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Neutron interferometry has proved to be a very precise technique formeasuring the quantummechanical phase of a neutron caused
by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the
interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields,
potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron
interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With
recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate
a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just
been commissionedwith higher neutron flux than theNCNR’s older interferometer setup.This new facility is based onQECneutron
interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its
applications to quantum computing, gravity, and material research.

1. Introduction

Thefirst single crystal neutron interferometer ofMach-Zehn-
der type was demonstrated by Rauch et al. in 1974 [1]. A few
months later Colella, Overhauser, and Werner studied the
effects of gravity on a neutron by tilting the interferometer
and observing a gravity induced phase shift [2]. In subsequent
years the experiment was improved and repeated several
times with thorough studies of systematic uncertainties (such
as Sagnac effect and crystallographic stress [3–6]). In recent
years there has been renewed interest in use of single crystal
neutron interferometry to study gravity [7, 8] and also in
proposals for searching for non-Newtonian gravity [9], dark
energy [10, 11], and other forces [12].

2. Neutron Interferometer and
Optics Facility at NIST

The Neutron Interferometer and Optics Facility (NIOF) at
NIST was built during the construction of the guide hall
with vibration isolation in mind. It is placed on a separate
foundation from the guide hall floor and consists of two
vibration isolation stages. The first stage is a 40,000 kg table
suspended on air-springs and controlled via a computer with
micrometer level position. For a more detailed description
of the system see [13]. The second vibration isolation stage
consists of a 1,000 kg table and is not currently in use. The
facility also has sound dumping panels and a temperature
controlled enclosure around interferometer. Temperature is
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stabilized to 5mK precision at room temperature in order
to improve the phase stability of the system [14]. When
the temperature is stabilized at this level the interferometer
phase is stable within a couple of degrees over a one-
month time scale. Neutrons are extracted from the cold
guide and redirected to the interferometer enclosure via
two sets of pyrolytic graphite (PG) crystal monochromators.
The interferometer facility has access to a wide range of
neutron wavelengths from 0.2 nm to 0.45 nm. Neutrons in
this facility can be polarized via a V-shaped transmission
supermirror polarizer with 93% polarization efficiency for
0.235 nm wavelength neutrons [15].

3. Equivalence of a Neutron Interferometer
and Light Mach-Zehnder Interferometer

In the past years we have used several neutron interferometer
designs that are equivalent to Mach-Zehnder optical inter-
ferometers (Figure 2). The first blade of the interferometer
coherently splits the neutron beam into two paths (upper
and lower) via Bragg diffraction, as illustrated in Figure 2(a).
Themiddle blade(s) work as mirrors.They redirect and focus
neutron paths into the third blade. At the third blade the
neutron paths are recombined, and the resulting interference
effects can be observed by 3He-detectors placed in both paths
behind interferometer. Each neutron inside the interferom-
eter (satisfying the Bragg conditions) can be described as the
superposition of the two paths (i.e., “upper” and “lower”):

Ψ = 𝑒
𝑖𝜙
1𝐶
1

󵄨󵄨󵄨󵄨upper⟩ + 𝑒
𝑖𝜙
2𝐶
2 | lower⟩ , (1)

where 𝐶
1
and 𝐶

2
are normalization coefficients that depend

on the reflection and transmission coefficients of the inter-
ferometer blades and 𝜙

1
and 𝜙

2
are phases that the neutron

acquires passing through different paths. An important point
is that the reactor flux is so low that therewill be only one neu-
tron inside the interferometer at a time.Thus we only observe
neutron self-interference, and neutron-neutron interferences
can be neglected. Several high contrast (>75%) perfect Si
crystal neutron interferometers are shown in Figure 2(b).
They are on the order of 10 cm in size and so allow for the
placement of an object (such as a sample, phase rotator, spin
flipper, and neutron absorber) in one path without affecting
the other path.This allows for the observation of interference
effects due to neutrons passing through the interferometer
with one path modified by this object [16]. This is why
neutron interferometry is a clear example of macroscopic
quantum coherence and a convenient test bed to study many
aspects of quantum mechanics, neutron interactions, quan-
tum information processing (QIP), and fundamental physics.

4. Coherence and QIP

The single crystal neutron interferometer is an ideal tool
for the study of neutron coherence length. The clear way of
changing the optical path length and shifting one path with
respect to the other [14, 17–20] allows direct measurement of
coherence lengths. The coherence length (𝑙

𝑐
) often depends

on the momentum distribution (𝛿𝑘) of neutrons entering the

interferometer, and it is limited by Heisenberg’s uncertainty
relation

𝑙
𝑐
=
1

2𝛿𝑘
. (2)

To understand this limit in the measurement of the vertical
coherence length we have engineered different momentum
distributions using the focusing monochromator and set of
slits as shown in Figure 3(a). By shielding some of the PG
blades of the focusing monochromator we were able to create
different vertical momentum distributions for the neutrons.

