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Abstract

Elliptic Curve Cryptography (ECC) was introduced independently by Miller and
Koblitz in 1986. Compared to the integer factorization based Rivest-Shamir-Adleman
(RSA) cryptosystem, ECC provides shorter key length with the same security level. There-
fore, it has advantages in terms of storage requirements, communication bandwidth and
computation time. The core and the most time-consuming operation of ECC is scalar
multiplication, where the scalar is an integer of several hundred bits long.

Many algorithms and methodologies have been proposed to speed up the scalar multi-
plication operation. For example, non-adjacent form (NAF), window-based NAF (wNAF),
double bases form, multi-base non-adjacent form and so on. The random digit representa-
tion (RDR) scheme can represent any scalar using a set that contains random odd digits
including the digit 1. The RDR scheme is efficient in terms of the average number of
non-zeros and it also provides resistance to power analysis attacks.

In this thesis, we propose a variant of the RDR scheme. The proposed variant, referred
to as implementation-friendly recoding algorithm (IFRA), is advantageous over RDR in
hardware implementation for two reasons. First, IFRA uses simple operations such as
scan, match, and shift. Second, it requires no long adder to update the scalar. In this
thesis we also investigate the average density of non-zero digits of IFRA. It is shown that
the average density of the variant is close to the average density of RDR. Moreover, a
hardware implementation of the variant scheme is presented using pre-computed values
stored in one dual-port memory. A performance comparison for different recoding schemes
is presented by demonstrating the run-time efficiency of IFRA compared to other recoding
schemes. Finally, the IFRA is applied to scalar multiplication on ECC and we compare its
computation time against those based on NAF, wNAF, and RDR.
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Chapter 1

Introduction

Elliptic Curve Cryptography (ECC) was proposed independently by Koblitz [18] and

Miller [24] in 1985. ECC uses smaller key sizes compared to the integer factorization based

Rivest–Shamir–Adleman (RSA) [31] for the same security level. For instance, according

to National Institute of Standards and Technology (NIST), to achieve a 128-bit Advanced

Encryption Standard (AES) security level, it’s recommended to use ECC with key sizes of

256 bits. However, to achieve the same level of security in RSA, a key size of 3072 bits is

needed. In the past, a lot of research has been done to speed up and improve ECC, e.g.,

[33], [30], [13], and [9].

Elliptic curve scalar multiplication is a fundamental operation in many elliptic curve

based protocols such as Elliptic Curve Diffie Hellman (ECDH) and Elliptic Curve Digital

Signature Algorithm (ECDSA). The speed of scalar multiplication determines the efficiency

of these algorithms and the system where these algorithms are implemented, for example
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smart cards, cellphones, and RFID tags. An extensive research has been done in the recent

years to reduce the execution time and memory requirements of scalar multiplication in

order to efficiently implement ECC on different devices.

Scalar multiplication involves three basic operations: finite field arithmetic, point or

group operations (i.e., point doubling and adding), and scalar recoding. Significant work

has been done in each of these areas in order to improve the efficiency and performance of

scalar multiplication.

There exist many strategies to enhance the performance of scalar multiplication.

Firstly, efficient group arithmetic has been used in order to improve the performance of

scalar multiplication. For example, the usage of Jacobi coordinates in point addition and

doubling eliminates the need of costly inversion operations over the underlying finite field.

Secondly, various representations, such as non-adjacent form, of the scalar k are used in

order to reduce the number of nonzero digits and therefore, reduce the number of additions

in scalar multiplication. A number of approaches have been proposed to use pre-computed

values which can improve the speed of scalar multiplication operation. Other schemes

that improve the scalar multiplication include sliding window method, comb method and

Montgomery ladder [26].

1.1 Motivation

Improving the performance of scalar multiplication on elliptic curve has been the goal

of many researchers. Their efforts include not only speeding up the computation of scalar

2



multiplication but also protecting this operation from side-channel attacks based on timing

[20], power [19], electromagnetic emanation [29], and faults [2].

One of the countermeasures to protect the scalar multiplication operation against Dif-

ferential Power Analysis (DPA) attacks is randomization. To this end, several approaches

have been proposed. For example, references [27] and [13] proposed to insert a random

decision in the process of generating the binary signed representation of k. Reference [15]

inserts random signed digits in a complex radix representation of the scalar as a way to

improve resistance to power analysis attacks against a class of high performance elliptic

curve cryptosystem. Analysis of the singed binary and complex radix representation of an

integer can be found in [10] and [11].

Recently, the authors of [22] have proposed a random integer algorithm that general-

izes the fractional Window Non-Adjacent Form (wNAF) by allowing random digits to be

chosen as the base for the scalar k. In this work, we focus on the usage of random digit

representation. In particular, we give an implementation friendly version of the random

digit representation algorithm introduced in [22].

The use of random digit representation provides resistance against power analysis

attacks. The proposed variant inherits countermeasures against such attacks from the

original algorithm. Firstly, it does not allow traditional attacks to be mounted since the

digit set is randomly chosen. Secondly, any scalar k can have many different representations

for a given digit set.
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1.2 Thesis Organization

The organization of this thesis is as follows.

Chapter 2 provides a background on elliptic curve cryptography. It explains basic

concepts of point doubling and point addition. Furthermore, it provides a brief summary

of different scalar multiplication algorithms related to this work, such as Non-Adjacent

Form (NAF), window method, and double base number system.

In Chapter 3, we review random digit representation of integers. Preliminaries are

provided to understand this scheme. Average density of this scheme along with its pre-

computation phase is explained. We end the chapter by explaining how this scheme is

resistant to differential and simple power attacks.

In Chapter 4, we present an implementation friendly version of the random digit rep-

resentation algorithm of [22]. The new variant is referred to as implementation-friendly re-

coding algorithm (IFRA). A prototype implementation of IFRA using Field Programmable

Gate Arrays (FPGAs) is provided. We also provide a comparison of IFRA with similar

other algorithms. Finally, we end the chapter by applying the IFRA to scalar multiplica-

tion.

Chapter 5 summarizes our contributions and provides suggestions for future work.
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Chapter 2

Background

In this chapter, we provide a brief overview of elliptic curve cryptography (ECC). We

present the core operations of point arithmetic such as point doubling and point addition

which are essential concepts to understand elliptic curve scalar multiplication. Further-

more, we summarize a number of algorithms commonly used to improve the efficiency of

computing the scalar multiplication. These algorithms are based on non-adjacent form,

wNAF, and double base number systems.

2.1 Elliptic Curve Cryptography

An elliptic curve E over a field K is defined, according to [14], by an equation of the

following form:

E: y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)
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where a1, a2, a3, a4, a6 ∈ K.

If L is any extension field of K, then the set of L-rational points on E is

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6} ∪ {O} (2.2)

where O is the point at infinity.

In this thesis, we work over prime fields denoted by Fp. If K = Fp, and p > 3 is a

prime, Equation. 2.1 can be simplified to the following equation:

E: y2 = x3 + ax+ b (2.3)

where a, b ∈ Fp.

Then, using Equation 2.3, we can represent the set of points in Equation 2.2 for ECC

over prime fields as follows:

E(Fp) = {(x, y) ∈ Fp × Fp : y2 − x3 − ax− b = 0} ∪ {O} (2.4)

In the following section, a brief introduction to point arithmetic of elliptic curve is pre-

sented.

2.1.1 Point Arithmetic Over Prime Field

Different forms of elliptic curve points have been explored to improve the speed of

point doubling and point addition. In this section, we review three different forms that
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will help in building up necessary background to understand the rest of this chapter.

Some general characteristics of elliptic curves over a finite field are the following [14]:

1. Identity: P +O = O + P = P for P ∈ E(Fp).

2. Negatives: if P = (x, y) ∈ E(Fp), then (x, y) + (x,−y) = O, where the point (x,−y)

is denoted by −P and is called the negative of P .

3. Point addition: Let P = (x1, y1) ∈ E(Fp) and Q = (x2, y2) ∈ E(Fp), where P 6= ±Q.

Then P +Q = (x3, y3), where:

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 and y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1 (2.5)

4. Point doubling: Let P = (x1, y1) ∈ E(Fp), where P 6= −P . Then 2P = (x3, y3),

where

x3 =

(
3x21 + a

2y1

)2

− 2x1 and y3 =

(
3x21 + a

2y1

)
(x1 − x3)− y1 (2.6)

A graphical example of point doubling and point addition on elliptic curve can be seen

in Figure 2.1.

