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Abstract 
Beer is a complex fermented beverage and several hundreds of components have been 

identified erenow. Hops are extremely important to beer’s organoleptic qualities, especially 

bitterness. Bitterness, a distinguishing component of beer’s taste, is of concern for many 

beer brewing companies. Chemically, the bitterness of beers is associated with the content 

of iso-humulone, an isomerization product of tasteless natural humulone present in hops. 

Thus, it is vital to characterize humulone concentration profiles because brewers can utilize 

these to adjust desired beer properties. However, until now, there are some uncertainties of 

the quantitative relation between particular hop-derived compounds and sensory bitterness. 

In this research, the possibility of differential mobility spectrometry (DMS) technique 

being employed to separate and identify different humulone isomers has been explored. 

Results are compared against the UV-Vis spectrometry method, which is the conventional 

analytical technique used to determine the bitterness level of beer. Influence of external 

factors on the humulone isomerization and decomposition are also studied with 

rationalization from theoretical calculations. 

 

  



 iv 

Acknowledgements 

First and foremost, I would like to acknowledge the help and guidance of my 

supervisor Dr. W. Scott Hopkins. During the graduate project, it has been over two years 

with your constant and generous help not only in my studies, but also in my life. 

I would also like to thank my committee members Dr. Steven Innocente and Dr. 

Tadeusz Gorecki for guiding me through my thesis and making time for my presentations.  

I would also like to express my gratitude to Hopkins group former and current 

members for their contributions to my research. I would specially like to thank Ce Zhou 

for reading my thesis and giving me helpful feedback, and I really appreciate Ce Zhou’s 

efforts in filtering data and programing. Also thanks go to Stephen Walker for helping me 

with my research, and Ryland Scott for sharing his research results with me. 

In addition, I would also like to acknowledge Dr. Jake Fisher for kindly providing UV-

Vis spectrophotometer for this research. I would like to send my gratitude to Dr. Steven 

Innocente who provided all beer samples in this research.  

Last, but not least, I would like to thank my family and friends. Special thanks to my 

parents for their support and encouragement.  



 v 

Table of Contents 

Author’s Declaration ........................................................................................................ ii	

Abstract ............................................................................................................................. iii	

Acknowledgements .......................................................................................................... iv	

Table of Contents .............................................................................................................. v	

List of Figures .................................................................................................................. vii	

List of Tables ................................................................................................................... xii	

List of Abbreviations ..................................................................................................... xiii	

Chapter 1 Introduction .................................................................................................... 1	

1.1 Isomerization of Humulone ................................................................................................. 2	
1.2 Current Analysis Techniques .............................................................................................. 5	

Chapter 2 Introduction to Computational Methods ..................................................... 8	

2.1 Basin Hopping ....................................................................................................................... 8	
2.2 Molecular Mechanics ......................................................................................................... 10	
2.3 Density Functional Theory ................................................................................................ 11	

Chapter 3 Introduction to Experimental Methods ...................................................... 14	

3.1 Differential Mobility Spectrometry .................................................................................. 14	
3.2 Ultraviolet-Visible Spectroscopy ....................................................................................... 22	

Chapter 4 DMS/MS of Humulone ................................................................................. 27	

4.1 Experimental Details .......................................................................................................... 27	

4.2 DMS/MS Results ................................................................................................................. 28	
4.3 Temperature Studies .......................................................................................................... 32	

4.4 Computational Results ....................................................................................................... 39	

Chapter 5 Characterization of Humulone Content in Beer ........................................ 47	

5.1 Experimental Details .......................................................................................................... 47	
5.2 DMS/MS Results ................................................................................................................. 48	

5.3 Aging Chamber Studies ..................................................................................................... 50	

5.4 UV-Vis Results .................................................................................................................... 56	



 vi 

Chapter 6 Concluding Remarks .................................................................................... 63	

References ........................................................................................................................ 67	

Appendix I: Energy Summary ....................................................................................... 75	

Appendix II: Structures ................................................................................................. 81	

Appendix III: DMS Ionograms Summary of Beers ..................................................... 99	

	

 

  



 vii 

List of Figures 
Figure 1.1. Hops are used in the brewing process to introduce flavours to Beer.4 ............ 1	

Scheme 1.1. (A) Isomerization reaction from humulone to iso-humulone. (B). 

Mechanism of acyloin rearrangement.7 ...................................................................... 3	

Scheme 1.2. Separation schematic of MEKC. In this case, the detector is assumed to be 

positioned near the negative electrode.13 .................................................................... 6	

Figure 2.1. Flow chart of BH search. Ei is the potential energy of the particular MM 

calculation, EGM is potential energy of current global minimum, and α is random 

number between 0 and 1. This routine exits when the maximum number of iterations 

is reached. ................................................................................................................... 9	

Figure 3.1. DMS apparatus coupled with mass spectrometer.29 ...................................... 17	

Figure 3.2. Schematic diagram of DMS.36 ....................................................................... 18	

Figure 3.3. Ionogram of an analyte optimal transmission occurs at CV = 0 V. .............. 19	

Figure 3.4. Typical ion behavior in DMS as visualized in a dispersion plot.36 ............... 19	

Figure 3.5. Ionogram of separation of analyte optimal transmission occurs at CV = -18 

V, CV = -15 V, and CV = 0 V. ................................................................................ 21	

Figure 3.6. The electromagnetic spectrum.42 ................................................................... 23	

Figure 3.7. Possible electronic transitions in UV-Vis spectroscopy.43 ............................ 24	

Figure 3.8. Schematic diagram for double-beam UV-Vis spectrophotometer.42 ............. 26	

Figure 4.1. The dispersion plot recorded for deprotonated humulone (m/z 361) under 

DMS cell with a pure N2 environment, and a N2 environment with 1.5% (mol ratio) 

methanol vapor and IPA vapor. Error bars are 2s obtained from Gaussian fits to the 

ionogram peaks. ........................................................................................................ 29	

Figure 4.2. (A). The ionogram of deprotonated humulone, (m/z 361) recorded in a N2 

environment seeded with 1.5% (mol ratio) IPA at SV = 3500V. (B). The mass 

spectrum observed when setting the DMS to transmit the ions at CV = –18 V. ...... 30	

Figure 4.3. (A). The ionogram of the pure humulone standard after storage at 4 °C for 

one year, which is diluted to 100 ng/mL by MeOH/H2O solvent, records for the m/z 

361 peak under N2 environment with 1.5% (mol ratio) IPA at SV = 3500 V. (B). The 

associated mass spectrum of A. ................................................................................ 31	



 viii 

Figure 4.4. (A). The ionogram observed for deprotonated humulone when the ESI 

solution is heated to 37 °C for (black trace) 0 min, (red trace) 15 min, and (blue 

trace) 120 min. The humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O 

solvent. Measurements were acquired in an N2 environment seeded with 1.5 % (mol 

ratio) IPA with SV = 3500 V. (B). The mass spectra associated with ionograms 

shown in A. ............................................................................................................... 32	

Figure 4.5. (A). The ionogram observed for deprotonated humulone when the ESI 

solution is heated to 50 °C for (black trace) 0 min, (red trace)15 min, (blue trace) 90 

min, and (pink trace) 105 min. The humulone standard was diluted to 100 ng/mL in 

1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded 

with 1.5 % (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with 

ionograms shown in A. ............................................................................................. 33	

Figure 4.6. (A). The ionogram observed for deprotonated humulone when the ESI 

solution is heated to 70 °C for (black trace) 0 min, (red trace)15 min, (blue trace) 60 

min, and (pink trace) 105 min. The humulone standard was diluted to 100 ng/mL in 

1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded 

with 1.5 % (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with 

ionograms shown in A. ............................................................................................. 34	

Figure 4.7. The ionogram observed for deprotonated humulone when heated to 78 °C. 

The humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O solvent. 

Measurements were acquired in an N2 environment seeded with 1.5% (mol ratio) 

IPA with SV = 3500 V. ............................................................................................. 34	

Figure 4.8. The mass spectra observed for deprotonated humulone when heating the ESI 

solution to 78 °C for (black trace) 0 min, (violet trace)15 min, and (brown trace) 105 

min. The humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O solvent. 

Measurements were acquired in an N2 environment seeded with 1.5% (mol ratio) 

IPA with SV = 3500 V. ............................................................................................. 35	

Figure 4.9. The effect of temperature (78 °C) on the isomerization of humulone. Parent 

peak intensity is plotted in black and nascent isomer intensity is plotted in red. Error 

bars show 1s error on the fitted peak area. ............................................................... 36	



 ix 

Figure 4.10. The dispersion plot recorded for deprotonated humulone (m/z 361) with a 

pure N2 environment, and a N2 environment with 1.5% (mol ratio) methanol vapor 

and IPA vapor when sprayed from a 1:19 EtOH/H2O solution. Error bars are 2s 

obtained from Gaussian fits to the ionogram peaks. ................................................. 37	

Figure 4.11. The ionogram observed for m/z 361 when a humulone solution is heated to 

96 °C. The humulone standard was diluted to 100 ng/mL in 1:19 EtOH/H2O solvent. 

Measurements were acquired in an N2 environment seeded with 1.5% (mol ratio) 

IPA with SV = 3500 V. ............................................................................................. 38	

Figure 4.12. The effect of temperature (T = 96 °C) on the isomerization of humulone. . 39	

Figure 4.13. The calculated geometries of neutral humulone and its isomers in the gas 

phase. Relative Gibbs energies at 298 K are given in kJ mol–1. Calculations used the 

B3LYP functional and 6-311++G (d, p) basis set. ................................................... 41	

Figure 4.14. The calculated geometries of deprotonated humulone (Isomer 1, 6, and 7) 

and the deprotonated forms of iso-humulone. Isomer 2 and Isomer 5 are 

deprotonated forms of cis iso-humulone, and Isomer 3 and Isomer 4 are 

deprotonated forms of trans iso-humulone. Relative Gibbs energies at 298 K are 

given in kJ mol–1. Calculations used the B3LYP functional and 6-311++G (d, p) 

basis set. .................................................................................................................... 44	

Figure 4.15. The calculated geometries of deprotonated Intermediate 1 and Intermediate 

2. Relative Gibbs energies at 298 K are given in kJ mol–1, and they are relative to the 

global minima deprotonated Humulone Isomer 1, 0.0 kJ mol–1. Calculations used the 

B3LYP functional and 6-311++G (d, p) basis set. ................................................... 46	

Figure 5.1. (A). The ionogram observed for Conscience beer. The beer sample was 

diluted to 100 ng/mL in 1:1 MeOH/H2O solvent. Measurements were acquired in an 

N2 environment seeded with 1.5 % (mol ratio) IPA with SV = 3500 V. (B). The 

mass spectra associated with ionograms shown in A. .............................................. 49	

Figure 5.2. The environmental growth chamber used in this project.55 ........................... 51	

Figure 5.3. (A). The ionogram of Conscience beer at 18 °C (black), heated to 37 °C for 

four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 1:1 

MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 



 x 

1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with the 

sixth week ionogram in A. ........................................................................................ 53	

Figure 5.4. (A). The ionogram of Two Night Stand (2NS) at 18 °C (black) when heated 

to 37 °C for fourth week (blue), and sixth week (pink). The beer was diluted to 100 

ng/mL in 1:1 MeOH/H2O solvent. Measurements were acquired in an N2 

environment seeded with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass 

spectra associated with fresh beer. (C). The mass spectra associated with sixth week 

beer. ........................................................................................................................... 55	

Figure 5.5. (A). The ionogram of Fling (FL) beer at 18 °C (black) when heated to 37 °C 

for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 

1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded 

with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with 

fresh beer. (C). The mass spectra associated with sixth week ionogram. ................. 56	

Figure 5.6. (A). The UV-Vis spectra of the extracted humulone and its isomers of Two 

night stand (2NS), Fling (FL), Kolsch (KO), Bystander (BS), Conscience (CS), 

Dubbel Vision (Bat), and Inn Oslainte (In) beer fresh samples. (B). The UV-Vis 

spectra of above beers after storing in an aging chamber for six weeks at T = 37 °C. 

The peak heights are measured at 275 nm which is associated with p ® p* transition 

in the conjugation system of humulone and its isomers. .......................................... 58	

Figure 5.7. The calculated UV-Vis spectra of neutral humulone, cis iso-humulone, and 

trans iso-humulone conducted using a heptane PCM using TD-DFT at the 

B3LYP/6-311++G(d,p) level of theory. ................................................................... 61	

Figure 5.8. (A). The integrate signals of iso-humulone of Two night stand (2NS), Fling 

(FL), Kolsch (KO), Bystander (BS), Conscience (CS), Batch-5 Dubbel Vision (Bat), 

and Inn Oslainte (In) fresh beer samples versus their IBU values. (B). The integrate 

signals of iso-humulone of above beers for stored at aging chamber for six weeks 

versus their IBU values. ............................................................................................ 62	

Figure A1. The calculated geometries of protonated humulone (Isomer 1 and 2) and its 

isomers. Isomer 3, Isomer 6 and Isomer 7 are protonated forms of cis iso-humulone, 

and Isomer 4 and Isomer 5 are protonated forms of trans iso-humulone. Relative 



 xi 

Gibbs energies at 298 K are given in kJ mol-1. Calculations used the B3LYP 

fuctional and 6-311++G (d, p) basis set. ................................................................... 79	

Figure A3.1. The ionogram of protonated humulone (m/z 363) recorded in a N2 

environment seeded with 1.5% (mol ratio) IPA at SV = 3500 V. ............................ 99	

Figure A3.2. (A). The ionogram of Kolsch (KO) at 18 °C (black) when heated to 37 °C 

for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 

1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded 

with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with 

fresh beer. (C). The mass spectra associated with sixth week beer. ....................... 101	

Figure A3.3. (A). The ionogram of Bystander (BS) at 18 °C (black) when heated to 37 

°C for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL 

in 1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment 

seeded with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra 

associated with fresh beer. (C). The mass spectra associated with sixth week beer.

................................................................................................................................. 102	

Figure A3.4. (A). The ionogram of Batch-5 Dubbel Vision (Bat) at 18 °C (black) when 

heated to 37 °C for four weeks (blue), and six weeks (pink). The beer was diluted to 

100 ng/mL in 1:1 MeOH/H2O solvent. Measurements were acquired in an N2 

environment seeded with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass 

spectra associated with fresh beer. (C). The mass spectra associated with sixth week 

beer. ......................................................................................................................... 103	

Figure A3.5. (A). The ionogram of Inn Oslainte (In) at 18 °C (black) when heated to 37 

°C for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL 

in 1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment 

seeded with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra 

associated with fresh beer. (C). The mass spectra associated with sixth week beer.

