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We present a simplified model for dynamical diffraction of particles through a periodic thick perfect crystal
based on repeated application of a coherent beam-splitting unitary at coarse-grained lattice sites. By demanding
translational invariance and a computationally tractable number of sites in the coarse graining, we show how
this approach reproduces many results typical of dynamical diffraction theory and experiments. This approach
has the benefit of being applicable in the thick, thin, and intermediate crystal regimes. The method is applied
to a three-blade neutron interferometer to predict the output beam profiles, interference patterns, and contrast
variation.
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I. INTRODUCTION

Dynamical diffraction (DD) is a theory describing the
interaction of photons and matter waves satisfying Bragg and
near Bragg diffraction conditions in perfect periodic crystal
lattices [1–9]. It has been used to explain and predict many
features of diffraction from periodic lattices, for example,
Pendellösung oscillations [10,11], the extinction length and
abnormal transmission [2], as well as the Borrmann effect [12].
An incident wave satisfying the Bragg conditions is split by
interactions with the atoms of a periodic crystal lattice. This is
often approximated in the thick crystal regime by two waves
emerging from the crystal, one propagating along the incident
wave direction called the transmitted or forward diffracted
wave and one propagating in the complementary direction
called the reflected or Bragg diffracted wave. The properties
of each of these waves are dependent on the momentum at
incidence and the nature of the lattice [10,13,14].

While DD theory has been very successful for explaining
many diffraction phenomena, the mathematics can be quite
cumbersome and involve solving the Schrödinger’s equation
for a lattice with Avogadro’s number of interaction potentials.
Even in the two-wave approximation, the standard theory
of DD still uses many variable substitutions to make the
formulas readable [15–17]. This lack of readability may end
up obscuring very simple concepts.

Presented here is a brief review of the standard theory of
DD, and then an alternative and relatively simple treatment of
DD using the language of quantum information (QI) theory.
This approach models a periodic lattice as a network of beam
splitters. Furthermore, it treats DD as a coherent quantum
effect that arises due to the interference of different paths
taken by the wave as it passes through the lattice. While
comparatively simple it is still able to accurately explain many
DD effects. We will consider beam profiles for DD through
a single thick crystal and show how it predicts the widening
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of the neutron beam profile. This widening is bounded by
the outer path in the transmitted beam and the outer path in
the reflected beam thereby forming a triangular region. This
triangular region is known as the Borrmann triangle. This
QI model also predicts the sinusoidal variations known as
Pendellösung oscillations in the intensities of transmitted and
reflected beams. These Pendellösung oscillations result from
energy transfer between the reflected and transmitted beams.
Lastly, it is shown how this approach may be extended to
a multiblade interferometric device such as the three-blade
neutron interferometer.

II. DYNAMICAL DIFFRACTION

For completeness a brief review of the standard theory
of DD is presented. Consider a particle described by a
wave function �(r) = ∫

dk μk ψk(r), where ψk(r) = eik·r
are a basis of plane waves, and μk describes the particle’s
momentum distribution. Let this particle be incident on a
perfect periodic crystal of thickness D located at position
r = zê⊥. The crystallographic orientation is assumed to be
perpendicular to the crystal surface such that k = k⊥ê⊥ + k‖ê‖,
where ê⊥(ê‖) are unit vectors perpendicular (parallel) to the
crystal surface (see Fig. 1). In this configuration (commonly
referred to as the Laue geometry) the transmitted beam and
the reflected beam both exit from the same surface of the
crystal. Inside the crystal the wave function �(r) must satisfy
the stationary state Schrodinger equation[

− �
2

2m
∇2 + V (r)

]
�(r) = E�(r), (1)

where the potential V (r) describes the scattering centers in the
crystal. For a periodic crystal V (r) = V (r + R), where R is
the translation vector inside the crystal. The energy E is the
total energy of the particle inside the crystal and is equal to
the kinetic energy of the particle in free space, E0 = �

2k2
0/2m,

where m and k0 are the particle mass and the free space wave
vector associated with the particle. The solution to Eq. (1)
is multiple scattering waves. Due to the vanishingly small
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FIG. 1. Bragg diffraction from a crystal in the Laue geometry. In
the Laue geometry the diffracted beam is on a different surface of the
crystal relative to the incident beam. The two possible inputs to the
crystal lead to different transmission and reflection coefficients for
the waves exiting the crystal.