Affine point representation P = (x, y) can be replaced by different coordinate systems

in order to improve point arithmetic in terms of field operation. The following coordinate

systems are the most popular ones and have been researched extensively:

• Standard Projective Coordinates: The affine point (x, y) corresponds to the projec-

tive point (x, y, 1). To generalize, a projective point can be represented as (X : Y : Z)
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where Z 6= 0 and it corresponds to the affine point (X/Z, Y/Z). The infinity point

O in the projective coordinate is represented as (0 : 1 : 0) and the negative point of

(X : Y : Z) is (X : −Y : Z).

• Jacobian Projective Coordinates: These are similar to the standard projective coordi-

nates in terms of the negative point and the infinity point. However, the correspond-

ing affine representation of a Jacobian point is different. Given a Jacobian projective

coordinate in the form (X : Y : Z), the corresponding affine form is (X/Z2, Y/Z2)

Figure 2.1: Addition and doubling of elliptic curve points [14]
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2.2 Scalar Multiplication over Elliptic Curves

Scalar multiplication is the fundamental operation in elliptic curve cryptographic sys-

tems. It is analogous to exponentiation in the multiplicative group of integers modulo a

fixed integer. Scalar multiplication results in adding the point P to itself k times, i.e.,

kP = P + · · ·+ P + P

The order of a point P is the smallest integer u such that uP = O.

The number of points on a curve E(Fp) is denoted by #E(Fp) and represents the

order of a curve E over the underlying finite field Fp. Hesse’s theorem [14] states that

#E(Fp) ≈ p

In this thesis, whenever we mention the scalar k, we always assume k is a n-bit integer.

In the next section, a brief overview of different scalar multiplication algorithms is

represented to help the reader understand the necessary background for this work.

2.2.1 Double-and-Add

One of the easiest and most straightforward methods to compute scalar multiplica-

tion is double-and-add. Scalar multiplication on elliptic curve is analogous to the square-

and-multiply algorithms which is used in exponentiation-based cryptosystems [14]. Scalar

multiplication, denoted as kP can be computed as follows:
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Let k be an n-bit scalar where its binary representation is k = (kn−1, kn−2, · · · , k1, k0)2,

ki ∈ {0, 1} for 0 ≤ i ≤ n− 1. Then, one can write

kP =

(
n−1∑
i=0

ki2
i

)
P

= 2(2(· · · 2(2(kn−1P ) + kn−2P ) + · · · ) + k1P ) + k0P (2.7)

= (kn−12
n−1P ) + · · ·+ (k12

1P ) + k0P (2.8)

The above equations lead to two algorithms that can be used to compute the scalar

multiplication: left-to-right double-and-add which corresponds to Equation. 2.7 and right-

to-left double-and-add which corresponds to Equation. 2.8. These two algorithms are

presented below.

Algorithm 1 Left-to-right binary double-and-add algorithm [30]

Require: P ∈ E(Fp), k = (kn−1, · · · , k1, k0)2
Ensure: Q = kP
1: R0 ← kn−1P ; R1 ← P
2: for i = n− 2 down to 0 do
3: R0 ← 2R0

4: if ki = 1 then
5: R0 ← R0 +R1

6: end if
7: end for
8: return R0

Both binary double-and-add algorithms require n doubling and about n
2

additions on

average. The expected number of operations (addition (A) and doubling (D)) to compute

10



Algorithm 2 Right-to-left binary double-and-add algorithm [30]

Require: P ∈ E(Fp), k = (kn−1, · · · , k1, k0)2
Ensure: Q = kP
1: R0 ← O; R1 ← P
2: for i = 0 to n− 1 do
3: if ki = 1 then
4: R0 ← R0 +R1

5: end if
6: R1 ← 2R1

7: end for
8: return R0

kP using double-and-add is

n

2
A+ (n− 1)D

Even though both algorithms require the same number of operations, Algorithm 1 has

an advantage over Algorithm 2 by using a fixed register which contains the value P during

the computation. On the other hand, Algorithm 2 can lead to a shorter critical path for

its loop since R0 and R1 can be updated in parallel when implemented in hardware.

2.2.2 Non-Adjacent Form (NAF)

Let P = (x, y) ∈ E(Fp), then −P = (x,−y). Thus, point subtraction operation on

elliptic curve is as efficient as addition. This motivates using signed digit representation,

such as Let k′ = (k′n, k
′
n−1, · · · , k′1, k′0)2, where k′ ∈ {−1, 0, 1}. Non-adjacent form (NAF)

[33] is a signed digit representation which has the following properties [14]:

• No two adjacent digits are non-zeros.
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• NAF(k) is unique.

• The length of NAF(k) is at most one digit longer than the binary representation of

k.

• Given n-bit k integer, the average density of non-zero digits in NAF(k) is 1
3
.

Algorithm 3 shows how NAF(k) can be found efficiently. Once NAF(k) is computed,

kP can be computed using a slightly modified algorithm from left-to-right double-and-

add algorithm (Algorithm 1). A scalar multiplication algorithm using NAF is given in

Algorithm 4. If the length of NAF(k) is l, the expected running time of Algorithm 4 is

l

3
A+ lD

Algorithm 3 Computing NAF(k)[14]

Require: A positive integer k
Ensure: NAF(k)
1: i← 0
2: while k ≥ 0 do
3: if k is even then
4: ki ← 0
5: else
6: ki ← 2− (k mod 4)
7: k = k − ki
8: end if
9: k ← k/2
10: i = i+ 1
11: end while
12: return (ki−1, ki−2, · · · , k1, k0)

12



Algorithm 4 Scalar multiplication using binary NAF method [14]

Require: P ∈ E(Fp), k = (kl−1, · · · , k1, k0)2 in NAF representation
Ensure: Q = kP
1: Q← O
2: for i = l − 1 down to 0 do
3: Q← 2Q
4: if ki = 1 then
5: Q← Q+ P
6: end if
7: if ki = −1 then
8: Q← Q− P
9: end if
10: end for
11: return Q

2.2.3 Window Method (wNAF)

The running time of Algorithm 4 can be reduced if extra memory is available and by

using a window method where w digits of k are processed at a time. Different variants have

been introduced for the window method in [33] and [25]. Window NAF is an expansion of

NAF where it uses pre-computed values to process w digits at once and allows to execute

several point operations on these digits. Therefore, it reduces the density of nonzero terms.

Each digit k has a unique representation of wNAF which can be denoted as NAFw(k).

If a window is chosen to be of size w, the number of pre-computed points will be up to

(2w−2 − 1) and the average density of wNAF is 1
w+1

[21].

Algorithm 5 shows how to find NAFw(k) for a positive integer k and a window width

of size w. Computing NAFw(k) is similar to Algorithm 3. The main difference is in Step

6, where ki is chosen to be in the range [−2w−1, 2w−1 − 1].
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Algorithm 5 Computing NAFw(k)[14]

Require: A positive integer k, window width w
Ensure: NAFw(k)
1: i← 0
2: while k ≥ 0 do
3: if k is even then
4: ki ← 0
5: else
6: ki ← k mod 2w

7: k = k − ki
8: end if
9: k ← k/2
10: i = i+ 1
11: end while
12: return (ki−1, ki−2, · · · , k1, k0)

Computing the scalar multiplication using NAFw(k) instead of NAF(k) is shown in

Algorithm 5. The expected running time of Algorithm 5, if the length of wNAF is l, is as

follows [14] [
1D + (2w−2 − 1A)

]
+

[
l

w + 1
A+ lD

]

Algorithm 5 applies a window of width w where it moves from right to left skipping

consecutive zeroes. Moreover, a sliding window can be applied on NAF of k (Algorithm 3)

where it skips 0s after a digit ki is processed so it ensures the value within the window is

odd. The use of sliding window decreases the number of additions and reduces the number

of precomputed points to almost one half.
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Algorithm 6 Scalar multiplication using wNAF method [14]

Require: P ∈ E(Fp), k = (kl−1, · · · , k1, k0)2 in wNAF representation, Window width w
Ensure: Q = kP
1: Compute Pi = i for i ∈ 1, 3, 5, · · · , 2w−1 − 1
2: Q← O
3: for i = l − 1 down to 0 do
4: Q← 2Q
5: if ki 6= 0 then
6: if ki > 0 then
7: Q← Q+ Pki

8: else
9: Q← Q− P−ki
10: end if
11: end if
12: end for
13: return Q

2.2.4 Double Base Number System

Double Base Number System (DBNS) was first introduced by Dimitrov, Jullien and

C. Miller [8] in 1999 and later used in the context of elliptic curve cryptography [6]. DBNS

is very redundant recoding algorithm where a digit can be represented in many different

forms of DBNS. DBNS is an alternative for other recoding algorithms like NAF, wNAF,

and window method. DBNS represents an integer as a product of 2 and 3 or their powers.