................................................................................................................................. 104	

 

  



 xii 

List of Tables 
Table 4.1. Molecular fragments of deprotonated humulone. ........................................... 30	

Table 5.1. Experimental IBU Values of Different Beers Measured by UV-Vis 

Spectroscopy ............................................................................................................. 59	

Table A1.1. The Gibbs’ Energies and Relative Energies of Neutral Humulone and Its 

Isomers ...................................................................................................................... 75	

Table A1.2. The Gibbs’ Energies and Relative Energies of Deprotonated Humulone and 

Deprotonated Iso-humulone ...................................................................................... 76	

Table A1.3. The Gibbs’ Energies and Relative Energies of Protonated Humulone and 

Protonated Iso-humulone .......................................................................................... 80	

Table A3.1. Beer Properties ........................................................................................... 100	

 

  



 xiii 

List of Abbreviations 
AAU   Alpha Acid Unit 

IBU   International Bitterness Unit 

LC   Liquid Chromatography 

MEKC  Micellar ElectroKinetic Chromatography 

MS   Mass Spectrometry 

m/z  Mass-to-Charge Ratio 

UV-Vis  Ultraviolet-Visible Spectroscopy 

ASBC   American Society of Brewing Chemists 

DMS   Differential Mobility Spectrometry 

PES   Potential Energy Surface 

BH   Basin Hopping 

MM   Molecular Mechanics 

DFT   Density Functional Theory 

UFF  Universal Force Fieled 

CHelpG  Charges from electrostatic potentials using a grid based method 

HF   Hartree-Fock 

LDA   Local-Density Approximation 

GGA   Generalized Gradient Approximation 

B3LYP  Becke, three-parameter, Lee-Yang-Parr 

IMS   Ion Mobility Spectrometry 

CCS  Collision Cross Section 

FAIMS High Field Asymmetric Ion Mobility Spectrometry 

ESI   ElectroSpray Ionization 

SV   Separation Voltage 

DC   Direct Current 

CV   Compensation Voltage 

IPA   Isopropanol 

MO  Molecular Orbital  

T   Transmittance 



 xiv 

N2   Nitrogen 

MeOH  Methanol 

H2O   Water 

EPI   Enhance Product Ion 

EtOH  Ethanol 

CS   Conscience 

2NS   Two Night Stand 

FL   Fling 

KO   Kolsch 

BS   Bystander 

Bat   Batch-5 Dubbel Vision 

In   Inn Oslainte 

HCl   Hydrochloric Acid 

PCM  Polarized Continuum Model 



 1 

Chapter 1  

Introduction 

Beer is one of the oldest beverages produced from	fermentation.1 It was a necessity 

for people in the Middle Ages because water at that time, which was source of contagious 

diseases like cholera, typhoid fever,2 could not be sanitized in an economically efficient 

way. The addition of hops (shown in Figure 1.1), which grow in all temperate climate zones, 

during the brewing process can be dated from the 6th century.2 Even in a quantitatively 

minor composition, hops play a central role of determining the unique flavor of different 

beers. Although brewing technology has a long history, the correlation between the brewing 

process and the resulting beer’s taste is only partially understood. The bitterness of beer is 

associated with iso-humulone, a compound formed via thermal isomerization from 

humulone, which is one of the essential contents of the hops. Hence, quantitation of 

humulone and iso-humulone in beer is needed not only for better quality control, but also 

for accurately tuning the bitterness of new beer products for their unique taste.3 

 
Figure 1.1. Hops are used in the brewing process to introduce flavours to Beer.4  
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1.1 Isomerization of Humulone 

With regard to beer brewing, the essential component in hops is humulone (see 

Scheme 1.1). Humulone itself is tasteless, but it isomerizes to the very bitter iso-humulone 

during the boiling stage of the brewing process.1 The six-membered ring in humulone 

undergoes an acyloin rearrangement and yields a five-membered ring iso-humulone 

structure shown in Scheme 1.1.5 Iso-humulone has two diastereomers, namely cis and trans, 

due to the existence of two chiral centers in the ring.5 Note that two isomers can be derived 

from two chiral centers, but two of these can quickly interconvert and become racemic 

mixture in solution (Scheme 1.1). While trans iso-humulone can be isolated/purified, 

minor impurities are typically present in samples of the cis derivative.2,6  
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Scheme 1.1. (A) Isomerization reaction from humulone to iso-humulone. (B). Mechanism 

of acyloin rearrangement.7  
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As they are isomers, both humulone and iso-humulone have a molecular weight of 

362 g/mol. Iso-humulone is stable in acidic condition, but it is light sensitive, which is one 

of the reasons for beer usually being stored in brown or green glass bottles.2 In addition to 

the main contributor of bitterness in beer, iso-humulone also plays a role in flavor 

stabilization, anti-bacteria properties, as well as foam formation;5 as the concentration of 

iso-humulone increases, so too does the volume of foam in a typical pour. The bacteriostatic 

properties of these hop-derived components ensure sterilization conditions during the 

boiling process.2,6 The solubility of iso-humulone in beer ranges from 10 to 100 mg/L, 

much higher than the ~ 6 mg/L solubility in pure water.5 This solubility increase could be 

due to the acidity of the beer environment and complexation with other components in the 

beer matrix.  

There are several ways to describe bitterness in brewing. One metric of bitterness level 

is the alpha acid unit (AAU). The AAU is the weight of hops (in ounces) multiplied by the 

percentage of humulone in the hops, which indicates the bittering potential of the hop 

variety.8 The International bitterness unit (IBU) is another analytical measurement of beer 

bitterness. IBU utilizes the iso-humulone content (in mg/L) of beer.8 IBU values can be 

measured through spectrophotometric techniques, but the results of these measurements 

contain interferences from other compounds with similar spectral response.8 As can be seen 

from their definition, AAU is dependent on the mass and type of the hop used in the 

brewing process while IBU is independent of those parameters. 
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1.2 Current Analysis Techniques 

Conventionally, the bitterness level of beer is authenticated organoloptically by 

Cicerones (i.e., Beer Sommeliers).2 Consequently, the perceived IBU of a particular beer 

can differ between individuals. Therefore, instrumental characterization is also required to 

provide a unified bitterness/quality measurement.  

Beer is a complex mixture of more than three hundred ingredients.2 As there is 

synergistic effect amongst the components with regard to flavour, even a minor change in 

the concentration of an individual compound can result in significant alternation in the 

flavour of the final product. Previous studies indicate that iso-humulone contributes almost 

80 %	 of the bitterness flavour.2 Liquid chromatographic (LC)	 studies show that iso-

humulone can be oxidized by the metal ions, which are from the metal contained in the 

materials of column, thus suggesting that water quality can dramatically impact the quality 

of the final product.2 For LC analysis, special demineralized stationary phases must be 

utilized to reduce the oxidative degradation, and even then the metal ion contaminants and 

shelf-life of the column can result in signal loss during characterization.2,9–11 As a 

consequence, characterization of iso-humulone via LC is not the preferred method. This is 

further exacerbated by the fact that pure samples of  iso-humulone are expensive and 

difficult to obtain for uses as quantitative standards.2,11 

Micellar electrokinetic chromatography (MEKC) is another method used to separate 

humulone and its isomers in beer.2 This technique combines electrophoretic propulsion 
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with chromatographic partitioning.12 Micelles (surfactants) are first added to a buffer 

solution; then, analyte species can be separated for micellization. Both ionic and neutral 

species can be analyzed by this method. A working schematic of MEKC is shown in 

Scheme 1.2.13 Compared to the LC method, MEKC reduces oxidative degradation of iso-

humulone. However, similar to the LC approach, a major problem of MEKC in 

quantification is the lack of suitable iso-humulone standards for calibration. 

 

 
Scheme 1.2. Separation schematic of MEKC. In this case, the detector is assumed to be 

positioned near the negative electrode.13 

	

Mass spectrometry (MS) is a well-established analytical method for chemical 

analysis.14 MS analysis measures the mass-to-charge ratio (m/z), whereby the mass number 

(m) of molecular ion, an intrinsic property, is divided by charge number (z), of the chemical 

species.14 Commonly, other instruments are coupled to MS for analytical characterization 
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of separation prior to MS characterization. For instance, LC-MS and MEKC-MS are 

ordinary “hyphenated” MS analysis techniques. These techniques have also been coupled 

with ultraviolet-visible spectroscopy (UV-Vis), e.g., LC (LC-UV) and MEKC (MEKC-

UV), for use in humulone characterization studies.15 However, the American Society of 

Brewing Chemists (ASBC) recommends simple UV-Vis characterization as a stand-alone 

approach to describe the bitterness level in beer since this methodology is relatively 

inexpensive, is straightforward to implement and it yields results that are reasonably 

consistent with organoleptic analysis.16 Herein, we investigate the efficacy of using 

differential mobility spectrometry (DMS) to characterize the isomers of humulone and 

compare this with the results of UV-Vis analysis. 
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Chapter 2 

Introduction to Computational Methods 

To elucidate the isomerization process and support experimental findings, quantum 

chemical calculations on a series of humulone isomers	 were conducted utilizing the 

Gaussian 09 software package.17 Owing to the structural complexity of the molecules and 

clusters that we propose to study, it is necessary to conduct a systematic search of the 

potential energy surface (PES) for minimum structures. In this thesis, we employ the basin 

hopping (BH) search algorithm.18 The molecular mechanics (MM) level of theory is 

utilized to screen candidate structures.19 Then, more accurate electronic structure 

calculations at the density functional level of theory (DFT) are used to determine the 

relative energies of the candidate structures generated from the basin hopping simulation. 

2.1 Basin Hopping 

To find the global minimum structure of humulone and its isomers, the Basin Hopping 

(BH) algorithm is utilized (see Figure 2.1). The BH algorithm consists of cycles that 

randomly distort molecular parameters such as dihedral angles, followed by projection of 

the resulting structure onto the closest local minimum on the PES. By filtering those local 

minima identified from each cycle against a pre-defined energy barrier (expressed in terms 

of Boltzmann temperature), the algorithm biases the search towards the global minimum 

of the model potential energy landscape.  An iteration of the search is defined as the 
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acceptance of new minimum structure. 

 

 
Figure 2.1. Flow chart of BH search. Ei is the potential energy of the particular MM 

calculation, EGM is potential energy of current global minimum, and α is random number 

between 0 and 1. This routine exits when the maximum number of iterations is reached.     
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In this work, 10,000 iterations, which is commonly used to sample most possible 

unique structures, are conducted for every BH simulation. The simulation volume (box size) 

is set to 15 Å cubed. The temperature is set at 2000 K which corresponds to thermally 

accessible barriers of 2000 K or less. The energy barrier for filtering the minima is adjusted 

for individual simulations to avoid local kinetic trapping.20 The average energy barrier used 

in the simulations is about 175 meV. At each step, each free	dihedral angle in the molecule 

is distorted by a random angle not exceeding 5°. After the BH simulation, those unique 

structures obtained undergo a hierarchy of optimizations up to the B3LYP/6-311G(d,p) or 

B3LYP/6-311++G(d,p) level. Frequency calculations are also conducted under the same 

basis set level as optimization calculations. The subsequent normal mode analyses confirm 

molecular structures are stable local minima or transition states, and provide thermal 

dynamic corrections to electronic energies. Computational results may then be compared 

to experimental data. 

2.2 Molecular Mechanics 

Molecular mechanics (MM) utilizes classical Newtonian force field models that 

describe molecules as balls and springs.21–23 In this project, we use a full periodic table 

force field for MM, the Universal force field (UFF), which is composed of a set of 

hybridization dependent atomic bond radii, a set of hybridization angles, a set of effective 

nuclear charges, torsional and inversion barriers, and van der Waals parameters.24 Thus, the 

MM total energy (Etotal) consists of contributions from bond stretching (Estretch), bond angle 
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bending (Ebend), dihedral angle torsion (Etorsion), and inversion terms (Einversion); and non-

bonding interactions from van der Waals terms (Evdw) and electrostatic terms (Eel).24 The 

analytical form of the force field is given in Equation 2.1 and Equation 2.2.24 

E"#"$% = E'"()"*+ + E-)./ + E"#('0#. + E0.1)('0#.
-#./0.2	0.")($*"0#.'

+ E1/4 + E)%
.#.5-#./0.2
0.")($*"0#.'

  Equation 2.1 

 

E"#"$% = 𝐾7(𝑟 − 𝑟;<)>?@ABC + 𝐾D(𝜃 − 𝜃;<)>FAGH;C
-#./0.2	0.")($*"0#.'

+ FIJ
7IJ
KL −

?IJ
7IJ
M +

<I<J
N7IJOPQ

.#.5-#./0.2
0.")($*"0#.'

           

                     Equation 2.2 

For the MM calculations, partial charges for individual atoms are first estimated from 

a “guess” B3LYP/6-311+G(d,p) optimized structure via the CHelpG partition scheme. The 

subsequent MM calculations are quick, but have limited accuracy. Thus, to improve 

accuracy, higher level DFT calculations are employed on the unique MM structures. 

2.3 Density Functional Theory  

Density functional theory (DFT) is an ab initio quantum chemical electronic structure 

method, which deals with the molecular electron density. The electron density is described 

as the integral over the spin coordinates of all electrons and over all but one of the spatial 

variables.25,26 

          𝜌 𝑟 = 𝑁 … 𝛹(𝑥W, 𝑥>, … , 𝑥Y) >𝑑𝑠W𝑑𝑥> …𝑑𝑥Y   Equation 2.3 

In Equation 2.2,  𝜌 r  determines the probability of discovering any of the N electrons 
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within volume element 𝑑𝑟.25,26 For DFT, the total energy is expressed in terms of electron 

density, which itself is a function of the basis orbitals (hence “functional”, which is a 

function of a function). Thus, DFT emphasizes minimizing the spatially-dependent density 

functional.27  In early DFT treatments, the exchange correlation energy was not treated 

explicitly. However, modern developments have yielded functionals which include exact 

Hartree-Fock (HF) exchange and now there are several different ways of representing this 

exchange energy.25,26 It is critical that this quantum mechanical phenomenon be treated 

accurately in calculations designed to calculate relative thermodynamic energies of, e.g., 

isomers.  With the application of DFT techniques which explicitly treat electron correlation 

effects, one may achieve excellent accuracy (usually within a few kJ mol–1) at a much more 

affordable computational cost than common wave function based approaches, especially 

for large molecular systems.22,27  

There are three major categories of density functionals: (i) LDA, (ii) GGA, and (iii) 

hybrid methods. The oldest type, the local-density approximation (LDA) method, assumes 

energy depends only on the electron density and not, e.g., the Kohn-Sham orbitals or 

derivatives of the density.27  The accuracy of DFT is improved using the Generalized 

Gradient Approximation (GGA), which more realistically depicts molecules with 

nonhomogeneous electron density due to the incorporation of density gradients.27 Here we 

use the B3LYP hybrid method, which combines GGA and exact HF exchange to improve 

the accuracy of total energy calculations.28 B3LYP, which stands for the “Becke, three 
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parameter, Lee-Yang-Parr” functional, is a common choice of functional for organic 

compounds like humulone and its isomers and it has been demonstrated to yield excellent 

results.17  
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Chapter 3 

Introduction to Experimental Methods 

The experimental methods utilized in this work and their underlying theories are 

described in this chapter. Each method is distinct in both its underlying principles and data 

offered, so that a benefit is conferred when a combination of experimental methods is 

utilized.  

3.1 Differential Mobility Spectrometry 

Ion mobility spectrometry (IMS) is extensively used to characterize ions in terms of 

their unique transportation properties, which are affected by the surrounding environment 

when these ions pass through the instrument cell driven by an external electric field.29–32 

In the IMS separation region, ions are transported by a gas phase medium, and they are 

exposed to an electric field (E).14 Because of the Coulomb force, the ions experience 

acceleration, which is mitigated by collision with carrier gas molecules.14 This yields a 

characteristic equilibrium drift velocity, vd, which is described by the expression:14 

                                            v/ = K ⋅ E      Equation 3.1 

Where, K is the ion mobility, and E is the electric field. If the IMS instrumentation is 

operated at low electric fields, the Mason-Champ equation (Equation 3.2) may be used to 

describe ion mobility:14 
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       Equation 3.2 

Where µ is the reduced mass of the ion / collision gas system: 

                                               µ = kl
kml

        Equation 3.3 

Where M is the molecular mass of the ion and m is the molecular mass of carrier gas. In 

equation 3.2, ko is the Boltzmann constant, T is the gas temperature, z is the molecular 

charge, e is the elementary charge, N is the number density (number of molecules per unit 

volume), and Ω is the collision cross section.14 

In differential mobility spectrometry (DMS), ion are subjected to oscillating electric 

fields which have a low-field and a high-field component.14 It turns out that ion mobility is 

field-dependent and can vary dramatically between the low-field and high-field conditions. 

This differential ion mobility can be expressed as:14 

                                     K(q
h
) = Kr×[1 + α

q
h
]    Equation 3.4 

Which is oftentimes reported in the form: 

                                            α(q
h
) =

x(yz)5x{
x{

     Equation 3.5 

Here, N is the number density, Kr = K(E)|q}r is the mobility of ion under low electrical 

field, and α q
h

 is an empirical term that describes the field-dependence of the mobility 

under the given carrier gas composition, pressure, and temperature conditions.14,33–35  

IMS is typically used as a pre-filter for mass spectrometry (MS). IMS first separates 

ions based on size (viz., collision cross section; CCS) prior to MS characterization.14 Since 
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isomeric species have different geometric structures, they can potentially be separated and 

quantified by traditional linear drift tube IMS.14  However, in practice, it is difficult to 

resolve species with very similar CCS (like isomers) using traditional IMS techniques. 