nature of the interaction potential (V � E), two energies EK

and EKH
are excited from the periodic lattice at the Bragg

condition. The corresponding eigenstates of Eq. (1) are doubly
degenerate Bloch waves. As a result, four waves propagate
inside the crystal with two wave vectors in the transmitted
and two in the reflected directions. The beating of these waves
generates a fine feature of dynamical diffraction, namely the
Pendellösung oscillation. Using the boundary conditions, the
four waves recombine to two waves as they exit the crystal
giving rise to the transmitted ψO = tψk and the reflected
ψH = rψkH

waves. In this geometry, O and H generally refer
to the the forward diffracted (transmitted) and Bragg diffracted
(reflected) directions respectively (as defined by the reciprocal
lattice vector �H ). The reflection (r) and transmission (t)
coefficients for nonabsorbing crystals are given by [14,16]

t = eiχ exp(−iAη)

×
{

cos(A
√

1 + η2) + iη√
1 + η2

sin(A
√

1 + η2)

}
, (2)

r = eiχ exp[i(−Aη + 2Aηz/D)]

(
vH

v−H

) −i√
1 + η2

× sin(A
√

1 + η2), (3)

where the phase shift χ = D(K⊥ − k⊥), K⊥ =√
k2
⊥ − 2mV/�2, is the nuclear phase shift due to the

crystal (note that this phase shift also occurs outside the
Bragg conditions), A = πD/�H is the dimensionless crystal
thickness, �H = K⊥�

2π |VH |−1m−1 is the extinction length,
and η = 1

2 (EKH
− EK )/|vH | parametrizes the normalized

energy difference of EKH
and EK . vH is the Fourier component

of the potential. In general, η characterizes the deviation from
the exact Bragg condition and η is commonly known as beam
divergence or momentum (wavelength) spread.

Using the transmission and reflection amplitudes in Eqs. (2)
and (3) we define an effective unitary operator for a blade of
silicon [220] written in matrix form as

UDD(ϕ,	,ϑ) = eiχ

(
eiϕ cos ϑ ei	 sin ϑ

−e−i	 sin ϑ e−iϕ cos ϑ

)
, (4)

where from Eq. (2) we get

ϕ ≡ −Aη + arctan

{
η

1 + η2
tan[�(η)]

}
, (5)

	 ≡ −Aη + 2Aηz/D + π/2, (6)

ϑ ≡ arcsin

{
sin[�(η)]√

1 + η2

}
, (7)

with �(η) = A
√

1 + η2. Under ideal conditions in DD (no
momentum spread) the parameters are ϕ = 0,	 = π/2,ϑ =
A, leading to an overall unitary of the blade that is independent
of ϕ,	, and ϑ . In this case the neutron wave function at the
exit of a crystal carries no phase information about the crystal.

In Sec. III we extend the definition of the unitary operator to
develop a model for dynamical diffraction based on quantum
information.

III. QUANTUM INFORMATION MODEL FOR
DYNAMICAL DIFFRACTION

The process of DD through a perfect periodic nonabsorbing
crystals is a unitary process. In this work a proposed alternative
quantum information model for DD based on the requirements
that a crystal can be segmented into planes each acting as a
unitary operator, and the same unitary operator is repeatedly
applied through out the process. This is an operational
approach that considers a coarse graining of a thick perfect
crystal into a computationally tractable number of planes of
logical scattering sites. Each of the logical scattering sites may
be modelled as a general beam splitter that coherently splits
an incoming wave into transmitted and reflected components.
The choice of unitary depends on the number of planes
in the coarse graining with the choice made so that the phase
of the wave function leaving the crystal does not wrap around
in mutlple of 2π ’s. As the number of planes increases, so
does the number of possible paths through the crystal. This
results in a widening of the matter wave beam profile, and the
interference between these multiple paths reproduces many
of the effects typically described by standard DD theory. The
coarse graining of scattering sites is necessary since there are
an order of Avogadro’s number of atoms corresponding to
physical scattering sites in a perfect crystal. However, many
DD effects can be reproduced with only a modest number of
coarse-grained scattering sites considered. This QI approach
is a quantum version of a Galton’s board, which is one form
of a discrete time quantum walk [18–20]. The model is also
related to the original proposal of DD by Darwin [6,21] that
involves breaking down the scattering media into layers in
conformation to the invariance principle [10,22].