Let k be an integer. Then the DBNS representation of k can be defined as follows:

k =
n∑

i=0

si2
ai3bi where si ∈ {−1, 1}, and ai, bi ≥ 0 (2.9)

Using the aforementioned equation, any integer k can be represented in DBNS using

the greedy algorithm. Algorithm 7 shows how to find DBNS expansion for an integer
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k ∈ N. The algorithm finds the closest t (an integer in the form 2a3b) where k − t is

minimal. Then, it sets k = k − t. The algorithm keeps repeating this process until k = 0.

It is proved in [7] that for any positive integer k, finding DBNS expansion using the greedy

algorithm (Algorithm 7) takes at most O
(

log k
log log k

)
iterations.

Algorithm 7 Greedy algorithm to compute DBNS expansion

Require: k ∈ N
Ensure: (ai, bi)i such that k =

∑n
i=1 2ai3bi

1: i← 0
2: while k > 0 do
3: Compute t = 2a3b which is the largest 2-3 integer smaller than k
4: ai ← a
5: bi ← b
6: i← i+ 1
7: k ← k − t
8: end while
9: return (ai, bi)i

After finding the DBNS expansion of an integer k, we need to precompute max ai dou-

bling and max bi tripling to compute kP . However, using the greedy algorithm (Algorithm

7) to generate DBNS expansion of an integer k, it is hard to find the two lower bounds

ai and bi [9]. Therefore, double-base chain has been introduced in [6] to allow the use of

DBNS with generic elliptic curves. The idea presented is mainly the same as Algorithm 7

but with an additional condition a1 ≥ a2 ≥ a3 · · · ≥ an and b1 ≥ b2 ≥ b3 · · · ≥ bn. Adding

this property to Algorithm 7 allows computing kP from right-to-left using DBNS.

To give an example of how double base chain can affect DBNS representation of an

integer k, we provide the following example (which is similar to the example in [9]) to find

double base representation of integer n = 841232 using the greedy algorithm (Algorithm
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7) and using the condition of double base chain:

• Greedy algorithm:

841232 = 2738 + 1424

1424 = 2136 − 34

34 = 2232 − 2

which results in, 841232 = 2738 + 2136 − 2232 + 21

• Double base chain:

841232 = 2738 + 1424

1424 = 2136 − 34

34 = 2033 + 7

7 = 2032 − 2

2 = 2031 − 1

So, 841232 = 2738 + 2136 − 2033 − 2032 + 2031 − 1

As we can see from the above example that double base chain representation is strictly

larger than greedy algorithm representation. However, with double base chain we can

compute [841232]P trivially. We can obtain kP as follows:

841232P = [3]([3]([3]([2133]([2632] + P )− P )− P ) + P )− P

17



which requires only 5 addition, 7 doubling, and 8 tripling operations.

2.3 Power Analysis Attacks

Different side channel analysis attacks are used to recover the secret key. In this section,

Simple Power Analysis (SPA) and Differential Power Attack (DPA) are briefly presented.

2.3.1 Simple Power Analysis Attack

Simple Power Analysis (SPA) interprets power consumption collected during different

cryptographic operations which can reveal some information about the key [19]. SPA

can yield information about how a cryptographic device operates and obtain knowledge

about secret key using a single power trace. A trace can be defined as the set of power

consumption measurements taken across a cryptographic operation.

SPA trace can distinguish different operations, such as addition from doubling in ECC

operations, and therefore allows the attacker to gain information to recover the secret key.

In order to resist such an attack, the computation of different arithmetic operations should

be as regular as possible. So, an attacker will not be able to distinguish between different

arithmetic operations being computed. This can be done on the algorithm level, such as the

Montgomery ladder [26], or at the group algorithmic level, such as using block atomicity

[4].
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2.3.2 Differential Power Attack

Differential power attack uses the analysis of different power traces of a large number

of executions of the same computation to reveal information about the secret key [19]. One

approach to resist differential power attack is randomization [19]. However, some recent

works have proved that differential power attack can defeat a certain type of randomiza-

tion, such as binary signed digit randomization [12]. Even though these algorithms provide

a variety of recoding, it just provides only a small amount of randomness to the represen-

tation, in particular, a randomized algorithm will fail if it doesn’t provide a sufficiently

large number of possible local internal states and transitions from that state, which will

make these algorithms vulnerable to collision attacks.

Furthermore, if an algorithm uses a digit set, such as wNAF, differential power analysis

works if the set is known in advance where the attacker makes a direct use of the knowl-

edge of the digit set to produce the probabilistic state machines used in cryptoanalysis [16].

2.4 Summary

In this chapter, a brief background to elliptic curve cryptography has been provided.

Different scalar multiplications algorithms have been reviewed. Double-and-add is the

easiest and the most straightforward form to compute scalar multiplication. However, in

order to speed up the computation of scalar multiplication, the scalar can be recoded so

that the number of non-zero digits in its representation is reduced. To this end, a number
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of recoding schemes have been presented, such as non-adjacent form, window method, and

double base number system. DBNS allows to represent a scalar k as a sum of products of

2 and 3 or their powers. However, computing DBNS expansion is not as efficient as other

recoding schemes, such as window method (wNAF). Finally, a brief background to power

analysis attacks has been provided.
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Chapter 3

Random Digit Representation

There are different recoding algorithms that improve the performance of scalar multi-

plication operation in elliptic curves. As mentioned in Chapter 2, NAF, wNAF and double

base system are some of these algorithms. Fractional wNAF is a method that uses a digit

set up to m of the form {1, 3, 5, . . . ,m}. A new recoding algorithm presented in [22] is a

generalized form of frac-wNAF. One advantage of the random recoding algorithm is the

very large (asymptotically infinite) number of digit sets.

This chapter provides an overview of the recoding for random digit representation.

It also discusses how such a representation can increase resistance against power analysis

attacks.
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3.1 Recoding for Random Digit Representation

LetD+ = {d1, d2, · · · , dt} be a set of odd random integers. LetD− = {−d1,−d2, · · · ,−dt}

and

D = D+ ∪ D− ∪ {0}

. We define N(D) as the set of all integers that can be represented using D. In order to

represent any integer using the set D, N(D) must be equal to Z. Since gcd(Z) = 1, gcd(D)

should also be equal to 1. In order to ensure gcd(D) = 1, the set D must contain the digit

1. In the rest of this chapter, we will only consider the set D that includes 1 as following

D+ = {1, d1, d2, · · · , dt}.

In order to present the recoding algorithm, we define some notations. Let w be an

integer, where w > 0. Then, for any integer x, we define pw(x) = x mod 2w. We now

form two sets as follows: D+
w = pw(D+) and D−w = {2w − d : d ∈ D+

w}. In addition, we

define W = blog2(max(D+))c. Then, we define h(k), where k is an odd integer, as the

largest integer h ≤ W + 2 such that there exists a digit d ∈ D that satisfies the following

two conditions:

• d < k

• ph(k) ∈ D

Finally, we can define the mapping map digitD: N→ D as follows:

• If k is even: digitD(k) = 0
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• if k is odd:

– h = h(k).

– If ph(k) ∈ Dh, then digitD(k) = d for which ph(k) = ph(d)

– if 2h − ph(k) ∈ Dh, digitD(k) = −d for which ph(d) = 2h − ph(k).