Since DMS takes advantage of mobility differences between high- and low-field conditions, 

and field oscillations occur at a frequency of ca. 3 MHz, slight differences in isomer 

differential mobilities can be sampled several tens of thousands of times during ion transit 

of the DMS cell. This oftentimes results in significantly improved separation when 

compared to IMS.31,36 However, DMS is not without its drawbacks, the most important of 

which is the fact that differential mobility is not well understood from a theoretical 

standpoint. Consequently, a first principles model of DMS separation is not available. 

Nevertheless, one can confidently interpret DMS data by expanding the analytical method 

to include additional information from mass spectrometry (i.e., m/z, fragmentation spectra, 

breakdown curves, hydrogen-deuterium exchange profiles)14 and quantum chemical 

calculations.  

An expanded diagram of the DMS apparatus is shown in Figure 3.1. DMS has four 

main components: (i) a sample introduction system, (ii) an ionization region, (iii) a 

differential mobility cell (separation and selection region), and (iv) a detection region (e.g., 

MS). The differential mobility cell typically adopts one of two geometries; either a 

cylindrical system (known as FAIMS) or a planar geometry (referred to as DMS).14 A major 

advantage of DMS over FAIMS is that one may continuously introduce ions, and hence 
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monitor all analytes (cations and anions) in real time, by setting the cell voltages to zero 

since the DMS cell does not impede ion flow to the electrondes.14 One can thus easily 

monitor the effect of the applied fields on analyte trajectories. 

 

 
Figure 3.1. DMS apparatus coupled with mass spectrometer.29 

 

A schematic diagram of the DMS cell is shown in Figure 3.2.36 For the experiments 

described herein, gas phase ions are first generated from an electrospray ionization (ESI) 

source, then carried through the DMS cell via a N2 gas flow.33 In the DMS cell, there are 

two parallel planar electrodes between which a radio frequency alternating electric field of 

asymmetric sinusoidal waveform, known as the separation voltage (SV).37 Due to the 

modulated SV, the trajectory of the ions forms a zigzag-like pattern along the longitudinal 

axis of the cell.36 The combination of the asymmetric waveform and the collisions with 
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carrier gas results in deviation of ion trajectories off of the DMS cell axis and migration of 

the ions towards one of the planar electrode. Applying an additional DC voltage, referred 

to as the compensation voltage (CV), redirects the ion’s trajectory through the DMS cell.37 

Consequently, the behavior of ions within a DMS cell is encoded by the specific SV/CV 

settings for optimal transmission. By scanning CV at a fixed SV, one generates an ionogram, 

as shown in Figure 3.3. By plotting the optimal CV for ion transmission as a function of 

SV, one generates a dispersion plot, as shown in Figure 3.4.36  

 

 

Figure 3.2. Schematic diagram of DMS.36 
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Figure 3.3. Ionogram of an analyte optimal transmission occurs at CV = 0 V.  

	

 

 
Figure 3.4. Typical ion behavior in DMS as visualized in a dispersion plot.36 
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The dispersion plot can be utilized to intuitively visualize the ions behavior in the 

DMS cell.36 As shown in Figure 3.4, there are three general types of ion behavior. Type A 

behavior, where CV decreases with increasing SV, indicates a strong clustering interaction 

between analyte and the collision gas in the DMS cell.36 This behavior is usually observed 

following the addition of polar solvent vapour to the N2 carrier gas. Type C behavior, 

whereby CV increases with increasing SV, indicates that there are negligible ion-solvent 

interactions, and that the ions behave like “hard spheres” during collisions as they travel 

through the DMS cell.36 This behavior is usually observed in pure N2 or He environments.36 

Type B behavior is an intermediate case to Type A and C. In this case, CV decreases with 

increasing SV at low SV, and then increases with increasing SV at high SV.  This behavior 

is indicative of weak clustering between analytic ions and carrier gas molecules. In the low-

field portion, weak clustering occurs between analytic ions and gas molecules; however, in 

the high-field portion, de-clustering occurs due to high energy collisions between sample 

ions and gas molecules, and then ions exhibits “hard sphere” behavior.29 

In addition to visualizing ion-solvent interaction strengths, inspection of the 

dispersion plot can provide the SV/CV settings for the most efficient separation of analytes. 

An example ionogram showing diastereomers separation is shown in Figure 3.5. Under the 

most efficient separation conditions, the ionogram shows three peaks, indicating that there 

are three diastereomers present in the probed ensemble. In contrast, the ionogram shown 

in Figure 3.3, contains only a single peak, which indicates that the analyte exhibits only 
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one geometric structure, or that the geometries of multiple structures are so similar that 

those species are not resolved under the experimental conditions utilized. 

	

	

Figure 3.5. Ionogram of separation of analyte optimal transmission occurs at CV = -18 V, 

CV = -15 V, and CV = 0 V.  

 

To improve analyte separation, the carrier gas of the DMS cell can be modified by 

introducing a volatile solvent vapour (e.g., isopropanol; IPA).29 Addition of a modifier can 

alter the SV/CV conditions required to transmit an analyte ion through the DMS cell owing 

to dynamic clustering/de-clustering interactions between the modifier molecules and the 

analyte.29,32,38 The analyte ions cluster with the modifiers under the low-field portion of the	

SV, while in the high-field portion, de-clustering of the analyte-modifier complex 
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spontaneously takes place.39 Thus, the ions exhibit artificially large CCSs under the low 

field condition due to microsolvation. Since the ions undergo thousands of clustering/de-

clustering cycles during their transit through the DMS cell, the dynamic clustering process 

can cause substantial deviations of ion trajectories compared to the hard sphere N2 

environment. Moreover, since different isomers/conformers have slightly different ion-

solvent interaction potentials, the associated differences in dynamic clustering can lead to 

significant differences in isomer trajectories through the DMS cell. This results in improved 

separation of the isomeric species. Since analyte trajectories, and therefore separations, in 

the DMS cell depend strongly on the analyte-modifier binding energies (viz. interaction 

potentials), selecting an appropriate collision gas composition is important. The choice of 

modifier is based on the structure of the ions, the properties of the modifier (i.e., vapor 

pressure), and the binding  interactions between the ion and modifier.29,40 For example, 

humulone possesses hydroxyl and carbonyl groups (see Scheme 1.1 for structures), which 

means that the chosen modifier is likely to interact strongly via intermolecular hydrogen 

bonding. Iso-humulone, on the other hand, can exhibit intramolecular hydrogen bonding to 

partially mask polar functional groups. Thus, the binding energy of the solvent with iso-

humulone is likely to be less than that of humulone. By taking advantage of such structural 

differences and differences in interaction potential, one can isolate each isomeric form.  

3.2 Ultraviolet-Visible Spectroscopy 

The Ultraviolet-Visible spectroscopy (UV-Vis) technique is widely utilized for 



 23 

qualitative and quantitative analyses of molecules. The underlying principle of UV-Vis is 

the absorption of light to excite molecular electronic transitions in the ultraviolet and 

visible regions of the electromagnetic spectrum (shown in Figure 3.6).41  

 

 

Figure 3.6. The electromagnetic spectrum.42 

	

Electronic transitions provide information about the bonding and electronic structure 

of molecules, and can be used as a tool for molecular identification.43 The frontier 

molecular orbitals (MOs) commonly probed with UV-Vis spectroscopy are: s (bonding 

orbital), p (bonding orbital), n (non-bonding orbital), s* (anti-bonding orbital), and p* (anti-

bonding orbital); electronic transitions may occur between any two of these MOs, but 

typically absorptions are associated with promotion of electronic population from the 

ground state. In general, a relatively large amount of energy is required to satisfy s → s* 

and n → s* transitions. Hence, the light absorption associated with these transitions, 

typically occurs in the far ultraviolet region (180-240 nm).43,44  In comparison, n → p* and 
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p → p* transitions typically occur at lower energy, so the absorbed radiation is of lower 

frequency and longer wavelength. Conjugated p systems, which consists of alternating 

single and double bonds, typically absorb in the visible region.42 A summary of common 

electronic transitions is provided in Figure 3.7. Humulone, for example, can potentially 

exhibit n → s*,   p → p*, and n → p* transitions. 

 

 

Figure 3.7. Possible electronic transitions in UV-Vis spectroscopy.43 

	

The Beer-Lambert Law describes the absorbance of light by matter.43  

                   A = log �{
�
= − log f(%)

Wrr
= εbC               Equation 3.6 

Here, A is the absorbance, I0 is the incident light intensity, I is the transmitted light intensity, 

e is the molar extinction coefficient (molar absorptivity), b is the pathlength (length of the 
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cuvette), and C is the concentration of the solute. The transmittance (T) is defined as I/I0, 

and the percentage form, %T, is often used to express the intensity of absorption. 

Experimentally, the electronic transitions of a compound can be measured via a bench-

top UV-Vis spectrometer.42 For the UV-Vis spectrometer, the light source should provide 

output over the range of 200 – 800 nm. This is achieved in this work with a deuterium lamp 

(190-400 nm) and a tungsten halogen lamp (300-2500 nm).45 The monochromator, which 

includes a diffraction grating, separates the incoming light to different wavelengths. The 

separated light then passes through separate arms containing cuvettes filled with analyte 

and blank samples, respectively. The intensity of the reference is defined to be 100% 

Transmission (or zero Absorbance), and sample absorption is calculated as the ratio of two 

beam intensities. The final light signal is converted to electric current by photodiodes, one 

for the sample beam and one for the reference beam.43 A schematic diagram is given for 

the UV-Vis spectrometer in Figure 3.7.  
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Figure 3.8. Schematic diagram for double-beam UV-Vis spectrophotometer.42   
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Chapter 4 

DMS/MS of Humulone 

To begin our studies of humulone content in beer, it is necessary to establish protocols 

for detecting humulone in the DMS-MS apparatus. A first step in this regard is the 

characterization of a humulone standard.  

4.1 Experimental Details 

HPLC-grade acetone, acetonitrile, isopropanol (IPA), methanol, ethanol, acetic acid, 

and formic acid reagents were purchased from Sigma-Aldrich and were utilized without 

further purification. Analytical grade humulone (2 mg/mL in MeOH/H2O solvent) was 

purchased from Carbosynth. Ultra-pure water (18 MW) was generated by Z00Q0V0WW 

Milli-Q Advantage A10 Water Purification System. 

The DMS instrument (SelexION, SCIEX, Concord, ON, Canada) is mounted between 

the vacuum sampling interface of a research-grade QTRAP 5500 system (SCIEX), and a 

Turbo ESI source.46 The ESI probe is sustained at a voltage of 5500 V, and the source 

temperature is 100 °C. The DMS cell temperature is set at 150 °C. In the DMS cell, nitrogen 

is used as the carrier gas (250 µL/min), and the chemical modifiers, which are entrained in 

the N2 carrier using a Perkin Elmer 200 liquid chromatographic pump (Waltham, MA, 

USA), are gases added at 1.5% (mol ratio). SCIEX Analyst version TF 1.7.1 and SCIEX 

Peak View version 2.2 were utilized to handle the instrument and record data. The 
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analytical grade humulone sample is diluted down to a concentration of 100 ng/mL in 

methanol/water (1:1) for electrospray.   

4.2 DMS/MS Results 

Under negative-ion ESI conditions, deprotonated humulone and its isomers may be 

monitored via the mass peak at m/z 361. The dispersion plots collected for m/z 361 under 

a pure nitrogen (N2) environment, and in environments seeded with 1.5% methanol (MeOH) 

and isopropanol (IPA) vapour, are shown in Figure 4.1. A single peak exhibiting Type C 

behaviour is present under pure N2 conditions, suggesting the presence of only a single 

isomer in the sample. However, when MeOH modifier is introduced, one traces exhibiting 

Type B behaviours are observed.36 Introducing the stronger clustering IPA modifier results 

in a single trace with the Type A behaviour. This may result from IPA having a higher gas-

phase proton affinity than one isomer, leading to charge scavenging and signal loss for that 

species.47 Alternatively, both isomers/tautomers might exhibit very similar interactions 

with IPA and thus be indistinguishable via DMS with a modified IPA environment.47,48 

Because the protonated cationic signal (m/z 363) was weak and masked by noise, analogous 

positive mode studies not utilize in this research (see supporting information in Appendix 

III Figure A3.1).49–51 The separation voltage was set to SV = 3500 V, and the CV range 

was stepped from -35 V to 5 V in 0.25 V increments. The resulting ionogram of 

deprotonated humulone (100 ng/mL in MeOH/H2O solvent) as observed in the N2 

environment seeded with IPA is shown in Figure 4.2.A. By setting the SV = 3500 V and 
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CV = -18 V, the DMS cell acts as a narrow pass filter to select the deprotonated humulone 

for subsequent study.  The resulting mass spectrum of deprotonated humulone is shown in 

Figure 4.2.B. Previous work identified the signal at m/z 125 (C7H9O2) as a common 

fragment ion of humulone and iso-humulones (see Figure 4.2).9 Note that the fragmentation 

spectrum is missing the parent peak at m/z 361 (C21H29O5). Attempts were made to create 

softer ionization conditions, but the parent peak could not be isolated. The absence of 

parent peak for humulone is attributed to the fact that the collision energy (CE) has a 

minimum setting of 5 V; thus deprotonated humulone must fragment at a lower CE. The 

observed fragments are assigned in Table 4.1. 

 
Figure 4.1. The dispersion plot recorded for deprotonated humulone (m/z 361) under DMS 

cell with a pure N2 environment, and a N2 environment with 1.5% (mol ratio) methanol 

vapor and IPA vapor. Error bars are 2s obtained from Gaussian fits to the ionogram peaks. 
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Table 4.1. Molecular fragments of deprotonated humulone. 

m/z Molecular formula Fragmentation 

331 C20H27O4 Loss of H2CO from parent 

315 C20H27O3 Loss of HCOOH from parent 

297 C20H25O2 Loss of H2O from m/z 315 

282 C19H22O2 Loss of •CH3 from m/z 297 

189 C12H13O2 Loss of C7H9 from m/z 282 

107 C7H7O Loss of H2O from m/z 125 

 

 

                         
Figure 4.2. (A). The ionogram of deprotonated humulone, (m/z 361) recorded in a N2 

environment seeded with 1.5% (mol ratio) IPA at SV = 3500V. (B). The mass spectrum 

observed when setting the DMS to transmit the ions at CV = –18 V.  
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When the pure humulone sample (2 mg/mL in MeOH/H2O solvent) is stored in a 

brown glass bottle in a dark environment at 4 °C for one year, significant changes are 

observed in the ionogram (see Figure 4.3.A). The ionogram peak at CV = –18 V is nearly 

depleted, and a new peak is observed at CV = -15 V. There is also some evidence of a 

weak signal in the CV = ‒5 to 0 V region of the ionogram. This suggests that isomerization 

is occurring in the MeOH/H2O solution, a result which is further supported by the fact that 

the associated fragmentation spectrum of the CV = ‒15 V peak differs from that of the 

CV = ‒18 V peak. In this case, the diagnostic m/z 125 fragment is still observed, and the 

base peak is m/z 360. There are also minor fragments observed at m/z 300 and 316. Clearly, 

one-year storage is well beyond the expected shelf life of beer. However, this result does 

support the hypothesis that the a-acid chemical composition, and therefore flavour profile, 

of beer is likely to evolve even when stored in the dark at T = 4 °C. To explore this 

isomerization process in more detail, a temperature study was conducted.  

 

Figure 4.3. (A). The ionogram of the pure humulone standard after storage at 4 °C for one 
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year, which is diluted to 100 ng/mL by MeOH/H2O solvent, records for the m/z 361 peak 

under N2 environment with 1.5% (mol ratio) IPA at SV = 3500 V. (B). The associated mass 

spectrum of A. 

4.3 Temperature Studies 

To further investigate the isomerization of the humulone standard, a series of 

measurements were conducted at T = 18 °C, 37 °C, 50 °C, 70 °C, and 100 °C. Samples 

were held at these temperatures and aliquots were extracted for analysis at regular 15 

minute intervals for two hours.  Figure 4.4 shows the ionograms and associated mass 

spectra obtained when heating at 37 °C. Negligible changes are observed in either the 

ionogram or mass spectrum over the two hour sampling period. The same is true for 

experiments conducted at T = 50 °C (see Figure 4.5). 