In the QI model, it is assumed that the scattering at
each coarse-grained site is macroscopically distinct, similar
to Bragg scattering and Bloch theory. This model also makes
the assumption that the entire process of diffraction through the
crystal is within the coherence length of the incoming wave.

The coarse graining for a perfect crystal into scattering
nodes is illustrated in Fig. 2. This coarse-graining procedure
is performed in several steps. The crystal is segmented into
planes, and each plane is further divided into nodes, creating
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FIG. 2. A perfect crystal decomposed into various scattering sites
(nodes) shown as blocks. The incident wave is a single ray moving
upward along AB. The direction AC is the reflected wave. The region
ABC is the Borrmann triangle. At each node the unitary operator Uj

coherently splits the wave into two components, the transmitted and
reflected. Repeated application of Uj generates the transmitted and
reflected outputs of the crystal. Any ray of the transmitted beam has
undergone an even number of reflections while that of the reflected
beam has undergone an odd number of reflections.

a lattice where each node corresponds to a scattering site.
Each node functions as a beam splitter with two input and
two output ports. Hence the two incident paths scatter to
the transmitted and reflected components. The scattering
action of an arbitrary node (denoted by j which specifies the
node’s relative vertical location) may therefore be modelled
as a unitary transformation Uj acting on two levels, |aj 〉
and |bj 〉 of the incident state. The collective action of all
the nodes leads to a multiple scattering process that gives
rise to quantum interference effects. The unitary generating
this multiscattering process is denoted by U(N ), and its
dimensions depend on the number of planes, N , considered
in the coarse-grained approximation. The properties of the
transmitted and reflected waves leaving the crystal surface, as
well as the corresponding intensities, depend on the nature of
U(N ).

A ray or single line is used to represent a single logical level
of any wave, which may be modelled as a state vector |aj 〉 or
|bj 〉, where the labels a and b refer to rays moving upwards
(positive y momentum) or downwards (negative y momentum)
respectively. The ray tracing approach is analogous to a path
integral and is used to illustrate some of the features of the
wave leaving the crystal.

At the scattering site the beams are coherently split
according to the relations

|aj 〉 	→ ta |aj+1〉 + ra |bj−1〉 , (8)

|bj 〉 	→ rb |aj+1〉 + tb |bj−1〉 , (9)

where ta,tb,ra,rb are complex transmission and reflection
coefficients. For the scattering relation to be unitary, the
following conditions have to be satisfied:

1 = |ta|2 + |ra|2, 1 = |tb|2 + |rb|2, 0 = tarb + ratb.

A possible choice for the coefficients is

ta = eiξ cos θ, tb = e−iξ cos θ,

ra = −e−iζ sin θ, rb = eiζ sin θ. (10)

A range of meaningful values for these parameters may
be gotten from the minimum thickness of a crystal, τ , for
which the particle wave function reflected. According to the
standard DD theory, this minimum thickness is related to
the Pendellösung length, �H , by the ratio τ/�H < 1/2. By
comparing this ratio to the parameters in the QI model, we
obtain that θ = πτ/�H , ξ = 0, and ζ = π . For a specific
situation θ can be optimized to reproduce experimental results.

The unitary operator is

Uj,ξ,θ,ζ = (eiξ cos θ |aj+1〉 − e−iζ sin θ |bj−1〉) 〈aj |
+ (eiζ sin θ |aj+1〉 + e−iξ cos θ |bj−1〉) 〈bj |

= |aj+1〉 (eiξ cos θ 〈aj | + eiζ sin θ 〈bj |)
− |bj−1〉 (e−iζ sin θ 〈aj | − e−iξ cos θ 〈bj |),

which will be represented as Uj from now on. In this
parametrization ξ and ζ are the phases of the transmitted
and reflected beams respectively, and θ determines the relative
probability of the reflected and transmitted beams from a single
node.

