 282,000 

 

To study the independency of the solution, the time step was fixed and the grid was refined and then 

the grid was fixed and time-step was refined. Figure 54 shows that all the refining the mesh has no 

effect on the electric field, however, Figure 55 shows the effect of refining the grid on the flow field. 

For the centerline velocity along the injection channel at the vicinity of the cross, with a slight 

discrepancy the corners, the results of 50𝑥50 and 60𝑥60 are overlapping. 
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Figure 54: Grid independency for centerline 
electric field along injection channel 

Figure 55: Grid independency for centerline 
velocity along injection channel 

 

To show the grid independency for the electric field, the peak of 𝐸⃗  is examined at the center of the 

cross as shown in Table 7. It shows steady and continuous growth with mesh refinement for peak of 

the electric field and the difference is approaching zero from 40x40 grid to 60x60. 

 

 

 

Table 7: Electric Field and grid independency 

Mesh 
Peak of E Delta Peak of E E(0,0) Delta E(0,0) Nominal Electric Field 

[KV/m] [kV/m] [KV/m] [KV/m] [KV/m] 

10x10 16  8.66313   

 

12.422 

20x20 18.5 2.5 8.74526 0.08213 

30x30 20.5 2 8.76783 0.02257 

40x40 22 1.5 8.77784 0.01001 

50x50 23.5 1.5 8.78335 0.00551 

60x60 25 1.5 8.78678 0.00343 
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To refine the time step, the concentration solution along the centerline of the injection channel 

(horizontal injection) and with 0.1 𝑚𝑜𝑙/𝑚3 original sample concentration is examined. Figure 56 

shows the independency of the problem to the time-step by refining it to 0.005𝑠, 0.001 and 0.0005𝑠. 

For the two grids shown in this figure, 20𝑥20 and 60𝑥60, it is observed that the results are overlapping 

for time steps 0.001 and 0.0005𝑠; therefore, time step 0.001𝑠 is chosen. 

 

  

Figure 56: Time-step independency for  medium and fine grid sizes 20𝑥20 (left) and 60𝑥60 (right) 

 

Figure 57 shows the sample in white for the region with concentration equal/greater than 50% of that 

of the original sample at time step 0.001𝑠 when the sample reached the cross (here at 𝑡 = 4.5𝑠). At the 

interface of the sample and buffer, 50%𝐶 is the most stable and reliable location for concentration 

analysis. At 20𝑥20 grids, the location for the tip of  50%𝐶 is (206𝜇𝑚, 0) and for 30𝑥30grid 

is (204.7𝜇𝑚, 0). The results of the location of 𝑋0.5𝐶 are presented in Figure 58 and Figure 59 for the 

first and second order of accuracy when 𝑁 is the number of cells at each side of the cross. 
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Figure 57: Sample concentration region C*>=0.5 (white) , dt=0.001s for two different grids 

 

  

Figure 58: 𝑥0.5𝑐-1/𝑁, 𝑑𝑡 = 0.001𝑠   Figure 59:  𝑥0.5𝑐-1/𝑁2, and 𝑑𝑡 = 0.001𝑠   
 

 

Figure 60 and Figure 61 show the second order of accuracy for the spatial grid by refining the mesh 

from 10𝑥10 to 60𝑥60 cells at the 50𝑥50 𝜇𝑚2 cross.1/𝑁 and1/𝑁2 are used for the first and second 

order of accuracy of spatial grids when 𝑁is number of cells at each side of the cross. A quadratic fit on 

the 1/𝑁 results in Figure 60 shows 0.26 % error and a linear fit to the results of Figure 61 comes with 

an error of 0.5%. To see more details of these figures, Figure 62 and Figure 63 are presented.  
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Figure 60: 𝑥0.5𝑐-1/𝑁 , and 𝑑𝑡 = 0.001𝑠   Figure 61:  𝑥0.5𝑐-1/𝑁2 , and 𝑑𝑡 = 0.001𝑠   
 

  

Figure 62: Zoom of 𝑥0.5𝑐-1/𝑁, and 𝑑𝑡 = 0.001𝑠   Figure 63: Zoom of  𝑥0.5𝑐-1/𝑁
2, and 𝑑𝑡 = 0.001𝑠   

 

 

 

Table 8 shows the results of the location of the 50%𝐶 location along the injection channel for different 

time steps, compared for a coarse and fine spatial grid at the cross.  
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Table 8: Time-step grid independency of 50%C location for fine and coarse grids 

Time step (s) 𝑿𝟎.𝟓𝒄(𝝁𝒎) at 4.5s (at cross) 

20x20 60x60 

0.01 200 200.951 

0.005 204.698 202.006 

0.001 206.572 204.373 

0.0005 209.382 205.557 
 

The location of the front edge of the 50% 𝐶∗ contour on the centerline of the injection channel is 

examined for the small and large time steps for the finest grid at the cross (60x60). The results are 

plotted in Figure 64 for first order accuracy of time step Δ𝑡 and the error becomes 0.35% . 

 

 

Figure 64: Time step convergence, Δ𝑡 = 0.001𝑠  for the finest grid at the cross (60x60)  
 

The results of the grid independency studies presented above proves that we can stop refining the mesh 

at the uniform mesh 40 × 40 cells at the cross and also use the time step 0.001𝑠 . Figure 65 also shows 

the convergence history of 1𝑒 − 8 for RMS of electric potential by refining the grids at the cross from 

10x10 to 60x60.  
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Figure 65:Electric potential RMS convergence for grids 10x10 to 60x60 at the cross 
 

Figure 66 shows the electric potential convergence error for refining the grids at the cross from 10x10 

to 50x50. 

 

Figure 66:Electric potential convergence error for grids 10x10 to 50x50 at the cross 

 

Based on the above convergence studies, the spatial grid at the cross id 40𝑥40 and the time step is 1𝑚𝑠. 
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5.3 Validation 

 

  To validate the injection model for a single-species sample, the numerical results are compared 

to the experimental results of Ren et al. [111]. They used a glass chip with the shown geometry in 

Figure 67 and potentials were applied at the reservoirs to load and dispense the sample and buffer 

solutions. In their experiments, the sample was injected from 𝑅1 and after being loaded at the 

intersection of the channels, the separation performed in the channel between 𝑅2 and 𝑅4 reservoirs. 

𝜙1,2,4 = 1369𝑉 and 𝜙3 = 0𝑉.  The electroosmotic and electrophoretic mobilities of the used sample 

were 𝜇𝑒𝑜 = 4.5𝑥10
−8 𝑚

2

𝑉𝑆
 , 𝜇𝑒𝑝 = −1.65𝑥10

−8 𝑚
2

𝑉𝑆
 and the diffusivity was 𝐷 = 4.37𝑥10−10. 

 

 

Figure 67:  Chip configuration in experiments of Ren et al. for verification of injection model 

Figure 68 shows the experimental image of concentration field in grey scale, where white is the 

sample and black is the buffer solution. (Except the black lines for channel walls) 

 

Figure 68:  Direct experimental image of concentration field in grey scale 
copied from Fig.7a by Ren et al. [111] 

 

Figure 69 shows a good agreement of the current numerical model at injection with the experimental 

results for such steady-state plug at the cross. The earliest time sample reached the cross was 𝑡 = 21𝑠. 
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The normalized concentration along the injection channel is zero in the buffer region and at center of 

the cross reaches to the peak of the original sample concentration. 

  

 

Figure 69: Verification of injection simulation of a single-component sample with experiments 

5.4 Injection and Separation Analysis 

In this section, first the modifications on geometry are addressed. Then, for the final 

geometry, different configurations for the applied electric potentials at injection are presented. 

Following the injection configurations, the same procedure is taken for the separation. Finally, the 

results of the best injection procedure and separation configuration are presented. 

5.4.1 Modified Geometry 

Figure 71 shows how we modified the geometry of channels during this research. The first 

geometry was based on a horizontal injection and also with a separation channel longer than the 

injection one. This geometry was selected based on the common long separation channel and also for 
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the purpose of verification with the experimental results in the literature. The second geometry has 

similar dimensions to the first one, but the sample is injected vertically. Such rotation for the sample 

injection direction provides a symmetric sample plug shape with the side-applied electric potentials. 

The results of the second geometry showed the separation of the sample constituents prior to the middle 

of the separation channel; therefore the third geometry is based on reducing the separation channel 

length. Moreover, all the channel legs have equal length. Finally, to limit the sample deviation, the 

separation channel width is reduced to half. 

                                                                                   (1) 

 

                       (2)                             (3)                             (4) 

   

Figure 70: Modifications on chip geometry 

 

The following results are all based on the final geometry as shown in Figure 71. 
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Figure 71: New geometry of channels with equal length and narrow separation channel 

 

5.4.2 Injection Configurations for the Final Geometry 

 

As discussed in Appendix B, the non-dimensional applied potential at reservoir “i”,  

 𝜙𝑅𝑖
∗ =

𝜙𝑅𝑖−𝜙𝑟

𝛥𝜙𝑟
, is an important controlling parameter for the shape of the sample  plug at injection. 

Further studies show that at separation it also affects the achieved resolution.  

For a vertical injection from 𝑅2 to 𝑅4, the controlling parameters for the shape of the sample plug are 

𝜙𝑅1
∗ =

𝜙𝑅1−𝜙𝑟

𝛥𝜙𝑟
 and 𝜙𝑅3

∗ =
𝜙𝑅3−𝜙𝑟

𝛥𝜙𝑟
, where 𝛥𝜙𝑟 = 𝜙2 − 𝜙4 and 𝜙4 is set to ground. The controlling 

potential at injection is called 𝜙𝑖𝑛𝑗
∗  and we studied different configuration of 𝜙𝑖𝑛𝑗

∗ =

1,0.75,0.6,0.5,0.4,0.25 and floating in the following sections. The results of injection, sample plug 

shape and shape factor analysis for each configuration are presented. 

 

5.4.2.1 𝝓𝒊𝒏𝒋
∗ = 𝟏 and 𝟎. 𝟕𝟓 

 

Figure 72 shows the applied electric potentials/fields for 𝜙𝑖𝑛𝑗
∗ = 1 , when 𝜙2 = 100𝑉. 
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Figure 72: Configuration  𝜙𝑖𝑛𝑗
∗ = 1  (𝜙2 = 100𝑉) 

 

For such configuration, the electric field and flow streamlines are as presented in Figure 73, which 

result in a pinched injection as shown in the two left columns of Figure 74. 

 

  

Figure 73: Electric field vectors and flow field stream lines (𝜙∗ = 1) 

 

Figure 74 shows the concentration contours for the two configurations  

𝜙𝑖𝑛𝑗
∗ = 1 and 𝜙𝑖𝑛𝑗

∗ = 0.75 for both Rhodamine and Fluorescein, each at four different time slots before 

the cross, at the cross and past the cross. The black line at each contour shows the 50% concentration 

line, which is analyzed for the shape factor to evaluate the sample plug shape. It is worth mentioning 

that the injection stops when the slower constituent reaches the cross. When the high concentration part 

of the sample (here red) covers the cross, then we switch to separation. 

The concentration contours for fluorescein at 𝜙𝑖𝑛𝑗
∗ = 1 show that fluorescein doesn’t penetrate the cross 

sufficiently, therefore, it is not worth trying the separation at this stage. It reaches the steady-state 
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pinched injection and in the following section, we show that by adding a second injection step to this 

configuration, we achieve much better results. The same problem holds for 𝜙𝑖𝑛𝑗
∗ = 0.75, however with 

more penetration of the high concentration part for fluorescein but not sufficient yet. 
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 Figure 74: Sample plug shapes for Rhodamine (1st and 2nd rows) and Fluorescein (3rd and 4th rows) at different 
times for two configurations 𝝓𝒊𝒏𝒋

∗ = 𝟏 and 𝟎. 𝟕𝟓 
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Although, configurations 𝜙𝑖𝑛𝑗
∗ = 1 is not good for switching to separation, the sample shape analysis 

is shown in Figure 75. 

 

 

 Time(s) a2 a1 a0 W_mean Sigma 

Rh >5.5 0.560 -0.520 0.600 0.647 0.24 

FL >31.5s 1.040 -0.600 0.440 0.527 0.36 
 

 

Figure 75: Shape factors for both constituents at 𝜙∗ = 1 

 

For both configurations of 𝜙𝑖𝑛𝑗
∗ = 1 and 0.75, the slower constituent does not penetrates the cross 

sufficiently; therefore this configuration is not worth switching to separation either! 

 

5.4.2.2 𝝓𝒊𝒏𝒋
∗ = 𝟎.𝟓 and 𝟎. 𝟐𝟓 

To give the slower constituent, here fluorescein, more chance of penetrating the cross, the side 

potentials are reduce to configurations of 𝜙𝑖𝑛𝑗
∗ = 0.5 and 0.25 as shown in Figure 76. The results show 

that no steady-state is achieved, therefore, the stop-injection time must be observed thoroughly. 

Remarkably, it is observed that 𝜙𝑖𝑛𝑗
∗ = 0.5 provide an almost rectangular plug.  
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 𝜙𝑖𝑛𝑗
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Figure 76: Sample plug shapes for Rh (1st and 2nd rows) and Fl (3rd and 4th rows) at different times  

for two configurations 𝜙𝑖𝑛𝑗
∗ = 0.5 and 0.25 

 

 

In 𝜙𝑖𝑛𝑗
∗ = 0.25, for the same reason of not having a pinched and steady-state configuration, the sample 

plug is wide, which takes more time for the constituents to be separated from each other. As shown in 

Figure 78, by the time the slower constituent reaches the cross, the faster one is pretty much dispersed, 
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up to the middle of the separation channel. Such a wide sample plug results in a poor separation 

resolution and is not worth trying the separation. 

 

 

Figure 77: Wide Rhodamine sample plug at 𝜙𝑖𝑛𝑗
∗ = 0.25 

 

For 𝜙𝑖𝑛𝑗
∗ = 0.5, at the earliest time, when both Rhodamine and Fluorescein arrive at the cross, the 

sample plug shapes are illustrated in Figure 78. The results show a rectangular plug, with wider actual 

width for the faster constituent, Rhodamine. This shows maintaining one of the main objectives in this 

thesis, to achieve the ideal plug only by controlling the applied potentials and chip geometry 

modifications. 

 

 

Rectangular Plug 

Figure 78: Rectangular plug (at 50% contour line) for 𝜙𝑖𝑛𝑗
∗ = 0.5 configuration 
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For this configuration (𝜙𝑖𝑛𝑗
∗ = 0.5), more detailed temporal results of concentration is shown in Figure 

79, 𝑡 = 21.9𝑠 is selected as the stop-injection time. At 𝑡 = 21.9𝑠  both sample constituents are 

available at the cross with high non-dimensional concentration. Indeed, by the time the slower 

constituent reaches the cross, the faster one arrived at the end of the injection channel, but injection is 

stopped when both constituents are at the cross. This assures the purpose of separation starting from 

the cross. 

 

  

Figure 79: Stop-injection time, max c∗ at the cross, Rh (Left),Fl (Right) , ϕinj
∗ = 0.5 
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Figure 80: Rectangular plug and zero shape factor 

 

The results of injection at 𝑡 = 21.9𝑠  are used as the initial concentration condition for separation. 

5.4.2.3 𝝓𝒊𝒏𝒋
∗ : 𝐟𝐥𝐨𝐚𝐭𝐢𝐧𝐠 

In addition to above configurations, floating configuration (zero potential gradient) between 

the reservoirs of separation channel is also studied which also provides rectangular plug. 

 

  
Figure 81: Sample plug shapes for Rhodamine (Left) and Fluorescein (Right) at different times, ϕinj

∗ : floating 
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Similar to the 𝜙𝑖𝑛𝑗
∗ = 0.5 configuration, the sample plug shape is rectangular at floating injection. Both 

constituents penetrate the cross and keep migrating along the injection channel, while dispersed into 

the separation channel as long as the sample is kept injected.  

  
Figure 82: Stop-injection time (t = 22.1s) and max c∗ at the cross for ϕinj

∗ : floating 
 

A comparison between the floating injection and 𝜙𝑖𝑛𝑗
∗ = 0.5 configuration shows identical sample plug 

shape as shown in Figure 83. 

 

Figure 83: A comparison between 𝜙∗ = 0.5 and f loating injection configurations for Fluorescein 

sample plug shapes at t = 21.9s 
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From all above mentioned configurations, first we run the separation for ϕ𝑖𝑛𝑗
∗ = 0.5 configuration. 

Similar to injection configurations, separation potential configurations are also in 5 forms of 𝜙∗ =

1,0.75,0.5, 0.25and floating. First, we studied floating configuration. 

5.4.2.4 𝝓𝒊𝒏𝒋
∗ = 𝟎.𝟒 

 

 

  

Figure 84: Concentration contours, injection 𝜙𝑖𝑛𝑗
∗ = 0.4  

 

 

 

 
 

Figure 85: Concentration contours and shape factor at 𝑡 = 20.5𝑠  for injection 𝜙𝑖𝑛𝑗
∗ = 0.4  
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5.4.2.5 𝝓𝒊𝒏𝒋
∗ = 𝟎.𝟔 

 

  

Figure 86: Concentration contours, injection 𝜙𝑖𝑛𝑗
∗ = 0.6  

 

 

 

 

 

 

Figure 87: Concentration contours and shape factor at 𝑡 = 25.5𝑠  for injection 𝜙𝑖𝑛𝑗
∗ = 0.6  
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5.4.3 Comparison among Different 𝝓𝒊𝒏𝒋
∗  Configurations  

Table 9 and Figure 88 show the comparison of four different configurations at injection for shape factor 

and actual mean width of the sample plug. The results show that considering these two factors, 𝜙𝑖𝑛𝑗
∗ =

0.5 provides the rectangular sample plug. In terms of sample actual mean width, 𝜙𝑖𝑛𝑗
∗ = 0.4 

configuration provides a very wide plug for Rhodamine which results in a poor resolution. 

 

Table 9: A comparison of shape factor and sample plug width for different 𝜙𝑖𝑛𝑗
∗  

𝝓𝒊𝒏𝒋
∗    𝟏 𝟎. 𝟔 𝟎. 𝟓 𝟎. 𝟒 

 

Shape factor 𝝈 

Rh 0.24 0.01 0 0 

Fl 0.36 0.11 0 0.001 

Actual mean width 

(𝝁𝒎) 

Rh 32.3 109.6 220 1600 

Fl 26.3 55.7 148 112.2 

 

 

  

Figure 88: A comparison of shape factor and sample plug width for different 𝝓𝒊𝒏𝒋
∗  configurations   

5.4.4 Separation Configurations  

Similar to injection configurations, we have 𝜙𝑅𝑖
∗ =

𝜙𝑅𝑖−𝜙𝑟

𝛥𝜙𝑟
, as an important controlling 

parameter at separation. Further studies show that in addition to the shape of the plug, separation 
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configuration affects the separation resolution. For a vertical injection from 𝑅2 to 𝑅4, the controlling 

parameters at separation along the channel from 𝑅1to 𝑅3, are 𝜙𝑅2
∗ =

𝜙𝑅2−𝜙𝑟

𝛥𝜙𝑟
 and 𝜙𝑅4

∗ =
𝜙𝑅4−𝜙𝑟

𝛥𝜙𝑟
, where 

𝛥𝜙𝑟 = 𝜙1 − 𝜙3 and 𝜙3 is set to ground. The controlling potential at separation is called 𝜙𝑠𝑒𝑝
∗  and we 

studied different configuration of𝜙𝑠𝑒𝑝
∗ = 0,0.25,0.4, floating, 0.6 and 1 . Form the previous injection 

results, configuration 𝜙𝑖𝑛𝑗
∗ = 0.5 is taken as the best injected plug so far. Similar to injection, different 

configurations are studied for separation as shown in Figure 89.  

 

Figure 89: Separation Configurations   

5.4.4.1  𝝓𝒔𝒆𝒑
∗ : 𝐅𝐥𝐨𝐚𝐭𝐢𝐧𝐠 

Injection is stopped at 𝑡 = 21.9𝑠 for 𝜙𝑖𝑛𝑗
∗ = 0.5 (Figure 79) and the floating separation is applied. 

The results of the concentration contours, shown in Figure 90, show that after 𝑡 = 6.1𝑠 the 

constituents are resolved. Figure 91 also shows the separation graphs at four different detection spots 

along the separation channel for the first 4𝑠 after separation process starts. After a longer time, the 

two constituents resolve better for sure, but their peak concentration will also drop. This brings up the 

sensitivity issue for the detection threshold. 
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Figure 90: Concentration contours of separation for 𝜙𝑖𝑛𝑗
∗ = 0.5 and 𝜙𝑠𝑒𝑝

∗ = 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔  

 

 

 

  

  

Figure 91: Separation graphs at different detection spots 𝑥 = 0.1.0.2,0.3 𝑎𝑛𝑑 0.5 𝑚𝑚 for  𝜙𝑖𝑛𝑗
∗ = 0.5 and 𝜙𝑠𝑒𝑝

∗ = 𝐹 
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5.4.4.2 𝝓𝒔𝒆𝒑
∗ = 𝟎. 𝟐𝟓 vs.  𝝓𝒔𝒆𝒑

∗ : 𝑭𝒍𝒐𝒂𝒕𝒊𝒏𝒈  

To see the effect of separation electric potential configuration on the resolution, we start with 

two configurations: Floating and 𝜙𝑠𝑒𝑝
∗ = 0.25. As presented in Table 9, we study the injection 

configuration 𝜙𝑖𝑛𝑗
∗ = 0.5, which 𝜎 is zero, and has smaller width comparing to  𝜙𝑖𝑛𝑗

∗ = 0.4. Figure 92 

shows the comparison of concentration contours shortly after starting the separation process. It is 

observed that the maximum concentration for the slower constituent, Fl, drops at  𝜙𝑠𝑒𝑝
∗ = 0.25, which 

causes detectability problems after a few seconds. Figure 93 shows that at about 3𝑠 the peak 

concentration of Fluorescein drops to almost 50% of its original concentration when detector is located 

at 0.3𝑚𝑚 distance from the center of the cross. This figure shows the comparison of these two 

separation configurations at different detection spots in 4𝑠. The grey graphs represent the floating 

separation configuration. 

 

Figure 92: Concentration contours, injection 𝜙𝑖𝑛𝑗
∗ = 0.5 and separation 𝜙𝑠𝑒𝑝

∗ = 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 vs 𝜙𝑠𝑒𝑝
∗ = 0.25, 𝑡 = 0.7𝑠 
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Figure 93: Separation graphs at different detection spots 𝑥 = 0.1.0.2,0.3 𝑎𝑛𝑑 0.5 𝑚𝑚 for  𝜙𝑖𝑛𝑗
∗ = 0.5 and 𝜙𝑠𝑒𝑝

∗ =

0.25 vs. Floating 
 

 

Figure 94 shows the conventional and modified resolutions for two separation configurations 𝜙𝑠𝑒𝑝
∗ =

0.25 and floating. It is observed that 𝜙𝑠𝑒𝑝
∗ = 0.25  results in higher resolutions in both definitions. 
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Figure 94: Separation resolution (Left: conventional, Right: modified)  for Rhodamine and Fluorescein at different 
detection spots; 𝜙𝑖𝑛𝑗

∗ = 0.5; 𝜙𝑠𝑒𝑝
∗ = 0.25 vs.  Floating 

 

With the preliminary results of the separation configurations for two cases of floating and 𝜙𝑠𝑒𝑝
∗ = 0.25, 

we study the modification of the injection procedure in the following section. 

5.4.5 Modified Injection Procedure  

The analysis of the injection results shows that for a steady-state plug at the cross, we can take 

an additional step by shifting the plug slightly down the injection channel to achieve a better shape, 

closer to rectangular. In the following section, we show how a two-step injection configuration results 

in much improved shapes.  

