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Abstract 

Learning distributed representations of sentences and analyzing semantic similarity between sentences 

is one of the essential works in the field of Natural Language Processing. In the domain of legal 

language, the future of Artificial Intelligence-related legal-tech applications is very promising. This 

thesis comprises a very detailed investigation of distributional representations of words and sentences, 

and the related machine learning and deep learning techniques. Then, we proposed an innovative 

approach, Word2Sent, for measuring the degree of similarity between sentences. The proposed model 

is completely in an unsupervised manner. Thus, it can be well applied with unlabeled data. An 

enhancement of the other unsupervised sentence embeddings model, SIF-model, is made by this thesis. 

Demonstrated by multiple experiments, our proposed model can effectively work with long legal 

sentences on several textual similarity tasks. 
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Chapter 1 
Introduction 

Artificial Intelligence (AI) is a comprehensive term that defines a collection of technologies intended 

to perform tasks that once demanded human intelligence, intercommunication, and decision-making. 

Among the more notable utilization of AI technology are speech and image recognition, autonomous 

cars, computer-aided medical diagnosis, algorithmic trading, market analysis, and robotics. In the 

circumstances of legal service, there are dozens of applications using AI technology to support services 

such as legal data research, contract review and management, intelligent interfaces, and mining 

litigation data for strategic insights. One major branch included in the broad AI-driven applications is 

the semantic understanding of the legal document. Many further, more advanced and complex services 

are based on the proper and reasonable interpretation of the given natural language. For example, legal 

Question & Answer (Q&A) systems require to correctly interpret the query information a client has 

typed into a dialogue box, and the designed algorithm provides the appropriate solution that is tailored 

to the client's needs to guide the client in finishing primary legal documents. Contract review systems 

analyze the contract and extract valuable information, then feedback the client with practical assistance 

such as synonyms recommendation or sentence rationality detection. Therefore, the fundamental 

concern is to let the machine interpret a word, a sentence or a document in a human-like manner. 

An AI-based legal technology in general applies Machine Learning and Natural Language 

Processing (NLP) to clean, tag, and structure raw litigation data so it can be efficiently searched and 

reveal new perspicacity. Machine Learning is disposed to search through vast amounts of data to 

recognize patterns and proper operation based on those patterns. It uses algorithms that can “learn” 

from data in an iterative manner and make predictions by constructing a model from inputs [1]. NLP 

provides a considerable ability to read natural language, i.e., normal text that we all use. It helps to 

process human language as it is written or spoken, without requiring customers to modify the syntax to 

adapt to system requirements. For example, the input of an NLP-based system could be a contract, and 

the output is the interpreted knowledge and the key phrases of the document, or the part that different 

from the standard and regular clauses according to the user's expectation. Alternatively, it could be 

applied to understand a legal query from the customer and explore through enormous legal datasets to 

feedback any related information not only regarding keywords appearing in the context but also the 

semantic concepts matching with the question. 
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No AI application maintains the inimitably human ability to integrate varied skill sets and make 

conscious decisions the way lawyers do, nor can they articulate why a particular clarification or 

judgment is the correct one. However, these applications indeed involve processing and handling 

enormous amounts of data quite quickly and assist with the automation of specific low-level repeatable 

tasks. Legal professionals and their valuable specialized knowledges will not be replaced by these 

applications, but AI will definitely and profoundly make alternations to the conventional legal services 

delivery manner. Lawyers can leverage AI-based legal tools that efficiently work with massive datasets 

to distinguish drafting flaws, predict likely legislative consequences, and enhance the quality of 

investigation. Law firms can reduce the financial plan on the business such as reviewing contracts, 

assessing risks, and polishing writing with the assistance of AI-powered legal tools. Some commercial 

enterprises also benefit from the tidal wave of AI. Based on the fact that more and more legal 

professionals are playing the key role in the corporation, such as business partners, strategy planners, 

or business advice counselors, these roles can be effectively substituted for the AI-based legal tools. 

Such adoption of technology can significantly help the business to make more analytical plans and 

decision, and enhance the chance to achieve innovation. 