Consider a normalized input beam |�0〉 = α |�T
0 〉 +

β |�R
0 〉 spanning multiple nodes, where the upward-

propagating |�T
0 〉 and the downward-propagating |�R

0 〉 com-
ponents are given by∣∣�T

0

〉 =
∑

j

αj |aj 〉 ,
∣∣�R

0

〉 =
∑

j

βj |bj 〉 . (11)

From the normalization condition |α|2 + |β|2 = 1,∑
j

|αj |2 +
∑

j

|βj |2 = 1.

Then the action of all the scattering nodes of a single vertical
plane is given by

Uj

∣∣�T
0

〉 =
∑
j∈T

αj (ta |aj+1〉 + ra |bj−1〉), (12)

Uj

∣∣�R
0

〉 =
∑
j∈R

βj (rb |aj+1〉 − tb |bj−1〉), (13)

so that the (unnormalized) transmitted and reflected beams are
given by

∣∣�T
1

〉 = ta

⎛
⎝∑

j∈T

αj |aj+1〉
⎞
⎠ + rb

⎛
⎝∑

j∈R

βj |aj+1〉
⎞
⎠, (14)

∣∣�R
1

〉 = ra

⎛
⎝∑

j∈T

αj |bj−1〉
⎞
⎠ − tb

⎛
⎝∑

j∈R

βj |bj−1〉
⎞
⎠. (15)
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These states are then the input to the next plane. The process
is repeated until the last plane at the exit surface is reached.
The appropriate normalization factor for the transmitted and
reflected beams will depend on the reflection and transmission
coefficients and the resulting interference.

In general, after propagating though a crystal segmented
into N planes, the components of the wave function are

∣∣�T
N

〉 =
∑
j∈T

αj |aj 〉 ,
∣∣�R

N

〉 =
∑
j∈R

βj |bj 〉 , (16)

where αj = 〈aj |U(N ) |�0〉 ,βj = 〈bj |U(N ) |�0〉. Using
these equations, the effective unitary of a single blade U(N )
based on the QI model can be derived.

The QI model can be used to derive results consistent with
DD; examples included are

(1) wave field in the Borrmann triangle,
(2) integrated intensities after diffraction,
(3) Pendellösung oscillations.

These are described in Sec. IV. In addition, this approach
provides a simple phenomenological way to study various
types of noise processes considered in quantum information
theory, such as dephasing, that may occur during a diffraction
process due to variations in the parameters of individual
scattering nodes when averaged across many particles. It is
also simple to generalize this approach to predict the behavior
of multiblade devices such as a neutron interferometer, which
is discussed in Sec. V.

Example: 50:50 beam splitter

Here we apply the presented formalism to the particular case
where each node acts as a 50:50 beam splitter. Considered the
parameters ξ = 0, θ = π/2, ζ = 0 which set the unitary Uj

equal to the Hadamard matrix

Uj = 1√
2

|aj+1〉 (〈aj | + 〈bj |) + 1√
2

|bj−1〉 (〈aj | − 〈bj |).

This is equivalent to nodes acting as 50:50 beam splitters.
For an input state |�0〉 = |ψj 〉 = α0 |aj 〉 + β0 |bj 〉, the output
from the single node is given by

|�1〉 = Uj |ψj 〉 =
(

α0 + β0√
2

)
|aj+1〉 +

(
α0 − β0√

2

)
|bj−1〉 .

Consider the case of a single input ray in the state |ψj 〉 =
|aj 〉 onto a scattering node j . After the node the state is

|�1〉 = 1√
2

(|aj+1〉 + |bj−1〉).

At the second vertical plane the transmitted state |aj+1〉
becomes an input to a node with unitary Uj+1 and the reflected
state |bj−1〉 an input to a node with unitary Uj−1:

Uj+1 |aj+1〉 = 1√
2

(|aj+2〉 + |bj 〉), (17)

Uj−1 |bj−1〉 = 1√
2

(|aj 〉 − |bj−2〉), (18)

so that

|�2〉 = Uj+1Uj−1 |�1〉 = Uj+1Uj−1Uj |�0〉 , (19)

= 1√
2

( ∣∣�T
2

〉 + ∣∣�R
2

〉 )
, (20)

where the transmitted beam |�T
2 〉 and reflected |�R

2 〉 beam
each consists of two rays:

∣∣�T
2

〉 = 1√
2

(|aj+2〉 + |aj 〉), (21)