This map is well defined which means digitd(k) exists for any integer k.

Algorithm 8 digitD(k) function [22]

Require: k ∈ N, digit set D
Ensure: 0 or d such that d ∈ D
1: if k is even then
2: return 0
3: else
4: h is the largest integer h ≤ W + 2 such that ph(k) ∈ D
5: if ph(k) ∈ D+

h then
6: if ph(k) = ph(d) and d < k then
7: return d
8: end if
9: else
10: if ph(k) = 2h − ph(d) and d < k then
11: return −d
12: end if
13: end if
14: end if

Algorithm 8 summarizes how the map of digitD is implemented. Now, we can define

the Random Digit Representation (RDR) algorithm that uses digitD which is defined in

Algorithm 9.

Finally, after we have the D-representation of an integer k, we can compute the scalar

multiplication using Algorithm 10.
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Algorithm 9 Random Digit Representation of an Integer k [22]

Require: k ∈ N, digit set D+ = {1, d1, d2, · · · , dl}
Ensure: k = (ki−1ki−2 · · · k0)2 such that ki ∈ D
1: i = 0
2: while k 6= 0 do
3: ki = digitD(k)
4: k = k−ki

2

5: i = i+ 1
6: end while
7: return (ki−1ki−2 · · · k0)2

Algorithm 10 Scalar Multiplication using RDR (Algorithm 9)

Require: An integer k = (kl−1kl−2 · · · k0)2, a point P and digit set D
Ensure: Q = kP
1: R0 ← P ;
2: for d ∈ D do
3: Td = dP
4: end for
5: for i = n− 1 down to 0 do
6: R0 ← 2R0

7: if ki 6= 0 then
8: R0 ← R0 + Tki
9: end if
10: end for
11: return R0

3.2 Average Density

Average density of non-zero terms of a recoding algorithm is an important parameter

that is taken into account when we measure the performance of a specific recoding algo-

rithm. The smaller the average density is, the faster scalar multiplication operation will

24



be.

Let k be an integer and D+ = {1, d1, d2, · · · , dn} is a set of random digits. Then, for

all w > 2 we define D(w) = #Dw

2w−1 . In [18], it has been proven that the average density of

non-zero terms achieved by the random digit representation (RDR) is 1
aD+1

where

aD = 2D(W + 2) +
W+1∑
w=2

D(w) (3.1)

3.3 Resistance to Power Analysis Attacks

One of the main countermeasures to side channel attacks is randomization. Random-

ization of the digit set can provide an added resistance to differential and simple power

analysis attacks. Below we briefly discuss the security of the RDR based scalar multipli-

cation against simple and differential power analysis attacks.

To resist SPA, the computation of different arithmetic operations, such as doubling

and addition in ECC, should be as regular as possible so that an attacker will not be able

to identify any operation (e.g., point addition) whose execution depends on one or more

bits of the secret key. In Algorithm 10, the point addition does depend on the secret (i.e.,

ki in the i-th iteration); however, ki is from a set of digits chosen randomly to represent

the scalar. Hence, it is claimed in [22] that when there is enough randomness in the digit

set, Algorithm 10 is resistant to simple power analysis attack.

Furthermore, [22] argues that Algorithm 10 provides resistance to differential power

attacks for two reasons. First, since the digit sets are not known in advance, the attacker
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cannot mount the attack similar to the one mentioned in [16]. Second, a given digit set

can have many different recoding since the algorithm itself provides randomness [22].

3.4 Summary

In this chapter, we have reviewed the random digit recoding presented in [22] which

is a generalization of wNAF. The algorithm allows an integer to be represented using any

digit set as long as the digit set has 1 in it. The algorithm provides resistance against

simple and differential power analysis attacks.
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Chapter 4

Implementation Friendly Recoding

for RDR

In this chapter, we provide an Implementation-friendly Recoding Algorithm (IFRA)

for random digit representation. We then present a hardware implementation of IFRA on

FPGA. We also apply our IFRA to scalar multiplication and compare its timing results

with those obtained using NAF, wNAF and RDR recoding.

4.1 IFRA Description

The algorithm presented in Chapter 3 (Algorithm 9) generalizes fractional wNAF

recoding. However, previous research has not investigated any hardware implementation

for Algorithm 9. Also, the digitD(k) function in step 3 of the algorithm poses quite a bit
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of challenge for efficient implementation in hardware due to its variable window sizes (h)

and modular reduction operations which may require quite a bit of area in hardware if not

designed in an efficient manner. Therefore, we propose a new hardware friendly recoding

algorithm for RDR that is adopted from Algorithm 8 and 9.

The following are some important notations used in the algorithm being proposed.

Let D be the random digit set and W = blog2(max(D))c and 1 ≤ w ≤ W + 1. We then

set D−w = 2w − d for all d ∈ D and d < 2w. Note that W + 1 corresponds to the number of

bits in the largest digit in D. Therefore, a window can be as big as the maximum number

of bits in a digit set D and as small as one bit. Once we have all D−w of the digit set D for

all w such that 1 ≤ w ≤ W + 1, we can scan k from right to left to determine its recoding.

Our recoding algorithm is sequential and works from the least significant end of the

scalar k. In a given iteration, if k is even, then the corresponding recoded digit is simply

0 and k is shifted one position right. The updated k is used in the next iteration. When

k is odd, the recoding involves a number of steps. The main idea behind these steps is

that we replace the least significant w bits of k with either the w-tuple (0, 0, · · · , 0︸ ︷︷ ︸
w−1 zeros

, d) or

the (w + 1)-tuple (1, 0, 0, · · · , 0︸ ︷︷ ︸
w−1 zeros

,−d). While doing the replacement, we ensure that the

value of k remains unchanged. The value of w is set to W + 1 initially and it is reduced

by 1 if there is no appropriate tuple for a given w. Since the digit set contains 1, we are

guaranteed to find a replacement tuple that does not change the value of k. We note that

the (w + 1)-tuple creates a ’carry ’ that needs to be added to k at bit position w. Below

we summarize the steps for dealing with odd k.

1. The window size w is set to W + 1 = blog2 max(D)c+ 1.
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2. A window of w bits is extracted from integer k into a variable ktemp.

3. Compare ktemp to d where d ∈ D. If there is a digit d equals to ktemp, the least

significant w bits of k are replaced by (0, 0, · · · , 0︸ ︷︷ ︸
w−1

, d). Then, we update k by shifting

it right by w bits, skip the following steps and start recoding the updated k.

4. We compare ktemp to d such that d = 2w−d ∀d ∈ Dw and d < 2w. If such a digit d is

found, we replace the least significant w bits of k by (0, 0, · · · , 0︸ ︷︷ ︸
w−1

,−d). Then, we shift

k to the right by w bits, and add 1 (i.e., a carry) to k. Then, we skip the following

step and start recoding the updated k.

5. We subtract 1 from w and the algorithm continues from Step 2.

In the worst case, the addition in step 4 above may cause the carry to propagate all

the way to the most significant bit of k, requiring an adder of size close to n bits. For

ECC scalar multiplication, the value of n can be several hundreds. In order to avoid a long

adder, we do not explicitly add the carry; rather we store it separately. At the end of an

iteration of the recoding algorithm, the shifted k (refer to step 4) as well as the carry are

passed to the next iteration. Below we explain how it works.

We write the scalar as k = k′ + c, where c is a carry which is either 0 or 1. We note

that if the least significant bit of k′ (LSB(k′)) and c are the same, then it corresponds to

an even k, and shifting k by one position to right is equivalent to simply shifting k′ by

one position right and making no changes to c. On the other hand, LSB(k′) and c being

different corresponds to an odd k, which can be obtained simply forcing its LSB to be 1
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and copying other bits from k′. This scheme completely avoids the use of an n-bit adder

to add the carry to k in our recoding algorithm.

We note that unlike Algorithm 9, we do not use D+
w . This is to avoid generating any

negative carry.

The steps mentioned above are put together in algorithm format below (Algorithm

11). The worst case of Algorithm 11 is O((l · (W − 2) · n) where n is the number of bits in

an integer k, and l is the number of digits in the digit set D.