 

Figure 4.4. (A). The ionogram observed for deprotonated humulone when the ESI solution 

is heated to 37 °C for (black trace) 0 min, (red trace) 15 min, and (blue trace) 120 min. The 

humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O solvent. Measurements 

were acquired in an N2 environment seeded with 1.5 % (mol ratio) IPA with SV = 3500 V. 

(B). The mass spectra associated with ionograms shown in A. 
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Figure 4.5. (A). The ionogram observed for deprotonated humulone when the ESI solution 

is heated to 50 °C for (black trace) 0 min, (red trace)15 min, (blue trace) 90 min, and (pink 

trace) 105 min. The humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O 

solvent. Measurements were acquired in an N2 environment seeded with 1.5 % (mol ratio) 

IPA with SV = 3500 V. (B). The mass spectra associated with ionograms shown in A. 

	

Interestingly, when the solution temperature is set to 70 °C (see in Figure 4.6), there 

is some evidence of isomerization; the main feature at CV =  -18 V in the ionogram 

depletes slightly, and there is a concomitant increase in intensity at CV = -15 V. In the 

associated fragmentation spectra, a slight increase in signal at around m/z 300 is also 

observed. When the solution temperature is increased to 78 °C (the boiling point of the 

MeOH/H2O solution), the impact on the ionogram and fragmentation spectrum is much 

more dramatic. Figure 4.7 shows that when the ESI solution is heated to 78 °C, substantial 

conversion of the humulone standard into the isomer observed at CV = -15 V occurs. This 
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change is also observed in the associated mass spectra which evolve from that of the 

deprotonated humulone standard into that of the nascent isomer (see Figure 4.8).  

 

Figure 4.6. (A). The ionogram observed for deprotonated humulone when the ESI solution 

is heated to 70 °C for (black trace) 0 min, (red trace)15 min, (blue trace) 60 min, and (pink 

trace) 105 min. The humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O 

solvent. Measurements were acquired in an N2 environment seeded with 1.5 % (mol ratio) 

IPA with SV = 3500 V. (B). The mass spectra associated with ionograms shown in A. 

	

 

Figure 4.7. The ionogram observed for deprotonated humulone when heated to 78 °C. The 
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humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O solvent. Measurements 

were acquired in an N2 environment seeded with 1.5% (mol ratio) IPA with SV = 3500 V.  

	

 
Figure 4.8. The mass spectra observed for deprotonated humulone when heating the ESI 

solution to 78 °C for (black trace) 0 min, (violet trace)15 min, and (brown trace) 105 min. 

The humulone standard was diluted to 100 ng/mL in 1:1 MeOH/H2O solvent. 

Measurements were acquired in an N2 environment seeded with 1.5% (mol ratio) IPA with 

SV = 3500 V.  

	

 Based on the results of the T = 78 °C experiments, one can investigate the kinetic 

behaviour of the humulone isomerization reaction. To extract kinetic data, the ionograms 

shown in Figure 4.7 were first normalized to the sum of their intensities; then fit to a sum 

of two Gaussian peaks centered at CV = -18 V and -15 V. The relative area of these peaks 

is plotted as a function of time in Figure 4.9. Although somewhat noisy, the kinetic data 

does exhibit a profile that would be expected for a simple pseudo-first-order process 

described by: 

                                      lnA = −kt + lnAr    Equation 4.1 
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In Equation 4.1, A is the fractional composition of the reactive component, and k is the 

pseudo-first-order rate constant for the reacting component. A fit of the data yields a value 

of k = 0.0131(18) min–1 with R2 = 0.927.  

 

Figure 4.9. The effect of temperature (78 °C) on the isomerization of humulone. Parent 

peak intensity is plotted in black and nascent isomer intensity is plotted in red. Error bars 

show 1s error on the fitted peak area. 

 

To further increase the temperature for kinetics studies, an ethanol/water (1:19) 

mixture was used in place of the 1:1 MeOH/H2O solution. The boiling point of the 

EtOH/H2O mixture is 96 °C. The dispersion plot of the humulone standard in 1:19 

EtOH/H2O solvent is shown in Figure 4.10. As expected, the analyte ions exhibit nearly 

identical DMS behaviour regardless of being produced from 1:1 MeOH/H2O or 1:19 

EtOH/H2O.  
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Figure 4.10. The dispersion plot recorded for deprotonated humulone (m/z 361) with a pure 

N2 environment, and a N2 environment with 1.5% (mol ratio) methanol vapor and IPA 

vapor when sprayed from a 1:19 EtOH/H2O solution. Error bars are 2s obtained from 

Gaussian fits to the ionogram peaks. 

 

When the solution temperature is increased to 96 °C, the time evolution of the 

ionogram and fragmentation spectrum differs significantly from that observed at 78 °C. 

Figure 4.11 shows that when the EtOH/H2O ESI solution is heated to 96 °C, substantial 

conversion of the humulone standard into the isomer observed at CV = -15 V, CV = -5 V, 

and CV = 0 V occurs. 
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Figure 4.11. The ionogram observed for m/z 361 when a humulone solution is heated to 96 

°C. The humulone standard was diluted to 100 ng/mL in 1:19 EtOH/H2O solvent. 

Measurements were acquired in an N2 environment seeded with 1.5% (mol ratio) IPA with 

SV = 3500 V.  

	

Based on the ionogram of the T = 96 °C experiments, one can also investigate the 

kinetic behaviour of the humulone isomerization reaction. To extract kinetic data, the 

ionograms shown in Figure 4.11 were first normalized to the sum of their intensities; then 

fit to a sum of four Gaussian peaks centered at CV = -18 V, -15 V, -5 V, and 0 V. The 

relative area of these peaks is plotted as a function of time in Figure 4.12. Owing to the 

noise in these experiments, this study should be repeated. Nevertheless, it is interesting to 

observed the (apparent) formation of a new isomer in the CV ≈ –2 V region. 

CV (V) 

T = 96 °C 



 39 

	

Figure 4.12. The effect of temperature (T = 96 °C) on the isomerization of humulone. 

 

4.4 Computational Results 

The calculated global minimum structures of humulone and its isomers as identified 

by B3LYP/6-311++G (d,p) calculations are shown in Figure 4.13. Neutral humulone has 

the lowest standard Gibbs energy in the gas phase, and there is a relatively large energy 

difference between humulone and the cis- and trans- forms of iso-humulone (ca. 

35 kJ mol–1 and 45 kJ mol–1, respectively). Calculations are ongoing to determine whether 

the iso-humulone structures are stabilized in protic solution relative to the humulone global 

minimum. Since humulone isomerizes to the thermodynamically less stable iso-humulone 

isomers upon boiling, iso-humulone should revert to the more stable humulone structure 
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when stored at a lower temperature. The rate for this process, of course, depends on the 

potential energy barriers between the isomeric species.   

 

Humulone 0.0 kJ mol–1 

       

                                           trans Iso-humulone 34.7 kJ mol–1     
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                                             cis Iso-humulone 44.8 kJ mol–1 

 Figure 4.13. The calculated geometries of neutral humulone and its isomers in the gas 

phase. Relative Gibbs energies at 298 K are given in kJ mol–1. Calculations used the B3LYP 

functional and 6-311++G (d, p) basis set. 

 

In DMS experiments, it is the deprotonated (anionic) species which are detected. To 

investigate the effects of deprotonation, we conducted a similar computational analysis on 

the anionic species as was undertaken for the neutral species. The calculation results for 

deprotonated humulone and its isomers are shown in Figure 4.14. For deprotonated 

humulone, we notice that a single deprotonated prototropic isomer (deprotomer 1) is 

favoured energetically. The lowest energy iso-humulone structure is a cis-isohumulone 

species, which is 9.2 kJ mol–1 above the global minimum. The lowest energy trans-

isohumulone structure lies 10.1 kJ mol–1 above the global minimum isomer. The preferred 

O O

OHHO
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site of deprotonation for both the cis and trans forms is the hydroxy group at position 4 

(see Figure 4.14). Note, however, that several low-lying conformers of iso-humulone exist.  
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trans Iso-humulone Isomer 3: 10.1 kJ mol–1    trans Iso-humulone Isomer 4: 12.4 kJ mol–1    
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                                                    Humulone Isomer 7: 240.7 kJ mol–1   

Figure 4.14. The calculated geometries of deprotonated humulone (Isomer 1, 6, and 7) and 

the deprotonated forms of iso-humulone. Isomer 2 and Isomer 5 are deprotonated forms of 

cis iso-humulone, and Isomer 3 and Isomer 4 are deprotonated forms of trans iso-humulone. 

Relative Gibbs energies at 298 K are given in kJ mol–1. Calculations used the B3LYP 

functional and 6-311++G (d, p) basis set. 

 

A theoretical investigation on the isomerization mechanism of humulone has been 

initiated. The assumed pathway involves a large degree of distortion of the six-membered 

ring in humulone to form bicyclo[3,1,2] intermediates, followed by distortion of the ring 

to form iso-humulone. The pathway is shown in Figure 4.15. So far, two intermediates are 

identified along the possible reaction pathways. Preliminary calculations indicate that those 

intermediates in anionic forms are about 600 kJ mol-1 above the global minima of anionic 

humulone; these deprotonated intermediates are not accessible in gas phase. However, by 

simply comparing the molecular structures and energetics of humulone/iso-humulone to 

OH
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the two intermediates, it is apparent that external proton transfer must play a crucial role in 

completing this isomerization process. This pathway should be further explored and 

optimized considering different protonation states, experimental solvent conditions, and 

explicit participation of solvent molecules.  

 

 

	

	

Deprotonated Humulone 

Deprotonated Iso-humulone 

Intermediate 

0.0 kJ mol–1 
cis 9.2 kJ mol–1 

trans 10.1 kJ mol–1 
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                                                        Intermediate 1: 647.4 kJ mol–1 

	  

                                                 Intermediate 2: 639.7 kJ mol–1 

Figure 4.15. The calculated geometries of deprotonated Intermediate 1 and Intermediate 2. 

Relative Gibbs energies at 298 K are given in kJ mol–1, and they are relative to the global 

minima deprotonated Humulone Isomer 1, 0.0 kJ mol–1. Calculations used the B3LYP 

functional and 6-311++G (d, p) basis set. 
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Chapter 5 

Characterization of Humulone Content in Beer 

We discussed characterization of humulone standard in Chapter 4. Based on the 

protocols developed for detecting humulone in the DMS-MS apparatus, studies of 

humulone content in beer can be conducted. This work was undertaken using beer provided 

by Innocente brewery. The involved beers are Conscience (CS), Two Night Stand (2NS), 

Fling (FL), Kolsch (KO), Bystander (BS), Batch-5 Dubbel Vision (Bat), and Inn Oslainte 

(In). 

5.1 Experimental Details 

Acetone, isopropanol (IPA), methanol, hydrochloric acid (HCl), iso-octane, and 

octanol regents are HPLC-grade, and purchased from Sigma-Aldrich company; they are 

utilized without further purification. Beer samples are provided by Innocente Brewing 

company. In DMS, beer analytes are measured under the EPI mode using negative-ion ESI. 

For the measurement, the analyte is continuously infused at SV = 3500 V, and the CV 

range is scanned from -35 V to 35 V with 0.25 V step sizes. The ionogram of beers is 

collected for the m/z 361 peak. The Lambda 35 UV-Vis spectrometer (PerkinElmer, USA), 

accompanied with the UV WinLab software package, is utilized to measure the UV-Vis 

spectra of the beer sample in the region of 250 nm ~ 450 nm.52 The beer sample and blank, 

which is iso-octane/octanol solution, are held in quartz cuvettes within the sample chamber. 
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Samples used in DMS are first centrifuged for 5 minutes to separate yeast cells, then they 

are sonicated for 10 minutes to degas. Samples are then diluted down to yield a iso-

humulone concentration of ca. 100 ng/mL, in MeOH/H2O (1:1).53 

To prepare beer samples to do the UV-Vis measurements, a procedure based on ASBC 

is used.53 Firstly, 3 mL beer samples are degassed and placed into a 15 mL centrifuge tube; 

then, 0.3 mL 3 M HCl, 6 mL iso-octane and 15 µL octanol are added to the same tube to 

extract the humulone and iso-humulone. Next, the mixture is centrifuged for 15 minutes, 

following which the upper organic layer is extracted for measurement.  

5.2 DMS/MS Results 

Figure 5.1 shows the ionogram recorded for a fresh sample of CS, an India Pale Ale, 

which exhibits a distinctly bitter hoppy flavour. Although there is one main peak, CV = 0 

V, in the ionogram, two shoulders can be observed at CV = -16 V and -10 V. As discussed 

in Chapter 4, the humulone standard signal appears at CV = -18 V, and the signal of boiled 

humulone (in MeOH/H2O at 78 °C) presents at CV = -15 V. The main peak of CS is 

observed at CV = 0 V and one shoulder at CV = -10 V, which suggests that CS may contain 

other structural isomers of humulone and iso-humulone.  

The fragmentation spectrum of the CV = 0 V peak from the CS sample is shown in 

Figure 5.1.B. The signal of m/z 361 is observed, and both humulone and iso-humulone 

should have this peak, theoretically. However, we observed previously that the humulone 

standard did not exhibit the parent peak due to fragmentation post-selection (see Chapter 
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4). The m/z 315 signal indicates that CS contains humulone fragment since this signal was 

observed in humulone mass spectrum in Figure 4.2.B and Table 4.1. The m/z 300 and m/z 

360 fragments are distinct to iso-humulone. The intensity of m/z 300 fragment is much 

higher than that of m/z 315 fragment, which indicates that the majority composition is iso-

humulone. The unidentified fragments may belong to another isomer of humulone, perhaps 

adhumulone (which also has 361 m/z). 

 

	  

          

Figure 5.1. (A). The ionogram observed for Conscience beer. The beer sample was diluted 
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to 100 ng/mL in 1:1 MeOH/H2O solvent. Measurements were acquired in an N2 

environment seeded with 1.5 % (mol ratio) IPA with SV = 3500 V. (B). The mass spectra 

associated with ionograms shown in A. 

 

5.3 Aging Chamber Studies 

Environmental Growth Chamber 

The study of the humulone to iso-humulone isomerization reaction and the possible 

reverse reaction in beer was conducted with an environmental growth chamber.54 The 

growth chamber used in this project was a double-decker model as shown in Figure 5.2. 

The growth chamber utilized woodless material with painted aluminum surfaces and 

polymer foam insulation, and it was equipped with an upward airflow with air uniformly 

distributed through the aluminum channel floor. Counterweighted light fixtures are used in 

the chamber to satisfy different light requirements; in our case, aging chamber was operated 

to create dark environment conditions. The temperature of the chamber can be adjusted 

from 4 °C to 45 °C with an accuracy of ± 0.5 °C with lights off, and 10 °C - 45 °C with an 

accuracy of ±  0.5 °C when fully lit.55  
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 Figure 5.2. The environmental growth chamber used in this project.55 

 

To investigate the effect of temperature on the beer degradation and the reversibility 

of humulone isomerization, beer samples were stored in aging chamber in which 

temperature is set at 37 °C. This temperature is chosen to be slightly higher than the normal 

fermentation temperature, in which the normal brewing temperature is within 20~22 °C 

and combined with an increment (5.5 ~ 8.3 °C) due to active fermentation.56 The 

monitoring results are shown in Figure 5.3. 

After being stored in the aging chamber for four weeks, the main peak for the CS 

sample in the ionogram shifts from CV = 0 V to CV = -15 V, and one small shoulder is at 

CV = -7 V and the other at CV = -18 V. When CS beer has been stored at 37 °C for six 
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weeks, compared to fourth week measurement, the main peak appears at more negative 

position, CV = -18 V, and there is a small peak at CV = -5 V. As mentioned in Figure 

4.2.A, the humulone peak appears at CV = -18 V; in addition, Figure 4.7 shows that the 

peak of boiled humulone at 78 °C appears at CV = -15 V. Moreover, the peak at CV = 0 V 

can be observed in Figure 4.11 of boiled humulone at 96 °C. Figure 4.14 indicates that cis 

iso-humulone is more stable than the trans iso-humulone because the relative Gibbs energy 

of cis form is lower than that of the trans form; hence, the CV = -15 V peaks is assigned 

to cis iso-humulone and the CV = 0 V peak is assigned to trans iso-humulone. These results 

demonstrate that one isomer can transition into the other isomer, then reverse back to 

humulone, when sample is stored at 37 °C.  