5.4.5.1 Two-step Injection for Steady-State Configuration  

As discussed, another approach to provide a better plug shape sample at the cross is applying 

a two-step injection configuration. Looking at the results presented in Figure 74, Figure 86, and Table 

9, we choose  𝝓𝒊𝒏𝒋
∗ = 1 configuration, which provides a narrower steady-state plug. Applying a second 

step injection with 𝝓𝒊𝒏𝒋
∗ = 0.5 , and for 0.5𝑠, results in a much better shape, shown in the next section 

(Figure 95). 

5.4.5.2 𝚽𝒊𝒏𝒋𝟏
∗ = 𝟏,𝚽𝒊𝒏𝒋𝟐

∗ = 𝟎. 𝟓 

Looking at the two left columns of Figure 74, shows that is we stop configuration 𝝓𝒊𝒏𝒋
∗ = 1 at 

a time when sample is close to the cross, but not there yet (here at 𝑡 = 31.5𝑠), and apply a new 
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configuration of 𝝓𝒊𝒏𝒋
∗ = 0.5, then we see that in 0.5𝑠 we get an ideal plug which is mostly rectangular 

and nearly limited to the cross width for the high concentration part of the sample. (Figure 95 ) 

 

 

Figure 95: Concentration contours for two-step injection with configurations of 𝜙𝑖𝑛𝑗
∗

1
= 1 and 𝜙𝑖𝑛𝑗

∗

2
= 0.5 

 

Figure 96 shows the shape factor analysis for 50% contour lines of Rhodamine and Fluorescein at 𝑡 =

32𝑠. The quadratic fits show a very small 𝜎 for both constituents. 

 

 

 

Figure 96: 𝜎 at t=32s for two-step injection with configuration 𝜙𝑖𝑛𝑗
∗

1
= 1 and 𝜙𝑖𝑛𝑗

∗

2
= 0.5 
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A comparison of shape factor and sample plug actual mean width is reported in Table 10 for such a 

two-step injection with the best results of the previous one-step injection. 

 

Table 10: A comparison of shape factor for best results of one step and two step injection 

𝝓𝒊𝒏𝒋
∗    𝟎. 𝟔 𝟎. 𝟓  (𝚽𝒊𝒏𝒋𝟏

∗ = 𝟏,𝚽𝒊𝒏𝒋𝟐
∗ = 𝟎. 𝟓 

Shape factor 𝝈 Rh 0.01 0 0.08 

Fl 0.11 0 0.01 

Actual mean width 

(𝝁𝒎) 

Rh 109.6 220 73.3 

Fl 55.7 148 54.7 

 

5.4.6 Separation of the modified injection  (𝚽𝒊𝒏𝒋𝟏
∗ = 𝟏,𝚽𝒊𝒏𝒋𝟐

∗ = 𝟎. 𝟓) 

Different separation configurations are investigated for the two-step injection to see the effect 

of applied potentials on the separation resolution.  

Figure 97 shows schematically how the flow and electric fields increase with increasing the applied 

electric potentials at the top and bottom reservoirs at separation. In 5.4.6.3, we provide the numerical 

results of the electric and flow fields for different configurations of applied electric potentials at 

separation. 

 

 

 

Figure 97: Separation configurations; yellow arrows show flow/electric field intensity 
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5.4.6.1 𝝓𝒔𝒆𝒑
∗ : 𝑭𝒍𝒐𝒂𝒕𝒊𝒏𝒈 

Figure 98 shows the separation graphs for the two-step injection by changing the electric 

potential configurations from 1 to 0.5 when sample reaches a steady-state at the cross. The grey lines 

also show the separation results for direct (one-step) injection configuration. As observed in Table 10, 

the sample plug width, and consequently the peak widths are narrower in the two-step injection. 

 

 

  

  

Figure 98: Separation graphs at different detection spots 𝑥 = 0.1.0.2,0.3 𝑎𝑛𝑑 0.5 𝑚𝑚 for two-step injection (𝜙𝑖𝑛𝑗1
∗ = 1 and 

𝜙𝑖𝑛𝑗2
∗ = 0.5) and  𝜙𝑠𝑒𝑝

∗ = 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 (grey lines represent one-step injection) 
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Figure 99 shows the comparison of separation resolution between the two-step and direct injection 

methods, when floating separation configuration is applied. The results represent an increased 

separation efficiency in both conventional and modified definitions.  

  

  

Figure 99: Separation resolution (Left: conventional, Right: modified) for Rh and Fl at different detection locations; 
two-step (𝜙𝑖𝑛𝑗1

∗ = 1 and 𝜙𝑖𝑛𝑗2
∗ = 0.5) vs. direct injection ; 𝜙𝑠𝑒𝑝

∗ : Floating 

5.4.6.2 𝝓𝒔𝒆𝒑
∗ = 𝟎. 𝟐𝟓  

 

 Figure 100 and Figure 101 show a comparison of two separation configurations for applied 

potentials at two different times when sample is migrating along the separation channel. The 

concentration contours for two constituents of Fluorescein and Rhodamine are presented for both  

𝜙𝑠𝑒𝑝
∗ = 0.25 and  𝜙𝑠𝑒𝑝

∗ : 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 at 𝑡 = 2 and 4𝑠. The results show that 𝜙𝑠𝑒𝑝
∗ = 0.25  provides 

narrower plugs, with slightly lower peaks. The overall resolution in both conventional and revised 

definitions are improved in applying 𝜙𝑠𝑒𝑝
∗ = 0.25  for separation applied potentials.  

The problem is that however the results are captured at the same time in both separation 

configurations, but they are not at the same stage of evolution. Due to different electric fields resulting 

from the floating configuration or the one with the applied side potentials, 𝜙𝑠𝑒𝑝
∗ = 0.25,  the convection 

and diffusion will be different. The peaks of the constituents are not at the same location at the same 

time.  
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Figure 100: Comparison of separation contours at 𝑡 = 2𝑠  (𝜙𝑠𝑒𝑝
∗ = 0.25 vs. 𝜙𝑠𝑒𝑝

∗ : 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔) 

 

 

 

 

Figure 101: Comparison of separation contours at 𝑡 = 4𝑠  (𝜙𝑠𝑒𝑝
∗ = 0.25 vs. 𝜙𝑠𝑒𝑝

∗ : 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔) 
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Figure 102: Separation graphs at different detection spots 𝑥 = 0.1.0.2,0.3 𝑎𝑛𝑑 0.5 𝑚𝑚 for two-step injection (𝜙𝑖𝑛𝑗1
∗ = 1 

and 𝜙𝑖𝑛𝑗2
∗ = 0.5) and comparison of 𝜙𝑠𝑒𝑝

∗ = 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 (grey lines) vs. 𝜙𝑠𝑒𝑝
∗ = 0.25 (red and green) 

 

  

  

Figure 103: Separation resolution (Left: conventional, Right: modified) for Rhodamine and Fluorescein at different 
detection spots; two-step injection (𝜙𝑖𝑛𝑗1

∗ = 1 and 𝜙𝑖𝑛𝑗2
∗ = 0.5) ; 𝜙𝑠𝑒𝑝

∗ : Floating vs. 0.25 
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5.4.6.3 All separation configurations (𝝓𝒔𝒆𝒑
∗ = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟒, 𝐟𝐥𝐨𝐚𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝟎. 𝟔)  

Initially, right after switching from injection to separation, irrespective of the applied separation 

configurations for electric potentials the peaks are overlapping. Figure 104 shows the sample peaks 

from the ideal 2-step injection at initial time of separation. 

 

Figure 104: Initial non-dimensional concentration,  𝑡 = 0𝑠, for all separation configurations 
 (𝜙𝑠𝑒𝑝

∗ = 0,0.25, 0.4, floating and 0.6) 
 

 Figure 105and Figure 106 show the effect of separation configuration for applied potentials on the 

separation of constituents, conventional and modified resolution. It is observed that increasing 𝜙𝑠𝑒𝑝
∗  

results in a slight drop of the peaks. The electric field streamlines in Figure 105 for different separation 

configurations show how the sample at the cross moves towards the up/down reservoirs when lower 

side potentials i.e., 𝜙𝑠𝑒𝑝
∗ = 0.25, are applied.  Indeed increasing the side potentials causes the separation 

of the  high-concentrated part of the sample plug from its upper and lower sides, therefore, a part of the 

sample plug at the cross is pulled back to the reservoirs of the injection channel (side reservoirs at 

separation) at the onset of separation. This means that the concentration of the sides of the plug is 

diminished, which results in more lateral diffusion. Moreover, from the electric field streamlines and it 

is observed that higher voltages at the side reservoirs of the separation channel, with less pull-back 

effect towards those reservoirs, result in higher electric fields in the separation channel. Considering 

the negative electrophoretic mobilities, we show further in Figure 113 that the red and green graphs, 

representing  𝜙𝑠𝑒𝑝
∗ = 0.4 move with a slower pace than 𝜙𝑠𝑒𝑝

∗ = 0.25  and faster than floating separation 

configuration. Figure 106 shows the velocity field at the cross for different separation configurations. 
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It is observed that at higher 𝜙𝑠𝑒𝑝
∗ , more sample is squeezed into the separation channel and a sever 

change in the flow direction at the corner of the cross occurs. 

 

Figure 105: Electric field streamlines for different separation configurations  

 

 

Figure 106: Flow field for different separation configurations 

 

Figure 107 shows the spatial separation of the same plug, shown in Figure 104, at 𝑡 = 2 and 4𝑠. 

Form these graphs it is not clear why the peaks for 𝜙𝑠𝑒𝑝
∗ = 0.25 are lower or why𝜙𝑠𝑒𝑝

∗ = 0.6 has longer 

tails. At this stage, we are not sure if the lower peaks happens due to the stronger pull-back effect. 

Although part of the sample is separated from the plug, the concentration at the center of the plug could 

be unaffected, however, when the upper and lower side of the plug is separated from the main plug at 

the cross,  the side concentration is diminished, which results in more lateral diffusion. For more 

clarification, Figure 108 provides results of the concentration contours at the evolution stages of each 
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separation configuration. For a better observation, Figure 109 shows the 50% 𝑐∗ lines for the different 

separation configurations at two time frames of 𝑡 = 0.1 𝑎𝑛𝑑 0.5𝑠 at separation. It is observed that the 

effect of separation configurations on sample plug separation is minimal at initial times, but as time 

evolves, it changes. However, none of these figures justifies having longer tails and higher peaks 

at 𝜙𝑠𝑒𝑝
∗ = 0.6. Therefore, we further investigate the concentration contours at 𝑡 = 2 and 4𝑠 in Figure 

110 to Figure 112. 

 

 

 

Figure 107: Spatial separation peaks at 𝑡 = 2 and 4𝑠  (𝜙𝑠𝑒𝑝
∗ = 0.25, 0.4, floating and 0.6) 
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Figure 108: 𝐶∗contours at 𝑡 = 0.1,0.3 𝑎𝑛𝑑 0.5𝑠 for 𝜙𝑠𝑒𝑝
∗ = 0.25, 0.4, floating and 0.6 
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Figure 109: Zoom of 50%𝐶∗ contour lines at 𝑡 = 0.1 and 0.5𝑠 for 𝜙𝑠𝑒𝑝
∗ = 0.25, 0.4, floating and 0.6 

 

 

  

Figure 110: 𝐶∗contours at the cross at 𝑡 = 2𝑠; 𝜙𝑠𝑒𝑝
∗ = 0.25, 0.4, floating and 0.6 

Left: Fl; Right: Rh 

 

Figure 111and Figure 112 show closer inspections of the concentration contours for each separation 

configuration at two time frames, 𝑡 = 2 and 4𝑠, zoomed at the cross and along the separation channel.  
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Figure 111: 𝐶∗contours at 𝑡 = 2𝑠 for 𝜙𝑠𝑒𝑝
∗ = 0,0.25, 0.4, floating and 0.6 
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Figure 112: 𝐶∗contours at 𝑡 = 4𝑠 for 𝜙𝑠𝑒𝑝
∗ = 0, 0.25, 0.4, floating and 0.6 

 

 

Figure 113 shows the temporal separation graphs at different separation configurations 𝜙𝑠𝑒𝑝
∗ =

0,0.25, 0.4, floating and 0.6. It is observed that, increasing the controlling potentials at separation, 

i.e. 𝜙𝑠𝑒𝑝
∗ , results in stronger electric field in the separation channel after the cross, shown in Figure 105, 

which supports the opposite migration of charged particles with negative electrophoretic mobilities. 

This is in accordance with the results presented in Figure 113, which represents shorter time for sample 

constituents at  𝜙𝑠𝑒𝑝
∗ = 0.25 to pass by the detector. 
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Figure 113: Separation graphs at different detection spots 𝑥 = 0.1, 0.2,0.3𝑚𝑚 for two-step 
injection  (𝜙𝑖𝑛𝑗1

∗ = 1 and 𝜙𝑖𝑛𝑗2
∗ = 0.5) and comparison of  𝜙𝑠𝑒𝑝

∗ = 0, 0.25, 0.4, Floating and 0.6 
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Figure 114 (left) shows 𝜙𝑠𝑒𝑝
∗ = 0.25 has higher conventional resolution, which represents higher 

distance between the peaks along the separation channel. However the modified resolution in this figure 

(right), shows that 𝜙𝑠𝑒𝑝
∗ = 0.4 and 0.25 provide the same modified resolutions. This means there is a 

trade-off between the height of the peaks and the horizontal distance between two constituents. 

In 𝜙𝑠𝑒𝑝
∗ = 0.4, the peak concentrations are lower while the distance between the peaks is more. 

  

Figure 114: Effect of separation configuration on separation resolution for two-step injection 
(Left: conventional, Right: modified); 𝜙𝑠𝑒𝑝

∗ = 0, 0.25,0.4, Floating and 0.6 
 

Moreover, Figure 115 is presented to delve into more details of the conventional resolution. It is 

observed that both the distance between the peaks (nominator) and the summation of half-maximum 

(HM) widths (denominator) increase as the detection location increases, but the rate of change in HM 

widths is slower, therefore, the rate of change of resolution increases. This is in accordance with the 

competition of convection and diffusion. In the former Δ𝑥 = 𝑉. 𝑡 , whereas in the latter Δ𝑥 = 𝐷√𝑡 the 

square root of time has a key role, therefore separation distance happens faster. 
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Figure 115: Comparing peak distances (Left) and sum of half-width maximums (Right) at different separation  
configurations  𝜙𝑠𝑒𝑝

∗ = 0, 0.25,0.4,0.6 and floating 

 

The above results, all confirm that a 𝜙𝑠𝑒𝑝
∗ =  0.25separation configuration for the applied potentials 

at separation provide the best resolution in both definitions, conventional or modified. 

5.5 Conclusions 

The seventh chapter of this thesis starts with the grid independency of the solution. I show the 

injection of a single-constituent sample is independent of the number of grids and the time step, when 

the grids at the 50𝑥50 𝜇𝑚2-cross are as fine as 40𝑥40 cells and the time step is 1𝑚𝑠. The results show 

that the steady solution of the electric and flow fields are independent of the grid at the cross. Moreover, 

the solution of the concentration field presents both the spatial and temporal independency. The location 

of the front edge on the centerline of the injection channel is examined for the coarse and fine grids for 

the 50% concentration line, where all the shape factor analysis is performed. 

To validate the injection model for a single-constituent sample, the numerical results are compared 

to the experimental results presented in literature and showed overlapped concentration non-

dimensional graphs at the cross. 

After the discussion of grid independency and validation of numerical results, I started a thorough 

analysis for both injection and separation to achieve an ideal rectangular plug shape at the cross, 

improve the shape factor 𝜎, and increase the separation efficiency and resolution. To do so, I modified 

the geometry of the channels, which primarily was selected based on the experimental results for the 

validation purposes. The first modification was reducing the width of separation channel which resulted 
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in an improvement in shape factor. Then, to better control the injection and separation applied potential 

configurations, the design was improved to channels of equal length. Finally, both of these 

modifications combined and the final design included cross-linked channels of equal length with the 

0.5 aspect ratio of the channel widths, i.e., a narrower separation channel. 

After modifying the geometry of the channels, and analyzing the preliminary injection results, I studied 

six configurations for the applied potentials at injection as 𝜙𝑖𝑛𝑗
∗ = 1,0.75,0.6,0.5,0.4,0.25. The results 

showed that for higher 𝜙𝑖𝑛𝑗
∗ , the high concentration part of the sample does not penetrate the cross. 

Therefore, we improved the injection procedure to a two-step injection, where at the first step 𝜙𝑖𝑛𝑗
∗ = 1 

and at second step 𝜙𝑖𝑛𝑗
∗ = 0.5. This two-step injection procedure resulted in achieving a rectangular 

plug at the cross, which was not possible at different designs and according to the literature was difficult 

to achieve. For such a minimum shape factor at a two-step injection, I carried out a comparison among 

different configurations of applied potential at separation. The first goal was to show that a good plug, 

assessed with the proposed shape factor model, results in a good resolution. This holds true for the 

conventional definition of resolution but not for the modified one. Results show that a good plug 

provides high conventional resolution when no (or low) potential is applied at the side reservoirs of the 

separation channel at separation stage. However, the modified resolution address the low peak issue 

when no potential is applied at those side reservoirs. To tackle this issue, which indeed is the sensitivity 

issue, the applied potentials at the side reservoirs of the separation channels slightly increased to 𝜙𝑠𝑒𝑝
∗ =

0.25, which provided the highest resolution in both conventional and modified definitions and is the 

best separation configuration. 
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Chapter 6 

Conclusions and Recommendations 

6.1 Contributions of This Thesis 

 

  Electrophoresis separation is a rapid and sensitive analytical technique with many applications 

in different areas such as Biology, clinical diagnostics, nutrition and water treatment, forensic 

investigations, and energy. With the trending miniaturization of point-of-care devices and Lab-On-Chip 

(LOC) systems, microchip electrophoresis has attracted attention as a promising analytical technique. 

Through such physical downsizing, analysis time and sample consumption decrease significantly; 

portable chips provide the advantages of personalized medical devices. Parallelization is another 

advantage, which makes high-throughput tests and automation of individual steps possible. To perform 

the electrophoretic separation of DNA and protein samples in microchannels, injection and separation 

were studied in detail, focused on a simple cross-linked microchannel consisting of an injection and a 

separation channel and the cross at the intersection of those channels. One of the contributions of this 

thesis is to present a novel method to assess the shape of the sample at injection, prior to separation.  

 

A method was introduced for evaluating the shape and size of the sample at the intersection of a cross-

linked microchannel. One of the issues that the experimental work in the literature revealed was the 

significant role that the sample plug shape and size play in separation performance. The more deviated 

the sample plug is from an ideal rectangular shape, the lower is the separation resolution. 

 

Although it is generally very difficult to provide a rectangular injection plug, it is essential that the 

shape and size of the plug be quantified. The shape factor is introduced to assess the sample plug shape 

and size and the results show increased separation resolution when a rectangular plug, with minimal 

distortion, is achieved during injection. Five parameters are introduced to analyze the shape of the 

sample including the sample plug mean width, standard deviation, 𝜎 , from the mean width, first and 

second moments, and the RMS of the moments, 𝑆𝑦 . Evaluating the plug shapes by these parameters, 

we concluded that either 𝜎 or the RMS of the first and second moments can be used to assess the shape 

of the sample plug individually. Using 1.7𝑆𝑦 provides the same results as assessed by 𝜎. To find out 
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the acceptable range for this shape-factor, we presented various possible shapes at the cross and 

concluded that 𝜎 ≤ 0.2 provides quite acceptable shapes that are close to the ideal rectangular shape. 

 

To assess the separation, a modified resolution was introduced after investigating the conventional 

resolution. Both the conventional and modified definitions assume a Gaussian distribution for sample 

concentration for each species. For the adjacent peaks, a high value for the conventional resolution is 

indicative of identifiable and distinct peaks. However, such definition lacks consideration of the 

sensitivity of the detector and provides no indication of the ability to discriminate between peaks. To 

solve this issue, a modified resolution was introduced which is the ratio of peak-to-valley magnitude, 

for the lesser of the peaks, to the detector sensitivity. The modified resolution provides a better indicator 

of the sample separation, especially in the cases for which the sample-buffer diffusion causes 

considerable drop in concentration peaks. Multiplying the conventional resolution by this factor reflects 

the importance of the peak heights in detecting the sample constituentsand provides an improved 

indicator of the separation resolution. 

 

The microchip design was modified to achieve minimum 𝜎 . The channels were changed to having 

equal lengths and the separation channel was narrowed to 50%  of the injection channel width. This 

design led to less deviation of the sample from the mean width in the narrower separation channel. 

Most importantly, the equal length of channels, reducing the length of the separation channel, provided 

an easier geometry for studying different configurations of the applied electric potentials. Injection and 

separation analysis were carried out on this modified geometry.  

 

At injection, to achieve the ideal rectangular plug, we studied the effect of applied potentials on the 

sample plug at the cross. A 𝜙𝑖𝑛𝑗
∗  was introduced as the ratio of the applied potential of the side reservoirs 

(𝑅1, 𝑅3) of the injection channel, to the difference of potentials at the reservoirs of the injection channel 

itself, (𝑅2, 𝑅4) ;  𝑅4 is set to ground . Studying a range of 𝜙𝑖𝑛𝑗
∗ , we achieved different sample plug 

shapes and analyzed the injection plugs with the proposed shape factor model.  

 

From the injection configuration study, it was revealed that under certain configurations a steady-state 

plug is formed at the cross as a result of competing physics in the problem. First of all the shape and 
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size of the sample plug at the cross do not change over time. Secondly, a time-to-stop-injection is not 

important for those plugs which reach a steady-state shape. When this occurs, there is a balance between 

the buffer and sample flows at the cross, which prevents buffer leakage into the sample plug domain. 

The steady-state plug was achieved for the sample at the cross when 𝜙𝑖𝑛𝑗
∗ = 1.  However, due to the 

lack of penetration of either species into the cross or the separation channel, an opportunity presented 

itself. The injection procedure was modified into a two-step injection, 𝜙𝑖𝑛𝑗
∗ = 1 and 0.5, with the 

second step starting from the steady-state configuration. In this way, both species are transported across 

the relatively short channel distance and less diffusion occurs during the second step of the injection. 

Employing this procedure not only resulted in having more of the high-concentration part of the sample 

at the cross, but it also led to achieving the ideal rectangular plug. Therefore, we did the separation 

analysis on the two-step injection plug. 

 

Having achieved a high quality sample plug shape and size, a study was conducted to ascertain the 

effects of potentials at the side reservoirs of the separation channel (𝑅2, 𝑅4). For the steady-state sample 

plug shape at the cross, and the two-step injection configuration, providing the best plug shape, different 

separation configurations were studied for a range of 𝜙𝑠𝑒𝑝
∗ . The 𝜙𝑠𝑒𝑝 

∗ was introduced as the ratio of the 

applied potential of the side reservoirs (𝑅2, 𝑅4) of the separation channel to the difference of potentials 

at the reservoirs of the separation channel itself, (𝑅1, 𝑅3) ; 𝑅3 is set to Ground. Results showed an 

improved separation resolution, for both conventional and modified definitions, for the two-step 

injection, and the separation configuration with lower potentials at (𝑅2, 𝑅4) at separation. It was 

observed that separation of the species injected as the rectangular plug, results in a high conventional 

resolution, but a poor modified one when no potentials are applied at (𝑅2, 𝑅4) during separation. 

However, when these potentials are slightly increased to 𝜙𝑠𝑒𝑝
∗ = 0.25, both the conventional and 

modified resolutions increase and provide the most efficient separation for the best shape plug. The 

details of the electric and flow fields are presented which show lower flow of parasitic sample to the 

separation channel during separation. Applying such a configuration helps avoid wide plugs and that 

results in better resolution. 