Human communication is frustratingly uncertain at all times, not only in the field of legal, such 

as colloquialisms, abbreviations, and misspellings. All these inconsistencies make the machine analyze 

the natural language tedious. However, in the domain of legal documents, more impact factors need to 

be considered regarding the intrinsic features of the legal language. One of the most significant 

characteristics of the legal language is that those clauses in a contract have to be objective, to be 

enforceable. So, to be written objectively could sort of narrows down the number of ways that a 

sentence can be constructed from an English perspective. Because of the strictness of structure, legal 

language is composed of relatively long sentences. Also, because of the normative nature of usage, the 

vocabulary and the commonly used phrases are relatively fixed and standardized.  

With the rapid development of Machine Learning and Deep Learning in recent decades, the 

research status of semantic analysis also progresses immeasurably. The breakthrough in the distributed 

representation of words solidifies the basis of semantic analysis. Many different unsupervised training 

methods, which generates word embeddings from unstructured data, make the upcoming high-level 

semantic analysis models achieve the state-of-art performance. As for the higher-level perspective, it 

is critical to find out an efficient way to represent the semantic meaning of the longer pieces of text, 

such as phrases, sentences, or documents, to achieve a more reasonable interpretation. A bunch of well-
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performed supervised learning approaches has been developed to solve a particular or narrow range of 

tasks, given the sizeable qualified training data, which requires high labor costs. The typical 

representatives with the excellent performance of these deep supervised models include Convolutional 

Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory Network 

(LSTM), and some other variants of language models.  On the other hand, some statistics-inspired 

approaches, such as Latent Semantic Indexing (LSI) and Matrix Factorization, can learn from the more 

massive unlabeled datasets, which gains apparent advantages in the unsupervised tasks. However, some 

models perform better in short sentences, and when the sentences become longer, the accuracy 

decreases quickly. Thus, such models are not the best candidates in the legal field. Some models rely 

heavily on a significant volume of labeled data. The model that wins people's favor is a model that 

produces excellent outcomes through unsupervised learning. Therefore, it is essential to pick a sentence 

embedding model that is specifically applicable to legal language, or a better but more difficult solution 

is to find a language modeling method that is suitable for all types of documents. 

In this thesis, we review some of the sentence embedding methods in both supervised and 

unsupervised manner, especially analyze the rationale behind each model. In addition to the 

fundamental and relevant knowledge and techniques that would be utilized in the involved models, the 

distributed representation learning of word embeddings, which is almost the foundation of every 

sentence or higher-level semantic models, is explained in detail. The main contribution of this paper 

can be summarized as follows: On the one hand, in a particular circumstance of the legal domain, a 

novel evaluation method for sentence similarity analysis is proposed, with the experimental evidence 

on different datasets from the different domains for its validation and outstanding performance. On the 

other hand, a slight modification is applied to a baseline sentence embedding model named SIF [2], 

which is studied in detail, and several experiments would show that the performance is improved. 

Lastly, the conclusion and some ideas about the future work improvement shall be discussed. 
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Chapter 2 
Background 

2.1 Introduction to Representation Learning 

2.1.1 The Overview of Representation Learning 

In many areas of our lives, an iron rule is to ensure the quality of information processing results. The 

difficulty of information processing depends on how we represent the information. Therefore, the 

representation of data has become an essential part of the Machine Learning. At the very beginning of 

Representation Learning, people used their prior knowledge of the data to carry out some features. 

However, the cost of this approach is a high amount of workforce and cannot extract and organize 

complex information from the data if the original data is massive and complicated. 

Artificial Intelligence is the final goal pursued by many Machine Learning algorithms, and the 

fundamental requirement of Artificial Intelligence is to understand the world around us fully. With the 

goal of expanding the scope and the practicality of Machine Learning algorithms, it is extremely 

desirable to make learning algorithms less dependent on the feature engineering. It is believed that a 

better representation of data and identifying the hidden explanatory factors from a complex data is the 

cornerstone of achieving a high-performance algorithm. In the supervised learning tasks, a good 

representation of the data is the one that can make it easier to build a classifier or predictor. 

To understand Representation Learning better, we assume that the underlying explanatory 

factors cause the data to form a particular distribution. Many of these factors are the generalization of 

some salient factors by similar learning rules. For example, in a figurative statement, there may be 

several light sources intertwined with each other to form the whole light perception of the entire image. 