The fragmentation spectra are shown in Figure 5.3.B (mass spectrum of beer being 

stored in aging chamber for six weeks). After being stored at 37 °C for six weeks, the mass 

spectrum is more complex than that of the fresh beer. Although the m/z 300 fragment is 

still observed, the intensity is low, meaning the amount of the same humulone isomer as 

the fresh beer decreased. Compared to the mass spectrum of fresh beer in Figure 5.1.B, m/z 

315 and m/z 361 fragments appear again, suggesting that humulone may be reproduced. 

The rest of the observed fragments, for example, m/z 342, may indicate that there is new 

tautomer/isomer being produced, or more stable fragments of iso-humulone being 

generated. 
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Figure 5.3. (A). The ionogram of Conscience beer at 18 °C (black), heated to 37 °C for 

four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 1:1 

MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 1.5% 

(mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with the sixth week 

ionogram in A. 
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The other beers were also utilized in aging chamber studies. Figure 5.4 and Figure 5.5 

exhibit ionograms and associated mass spectra of 2NS and FL beers. In Figure 5.4.A, the 

main peak first appears at CV = 0 V; then this peak shifts to CV = -15 V with two shoulders 

at CV = -5 V and  -18 V when 2NS beer has been stored in aging chamber for four weeks. 

After six weeks in aging chamber, the main peak changes to CV = -18 V. For fresh 2NS, 

Figure 5.4.B, there is no m/z 300 signal, but the m/z 360 is observed, which means less 

amount of iso-humulone in this beer. After six weeks, Figure 5.4.C, the ratio of m/z 300 

fragment is increased in beer sample, this spectrum demonstrates that the humulone’s 

isomers become the major component in the sample over time.  
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Figure 5.4. (A). The ionogram of Two Night Stand (2NS) at 18 °C (black) when heated to 

37 °C for fourth week (blue), and sixth week (pink). The beer was diluted to 100 ng/mL in 

1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 

1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with fresh beer. 

(C). The mass spectra associated with sixth week beer. 

 

FL beer exhibits similar trends in DMS ionograms to the CS and 2NS samples. In 

Figure 5.5.A, fresh FL beer has a peak at CV = 0 V; then, after being stored in aging 

chamber for four weeks, peak at CV = -15 V and two shoulders at CV = -5 V and  -18 V 

can be observed. After six weeks in the aging chamber, the main peak is observed at CV = 

-18 V. However, complex mass spectra are observed for fresh FL. Figure 5.5.B shows that 

m/z 300 and m/z 360 species are observed, indicating that there is a small amount of iso-

humulone in FL beer. Six weeks later, Figure 5.5.C, the signal of m/z 300 turns into the 

base peak.  
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Figure 5.5. (A). The ionogram of Fling (FL) beer at 18 °C (black) when heated to 37 °C 

for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 1:1 

MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 1.5% 

(mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with fresh beer. (C). 

The mass spectra associated with sixth week ionogram. 

5.4 UV-Vis Results 

The general ASBC approach to determine IBU, which is a measurement of bitterness, 

is to extract beer with iso-octane and detect the peak height at 275 nm via UV-Vis 

spectrometry.57 The IBU scale is not proportional to the perceived bitterness of beer; 
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instead, it describes content of iso-humulone in beer.57 The IBU value can be calculated by 

Equation 5.1.57  

                         Bitterness	 IBU = Abs>��×50                                    Equation 5.1 

Where Abs275 is absorbance at 275 nm. 

The UV-Vis spectra of beers stored in an aging chamber for six weeks is shown in 

Figure 5.6. The calculated IBU values are exhibited in Table 5.1. After being stored in 

aging chamber for six weeks, IBU values of 2NS, FL, KO, BS, Bat, and In are increased, 

while IBU value of CS is decreased. There is only slightly change between IBU values of 

2NS beer. The decreasing IBU value of CS means the lack of iso-humulone content. 

  It is noticed that changes of IBU values can relate to changes of iso-humulone 

fragments. In Figure 5.4, for 2NS beer, the m/z 300 fragment changes from none to majority 

composition with time increasing. In the same time, the IBU of 2NS is increased. In Figure 

5.5 for FL beer, the intensity of m/z 300 is increased; furthermore, the IBU value of FL is 

increased. Based on Figure 5.3 for CS beer, the m/z 300 fragment changes from the majority 

composition to the minor amount of constituent over time; meanwhile, the IBU values of 

CS is decreased. Therefore, the increase of m/z 300 fragment relates to the increased IBU 

value. It is likely that the lower IBU values report less content of iso-humulone and more 

content of humulone or the other humulone’s isomers.  



 58 

 

 

Figure 5.6. (A). The UV-Vis spectra of the extracted humulone and its isomers of Two 

night stand (2NS), Fling (FL), Kolsch (KO), Bystander (BS), Conscience (CS), Dubbel 

Vision (Bat), and Inn Oslainte (In) beer fresh samples. (B). The UV-Vis spectra of above 

beers after storing in an aging chamber for six weeks at T = 37 °C. The peak heights are 

measured at 275 nm which is associated with p ® p* transition in the conjugation system 

of humulone and its isomers. 
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Table 5.1. Experimental IBU Values of Different Beers Measured by UV-Vis 

Spectroscopy 

Beer 
IBU for fresh 

beer 

IBU for sixth 

week 
Hops 

Two Night Stand 63 64 Double IPA* 

Fling 8 20 Golden Ale 

Kolsch 30 44 Lagered Ale 

Bystander 44 53 American Pale Ale 

Conscience 124 95 American IPA* 

Batch-5 Dubbel Vision 14 24 Belgian Style Dubbel Ale 

Inn Oslainte 23 34 Irish Red Ale 

*IPA here stands for India Pale Ale. 

 

The calculated UV-Vis spectra of humulone, cis iso-humulone, and trans iso-

humulone using the TD-DFT method at the B3LYP/6-311++G(d,p) level of theory are 

shown in Figure 5.7. In UV-Vis experiment, iso-octane/octanol solution is used as 

background, but there is no PCM model for iso-octane/octanol solution in Gaussian; thus, 

heptane, which has similar chemical properties to this solvent, is chosen as the solvent 

system for calculation. In Figure 5.7, both cis and trans iso-humulones show one peak, 

which appears at l = 237 nm, and which has a shoulder at ca. 325 nm. Both isomers exhibit 

similar absorption spectra. In comparison, three peaks, which appear at 220 nm, 255 nm, 

and 340 nm, are present in the humulone curve.  

Based on the theoretical calculation results, iso-humulones have similar peak shape to 

the experimental UV-Vis spectra in Figure 5.6; however, the curve shape of humulone 
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differs from those of spectra in Figure 5.6. Furthermore, compared to peak at 275 nm in 

Figure 5.6, peaks of iso-humulones in Figure 5.7 shift to 237 nm. One reason for this could 

be that the solvent chosen for analogy calculation is different from the one used in UV-Vis 

measurement, and the other reason could be the limited accuracy for calculation. However, 

in Figure 5.7, although these three chemicals exhibit different curve shapes, there are a lot 

of overlap portions among them. Hence, the UV-Vis measurement cannot easily 

distinguish humulone and iso-humulone content.  

In conclusion, the ASBC approach using UV-Vis spectrophotometer cannot easily 

distinguish humulone and iso-humulone content in beers. Based on Figure 5.7, cis and trans 

iso-humulones exhibit similar peak shape and the same peak positions; thus, signals of 

isomers affect each other, and then UV-Vis measurement cannot distinguish cis and trans 

forms of isomers. Consequently, it is expected UV-Vis measurements provide a convoluted 

view of humulone content, and therefore flavour profiles, in beer. It is noticed that different 

beer is brewed by different hop listed in Table 5.1, in which IPA stands for India Pale Ale, 

2NS by Double IPA, FL by Golden Ale, KO by Lagered Ale, BS by American Pale Ale, 

CS by American IPA, Bat by Belgian Style Dubbel Ale, and In by Irish Red Ale. 

The integrated iso-humulone signals from DMS ionograms of fresh beers versus 

associated IBU values, and beers stored in aging chamber for six weeks versus associated 

IBU values are shown in Figure 5.8. It is clear that the UV-Vis measurements and DMS 

data shows some correlation, but there is a great deal of scatter owing to the experimental 
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error associated with both techniques. Moving forward, it is recommended that the DMS 

methods developed here be utilized to unambiguously characterize humulone content, 

preferably with the aid of internal standards to better calibrate absolute concentration. 

 

 
Figure 5.7. The calculated UV-Vis spectra of neutral humulone, cis iso-humulone, and 

trans iso-humulone conducted using a heptane PCM using TD-DFT at the B3LYP/6-

311++G(d,p) level of theory.  
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Figure 5.8. (A). The integrate signals of iso-humulone of Two night stand (2NS), Fling 

(FL), Kolsch (KO), Bystander (BS), Conscience (CS), Batch-5 Dubbel Vision (Bat), and 

Inn Oslainte (In) fresh beer samples versus their IBU values. (B). The integrate signals of 

iso-humulone of above beers for stored at aging chamber for six weeks versus their IBU 

values.  
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Chapter 6 

Concluding Remarks 

Beer is one of the fermented liquid drinks flavored with hops.58 While barley provides 

the sweetness, hop contributes to the bitterness of beer.58 During the intricate brewing 

process, humulone, which is one of the vital components of hop, undergoes the 

isomerization reaction producing iso-humulone. Hence, the humulone concentration 

profile is of great interest for beer brewing industry. Here, we use differential mobility 

spectrometry (DMS) to separate and characterize humulone and iso-humulone. In support 

of the experimental work, computational studies were conducted to investigate thermal 

kinetic of isomerization reaction. In conjunction, we utilize the conventional UV-Vis 

spectroscopy method to measure IBU values, and compare them against corresponding 

DMS measurements. Moreover, theoretical UV-Vis spectra were used to interpret 

experimental UV-Vis observations.  

Chapter 4 discusses characterization of humulone, and these investigations were in a 

combination of experimental and computational approach. DMS ionogram reports the 

unique compensation voltage (CV) value of humulone at the specific separation voltage 

(SV), and characteristic fragments of humulone can be obtained from the mass spectrum 

mapped in DMS. With the help of the DMS ionogram and mass spectra of humulone and 

its isomers, the effect of time and temperature on isomerization reaction can be explored. 
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If temperature is high enough (T ≥ 78 °C), thermally-driven isomeric conversion can be 

observed with a ca. 2 hr period. To investigate the isomerization process, the low-lying 

isomers of various humulone species were identified using the Basin-hopping (BH) search 

algorithm, and density functional theory (DFT) was utilized to calculate molecular 

geometries and properties. Based on theoretical outcomes, it is clear that cis- and trans-

isohumulone is thermally accessible at elevated temperature. However, the barriers to 

isomerization must still be determined and it is clear that proton-transfer to and from the 

solvent is an important consideration. Although rough kinetics of reactions were reported, 

further studies must be performed to determine the more accurate kinetic properties. 

Chapter 5 discusses characterization of humulone in beers. Here, this study involved 

both computational predictions and experimental data to explore the humulone content in 

beers. DMS ionograms of humulone and its isomers in diverse beers can be obtained. 

Compared to mass spectra of pure humulone in methanol/water (1:1) solvent, mass spectra 

of beers were different; moreover, present fragments differed among different beers. An 

aging chamber was used to provide extra energy for investigating the chemical conversions 

in beers. Based on ionograms obtained from DMS, temperature affected overall 

conversions between humulone and its isomers. The distinctive fragments representing 

changes between humulone and its isomers can be determined. IBU profiles of beers were 

generated from UV-Vis spectroscopy; changes of IBU values were able to suggest changes 

of bitterness. Combining DMS and UV-Vis results indicated that there was a linear 
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correlation between content of iso-humulone and IBU values; moreover, the m/z 300 signal 

can be confirmed from the isomer of humulone. The simulation UV-Vis results calculated 

from TD-DFT indicated that the UV-Vis measurement cannot easily distinguish humulone 

and iso-humulone content. However, further investigations should be conducted to 

determine more accurate relation between DMS results and UV-Vis outcomes. 

The various projects explored in this thesis tentatively characterize pure humulone in 

methanol/water (1:1) solvent and ethanol/water (1:19) solvent, and iso-humulone content 

in beers. The combined computational and experimental methods allowed for 

comprehensive analysis and interpretation of data. Results of the combination of DMS 

results and IBU values have unique implication for the humulone concentration profiles 

mapping and development. Moving forward, it is recommended that these studies be 

repeated to provide a statistical assessment of the observed isomerization processes. 

Furthermore, it is recommended that similar studies be conducted using pre- and post-

isomerization hop extract since this should provide an intermediate picture between the 

pure humulone standard and the post-brewed beer samples.  

Overall, we have developed a methodology for detecting humulone in its protonated 

and deprotonated states. This methodology is easily adopted for studying humulone and its 

isomers in beer samples. Moreover, we can monitor the temperature dependence of 

interconversion between the various humulone isomers; based on calculations, we expect 

that there are two-barriers along humulone to cis iso-humulone to trans iso-humulone 
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pathway. This can be probed in more detail with an improved temperature study. 

Importantly, we found that UV-Vis spectroscopy cannot easily distinguish humulone and 

iso-humulone content in beer; hence, this measurement cannot be used to determine the 

age of beer, and it is not useful in estimating the evolution of IBUs over time.  
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Appendix I: Energy Summary 

Neutral humulone and its isomers: summary of Gibbs’ energies and relative energies at 298 

K are given in kJ mol-1. Calculations used the B3LYP functional and 6-311++G(d,p) basis 

set. 

 
Table A1.1. The Gibbs’ Energies and Relative Energies of Neutral Humulone and Its 

Isomers 

Chemicals Gibbs (hartree) Relative energy (kJ mol-1) 

Humulone -1194.4102 0.00 

trans iso-humulone -1194.3970 34.67 

cis iso-humulone -1194.3932 44.78 
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Deprotonated humulone and deprotonated humulone derivatives: summary of Gibbs’ 

energies and relative energies at 298 K are given in kJ mol-1. Calculations used the B3LYP 

functional and 6-311++G(d,p) basis set. These are associated to Figure 4.11. The calculated 

geometries of deprotonated humulone are Isomer 1, 2, and 3. Isomer 4 and Isomer 7 are 

deprotonated forms of cis iso-humulone, and Isomer 5 and Isomer 6 are deprotonated forms 

of trans iso-humulone.  

 
Table A1.2. The Gibbs’ Energies and Relative Energies of Deprotonated Humulone 

and Deprotonated Iso-humulone 

Chemicals Gibbs (hartree) Relative energy (kJ mol-1) 

Isomer 1 -1193.9050 0.00 

Isomer 2 -1193.9015 9.21 

Isomer 3 -1193.9011 10.13 

Isomer 4 -1193.9002 12.44 

Isomer 5 -1193.8977 19.14 

Isomer 6 -1193.8855 51.22 

Isomer 7 -1193.8133 240.70 

Intermediate 1 -1193.6584 647.42 

Intermediate 2 -1193.6613 639.67 
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Isomer 1: 0.0 kJ mol-1                                                     Isomer 2: 1.0 kJ mol-1 
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              Isomer 3: 9.7 kJ mol-1                                           Isomer 4: 14.7 kJ mol-1 

     

              

Isomer 5: 26.4 kJ mol-1                                   Isomer 6: 27.0 kJ mol-1 
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Isomer 7: 113.7 kJ mol-1 

 
Figure A1. The calculated geometries of protonated humulone (Isomer 1 and 2) and its 

isomers. Isomer 3, Isomer 6 and Isomer 7 are protonated forms of cis iso-humulone, and 

Isomer 4 and Isomer 5 are protonated forms of trans iso-humulone. Relative Gibbs energies 

at 298 K are given in kJ mol-1. Calculations used the B3LYP fuctional and 6-311++G (d, p) 

basis set. 
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Protonated humulone and protonated isomeric humulone: summary of Gibbs’ energies and 

relative energies at 298 K are given in kJ mol-1. Calculations used the B3LYP functional 

and 6-311++G(d,p) basis set. These are associated to Figure A1. The calculated geometries 

of protonated humulone are Isomer 1 and 2. Isomer 3, Isomer 6, and Isomer 7 are 

protonated forms of cis iso-humulone, and Isomer 4 and Isomer 5 are protonated forms of 

trans iso-humulone. 