 

 The derivation of the Poisson-Boltzmann equation is provided in Appendix A to find the distribution 

of electric potential and charge density distribution in the EDL. The approximations and simplifications 
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to solve this equation provided the justifications for neglecting the electric body force in the Navier-

Stokes equation as well as neglecting solving the problem in the EDL.  This validates reflecting the 

effect of the thin electric double layer, for a symmetric electrolyte, with the slip boundary condition in 

the flow field. Incorporating these conclusions, helped us make the appropriate choice of decoupling 

the electric, flow and concentration fields, which significantly saves computation time. A thorough 

study was performed on the problem formulation for both injection and separation, in non-dimensional 

forms.  

Appendix B provides more insight by identifying the parameters in the problem in the form of 

dimensionless parameters and numbers like Reynolds and Peclet numbers. In the physically meaningful 

dimensionless problem, we justified the decisions over neglecting some terms like the inertial term in 

the momentum equation, because of the very low Reynolds number. Non-dimensionalization reduced 

the complexity of the problem and provided us with insight into the time and length scales, and the 

dominant transport phenomena of convection and diffusion.  

 

6.2 Recommendations for Extension of Work  

 

A few suggestions are made in this section for future work to enhance the research done in this thesis. 

 

 More detailed study of the chip geometry: In modifying the geometry, we did reduce the width of 

the separation channel to half of the injection channel width. However, a more detailed study on 

the separation channel width in terms of a non-dimensional width could be undertaken. 

 

 Location of the detector: In order to design a reliable separation microchip, the separation resolution 

and location of the detector play significant roles. In the present separation results, we measured 

the resolutions at three arbitrary points and concluded that the conventional resolution increases 

when the cross-to-detector distance increases. On the other hand, the more the sample migrates 

along the separation channel, more diffusion occurs and the peak concentrations drop which result 

in poor modified resolution. An optimized location of the detector in particular in conjunction with 

the separation channel width, requires extended research.  
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 Effect of 3D simulations: All the numerical simulation results presented in this thesis are two-

dimensional. To investigate the phenomena happening in the third dimension along the depth of 

the microchannel, it is suggested to run fully three-dimensional simulations to see the effect of the 

third dimension on the electroosmotic velocities of the flow, on the shape of the sample at the cross, 

and on the separation. 

 

 The effects of absolute value of potentials: Numerically, there is no limitation on the absolute 

values of the applied potentials, although those values affect the computation time and migration 

pace of the sample. However, on the experimental side, there are some practical concerns in high 

electric fields. High potentials could denature the biological sample, damage the chip or form gas 

bubbles due to electrolysis at the electrodes. At what potentials such damage becomes significant 

should be studies. 

 

 Integrating microchip electrophoresis with other separation techniques: Depending on the sample 

constituents and their electrophoretic mobilities and initial concentration, two-dimensional 

separation methods could be implemented. Other techniques such as free flow electrophoresis 

(FFE), Iso-electric focusing (IEF) or Iso-tachophoresis (ITP) could be integrated with the current 

electrophoresis separation. 
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Appendices 

Appendix A- EDL and Poisson-Boltzmann Equation in Microfluidics 

 Statistical Thermodynamics and Entropy Consideration 

 

  

In this appendix we fulfill the literature gap in microfluidics for the derivation of Poisson-

Boltzmann equation as a governing equation for the distribution of charges and electric potential in 

EDL.  For Lab-on-chip systems, DNA and protein separation technologies, we require numerical 

models for sample transport. In this chapter, a thorough investigation of electrokinetics and 

microfluidics transport phenomena reviews the background of the Poisson-Boltzmann equation with 

the view to providing a more consolidated and comprehensive understanding of it. We present a detailed 

derivation of the equation, which is not available in the microfluidic literature at one place. This 

equation is then applied to find the electric potential and charge density distributions in the electric 

double layer (EDL). The present study provides a detailed derivation of the Boltzmann distribution by 

first providing insight into the physics behind it.  Principles of probability are used to identify the most 

probable ion distribution. This distribution is subject to constraints of constant number of particles and 

total energy of the system; Lagrangian Multipliers are used to solve the resulting constrained 

optimization problem. Classical thermodynamics is shown to be consistent with the distribution of ions: 

the Boltzmann distribution. Then, based on Coulomb’s law, the derivation of Poisson’s equation, and 

its special form of Laplace’s equation, the electric potential distribution in the EDL and in the bulk flow 

is derived and presented.  By applying classical thermodynamics and integrating the Boltzmann 

distribution and Poisson equation together, the Poisson-Boltzmann equation is achieved. Figure A- 1 

shows a summary of the derivation of this equation. Different solutions to this equation and 

approximations are all provided at the end of this chapter. 
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Figure A- 1: Summary of Poisson-Boltzmann equation derivation 

According to Borukhov et al. in 2000  [114], the main advantage of P-B equation is its simplicity, which 

allows for analytical solutions in simple cases, and its surprisingly good agreement with experiments. 

It was applied to many situations including ion distribution around a charged cylinder or sphere, 

adsorption of ions to flat surfaces and in biological systems like DNA and charged membranes. The 

authors state that it is a successful equation in view of the various approximations resulting in a mean 

field approach that totally neglects correlations and all specific (non-electrostatic) interactions between 

the ions including the ionic finite size. Nevertheless, despite the success of this approach in describing 

a wide range of systems, it has limitations in several cases: (i) the phase transition of electrolyte 

solutions [115], (ii) the adsorption of charged ions to highly charged surfaces [114] -[116], and (iii) the 

attractive interactions that can be observed between equally charged surfaces in the presence of 

multivalent counter ions [117] [118].  Kilic et al. , in their two-part series research  [119][120], also 

applied Poisson-Boltzmann equation and its modified form as Poisson-Nernst-Planck equation for 

dilute electrolytes under large applied potentials. They reviewed the interaction of ions but mainly 

focused on comparing these two models regardless of the derivation of P-B equation. On derivation 

aspect, Li and Kirby [121] [10] provided more details in their books, particularly on the Poisson 

equation and electrostatic force among charges. However, providing the application of this distribution, 

many steps are skipped in their derivations. Bruus [11], working in theoretical microfluidics, provided 

a derivation of the Poisson-Boltzmann equation with the greatest detail available in the microfluidic 

literature. He presented the thermodynamics part of the Boltzmann equation, but yet there remains an 

information gap related to the details of the Boltzmann distribution derivation.  
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The focus of this appendix is on derivation of Poisson-Boltzmann equation as a fundamental governing 

equation in microfluidics and nanofluidics, with non-overlapping EDL’s, even though not solved 

directly in many applications. This study presents a detailed derivation on the P-B equation in two parts: 

the first is the derivation of the Boltzmann distribution in the electric double layer, using a probability 

and statistical thermodynamics approach; and the second is the derivation of Poisson’s equation. 

Consistent with a classical thermodynamics approach, these two are then merged together. 

For clarification, a summary map of the derivation is illustrated in Figure A- 2. 

 

 

Figure A- 2: Summary map of the derivation of Poisson-Boltzmann Equation 

Fundamentals of Probability 

 

To gain a thorough understanding of the electric charge distribution in the electric double layer 

in microchannels, the Boltzmann distribution is derived. Based on statistical and classical 

thermodynamics and the Boltzmann equation, a clear understanding of ion distribution is provided. In 

statistical thermodynamics, we have to keep in mind that atoms are considered as independent particles. 

According to Laurendeau [122], the entropy of an isolated system increases because of increased 

molecular probabilities. First, the fundamentals of probability are briefly explained, and then, based on 

probability rules, the distribution of ions in the EDL is developed.  As we know from the system energy 

viewpoint, a molecular system in quantum mechanics has discrete energy levels, whereas each energy 

level is composed of energy states. The number of independent energy states per energy level is called 

its degeneracy. As an analogy, energy levels are like book shelves, and energy states are like baskets 
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on each shelf. In classical mechanics the state of a particle is defined by its position and energy as a 

continuous variable, but, in quantum mechanics, each distribution of discrete quantum states that 

provides for a total number, volume, and energy, is called a microstate and it shows that state’s 

distribution of particles. Microstates, and their numbers, provide a measure of the disorder in the system 

as a way to measure entropy. An isolated system with the largest number of microstates, subject to 

constraints of fixed N, V and E, respectively, the number of particles, system volume and energy of the 

system, provides an equilibrium whose distribution maximizes entropy.  

According to a definition of probability, in a sample space of  Ns mutually exclusive, equally likely 

possible outcomes and  NA outcome points in “A” event; the probability of event “A” would be  P(A) =

𝑁𝐴/𝑁𝑠  . As an example, the probability of drawing a single ace from a well-mixed card deck is  𝑃(𝐴) =

4

52 
=

1

13
. It should be noted that  NA ≤ Ns  and “Mutually Exclusive” means that no two outcomes can 

occur simultaneously in a single sample space. The other concept to discuss in probability is the number 

of permutations and combinations. A simple example of a combination would be selecting marbles 

from a marble bag randomly in an independent sequential manner. Identifying all possible labeled 

marbles from the bag as A, B, C, etc. (as distinguishable particles), and each different sequence being 

a permutation, which for "𝑁" particles provides for 𝑁! permutations. But for unlabeled marbles, there 

would be only one combination obtainable. If the order does not matter, it is a combination and if the 

order does matter it is a permutation. So, the possible permutations of choosing M cards out of N cards 

would be 𝑃(𝑁,𝑀) =
𝑁!

(𝑁−𝑀)!
 and the combination of having M cards out of N cards at a time, 

i.e., 𝐶(𝑁,𝑀) or C N
 
M  , equals to 𝐶(𝑁,𝑀) =

𝑃(𝑁,𝑀)

𝑀!
=

𝑁!

(𝑁−𝑀)! 𝑀!
 . In general,  where ni  indicates the 

number of atoms in the  ith  state, the number of distinguishable configurations of a distribution is  

𝜔 =
𝑁!

∏ 𝑛𝑖!
𝑀
1

 (A- 1) 

To have a better understanding of equation (A- 1), for distribution 𝑘, (i.e. 𝜔𝑘 =
𝑁!

∏ 𝑛𝑖!
𝑀
1

 ), we start with a 

two-state problem, where we have n1 and n2 particles in two states, 1 & 2. Picking n1 particles to be 

in state 1 means (𝑁 − 𝑛1) particles have to be in state 2. The first particle can be picked in 𝑁 ways and 

the second one in (𝑁 − 1) ways. The third particle can be picked in (𝑁 − 2)  different ways. So, the 

number of ways to pick different particles is 𝑁 × (𝑁 − 1) × (𝑁 − 2) × … .× (𝑁 − 𝑛1 + 1) =
𝑁!

(𝑁−𝑛1)!
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and dividing it by the number of permutations of the  𝑛1 particles, i.e., 𝑛1! , we get 𝜔 =
𝑁!

𝑛1!(𝑁−𝑛1)!
. 

Generalizing this example to a many-state particle problem, we would say the number of ways to put 

𝑛1 particles in box 1 and the other (𝑁 − 𝑛1) in other boxes is given, and the number of ways to put 

𝑛2 particles in box 2 is given by a similar formula with N − n1 (there are only N − n1 particles after n1 

particles have been put in box 1 and) and n1  n2. These numbers of ways multiply. Then it comes to 

box 3, until the last box n. Therefore, 𝜔 =
𝑁!

𝑛1!(𝑁−𝑛1)!
 ×  

(𝑁−𝑛1)!

𝑛2!(𝑁−𝑛1−𝑛2)!
 × …×

𝑛𝑛!

𝑛𝑛!0! 
   which was 

previously introduced as (A- 1) above. From a probability point of view, ωk shows us the number of 

ways N identical, distinguishable objects may be placed in M different containers (here energy levels) 

such that the jth container holds  ni objects (here particles/ions). The probability of the macrostate is 

then equal to 𝑃𝑘 =
𝜔𝑘

Σk 𝜔𝑘
. 𝜔𝑘  is the thermodynamic probability, which is not a true probability since it 

can be equal to one or even much higher. In contrast, 𝑃𝑘 is called the true probability and is always less 

than one.  To further clarify, an isolated system with N particles of 10 atoms with a total energy of 10ϵ 

is considered. For such a system, the macrostate exhibits the thermodynamics variables of the system 

such as pressure, volume, temperature, energy, entropy, etc. and here is defined by N = 10  and E =

10ϵ. The microstates are defined by those distributions that provide for  N = ∑ nii = 10   and  E =

∑ nii ϵi = 10ϵ.   Here, ni  indicates the number of atoms in the  ith  state of energy of  ϵi . Increasing the 

number of particles to 10 in a system with 10𝜖 energy, the number of distributions jumps to 12,600. 

Similarly, in a 12 particle system with the same energy of 10𝜖, this number rises to 55,440. It is 

important to note that we have examined many more distributions with higher numbers of particles and 

higher system energy levels. In general, a system of 𝑁 particles and a total energy of 𝐸 will be subject 

to two constraints: first, the total number of particles in the system is constant, and second, the total 

energy of the system is constant, while the system temperature is kept constant and no work is done 

by/on the system. Therefore, 𝑁 = ∑ 𝑛𝑖𝑖 = 𝑐𝑜𝑛𝑠𝑡. and 𝐸 = ∑ 𝑛𝑖𝑖 𝜖𝑖 = 𝑐𝑜𝑛𝑠𝑡. 

 Boltzmann Distribution – Electric Charge Distribution 

 

 To find the most probable state, i.e. the most probable distribution of particles among energy 

levels that with the highest number of microstates, 𝜔 should be a maximum with respect to the total 

number of microstates. Our code results and the number of distributions both change with increasing 
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number of particles and consequent increase in system energy as the system has an energy of 𝐸 =
𝑁𝜖

2
 . 

The number of distributions in the most populated level, non-dimensionalized by the total number of 

particles, i.e.,  
n2

N
  is compared for different systems varying in  N and E  . The plots, shown in Figure 

A- 3 narrow considerably around the peak and the 𝜔 distribution approaches a Dirac delta function for 

a large number of particles (e.g. a mole of material). These plots confirm our expectations for the most 

probable state. The trend of changing 𝜔 is evidence of the tendency towards a preferred distribution of 

particles as the number of particles, distributions, microstates, becomes significant. 

  

Figure A- 3: Dependence of the number of distributions on the number of particles 

 

Considering all possible microstates for the above distributions and noting that atoms interact up to 

1035 (times/second), any averaging method would produce a distribution close to the most probable 

state and provide a more solid conclusion [123] [124]. Two averaging approaches can be considered: 

time averaging and distribution averaging or ensemble average. With the high interaction among atoms, 

the former cannot be a good approach in practice; however, the latter can be implemented. As shown 

in the tables of distributions, there are many possible microstates showing the specific occurrence 

probability for each macrostate. By letting 𝑛𝑖  be the 𝑖𝑡ℎ   microstate number of particles with 

occurrence probability  𝑃𝑖 , the ensemble average would be < 𝑛𝑖 >= Σ𝑖𝑃𝑖𝑛𝑖.  Taking an isolated system 

into consideration, for a macroscopic state with 1023 atoms, two statistical assumptions are made: 

1. Using the Principle of Equal Equilibrium Probabilities (PEEP) for an isolated system in 

equilibrium, all microstates consistent with a given macrostate of an isolated system (i.e., given 

E, V, N) have equal a priori probability. i.e.,  𝑃𝑘 =
𝜔𝑘

Σk𝜔𝑘
, where   𝜔𝑘    is the number of 

microstates for each k-labelled macrostate. 
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2. The Ergodic Hypothesis Time averages are equivalent to ensemble averages. Equivalently, left 

to its own devices, a system will explore all possible members of the ensemble Σ𝑘  𝑃𝑘 = 1. 

Therefore, assuming PEEP condition, the most likely distribution would have an average occupancy 

known from the ensemble average of  < 𝑛𝑖 >=
Σ𝑘𝑛𝑖(𝑘)𝜔𝑘

Σ𝑘𝜔𝑘
. 

Table A- 1 shows all the possible distributions for a system with 𝑁 = 4, 𝐸 = 10𝜖. For each macrostate 

(𝑘-labelled rows), the number of particles at each energy level (𝜖𝑖-labelled columns) are shown and for 

each macrostate the number of microstates and the ratio of the number of microstates to the highest 

probable number of microstates are given as 𝜔𝑘 and 
𝝎𝒌

𝝎𝒎𝒂𝒙
. We are looking for the most probable state 

and the distribution of particles in that state. With that respect we calculate the ensemble average of the 

distribution of particles. For example, in a system with 𝑁 = 4, 𝐸 = 10𝜖, ensemble average for the 

ground level of energy is < 𝑛0 > = 0.92. To get this ensemble average, , we get 𝑛0 ∗ 𝜔𝑘 for each row, 

with 𝑘 from1to23, then get the summation of them for ground level of all the macrostates and divide 

the summation value by the total summation of 𝜔𝑘 for the table of distributions. With this ensemble 

averaging method, we can find out the average number of particles at each energy level 𝜖𝑖, if only we 

had one macrostate holding the highest number of microstates in the system. An interesting finding 

regarding the above ensemble average is that, for smaller numbers of particles there are many 

distributions having comparable probabilities, whereas as the number of particles increases, the most 

probable distributions becomes more concentrated. For example, there are 5 states with equal and 

maximum probabilities for the above mentioned system with 𝑁 = 4, 𝐸 = 10𝜖 , whereas the other two 

systems with a higher number of particles, 𝑁 = 10 and 12, also for 𝐸 = 10𝜖 , indicate only one state 

as the most probable. Note a whole table is presented only for 𝑁 = 4, 𝐸 = 10𝜖 ; and the other two tables 

show just the most probable macrostates. For N=10 and E=10𝜖 there are 12,600 distributions and for 

N=12 and E=10𝜖 there are 55,440 distributions. Thus, with few particles, many states have equal 

probability, whereas as the number of particles increases, there becomes a single most-probable state. 

If we denote the probability of the most-probable state, for a system with 𝑁 particles and energy E 

and   𝑃𝑚𝑎𝑥𝑁,𝐸 =
𝜔𝑘,𝑚𝑎𝑥

Σ𝑘𝜔𝑘
, and for the systems shown in Table A- 1, we will have  𝑃𝑚𝑎𝑥4,10 =

0.08392, 𝑃𝑚𝑎𝑥10,10 = 0.1364, and 𝑃𝑚𝑎𝑥12,10 = 0.1572. This clearly indicates a higher probability 

for the most-probable state(s) for systems with higher numbers of particles; as the number of particles 

becomes very large, O (1023), there becomes a single state with the very highest probability. 
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Table A- 1: Ensemble average tables for 3 different systems 

N=4, E=10ε 

𝜖𝑖  (energy level) 0 𝜖 2𝜖 3𝜖 4𝜖 5𝜖 6𝜖 7𝜖 8𝜖 9𝜖 10𝜖 𝝎𝒌 𝝎𝒌 /𝝎𝒎𝒂𝒙 

𝑘 𝜇states 𝑛𝑖 particles 𝑛0 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9 𝑛10 

1  0 0 2 2 0 0 0 0 0 0 0 6 0.3 

2  0 0 3 0 1 0 0 0 0 0 0 4 0.2 

3  0 1 0 3 0 0 0 0 0 0 0 4 0.2 

4  0 1 1 1 1 0 0 0 0 0 0 24 1 

5  0 1 2 0 0 1 0 0 0 0 0 12 0.5 

6  0 2 0 0 2 0 0 0 0 0 0 6 0.3 

7  0 2 0 1 0 1 0 0 0 0 0 12 0.5 

8  0 2 1 0 0 0 1 0 0 0 0 12 0.5 

9  0 3 0 0 0 0 0 1 0 0 0 4 0.2 

10  1 0 0 2 1 0 0 0 0 0 0 12 0.5 

11  1 0 1 0 2 0 0 0 0 0 0 12 0.5 

12  1 0 1 1 0 1 0 0 0 0 0 24 1 

13  1 0 2 0 0 0 1 0 0 0 0 12 0.5 

14  1 1 0 0 1 1 0 0 0 0 0 24 1 

15  1 1 0 1 0 0 1 0 0 0 0 24 1 

16  1 1 1 0 0 0 0 1 0 0 0 24 1 

17  1 2 0 0 0 0 0 0 1 0 0 12 0.5 

18  2 0 0 0 0 2 0 0 0 0 0 6 0.3 

19  2 0 0 0 1 0 1 0 0 0 0 12 0.5 

20  2 0 0 1 0 0 0 1 0 0 0 12 0.5 

21  2 0 1 0 0 0 0 0 1 0 0 12 0.5 

22  2 1 0 0 0 0 0 0 0 1 0 12 0.5 

23  3 0 0 0 0 0 0 0 0 0 1 4 0.2 

< 𝑛𝑖 > (Ens. avg.) 0.92 0.77 0.63 0.50 0.39 0.29 0.21 0.14 0.08 0.04 0.01 286    𝚺𝝎𝒌 

< 𝑛𝑖 >∗ 𝜖𝑖 0 0.77 1.26 1.51 1.57 1.47 1.26 0.98 0.67 0.38 0.14 10  𝚺 < 𝒏𝒊 >∗ 𝝐𝒊 
 

N=10, E=10ε 

𝑘𝜔𝑚𝑎𝑥 4 3 2 1 0 0 0 0 0 0 0 12,600 1 

< 𝑛𝑖 > (Ens. avg.) 0 1 2 3 4 5 6 7 8 9 10 92378   𝚺𝝎𝒌 

< 𝑛𝑖 >∗ 𝜖𝑖  0 2.6 2.8 2.1 1.3 0.7 0.3 0.1 0 0 0 10     𝚺 < 𝒏𝒊 >∗ 𝝐𝒊 
 

N=12, E=10ε 

𝑘𝜔𝑚𝑎𝑥 6 3 2 1 0 0 0 0 0 0 0 55,440 1 

< 𝑛𝑖 > (Ens. avg.) 6.29 3.14 1.49 0.66 0.27 0.10 0.03 0.01 0 0 0 352716   𝚺𝝎𝒌 

< 𝑛𝑖 >∗ 𝜖𝑖 0 3.14 2.98 1.98 1.09 0.51 0.20 0.07 0.02 0 0 10     𝚺 < 𝒏𝒊 >∗ 𝝐𝒊 
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    It is also concluded that by the PEEP assumption, the sum of the products of the ensemble average 

and corresponding energy levels add up to the total energy of the system as follows 

∑< 𝑛𝑖 > ∗ 𝜖𝑖 = 𝐸

𝑛𝜖

𝑖=0

 (A- 2) 

Figure A- 4 shows the trend of ensemble average of the number of particles with respect to their energy 

levels. It is observed that for a system with fixed total energy like 𝐸 = 10𝜖 , increasing the number of 

particles forces a higher tendency for particles to sit in the ground state, with fewer particles at higher 

excited energy levels. With more particles in the system with fixed energy, the distributions approach 

each other asymptotically and show a most-probable state.  There is also a crossover in the following 

graphs. Increasing the number of particles in a system with constant energy means that the particles 

have a higher tendency to fill the lower energy levels. This crossover in the graphs demonstrates the 

exponential trend corresponding to a large number of particles on the scale of Avogadro’s number, 

order 1023 atoms in one mole. 

 

Figure A- 4: Ensemble avg. of particles distribution over energy levels, changing N for  𝐄 = 𝟏𝟎𝛜 

Similarly, as depicted in Figure A- 5, fixing the number of particles in the system to 𝑁 = 10 and 

increasing the energy of the system, the ensemble average distribution shows a decaying exponential 

trend with respect to energy levels. Increasing the average energy in the system shows a subtle crossover 

of the distributions. For a fixed  𝑁 , the higher the energy level, the more room there is for particles to 
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be at more-excited energy levels. As a result, they migrate to higher energy levels, and the number of 

states populated at 𝜖0 decreases. 