The new variant of the recoding algorithm can be advantageous for hardware imple-

mentation over the original one. This is mainly because Algorithm 11 requires simple

operations such as scan, match and shift that are easy to implement. Moreover, unlike

Algorithm 9, the new variant does not require an adder of size of n.
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Algorithm 11 Implementation-Friendly Recoding Algorithm (IFRA)

Require: k = (kn−1, · · · , k1, k0), digit set D
Ensure: Representation of k using digits in set D
1: W = blog2(max(D))c
2: rdr = [] . Initialization of rdr to store the result
3: k′ ← k, c← 0
4: while k′ 6= 0 or c 6= 0 do
5: if LSB(k′) ⊕ c = 0 then
6: append 0 to rdr and shift right k′ by 1 bit.
7: else
8: LSB(k′) ← 1 . Bits other than LSB remain unchanged for k′

9: c← 0
10: for w = W + 1 to 1 do
11: extract w bits and store it in k temp
12: for d in D do
13: if d = k temp then
14: append (0, 0, · · · , 0︸ ︷︷ ︸

w−1

, d) to rdr

15: shift k′ to the right by w bits
16: flag = 1 . This flag is set to break from the outer (for) loop
17: break
18: else if d < 2w and 2w − d = k temp then
19: append (0, 0, · · · , 0︸ ︷︷ ︸

w−1

,−d) to rdr

20: shift k′ to the right by w bits
21: c← 1
22: flag = 1
23: break
24: end if
25: end for
26: end for
27: end if
28: if flag = 1 then
29: flag = 0 . if a value d is found, break from the loop to check k
30: break
31: end if
32: end while
33: return rdr
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Correctness of Algorithm 11 is ensured because IFRA only substitutes a window of

size w by an equal value from the digit set D or the negative of a value from D and a

carry. Therefore, the value of k never changes and Algorithm 11 always results in a correct

representation of an integer k. Furthermore, Algorithm 11 is guaranteed to terminate

because the absolute value of k monotonically decreases each iteration until the value of k

reaches 0.

Example 1

Below is an example of Algorithm 11 in details:

Let k = 31415. Then, the binary representation of k is (111101010110111)2. Let the

digit set D be as following D = {1, 3, 23, 27}, where the binary form of the set D is

D = {1, 11, 10111, 11011}

We computeW = blog2(27)c = 4. Then, we find allD−w such thatD−w = 2w − d : d ∈ D and d < 2w

for 1 ≤ w ≤ W + 1. We end up with the following sets:

D−2 = {1, 3} ={01, 11}

D−3 = {1, 5, 7} ={001, 101, 111}

D−4 = {5, 9, 13, 15} ={0101, 1001, 1101, 1111}

D−5 = {5, 9, 29, 31} ={00101, 01001, 11101, 11111}
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Note that D−1 is not mentioned above because it only contains one element which is

D−1 = {1}.

Now, let’s apply the steps mentioned above on the example given where k = (111101010110111)2.

First, we initialize k′ = k = (111101010110111)2 and c = 0. Since w = blog2(27)c+ 1 = 5,

we scan the first 5 bits of k′.

k′ = (1111010101
︷ ︸︸ ︷
10111
k temp

)2 and c = 0

Since k temp = (10111)2 which equals to 23 = (10111)2, we would have the following

rdr = (0, 0, 0, 0, 23). Then, k′ is shifted to the right by w = 5 bits k′ = (1111010101)2 and

w is set to w = W + 1 = 5.

We repeat the algorithm again since k′ 6= 0. So, we scan the first 5 bits of k′.

k′ = (11110
︷ ︸︸ ︷
10101

x
)2 and c = 0

Since there is no d ∈ D such that d = x or 25 − d = k temp where d < 25, we reduce w by

1 and we will have the following:

k′ = (111101
︷︸︸︷
0101
k temp

)2 and c = 0

Also there is no d that equals to k temp or 24 − d = x, where d < 24. Therefore, we
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reduce w by 1 and continue as follows:

k′ = (1111010
︷︸︸︷
101

k temp
)2 and c = 0

Here, 23 − 3 = 5 = (101)2 matches x. Therefore, the result would be rdr =

(0, 0,−3, 0, 0, 0, 0, 23) and k′ is shifted right by w bits and c = 1. Then, we will have

k′ = (11
︷ ︸︸ ︷
11010
k temp

)2 and c = 1

Since k′⊕ c = 1, we set LSB(k) to 1 and we reset c to 0. Then, we extract w bits as follows

k′ = (11
︷ ︸︸ ︷
11011
k temp

)2

Since k temp = (11011)2 which equals to 27 = (11011)2, we would have the following

rdr = (0, 0, 0, 0, 27, 0, 0,−3, 0, 0, 0, 0, 23). Then, k′ is shifted to the right by w = 5 bits

k′ = (11)2 and w is set to w = W + 1 = 5.

Finally

k′ = (
︷︸︸︷
11

k temp
)2 and c = 0

Here, we can find d ∈ D which equals to k temp. Therefore, we would have rdr =

(0, 3, 0, 0, 0, 0, 27, 0, 0,−3, 0, 0, 0, 0, 23) and k′ is shifted right by 2 bits.

In the end, we will have k′ = 0 and the IFRA of the integer k using the random digit
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set D = {1, 3, 23, 27} is

rdr = (3, 0, 0, 0, 0, 27, 0, 0,−3, 0, 0, 0, 0, 23)2 (4.1)

4.2 Average Density

The average density of the original RDR algorithm [22] is 1
aD+1

, where aD is computed

using Equation. 3.1. The proposed IFRA is functionally similar to the RDR algorithm

except that the former does not use D+
w . To compare the average densities of the two

algorithms, we have randomly selected some digit sets and performed recoding exhaustively

in software. In this experiment, several 192-bit numbers were recoded using RDR and

IFRA. Then, the average density of the output of each algorithm is found using exhaustive

search on non-zero digits. The average density that was calculated is for digit sets of the

size between 5 to 30, where the random digit is in the range of [1, 300). Results of our

experiment are shown in Table 4.1. As can be seen in the table, the average density of

non-zero digits for IFRA is almost always higher than that of the original RDR algorithm,

but the difference is small.
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Table 4.1: Comparison between average density of RDR and IFRA

# elements in D RDR IFRA
5 0.2132 0.2305
6 0.1915 0.1915
7 0.1924 0.2083
8 0.1728 0.1763
9 0.1778 0.1964
10 0.1781 0.1853
11 0.1647 0.1826
12 0.1650 0.1720
13 0.1639 0.1703
14 0.1617 0.1698
15 0.1654 0.1688
16 0.1584 0.1726
17 0.1508 0.1604
18 0.1526 0.1546
19 0.1509 0.1591
20 0.1525 0.1575
21 0.1537 0.1617
22 0.1515 0.1575
23 0.1511 0.1545
24 0.1445 0.1615
25 0.1450 0.1587
26 0.1503 0.1705
27 0.1452 0.1486
28 0.1371 0.1577
29 0.1410 0.1531
30 0.1474 0.1555
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4.3 Hardware Implementation

There are many research papers presenting hardware implementation of crypto pro-

cessors for ECC. However, it is usually assumed that the scalar k is already recoded and

stored in memory. So, a hardware implementation of a recoding algorithm is not usually

provided in a crypto processor. In this section, we present a hardware implementation for

IFRA (Algorithm 11). The hardware design consists of the following units:

• Dual port memory.

• Address Computation unit.

• Shift register.

• Control Unit.

Figure 4.1 shows a block diagram of our design. It also shows the system’s different

components and the connection between blocks.
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Figure 4.1: A block diagram of the suggested hardware design for Algorithm 11

4.3.1 Dual Port Memory Module

In this design, we use a dual port memory to store and write the results. The advantage

of using dual port memory is the ability of reading and writing to two different memory
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locations at the same time. In our implementation, we assume that all sets D−w are already

computed and stored in the memory. However, these values need to be stored in a way that

is easy to access without taking lot of space or repeating any values. First, we compute

W = blog2max(D)c and # of elements in D is L. Then, precomputed values are stored in

the memory as follows:

• Store all elements of D into the first L locations of memory.

• For each subsequent L locations, we store D−2 , D−3 · · · D−W+1, where each set takes L

locations. If there is a value d such that 2w − d < 0, we store 0 in the correspondent

memory location. This will make accessing the variable easier and the algorithm will

not consider these values.