 

Table A1.3. The Gibbs’ Energies and Relative Energies of Protonated Humulone and 

Protonated Iso-humulone 

Chemicals Gibbs (hartree) Relative energy (kJ mol-1) 

Isomer 1 -1194.7555 0.00 

Isomer 2 -1194.7551 1.00 

Isomer 3 -1194.7518 9.71 

Isomer 4 -1194.7499 14.74 

Isomer 5 -1194.7454 26.40 

Isomer 6 -1194.7452 26.98 

Isomer 7 -1194.7121 113.68 
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Appendix II: Structures 

Neutral Humulone and Iso-humulone 

                                        
Humulone  trans Iso-humulone 

C 1.127848 0.579592 -1.200812  C 0.869506 -1.683992 0.338348 
C 0.958972 1.696000 -0.455730  C 0.069923 0.570912 -0.007148 
C -1.559163 1.395768 -0.445490  C -0.061261 -1.714452 -0.910901 
C -1.365979 0.115432 -1.081879  H 0.471846 -2.083687 -1.792720 
C -0.035043 -0.246313 -1.428952  C -0.390560 -0.228758 -1.156633 
O 1.964302 2.559284 -0.234149  O -0.954093 0.160203 -2.161720 
H 1.573646 3.380323 0.107549  C -0.120580 2.035349 0.211580 
O 0.191290 -1.366617 -2.070892  O 0.629916 2.636573 0.961264 
H -0.729801 -1.808573 -2.197832  C -1.255309 2.729888 -0.509107 
C 2.453463 0.199541 -1.830252  H -1.078834 3.805837 -0.425618 
H 2.263705 -0.100495 -2.866061  H -1.231099 2.438597 -1.562533 
H 3.085093 1.085615 -1.863020  C -2.651846 2.380987 0.065704 
C 3.139481 -0.943734 -1.121689  H -2.763380 1.290805 0.036314 
H 2.610231 -1.890407 -1.188297  C -2.800962 2.842316 1.521600 
C 4.294738 -0.907998 -0.447407  H -3.784761 2.568693 1.914326 
C 5.135736 0.325483 -0.237364  H -2.044317 2.398239 2.173288 
H 5.323329 0.474660 0.832493  H -2.701697 3.930259 1.597980 
H 6.116762 0.207246 -0.712077  C -3.744645 2.989387 -0.823010 
H 4.675912 1.235559 -0.620581  H -4.740360 2.746805 -0.439525 
C 4.853980 -2.156227 0.190924  H -3.659811 4.081064 -0.854628 
H 4.957647 -2.026986 1.275359  H -3.676295 2.616394 -1.848491 
H 4.221997 -3.027985 0.009442  C 0.690690 -0.273192 0.865916 
H 5.856842 -2.374641 -0.194180  O 1.102184 -0.004877 2.091854 
C -2.450184 -0.788751 -1.426274  H 1.273597 -0.854532 2.533716 
C -3.867441 -0.525401 -0.985665  O 0.577276 -2.588876 1.381139 
H -4.156426 0.489637 -1.259777  H 1.290430 -3.254830 1.359345 
H -4.500598 -1.240624 -1.517059  C 2.335649 -1.975557 -0.123586 
C -4.055316 -0.704077 0.542816  C 3.063434 -1.059300 -1.085419 

OH

OH

O

O

HO

O O

OH
HO

O
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H -3.394397 0.007750 1.046760  H 3.561709 -1.708998 -1.814119 
C -3.687316 -2.121265 0.999167  H 2.371751 -0.409864 -1.618354 
H -4.326541 -2.865124 0.512892  C 4.097314 -0.266092 -0.310939 
H -2.651489 -2.373473 0.756325  H 4.755207 -0.878251 0.300442 
H -3.813474 -2.222615 2.080956  C 4.275354 1.061206 -0.310473 
C -5.496452 -0.351840 0.927882  C 3.470979 2.052597 -1.107713 
H -6.206905 -1.019775 0.429000  H 2.742395 1.591823 -1.774382 
H -5.646628 -0.451292 2.006895  H 2.933407 2.728601 -0.435324 
H -5.739471 0.675714 0.644506  H 4.139098 2.670064 -1.718188 
O -2.207904 -1.857169 -2.034979  C 5.358346 1.677180 0.539947 
O -2.608110 2.029289 -0.342537  H 6.065818 2.240973 -0.078451 
C -0.332279 2.004089 0.245991  H 4.924446 2.387805 1.252059 
O -0.462053 3.415004 0.328491  H 5.915774 0.925290 1.101431 
H -1.405876 3.601258 0.185316  O 2.855339 -2.978150 0.321122 
C -0.300201 1.448630 1.728292  C -1.336843 -2.584241 -0.766095 
H 0.495979 2.003038 2.227272  H -1.809504 -2.592977 -1.749066 
H -1.246097 1.790270 2.159924  H -1.007460 -3.609630 -0.564507 
C -0.149783 -0.032234 1.894143  C -2.311057 -2.164102 0.301923 
H -1.049654 -0.615928 1.723968  H -1.941621 -2.258000 1.319264 
C 0.975243 -0.693364 2.196392  C -3.572839 -1.743617 0.134526 
C 2.309785 -0.046656 2.452895  C -4.435140 -1.420728 1.330726 
H 2.287401 1.041579 2.409597  H -4.785940 -0.382846 1.292730 
H 2.691484 -0.343925 3.436200  H -5.331628 -2.052005 1.346138 
H 3.031012 -0.390605 1.707276  H -3.899522 -1.566974 2.270596 
C 0.988500 -2.197868 2.281440  C -4.263144 -1.565408 -1.193936 
H 0.003508 -2.629495 2.093130  H -5.111319 -2.255373 -1.278527 
H 1.691152 -2.609970 1.548040  H -4.676014 -0.553845 -1.273865 
H 1.329918 -2.531914 3.267937  H -3.608946 -1.720726 -2.050472 

       

          
cis Iso-humulone   

C 0.082208 0.249034 0.957830      
C -1.310797 0.434190 0.383076      
C -1.353820 -0.596013 -0.788230      

O O

OHHO

O
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C 0.104938 -1.081645 -0.910350      
C 0.899878 -0.538630 0.204863      
H -1.611167 -0.115366 -1.737790      
O 0.478221 -1.810783 -1.808575      
C 2.326884 -0.841303 0.529177      
C 2.871716 -2.182862 0.078675      
H 2.606271 -2.325729 -0.974884      
H 2.282955 -2.942773 0.613444      
C 4.371987 -2.399116 0.319547      
H 4.595009 -2.088113 1.345690      
C 4.720477 -3.887325 0.176448      
H 4.493487 -4.250313 -0.831913      
H 5.785468 -4.058224 0.358282      
H 4.157669 -4.501642 0.886071      
C 5.225084 -1.543982 -0.628457      
H 5.016280 -0.480208 -0.501079      
H 6.290981 -1.700386 -0.437943      
H 5.031901 -1.811381 -1.673549      
O 2.989246 -0.036610 1.158569      
O 0.354291 0.794692 2.130598      
H -0.491026 1.060564 2.531385      
C -1.558906 1.865251 -0.187713      
C -0.596525 2.495240 -1.174920      
H 0.053527 1.748262 -1.627515      
H -1.209931 2.945240 -1.963818      
C 0.194011 3.573400 -0.461454      
H -0.424719 4.316761 0.034580      
C 1.525495 3.693898 -0.382151      
C 2.134912 4.835779 0.392757      
H 2.764826 5.454318 -0.256487      
H 1.374899 5.475491 0.844809      
H 2.782722 4.453026 1.189275      
C 2.527652 2.764241 -1.012538      
H 3.094054 2.237271 -0.237697      
H 2.080234 2.015800 -1.666219      
H 3.248323 3.337424 -1.605789      
O -2.558546 2.439656 0.189103      
O -2.219318 0.235651 1.444425      
H -2.917047 0.906151 1.327832      
C -2.332078 -1.773916 -0.578173      
H -2.219514 -2.168179 0.432041      
H -2.004925 -2.557980 -1.271279      
C -3.760182 -1.414138 -0.887356      
H -3.911020 -1.017308 -1.891521      
C -4.844980 -1.552310 -0.114101      
C -6.210819 -1.170601 -0.630555      
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H -6.169785 -0.796667 -1.655490      
H -6.891211 -2.030037 -0.608210      
H -6.664860 -0.396378 -0.000903      
C -4.837168 -2.093762 1.292300      
H -3.835683 -2.270500 1.680571      
H -5.341886 -1.397148 1.971453      
H -5.396809 -3.035415 1.341621      
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Deprotonated Humulone and Deprotonated Iso-humulone (Associated to Figure 

4.11 and Table A.2) 

                                              	  
Isomer 1  Isomer 2 

C 1.141700 0.435796 -1.423888  C 0.113800 -0.902897 0.849767 
C 0.929414 1.768503 -0.953349  C 0.669547 0.535714 0.534701 
C -1.608788 1.168011 -0.801154  C -0.471648 1.213172 -0.236805 
C -1.282232 -0.196325 -1.097961  C -1.400317 0.046855 -0.656471 
C 0.110945 -0.487865 -1.431651  C -0.997108 -1.173187 0.001897 
O 1.824870 2.618820 -0.883639  H -0.097119 1.668624 -1.155972 
O 0.402571 -1.743739 -1.805520  O -2.349419 0.251904 -1.418126 
H -0.466282 -2.259827 -1.761493  C -1.632160 -2.486079 -0.113414 
C 2.537421 0.056980 -1.882498  C -2.946804 -2.593254 -0.886386 
H 2.486052 -0.850600 -2.483423  H -3.073721 -3.650227 -1.144884 
H 2.900994 0.863434 -2.529158  H -2.883363 -1.996182 -1.798488 
C 3.531308 -0.096704 -0.754473  C -4.173586 -2.107282 -0.080594 
H 3.911001 0.846503 -0.369782  H -3.970477 -1.078043 0.232442 
C 3.956215 -1.231241 -0.185016  C -5.418183 -2.078837 -0.977917 
C 3.467380 -2.608984 -0.557506  H -5.649382 -3.081541 -1.358111 
H 3.104551 -3.132359 0.336739  H -6.296176 -1.721758 -0.427447 
H 2.647647 -2.587298 -1.273332  H -5.263028 -1.417687 -1.834857 
H 4.285898 -3.218798 -0.963925  C -4.416680 -2.961156 1.171701 
C 4.978908 -1.213067 0.926763  H -4.647294 -3.997505 0.897919 
H 5.327440 -0.200904 1.145847  H -3.538175 -2.984717 1.820448 
H 4.567814 -1.639555 1.851508  H -5.260947 -2.570805 1.751518 
H 5.853134 -1.823786 0.664137  O -1.150062 -3.502004 0.385561 
C -2.258175 -1.244495 -1.136818  O 0.637631 -1.519756 1.781640 
C -3.688566 -1.018232 -0.677729  C 1.939271 0.368565 -0.328957 
H -4.110014 -0.151859 -1.187720  C 3.207726 -0.001305 0.440458 
H -4.246685 -1.916660 -0.960786  H 2.934768 -0.766807 1.170278 
C -3.808982 -0.801698 0.847670  H 3.466853 0.884494 1.035693 
H -3.227462 0.088490 1.101128  C 4.353598 -0.400666 -0.439105 

O

OH

O

O

HO

O O

OHO

O
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C -3.250453 -1.991850 1.637789  H 4.617754 0.327912 -1.201810 
H -2.203036 -2.180058 1.389767  C 5.056675 -1.539299 -0.398838 
H -3.316948 -1.809074 2.715646  C 6.190730 -1.778233 -1.367365 
H -3.809950 -2.906690 1.411793  H 6.000364 -2.667543 -1.981150 
C -5.269134 -0.524061 1.224351  H 6.335438 -0.927889 -2.037394 
H -5.645455 0.358249 0.698694  H 7.133920 -1.960953 -0.835996 
H -5.908324 -1.375587 0.961140  C 4.806966 -2.676362 0.560367 
H -5.372983 -0.348725 2.300684  H 5.685567 -2.845886 1.196367 
O -1.963125 -2.426511 -1.480302  H 3.945195 -2.516277 1.206804 
O -2.746152 1.671171 -0.781593  H 4.635972 -3.608422 0.008718 
C -0.464760 2.120397 -0.404102  O 1.927519 0.501413 -1.534253 
O -0.818646 3.436724 -0.800565  O 1.026363 1.134637 1.780006 
H -1.788817 3.400160 -0.852532  C -1.274690 2.273245 0.551740 
C -0.375664 2.103799 1.166489  H -1.520969 1.867165 1.538946 
H 0.347115 2.883300 1.409821  H -2.215330 2.411665 0.015965 
H -1.358373 2.440636 1.515007  C -0.547954 3.578631 0.730482 
C -0.031027 0.785071 1.794291  H 0.269358 3.544849 1.446697 
H -0.823034 0.040553 1.771767  C -0.775695 4.738838 0.099059 
C 1.146337 0.415517 2.311114  C 0.065571 5.958347 0.394761 
C 2.363741 1.300379 2.393269  H -0.555281 6.794224 0.743982 
H 3.232369 0.770106 1.994953  H 0.818360 5.751540 1.158701 
H 2.260762 2.224392 1.826348  H 0.582945 6.310082 -0.507455 
H 2.588547 1.545649 3.440224  C -1.839236 4.956084 -0.949023 
C 1.356227 -0.984094 2.832555  H -1.386369 5.304580 -1.885880 
H 2.092751 -1.505943 2.210083  H -2.407912 4.054370 -1.172847 
H 1.752137 -0.973759 3.856499  H -2.543457 5.737643 -0.634424 
H 0.432110 -1.566741 2.824424  H 1.087302 0.380183 2.393258 

        

                    	  
Isomer 3  Isomer 4 

C 0.852659 -1.764786 0.311177  C -0.482644 -1.446027 -0.310165 
C 0.014609 0.538602 0.185532  C 0.731373 0.533781 0.439861 
C -0.084946 -1.647678 -0.908994  C 0.697032 -1.229258 -1.263202 
H 0.446185 -1.880518 -1.838896  H 0.335674 -1.106750 -2.287019 