∣∣�R
2

〉 = 1√
2

(|bj 〉 − |bj−2〉). (22)

Adding an additional plane to make the three-plane case
results in three rays in each of the transmitted and reflected
beams:

|�3〉 =
√

2

3

∣∣�T
3

〉 + 1√
3

∣∣�R
3

〉
, (23)

∣∣�T
3

〉 = 1√
6

(|aj+3〉 + 2 |aj+1〉 − |aj−1〉), (24)

∣∣�R
3

〉 = 1√
2

(|bj+1〉 + |bj−3〉). (25)

Due to constructive and destructive interference of the states
|aj+1〉 and |bj−1〉, two-thirds of the intensity is in the
transmitted beam and one-third is in the reflected beam.

Adding a fourth plane gives

|�4〉 =
√

3

4

∣∣�T
4

〉 + 1

2

∣∣�R
4

〉
, (26)

∣∣�T
4

〉 = 1

2
√

3
(|aj+4〉 + 3 |aj+2〉 − |aj 〉 + |aj−1〉), (27)

∣∣�R
4

〉 = 1

2
(|bj+2〉 + |bj 〉 − |bj−2〉 − |bj−4〉). (28)

Just with four planes and a 50:50 beam splitter we notice that
the beam at the exit spreads unevenly due to interference.

In general, after propagating though a media with N vertical
planes the transmitted and reflected components of the wave
function are∣∣�T

N

〉 =
∑
j∈T

αj |aj 〉 ,
∣∣�R

N

〉 =
∑
j∈R

βj |bj 〉 , (29)

where in general the probability amplitudes αj �= βj .
It is possible to use this QI model to extract information

about parameters in DD experiments. This is captured by
Eqs. (5)–(7) with functional dependence of ξ, ζ, θ . Various
applications of DD and choices of these parameters are
considered in the next section.

IV. APPLICATIONS

In this section the QI model is applied to some well-known
phenomenon in DD. Throughout this section, the state of the
neutron at the input (node at j = 0) is

|�0〉 = |a0〉 ,

which is a single ray propagating upwards.
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A. Intensity profile of the Borrmann triangle

The first application considered is a simulation of the
position-dependent intensity profile for a single crystal. The
spreading of these profiles caused by the crystal thickness
is known as the Borrmann fan, and it has been observed
experimentally by scanning a slit of several microns wide
across the output surface of the crystal [11]. The triangle
formed by the outer edges of the transmitted beam, reflected
beam, and the input point of a single ray is called the Borrmann
triangle. In the QI model it is given by the region ABC

in Fig. 2. AB is along the transmitted wave direction while
AC is along the reflected wave direction. As expected, the
intensity profile of the transmitted and reflected beams exiting
the crystal depends on both the number of planes considered
in the model, and the transmission and reflection coefficients
ta, tb, ra, rb for a single node.

The intensity spreading in the Borrmann triangle has been
observed experimentally [11,23]. To study this in the QI model
the intensities at the output of the crystal are simulated for
various values of θ . The transmitted and reflected probability
at the output node j is given by

I T
j = |〈aj |U(N )|a0〉|2,

IR
j = |〈bj |U(N )|a0〉|2. (30)

Figure 3 shows the reflected and transmitted intensity dis-
tributions of the exiting beam across the crystal surface for
N = 150 and various values of θ = π/8, π/4, π/3, 2π/5. This
figure illustrates that the reflected beam has a symmetric profile
with two intensity peaks at the edges of the beam while the
transmitted beam is asymmetric with the beam concentrated
on one side. In addition, as the transmission coefficient for a
single node approaches 1 (equivalently θ → π ) the beam is
compressed in width and the intensity in this region increases.
The data presented in Fig. 3, which are obtained with only a
modest number of planes, are in good agreement with those
obtained by the standard theory of DD and those observed
experimentally.

FIG. 3. Intensity profiles for the reflected (left) and trans-
mitted (right) beams for a thick crystal modelled by N = 150
scattering planes and for transmission and reflection coefficients
|t | = cos θ, |r| = sin θ , for values of θ = π/8, π/4, π/3, 2π/5. The
reflected beam (left) is symmetric with two peaks at the edges,
while the transmitted (right) beam is asymmetric with a single peak
at the outside. As |t | approaches 1, the widths of both beams are
compressed.