The writing address starts from a preset offset and is incremented by 4 every time

an entry is added. If we consider Example 1 mentioned in Section 4.1 where the digit set

D = {1, 3, 23, 27}, the precomputed sets of D are presented in Table 4.2. Moreover, the

output we got in Example 1 (4.1) is stored back in the same memory as shown in Table

4.3.

Figure 4.2 shows the dual port memory block with its accompanied inputs and outputs.
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Figure 4.2: A block diagram of Read Only Memory

An example of memory structure for precomputed values of D = {1, 3, 23, 27} is shown

in Table 4.2.
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Table 4.2: Memory structure for the example mentioned in Section 4.1, where the random
digit set is D = {1, 3, 23, 27}

Dw Address Memory content

D

0 1
4 3
8 23
12 27

D−2

16 22 − 1
20 22 − 3
24 0
28 0

D−3

32 23 − 1
36 23 − 3
40 0
44 0

· · · · · · · · ·

D−5

64 25 − 1
68 25 − 3
72 25 − 23
76 25 − 27
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Table 4.3: The output of recoding Algorithm 11 stored in a memory. The output shown
is for k = 31415 and D = {1, 3, 23, 27}.

Address Memory content
offset + 0 23
offset + 4 0
offset + 8 0
offset + 12 0
offset + 16 0
offset + 20 -3
offset + 24 0
offset + 28 0
offset + 32 27
offset + 36 0
offset + 40 0
offset + 44 0
offset + 48 0
offset + 52 3

4.3.2 Address Computation Module

This module computes the next address that will be read from the dual port memory.

It always starts reading from the beginning and if no match is found with the temporary

register, it starts checking 2w − d ∀ d ∈ D. If no match is found in the latter set, the

control unit reduces the value of w by 1.

There is a counter in address computation module that tracks how many entries the

module has checked. So, when the module checks L values, where L is the size of D, the

next address will be the first location of Dw for some value 1 ≤ w ≤ W + 1.

The following equation shows how a next address is computed if we have checked all
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elements in D and no value satisfies the temporary register content.

address = address+ 4 ∗ L ∗ (w − 2) + 4 (4.2)

To give an example of Equation. 4.2 assume that we have the addresses as shown in

Table 4.2. Let w = 5. Then as we reach address 3 and no value is matching the register,

we need to check all elements of D5. Therefore, the next address will be

12 + 4 ∗ (5− 2) ∗ 4 + 4 = 64

which equals to the first address of digit set D5. Figure 4.3 shows the address computation

module with its accompanied inputs and outputs.

Figure 4.3: Block diagram of Address Computation Module
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4.3.3 Control Unit Module

Control unit module is the main unit in the system which controls all other modules.

The main operations of control unit are the following:

• Reset address computation when a value is found.

• Reduce the value of w if the flag signal from address computation module is set.

• Enable the write memory module to store results.

• Shift the register when a value is found.

• Remove the most significant bit (MSB) of temporary register if no value is found.

Then, it resets address computation and reduce w by 1.

The control unit has a done signal, which is set when the value of shift register, which

stores k, becomes 0. Moreover, since we need to find the location of most significant bit

that is set to 1, a simple decoder is designed to return the location of MSB set of the input.

Figure 4.4 shows the control unit module with its accompanied inputs and outputs.
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Figure 4.4: Block diagram of Control Unit Module

4.3.4 Hardware Implementation Results

Verilog has been used to describe the hardware design. Then, the code has been synthe-

sized on Artix-7 FPGA (7a200tsbv484-1). The hardware utilization of our implementation

of Algorithm 11 is as follows. The number of LUTs used is 1196 out of 134600 (0.89%

utilization). Only, 0.5 block RAM has been used out of 365 (0.14% utilization). Finally,

428 registers have been used in the design out of 269200 on the FPGA (0.16% utilization).

4.4 Comparison Results

In this section, we present a comparison between the runtime of IFRA, RDR, and

wNAF using software implementation. In order to have a fair comparison, we have imple-

mented wNAF, RDR, and IFRA using Python. The average results have been recorded
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after running each algorithm 1000 times on a 64-bit processor. The specs of the machine

is Intel Core i7-6500U CPU @ 2.50GHz. The processor has 2 cores, and a cache size of

4096 KB.

Table 4.4 shows the comparison between the time it takes to recode NIST scalars using

IFRA, RDR, and wNAF recoding algorithms. The time is recorded using the time library

provided in Python. Figure 4.5 shows the runtime comparison between IFRA, RDR, and

wNAF for w = 7. As shown in Table 4.4, IFRA recodes faster than RDR because of simple

operations used in the algorithm.

Table 4.4: Time (in seconds) needed to find the recoding representation of IFRA, RDR,
and wNAF recoding algorithms

Window (w) 5 7 9
Algorithm IFRA RDR wNAF IFRA RDR wNAF IFRA RDR wNAF

p192 0.00058 0.001871 0.00011 0.00138 0.0032 0.000124 0.005669 0.01458 0.000121
p224 0.000676 0.003024 0.0001355 0.002253 0.00337 0.000151 0.007788 0.01302 0.000153
p256 0.000687 0.003038 0.000150 0.001248 0.00371 0.000187 0.005504 0.01059 0.000174
p384 0.000878 0.004361 0.000243 0.002413 0.00603 0.000303 0.013053 0.02022 0.000289
p521 0.001586 0.005875 0.000361 0.007366 0.00867 0.000459 0.012109 0.0309 0.000449
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Figure 4.5: Recoding speed comparison of IFRA, RDR, and wNAF for NIST curves (w = 7)

4.5 Application to Scalar Multiplication

Different recoding schemes are used to speed up or improve various aspects of scalar

multiplication, such as its resistance to side-channel analysis attacks. In this section, we

present the timing results of implementing IFRA (Algorithm 11) in Python within a scalar

multiplication implementation. Python is used for its ease of implementation and its data

structure libraries that help in speeding up the development time. In this work, scalar

multiplication on elliptic curve is implemented using double-and-add in order to compare

different recoding algorithms, namely NAF, binary and wNAF, to IFRA. Python code for

IFRA software implementation is given in Appendix A.
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4.5.1 Precomputation

Algorithm 11 and wNAF require pre-computing some points. Once we have all pre-

computed points, we use Algorithm 10 to find the scalar multiplication of an integer to a

point on elliptic curve.

In case of wNAF, we can use an addition chain in the form of {1, 2, 3, 5, 7, . . . , 2w−1−1}

where w is the window size. However, if the same chain is used for IFRA, m/2 integers

would be computed when only m/4 might be needed in the best case where m = 2w−1 − 1

[22].

There are different algorithms that use addition chains or sequence of powers to com-

pute exponentiation such as Yao’s algorithm [36], Brauer’s algorithm [3], and Pippenger’s

algorithm [28]. In this work, we have a specific case where we need to compute all points

d ∈ D and we know the following:

• d is odd for all d ∈ D.

• The digit set D consists of relatively small digits. So, we need to compute dP for

small values.

Therefore, since our case is limited by odd numbers, we can use a simple approach to

pre-compute dP for all d ∈ D as follows:

1. Create an empty lookup table and add first element which is (1, P ).

2. If the current value is less than half of the next value in the digit set, the current

point is doubled and added to 1P .
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3. If the current value is greater than half of the next value in the digit set, the current

point is added to 2P .

4. If the current value equals to the next element of the digit set, a new entry is added

to the lookup table (d, dP ).

5. Continue until the current element is equal to maximum element in D.

Table 4.5 shows the time required to precompute the points for wNAF and IFRA

where w = 7. It is clear that IFRA precomputation is faster than wNAF, this is because

of the addition chain which is used to pre-compute the points of wNAF. Even though the

window sizes of both schemes are equal, the number of digits in the digit set of IFRA

is either less or equal to wNAF. As a result, IFRA precomputation takes less time than

wNAF precomputation.