O O

OH
O

O

O O

O
HO
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C -0.472797 -0.152636 -0.977580  C 1.289194 0.131549 -0.831236 
O -1.113523 0.270612 -1.948284  O 2.144660 0.686444 -1.526741 
C -0.136941 1.964383 0.473611  C 1.104456 1.706950 1.228411 
O 0.502226 2.535833 1.357042  O 0.664629 1.919421 2.358023 
C -1.122982 2.775543 -0.367581  C 2.056708 2.727682 0.602400 
H -0.882898 3.831762 -0.203032  H 2.452287 3.332409 1.425920 
H -0.984944 2.526351 -1.422243  H 2.875813 2.204981 0.104091 
C -2.602753 2.517439 -0.005341  C 1.375390 3.649843 -0.435290 
H -2.777750 1.440758 -0.096548  H 0.902144 3.005729 -1.182889 
C -2.924184 2.941850 1.434483  C 0.295856 4.534836 0.202907 
H -2.773158 4.019830 1.565792  H 0.736631 5.220050 0.936795 
H -3.967082 2.716158 1.684448  H -0.212882 5.138074 -0.557605 
H -2.282974 2.431934 2.157024  H -0.455812 3.938424 0.724653 
C -3.525426 3.225690 -1.006705  C 2.427777 4.500198 -1.159506 
H -3.337551 2.874068 -2.024977  H 1.963007 5.154153 -1.906169 
H -4.580477 3.042226 -0.772938  H 2.971909 5.137548 -0.451341 
H -3.365534 4.310750 -0.986777  H 3.154030 3.863008 -1.671538 
C 0.694086 -0.384417 1.049452  C -0.188193 -0.461413 0.881032 
O 1.092610 -0.302129 2.207013  O -0.722851 -0.709772 1.964880 
O 0.495740 -2.807702 1.192996  O -0.628306 -2.759733 0.224988 
C 2.327086 -1.930429 -0.112960  H -0.778469 -2.607716 1.175913 
C 2.927946 -0.938637 -1.123754  C -1.825362 -1.022131 -0.946934 
H 3.202177 -1.540753 -2.001059  C -3.075327 -1.460723 -0.182917 
H 2.191407 -0.204592 -1.441741  H -3.133684 -2.550420 -0.309321 
C 4.161818 -0.287815 -0.552556  H -2.881600 -1.305500 0.880741 
H 4.906616 -0.992853 -0.192101  C -4.335474 -0.805506 -0.661659 
C 4.397243 1.020576 -0.395549  H -4.483761 -0.840220 -1.738115 
C 3.455481 2.128575 -0.791683  C -5.265179 -0.183584 0.074161 
H 3.998321 2.918590 -1.324875  C -5.207890 -0.006872 1.571017 
H 2.638910 1.791095 -1.428655  H -5.286763 1.055048 1.832901 
H 3.003902 2.583744 0.096982  H -6.055543 -0.511574 2.052689 
C 5.669481 1.489756 0.268902  H -4.289842 -0.387538 2.016658 
H 6.308850 0.652674 0.558414  C -6.485807 0.421083 -0.578288 
H 6.242868 2.149942 -0.394524  H -6.538954 1.500091 -0.386343 
H 5.439684 2.071264 1.170032  H -6.483182 0.268519 -1.659789 
O 3.017148 -2.811731 0.351394  H -7.408374 -0.014484 -0.172662 
C -1.335350 -2.565712 -0.897353  O -1.887585 -0.378883 -1.973499 
H -0.983664 -3.599493 -0.806854  C 1.777638 -2.339650 -1.283835 
H -1.797158 -2.466793 -1.881458  H 1.287732 -3.271843 -1.587893 
C -2.343988 -2.310162 0.190929  H 2.477831 -2.071340 -2.077517 
H -1.998111 -2.557159 1.190096  C 2.506362 -2.586363 0.010108 
C -3.590222 -1.836847 0.056854  H 1.903079 -3.048041 0.787373 
C -4.221447 -1.414149 -1.246863  C 3.783502 -2.308837 0.304511 
H -3.505549 -1.356233 -2.065112  C 4.348281 -2.641836 1.665292 
H -5.031705 -2.100136 -1.529921  H 5.220884 -3.303560 1.581233 
H -4.673903 -0.421191 -1.142614  H 4.690151 -1.734925 2.179352 
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C -4.485934 -1.680065 1.263099  H 3.607270 -3.130929 2.301202 
H -3.992918 -2.015091 2.178127  C 4.764831 -1.645970 -0.629642 
H -5.414701 -2.254123 1.143379  H 5.601566 -2.320960 -0.856104 
H -4.781123 -0.632150 1.399397  H 4.312112 -1.320638 -1.564683 
H 0.878042 -2.553636 2.046634  H 5.197220 -0.757936 -0.153909 

          

                                           	  
Isomer 5  Isomer 6 

C -0.859882 0.117183 -0.568533  C 0.479403 0.073232 -1.482063 
C 0.691391 0.091199 -0.905590  C 0.839060 -1.164476 -1.119217 
C 1.323635 -0.682812 0.265353  C -1.577312 -1.774280 -0.699474 
C 0.126735 -1.294108 1.047534  C -1.945337 -0.405885 -0.868602 
C -1.108863 -0.740271 0.543428  C -0.907373 0.560963 -1.197725 
H 1.788435 0.020579 0.964782  O 2.066196 -1.695940 -1.392101 
O 0.327111 -2.102324 1.947359  H 1.984528 -2.646050 -1.216297 
C -2.424393 -1.007338 1.126654  O -1.110528 1.780657 -1.362374 
C -3.666777 -0.604510 0.326838  C 1.426069 1.011355 -2.198496 
H -3.547444 0.418979 -0.035765  H 2.198073 0.424285 -2.698320 
H -4.513796 -0.651841 1.020207  H 0.854537 1.541976 -2.966439 
C -3.940907 -1.512694 -0.893025  C 2.035365 2.046423 -1.283989 
H -3.042786 -1.499713 -1.518609  H 1.342436 2.830720 -0.990270 
C -4.223130 -2.962865 -0.476700  C 3.282842 2.074388 -0.799177 
H -3.401369 -3.379195 0.110428  C 4.325323 1.013471 -1.054035 
H -5.129018 -3.023654 0.138177  H 5.172664 1.421793 -1.621094 
H -4.370600 -3.599265 -1.356691  H 4.732944 0.654332 -0.100439 
C -5.095829 -0.945069 -1.729372  H 3.930161 0.146761 -1.581805 
H -4.863007 0.064974 -2.078113  C 3.747698 3.202571 0.091425 
H -5.293656 -1.569613 -2.608094  H 4.081135 2.826335 1.067653 
H -6.020390 -0.897406 -1.140607  H 4.607859 3.722346 -0.351404 
O -2.576436 -1.547517 2.221119  H 2.957140 3.936875 0.262478 
O -1.615946 0.779975 -1.284414  C -3.358891 -0.022457 -0.730241 
C 1.196373 1.518025 -1.113949  C -3.688056 1.380354 -0.204585 
C 1.427553 2.469255 0.065207  H -4.779492 1.423366 -0.117601 
H 2.373851 2.162575 0.526387  H -3.353880 2.118860 -0.935460 
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H 1.603332 3.447573 -0.386503  C -3.042779 1.706290 1.157023 
C 0.352533 2.525841 1.124878  H -1.958692 1.637224 1.031077 
H 0.503259 1.897397 1.997816  C -3.472892 0.705407 2.237795 
C -0.774058 3.246445 1.061521  H -4.557831 0.741911 2.391369 
C -1.791805 3.183552 2.171003  H -3.215402 -0.318294 1.954142 
H -1.985969 4.180766 2.586348  H -2.987781 0.926245 3.195400 
H -2.748101 2.806108 1.790341  C -3.372658 3.144778 1.574295 
H -1.470731 2.525402 2.980188  H -4.455752 3.280336 1.683521 
C -1.167095 4.096179 -0.118016  H -2.906715 3.398108 2.533676 
H -1.545908 5.071194 0.211375  H -3.016625 3.857631 0.824623 
H -0.348277 4.260137 -0.819289  O -4.289749 -0.798797 -0.932862 
H -1.970503 3.598623 -0.673186  O -2.277763 -2.797430 -0.693005 
O 1.415699 1.905697 -2.248790  C -0.089471 -2.033356 -0.323124 
O 0.845278 -0.618955 -2.129297  O 0.216212 -3.404329 -0.570917 
H 0.834880 0.061798 -2.819616  H -0.677229 -3.788634 -0.708451 
C 2.384908 -1.738226 -0.098204  C 0.045725 -1.756841 1.209507 
H 1.968667 -2.391802 -0.870012  H -0.643407 -2.458777 1.692759 
H 2.532549 -2.346319 0.795128  H -0.321639 -0.749701 1.402703 
C 3.671925 -1.147444 -0.602477  C 1.438560 -1.959166 1.722050 
H 3.605864 -0.700130 -1.593037  H 1.799787 -2.984227 1.666656 
C 4.860486 -1.096858 0.016218  C 2.279593 -1.018552 2.169694 
C 6.054883 -0.453044 -0.648226  C 3.689782 -1.367780 2.577977 
H 6.879440 -1.169512 -0.761205  H 4.413851 -0.824135 1.957933 
H 5.804231 -0.064685 -1.637858  H 3.885652 -1.076660 3.618072 
H 6.445336 0.376920 -0.044800  H 3.891810 -2.436863 2.476548 
C 5.137924 -1.654172 1.390903  C 1.953979 0.449674 2.266570 
H 5.528771 -0.870499 2.052495  H 2.514968 1.010167 1.512736 
H 4.253992 -2.080163 1.863994  H 0.899893 0.669785 2.103354 
H 5.909657 -2.433837 1.345230  H 2.240294 0.844328 3.249301 

          

               	  

Isomer 7  
C 0.773474 -0.764506 0.714473  

OH

OH
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C 1.010755 0.150541 -0.276979  
C -1.296667 1.129200 0.024126  
C -1.603146 -0.014814 0.900423  
C -0.567828 -0.859675 1.249139  
O 2.219389 0.228623 -0.889440  
O -0.838669 -1.890052 2.100562  
H -0.067168 -2.461072 2.154509  
C 1.893390 -1.698950 1.154732  
H 2.771205 -1.098082 1.414333  
H 1.641818 -2.202220 2.098956  
C 2.252204 -2.742191 0.115976  
H 1.392915 -3.189484 -0.380353  
C 3.471941 -3.131263 -0.286894  
C 4.772015 -2.618308 0.283284  
H 4.637873 -1.827226 1.020908  
H 5.322631 -3.434540 0.767310  
H 5.421164 -2.235251 -0.513205  
C 3.631832 -4.164106 -1.376445  
H 4.202764 -3.758660 -2.220607  
H 4.187754 -5.037015 -1.011604  
H 2.666138 -4.505187 -1.753646  
C -2.990935 -0.244998 1.376633  
C -4.122864 0.054923 0.393759  
H -5.053776 -0.235521 0.893631  
H -4.134755 1.134594 0.226635  
C -3.995595 -0.659662 -0.969685  
H -3.019520 -0.409208 -1.399969  
C -5.077437 -0.156295 -1.934717  
H -6.083394 -0.359856 -1.545108  
H -4.987648 0.922352 -2.092332  
H -4.991433 -0.645639 -2.910990  
C -4.069841 -2.185104 -0.811979  
H -3.945585 -2.683999 -1.779148  
H -3.288427 -2.555229 -0.142811  
H -5.037456 -2.491263 -0.394206  
O -3.257174 -0.693857 2.485810  
O -2.056896 2.093264 -0.076761  
C -0.053473 1.035663 -0.888031  
O -0.462544 0.315056 -1.975054  
C 0.487109 2.453624 -1.249029  
H 1.260393 2.307283 -2.003115  
H -0.361889 2.946931 -1.730202  
C 0.951188 3.285331 -0.089099  
H 0.162168 3.543703 0.615761  
C 2.184409 3.733242 0.191504  
C 3.404269 3.482616 -0.659736  
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H 4.194603 3.000551 -0.069243  
H 3.193663 2.841881 -1.514259  
H 3.823637 4.429354 -1.028086  
C 2.448299 4.560382 1.428279  
H 1.535612 4.719577 2.007148  
H 3.185074 4.074445 2.082732  
H 2.864696 5.544063 1.170051  
H 2.655505 -0.633448 -0.862435  
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Protonated Humulone and Protonated Iso-humulone (Associated to Figure A.1 and 

Table A.3) 

                                                        	  
Isomer 1  Isomer 2 

C 1.142057 -0.080111 -1.275057  C 0.425865 -1.451470 -0.447728 
C 1.204478 1.263054 -1.066687  C -0.813658 -1.681612 0.103626 
C -1.255555 1.344601 -0.522863  C -1.093581 0.722627 0.749672 
C -1.352016 -0.014935 -0.673510  C 0.177893 1.007543 0.078704 
C -0.111671 -0.718025 -1.011159  C 0.892380 -0.114933 -0.474437 
O 2.318155 1.944029 -1.331791  O -1.228176 -2.911199 0.325855 
H 2.174796 2.896325 -1.214498  H -2.050384 -2.865874 0.852712 
O -0.144358 -2.000224 -1.162860  O 2.107062 0.008234 -0.989309 
H -1.117609 -2.304427 -1.009000  H 2.500570 0.877245 -0.835186 
C 2.313367 -0.888797 -1.803082  C 1.329984 -2.602079 -0.860340 
H 1.922406 -1.608538 -2.529480  H 0.689352 -3.442450 -1.141714 
H 2.973803 -0.215818 -2.346769  H 1.885476 -2.316395 -1.752064 
C 3.063367 -1.637298 -0.723114  C 2.256258 -3.028012 0.257799 
H 2.460077 -2.340537 -0.154653  H 1.748867 -3.319157 1.175041 
C 4.374876 -1.571792 -0.454848  C 3.592290 -3.120694 0.224972 
C 5.365527 -0.686730 -1.166409  C 4.456313 -2.792774 -0.965001 
H 4.909944 0.011931 -1.867310  H 5.236491 -2.077318 -0.683033 
H 6.086361 -1.297306 -1.721185  H 3.906190 -2.377645 -1.808968 
H 5.946248 -0.106575 -0.441473  H 4.975843 -3.692115 -1.313302 
C 4.980036 -2.454655 0.608858  C 4.351676 -3.613006 1.431961 
H 5.485187 -1.856542 1.375680  H 5.080209 -2.865897 1.766252 
H 4.232724 -3.083595 1.095967  H 3.688897 -3.844437 2.267347 
H 5.743704 -3.109634 0.175637  H 4.921550 -4.516210 1.188158 
C -2.615704 -0.811260 -0.565920  C 0.592327 2.359364 0.030107 
C -3.942886 -0.165053 -0.272695  C 1.704220 2.944993 -0.791966 
H -4.160140 0.495777 -1.123193  H 1.396238 3.965263 -1.033857 
H -3.827887 0.515802 0.578238  H 1.793704 2.413745 -1.744110 
C -5.108588 -1.140383 -0.033006  C 3.095289 3.028533 -0.077031 

OH

OH

O

HO

HO

OH

OH

HO

O

HO
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H -5.081514 -1.898033 -0.821976  H 3.402544 2.022574 0.251485 
C -6.439779 -0.382667 -0.136676  C 3.047391 3.910483 1.176254 
H -7.280442 -1.062431 0.018958  H 2.748437 4.930941 0.920606 
H -6.509929 0.405923 0.620135  H 2.350130 3.535865 1.928071 
H -6.565980 0.080793 -1.119516  H 4.037272 3.956649 1.635161 
C -4.982416 -1.850463 1.322591  C 4.136842 3.534193 -1.084630 
H -5.009940 -1.127413 2.145424  H 4.206411 2.890132 -1.966012 
H -5.813641 -2.543949 1.469050  H 3.888228 4.543703 -1.424331 
H -4.058373 -2.427241 1.399321  H 5.124683 3.573338 -0.621021 
O -2.540745 -2.033209 -0.732490  O -0.055046 3.260075 0.711457 
O -2.305186 2.128033 -0.348888  O -1.674124 1.537467 1.466439 
C 0.079214 2.043363 -0.447078  C -1.792717 -0.591373 0.424560 
O -0.018603 3.353954 -1.019783  O -2.587441 -1.063562 1.482238 
H -0.159270 3.295802 -1.976541  H -3.404219 -0.539633 1.511495 
C 0.399381 2.319281 1.089267  C -2.691981 -0.336843 -0.875266 
H 1.366166 2.823491 1.098087  H -2.068051 0.144133 -1.633659 
H -0.345727 3.063774 1.389885  H -2.964428 -1.320825 -1.258074 
C 0.363748 1.144462 2.014466  C -3.898862 0.492049 -0.557773 
H -0.628040 0.775497 2.263332  H -3.714115 1.549080 -0.389621 
C 1.412178 0.561177 2.619223  C -5.175113 0.066563 -0.487398 
C 2.851721 0.954519 2.431100  C -5.636821 -1.348680 -0.715082 
H 2.997145 1.837028 1.808489  H -6.331167 -1.380043 -1.561190 
H 3.316731 1.147908 3.402759  H -4.833105 -2.056388 -0.915389 
H 3.405118 0.128660 1.972652  H -6.196862 -1.709297 0.153891 
C 1.194998 -0.575297 3.583304  C -6.283363 1.046695 -0.203171 
H 1.566153 -0.307806 4.578236  H -6.862405 0.735220 0.672527 
H 0.142162 -0.846805 3.673099  H -5.907644 2.055599 -0.028943 
H 1.757758 -1.460516 3.268976  H -6.985132 1.079934 -1.043361 
H -2.020091 3.059833 -0.342078  H -0.797578 2.812748 1.230652 
	