B. Integrated intensities and Pendellösung oscillations

In the second application, the quantum information model
is used to reproduce the integrated intensities of the output
beam. The integrated intensities are taken by summing all
of the probabilities of each of the transmitted and reflected
beams in the triangle. For crystal segmented into N planes
the relative integrated transmitted intensity to the relative
integrated reflected intensity allows us to define the integrated
transmission IT and reflection IR coefficients as

IT = ∑
j |〈aj |U(N )|a0〉|2, (31)

IR = ∑
j |〈bj |U(N )|a0〉|2. (32)

The integrated transmission and reflection coefficients are
known to undergo oscillations, called Pendellösung oscilla-
tions. The integrated reflectivity was repeatedly observed in ex-
periments where either the crystal thickness was varied [24,25]
or the neutron energy was varied [11].

The integrated reflectivity from a perfect single crystal
silicon can be measured by varying its thickness while keeping
other conditions (wavelength, crystallographic orientation,
etc.) unchanged. The integrated transmitted and reflected
intensities are periodic functions which are out of phase with
each other. The phase difference arises because the reflected
and transmitted beams undergo an even and odd number of
reflections respectively.

To simulate this variation in the QI model the parameters
ξ, θ, ζ are kept fixed while the number of planes N is varied.
Figure 4 shows side by side the integrated intensity predicted
by the QI model with a node unitary operator Uj,0,0,π/8 and
the experimentally observed intensity [24,25]. The two figures
show a significant agreement leading to a plausible conclusion
that a thickness of 50 μm corresponds to three planes for the
specific wavelength and Si crystal used in the experiment.

Note that in the special case of a 50:50 splitting at the
nodes with θ = π/4, the normalized integrated intensities
converges to 0.65 and 0.35 for the transmitted and reflected
beams respectively, as the number of planes increases.

In the theory of DD the probability current inside the crystal
propagates in two components: one centered on the atomic
planes position and the other at the interplanar position. As the
wave propagates through the crystal, these currents constantly

FIG. 4. The left figure is the integrated reflectivity at the exit of
a single crystal based on the QI model with a node unitary operator
Uj,0,0,θ=π/8. The right figure is the measured integrated reflectivity
of Bragg scattering in the Laue diffraction; see Fig. 1 of Ref. [24].
Copyright permission from Elsevier. In comparison a Si thickness of
50 μm corresponds to three planes in the QI model.
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FIG. 5. Left figure is the simulated Pendellösung oscillations at
the exit of the Borrmann fan for the reflected beam. The QI model
was done for a crystal with N = 50 planes, and the node j = 25
was postselected. The intensity is in agreement with the conventional
dynamical diffraction theory. The right figure shows the integrated
intensities at the output as a function of θ . As θ → π/2, both the
reflected and transmitted intensities approach 1/2.

exchange energy with one another in such a way that the
total current is conserved. The energy exchange happens in an
oscillating manner known as Pendellösung oscillation [16]. In
the theory of dynamical diffraction, Pendellösung oscillations
are best represented by plotting the reflected or transmitted
intensity as a function of the deviation from the Bragg
condition (the parameter η mentioned in Sec. II); see Ref. [26]
for more details. In the work of Shull [11], the neutron
energy was varied for three silicon single crystals of different
thicknesses and position-sensitive detection implemented with
a cadmium slit.

In order to simulate the Pendellösung oscillations with the
QI model the output intensity is postselected on a specific node
and the angle θ is varied to mimic the energy variation, while
the number of planes N is fixed. This is illustrated on the left
plot of Fig. 5 for N = 50, the unitary Uj,0,0,θ , and θ ∈ [0,π ]. In
this simulation the node j = 25 was postselected. These plots
are consistent with the plots of the Pendellösung oscillations
obtained by the standard DD theory. On the right plot of Fig. 5
are the integrated intensities Eqs. (31) and (32) as a function of
θ . From the plot it can be noted that as θ → π/2 the integrated
reflected and transmitted intensities both approach 1/2.