The light, shadows and the relative position of objects combine to build a more complex composition 

of the image. To clarify the existence of every boundary of objects, we hope to decompose these 

constituents and make a clear distinction between the blended light and shadow [3]. After investigating 

various methods, people ultimately adopted the way of leveraging data itself by learning the 

representations of the underlying factors of the data, so as to separate the various “light sources in the 

image.” In many tasks, there are vast quantities of natural data available introducing the common sense 

for disentangling the underlying factors of variation.   
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From another point of view, the purpose for Representation Learning is to learn invariant 

features of the observed data, which can find out the features insensitive to variation in the data that are 

less informative to the tasks. However, the most intractable problem is that we have no prior knowledge 

to infer which features are concerned with the tasks. With the consideration of this problem, the most 

reliable method is to disentangle as many factors as possible, discarding those factors with little 

information of the data [3]. For instance, the directions with the least information in variation are 

abandoned in dimensionality reduction. 

One of the essential concepts related to the application of Representation Learning is Transfer 

Learning, which indicates the ability for a representation to exploit the sharing features or common 

statistical characteristics between different learning tasks [4]. In other words, with Transfer Learning, 

the representation learned from one task can be generalized with improvement in another task. A good 

representation is the one that is capable of disentangling the underlying explanatory factors of variation, 

and these factors may be relevant to the factors of some other different tasks. The objective of Transfer 

Learning is sharing the statistical strength of each task to explain either inputs distribution or output 

distribution, so that helps model generalization [4]. 

2.1.2 Distributed Representation 

In 1986, Geoffrey Hinton introduced the concept of distributed representation, refers to a many-to-

many relationship between two types of representation [5]. Concretely, if we use neurons to represent 

concepts in a distributed representation manner, each concept is represented by several neurons, while 

each neuron participates in the representation of multiple concepts. Distributed representation is one of 

the most essential methods for Representation Learning. Many learning models, such as the traditional 

feed-forward neural network with multiple hidden units or probabilistic models with multiple latent 

variables, all take advantage of the concept of distributed representation. As we have discussed that a 

good representation can disentangle the underlying factors to explain the distribution of the input data, 

the distributed representation qualifies with that requirement. If distributed representation uses 𝑘 

different values to describe 𝑛  different features hidden in the data, then 𝑘4  different concepts are 

created in the representation space, with each representing one underlying explanatory factor of 

variation. 

Comparing with one of the typical non-distributed representation methods, the so-called 

symbolic representation, where 𝑛 different concepts are represented by 𝑛 different symbols in the input 

space, the advantage of distributed representation becomes more magnificent. For example, in many 
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word embeddings tasks, a common representation is the one-hot vectors, using a binary vector with 𝑛 

bits (keep the assumption that 𝑛  different symbols are given in input) to represent each concept. 

Although it is straightforward for representation and interpretation, the vectors would become 

extremely sparse when the number of distinct symbols in the input data increases (imagine a vector 

with 10,000 dimensions but only one entry equals to 1 and others are all 0). Thus, it is inefficient to 

capture the underlying factors for explaining the input data.  Instead, distributed representation uses the 

whole vector with not that large dimension to represent a symbol of input space. Every element of the 

vector denotes one underlying factor that influences the location of that input example in the high-

dimensional concept space. The relative distance between two vectors represents the degree of their 

similarity. Thus, in most of the real-world tasks with incredibly massive data need to be handled, the 

application of distributed representation would become one of the optimal choices.  

2.1.3 Deep Representation 

Human defines objects with a clear hierarchy. Some high-level and abstract concepts are composed of 

multiple microscopic and figurative concepts. This assumption is where the concept of deep 

representation based. Although challenges for deep representation exists, such as computational 

inefficiency, there indeed some unique advantages carried along with it.  

One distinct advantage is the reuse of features [4], which builds a hierarchical architecture of 

features and takes full advantage of distributed representations. For example, given a graph, the depth 

of the graph indicates the length of the longest path from the source node to the destination node. With 

the depth increases, the ways to reuse different portions of paths increases exponentially. If changing 

the mathematical operation of each node, such as product, weighted sum, or logic gates, the depth of 

the graph changes by a constant factor [4]. It proves deep representation structure could be 

exponentially efficient than “shallow” representations, regarding these families of functions [6]. 