 
 

Figure A- 5: Ensemble average of particles distribution over energy levels, N=10, changing 𝐄 

  

Figure A- 6 presents the trends of ω  vs.  ln(
ωmax

ω
) for systems with 𝐸 = 11𝜖   and varying in the 

number of particles. By increasing the number of particles, 𝑁, the most probable state becomes notably 

more probable and 𝜔𝑚𝑎𝑥 increases remarkably.  The abscissa is condensed with a natural logarithmic 

function and is non-dimensionalized with respect to the most probable number of microstates. 

Therefore, 𝜔  of the most probable state peaks at 𝑙𝑛 (
𝜔𝑚𝑎𝑥

𝜔
) = 0. Increasing the number of particles 

from 𝑁 = 4 to 11 makes a huge difference in the number of microstates, 𝜔, for the most probable 

distribution, and this tail of higher particle number systems skyrockets. In contrast, for states other than 

the most probable, this difference becomes insignificant. 
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Figure A- 6: 𝛚  vs.  𝐥𝐧(
𝛚𝐦𝐚𝐱

𝛚
) for 𝐍 = 𝟒 𝐭𝐨 𝟏𝟏 𝐚𝐧𝐝 𝐄 = 𝟏𝟏𝛜 

 From the above tables and plots, it is observed that there is a most probable state which has the 

highest number of microstates and which represents the equilibrium state. To find the most probable 

state and maximize the number of microstates, the mathematical approach of Lagrangian Multipliers 

[21] is applied. In order to maximize 𝝎   to find the most probable state, we have to consider 

macroscopic order. Since the number of atoms (particles) in the system is very large, it is 

mathematically easier to maximize ln 𝜔. The method used to find the maximum of a function, subjected 

to two homogeneous constraints, is the method of “Lagrangian Multipliers” with two homogenous 

constraints, which here are expressed as 𝑁 − ∑ 𝑛𝑖𝑖 = 0  𝑎𝑛𝑑 𝐸 − ∑ 𝑛𝑖𝑖 𝜖𝑖 = 0. Having the total number 

of particles and the total energy of the system as two fixed constraints, the Lagrangian function is 

defined as  

𝑓(𝑛𝑖,𝛼, 𝛽) = 𝑙𝑛𝜔+𝛼(𝑁 − ∑ 𝑛𝑖𝑖 )+𝛽(𝐸 − ∑ 𝑛𝑖𝑖 𝜖𝑖) (A- 3) 

Taking the homogeneous constraints as 𝑔 and ℎ, to maximize f subject to these constraints we would 

have  ∇⃗⃗ 𝑓 ∓ 𝛼∇⃗⃗ 𝑔 ∓ 𝛽∇⃗⃗ ℎ = 0⃗ , where ∇𝑓 =
𝜕𝑓

𝜕𝑛𝑖
+
𝜕𝑓

𝜕𝛼
+
𝜕𝑓

𝜕𝛽
, etc. In other words, in the first instance, for 

ni, we have 

𝜕(𝑙𝑛𝜔 + 𝛼(𝑁 − ∑ 𝑛𝑖𝑖 )+ 𝛽(𝐸 − ∑ 𝑛𝑖𝑖 𝜖𝑖) )

𝜕𝑛𝑖
= 0 (A- 4) 

 

Recalling from (A- 1) and using Stirling’s theorem [22] that, for a large N, 𝑙𝑛 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁, which 

is then on the order of  𝑒10
23
 𝑙𝑛(1023) − 1023, the natural logarithm of the number of microstates 

𝜔 becomes 
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𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 − 𝑁 − 𝑙𝑛 [∏𝑛𝑖
𝑖

!] = 𝑁𝑙𝑛𝑁 − 𝑁 − ∑𝑙𝑛𝑛𝑖
𝑖

! (A- 5) 

 

Substituting ln 𝑛!, from Stirling’s theorem, (A- 5) becomes 

 𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 − 𝑁 −∑(𝑛𝑖
𝑖

𝑙𝑛𝑛𝑖 − 𝑛𝑖) (A- 6) 

Using this result, (A- 4) becomes 

 
𝜕[𝑁𝑙𝑛𝑁 − 𝑁 − ∑ (𝑛𝑖𝑖 𝑙𝑛𝑛𝑖 − 𝑛𝑖)]

𝜕𝑛𝑖
+
∂[𝛼(𝑁 − ∑ 𝑛𝑖𝑖 )]

𝜕𝑛𝑖
+
∂ [𝛽(𝐸 − ∑ 𝑛𝑖𝑖 𝜖𝑖) ]

𝜕𝑛𝑖
= 0  

(A- 7) 

Knowing that 𝑁 and 𝐸 are constant due to system constraints, making their derivatives zero, and noting 

that summation and differentiation are interchangeable in (A- 7) one gets 

 ∑ [
𝜕(𝑛𝑖𝑙𝑛𝑛𝑖−𝑛𝑖))

𝜕𝑛𝑖
− 𝛼− 𝛽𝜖𝑖]

𝑁
1 = 0.  Finally, and taking the derivative of 𝑛𝑖𝑙𝑛𝑛𝑖 − 𝑛𝑖 with respect to 𝑛𝑖 , 

results in ln 𝑛𝑖 + 𝛼 + 𝛽𝜖𝑖 = 0 , that leads to 

𝑛𝑖
max𝜔  = 𝑒𝑥𝑝 (−𝛼 − 𝛽𝜖𝑖) = 𝑒𝑥𝑝 (−𝛼). 𝑒𝑥𝑝(−𝛽𝜖𝑖) (A- 8) 

The number of particles for each energy level with the most-probable distribution is denoted by 

𝑛𝑖
max𝜔 ; this distribution is the “Boltzmann distribution”, with the exponential unknowns 𝛼 and 𝛽. As 

noted relative to Table 1 above, the overall distribution is a set of 𝑛𝑖′𝑠, where 𝑛𝑖
max𝜔 provides the state 

with maximum 𝜔. Taking 𝐴 = 𝑒𝑥𝑝(−𝛼), (A- 8) becomes 𝑛𝑖
max𝜔=𝐴 𝑒𝑥𝑝(−𝛽𝜖𝑖), and considering the 

constraint of a constant number of particles, we get 

𝑁 =∑𝑛𝑖
𝑖

=∑𝐴 𝑒𝑥𝑝(−𝛽𝜖𝑖)

𝑖

        (A- 9) 

Therefore by substituting  𝐴 = 𝑒𝑥𝑝(−𝛼) in        (A- 9),  exp(−𝛼) =
𝑁

∑  𝑒𝑥𝑝(−𝛽𝜖𝑖)𝑖
, and using this result in 

(A- 8),  𝑛𝑖
max𝜔 can be expressed as 

𝑛𝑖
max𝜔 =

𝑁𝑒𝑥𝑝(−𝛽𝜖𝑖) 

∑  𝑒𝑥𝑝(−𝛽𝜖𝑖)𝑖

 ,           (A- 10) 

which is Boltzmann distribution including the as yet unknown Lagrangian multiplier 𝛽. Defining  

∑  𝑒𝑥𝑝(−𝛽𝜖𝑖)𝑖  as the partition function  Z, which is a probability normalizer, the particle distribution 

becomes 

𝑛𝑖
max𝜔 =

𝑁

𝑍
𝑒𝑥𝑝(−𝛽𝜖𝑖) ,           (A- 11) 
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Knowing 𝑁 = ∑ 𝑛𝑖𝑖  , we can rewrite (A- 6) as 𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 − ∑ 𝑛𝑖𝑖 − [∑ 𝑛𝑖𝑖 𝑙𝑛𝑛𝑖 − ∑ 𝑛𝑖𝑖 ], or simply 

as 𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 − ∑ 𝑛𝑖𝑖 𝑙𝑛𝑛𝑖. Then, substituting 𝑛𝑖 from (A- 11), we get a more simplified form for 

𝑙𝑛𝜔: 

𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 −∑[
𝑁

𝑍
𝑒𝑥𝑝(−𝛽𝜖𝑖)

𝑖

𝑙𝑛
𝑁

𝑍
+
𝑁

𝑍
𝛽𝜖𝑖𝑒𝑥𝑝(−𝛽𝜖𝑖)]

=  𝑁𝑙𝑛𝑁 −∑
𝑁

𝑍
𝑒𝑥𝑝(−𝛽𝜖𝑖)

𝑖

𝑙𝑛
𝑁

𝑍
+ 𝛽∑

𝑁

𝑍
𝜖𝑖𝑒𝑥𝑝(−𝛽𝜖𝑖)

𝑖

 

(A- 12) 

 

Similarly, taking the second constraint for 𝐸  into account and replacing 𝑛𝑖 , we would have  

𝐸 =∑𝑛𝑖
𝑖

𝜖𝑖 =∑𝜖𝑖
𝑁

𝑍
𝑒𝑥𝑝(−𝛽𝜖𝑖)

𝑖

 (A- 13) 

which can be recognized as being multiplied by 𝛽 in the last term of (A- 12). Therefore,  

𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 − [𝑙𝑛𝑁 − ln𝑍]∑ [
𝑁
𝑍
𝑒𝑥𝑝(−𝛽𝜖𝑖)𝑖 ] + 𝛽𝐸. The term 

𝑁

𝑍
𝑒𝑥𝑝(−𝛽𝜖𝑖) is just 𝑛𝑖 so the sum is 

just N. Thus,  

𝑙𝑛𝜔 = 𝑁𝑙𝑛𝑁 − N𝑙𝑛𝑁 +𝑁 ln 𝑍 + 𝛽𝐸  , which simplifies to (A- 14): 

𝑙𝑛𝜔 = 𝑁 ln𝑍 + 𝛽𝐸 
(A- 14) 

To solve equation (A- 8) for ni
max𝜔, 𝛼 and  β are required with 𝛼 given in terms of β. To find β, we use 

the parallel with classical Thermodynamics for our system from a macroscopic view with a differential 

change in energy through energy transfer as heat. Based on what was stated in section 2.1 for the system 

conditions, and from the first law of thermodynamics for our system with heat transfer and no work, 

𝑑𝐸 = 𝑑𝑄 , When the system is in mechanical and thermal equilibrium with the surrounding, any 

reversible heat transfer is given by  𝑑𝑄 = 𝑇𝑑𝑠; thus, the change in entropy is 𝑑𝑆 = 𝑑𝑄/𝑇 which, for 

our system, also translates to 𝑑𝑠 = 𝑑𝐸/𝑇. If we associate 𝑙𝑛𝜔 with entropy, i.e. 𝑆 = 𝑘𝑙𝑛𝜔, since the 

premise of Eqn. (A- 7) was that to maximize 𝑙𝑛𝜔  to find the equilibrium state was equivalent to 

maximizing entropy, then  

𝑑𝑆 =  𝑘𝑑(𝑙𝑛𝜔) = 𝑘𝛽𝑑𝐸 =
𝑑𝐸

𝑇
 (A- 15) 

From this, 𝛽 =  
1

𝑘𝑇
, and where 𝑘 is a constant whose value should be defined and 𝛽, our Lagrangian 

multiplier for the energy constraint, becomes 𝛽 =
1

𝑘𝑇
. The constant 𝑘 is the Boltzmann constant 𝐾𝐵 and 
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is equal to 1.38 ∗ 10−23  [𝐽/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒.𝐾]. Solving for 𝛽 and going back to (A- 10), we achieve the 

Boltzmann Distribution 

𝑛𝑖
max𝜔 = 𝑁

𝑒𝑥𝑝(−
𝜖𝑖
𝐾𝐵𝑇

) 

∑  𝑒𝑥𝑝(−
𝜖𝑖
𝐾𝐵𝑇

)𝑖

                       (A- 16) 

 

s discussed, the ion distribution in the electric double layer is given by the Boltzmann distribution. With 

the presence of the co-/counter ions in EDL and by applying the fundamentals of probability, this 

distribution was achieved. 

Further, to find the electric potential distribution, Poisson’s equation should be solved in two regions, 

the EDL and the bulk flow. This equation comes from fundamental Physics: Coulomb’s law, and is 

developed in the following. 

 

 Poisson Equation - Electric Potential Distribution 

 
According to Coulomb, one can measure the electric force between two point charges, q1 and 

 q2, which are located at r1⃗⃗  ⃗  and r2⃗⃗  ⃗ from the origin respectively with a displacement of (r2⃗⃗  ⃗ −

r1⃗⃗  ⃗) between each other. The electric force between two point charges can be expressed as 𝑓 2 = −𝑓 1 =

𝑞1𝑞2

4𝜋𝜀𝑜

(𝑟2⃗⃗⃗⃗ −𝑟1⃗⃗⃗⃗ )

|𝑟2⃗⃗⃗⃗ −𝑟1⃗⃗⃗⃗ |
3. Based on the electric force of Coulomb’s law, the electric field at 𝑞2 is defined as 𝐸⃗ =

𝑓 

𝑞2
 

. For a single point charge, 𝑞1, the electric field 𝐸⃗ 𝑞(𝑟) =
𝑞1

4𝜋𝜀𝑜𝑟
2

𝑟

|𝑟|
 would be radial with outwards 

direction for a positive charge. Coulomb’s law also substantiates that there is no tangential force 

between a point-charge and surrounding test charges, i.e., the electric force between every two single 

charges is in the direction of 𝑟 = 𝑟2⃗⃗⃗⃑ − 𝑟1⃗⃗⃗ ⃑ . Moreover, no circulation is observed in the electric field. 

Therefore, the curl of the electric field is equal to zero; 𝛻⃗ × 𝐸⃗ = 0. Mathematically, it is shown that in 

spherical coordinates, the curl of an electric field of a point charge equals zero 

 

𝛻⃗ × 𝐸⃗ = |
|

𝑒̂𝑟

𝑟2 sin𝜃

𝑒̂𝜃

𝑟 sin𝜃

𝑒̂𝜑

𝑟
𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕𝜑

𝐸⃑⃗𝑟 𝑟𝐸⃑⃗𝜃 𝑟 sin𝜃 𝐸⃑⃗𝜑

|
|=
|
|

𝑒̂𝑟

𝑟2 sin𝜃

𝑒̂𝜃

𝑟 sin𝜃

𝑒̂𝜑

𝑟
𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕𝜑
𝑞1

4𝜋𝜀𝑜𝑟
2 0 0

|
| = 0 

 

(A- 17) 
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As a vector property, it is known that the curl of the gradient of any function, ∅, is zero, 

i.e., 𝛻⃗ × (𝛻⃗ ∅) = 0. Thus, the electric field can be described as the gradient of a scalar function with 

an associated and arbitrary negative sign as 𝐸⃗ = −𝛻⃗ ∅.  Also, Stokes’ theorem, a fundamental vector 

calculus theorem, states that the integral of the curl of a vector field over a surface is equal to the 

cyclic (line) integral of that vector field over the surface boundaries, ∬ ∇⃗⃑⃗ × 𝐸⃗ 
 

𝐴
 𝑑𝐴 = ∮𝐸 ∙⃗⃗ ⃗⃗  𝑑𝑙⃗⃗⃗⃑ . Since 

the curl of any electric field equals zero, we have 𝛻⃗ × 𝐸⃗ = 0, and thus ∮ 𝐸⃗ ∙ 𝑑𝑙⃗⃗⃗⃑ = 0 which leads 

to ∮ 𝛻⃗ ∅ ∙ 𝑑𝑙⃗⃗⃗⃑ = 0. This contour integral is independent of the path, so the integral between any two 

points A and B yields ∫ 𝛻⃗ ∅ .  𝑑𝑙⃗⃗⃗⃑ = ∅(𝐵) − ∅(𝐴)
𝐵

𝐴
. ∅ is the electric potential which is proportional to 

the electric potential energy for moving a point charge from point A to B and has the units of “Joules 

per coulomb” or “Volt”. Therefore, the electric field is known as the negative of the gradient of the 

electric potential. 

According to Gauss’s law, the integral of an electric field over a closed surface is proportional 

to the total charge within that surface and it shows the electric field flux. The integral  ∮ E⃗ ∙ ds⃗⃗ ⃗⃑ 𝑟  is 

examined for a single point charge 𝑑𝑞  (not the total charge), in a region with permittivity 𝜖 at any 

distance from the charge and on an element with an area normal vector of  ds⃗⃗  ⃗𝑟  along 𝑟. 

Substituting the left hand side of Gauss’s law by the definition of E⃗⃗  based on Coulomb’s law, we get 

∮E𝑑𝑞⃗⃗ ⃗⃗ ⃗⃗  ∙ ds⃗⃗⃗⃗⃑𝑟 = ∮
𝑑𝑞 
4π𝜖 r

2
𝑟̂. ds⃗⃗⃗⃗⃑𝑟 

(A- 18) 

 

For spherical coordinates, (A- 18) can be rewritten as ∮ E⃗⃑⃗dq ∙ ds⃗⃗⃗⃗⃑r = ∬ ∇⃗⃑⃗ ∙  𝐸⃑⃗⃗𝑑𝑞𝑑𝑣
 

V
 using ds⃗⃗⃗⃗⃑r = ds 𝑟̂  

which leads to ∬ ∇⃗⃑⃗ ∙
 

V
E⃗⃑⃗dq𝑑𝑣 =

dq 
ϵ

, that is indeed another form of Gauss’s law. Implementing the 

distribution of charges with a total Charge  𝑄, where 𝑄 = ∬ 𝑑𝑞𝑖
 

𝑉
 with  𝑑𝑞𝑖 representing a point 

charge 𝑑𝑞𝑖, Gauss’s law becomes ∬ ∇⃗⃑⃗ ∙ 𝐸⃑⃗𝑑𝑞𝑑𝑣 =
𝑑𝑞𝑖

𝜖

 

𝑉
. To attain the electric field for the total charge 

Q, by integrating over all charges, we get 

∬(∬∇⃗⃑⃗ ∙
 

𝑉

 

𝑄

E⃑⃗⃗𝑑𝑞𝑑𝑣) 𝑑𝑞𝑖 =∬
1

𝜖
 

𝑄

 𝑑𝑞𝑖 (A- 19) 

Since 𝑑𝑣 and  𝑑𝑞𝑖  are mutually independent, the order of integrations with respect to 𝑑𝑣 and 𝑑𝑞𝑖 are 

interchangeable; further, the divergence operation is independent of the integration with respect to 
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charge. Finally, the electric field for the collection of charges is expressed as the sum of those, 

resulting from point charges, i.e. 𝐸⃑⃗𝑄 = ∬ E⃑⃗⃗𝑑𝑞𝑑𝑞𝑖
 

𝑄
; therefore  

∬∇⃗⃑⃗ ∙
 

𝑉

 𝐸⃑⃗𝑄𝑑𝑣 =∬
1

𝜀 

 

𝑄

 𝑑𝑞𝑖 (A- 20) 

Using the electric charge density,   ρe =
𝑑𝑞𝑖
𝑑𝑣
  in (A- 20) yields 

∬∇⃗⃑⃗ ∙
 

𝑉

 𝐸⃑⃗𝑄𝑑𝑣 =∬
ρe
𝜖
 

𝑉

 𝑑𝑣 (A- 21) 

Equation (A- 21) is applicable to any arbitrary volume, 𝑉, including a differential volume  𝑑𝑣 , thus, 

the integrands must be equal, i.e. ∇⃗⃑⃗ ∙ 𝐸⃑⃗𝑄 =
ρe

𝜖  . Implementing 𝐸⃗ = −𝛻⃗ 𝜓 , leads to Poisson’s 

equation: ∇2𝜓 = −
ρe

𝜖  in electric double layer. It is very important to differentiate between the applied 

potential 𝜙 and the potential among ions in EDL. Patankar and Hu [9], explained very well when the 

EDL thickness is small and the charge at the walls is not large, the distribution of ions is governed 

mainly by the surface potential at the wall and is affected very little by the external electric field. Thus, 

the charge distribution near the walls can be determined independent of the external electric field. The 

charge distribution may be affected by fluid motion since the charged species convect with the flow. 

However, the effect of fluid motion on the charge redistribution can be neglected when the fluid velocity 

is small. That’s why the electric field equations and the fluid flow equations can be decoupled, and the 

total potential can be decomposed into a potential due to the external electric field, 𝜙, and a potential 

due to the charge at the walls, 𝜓. For the special case, where the charge density ρe is zero, this gives 

Laplace’s equation, ∇2∅ = 0. This occurs over most of the domain in a microchannel because the 

electric double layer is so thin and confined to the surface.  

As provided before, the Boltzmann distribution for ions in the electric double layer is presented 

in (A- 16). The Boltzmann distribution and Poisson’s equation are combined together to achieve the 

Poisson-Boltzmann equation as will be described in the following section. 

Poisson Boltzmann Equation 

One part of the Poisson-Boltzmann equation is Poisson's equation as derived in the foregoing 

and the other part is the Boltzmann distribution, derived earlier, above, to provide the electric charge 

and ion distribution in the electric double layer in microchannels. A clear understanding of the ion 

distribution was provided in section 2.3. It was clearly discussed that for a system subjected to two 
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constraints of 𝑁 − ∑ 𝑛𝑖𝑖 = 0 and 𝐸 − ∑ 𝑛𝑖𝑖 𝜖𝑖 = 0, the particle distribution was found in terms of 

𝛽 , (𝛽 =
1

𝐾𝐵𝑇
), by implementing the Lagrange multiplier approach, as  

𝑛𝑖
max𝜔

𝑁
= 𝑒𝑥𝑝(−𝛽𝜖𝑖) 

∑  𝑒𝑥𝑝(−𝛽𝜖𝑖)𝑖
. 

According to the “Callen” postulates, (1985) [23], for a system with internal energy 𝑈, volume 𝑉 and 

𝑛𝑖 number of species or ions, a function called entropy 𝑆, exists in terms of extensive parameters 𝑈, 𝑉 

and 𝑛𝑖,  and is defined for all equilibrium states. The values assumed by the extensive parameters are 

those which maximize the entropy for the composite isolated system. Therefore, the internal energy of 

the system is U = U(S, V, Ni). From the first law of thermodynamics, 𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊, for a system 

with chemical components and charged particles, we have chemical and electrical energies and the 

work done 𝑑𝑊 = −𝑃𝑑𝑉, therefore 

𝑑𝑈  =  𝑑𝑄 + {Σ𝑖𝜇𝑖𝑑𝑛𝑖}⏟      
𝐶ℎ𝑒𝑚.𝑃𝑜𝑡.𝐸

+ {Σ𝑖𝜓𝑧𝑖𝑒𝑑𝑛𝑖}⏟        
𝐸𝑙𝑒𝑐.𝑃𝑜𝑡.𝐸

− {𝑃𝑑𝑉}⏟  
𝑀𝑒𝑐ℎ.𝑤𝑜𝑟𝑘

= 𝑑𝑄 + {Σ𝑖(𝜇𝑖 +𝜙𝑧𝑖𝑒)𝑑𝑛𝑖}⏟            
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙.𝑃𝑜𝑡.𝐸

− {𝑃𝑑𝑉}⏟  
𝑀𝑒𝑐ℎ.𝑤𝑜𝑟𝑘

 
(A- 22) 

From the second law of thermodynamics for a reversible process, 𝑑𝑄 = 𝑇𝑑𝑠. At equilibrium no 

chemical reaction happens, and no mass or heat transfer occurs through the system boundaries; no work 

is done and no entropy is produced in the system. By combining the chemical and electric energies in 

(A- 22), as shown, the electro-chemical potential for the 𝑖𝑡ℎ species emerges as 𝜇𝑖̃ = 𝜇𝑖   + 𝑧𝑖𝑒 𝜓.  In 

equilibrium, the electrochemical potential must be uniform everywhere; therefore, the electrostatic 

forces which move the charges by electric field forces balance the energy changes by diffusion. In other 

words, in equilibrium, the gradient of the electro-chemical potential for each species is zero, i.e. 