V. EXTENSION TO A NEUTRON INTERFEROMETER

The QI model of a single perfect crystal blade is extended
to a three-blade and four-blade perfect crystal neutron in-
terferometer (NI). The four-blade NI has the demonstrated
advantage that it refocuses noise originating from mechanical
vibration [27]. For a concise application of the standard theory
of DD to a neutron interferometer, see Refs. [16,28]. The NI
is made of three blades of equal thickness which are machined
from an ingot of single crystal silicon so that the Bragg planes
of the blades are aligned. The first blade of the NI is identical
to our single blade treatment and splits the neutron into the
reflected and transmitted beams. The second NI blade splits
the reflected and transmitted beams of the first blade into
two other transmitted and reflected beams so that total of
four beams emerge after the second blade. However, only
the transmission-reflection and reflection-reflection beams
remain in the interferometer. Finally, these two beam paths
are coherently recombined at the third blade. The third blade
acts as an analyzer as it coherently recombines the two

beams, allowing the device to function as a Mach-Zehnder
interferometer. The two beams exiting the interferometer are
historically labeled as the O beam (which propagates along the
same direction as the input beam) and the H beam.

With the unitary operator of the blade defined from the
standard theory of DD Eq. (4) and a nondispersive phase
difference χ between the two paths inside the interferometer,
the wave function at the output of the NI is

|�〉 = |�O〉 + |�H 〉 , (33)

where the O- and H-beam wave functions are

|�O〉 = −e−iϕ/2 cos ϑ sin2 ϑ(e−iχ/2 + eiχ/2) |a〉 , (34)

|�H 〉 = ieiϕ/2(cos2 ϑ sin ϑeiχ/2 − sin3 ϑe−iχ/2) |b〉 . (35)

When a neutron propagates through the NI with χ = 0, the
beam exits the NI with different probabilities that depend on
ϑ . For a balanced beam splitter ϑ = π/2 the neutron emerges
only through the O beam. Now we will use the QI model to
simulate the beam profiles and the contrast for a three-blade
NI.

A. Beam profiles

The neutron beam profiles produced by the QI model for
each of the eight beams in the three blade NI are presented
in Fig. 6. For the simulation the unitary operator at each node
is Uj,0,0,θ=π/4, and a coarse graining of N = 100 and N =
1000 is considered. If each blade of a three-blade neutron
interferometer contains N planes, then the output on the third
blade has 3N nodes, and hence the beam size increases at each
blade. Note, however, that the plotted profiles in the figure
are normalized in width. We find that the simulations are in
agreement with the profiles generated by the application of the
standard theory of DD to a NI [16], which are also shown in
Fig. 6 for comparison.

B. Output intensities

The quantum information model is applied to simulate the
output integrated intensities of a three-blade neutron inter-
ferometer. Consider projectors onto the upward-propagating
beam (O) and the downward-propagating beam (H ):

PO =
∑

j

|aj 〉 〈aj | , PH =
∑

j

|bj 〉 〈bj | .

If the phase difference between the two paths is χ (phase oper-
ator Uz(χ ) = exp[iχ

∑
j (|aj 〉 〈aj | − |bj 〉 〈bj |)/2]) and denot-

ing the operator of the first and last blade as UB and the middle
blade as UM , the wave function at the output is

|�〉 = |�O〉 + |�H 〉 = UBUMUz(χ )UB |�0〉 , (36)

where the O and H components at the output can be written
as

|�O〉 =
∑

j

ψj,r̄rt (e
−iχ/2 + eiχ/2) |aj 〉 , (37)

|�H 〉 =
∑

j

(e−iχ/2ψj,t̄rt + eiχ/2ψj,rr̄r ) |bj 〉 , (38)
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N=100

N=1000

DD

N=100

N=1000

DD

Standard

Standard

FIG. 6. The various intensity profiles for a three-blade neutron
interferometer. The inteferometer geometry and the beam trajectories
are shown in the middle. The two inner rows correspond to our
simulated profiles with N = 100. The next two outer rows correspond
to to our simulated profiles with N = 1000. And for comparison, in
the two outermost rows, the intensity profiles obtained by standard
theory of dynamical diffraction.

where ψj,r̄rt = 〈aj | UBPHUMPOUB |�0〉, and ψj,t̄rt and
ψj,rr̄r are similarly obtained. We note that the output from
the QI model can be compared to that of the standard DD in
Eqs. (34) and (35).