Furthermore, if the representation of these types of functions learns via fewer parameters, then fewer 

training data is required, which also improves the computational efficiency and the statistical strength 

of the algorithm.  

The other considerable benefit is that within the representation hierarchy, the deep structure 

helps to learn higher-level features since the abstract higher-level concept is often composed of 

numerous concrete lower-level concepts. For example, an object detection tasks with a CNN, the first 

several layers of the model may perform as the simple objects detector such as edges. Then by 
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composing these detected single objects in the later layers of the model, more and more complex 

features could be learned such as shape and color. 

2.1.4 Autoencoder 

Among various categories of Representation Learning models, autoencoder is a feature learning 

technique that learns a direct encoding to map from the given input to the distributed representation 

space. By definition, autoencoder is a neural network aimed to replicate the input to the output, consists 

of an encoder and a decoder. As shown in Figure 1, the encoder function ℎ	 = 	𝑓(𝑥) outputs the 

encoding to the hidden layer which can be perceived as the representation of the input, while the 

decoder function 𝑟	 = 	𝑔(ℎ) takes the output of the encoder as input and generates a reconstruction. 

The architecture is illustrated as below.  

 

Figure 1 The structure of autoencoder, where 𝒙 is the input and 𝒓 is the output. The encoder is 

represented by 𝒇, while the decoder is 𝒈. 

Briefly, the encoder 𝑓	maps the input 𝑥  to the internal representation ℎ, and the decoder 𝑔 

maps ℎ to reconstructed output 𝑟. During the training process, the set of parameters 𝜃 of encoder and 

decoder are updated simultaneously through minimizing the reconstruction error, the difference 

between the output and the original input. 

 𝒥=>(𝜃) = 	?𝐿(𝑥A, 𝑔C(𝑓C(𝑥A)))
A

 (1) 

Just as the training method for the traditional neural network, the optimization process is carried 

out by stochastic gradient descent or some other optimization algorithms, and both encoder and decoder 

are applied with non-linear transformation: 
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 𝑓C(𝑥) = 𝑠D(𝑏 +𝑊𝑥) (2) 

 𝑔C(ℎ) = 𝑠H(𝑑 +𝑊Jℎ) (3) 

, where 𝑠D and 𝑠H are some types of non-linear function, such as 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ function. Thus, the 

learning parameters consists of 𝑊,𝑊’, 𝑏 and 𝑑, where 𝑏 and 𝑑 are called bias vector of encoder and 

decoder, and 𝑊,𝑊’ are weight matrices. 

With the objective described above, often, autoencoder prone to learn to identity function from 

the input to output, which indeed perfectly copy the data. But that is not what we want. A good 

generalization of the autoencoder is to achieve low reconstruction error of the validation and test 

examples, not just training examples. Thus, instead of learning to copy the input to output without any 

error, the goal of autoencoder is to copy in a not-so-accurate way to force the encoder to learn the useful 

properties of data and capture the underlying factors. Various types of autoencoder were proposed in 

the past several years, including regularized autoencoder, denoising autoencoder, and contrastive 

autoencoder. 

Autoencoder has a broad application in the field of dimensionality reduction. Since low-

dimension representation results in low memory requirement and high computational efficiency, and 

data with similar meaning can be located closer in the representation space with dimension reduction 

techniques, it would be a huge convenience and improvement for many downstream tasks. For example, 

in information retrieval, autoencoder could help in mapping the high dimensional input data into the 

internal representation space which has relatively lower dimension, and this low dimension space 

searches significantly efficient. 