 𝑑μ̃i = 0 or 

d𝜇𝑖 = −𝑍𝑖𝑒𝑑𝜓 
(A- 23) 

The chemical potential is defined as 𝜇𝑖 = 𝑑𝑈/𝑑𝑛𝑖 , and according to the first law of thermodynamics 

for a reversible process with no work, 𝑑𝑢 =  𝑇𝑑𝑠, therefore 𝜇𝑖 = 𝑇
𝑑𝑠

𝑑𝑛𝑖
. From our discussions on the 

Boltzmann distribution, 𝑠 = 𝐾𝐵𝑙𝑛𝜔 and also from (A- 6), 𝑑𝑠𝑖 = −𝐾𝐵 𝑑(𝑙𝑛𝑛𝑖), thus  

𝑑𝑙𝑛 𝑛𝑖 = −
𝑍𝑖𝑒

𝐾𝐵𝑇
𝑑𝜓 (A- 24) 

By integrating over the region, ∫ 𝑑(𝑙𝑛𝑛𝑖)
𝑛𝑖,𝑚𝑒𝑎𝑛
𝑛𝑖(𝑥)

= −
𝑍𝑖𝑒

𝐾𝐵𝑇
∫ 𝑑𝜓
𝜓𝑚𝑒𝑎𝑛
𝜓(𝑥)

; therefore, 

 
𝑛𝑖,𝑥

𝑛𝑖,𝑚𝑒𝑎𝑛
= exp[−

𝑍𝑖𝑒

𝐾𝐵𝑇
(𝜓(𝑥) − 𝜓𝑚𝑒𝑎𝑛)].  Assuming 𝜓𝑚𝑒𝑎𝑛 = 0 in the absence of an applied electric 

field, and (𝑥) = 𝜓 , then  𝑛𝑖 = 𝑛𝑖,𝑚𝑒𝑎𝑛𝑒𝑥𝑝 (
−𝑧𝑖𝑒𝜓

𝐾𝐵𝑇
). In practice though, ionic concentration is 
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considered rather than the number of particles.  Therefore, introducing the solution molar 

concentration 𝑐𝑖 =
𝑛𝑖

𝑉
 , results in 𝑐𝑖(𝑧) = 𝑐𝑖

0𝑒𝑥𝑝(−
𝑧𝑒𝜓

𝐾𝐵𝑇
). The anions and cations are respectively 

derived as 

𝑐− = 𝑐0𝑒𝑥𝑝 (
𝑧𝑒𝜓

𝐾𝐵𝑇
),  𝑐+ = 𝑐0𝑒𝑥𝑝(−

𝑧𝑒𝜓

𝐾𝐵𝑇
) (A- 25) 

where 𝑐0  and 𝑧  are the mean ionic number concentration in the bulk flow and the ion valence, 

respectively. The electron charge is denoted by  𝑒 , the absolute temperature is  𝑇  , and 𝐾𝐵  is the 

Boltzmann constant. Assuming a two-species symmetric electrolyte solution with two oppositely 

charged ions like 𝑁𝑎+ and 𝐶𝑙− in a  𝑁𝑎𝐶𝑙 solution, 𝑧+ = 𝑧− = 𝑧  and 𝑐+ = 𝑐− = 𝑐0, the net charge 

density from the Boltzmann distribution becomes 𝜌𝑒 = 𝑧𝑒(𝑐
+ − 𝑐−) = −2𝑧𝑒𝑐0 sinh

(
𝑧𝑒𝜓

𝐾𝐵𝑇
)

 
 . 

Substituting  𝜌𝑒  from the Poisson’s equation we have  ∇2𝜓 = −
𝜌𝑒

𝜖 
 and this leads to the Poisson-

Boltzmann equation 

∇2𝜓 =
2𝑧𝑒𝑐0
𝜖

sinh (
𝑧𝑒𝜓

𝐾𝐵𝑇
)  (A- 26) 

In a more general case of having more than two oppositely charged ions in a symmetric electrolyte, we 

have: ∇2𝜓 =
−1

𝜖
∑ 𝑐𝑖

𝑜𝑧𝑖𝑒
𝑁
𝑖=1 𝑒𝑥𝑝 (−

𝑧𝑖𝑒𝜓

𝐾𝐵𝑇
), where 𝑐𝑖

𝑜 is the mean concentration of charges. Using a 

Taylor series expansion for the exponential term and assuming the system’s electrical energy is much 

less than its thermal energy, i.e., 𝑒𝜓 ≪ 𝐾𝐵𝑇, one can approximate 

𝑒𝑥𝑝 (−
𝑧𝑖𝑒𝜓

𝐾𝐵𝑇
) ≈ 1 −

𝑧𝑖𝑒𝜓

𝐾𝐵𝑇
 (A- 27) 

This linear approximation linearizes the Poisson-Boltzmann equation in the form of 

∇2𝜓 = ∑
𝑐𝑖
𝑜𝑧𝑖
2𝑒2

𝜖𝐾𝐵𝑇

𝑁
𝑖=1 𝜓 −

1

𝜖
∑ 𝑐𝑖

𝑜𝑧𝑖𝑒
𝑁
𝑖=1   (A- 28) 

For electrically neutral systems, the second term on the right hand side of (A- 28) vanishes and the 

coefficient of the electric potential in the first term becomes the inverse of the length scale known as 

the Debye-Hückel Length, 𝜆𝐷 = (
∑ 𝑐𝑖

𝑜𝑧𝑖
2
𝑒2𝑁

𝑖=1

𝜖𝐾𝐵𝑇
)

−0.5

. Implementing the definition of 𝜆𝐷, the linearized 

form of the Poisson-Boltzmann equation becomes 
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∇2𝜓 =
1

𝜆𝐷
2 𝜓  (A- 29) 

The Poisson-Boltzmann equation must be solved to determine the electric potential 𝜓 and the net charge 

density 𝜌𝑒. Solutions of the Poisson-Boltzmann equation are available in the literature, based on 

different approximations. For a symmetric electrolyte and a sample concentration in the order 

of 10−6~10−2 [
𝑚𝑜𝑙

𝐿
], 𝜆𝐷 becomes on the order of 300~3 [𝑛𝑚]. Indeed,  𝜆𝐷 ∝ (Σ𝑐𝑖)

−0.5 and plays an 

important role in the thickness of the EDL. The distribution of ions in the EDL, is dependent on 𝑐𝑖
𝑜,𝑧𝑖𝑒, 

𝜖, 𝐾𝐵 and 𝑇, and is independent of any electric field applied parallel to the EDL. This derivation, valid 

for any situation without an externally applied electric field, leads us to find ion distribution for many 

cases. The present derivation presents a fundamental Boltzmann distribution derivation and is valid for 

ion distribution in the EDL; it also enhances our understanding of the Boltzmann distribution and assists 

in furthering microfluidic electroosmotic and electrophoretic research, understanding, and progress. It 

also provides a guide future research on how to proceed to clarify problems, solve the Poisson-

Boltzmann equation, and apply this understanding for different boundary conditions, including 

overlapping EDL’s.  

  So far, we showed that the distribution of the ions in the electric double layer in a microchannel is 

provided through the derivation of the Boltzmann distribution. Considering ions as point charges, and 

using probability concepts for a system subject to constraints of constant number of particles, and 

constant energy, the distribution of charges is determined as the Boltzmann distribution. For a detailed 

derivation of the ion distribution in the EDL, a statistical thermodynamics approach is used for 

implementing the mathematical method of Lagrangian multipliers. It is clearly shown that for systems 

subject to two constraints of constant number of particles and constant total system energy, there is one 

most probable state having the highest probability, corresponding to the highest number of microstates. 

The relevance of the most probable state, with the highest number of microstates, and the system being 

in an equilibrium state is thoroughly studied, and our findings regarding the number of microstates for 

systems with various specific numbers of particles and energy are illustrated graphically. Further, it is 

shown that, for a system with a fixed total energy, adding more particles to the system brings a tendency 

for higher particle distribution in the ground state and fewer particles distributed in the higher excited 

energy levels. These results have been graphically illustrated, showing a cross-over in the graphs for 

the ensemble average. Moreover, it is shown that the ensemble average is very close, quantitatively, to 

the most probable distribution of the number of particles in each energy level. For the most probable 
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states, the number of microstates asymptotically increases as the number of particles in the system 

increases;   for molar scales of solution on the order of Avogadro’s number, 1023 atoms, the most 

probable state becomes an almost certainty. Systems with fixed numbers of particles and changing total 

energies are studied. In addition to the overall distribution of particles, it is observed that particles 

migrate to higher energy levels when the total energy of the system is increased. The most probable 

state is that for which the ensemble average and the number of microstates asymptotically increases, 

and the associated probability is remarkably higher than the other states which are much less probable. 

Since not much research has been done on theoretical microfluidics, especially on the ion distribution, 

the current chapter provides a thorough understanding and comprehensive derivation of the Boltzmann 

distribution; this is not available in the microfluidic literature at one place. By using Coulomb’s law, 

further studies are done on the potential distribution in microchannels. Through classical 

thermodynamics, in addition to statistical thermodynamics, the entropy of an isolated system in 

equilibrium is maximized. For a symmetric electrolyte solution with oppositely charged ions, the 

Boltzmann distribution provides the net charge density. The roles of the solution concentration and 

electrochemical-potential are both addressed in this article. By combining the Boltzmann distribution 

derivation and the Poisson equation derivation, together, a comprehensive understanding of the 

Poisson-Boltzmann equation, and its influence, is achieved. It is worth mentioning the assumptions and 

approximations implemented in Poisson-Boltzmann equation such as considering ions as point charges 

or neglecting the electric energy of the system which is much less than its thermal energy. The 

electrolyte is also assumed to be a symmetric solution and the non-electrostatic interactions between 

the ions are neglected as well. Because of its good agreement with experiments, Poisson-Boltzmann 

equation is yet applied as a key governing equation in many situations. 

 

Solutions to Poisson-Boltzmann equation  

 

In previous sections we showed the derivation of the Poisson-Boltzmann equation. Our objective 

in this section is to solve this equation, in order to find the electric potential distribution in an electric 

double layer as well as bulk flow region in the microchannel. Knowing electric potential distribution, 

then according to Poisson’s equation, we would find geometric distribution of ions. Then we can move 

on to fluid mechanics and implement both  𝜌𝑒 and 𝐸⃗  terms into our body force term in Navier-Stokes 
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equation, which will be discussed in the next chapter. Solutions of the Poisson-Boltzmann equation 

started from analytical solutions in complete form or simplified forms based on approximations and 

more complete solutions have been done by the help of numerical methods. It is good to mention that 

for a general electrolyte (not a symmetric one); Poisson-Boltzmann equation has no analytical solution 

and has to be solved numerically.  

In the Poisson equation  mentioned, i.e., ∇2𝜓 = −
ρe

𝜖 , where by assuming a symmetric electrolyte of 

equal valence, our net charge density was substituted and resulted in the Poisson-Boltzmann equation 

as ∇2𝜓 =
2𝑧𝑒𝑐0

𝜖
sinh (

𝑧𝑒𝜓

𝐾𝐵𝑇
)  which is rewritten as: 

∇2𝜓∗ = 𝛽 sinh(𝛼𝜓∗)  
(A- 30) 

Where, 𝜓∗ =
𝜓

𝜁
 and 𝛼 is the ionic energy parameter given by: 

𝛼 =
𝑒𝑧𝜁

𝐾𝐵𝑇
  (A- 31) 

 

Having zeta potential of 25.4 𝑚𝑉 at 20°𝐶 , gives us 𝛼 = 1 , and 𝛽 is defined as: 

𝛽 =
(𝑤/𝜆𝐷)

2

𝛼
  (A- 32) 

Where, 𝜆𝐷 refers to the Debye-Hückel length and 𝑤 is the half-channel width. Therefore by non-

dimensionalizing as 𝑦∗ =
𝑦

𝑤
 , (A- 30) becomes: 

𝑑2𝜓∗

𝑑𝑦∗2
= 𝛽 sinh(𝛼𝜓∗)  (A- 33) 

 

Multiplying both sides of (A- 33) by 2
𝑑𝜓∗

𝑑𝑦∗
, results in: 

𝑑

𝑑𝑦∗
[ (
𝑑𝜓∗

𝑑𝑦∗ 
)
2

] = 2𝛽
𝑑𝜓∗

𝑑𝑦∗
sinh(𝛼𝜓∗) 

𝑑𝜓∗

𝑑𝑦∗
 (A- 34) 

 

Integrating two sides of (A- 34) w.r.t 𝑦∗, we obtain: 

(
𝑑𝜓∗

𝑑𝑦∗
)
2

=
2𝛽

𝛼
cosh(𝛼𝜓∗) + 𝐶′1 (A- 35) 

where 𝐶′1is the integration constant. 
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Knowing  𝜓𝑐
∗ from boundary conditions that at the center of channel, i.e., 𝑦∗ = 1 , 

𝑑𝜓∗

𝑑𝑦∗
= 0 , then 

constant 𝐶′1 becomes  𝐶′1 =
−2𝛽

𝛼
cosh(𝛼𝜓𝑐

∗) and (A- 35) becomes 

𝑑𝜓∗

𝑑𝑦∗  
= √

2𝛽

𝛼
(cosh(𝛼𝜓∗) − cosh(𝛼𝜓𝑐

∗))0.5 

Rewriting (A- 36) 

(A- 36) based on separation of variables we get:  

(A- 36) 

 

𝑑𝜓∗

(cosh (𝛼𝜓∗) − cosh (𝛼𝜓𝑐
∗))0.5

= √
2𝛽

𝛼
𝑑𝑦∗  

(A- 37) 

 

Applying half-angel argument, we get: 

𝑑(𝛼𝜓∗/2)

(𝑐𝑜𝑠ℎ 
2
(
𝛼𝜓∗

2 ) − 𝑐𝑜𝑠ℎ 
2
(
𝛼𝜓∗

2 )  )0.5
= √2 (𝒘/𝝀𝑫)

 𝑑𝑦∗ (A- 38) 

 

As Burgreen and Nakache showed in [5], integrating left hand side of  (A- 38) would result in an 

analytical solution in form of an incomplete elliptic integral of first kind and Non-dimensionalized 

electric potential distribution becomes  𝜓∗(y∗) = 𝐹(𝜃, 𝑘), where 𝐹 is defined mathematically. Using 

this solution is kind of cumbersome because it is only available in tabular form. Moreover, they 

provided both variables of integration 𝜙∗ and parameters 𝜃, 𝑘 dependent on variable of integration, 

which is not clear. Therefore, simplified solutions were required to solve Poisson-Boltzmann equation. 

Simplified Approximate Solution to Poisson-Boltzmann equation 

 As expressed above, instead of finding the incomplete elliptic integral of first kind for analytical 

solution two more simplified solutions to P-B equation are available: 

 Dutta-Beskok solution 

 Debye-Hückel approximation  

The assumptions and approximations for each solution are explained in detail below. 
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Dutta-Beskok simplification  

To simplify the complicated analytical solution by Burgreen et al. [5], Dutta and Beskok [125] 

showed a simpler solution for electric potential distribution. They assumed for 𝛼 ≥ 1 and 𝜆𝐷 ≪ 𝑤 , the 

electric potential at the center of the channel is practically zero; 𝜓𝑐
∗ → 0  , by integrating (A- 37), then 

∫
𝑑𝜓∗

[cosh (𝛼𝜓∗) − cosh (𝛼𝜓𝑐
∗)]0.5

= √
2𝛽

𝛼
∫ 𝑑𝑦∗ 
1

0

𝜓∗=0

𝜓∗=1

 
(A- 39) 

Assuming zero potential at the center of channel, i.e.,  𝜓𝑐
∗ = 0 , and by applying the trigonometric 

identity of  cosh(𝑡) = 2 sinh2 (
𝑡

2
) + 1  , the  denominator  turns into  (2sinh2 (

𝛼𝜓∗

2
) + 1 − 1)

0.5
, then   

∫
𝑑𝜓∗

(2sinh2 (
𝛼𝜓∗

2 ))
0.5 = √

2𝛽

𝛼
∫ 𝑑𝑦∗ 
1

0

𝜓∗=0

𝜓∗=1

 
(A- 40) 

 

which is rewritten as 

∫
𝑑𝜓∗

sinh (
𝛼𝜓∗

2 )
= 2√

𝛽

𝛼
∫ 𝑑𝑦∗ 
1

0

𝜓∗=0

𝜓∗=1

 
(A- 41) 

 

and by knowing ∫
𝑑𝑡

sinh(𝑡)
= ln (tanh (

𝑡

2
)) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then 

ln (tanh (
𝛼

4
𝜓∗)) = −√𝛼𝛽𝑦∗+𝐶1

  (A- 42) 
 

Or: 

tanh (
𝛼

4
𝜓∗) = exp (−√𝛼𝛽𝑦∗+𝐶1

 ) (A- 43) 

Applying the boundary condition at the wall, 𝑦∗ = 0  where 𝜓∗ = 1 , then 𝐶1
 = log (tanh (

𝛼

4
)) , so we 

would have tanh (
𝛼

4
𝜓∗) = exp (−√𝛼𝛽𝑦∗ + log (tanh (

𝛼

4
))) or 

 tanh (
𝛼

4
𝜓∗) = tanh (

𝛼

4
) exp(−√𝛼𝛽𝑦∗); Therefore 

𝜓∗(𝑦∗) =
4

𝛼
𝑡𝑎𝑛ℎ−1 (tanh (

𝛼

4
) exp(−√𝛼𝛽𝑦∗)) (A- 44) 

Moreover in near wall region, knowing √𝛼𝛽 =
𝑤

𝜆𝐷
  and applying a new variable 𝜒 = √𝛼𝛽𝑦∗ as a near-

wall scaling parameter named inner-layer scale potential distribution turns into 
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𝜓∗(𝑦∗) =
4

𝛼
tanh−1 [tanh (

𝛼

4
) exp(−𝜒)] (A- 45) 

when we have  tanh (
𝛼

4
) ≤ 1 and  exp(−𝜒) ≪ 1 , then (A- 45)  would  turn to 

𝜓∗(𝑦∗) ≈
4

𝛼
tanh (

𝛼

4
) exp(−𝜒)   (A- 46) 

Debye-Hückel Approximation 

As previously shown, analytical solution to Poisson-Boltzmann equation is so complicated. 

The second approach was based on Dutta and Beskok assumptions for the zeta potential and EDL 

thickness. The third approach for simplifying the solution to the nonlinear Poisson-Boltzmann equation 

is using linearized Debye-Hückel approximation.  Solving P-B equation for a symmetric 

electrolyte, ∇2𝜓 =
2𝑧𝑒𝑐0

𝜖
sinh (

𝑧𝑒𝜓

𝐾𝐵𝑇
),   is not convenient because of its nonlinear term. So, for small 

potentials which make electric potential term much smaller than thermal term at sinh (
𝑧𝑒𝜓

𝐾𝐵𝑇
) , then there 

would be a linear approximation of Poisson-Boltzmann equation assuming  sinh (
𝑧𝑒𝜓

𝐾𝐵𝑇
) =

𝑧𝑒𝜓

𝐾𝐵𝑇
 . Debye-

Hückel length  𝜆𝐷 as problem length scale is  𝜆𝐷 = (
Σ𝑖𝑒

2𝑧𝑖
2𝑛𝑖

𝜖𝑘𝐵𝑇
)
−1/2

and comes from equal electrokinetic 

energy and thermal energy. By applying this approximation, P-B equation becomes 

∇2𝜓 = 𝜆𝐷
−2𝜓 

(A- 47) 

Considering 1-D case,  
𝑑2𝜓

𝑑𝑦2
−

1

𝜆𝐷
2 𝜓 = 0 results in 

𝜓(𝑦) = 𝐴 𝑒𝑥𝑝 (
𝑦

𝜆𝐷
) + 𝐵 exp (−

𝑦

𝜆𝐷
) (A- 48) 

And by applying the boundary conditions of zeta potential at wall surfaces for 𝜂 coordinate system 

which is at the center of channel as 𝜓(±𝑤) = 𝜁 , we get 𝐴 = 𝐵 =
𝜁

2 cosh(
𝑤

𝜆𝐷
)
. Accordingly by knowing 

exponential identities of sinh(
𝑤

𝜆𝐷
) and cosh(

𝑤

𝜆𝐷
) finally: 

𝜓(𝜂) = 𝐴 𝑒𝑥𝑝 (
𝜂

𝜆𝐷
) + 𝐵 exp (−

𝜂

𝜆𝐷
)  (A- 49) 

which finally results in: 
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𝜓(𝜂) = 𝜁
cosh (

𝜂
𝜆𝐷
)

cosh (
𝑤
𝜆𝐷
)

 
(A- 50) 

 

Assuming 𝜁 potential @ 𝑦 = 0 and  𝜙 → 0 @ 𝑦 → ∞ , then by knowing 𝑦 = 𝑤 − 𝜂  we would have 

𝜓(𝑦) = 𝜁
cosh(

𝑤

𝜆𝐷
−
𝑦

𝜆𝐷
)

cosh(
𝑤

𝜆𝐷
)

 and by cosh identities of cosh(𝑎 − 𝑏) = cosh𝑎 cosh𝑏 − sinh𝑎 sinh 𝑏, we get: 

𝜓(𝑦) = 𝜁
cosh

𝑤
𝜆𝐷
cosh

𝑦
𝜆𝐷
− sinh

𝑤
𝜆𝐷
sinh

𝑦
𝜆𝐷

cosh (
𝑤
𝜆𝐷
)

 
(A- 51) 

 

As shown in Table A- 2, for  
𝑤

𝜆𝐷
≫ 1, cosh

𝑤

𝜆𝐷
= sinh

𝑤

𝜆𝐷
 , but still we are very close to the wall in order 

of 10−6~10−8 𝑚. 

Table A- 2: Example of showing values for cosh(x) and sinh(x) 

x =y/λD 
Approx. y 

(m) 
cosh(x) sinh(x) cosh(x)-sinh(x) d

2
(cosh(x)-sinh(x))/d

2
x 

0 0 1 0 1 0.3995764 

1 1.00E-08 1.5430806 1.1752012 0.3678794 0.1740343 

2 2.00E-08 3.7621957 3.6268604 0.1353353 0.0252957 

4 4.00E-08 27.308233 27.289917 0.0183156 0.0036551 

6 6.00E-08 201.71564 201.71316 0.0024788 0.0001498 

10 1.00E-07 11013.233 11013.233 4.54E-05 1.79E-06 

15 1.50E-07 1634508.7 1634508.7 3.06E-07 1.22E-08 

20 2.00E-07 242582598 242582598 0 0 

50 5.00E-07 2.59E+21 2.59E+21 0 0 

100 1.00E-06 1.34E+43 1.34E+43 0 0 

500 5.00E-06 7.02E+216 7.02E+216 0 0 

The last column of above table shows us the pace of change in potential and to solve the governing 

equations, we will use this column for scaling ∇2𝜓. Therefore, 𝜓(𝑦) = 𝜁(cosh
𝑦

𝜆𝐷
− sinh

𝑦

𝜆𝐷
). 