By measuring the contrast of the neutron interferometer
we can directly map out the coherence function. In order
to measure contrast we usually place fused silica flat (phase
flag) in both neutron paths. By rotating this phase flag around
vertical axis we modify the optical path length of neutrons
traveling through different interferometer paths. This allows
oscillations of neutron intensity (𝐼) on the detectors behind
the interferometer. The contrast is defined as the ratio:

Contrast = max (𝐼) −min (𝐼)
max (𝐼) +min (𝐼)

. (3)

The dependence of the contrast on the vertical path sepa-
ration created by prisms inside neutron interferometer [14]
with different initial momentum distributions is shown in
Figure 3(b) (from top: 9 blades, 5 blades, and 1 blade of
the focusing monochromator). The red dots are measured
data while straight lines are obtained from the measured
momentum distributions. Hence by shaping the momentum
distribution we can, in principle, achieve a desired coherence
length. In this measurement the neutron wavelength was
0.271 nmwhile the highest obtained vertical coherence length
was 79 nm. Another important aspect to note is that the
neutron path length is about 0.1 × 109 nm and is about
10
9 bigger than the neutron wavelength. That is why the

neutron interferometer is an extremely sensitive device. It is
also very sensitive to external disturbances such as vibrational
noise, temperature instabilities and gradients, and sounds.
Neutrons used for interferometry have velocities on the order
1000m/s (which is relatively slow compared to the speed of
light); that is why neutron interferometers are sensitive to low
frequency vibrations.The setup shown in Figure 1 is designed
to remove most of such disturbances and preserve long-time
phase stability. However the massive vibration isolation stage
keeps the interferometer further away from the source and
makes it difficult to operate. As a result the facility has a low
neutron fluency and is not particularly user friendly which
is why neutron interferometers are rarely used for condensed
matter applications.

To further help us deal with noise we can employ
techniques from quantum information processing such as
quantum error correction (QEC) schemes. One approach to
passive QEC (well described by Lidar and Whaley in [21])
is a decoherence-free subspace (DFS), which corresponds to
finding a subspace of a larger quantum system that is not
affected by a noise process and then encoding our desired
quantum state in this subspace. A DFS can be implemented
in a neutron interferometer to make it insensitive to low
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Figure 1: Schematic of the Neutron Interferometry and Optics Facility for Neutron Research at the National Institute of Standards and
Technology. The isolated 40,000 kg room is supported by six air-springs. The system uses active vibration control to eliminate vibrations
above 0.5Hz. The temperature of the interferometer enclosure is stabilized to 5mK precision to improve long-term phase stability (diagram
also appeared in [16]).

𝜓 =
1

√2
(|upper⟩ + |lower⟩)

(a) (b)

Figure 2: (a) Schematic diagram of the neutron paths in a perfect single crystal neutron interferometer. The neutron passing through the
interferometer is coherently split into two paths (upper and lower) by the first interferometer blade, redirected by the middle blades (these
blades represent mirrors of the light Mach-Zehnder interferometer and are recombined to observe interference effects by the last blade). The
neutron’s wave function can be described as superposition of the paths inside the interferometer. (b) Pictures of NIST interferometers with
high contrast (>75%).

frequency center-of-mass vibrations. The idea comes from
using 2-qubit system shown in Figure 4(a), where each path
represents a neutron basis state. In this system vibrational
noise enters as the phase difference a neutron acquires by
passing through different paths due to movement of the

interferometer. This noise can be represented in a form of 𝜎
𝑧

Pauli operator. By removing the center blade (Figure 4(b))
we notice that the phase difference acquired by a neutron
traveling through paths |01⟩ and |10⟩ due to the vibrational
noise will be the same.Thus if we encode the state into logical
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1/e

(b)

Figure 3: (a) Schematic of the second focusing PG monochromator for shaping the vertical momentum distribution of the neutron beam.
By shielding some of the blades of the monochromator we can select different neutron momentum distributions. (b) Contrast versus path
separations for different momentum distributions. The top figure is obtained when 9 blades of the 2nd monochromator are open, the middle
figure when 5 middle blades are open, and the bottom figure when only one middle blade is open [14].
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Figure 4: (a) Schematic of the 2-qubit (four paths) interferometer. (b) Schematic of the DFS interferometer.

states |0
𝐿
⟩ = |01⟩ and |1

𝐿
⟩ = |10⟩ then any state represented

in this basis will be protected against this vibrational noise.
As a result we came up with a DFS design for neutron
interferometer shown in Figure 4(b).