The sum intensity for O and H beams as a function of the
phase difference between the paths is given by

IO = A(1 + cos χ ), IH = B − A cos χ, (39)

with the coefficients A = 2
∑

j |ψj,r̄rt |2 and B =∑
j (|ψj,t̄rt |2 + |ψj,rr̄r |2). The intensities at the output

of the NI for the O and H beams are presented in Fig. 7 for
N = 100 planes in each blade and the unitary Uj,0,0,π/4 at each
node (note that θ = π/4 corresponds to (ta = ra = 1/

√
2). It

is shown that the intensities of the output beams oscillate in
a sinusoidal fashion and it can be noticed that the intensity
of the O beam has a minimum at zero. The well-known
asymmetry known from interferometry can be seen on the H
beam, where the intensity in this case never goes to zero.

C. Contrast

A commonly used figure of merit in a NI is the contrast

and it is obtained from the output intensities of the O and H

 r

FIG. 7. The intensity of the O and H beams as a function of
the phase between the two NI paths χ . The simulation is done for
N = 100 planes in each blade where the unitary operator of a single
node is Uj,0,0,π/4.

beams. Under ideal conditions the contrast of the H beam is

VH = max{IH (χ )} − min{IH (χ )}
max{IH (χ )} + min{IH (χ )} = A

B , (40)

while that of the O beam is always 1. In experiments, the
contrast is always below 1 due to various reasons such as NI
impurities, blade imperfections, external vibrations, and so on.

In the QI model, to obtain the contrast for a fixed number
of planes the phase difference between the two interferometer
paths is varied over a full cycle. The maximum and minimum
values are then extracted and the contrast is obtained using
Eq. (40). The standard theory of DD predicts that the contrast
on the H beam converges to 0.39 for a three-blade neutron
interferometer [16]. With the QI model, if θ is increased, the
contrast on the H beam reduces for a fixed number of planes.
The 0.39 contrast obtained in the standard theory of DD could
be reproduced in the QI model by using a suitable choice of θ

that is close to π/2 (corresponding to t → 0,r → 1). Figure 8
shows the contrast as a function of the number of planes
obtained using the QI model where θ is fixed to 17π/36. In

 C

FIG. 8. The contrast of the H beam for a three-blade neutron
interferometer as a function of the number of planes in each blade
N . The unitary operator for each node is Uj,0,0,17π/36. To calculate the
contrast, the phase difference between the two paths is varied over a
full cycle. The maximum and minimum are then extracted to get the
contrast using Eq. (40).

062311-7



NSOFINI, GHOFRANI, SARENAC, CORY, AND PUSHIN PHYSICAL REVIEW A 94, 062311 (2016)

this limit the contrast converges to a similar value as predicted
by the standard theory of DD.

VI. CONCLUSION

We have developed a quantum information model to
study dynamical diffraction using unitary operators. This
approach can help in the study of finer details of DD without
reference to the parameters such as the particle wavelength,
crystallographic orientation, and the interferometer geometry.
To verify this quantum information model, it is used to
reproduce features of dynamical diffraction that have been
studied before such as the intensities in the Borrmann triangle
and Pendellösung oscillation. A simple way to understand the
variation of the contrast with blade thickness is considered for
a three-blade neutron interferometer. The same process can be
applied to other neutron interferometer geometries.

The model could also be used to study concepts such
as decoherence in cases where there is slight misalignment,
missing atoms, isotopes, local absorption, etc. In the case of
missing atoms, the unitary of that particular node equals to an
identity. In the case of misalignment, the parameters θ, ξ, and
ζ are different from the rest of the lattice.

Although we only considered elastic scattering, this model
maybe applied to inelastic scattering by adding another degree

of freedom. In general, one could entangle the particles
momentum to other excitation (phonons, magnons, etc). An
example is DD of neutrons on a magnetic crystal where each
incident neutron is in a superposition of spin-up and spin-down
states. Due to the high magnetic field inside the magnetic crys-
tal, spin-up and spin-down states will get different momenta
and therefore will have different transmission and reflection
coefficients. If the two degrees of freedoms (spin, momentum)
are entangled, then by changing the entangled state from
a symmetric into an antisymmetric state, it is possible to
mimic the dynamics of two noninteracting particles. The
realization might be challenging in some cases as it requires
a quadratically growing number of elements. However, this is
outside of the scope of this paper.
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