If we want to use exponential form as an easier form, this equation would be rewritten as 

𝜓(𝑦) = 𝜁𝑒
−
𝑦
𝜆𝐷 (A- 52) 

The three different approaches to solve Poisson-Boltzmann equation are shown in Table A- 3. 
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Table A- 3: Analytical and simplified solutions of Poisson-Boltzmann equation 

P-B equation 

solutions 

Assumption Solution 

 

Burgreen and 

Nakache [5] 

@ 𝑦
∗
= 1,   

𝑑𝜓∗

𝑑𝑦∗
= 0 

 

incomplete elliptic integral of first kind 

𝑑(𝛼𝜓∗/2)

(𝑐𝑜𝑠ℎ 
2
(
𝛼𝜓∗

2
) − 𝑐𝑜𝑠ℎ 

2
(
𝛼𝜓∗

2
)  )0.5

= √2 (𝑤/𝜆𝐷)
 𝑑𝑦∗ 

 

Dutta and 

Beskok [126] 

@ 𝑦
∗
= 1,𝜓𝑐

∗ → 0 

  exp(−√𝛼𝛽𝑦∗) ≪ 1 

tanh (
𝛼

4
) ≤ 1 

√𝛼𝛽 =
𝑤

𝝀𝑫
 ,    

 

 
𝑤

𝜆𝐷
≫ 1  

 

𝜓∗(𝑦∗)

=
4

𝛼
𝑡𝑎𝑛h−1 (tanh (

𝛼

4
) exp(−√𝛼𝛽𝑦∗)) 

   𝜓∗(𝑦∗) ≈
4

𝛼
tanh (

𝛼

4
) exp(−√𝛼𝛽𝑦∗)   

(𝜓∗(𝑦∗)  ≈ 𝑒
− 
w 

𝜆𝐷
𝑦∗

 )  

 

 

Debye-Hückel  

sinh (
𝑧𝑒𝜓

𝐾𝐵𝑇
) ≅

𝑧𝑒𝜓

𝐾𝐵𝑇
 

𝑤

𝜆𝐷
≫ 1 cosh

𝑤

𝜆𝐷
= sinh

𝑤

𝜆𝐷
 

𝑤

𝜆𝐷
≫ 1   

 

𝜓(𝑦) = 𝜁𝑒
− 
𝑦
𝜆𝐷 

 

 

So, from above three solutions to P-B equation providing same results, we take the exponential form, 

based on Debye-Hückel approximation, which is much easier to deal with. To quantify where the edge 

of electric double layer is located, we make an analogy with fluid boundary layer. Recalling from fluid 

mechanics, based on %99 boundary layer thickness, we know that at a normal distance 𝑦 from the wall 

in a flow over the flat plate with free stream flow velocity 𝑢0  , 𝑢(𝑦) = 0.99 𝑢0, then boundary layer 

thickness would be: 

𝛿𝐿𝑎𝑚𝑖𝑛𝑎𝑟 ≈
4.91𝑥

√𝑅𝑒𝑥
   (A- 53) 

Similarly, the electric double layer thickness could be defined as a vertical distance from wall up to 

where the potential decreases to 1% of its original value [126]. If we call 𝜒0.99 the location at which 

the potential decreases to its 99% of its value at the wall. As it is shown in (A- 46) , Dutta and Beskok 
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illustrated how electroosmotic potential is decaying as a function of 𝜒, it would be a very very thin 

layer to reach 99% of potential value at the wall. So, that’s why we show how the effect of this pretty 

thin electric double layer could be reflected in velocity boundary condition and is neglected in terms of 

body force term along the flow in microchannel. It is also good to mention that from √𝛼𝛽 =
𝑤

𝜆𝐷
   and 

𝜒 = √𝛼𝛽𝑦∗ it is observed that for 𝜆𝐷 ≪ 𝑤 , when 𝛼 ≥ 1 , 𝜒  would be independent of 𝛽 which is 

shown in Figure A- 7 for the pretty thin electric double layer. 

  

Figure A- 7: Electroosmotic potential distribution within EDL as a function of the inner-layer 
scale𝝌(left)in normal and (right) logarithmic scaling [125] 

 

Having a better insight to different models applied to electric double layer as mentioned above, and the 

solutions to Poisson-Boltzmann equation, we found electric potential and net charge density 

distributions. Now, we are ready to end up with body force term which would be implemented in 

Navier-Stokes equation. In appendix B, it is shown that how this body force term could be reflected 

into slip velocity boundary conditions of bulk flow. Thus, we do not solve the Poisson-Boltzmann 

equation in the electric double layer, but the effect of the EDL is reflected as the slip velocity boundary 

conditions of the microchannel walls. 

Electric Double Layer and Slip Boundary Condition 

 

In this section we continue our discussion in flow field formulation. Electric double layer 

simplest description is the very thin layer of ions near a solid surface adjacent to an aqueous solution, 

which in a microchannel has a nanometer thickness.  It is shown that, the velocity at the edge of EDL 

meets the bulk flow and it is known from Helmholtz-Smoluchowski equation, which is one of the most 
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common simplifications in electroosmotic flows. This velocity is reflected in boundary conditions for 

the bulk flow.  As pointed out in assumption of very small 
𝜆𝐷

𝑤
  is a good assumption, therefore derived 

potentials and ions density are good solutions particularly for Dutta-Beskok and Debye-Hückel.  

To get the velocity at the edge of EDL and bulk flow, we go back to Navier-Stokes equation shown in 

(12). Within EDL, the stream-wise momentum equation for a pure electroosmotic flow assumed to be 

steady-state (the system reaches steady-state instantaneously), fully developed, 1-D flow with no 

pressure gradient and very small Reynolds number (discussed in detail in Appendix B). So, Navier-

Stokes equation (12) simplifies to: 

𝜇
d2𝑢

𝑑𝑦2
+ 𝜌𝑒𝐸⃗ 𝑥 = 0 (A- 54) 

From the Poisson’s equation, 𝜌𝑒 , electrical charge density  ρe = −𝜖∇
2𝜓, which due to a potential 

difference in a normal direction to the wall in EDL region would result in: 

ρe = −𝜖
d2𝜓

𝑑𝑦2
 (A- 55) 

Therefore, by plugging 𝜌𝑒 into (12), we would have: 

𝜇
d2𝑢

𝑑𝑦2
+ 𝜖

d2𝜓

𝑑𝑦2
𝐸⃗ 𝑥 = 0 (A- 56) 

Taking the integral of 𝜇
d2𝑢

𝑑𝑦2
+ 𝜖

d2𝜓

𝑑𝑦2
𝐸⃗ 𝑥 = 0 , with respect to 𝑦 , results in: 

d 𝑢

𝑑𝑦  
= −

𝜖

𝜇

d 𝜓

𝑑𝑦  
𝐸⃗ 𝑥 + 𝑐1 (A- 57) 

And by integrating once more, we get: 

𝑢(𝑦) = −
𝜖

𝜇
𝜓(𝑦)𝐸⃗ 𝑥 + 𝑐1𝑦 + 𝑐2 (A- 58) 

Which by applying following boundary conditions results in slip velocity at wall. We know that on the 

wall we have no-slip boundary equation and the potential is almost zeta potential, so: 

𝑦 = 0:  𝑢 = 0   &     𝜙 = 𝜁 
(A- 59) 

So, 𝑐2 = 𝜖𝜁/𝜇𝐸⃗ 𝑥, and far from the wall 
d 𝑢

𝑑𝑦 
 → 0 , 

d 𝜓

𝑑𝑦 
→  0 for 𝑦 → ∞, which leads us to zero 𝑐1, so:  

𝑢𝑥|𝑤𝑎𝑙𝑙 = 𝑢⃗ 𝑒𝑜 = −
𝜖𝜁

𝜇
𝐸𝑥              (A- 60) 
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This shows us a plug like velocity profile outside electric double layer, or in other words in the region 

starting from edge of EDL towards bulk flow. Equation (A- 60) shows that fluid velocity at EDL edge 

is linearly proportional to external electric field. The proportionality coefficient is electroosmotic 

mobility as  𝜇𝑒𝑜 = −
𝜖𝜁

𝜇
, so in other words  𝑢⃗ 𝑒𝑜 = 𝜇𝑒𝑜𝐸⃗ . Moreover, by solving  𝜇

d2𝑢

𝑑𝑦2
+ 𝜖

d2𝜓

𝑑𝑦2
𝐸⃗ 𝑥 = 0 in 

EDL and considering Debye-Hückel approximation for potential distribution, 𝜙(𝑦) = 𝜁𝑒−𝑦/𝜆𝐷 , we 

apply velocity boundary conditions @ 𝑦 = 0, 𝑢 = 0  and 
𝑑𝑢

𝑑𝑦
→ 0 @𝑦 → ∞, therefore: 

𝑢(𝑦) = 𝜇𝑒𝑜𝐸⃗ 𝑥(1 − 𝑒
−𝑦/𝜆𝐷) (A- 61) 

So, in the vicinity of wall, in very thin electric double layer, where we have charge density how electric 

potential and its second derivative is changing with 𝑦/𝜆𝐷. So, since the majority of flow in bulk region 

is not subject to body force term in pure electroosmotic flow the effect of EDL on the bulk flow is seen 

in slip boundary condition on the walls. This slip-wall velocity acts like a conveyer pushing the bulk 

flow forward and is used for non-dimensionalization of velocity.  

In this appendix we mainly discussed the Poisson-Boltzmann equation, its derivation and the 

methods to solve it. This equation is one of the key governing equations in electrokinetic microfluidics 

and it has been applied in many references to find the distribution of electric potential. We presented a 

detailed derivation of this equation from statistical approach. First, we presented the fundamentals of 

probability for the distribution of ions, the Boltzmann distribution. The maximum number of 

microstates at each macrostate for a system with fixed number of particles and fixed energy is well 

explained. Lagrangian multipliers are implemented to find the most probable state with the maximum 

number of microstates, and through classical thermodynamics it is shown that this distribution is the 

Boltzmann distribution. Revisiting the classical physics, electric potential distribution and the 

derivation of Poisson’s equation are addressed. Putting these two together, we show the derivation of 

the Poisson-Boltzmann equation at one place. Then, different approaches to solve this equation are 

addressed and simplifications and approximations for solving this equation are provided. Finally, it is 

shown why we reflect the effect of EDL as a slip boundary condition on the bulk flow. 
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Appendix B-Non-Dimensionalization of Problem and Numerical Model 

Formulation  

In this appendix, the non-dimensionalization of the problem governing equations and boundary 

conditions, Chapter 3, is presented as preliminary preparation for performing computational and 

physical experiments. With the objective of designing an optimized sample-separation microchip, non-

dimensionalization plays a key role in guiding this design and avoiding redundant efforts, whether they 

be computational or experimental. This chapter presents a comprehensive approach to the non-

dimensionalization of the electric potential field, flow field, and concentration field, including both 

governing equations and boundary conditions. For the case of a cross-shaped microchannel used to 

control the sample shape in the vicinity of the injection site, we detail role of the applied voltages and 

other involved dimensionless parameters, such as Reynolds number, Peclet number, electrokinetic 

mobilities and velocities. The possible choices of reference values for length scale, electric potential, 

velocity, and concentration are studied in detail and, in particular, the use of a convective time scale is 

compared with that of a diffusive time scale. In the end, the wall electroosmotic velocity, the convective 

time scale, and the injection/separation channel width are adopted for non-dimensionalization of the 

problem. For a methodical study and to avoid studying redundant cases, either numerically or 

experimentally, knowledge of the governing dimensionless parameters is crucial. A numerical study 

allows one to vary the governing parameters individually such that each numerical simulation can be 

considered a ‘numerical experiment’. The governing dimensionless groups guide us to perform relevant 

studies and to draw meaningful conclusions. The net result is a savings of both time and cost by 

minimizing the number of studies required. In this chapter, the problem governing equations and 

boundary conditions are non-dimensionalized. The selection of alternative reference quantities is 

considered and the rationale for the final choices is presented. The result is a complete non-dimensional 

problem formulation (geometry, governing equations, and boundary conditions) for the cross-channel 

microchip configuration with a complete compilation of the governing dimensionless parameters. 

Non-dimensionalization Procedure for Injection Phase 

 

In order to non-dimensionalize our problem, both the equations and boundary conditions must be 

non-dimensionalized. The sets of equations and boundary conditions will be explored in this section to 
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determine the reference parameters. When choosing relevant scales to use in non-dimensionalizing the 

problem, the considerations include: 

 The choices should make for a simpler mathematical problem to solve 

 The choices should best reflect the governing characteristics of the problem 

In the electrophoresis separation of a sample on a microchip, there are two phases: injection and 

separation. In this section, the non-dimensionalization of the injection phase will be explored. 

Having an ideal rectangular shape for the injected sample at the cross-channel intersection, a higher 

resolution in the separation channel is expected. Length scales, time scales, reference velocity scales, 

and electric potential scales are examined in the non-dimensionalization of the equations and boundary 

conditions. There are some obvious choices for dimensional scales, but some choices are not so 

obvious. The latter will be considered, together with the consequences, and an assessment made of the 

appropriate choices that should be made. In the following section, the non-dimensionalization is 

presented for the geometry, potential equation, Navier-Stokes equations, concentration equations, as 

well as their boundary conditions. All for a two-dimensional cross-channel configuration. 

Definition of Non-dimensional Parameters 

In the cross-channel shown in Figure 22, there are three independent variables including coordinates 

𝑥, 𝑦, and time, 𝑡 ,and 9 dependent variables: 𝜙, 𝑢, 𝑣, 𝑃, 𝑢𝑒𝑜
∗ , 𝑣𝑒𝑜

∗ , 𝑢𝑒𝑝,𝑖, 𝑣𝑒𝑝,𝑖, 𝑐. Of course, there will be 

one  𝑐  for each ‘i’. Non-dimensionalizing the variables, then, we have: 

 

𝑥∗ =
𝑥−𝑥𝑟

Δ𝑥𝑟
  

 

𝑦∗ =
𝑦−𝑦𝑟

Δ𝑦𝑟
  

 

𝑡∗ =
𝑡−𝑡𝑟

Δ𝑡𝑟
  

𝜙  
∗ =

𝜙−𝜙𝑟

 𝛥𝜙𝑟
   

 

𝑢∗ =
𝑢−𝑢𝑟

Δ𝑢𝑟
  

 

𝑣∗ =
𝑣−𝑣𝑟

Δ𝑣𝑟
  

𝑃∗ =
𝑃−𝑃𝑎

Δ𝑝𝑟
  

 

𝑢𝑒𝑜
∗   =

𝑢𝑒𝑜 −𝑢𝑟

Δur
  

 

𝑣𝑒𝑜
∗   =

𝑣𝑒𝑜 −𝑣𝑟

Δ𝑣𝑟
  

𝑢𝑒𝑝,𝑖
∗   

=
𝑢𝑒𝑝,𝑖 −𝑢 𝑟

Δur
  

 

𝑣𝑒𝑝,𝑖
∗   

=
𝑣𝑒𝑝,𝑖 −𝑣𝑟

Δ𝑣𝑟
  

 

𝑐∗ =
𝑐−𝑐𝑟

𝛥𝑐𝑟
   

 

 

 

 

(B- 1) 

where 𝜙∗, 𝑢∗, 𝑣∗, 𝑃∗ are all dimensionless variables, being respectively the  electric potential, velocity 

components in the  𝑥 and 𝑦 directions, and pressure. The non-dimensional components of 

electroosmotic and electrophoretic velocities are denoted by 𝑢𝑒𝑜
∗ , 𝑣𝑒𝑜

∗ , 𝑢𝑒𝑝,𝑖
∗ , 𝑣𝑒𝑝,𝑖

∗  , and 𝑐∗ is the 

dimensionless concentration. 
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Geometric Boundaries based on a Length Scale 𝒍𝒓 

 

In the absence of compelling arguments to the contrary, it seems reasonable to take the reference origins 

for x, y, u, v and t to be 𝑥𝑟, 𝑦𝑟, 𝑢𝑟, 𝑣𝑟, 𝑡𝑟 = 0.Table B- 1 shows the geometric boundaries of the 

problem based on length scale 𝑙𝑟. 

Table B- 1 : Geometric boundaries based on length scale 𝒍𝒓 

 

Reservoirs 𝑹𝟏 ∶  𝑥
∗ = −

𝐿1

𝑙𝑟
, −

𝑊ℎ

2𝑙𝑟
≤ 𝑦∗ ≤

𝑊ℎ

2𝑙𝑟
 ;                            𝑹𝟐 ∶  −

𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝑊𝑣

2𝑙𝑟
, 𝑦∗ =

𝐿2

𝑙𝑟
    

𝑹𝟑 ∶  𝑥
∗ =

𝐿3

𝑙𝑟
, −

𝑊ℎ

2𝑙𝑟
≤ 𝑦∗ ≤

𝑊ℎ

2𝑙𝑟
;                                  𝑹𝟒 ∶  −

𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝑊𝑣

2𝑙𝑟
, 𝑦∗ =

−𝐿4

𝑙𝑟
    

Walls 𝑾𝟏 : −
𝐿1

𝑙𝑟
≤ 𝑥∗ ≤

−𝑊𝑣

2𝑙𝑟
,   𝑦∗ = ±

𝑊ℎ

2𝑙𝑟
;                            𝑾𝟐: 𝑥

∗ = ±
𝑊𝑣

2𝑙𝑟
,
𝑊ℎ

2𝑙𝑟
≤ 𝑦∗ ≤

𝐿2

𝑙𝑟
   

𝑾𝟑 : +
𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝐿3

𝑙𝑟
,   𝑦∗ = ±

𝑊ℎ

2𝑙𝑟
;                             𝑾𝟒: 𝑥

∗ = ±
𝑊𝑣

2𝑙𝑟
, −

𝑊ℎ

2𝑙𝑟
≤ 𝑦∗ ≤

−𝐿4

𝑙𝑟
  

Channels 𝑪𝒉𝟏 : −
𝐿1

𝑙𝑟
≤ 𝑥∗ ≤

−𝑊𝑣

2𝑙𝑟
 , − 

𝑊ℎ

2𝑙𝑟
< 𝑦∗ <

𝑊ℎ

2𝑙𝑟
;    𝑪𝒉𝟐 : −

𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝑊𝑣

2𝑙𝑟
 ,
𝑊ℎ

2𝑙𝑟
< 𝑦∗ <

𝐿2

𝑙𝑟
 

𝑪𝒉𝟑 : +
𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝐿3

𝑙𝑟
 , − 

𝑊ℎ

2𝑙𝑟
< 𝑦∗ <

𝑊ℎ

2𝑙𝑟
;      𝑪𝒉𝟒 : −

𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝑊𝑣

2𝑙𝑟
 , − 

𝑊ℎ

2𝑙𝑟
< 𝑦∗ <

−𝐿4

𝑙𝑟
 

Cross −
𝑊𝑣

2𝑙𝑟
≤ 𝑥∗ ≤

𝑊𝑣

2𝑙𝑟
  ,  − 

𝑊ℎ

2𝑙𝑟
< 𝑦∗ <

𝑊ℎ

2𝑙𝑟
 

If Δ𝑥𝑟 =  Δ𝑦𝑟 = 𝑙𝑟, the same scaling will be applied to both horizontal and vertical dimensions. With 

this choice, the ratio Δ𝑥𝑟/ Δ𝑦𝑟  will not appear in the equations, as would otherwise be the case. 

Non-Dimensionalization of Potential Equation and Boundary 

conditions 

Non-dimensionalization of (11) with respect to the reference length scales Δ𝑥𝑟 =  Δ𝑦𝑟 = 𝑙𝑟, 

and irrespective of the choice for  Δ𝜙𝑟 , results in 
𝛥𝜙𝑟

Δ𝑥𝑟
2

𝜕2𝜙∗

𝜕𝑥∗
2 +

𝛥𝜙𝑟

Δ𝑦𝑟
2

𝜕2𝜙∗

 𝜕𝑦∗
2 = 0, or 

𝜕2𝜙∗

𝜕𝑥∗
2 +

𝜕2𝜙∗

𝜕𝑦∗
2 = 0  (B- 2) 
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he non-dimensional boundary conditions applied to the electric field are 𝜙𝑅1
∗ =

𝜙𝑅1−𝜙𝑟

𝛥𝜙𝑟
 and 𝜙𝑅3

∗ =

𝜙𝑅3−𝜙𝑟

𝛥𝜙𝑟
. Dimensionless floating or specified voltages at 𝑅2 and 𝑅4 are defined as 

𝜕𝜙𝑅2
∗

𝜕𝑦∗
=
𝜕𝜙𝑅4

∗

𝜕𝑦∗
= 0and 

𝜙𝑅2
∗ =

𝜙𝑅2−𝜙𝑟

𝛥𝜙𝑟
,  and 𝜙𝑅4

∗ =
𝜙𝑅4−𝜙𝑟

𝛥𝜙𝑟
 , respectively. The walls are insulated, so 

𝜕𝜙∗

𝜕𝑛
|
𝑤𝑎𝑙𝑙𝑠

= 0. 

Non-Dimensionalization of Flow Field Equations and Boundary 

conditions 

Implementing the non-dimensional variables of (B- 1) for flow field equations, and by choosing 

Δ𝑢𝑟 =  𝛥𝑣𝑟 = 𝛥𝑉𝑟 , one can rewrite the continuity equation (13) as 

Δ𝑢𝑟

Δ𝑥𝑟

𝜕 𝑢∗

𝜕𝑥∗ 
+
Δ𝑢𝑟

Δ𝑦𝑟

𝜕 𝑣∗

𝜕𝑦∗
= 0  , or 

𝜕 𝑢∗

𝜕𝑥∗
+
𝜕 𝑣∗

𝜕𝑦∗ 
= 0   (B- 3) 

The momentum equations, (14), become the following non-dimensional form 

 𝜌 (
Δ𝑉𝑟

Δ𝑡𝑟

𝜕𝑢∗ 

𝜕𝑡∗
+
Δ𝑉𝑟

2

𝑙𝑟
𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+
Δ𝑉𝑟

2

𝑙𝑟
𝑣∗

𝜕𝑢∗

𝜕𝑦∗
) = −

Δ𝑝𝑟

𝑙𝑟

∂𝑃∗

𝜕𝑥∗
+
𝜇Δ𝑉𝑟

𝑙𝑟
2 (

𝜕2𝑢∗

𝜕𝑥∗2
+
𝜕2𝑢∗

𝜕𝑦∗2
) , 

𝜌 (
Δ𝑉𝑟

Δ𝑡𝑟

𝜕𝑣∗

𝜕𝑡∗
+
Δ𝑉𝑟

2

𝑙𝑟
𝑢∗

𝜕𝑣∗

𝜕𝑥∗
+
Δ𝑉𝑟

2

𝑙𝑟
𝑣∗

𝜕𝑣∗

𝜕𝑦∗
) = −

Δ𝑝𝑟

𝑙𝑟

∂𝑃∗

𝜕𝑦∗
+
𝜇Δ𝑉𝑟

𝑙𝑟
2 (

𝜕2𝑣∗

𝜕𝑥∗2
+
𝜕2𝑣∗

𝜕𝑦∗2
)  

 

(B- 4) 

Dividing equations (B- 4) by 
𝜇ΔVr

𝑙𝑟
2   provides a unit coefficient for the viscous term, and one obtains 

𝜌𝑙𝑟
2

𝜇Δ𝑡𝑟

𝜕𝑢∗ 

𝜕𝑡∗
+
𝜌𝑙𝑟Δ𝑉𝑟

𝜇
(𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
) = −

𝑙𝑟Δ𝑝𝑟

𝜇Δ𝑉𝑟

  ∂𝑃∗

𝜕𝑥∗
+ (

𝜕2𝑢∗

𝜕𝑥∗2
+
𝜕2𝑢∗

𝜕𝑦∗2
) , 

𝜌𝑙𝑟
2

𝜇Δ𝑡𝑟

𝜕𝑣∗

𝜕𝑡∗
+
𝜌𝑙𝑟Δ𝑉𝑟

𝜇
(𝑢∗

𝜕𝑣∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑣∗

𝜕𝑦∗
) = −

𝑙𝑟Δ𝑝𝑟

𝜇Δ𝑉𝑟
 
∂𝑃∗

𝜕𝑦∗
+ (

𝜕2𝑣∗

𝜕𝑥∗2
+
𝜕2𝑣∗

𝜕𝑦∗2
)   

(B- 5) 

 

Substituting 
𝜌Δ𝑉𝑟𝑙𝑟

𝜇
  as the Reynolds number results in 

𝜌𝑙𝑟
2

𝜇Δ𝑡𝑟

𝜕𝑢∗

𝜕𝑡∗
+ 𝑅𝑒 (𝑢

∗ 𝜕𝑢
∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
) = −

𝑙𝑟Δ𝑝𝑟

𝜇Δ𝑉𝑟

∂𝑃∗

𝜕𝑥∗
+ (

𝜕2𝑢∗

𝜕𝑥∗2
+
𝜕2𝑢∗

𝜕𝑦∗2
),  

 
𝜌𝑙𝑟
2

𝜇Δ𝑡𝑟

𝜕𝑣∗

𝜕𝑡∗
+ 𝑅𝑒 (𝑢

∗ 𝜕𝑣
∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑣∗

𝜕𝑦∗
) = −

𝑙𝑟Δ𝑝𝑟

𝜇Δ𝑉𝑟

∂𝑃∗

𝜕𝑦∗
+ (

𝜕2𝑣∗

𝜕𝑥∗2
+
𝜕2𝑣∗

𝜕𝑦∗2
)  

 

(B- 6) 

The non-dimensional boundary conditions applied to the flow field are 𝑃∗|𝑅1−𝑅4 = 0,  
𝜕𝑢∗

𝜕𝑥∗
|
𝑅1,𝑅3

=

𝜕𝑣∗

𝜕𝑥∗
|
𝑅1,𝑅3

= 0,  and 
𝜕𝑢∗

𝜕𝑦∗
|
𝑅2,𝑅4

=
𝜕𝑣∗

𝜕𝑦∗
|
𝑅2,𝑅4

= 0. The initial conditions are also taken as 𝑢∗, 𝑣∗|𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

0.The slip wall velocities for 𝑢𝑤1,3
∗ =

𝑢𝑤1,3−𝑢𝑟

ΔVr 
. Substituting electroosmotic velocity 𝑢𝑤1,3 =

𝜇𝑒𝑜𝜕𝜙

𝜕𝑥
 for 
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the wall slip boundaries, one will get 𝑢𝑤1,3
∗ =

(𝜇𝑒𝑜𝛥𝜙𝑟/𝛥𝑥𝑟 ) 
𝜕𝜙∗

𝜕𝑥∗
 − 𝑢𝑟

ΔVr 
 and 𝑣𝑤1,3

∗ = 0. Similarly for 𝑊2,𝑊4, 

we have 𝑢𝑤2,4
∗ = 0 and  𝑣𝑤2,𝑤4

∗   =
(𝜇𝑒𝑜𝛥𝜙𝑟/𝛥𝑦𝑟 ) 

𝜕𝜙∗

𝜕𝑦∗
 − 𝑣𝑟

ΔVr 
  .  