To test our theory we built a 5-blade neutron interfer-
ometer [22] to accommodate both the Mach-Zehnder and
DFS interferometer designs. This allows us to in situ change
between these two designs without disturbing the facility
and avoids discrepancies due to different crystal qualities.

Experimental results are shown in Figure 5(a). Here the top
and bottom figures show data for the Mach-Zehnder and
DFS interferometers, respectively. The red points give the
interferogram without applied vibrations while blue points
are when an 8Hz vibration is applied to the interferometer.
Figure 5(a) shows that 8Hz vibrations are enough to destroy
interference of the Mach-Zehnder interferometer while they
do not have much effect on the contrast of the DFS interfer-
ometer. Figure 5(b) represents numerical simulation of the
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Figure 5: (a) Comparison data for standard (top) and DFS (bottom) interferometer designs without (red) vibrations and with (blue) 8Hz
applied vibrations. (b) Numerical simulation of standard interferometer (blue) and DFS (red) contrast versus rotational vibrations [22].

contrast for both the Mach-Zehnder (3-blade) and DFS (4-
blade) setups versus frequency of applied vibrations [23].
These simulations clearly show the advantage of the DFS
setup in the presence of vibrational noise.

Another aspect of noise in the neutron interferometer
we investigated was the effect of random phase noise on the
correlations between the neutron path and neutron spin.This
type of noise can arise due to surface imperfections in the
interferometer blades which introduce a random phase to
neutrons traveling through interferometer, thus reducing the
measured contrast of the interferometer when averaged over
many neutrons. By entangling the path degree of freedom of
the neutrons with the neutron spin we investigated how the
phase noise behaves in the presence of a postselected spin
measurement on the neutron beam. To quantify the correla-
tions between the spin and path degree of freedom we com-
pared quantum discord and entanglement. Quantum discord
was originally proposed as ameasure of the “quantumness” of
correlations between two quantum systems that is more gen-
eral than entanglement. It can be thought of as quantifying
howmuch disturbance the measurement of one subsystem of
a bipartite quantum system can induce on the other.

To investigate this effect we considered a configuration
where we entangled the spin and path degrees of freedom
of the neutron by placing a spin-rotator in one path of the
interferometer and then observed the output path contrast
and spin contrast with and without postselected spin mea-
surements [24]. In the absence of spin measurements, our
theoretical calculations found that strong phase noise caused

the entanglement to reduce to zero; however the quantum
discord remained nonzero. This indicates that nonclassical
correlations persist between the spin and path of the neutron
and therefore must still be treated as a quantum system.
Our calculations predicted, and our experimental results con-
firmed, that by measuring the Z-component of the neutron
spin we could revive spin contrast even in the strong noise
case where it would be zero in the absence of spin filtering.
Our experimental setup consisted of thin permalloy films
deposited on a Si substrate to implement the path-dependent
spin rotation, and the spin measurements were implemented
using an adiabatic coil to rotate the desired neutron spin state
to the Z-basis where spin-up and spin-down neutrons were
absorbed and transmitted, respectively, by either Heusler
crystals or reflection-mode curved supermirrors.

5. A New Beam Line

Following our progress in understanding the effects of noise
on the neutron interferometer and our advances in DFS
interferometer design, we have decided to build a new
beam line which utilizes the DFS interferometer. This beam
line would have relaxed restrictions on the low frequency
vibration isolation system. A typical optical table should be
sufficient to operate a DFS interferometer beam line. This
tremendously simplifies the beam line construction and, in
principle, should improve neutron fluency with respect to
the existing setup. Figure 6 shows a schematic of the existing
beam line and outline for the new beam line.
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Figure 6: Schematic of the existing beam line setup with the hutch
and a new beam line for the DFS interferometer.

Guide break

PG (002)
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Figure 7: A picture of the monochromators for both beam lines
inside the guide shielding of the NG7 guide. The crystals are PG
crystals with 0.5∘ mosaic placed in the NG7 guide break.

We extract neutrons from the NG7 NIST NCNR cold
beam guide by Bragg diffraction of PG crystal monochro-
mators. Figure 7 shows the NG7 guide break with two new
PG crystal monochromators: one is for the existing beam
line and another is for the DFS interferometer beam line.
This configuration will allow us to independently control the
wavelength of the neutrons of both beam lines.

The current configuration shown in Figure 8 is configured
for 𝜆 = 0.44 nm neutron wavelength and consists of an
optical table (without vibration isolation), a pair of double-V
cavity polarizer/analyzer (with greater than 98% polarization
efficiency), and 3He-detectors. Due to the high relative count
rate at fractional wavelengths (𝜆/𝑛, where 𝑛 = 2, 3, . . .) we
have installed a Be filter as shown in Figure 8. The beam line
is currently under active construction and development.
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