Table 4.5: Precomputation time comparison (in seconds) between wNAF and IFRA

NIST Curves IFRA wNAF
P192 0.012841 0.0176587
P224 0.015954 0.0180136
P256 0.012965 0.023257
P384 0.038869 0.074197
P512 0.116408 0.117022

4.5.2 Scalar Multiplication Comparison

In order to give a better view of how IFRA algorithm is compared to RDR, NAF,

and wNAF recoding schemes, we have evaluated the time it takes to compute the scalar

multiplication using recommended NIST curves [17]. To do so, we have evaluated the scalar
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multiplication for each curve by running each test for 1000 iterations and then we take

the average of all executions. Table 4.6 shows the comparison of using different recoding

algorithms for scalar multiplication. We assume all pre-computed points are already stored

in a lookup table where it can be accessed in O(1).

Table 4.6: Scalar multiplication computing time (in seconds) using the double-and-add
algorithm for IFRA, RDR, wNAF, and NAF recoding on NIST curves

NIST Curves NAF wNAF IFRA RDR
P192 0.017478 0.013137 0.013933 0.014713
P224 0.023361 0.018014 0.018817 0.018048
P256 0.029005 0.024489 0.025174 0.025781
P384 0.070487 0.057359 0.056305 0.057604
P512 0.148497 0.116373 0.116408 0.118699

It is clear from Table 4.6 that wNAF, RDR, and IFRA take almost the same amount

of time to compute the scalar multiplication. Also, Figure 4.6 shows a graphical represen-

tation of the speed comparisons from Table 4.6.
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Figure 4.6: A graphical representation of Table 4.6 to show the speed of computing scalar
multiplication using NAF, wNAF, RDR, and IFRA

4.6 Summary

In this chapter, we have introduced a variant (IFRA) of Algorithm 9. Then, the average

density of IFRA has been investigated and compared to that of Algorithm 9. Furthermore,

a hardware implementation of IFRA has been proposed. This hardware design consists of a

dual port memory, address computation, shift register, and control unit where precomputed

points are stored in the memory. Only one dual port memory is used in order to reduce the

amount of block RAMs and LUTs usage on FPGA. Additionally, a comparison between

the runtime of IFRA, RDR, and wNAF has been presented. Finally, an application to

scalar multiplication using IFRA has been provided where a pre-computation comparison
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between wNAF and IFRA is shown along with a software performance comparison among

NAF, wNAF, RDR, and IFRA. Since IFRA is similar to RDR in the sense that both use

random digits, they are expected to provide similar resistance to side-channel analysis.
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Chapter 5

Concluding Remarks

In this chapter, a summary of the thesis is presented. In addition, potential future

work is briefly discussed.

5.1 Summary

In this thesis, we have investigated the random digit representation (RDR) algorithm

[22] and proposed a variant (namely IFRA) to make it hardware friendly. Furthermore, we

have presented a hardware implementation of IFRA. The hardware has been synthesized

using Xilinx tools and the results of the FPGA resource utilization have been presented.

Moreover, a python script has been developed to compare the time it takes to recode an

integer using different algorithms, namely NAF, wNAF, and IFRA. Then, a comparison of

their precomputation time has been presented. The result shows that the precomputation

of IFRA is faster than wNAF. This is due to the size of IFRA digit set which is smaller than
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or equal to wNAF for the same w. Finally, IFRA is used in scalar multiplication application

to compare its performance against NAF, wNAF, and RDR. The scalar multiplication time

is almost the same as in wNAF and IFRA. However, IFRA and RDR provide resistance to

side-channel analysis, such as SPA and DPA, which is an important advantage over wNAF.

5.2 Future Work

In this work, we have only worked with affine coordinates. However, projective coor-

dinates and Jacobi coordinates could be used instead of affine coordinates. As a result, a

different hardware implementation is required if coordinates are different.

Furthermore, we assumed pre-computed points are already stored in the memory,

which might not be the case in a real-world scenario. Therefore, finding a way to speed up

the computation of

2w − d, where d ∈ D and 1 ≤ w ≤ blog2max(D)c+ 1

will improve the overall design and make it more practical. In addition, many crypto

co-processor designs have been published, such as [1], [34], [32], and [5]. Integrating Al-

gorithm 11 into an ECC crypto processor could be considered to improve the overall per-

formance. Finally, the current design does not support parallelism. So, there is a good

opportunity to exploit parallelism by improving the hardware design suggested in Chapter

4. A simple method of parallelism can be reading multiple entries from memory and com-

paring all of them with the temporary register at once. This will save a lot of clock cycles
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that results from reading the memory and updating the address and w variables.
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Appendix A

APPENDICES

A.1 Implementation Friendly Random Algorithm (IFRA)

- Software Implementation

def RDR_algorithm(D, k):

rdr = []

# Change integer to binary

bin_k = bin(k)[2:]

# get number of bits

Wn = get_Wn(D)

flag_d = 0

c = 0
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# global carry

while bin_k != ’’ or c > 0:

if bin_k == ’’: # carry is 1

rdr.insert(0, 1)

c = 0

continue

# if LSB(k) xor c = 0, zero is appened to rdr and k is shifted right 1 bit

if (bin_k[len(bin_k)-1] == ’0’ and c == 0 ) or (bin_k[len(bin_k)-1] == ’1’ and c

== 1):

rdr.insert(0, 0)

bin_k = bin_k[:len(bin_k)-1]

continue

# if LSB(k) xor c = 1, we extract w bit

# convert bin_k to an array to allow change of one bit easily

bin_s = list(bin_k)

bin_s[len(bin_k)-1] = ’1’

bin_k = "".join(bin_s)

c = 0

for w in range(Wn + 1, 0, -1):

# if the window is bigger than the length of k, we need to have smaller windwo
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if (w > len(bin_k)):

continue

# extract w bits from bin_k

k_reg = bin_k[len(bin_k) - w:]

for d in D:

# we check every d in the digit set D

bin_d = bin(d)[2:] # get the binary representation of d

# d cannot be chosen unless the value is less than the extracted window.

if d <= k_reg:

if int(bin_d, 2) ^ int(k_reg, 2) == 0:

rdr.insert(0, d)

# inserting w-1 zeros

for j in range(0, w-1):

rdr.insert(0, 0)

# update k by shifting it right w bits

bin_k = bin_k[:len(bin_k) - w]

# set flag_d to 1 to set the window to Wn+1

flag_d = 1

break

if flag_d == 1:

flag_d = 0

break

for d in D:
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# we check every d in the digit set D

bin_d = bin(d)[2:] # get the binary representation of d

# compute the negative residue of d, if neg_d is negative, it is ignored by

setting it to 0.

neg_d = 2**w - d

while neg_d < 0:

neg_d = 0

neg_bin_d = bin(neg_d)[2:] # get the binary representation of neg_d

if int(neg_bin_d, 2) ^ int(k_reg, 2) == 0 and neg_d != 1:

rdr.insert(0, -d)

# Inserting zeros

for j in range(0, w-1):

rdr.insert(0, 0)

# update k by shifting it right w bits

bin_k = bin_k[:len(bin_k) - w]

c = 1

# update k after adding a carry to LSB

# set flag_d to 1 to set the window to Wn+1

flag_d = 1

break

# break out of the for loop to check if we finished k or not

if flag_d == 1:

flag_d = 0

break
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# In the end, there might be some leading zeros which are not needed,

# this while loop removes the leading zeros and update k accordingly

while (rdr[0] == 0):

rdr = rdr[1:]

# return the result, and length of result

return rdr
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A.2 Implementation Friendly Random Algorithm (IFRA)

- Hardware Implementation

module rdr #(parameter n = 231) (clk, reset, addr_out,k, di_out, done);

input clk;

input [n-1:0] k;

input reset;

output [31:0] addr_out;

output [31:0] di_out;

output done;

parameter mem_offset = 25;

reg [n-1:0] k_reg;

// Function to get the MSP bit

function [31:0] MSB_position;

input [31:0] select;

reg [31:0] out;

begin

casex(select)

32’b00000000000000000000000000000001: out = 32’h0;
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32’b0000000000000000000000000000001x: out = 32’h1;

32’b000000000000000000000000000001xx: out = 32’h2;

32’b00000000000000000000000000001xxx: out = 32’h3;

32’b0000000000000000000000000001xxxx: out = 32’h4;

32’b000000000000000000000000001xxxxx: out = 32’h5;

32’b00000000000000000000000001xxxxxx: out = 32’h6;