 In the non-dimensional Navier-Stokes (N-S) equations (B- 5), the coefficient of the pressure term is 

equal to 
𝑙𝑟Δ𝑝𝑟

𝜇Δ𝑉𝑟
. By choosing Δ𝑝𝑟 =

𝜇Δ𝑉𝑟

𝑙𝑟
, the coefficient of the pressure term becomes one. As shown in 

equations (B- 5), this coefficient comes from scaling the viscous term to one, through dividing the N-

S terms by 
𝜇Δ𝑉𝑟

𝑙𝑟
2 . Considering (10) and (11), the choice for Δ𝑝𝑟 is Δ𝑝𝑟 =

𝜇Δ𝑉𝑟

𝑙𝑟
 . 

Non-Dimensionalization of Concentration Field Equations and 

Boundary Conditions 

 

Non-dimensionalization of equation (16) for the concentration field yields: 

Δ𝑐𝑟

Δ𝑡𝑟
 
𝜕𝑐∗

𝜕𝑡∗
+
Δ𝑉𝑟Δ𝑐𝑟

𝑙𝑟
[(𝑢 

∗ + 𝑢𝑒𝑝,𝑖
∗ ) 

𝜕𝑐𝑖
∗

𝜕𝑥∗
+ (𝑣 

∗ + 𝑣𝑒𝑝,𝑖
∗ ) 

𝜕𝑐𝑖
∗

𝜕𝑦∗
] =

𝐷𝑖

𝑙𝑟
2 Δ𝑐𝑟 (

𝜕2𝑐𝑖
∗

∂𝑥∗
2 +

𝜕2𝑐𝑖
∗

∂𝑦∗
2)  (B- 7) 

Dividing (B- 7) by 
𝐷𝑖

𝑙𝑟
2  and rewriting 

ΔVrlr

𝐷𝑖
=
ΔVrlr

𝜈

𝜈

𝐷𝑖
 which is 𝑅𝑒𝑟 𝑆𝑐𝑖, or Peclet number, 𝑃𝑒𝑖 , one 

obtains 

lr
2

Δ𝑡𝑟𝐷𝑖
 
𝜕𝑐∗

𝜕𝑡∗
+ 𝑃𝑒𝑖  [(𝑢 

∗ + 𝑢𝑒𝑝,𝑖
∗ ) 

𝜕𝑐𝑖
∗

𝜕𝑥∗
+ (𝑣 

∗ + 𝑣𝑒𝑝,𝑖
∗ )

𝜕𝑐𝑖
∗

𝜕𝑦∗
] = (

𝜕2𝑐𝑖
∗

∂𝑥∗
2 +

𝜕2𝑐𝑖
∗

𝜕𝑦∗
2)  (B- 8) 

The boundary conditions applied to the concentration field at the reservoirs are 𝑐𝑖,𝑅1
∗ =

𝑐𝑖,𝑅1−𝑐𝑟 

Δ𝑐𝑟
,  𝑐𝑖,𝑅2,𝑅4 

∗

 
= 0 , 

𝜕𝐶𝑖
∗

𝜕𝑥∗
|
𝑅3
= 0, and 

𝜕𝐶∗

𝜕𝑛∗
|
walls

= 0 for impermeable walls. The initial condition is 

shown by 𝑐𝑖
∗|𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0. 

Problem Parameters  

The contributing parameters in this problem are listed in Table B- 2, based on the presented non-

dimensional equations and boundary conditions. 
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Table B- 2: List of parameters 

Parameters in the problem  𝑥𝑟, 𝑦𝑟 , 𝑡𝑟,  𝜙𝑟, 𝑢𝑟,𝑣𝑟,𝑐𝑟,𝑙r(Δ𝑥𝑟, Δ𝑦𝑟) 
𝛥𝜙𝑟, Δ𝑝𝑟 , Δ𝑡𝑟, ΔVr(Δ𝑢𝑟, Δ𝑣𝑟), Δ𝑐𝑟 

Parameters with preliminary choices  𝑥𝑟, 𝑦𝑟 , 𝑡𝑟,𝑢𝑟, 𝑣𝑟, Δ𝑝𝑟 

 

In the following, the parameters for the geometry, potential field, flow field, and concentration field 

are explored. 

Geometric parameters 𝒙𝒓, 𝒚𝒓 

 

In order to do the non-dimensionalization of the geometric parameters, the reference parameters 

need to be determined. Taking the center of cross-linked channels as the origin, 𝑥𝑟 = 𝑦𝑟 = 0, there is 

a little impact of this arbitrary choice on our problem, thus we non-dimensionalize the geometric 

parameters as 𝑥∗ =
𝑥

Δ𝑥𝑟
, 𝑦∗ =

𝑦

Δ𝑥𝑟
 . 

Potential field parameters  𝝓𝒓, 𝚫𝝓𝒓 

The non-dimensional potential 𝜙  
∗ =

𝜙−𝜙𝑟

 𝛥𝜙𝑟
 holds at each reservoir, and the choices of 𝜙𝑟 =

𝜙3 and Δ𝜙𝑟 = 𝜙1 − 𝜙3 simplify the boundary conditions and reflect the effect of applied potential as 

a key parameter in the injection phase, one that controls the sample progression along the channel. For 

the injection phase, voltages are primarily applied at reservoirs 𝑅1 and  𝑅3. If 𝑅3 is set to 𝜙3, then by 

applying various potentials at 𝑅1, the non-dimensional 𝜙1
∗and 𝜙3

∗ become one and zero, respectively. 

This choice dramatically reduces the number of combinations/permutations necessary to fully grasp the 

influence of applied potential on injection and separation. 

Flow field parameters 𝒕𝒓, 𝒖𝒓, 𝒗𝒓, 𝚫𝑽𝒓, 𝚫𝑷𝒓 

In this transient problem, the initial time is set to 𝑡𝑟 = 0, meaning that the initial time is before 

any application of voltage. For the velocity reference, because the problem is non-linear, particularly 

in the coupling between the flow field and the concentration field, an absolute reference simplifies the 

equations and their coupling. Therefore, the reference velocities are assumed to be 𝑢𝑟 = 𝑣𝑟 = 0. 

Another possible choice for the reference velocity would be the electroosmotic wall velocities, but there 
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is no uniform average velocity at the walls, so the absolute zero velocity is assumed as the reference 

velocity. The fluid is driven by the electroosmotic velocity at the boundaries with the applied voltages 

and electric field acting as driving parameters. Only in the vicinity of the cross will the flow penetrate 

the separation channel through a balance of shear forces and induced pressure. The driving velocity 

along the channel is the electroosmotic velocity, thus, it is an obvious choice for the velocity scale 

based on the nominal applied electric field, i.e. Δ𝑉𝑟 = 𝜇𝑒𝑜𝐸𝑟 = 𝜇𝑒𝑜
Δ𝜙𝑟

𝐿1+𝐿3
. For a typical microchannel, 

the injection channel length is 8 − 10 mm, the difference in the applied potential at 𝑅1 and 𝑅3  100 −

300 V, and 𝜇𝑒𝑜 is in the order of 10−8. Thus, the velocity scale will be on the order of  Δ𝑉𝑟 = 𝜇𝑒𝑜𝐸𝑟 =

𝜇𝑒𝑜
Δ𝜙

𝐿1+𝐿3
 = (10−8)

m2

s
(
200 V 

10−2
) = 0.2 

mm

s
 or thereabouts. 

Concentration field parameters 𝒄𝒓, 𝚫𝒄𝒓 

Initially, the channels and reservoirs, except for R1, are filled with the buffer solution, which has 

zero concentration, and the sample, injected at 𝑅1 with 𝑐𝑖,𝑅1, flows and diffuses into the channel. As a 

consequence, the reference concentration is set at 𝑐𝑟 = 0. As shown in Figure B- 1, for most of the 

problem, 𝑐𝑖,𝑅1 is the concentration flowing and diffusing into the buffer in the channels.  

 

 

Figure B- 1: Sample concentration along the centerline of the injection channel (t=4.5s) 

Taking   Δ𝑐𝑟 = 𝑐𝑖,𝑅1 − 𝑐𝑟 = 𝑐𝑖,𝑅1 simplifies the boundary conditions at 𝑅1 to 𝑐𝑖,𝑅1
∗ = 1 and 𝑐𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

∗ =

0. The parameters with obvious choices are listed Table B- 3. In this table, there are also two 

remaining parameters, Δ𝑡𝑟 and 𝑙𝑟, with different choices and consequences. 
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Table B- 3: Parameters 

 
Parameters with obvious choices 

 𝑥𝑟 = 0, 𝑦𝑟 = 0 
Δ𝑝𝑟 =

𝜇Δ𝑉𝑟
𝑙𝑟

 

 𝜙𝑟 = 𝜙3 𝛥𝜙𝑟 = 𝜙1 − 𝜙3 
𝑢𝑟 = 0, 𝑣𝑟 = 0 ΔVr(Δ𝑢𝑟, Δ𝑣𝑟) = 𝑉𝑒𝑜 

 𝑐𝑟 = 0   Δ𝑐𝑟 = 𝑐𝑖,𝑅1 

Parameters with non-obvious choices 𝚫𝒕𝒓, 𝐥𝐫(𝚫𝒙𝒓, 𝚫𝒚𝒓) 

 

Time scale 𝜟𝒕𝒓- Momentum consideration 

 

The time scale 𝛥𝑡𝑟 comes from the non-dimensional momentum and concentration equations. 

In this subsection, momentum consideration is explored, and in the next subsection, concentration 

consideration is explored. The non-dimensional momentum equation, using the choice for Δ𝑝𝑟, Δ𝑝𝑟 =

𝜇Δ𝑉𝑟

𝑙𝑟
 is 

𝑅𝑒 (
𝑙𝑟

Δ𝑉𝑟Δ𝑡𝑟

𝜕𝑢∗⃗⃗⃗⃗ 

𝜕𝑡∗
+ 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑢∗⃗⃗⃗⃗ ) = −

Δ𝑝𝑟𝑙𝑟
𝜇Δ𝑉𝑟

∇∗𝑃∗ + ∇∗2𝑢∗⃗⃗⃗⃗  (B- 9) 

On the left hand side of (B- 9), the Reynolds number 
𝜌𝑙𝑟Δ𝑉𝑟

𝜇
 appears as the coefficient of the inertia 

term. There are two possible choices for the reference time scale: (𝑖) the diffusive time scale and (𝑖𝑖) 

the convective time scale. 

Diffusive time scale: The coefficient of the transient term in N-S equation (B- 5) is 
𝜌𝑙𝑟
2

𝜇Δ𝑡𝑟
, which suggests 

a possible diffusive time scale of  Δ𝑡𝑟,𝑑𝑖𝑓𝑓−𝜈 =
𝜌𝑙𝑟
2

𝜇
=
𝑙𝑟
2

𝜈
, This renders the coefficient of the transient 

term unity and reflects the diffusion of momentum through shear forces. The coefficient of the inertia 

term is the Reynolds number, 𝑅𝑒 =
𝜌𝑙𝑟Δ𝑉𝑟

𝜇
, and, by picking this diffusive time scale, the non-

dimensional momentum equation becomes 

𝜕𝑢∗⃗⃗⃗⃗ 

𝜕𝑡∗
+ 𝑅𝑒( 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑢∗⃗⃗⃗⃗ ) = −

Δ𝑝𝑟𝑙𝑟
𝜇Δ𝑉𝑟

∇∗𝑃∗ + ∇∗2𝑢∗⃗⃗⃗⃗  (B- 10) 

Convective time scale: On the other hand, the coefficient of the transient term is 𝑅𝑒
𝑙𝑟

Δ𝑉𝑟Δ𝑡𝑟
. This 

suggests choosing a convective time scale, Δ𝑡𝑟,𝑐𝑜𝑛. =
𝑙𝑟

Δ𝑉𝑟
, which reflects the time scale for convective 
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transport of species .  The dominant terms in the N-S equation and the subsequent choice of time scale 

are discussed in the following. For the fluid flow in the microchannel, which is flow with a balance 

between inertia, pressure, and viscous forces, with diffusion largely across the channel with length 

scale 𝑤ℎ, the Reynolds number is defined as 𝑅𝑒 =
𝑤ℎΔ𝑉𝑟

𝜈
. The sample moves toward the cross and along 

the injection channel with the electroosmotic velocity scale Δ𝑉𝑟 = 𝜇𝑒𝑜𝐸𝑟 = 𝜇𝑒𝑜
Δ𝜙𝑟

𝐿1+𝐿3
 on the order of 

0.2 
mm

s
 and this leads to a Reynolds number on the order of 𝒪(10−2). For such a low Reynolds, the 

diffusive time scale of Δ𝑡𝑟,𝑑𝑖𝑓𝑓−𝜈 =
𝑙𝑟
2

𝜈
=
(50 𝑥 10−6)

2

1𝑥10−6
= 2.5 ms  is considerably smaller than that for the 

migration of the sample, for which the convective time scale is Δ𝑡𝑟,𝑐𝑜𝑛. =
𝑙𝑟

Δ𝑉𝑟
=
𝐿1+𝐿3

Δ𝑉𝑟
≅

10−2

0.2𝑥10−3
≅

50 s. Thus, by taking a convective time scale and Δ𝑝𝑟 =
𝜇Δ𝑉𝑟

𝑙𝑟
, the left hand side of the momentum 

equation (B- 9) vanishes, which results in −∇∗𝑃∗ + ∇∗2𝑢∗⃗⃗⃗⃗ = 0. Consequently, (B- 9) reduces to a 

steady-state momentum equation with the pressure and viscous terms on the right hand side as the 

balance of pressure forces and shear forces. Depending on our choice of time scale, the non-dimensional 

momentum equation appears in different forms. Moreover, the choice of the length scale 𝑙𝑟 not only 

affects our time scale, but also the non-dimensionalization of our geometric boundaries, governing 

equations, and boundary conditions for all three potential, flow and concentration fields. There are two 

choices for the geometric length scales: (i) the length of the injection channel in total 𝐿1 + 𝐿3 (or even 

part of it, 𝐿1), (ii) the width of the separation channel 𝑙𝑟 = 𝑤𝑣. As previously shown, the convective 

time scale is Δ𝑡𝑟,𝑐𝑜𝑛. =
𝑙𝑟

Δ𝑉𝑟
≅ 50 s when the sample moves from 𝑅1 to 𝑅3. In contrast, a momentum 

diffusive time scale is Δ𝑡𝑟,𝑑𝑖𝑓𝑓−𝑣 =
𝑙𝑟
2

𝜈
≅ 2.5 ms through shear forces and this time scale is significantly 

smaller than the time that a sample is migrating along the channel. Consideration of the two choices, 

based solely on momentum considerations, suggests that the problem dynamics is such that the cross-

channel diffusion (shear) establishes itself very quickly and that the problem is largely one of a quasi-

steady balance between electroosmotic convection, diffusion, and induced pressure phenomena, and 

that the convective time scale is the preferable one to use. This situation is further examined below 

from the perspective of species transport. 



 

176 

 

Time Scale 𝜟𝒕𝒓- Concentration Consideration 

The concentration equation in non-dimensional form is the following. 

𝑙r
2

Δ𝑡𝑟𝐷𝑖
 
𝜕𝑐∗

𝜕𝑡∗
+
Δ𝑉𝑟𝑙𝑟
𝐷𝑖

 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑐∗ = ∇∗2𝑐𝑖
∗ (B- 11) 

Scaling the first term coefficient in (B- 11), 
lr
2

Δ𝑡𝑟𝐷𝑖
, to unity we have the diffusive time scale; when 𝑙𝑟 =

𝑤𝑣, then Δ𝑡𝑟,𝑑𝑖𝑓𝑓−𝐷 =
𝑤𝑣
2

𝐷𝑖
=
(50𝑥10−6)

2

1𝑥10−10
= 25 s. The reason we use 𝑙𝑟 = 𝑤𝑣, in the diffusive time scale, 

comes from the solution of the concentration solution for two semi-infinite bodies coming into contact 

Figure B- 2.  The solution to a finite body is 𝑐(𝑥, 𝑡) =
𝑐0

2
erfc (

𝑥

2√𝐷𝑖𝑡
), where erfc = 1 − erf, and the 

interface concentration is maintained at 
𝑐0

2
. This solution provides for diffusion of the sample and buffer 

solution on both sides of the interface. As illustrated in Figure B- 3, in the vicinity of the interface, the 

sample is dispersed into the vertical channel, but the main goal is to have a well-defined, distinct sample 

plug at the cross in preparation for the separation phase. Noting that erfc(0.5) = 0.48, indicating 

significant diffusion has occurred, we then use 
𝑥

2√𝐷𝑖𝑡
 = 0.5 as a guide. As noted above, the convection 

time scale for traversing the entire channel is 50 s, so the time for the sample to reach the cross is about 

25 s. Using t=25 s, and 𝐷𝑖 = 10
−10𝑚2

𝑠⁄  , the value of x corresponding to 
𝑥

2√𝐷𝑖𝑡
 = 0.5 is 𝑥 = 50 𝜇, 

which is the same order as 𝑤𝑣. The solution to the concentration equation shows that at the interface, 

𝑥 = 0, there is half of the sample’s initial concentration, 𝑐(0, 𝑡) =
𝑐0

2
, that is diluted on both sides with 

the buffer solution. From the above, 𝑤𝑣 is an appropriate length scale to use in the diffusive time scale. 

 

Figure B- 2: Illustration of the diffusion process and scales of diffusion (Gulliver 2007) 
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Figure B- 3: A sample concentration contour for a horizontal injection at t=4.5 and 9s 

Similarly to the detailed description of time scale for the momentum equation, the coefficient of the 

second term in (B- 11) is the Peclet number, 𝑃𝑒 =
Δ𝑉𝑟𝑙𝑟

𝐷𝑖
. Implementing a diffusive time scale of  

Δ𝑡𝑟,𝑑𝑖𝑓𝑓−𝐷 =
𝑤𝑣
2

𝐷𝑖
 , then results in 

𝜕𝑐∗

𝜕𝑡∗
+ 𝑃𝑒( 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑐∗) = ∇∗2𝑐𝑖

∗ (B- 12) 

Conversely, extracting the 𝑃𝑒 number from the coefficient of the transient term, 
lr
2

Δ𝑡𝑟𝐷𝑖
, we obtain 

lr
2

Δ𝑡𝑟𝐷𝑖
=
Δ𝑉𝑟𝑙𝑟

𝐷𝑖

𝑙𝑟

Δ𝑉𝑟Δ𝑡𝑟
= 𝑃𝑒

𝑙𝑟

Δ𝑉𝑟Δ𝑡𝑟
. This again suggests a choice for the convective time scale of Δ𝑡𝑟 ≅

50 s. The concentration equation then becomes 

𝑃𝑒 (
𝜕𝑐∗

𝜕𝑡∗
+ 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑐∗) = ∇∗2𝑐𝑖

∗ (B- 13) 

A comparison of the diffusive and convective time scales through concentration and momentum 

equations reveals that the two time scales are of the same order. A simple calculation of the 𝑃𝑒 number 

will also result in 𝑃𝑒 =
Δ𝑉𝑟𝑙𝑟

𝐷𝑖
=
(0.2𝑥10−3 

𝑚

𝑠
)50𝑥10−6

10−10 
𝑚2

𝑠

= 100, which is a significant number compared to 

other coefficients scaled to one. Regardless of the choice of time scale, the Peclet number is a significant 

coefficient and the concentration equation will require the transient, inertia and diffusion terms. Since 

the net flux is independent of the time scale, the rate of concentration change is a net flux of the diffusion 

term and convection term multiplied by a significant Peclet number and can be written as  
𝜕𝑐∗

𝜕𝑡∗
=
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∇∗2𝑐𝑖
∗ − 𝑃𝑒( 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑐∗). Using the convective time scale, the rate of concentration change 

becomes  
𝜕𝑐∗

𝜕𝑡∗
=

1

𝑃𝑒
(∇∗2𝑐𝑖

∗) − 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑐∗, which reveals the insignificance of diffusion, by having a 

diffusion coefficient of 
1

𝑃𝑒
 compared to the convective term in changing the net concentration flux. The 

net effect of changing the time scale is to rate of passage of time. 

 

Conclusion for 𝚫𝒕𝒓 and Length scale: 𝒍𝒓(𝚫𝒙𝒓, 𝚫𝒚𝒓) 

As discussed above, both convective and diffusive time scales are of the same order. This 

means that during the migration of a sample along the injection channel over 25 s, it takes about 25 s 

for the sample to diffuse the width of the channel. In other words, for most cases, depending on the 

diffusivity and electroosmotic mobility of the sample, the convection happens fat about the same rate 

as diffusion and the convective time scale captures the dynamics of the sample transit during injection. 

Therefore, by choosing a convective time scale of Δ𝑡𝑟 =
𝑙𝑟

Δ𝑉𝑟
, the momentum and concentration 

equations will have the following final forms: 

−∇∗𝑃∗ + ∇∗2𝑢∗⃗⃗⃗⃗ = 0 (B- 14) 

𝜕𝑐𝑖
∗

𝜕𝑡∗
+ 𝑢∗⃗⃗⃗⃗ ∙ ∇∗𝑐𝑖

∗ =
1

𝑃𝑒
∇∗2𝑐𝑖

∗ (B- 15) 

As previously discussed at the end of length scale section, there are two options for length scale: the 

length of injection channel (or even first part of it before the cross), 𝐿1 + 𝐿3 (or 𝐿1), or the width of the 

separation channel, 𝑤𝑣, (here both channels have the same width). Much of the literature takes the width 

of the microchannel as the reference length scale.  Ren and Li, [127] also Erikson and Li [128] all took 

the width of the channel as the length scale in their non-dimensionalization of the problem. Yang et al. 