															 																 	
Isomer 3  Isomer 4 

C 0.729256 0.370736 0.924959  C 0.893925 1.024095 1.043730 
C 0.372224 -1.095132 0.928165  C -0.301473 -0.920281 0.290757 
C 0.250043 -1.438573 -0.595848  C 1.828647 0.262003 0.035519 
C 0.022804 -0.072887 -1.220194  H 2.225293 0.912899 -0.745955 

O HO

OHHO

O

HO O

OH
HO

O
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C 0.381847 0.990771 -0.265579  C 0.887689 -0.766503 -0.565986 
H -0.609078 -2.080283 -0.803679  O 1.075956 -1.445814 -1.570330 
O -0.336808 0.150630 -2.371258  C -1.194122 -2.017040 0.110056 
C 0.448292 2.350544 -0.679161  O -0.981725 -2.793125 -0.898540 
C 0.851696 3.500249 0.164864  C -2.344547 -2.339622 0.982468 
H 1.468714 4.154009 -0.458179  H -2.481578 -3.424080 0.974990 
H 1.449356 3.142281 1.002748  H -2.123025 -2.011858 1.998701 
C -0.347142 4.355758 0.724353  C -3.684096 -1.659183 0.517874 
H 0.157150 5.111039 1.335686  H -3.485116 -0.589274 0.386026 
C -1.125354 5.083094 -0.375819  C -4.192653 -2.243357 -0.803735 
H -0.465416 5.673428 -1.015891  H -3.479677 -2.128494 -1.623258 
H -1.683978 4.393648 -1.014515  H -4.410166 -3.310416 -0.700473 
H -1.847652 5.766212 0.077489  H -5.119630 -1.745573 -1.098461 
C -1.267005 3.544914 1.643258  C -4.719463 -1.821199 1.638303 
H -0.710391 3.046523 2.441568  H -4.922902 -2.877928 1.835394 
H -1.997575 4.205249 2.115541  H -4.385492 -1.358153 2.570032 
H -1.833078 2.789405 1.087409  H -5.662197 -1.351252 1.348633 
O 0.119199 2.615116 -1.900125  C -0.242145 0.054734 1.269484 
O 1.326613 0.890544 1.953633  O -0.979578 0.149732 2.335746 
H 1.603195 0.157415 2.544473  H -0.571455 0.807780 2.936451 
C -1.035748 -1.352703 1.642242  O 1.413965 1.333730 2.303135 
C -2.333328 -0.793074 1.107005  H 1.523903 2.306090 2.327507 
H -2.820021 -0.309021 1.964152  C 0.430313 2.393719 0.376818 
H -2.161862 -0.028834 0.351129  C -0.303802 2.441576 -0.940508 
C -3.207756 -1.921879 0.590946  H 0.119079 3.290083 -1.490818 
H -3.278308 -2.768659 1.267056  H -0.131403 1.541917 -1.530455 
C -3.905691 -1.946124 -0.552481  C -1.782384 2.674078 -0.687251 
C -4.756531 -3.144840 -0.889358  H -1.997638 3.404758 0.087587 
H -5.807617 -2.854047 -0.988608  C -2.805645 2.158044 -1.383432 
H -4.457450 -3.572281 -1.852417  C -2.670883 1.209811 -2.545410 
H -4.687663 -3.924309 -0.129535  H -1.659173 0.833058 -2.699553 
C -3.955062 -0.838376 -1.571428  H -3.344609 0.355548 -2.427226 
H -3.352262 0.032548 -1.313392  H -2.975313 1.712127 -3.470247 
H -3.624517 -1.201498 -2.550013  C -4.220066 2.576997 -1.071425 
H -4.988045 -0.498437 -1.699798  H -4.674643 3.063342 -1.941075 
O -0.986356 -2.085125 2.598466  H -4.844482 1.706820 -0.841046 
O 1.337992 -1.764664 1.680471  H -4.268484 3.270156 -0.230690 
H 0.850554 -2.320834 2.322271  O 0.731955 3.382649 0.996871 
C 1.524830 -2.123864 -1.181774  C 3.036263 -0.426496 0.753966 
H 1.256153 -2.411364 -2.204194  H 3.522642 0.342926 1.351234 
H 1.681025 -3.044997 -0.621728  H 2.645660 -1.161195 1.468367 
C 2.761713 -1.268226 -1.211494  C 3.989776 -1.080991 -0.204762 
H 2.702142 -0.395826 -1.861365  H 3.603843 -1.950827 -0.728938 
C 3.943774 -1.502043 -0.618976  C 5.253881 -0.712300 -0.462978 
C 5.104183 -0.564228 -0.837717  C 6.090080 -1.499146 -1.439857 
H 4.842064 0.273622 -1.486349  H 6.987890 -1.892155 -0.950611 
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H 5.469322 -0.166118 0.115556  H 5.539205 -2.337117 -1.869379 
H 5.946690 -1.095611 -1.293157  H 6.436258 -0.857987 -2.257895 
C 4.255074 -2.686137 0.256014  C 5.965944 0.458438 0.162869 
H 5.038307 -3.295565 -0.207815  H 6.852889 0.113705 0.705073 
H 4.653699 -2.352310 1.219751  H 6.326057 1.141129 -0.614233 
H 3.396598 -3.325409 0.451655  H 5.354047 1.033608 0.857756 
H -0.147879 1.760137 -2.377199  H -0.175807 -2.461269 -1.421480 
	

				 																												 	
Isomer 5  Isomer 6 

C 1.151643 -0.725245 -0.264911  C -1.019496 -0.429025 -0.773692 
C -1.062622 0.289453 0.017977  C 0.420929 -0.085284 -0.471138 
C 1.109063 -0.012411 1.114023  C 0.643932 -0.661062 0.966354 
H 0.975659 -0.776584 1.886368  C -0.765948 -0.768561 1.496895 
C -0.232000 0.774579 1.118942  C -1.733490 -0.706765 0.387363 
O -0.476743 1.613279 1.956268  H 1.208181 0.033433 1.590752 
C -2.380078 0.639637 -0.305635  O -1.092101 -0.947622 2.666530 
O -2.956373 0.091766 -1.346893  C -3.119906 -0.877496 0.659738 
C -3.226987 1.603054 0.444284  C -4.251862 -0.829184 -0.305364 
H -4.142359 1.065618 0.719212  H -4.897363 -1.682347 -0.075130 
H -2.713156 1.909611 1.354841  H -3.916028 -0.957702 -1.338852 
C -3.632349 2.854052 -0.395547  C -5.100861 0.481083 -0.186985 
H -4.123106 2.491595 -1.304474  H -5.406985 0.555819 0.861203 
C -4.642242 3.686031 0.402596  C -4.292636 1.729703 -0.557245 
H -4.963114 4.553839 -0.178731  H -3.409710 1.867241 0.073389 
H -5.533752 3.105436 0.654357  H -3.969924 1.698709 -1.604407 
H -4.202727 4.054131 1.334918  H -4.911076 2.622242 -0.442313 
C -2.410200 3.690092 -0.794764  C -6.357671 0.339495 -1.052458 
H -1.704603 3.123472 -1.410612  H -6.103421 0.234787 -2.112302 
H -2.720958 4.560896 -1.376723  H -6.957569 -0.525311 -0.758646 
H -1.876703 4.051859 0.089625  H -6.983346 1.228939 -0.951149 
C -0.349681 -0.649961 -0.786123  O -3.463242 -1.072450 1.884859 
O -0.724169 -1.245972 -1.786956  O -1.387810 -0.360913 -2.021234 
H -2.326618 -0.522757 -1.803816  H -2.328146 -0.551113 -2.155035 
O 1.928602 -0.090239 -1.273857  C 0.418116 1.518272 -0.344474 
H 2.355969 0.726402 -0.921560  C 1.336290 2.284486 -1.270044 

O O

OH
HO

OH

HO O

OHHO
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C 1.626738 -2.150460 -0.241545  H 1.270565 1.870627 -2.277412 
C 1.226447 -3.219899 0.708457  H 0.980534 3.315243 -1.278897 
H 1.568884 -4.168910 0.292060  C 2.771786 2.181364 -0.778660 
H 1.841999 -3.050241 1.606183  H 3.371869 1.415988 -1.259790 
C -0.239207 -3.237592 1.100593  C 3.344665 2.961079 0.151134 
H -0.497881 -2.695048 2.003689  C 4.801561 2.790104 0.497306 
C -1.197928 -3.927525 0.464155  H 5.267779 1.982144 -0.068973 
C -0.988322 -4.735486 -0.786092  H 5.354175 3.713196 0.292064 
H 0.046702 -4.773313 -1.125676  H 4.926827 2.584998 1.566248 
H -1.334922 -5.762360 -0.633882  C 2.639752 4.062651 0.896508 
H -1.588714 -4.320442 -1.602307  H 2.698222 3.886598 1.976215 
C -2.604903 -3.934839 0.999602  H 3.139331 5.020229 0.713720 
H -3.307815 -3.578345 0.239191  H 1.587646 4.165722 0.635375 
H -2.910020 -4.956084 1.249942  O -0.274633 2.015484 0.506901 
H -2.712597 -3.317772 1.892667  O 1.260276 -0.521631 -1.493534 
O 2.459697 -2.451807 -1.152118  H 2.031456 -0.977512 -1.110541 
C 2.334719 0.837826 1.512859  C 1.336055 -2.053715 1.010676 
H 2.095935 1.244996 2.501180  H 0.773669 -2.771362 0.409234 
H 3.200573 0.186444 1.648364  H 1.268109 -2.391986 2.050824 
C 2.638459 1.986684 0.578515  C 2.785445 -1.991723 0.597017 
H 1.811754 2.677906 0.426279  H 3.372678 -1.239242 1.120810 
C 3.819020 2.303125 0.011045  C 3.433206 -2.796041 -0.265561 
C 3.951829 3.547609 -0.829056  C 4.914387 -2.631846 -0.493294 
H 4.686380 4.226728 -0.383259  H 5.445127 -3.547360 -0.211294 
H 4.320293 3.306963 -1.831801  H 5.129859 -2.461973 -1.553549 
H 3.006854 4.083955 -0.924655  H 5.331182 -1.805330 0.083984 
C 5.094564 1.517599 0.173287  C 2.801422 -3.923243 -1.039959 
H 5.831120 2.121805 0.713635  H 3.229828 -4.878003 -0.716595 
H 4.975022 0.581606 0.718579  H 1.719843 -3.989663 -0.925906 
H 5.537693 1.296567 -0.803156  H 3.027566 -3.828468 -2.106755 
H 2.640311 -1.602126 -1.657953  H -2.624855 -1.057238 2.480833 
	

													 	
Isomer 7  

C 0.354100 -0.072273 1.040594  
C -1.016251 -0.362398 0.418721  
C -0.639099 -1.044912 -0.949069  

O O

OHHO

OH
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C 0.866786 -0.714869 -1.103336  
C 1.378431 -0.166763 0.165817  
H -1.176504 -0.606863 -1.795777  
O 1.472880 -0.923181 -2.127123  
C 2.795442 0.282471 0.443140  
C 3.910394 -0.648975 0.043584  
H 3.716986 -0.989555 -0.981634  
H 3.784788 -1.546221 0.669264  
C 5.332323 -0.084695 0.187338  
H 5.405648 0.383293 1.174701  
C 6.357674 -1.224638 0.114098  
H 7.373139 -0.838583 0.232020  
H 6.191943 -1.968211 0.899512  
H 6.310191 -1.739021 -0.851631  
C 5.621364 0.987475 -0.872804  
H 4.922758 1.823909 -0.803233  
H 6.630081 1.388760 -0.746743  
H 5.556862 0.565659 -1.881676  
O 2.943924 1.359521 0.978788  
O 0.404426 0.276884 2.319625  
H -0.391309 -0.040296 2.777182  
C -1.687080 0.953881 0.096452  
C -1.026116 2.119395 -0.572218  
H -0.271305 2.483533 0.140030  
H -0.434524 1.755876 -1.419367  
C -2.020476 3.176728 -0.984172  
H -2.461514 3.038234 -1.967974  
C -2.351187 4.282338 -0.283283  
C -3.327260 5.274767 -0.853624  
H -4.151978 5.453748 -0.157087  
H -2.829850 6.239221 -0.999927  
H -3.737957 4.952113 -1.810719  
C -1.774897 4.651707 1.056306  
H -1.248942 5.608267 0.973778  
H -2.575834 4.806167 1.786073  
H -1.075801 3.922436 1.466049  
O -2.902512 1.075913 0.444175  
O -1.773496 -1.083739 1.345617  
H -2.328891 -1.749163 0.893387  
C -0.894962 -2.570420 -0.956600  
H -0.325649 -3.041484 -0.153722  
H -0.465593 -2.929553 -1.898928  
C -2.360692 -2.921332 -0.892631  
H -2.986448 -2.399139 -1.615942  
C -2.955598 -3.850224 -0.120072  
C -4.433218 -4.118200 -0.251259  
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H -4.941384 -3.993365 0.710683  
H -4.908468 -3.464520 -0.984214  
H -4.602793 -5.155471 -0.558814  
C -2.244387 -4.724927 0.879716  
H -1.194652 -4.472382 1.025245  
H -2.746318 -4.685570 1.851698  
H -2.291939 -5.768737 0.551211  
H -3.218271 1.978914 0.147710  
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Appendix III: DMS Ionograms Summary of Beers 

Using the EPI mode to monitor the m/z signal, the separation voltage was set to SV = 3500 

V, and the CV range was stepped from -35 V to 5 V in 0.25 V increments, the resulting 

ionogram of protonated humulone (100 ng/mL in MeOH/H2O solvent) are observed in the 

N2 environment seeded with IPA (see Figure A3.1).  

 

 

Figure A3.1. The ionogram of protonated humulone (m/z 363) recorded in a N2 

environment seeded with 1.5% (mol ratio) IPA at SV = 3500 V. 
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Table A3.1 shows beer samples’ properties, including alcohol percentages, IBU provided 

by Innocente brewery, and hops styles. 

	
Table A3.1. Beer Properties 

Beer 
Alcohol 

Percentage  

IBU from 

Brewery 
Hops 

Two Night Stand 8.5 % 100 Double IPA* 

Fling 5.0 % 25 Golden Ale 

Kolsch 4.2 % 20 Lagered Ale 

Bystander 4.7 % 53 American Pale Ale 

Conscience 5.7 % 80 American IPA* 

Batch-5 Dubbel Vision 7.9 % 18 Belgian Style Dubbel Ale 

Inn Oslainte 5.2 % 18 Irish Red Ale 

*IPA here stands for India Ale Pale 
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Figure A3.2. (A). The ionogram of Kolsch (KO) at 18 °C (black) when heated to 37 °C for 

four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 1:1 

MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 1.5% 

(mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with fresh beer. (C). 

The mass spectra associated with sixth week beer. 
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Figure A3.3. (A). The ionogram of Bystander (BS) at 18 °C (black) when heated to 37 °C 

for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 1:1 

MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 1.5% 

(mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with fresh beer. (C). 

The mass spectra associated with sixth week beer. 
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Figure A3.4. (A). The ionogram of Batch-5 Dubbel Vision (Bat) at 18 °C (black) when 

heated to 37 °C for four weeks (blue), and six weeks (pink). The beer was diluted to 100 

ng/mL in 1:1 MeOH/H2O solvent. Measurements were acquired in an N2 environment 

seeded with 1.5% (mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with 

fresh beer. (C). The mass spectra associated with sixth week beer. 
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Figure A3.5. (A). The ionogram of Inn Oslainte (In) at 18 °C (black) when heated to 37 °C 

for four weeks (blue), and six weeks (pink). The beer was diluted to 100 ng/mL in 1:1 

MeOH/H2O solvent. Measurements were acquired in an N2 environment seeded with 1.5% 

(mol ratio) IPA with SV = 3500 V. (B). The mass spectra associated with fresh beer. (C). 

The mass spectra associated with sixth week beer. 
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