32’b0000000000000000000000001xxxxxxx: out = 32’h7;

32’b000000000000000000000001xxxxxxxx: out = 32’h8;

32’b00000000000000000000001xxxxxxxxx: out = 32’h9;

32’b0000000000000000000001xxxxxxxxxx: out = 32’ha;

32’b000000000000000000001xxxxxxxxxxx: out = 32’hb;

32’b00000000000000000001xxxxxxxxxxxx: out = 32’hc;

32’b0000000000000000001xxxxxxxxxxxxx: out = 32’hd;

32’b000000000000000001xxxxxxxxxxxxxx: out = 32’he;

32’b00000000000000001xxxxxxxxxxxxxxx: out = 32’hf;

32’b0000000000000001xxxxxxxxxxxxxxxx: out = 32’h10;

32’b000000000000001xxxxxxxxxxxxxxxxx: out = 32’h11;

32’b00000000000001xxxxxxxxxxxxxxxxxx: out = 32’h12;

32’b0000000000001xxxxxxxxxxxxxxxxxxx: out = 32’h13;

32’b000000000001xxxxxxxxxxxxxxxxxxxx: out = 32’h14;

32’b00000000001xxxxxxxxxxxxxxxxxxxxx: out = 32’h15;

32’b0000000001xxxxxxxxxxxxxxxxxxxxxx: out = 32’h16;

32’b000000001xxxxxxxxxxxxxxxxxxxxxxx: out = 32’h17;

32’b00000001xxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h18;

68



32’b0000001xxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h19;

32’b000001xxxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h1a;

32’b00001xxxxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h1b;

32’b0001xxxxxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h1c;

32’b001xxxxxxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h1d;

32’b01xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h1e;

32’b1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx: out = 32’h1f;

default: out = 0;

endcase

MSB_position = out;

end

endfunction

reg [31:0] addr;

wire [31:0] data_out;

logic [31:0] addr_write, data_in_write;

assign addr_out = addr;

assign di_out = data_out;

logic [5:0] wn_wire;

wire stop_reading;
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logic restart;

logic flag;

logic neg;

logic [5:0] count;

logic [31:0] r_addr;

reg write_en;

compute_address com_add(.clk(clk), .stop_reading(stop_reading), .reset(reset), .

restart(restart), .Wn(wn_wire), .address(addr), .flag(flag), .neg(neg), .

count(count));

ram rw_mem(.rclk(clk), .reset(flag), .wclk(clk), .d_in(data_in_write), .w_addr(

addr_write), .r_addr(r_addr), .write_en(write_en), .d_out(data_out));

parameter Wn = 6;

parameter size = 4;

reg [Wn-1:0] shiftRegister;

reg found;

reg found1;

reg [31:0] write_reg;

reg reset_wn;
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assign done = (k_reg == 0) & (write_reg == 0)? 1 : 0;

// change r_addr if the value is negative to get the negative value of the digit

assign r_addr = !(found && neg) ? addr : (count == 0) ? size-1 : count-1;

always @* begin

if (reset | reset_wn) begin

stop_reading <= 0;

end

else begin

if (data_out == shiftRegister) begin

if (data_out == shiftRegister) begin

found = 1;

stop_reading = 1

else

found = 0;

end

end

end

end

// This block for updating Wn values.

always @(posedge clk or posedge reset or posedge reset_wn) begin

if(reset_wn | reset) begin
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restart <=1;

wn_wire <= Wn;

reset_wn <= 0;

end

else begin

restart <= 0;

if (flag && wn_wire != 2) begin

wn_wire <= wn_wire - 1;

restart <= 1;

end

end

end

reg [Wn-1:0] mask;

reg carry;

reg check_carry;

wire stop_writing = (write_en && mask == 1) ? 1 : 0;

always @(posedge clk or posedge reset) begin

if (reset) begin

carry <= 0;

check_carry <= 0;

end

else begin
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if (check_carry) begin

// stop checking carry and k_reg

end

else begin

if ((k_reg[0] ^ carry) == 0) begin

write_reg <= 0;

write_en <= 1;

k_reg <= k_reg >> 1;

mask <= 1;

end

else begin

check_carry <= 1;

write_en <= 0;

shiftRegister <= k_reg[Wn-1:0] + carry;

carry <= 0;

mask <= {Wn-1{1’b1}};

end

end

end

end

always @(posedge clk or posedge reset) begin

if (reset) begin
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mask <= {Wn-1{1’b1}};

end

else begin

if (write_en && mask != 1) begin

mask <= mask >> 1;

end

else if (write_en && mask == 1) begin

write_en <= 0;

check_carry <= 0;

reset_wn <= 1;

mask <= {Wn-1{1’b1}};

end

end

end

// always clk or reset or reset_wn

always @(posedge clk or posedge reset) begin

if (reset) begin

k_reg <= k; // initalize k_reg

shiftRegister <= k[Wn-1:0]; // initalize the shift register

mask <= {Wn-1{1’b1}};

end

else begin

if (check_carry) begin
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// remove MSB(k)

if (~found && flag) begin

// if not found, keep cheecking the register

shiftRegister <= shiftRegister & mask;

mask <= mask >> 1;

end

else if (found & neg) begin

// if we found the negative value of a digit

write_reg <= -data_out;

carry <= 1;

write_en <= 1;

mask <= mask | (1 << (MSB_position(mask)+1));

k_reg <= k_reg >> MSB_position(mask) + 2;

end

else if (found) begin

write_en <= 1;

write_reg <= data_out;

k_reg <= k_reg >> MSB_position(mask) + 2;

mask <= {Wn-1{1’b1}};

end

end

end

end
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// Write result to write memory

always @(posedge clk or posedge reset) begin

if (reset) begin

addr_write <= mem_offset*4 + 1;

write_en <= 0;

end

else begin

if (write_en) begin

data_in_write <= write_reg;

// Reset the write reg

write_reg <= 0;

addr_write <= addr_write + 1;

end

end

end

endmodule
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module ram #(parameter addr_width = 9, data_width = 32) (d_in, reset, write_en,

w_addr, r_addr, wclk, rclk, d_out);

input [addr_width-1:0] w_addr, r_addr;

input reset;

input [data_width-1:0] d_in;

input write_en, rclk, wclk;

output reg [data_width-1:0] d_out;

reg [data_width-1:0] mem [(1 << addr_width)-1:0];

parameter mem_file = "precomputation.x";

initial $readmemh(mem_file, mem);

// read memory

always @(posedge rclk or posedge reset) begin

if (reset) begin

d_out <= 0;

end

else begin

d_out <= mem[r_addr];

end

end
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// write memory

always @(posedge wclk) begin

if (write_en)

mem[w_addr] <= d_in;

end

endmodule
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/*

* This module computes the address to read next from read_mem

* It starts reading always from the beginning of the memory.

* However, if the number is not found, we check 2^(Wn-1) - Di

* Therefore, the address looks for the address of 2^(Wn-1) - D1

*/

module compute_address #(parameter n = 5, size = 4, offset = ’h80020000) (clk,

reset, stop_reading, restart, Wn, address, flag, neg, count);

input clk;

input reset;

input restart;

input stop_reading;

input [n-1:0] Wn;

output reg [31:0] address;

output flag;

output reg neg;

output reg [5:0] count;

// This flag is for the control unit to change Wn value. It’s set when all

values for a specific Wn is checked

assign flag = restart == 1 ? 0 : (count == size-1 && neg) ? 1 : 0;
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always @(posedge clk or posedge restart) begin

if (restart) begin

count <= 0;

end

else begin

// If flag is set, that means Wn needs to be updated

if(flag) count <= 0;

else count <= count + 1;

end

end

always @(posedge clk or posedge restart) begin

if (reset || restart) begin

count <= 0;

address <= 0;

neg <= 0;

end

if (stop_reading) begin

address <= address;

end

else begin

/*

* If we checked all D values, and we didnt’ check the neg values of the D values

,
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* update the address to read the negative values of D

*/

if (count == size-1 && ~neg) begin

address <= address + size*(Wn-2) + 1;

count <= 0;

neg <= 1;

end

else begin

address <= address + 1;

// count <= count + 1;

end

end

end

endmodule
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