[129] took the height of the channels. Fu et al. [23] presented non-dimensional equations by taking the 

width of the microchannel as their reference length scale, and half of the channel width was considered 

for the length scale to non-dimensionalize the problem in research of Storey et al.[130]. The hydraulic 

diameter of the rectangular channel was taken as the length scale for a more convenient comparison of 

channels with different shapes [131], [132]. Table B- 4 shows a summary of the ranges for time scales 

and related parameters. 
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Table B- 4: Summary of Parameter Ranges 

𝛥𝑡𝑟,𝑑𝑖𝑓𝑓−𝐷 =
𝑙𝑟
2

𝐷𝑖
 𝛥𝑡𝑟,𝑐𝑜𝑛. =

𝑙𝑟
𝛥𝑉𝑟

 𝑅𝑒 =
Δ𝑉𝑟𝑙𝑟
𝜈

 𝑃𝑒 =
Δ𝑉𝑟𝑙𝑟
𝐷𝑖

 

𝑙𝑟 = 50𝑥10
−6 m 𝑙𝑟 = 10

−2 m 𝑙𝑟: 50𝑥10
−6 m 𝑙𝑟 = 50𝑥10

−6 m 

𝐷𝑖 = 10
−10  

m2

s
 Δ𝑉𝑟 = 𝜇𝑒𝑜𝐸𝑟 = 10

−8
𝑚2

𝑉. 𝑠
∗
200 V

10−2 m

= 0.2 
mm

s
 

Δ𝑉𝑟 = 0.2 
mm

s
 Δ𝑉𝑟 = 0.2 

mm

s
 

𝜈: 1𝑥10−6  
m2

s
 𝐷𝑖 = 10

−10  
m2

s
 

25 s 50 s 0.01 100 

 

In this study, regarding to the time scale conclusion and the choice of length scale, two cases including 

convective time scale, geometric length scale, and electroosmotic velocity scale are compared in the 

following.  

1: {
 𝛥𝑡𝑟 =

𝑙𝑟

Δ𝑉𝑟
   ; 𝑙𝑟 = 𝑤𝑣  
 

ΔVr = 𝑢𝑒𝑜𝑟 = 𝜇𝑒𝑜𝐸𝑟

               2: {
 𝛥𝑡𝑟 =

𝑙𝑟

Δ𝑉𝑟
   ; 𝑙𝑟 = 𝐿1 + 𝐿3 
 

ΔVr = 𝑢𝑒𝑜𝑟 = 𝜇𝑒𝑜𝐸𝑟          

 
(B- 16) 

 

The complete set of non-dimensional equations is presented in (B- 17). 

𝜕2𝜙∗

𝜕2𝑥∗
+
𝜕2𝜙∗

𝜕2𝑦∗
= 0     

𝜕 𝑢∗

𝜕𝑥∗
+
𝜕 𝑣∗

𝜕𝑦∗ 
= 0  

𝜕2𝑢∗

𝜕𝑥∗2
+
𝜕2𝑢∗

𝜕𝑦∗2
=
∂𝑃∗

𝜕𝑥∗
  

𝜕2𝑣∗

𝜕𝑥∗2
+
𝜕2𝑣∗

𝜕𝑦∗2
=
∂𝑃∗

𝜕𝑦∗
  

𝜕𝑐𝑖
∗

𝜕𝑡∗
+ (𝑢 

∗ + 𝑢𝑒𝑝,𝑖
∗ ) 

𝜕𝑐𝑖
∗

𝜕𝑥∗
+ (𝑣 

∗ + 𝑣𝑒𝑝,𝑖
∗ )

𝜕𝑐𝑖
∗

𝜕𝑦∗
=

1

𝑃𝑒𝑖 
(
𝜕2𝑐𝑖

∗

𝜕2𝑥∗
+
𝜕2𝑐𝑖

∗

𝜕2𝑦∗
)  

 

 

(B- 17) 

 

Having 𝑙𝑟 = 𝑤𝑣, leads to  𝑃𝑒𝑖 = 𝑃𝑒𝑖,𝑤𝑣 =
ΔVr𝑤𝑣

Di
 that simplifies to 𝑃𝑒𝑖,𝑤𝑣 =

𝜇𝑒𝑜 Δϕr 

Di

𝑤𝑣

𝐿1+𝐿3
. 

Alternatively, taking the other length scale, 𝑙𝑟 = 𝐿1 + 𝐿3, results in 𝑃𝑒𝑖 = 𝑃𝑒𝑖,𝐿1+𝐿3 =
ΔVr(𝐿1+𝐿3)

Di
 

which simplifies to 𝑃𝑒𝑖,𝐿1+𝐿3 =
𝜇𝑒𝑜 Δϕr 

Di
. Depending on the choice of 𝑙𝑟, the geometric parameters of 

Table B- 1 are divided by 𝑤𝑣 or 𝐿1 + 𝐿3 and will take on differing values. Table B- 5 lists the non-
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dimensional geometric parameters and shows that by picking the width of the separation channel as 

the length scale in the problem, we have one fewer geometric parameter since 𝑤𝑣
∗ = 1. 

Table B- 5: Non-Dimensional Geometric Parameters 

𝒍𝒓 = 𝒘𝒗 𝐿1
∗ =

𝐿1

𝑤𝑣
 , 𝐿2

∗ =
𝐿2

𝑤𝑣
, 𝐿3
∗ =

𝐿3

𝑤𝑣
 𝐿4

∗ =
𝐿4

𝑤𝑣
 ,𝑤ℎ

∗ =
𝑤ℎ

𝑤𝑣
 ,𝑤𝑣

∗ = 1 

𝒍𝒓 = 𝑳𝟏 + 𝑳𝟑 𝐿1
∗ =

𝐿1

𝐿1+𝐿3
, 𝐿2
∗ =

𝐿2

𝐿1+𝐿3
 , 𝐿3

∗ =
𝐿3

𝐿1+𝐿3
 𝐿4

∗ =
𝐿4

𝐿1+𝐿3𝑣
, 𝑤ℎ

∗ =
𝑤ℎ

𝐿1+𝐿3
 , 𝑤𝑣

∗ =
𝑤𝑣

𝐿1+𝐿3
 

 

Furthermore, as shown in Table B- 6, the choice of length scale doesn't affect the electric potential 

parameters and two parameters of 𝜙𝑅2
∗   and 𝜙𝑅4

∗  are the controlling parameters in the injection phase. 

In separation phase 𝜙𝑅1
∗   and 𝜙𝑅3

∗  are the controlling parameters. (Figure B- 4) 

Table B- 6: Non-Dimensional Potential Parameters 

𝒍𝒓 = 𝒘𝒗 𝜙𝑅2,𝑅4−𝑖𝑛𝑗
∗  (For specified voltages instead of floating B.C.) 

𝒍𝒓 = 𝑳𝟏 + 𝑳𝟑 𝜙𝑅2,𝑅4−𝑖𝑛𝑗
∗  (For specified voltages instead of floating B.C.) 

 

Figure B- 4: Controlling potentials at injection and separation 

For the flow boundary conditions, the non-dimensional slip wall velocities in Table B- 7 include a 

geometric parameter for the case where 𝑙𝑟 = 𝑤𝑣, whereas there is no geometric parameter for the case 

where the length scale is 𝑙𝑟 = 𝐿1 + 𝐿3. 

Table B- 7: Non-Dimensional Velocity Parameters 

𝒍𝒓 = 𝒘𝒗 𝑢𝑤1,3
∗ =

𝐿1+𝐿3

𝑤𝑣

𝜕𝜙∗

𝜕𝑥∗
  , 𝑣𝑤2,4

∗ =
𝐿1+𝐿3

𝑤𝑣

𝜕𝜙∗

𝜕𝑦∗
   

 

𝒍𝒓 = 𝑳𝟏 + 𝑳𝟑 

---      

(
𝜕𝜙∗

𝜕𝑥∗
 and 

𝜕𝜙∗

𝜕𝑦∗
) 
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Finally, the contributing non-dimensional parameters in the concentration equation and boundary 

conditions are shown for both length scales in Table B- 8. 

Table B- 8: Non-Dimensional Concentration Parameters 

𝒍𝒓 = 𝒘𝒗 𝑢𝑒𝑝,𝑖
∗ = −𝜇𝑒𝑝,𝑖 

∗ 𝐿1+𝐿3

𝑤𝑣

𝜕𝜙∗

𝜕𝑥∗
     ,  𝜇𝑒𝑝,𝑖 

∗ =
𝜇𝑒𝑝,𝑖 

𝜇𝑒𝑜
  , 𝑃𝑒𝑖 =

𝜇𝑒𝑜 Δϕr 

Di

𝑤𝑣

𝐿1+𝐿3
  

𝒍𝒓 = 𝑳𝟏 + 𝑳𝟑 𝑢𝑒𝑝,𝑖
∗ = −𝜇𝑒𝑝,𝑖 

∗ 𝜕𝜙∗

𝜕𝑥∗
 , 𝜇𝑒𝑝,𝑖 

∗ =
𝜇𝑒𝑝,𝑖 

𝜇𝑒𝑜
 , 𝑃𝑒𝑖 =

𝜇𝑒𝑜 Δϕr 

Di
 

 

Both methods have the same number of parameters, 11. The first and second approach have 5 vs 6 

geometric parameters and, 1 and 0 geometric parameters, in the velocity boundary conditions, 

respectively. Both methods have 2 potential parameters and 3 concentration parameters. The equal 

number of parameters is in accord with the Buckingham pi theorem. The first method, 𝑙𝑟 = 𝑤𝑣, will be 

adopted here which mathematically has slightly easier geometric boundary specification.  

 

Non-dimensionalization Conclusion 

      The current research presents a detailed examination of the non-dimensionalization of the governing 

equations and boundary conditions for the design of a microchip for sample injection and separation 

through electrophoresis. From the two phases of sample injection and separation, the governing 

equations and boundary conditions for the injection phase are specifically considered. The authors’ 

focus is on the injection phase with the objective to develop as distinct, sharp, and clean a sample as 

possible. This objective is in concert with the desire to maximize species separation and resolution.  

The geometric boundaries as well as the equations and boundary conditions for the electric potential, 

fluid flow, and concentration fields are presented in detail. The advantage of the non-

dimensionalization approach is to identify all governing parameters for the problem without making 

preliminary or arbitrary choices. Regarding the mathematics and the physics of the problem, some 

obvious choices are made. The difference in the applied potentials at the injection reservoirs is taken 

as the reference potential scale and the electroosmotic velocity is taken as the velocity scale.  The 

options for a pressure scale are compared and that pressure reference was selected that places the non-

dimensional momentum equations in a canonical form.  In the momentum equations the emergence of 

the Reynolds number and associated typical values renders the inertial and transient terms of the 

equations inconsequential in relation to the viscous and pressure terms. The fluid flow problem is 
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essentially a quasi-steady flow of viscous shear balanced by induced pressure forces subject to the 

incompressibility constraint. Since the initial concentration of the injected sample is known, it is taken 

as the reference concentration scale and is measured against the buffer species concentration of zero. 

The Peclet number for species transport is of sufficient magnitude that the transient and advection terms 

of the species transport equations play a significant role. The complete transient species history must 

be computed starting from an initial non-dimensional species concentration of zero. The options for 

time scale and length scale in the problem are thoroughly discussed. It is shown through momentum 

and concentration considerations, both the convective and diffusive time scales are on the same order 

of magnitude and we choose the convective time scale to makes the math of the problem somewhat 

cleaner. For the length scale option, two scales are considered: the width of the separation channel and 

the length of the injection channel, in its entirety. It is presented that with the former, there is one fewer 

geometric parameter while in in the latter there is one fewer parameter in the velocity boundary 

conditions. With either choice, the number of parameters in the problem formulation is the same. This 

is consistent with the Buckingham pi theorem. The role of non-dimensionalization is to provide 

guidance in the study of microchip design whether the study be numerical or physical. Using the 

dimensionless parameters judiciously, the maximum information can be obtained from the least number 

of experiments, either numerical or physical. This, in turn, saves both time and cost of studies. In a 

similar way, the separation phase formulation is non-dimensionalized, but not presented to avoid 

repetition.  

Numerical Simulation Tool and Solver 

The results of numerical simulations presented in this research are based on using the ANSYS 

CFX software. This CFD tool is appropriate for microfluidics simulations and is based on the finite 

volume method (FVM). In a FVM model, the computational domain is divided in control volumes and 

conservation principles are applied to each control volume. This ensures conservation, both in each cell 

and globally in the domain, and is a great advantage of the FVM. Using unstructured grid is possible 

in FVM, although most of the microfluidic problems have simple geometries, computationally efficient 

enough with structured grid. 
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FVM Discretization 

FVM model falls into two categories of center node based and vertex based models. All the 

governing equations are integrated over each control volume and then discretized to obtain one set of 

algebraic equations for each control volume/cell. In the center node based FVM approach, the value of 

each variable is stored in a node in the center of the cell. However, all the cell faces values are also 

available in discretized form. Interpolation methods are used to obtain approximate values at these 

positions with the impact of numerical stability, convergence rate and accuracy. For the vertex based 

model, which is used in ANSYS CFX, all the solution steps are performed for each vertex (cell corner) 

and the mesh vertices are used to store the variables. Since the control volume includes several mesh 

elements, discretization is done for each element and properties are distributed to the corresponding 

control volumes. Shape function approach is used for properties approximations. 

Pressure-based Coupled Solver 

In the discretized form of the governing equations the pressure and velocity is strongly coupled. 

Pressure distribution is required to solve these equations, and pressure gradients appear in the 

momentum equations. However, the momentum equations can be used to solve for the velocities if the 

pressure is known. Knowing that the continuity equation cannot be used directly to obtain the pressure 

field, the coupled pressure and velocity fields are should solved  in CFD codes. Two main types of 

solvers exist for handling the pressure velocity coupling; segregated solvers and coupled solvers.  A 

segregated solver makes use of a pressure correction equation. Firstly, the momentum equations are 

solved using a guessed pressure. If the resulting velocities do not satisfy the continuity equation a 

pressure correction equation is solved to update the pressure field. With the updated pressure, the 

velocity fields are also updated and this process is repeated until the obtained velocity fields satisfy 

both the momentum equations and the continuity equation. One of the most widely used pressure 

correction schemes is the SIMPLE (Semi Implicit Method for Pressure Linked Equations) scheme. Due 

to the fact that the equations are solved in a subsequent manner, only one discrete equation needs to be 

stored at a time which results in lower memory requirements. However, due to the iterative nature of 

the solution algorithm the convergence rate is often slower.  In a coupled solver like ANSYS CFX, the 

momentum and continuity equations are solved simultaneously. As the discrete system of all equations 

needs to be stored at the same time the memory requirement is larger for a coupled solver and it takes 
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more time to complete one iteration loop. However, in return for taking more time for each iteration 

the total number of iterations to achieve convergence is usually lowered when using a coupled solver 

[133]. 

Geometry and Mesh 

The first geometry and mesh are created in ANSYS Workbench. In this research we consider the 

problem two dimensional, assuming that no changes happens along the depth of the channel. Running 

a 2D simulation is not possible in CFX and the geometry is created in 3D form with the depth of 10𝜇𝑚.  

Figure B-5 shows the first geometry of the studied microchannels. However, for the purpose of 

verification with experiments and also for a symmetric control of the sample, the injection and 

separation channels are switched. All the results in the next chapters are based on the sample injection 

vertically, from 𝑅2 and performing the separation horizontally, in the channels between 𝑅1 and 𝑅3. 

 

Figure B-5: Chip geometry (preliminary study) 

Simulation Set-up and Temporal Analysis Type 

After creating the geometry and generating the mesh, ANSYS CFX-pre is implemented for setting the 

simulation domain, boundary conditions, and the type of temporal analysis, the choice of solver, and 
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algorithms as well as output control parameters. Since the three sets of governing equations including 

the equations for the electric field, flow field and concentration fields are decoupled, the simulations 

for each case includes six files in total, consisting of the three electric, flow and concentration files for 

both injection and separation phases.  The domain material consists of the sample and buffer solution, 

and all the physical properties are selected from the verification case discussed. As mentioned in the 

non-dimensionalization of the governing equations, electric and flow fields are steady state, but the 

concentration field must be solved in the non-steady form. 

Boundary Conditions and Initial Conditions 

Boundary conditions are presented in Figure B-6  and  

 

 

 

 

 

 

 

 

 

Table B-9. 

 

 

Figure B-6: Boundary conditions 
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Table B-9: Boundary Conditions 

name location Boundary type comments 

 

 

𝐶ℎ1 to 𝐶ℎ4 

 

Walls 

 of the injection and 

separation Channels 

Walls with 

zero electrical flux (insulated), 

 slip velocity, and   

zero concentration 

flux(impermeable) 

slip velocity:  

electroosmotic 

velocity 

 

𝑅1 to R4 

Sample and buffer 

reservoirs 

Opening  

open to atmospheric pressure, with 

flow direction normal to boundaries 

Inlet/outlet which is 

defined by the 

applied electric field 

Symmetry Channels front and 

rear surfaces 

Symmetry   

Initial condition for the concentration equation is assumed the original sample concentration for the 

sample reservoir and zero for the buffer solution 

Advection scheme: High resolution 

The advection term requires the integration point values of a variable 𝜑 to be approximated in terms 

of the nodal values of 𝜑 [133]. The advection schemes implemented in ANSYS CFX  [134] can be 

cast in the form: 

𝜑𝑖𝑝 = 𝜑𝑢𝑝 + 𝛽∇𝜑. Δ𝑟  (B- 18) 
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where 𝜑𝑖𝑝 and 𝜑𝑢𝑝 are respectively the value at the integration and upwind points. 𝑟  is the vector from 

the upwind node to the ip. Particular choices for 𝛽 and ∇𝜑 yield different schemes as described below. 

 1st Order Upwind Differencing Scheme: A value of 𝛽 yields a first order Upwind Difference 

Scheme (UDS). This scheme is very robust, but it will introduce diffusive discretization errors 

that tend to smear steep spatial gradients. 

 Specified Blend Factor: By choosing a value for 𝛽 between 0 and 1, and by setting ∇𝜑 equal 

to the average of the adjacent nodal gradients, the discretization errors associated with the UDS 

are reduced. The quantity𝛽∇𝜑. Δ𝑟 , called the Numerical Advection Correction, may be viewed 

as an anti-diffusive correction applied to the upwind scheme. The choice 𝛽 = 1 is formally 

second-order-accurate in space, and the resulting discretization will more accurately reproduce 

steep spatial gradients than first order UDS. However, it is unbounded, and may introduce 

dispersive discretization errors that tend to cause non-physical oscillations in regions of rapid 

solution variation. 

 Central Difference Scheme: With the central difference scheme (CDS), 𝛽 is set to 1 and ∇𝜑 is 

set to the local element gradient. An alternative interpretation is that 𝜑𝑖𝑝 is evaluated using the 

tri-linear shape functions 𝜑𝑖𝑝 = ∑ 𝑁𝑛(𝑆𝑖𝑝, 𝑡𝑖𝑝, 𝑢𝑖𝑝)𝑛 𝜑𝑛. The resulting scheme is also second-

order-accurate, and shares the unbounded and dispersive properties of the Specified Blend 

Factor scheme. An additional undesirable attribute is that CDS may suffer from serious 

decoupling issues. While use of this scheme is not generally recommended, it has proven both 

useful for LES-based turbulence models. 

 Bounded Central Difference Scheme: The central differencing scheme described above is an 

ideal choice in view of its low numerical diffusion. However, it often leads to unphysical 

oscillations in the solution fields. In order to avoid these oscillations, the bounded central 

difference (BCD) scheme can be used as the advection scheme. 

 High Resolution Scheme, which is used here, uses a special nonlinear recipe for 𝛽 at each node, 

computed to be as close to 1 as possible without introducing new extrema. The advective flux 

is then evaluated using the values of 𝛽 and ∇𝜑 from the upwind node. The recipe for 𝛽 is based 

on the boundedness principles used by Barth and Jesperson [135] .This methodology involves 

first computing a 𝜑𝑚𝑖𝑛 and  𝜑𝑚𝑎𝑥 at each node using a stencil involving adjacent nodes 

(including the node itself). Next, for each integration point around the node, equation (B- 18) 
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is solved for 𝛽 to ensure that it does not undershoot  𝜑𝑚𝑖𝑛 or overshoot 𝜑𝑚𝑎𝑥. The nodal value 

for 𝛽  is taken to be the minimum value of all integration point values surrounding the node. 

The value of 𝛽 is also not permitted to exceed 1. This algorithm can be shown to be Total 

Variation Diminishing (TVD) when applied to one-dimensional situations. 

 

 

 

 

Convergence Criteria 

 

Convergence criteria is set to RMS residual. At any stage of a calculation, each equation will 

not be satisfied exactly, and the “residual” of an equation identifies how much the left-hand-side of the 

equation differs from the right-hand-side at any point in space. If the solution is “exact,” then the 

residual is zero. This means that each of the relevant finite volume equations is satisfied precisely. 

However, because these equations only model the physics approximately, this does not mean that the 

solution exactly matches what happens in reality. If a solution is converging, residuals should decrease 

with successive time steps (ANSYS CFX USER’s Guide). The convergence behavior of many matrix 

inversion techniques can be greatly enhanced by the use of a technique called ‘multigrid’. The multigrid 

process involves carrying out early iterations on a fine mesh and later iterations on progressively coarser 

virtual ones. The results are then transferred back from the coarsest mesh to the original fine mesh. 

From a numerical standpoint, the Multigrid approach offers a significant advantage. For a given mesh 

size, iterative solvers are efficient only at reducing errors that have a wavelength of the order of the 

mesh spacing. So, while shorter wavelength errors disappear quite quickly, errors with longer 

wavelengths, of the order of the domain size, can take an extremely long time to disappear. The 

Multigrid Method bypasses this problem by using a series of coarse meshes such that longer wavelength 

errors appear as shorter wavelength errors relative to the mesh spacing. To prevent the need to mesh 

the geometry using a series of different mesh spacing, ANSYS CFX uses Algebraic 

Multigrid.Algebraic Multigrid [136] forms a system of discrete equations for a coarse mesh by 

summing the fine mesh equations. This results in virtual coarsening of the mesh spacing during the 

course of the iterations, and then re-refining the mesh to obtain an accurate solution. This technique 
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significantly improves the convergence rates. Algebraic Multigrid is less expensive than other multigrid 

methods because the discretization of the nonlinear equations is performed only once for the finest 

mesh. ANSYS CFX uses a particular implementation of Algebraic Multigrid called Additive 

Correction. This approach is ideally suited to the CFX-Solver implementation because, it takes 

advantage of the fact that the discrete equations are representative of the balance of conserved quantities 

over a control volume. The coarse mesh equations can be created by merging the original control 

volumes to create larger ones. The merged coarse control volume meshes to be regular, but in general 

their shape becomes very irregular. The coarse mesh equations thus impose conservation requirements 

over a larger volume and in so doing reduce the error components at longer wavelengths. [137]. A 

measure of how well the solution is converged can be obtained by plotting the residuals for each 

equation at the end of each time step. The RMS residual is obtained by taking all of the residuals 

throughout the domain, squaring them, taking the mean, and then taking the square root of the mean. 

This should present an idea of a typical magnitude of the residuals. For the flow and concentration 

fields targeting at 1𝑒 − 6 , whereas it is 1𝑒 − 14 for the electric field [138].  
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