2.2 Distributed Representation for Word Embeddings 

In NLP, using distributional representation to describe the meanings of words is the most crucial step 

before any downstream tasks. At the very beginning, people used a taxonomy like WordNet that has 

hypernyms (is-a) relationships and some synonym sets to represent the meaning of a word. This method 

has too many limitations, such as requiring too much human labor to create and maintain, hard to 

update, hard to compute word similarity accurately. Thus, it was shortly replaced by some other 

approaches.  Distributional representation is based on the underlying idea that “a word is characterized 

by the company it keeps” claimed by Firth [7] and the distributional hypothesis by Harris [8] in 1954, 

saying that words have similar meanings if used in similar contexts. Distributional word vectors or so-

called word embeddings indicate the “most” essential information of the context around the particular 
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word, and these vectors with the characteristics of the neighbors of a word make the similarity 

measurement among words possible. Conceptually, word embeddings is a general term used in 

language modeling and feature learning in NLP by mapping the high-dimensional space in which a 

word is located in a vocabulary to a low-dimensional continuous vector space consists of dense of real 

numbers.  There are generally two categories of approaches to generate distributed representation for 

words. One is applying dimensionality reduction after constructing word co-occurrence matrix, the 

other is learning representation via a shallow neural network. 

Word embeddings are indispensable in many NLP tasks. A good word embeddings model can 

properly capture the semantic and syntactic relations of words in the corpus. The typical example is 

word vectors could simulate the semantic relationship of words regarding human’s interpretation by 

simple addition and subtraction operations, such as  

𝑣𝑒𝑐𝑡𝑜𝑟(“𝑘𝑖𝑛𝑔”)	– 	𝑣𝑒𝑐𝑡𝑜𝑟(“𝑞𝑢𝑒𝑒𝑛”) 	= 	𝑣𝑒𝑐𝑡𝑜𝑟(“𝑚𝑎𝑛”)	– 	𝑣𝑒𝑐𝑡𝑜𝑟(“𝑤𝑜𝑚𝑎𝑛”) 

Thus, word embeddings can provide practical assistance for the subsequent downstream tasks 

such as sentiment analysis, topic classification, and sentence similarity. 

2.2.1 Traditional Count-based Model 

In the early 20th century, some distributional similarity-based data representation algorithms were 

introduced, such as Principal Component Analysis (PCA, proposed by K. Pearson in 1901 [9]) and 

Linear Discriminant Analysis (LDA, proposed by R. Fisher in 1936). Both are designed to learn the 

low-dimensional representation of data with a linear projection. As mentioned earlier, if the data is 

represented in a high-dimensional way such as one-hot vectors, there would be several issues related to 

statistical efficiency, memory storage as well as the curse of dimensionality [10].  

PCA is one of the data compression methods which effectively reduces the dimension of one 

space into another subspace with lower dimensionality by a linear projection and reserves the salient 

properties of data as much as possible [9] [11]. In this particular subspace, the variance of the data of 

all directions is maximal. Thus, this subspace is the “best” linear space [12]. The original input data 𝑥 

is mapped into a new space of representation 𝑧, whose elements are statistically independent (no linear 

correlation) with each other. Conversely, new data in the representation space can be reconstructed to 

the original data with minimal error. Mathematically, there are two ways of implementing PCA, 

Singular Value Decomposition (SVD) and Eigen-Decomposition.  
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Specifically, we denote the input data as the matrix 𝑋 with 𝑚× 𝑛-dimension, and we assume 

that the input data has zero mean in all directions, 𝐸[𝑥] = 0. 

The unbiased sample covariance matrix of 𝑋 is given by: 

 𝑉𝑎𝑟[𝑥] =
1

𝑚 − 1
× 𝑋]𝑋 (4) 

The goal of PCA is to find a linear transformation 𝑧	 = 	𝑥]𝑊 so that 𝑉𝑎𝑟[𝑧] is diagonal. 

Through singular value decomposition, matrix 𝑋 can be factorized into the product of three 

matrices: 

 𝑋	 = 	𝑈𝐷𝑉] (5) 

where the columns of 𝑈  and 𝑉  consist of the left and right singular vectors, respectively, are 

orthonormal, and the matrix 𝐷	is diagonal with positive real entries indicating the singular values of 𝑋. 

The principal components of matrix 𝑋 are given by the right singular vectors 𝑉. Then, we can express 

the variance of 𝑋 as: 

 𝑉𝑎𝑟[𝑥] =
1

𝑚 − 1
× 𝑋]𝑋	

=
1

𝑚 − 1
× (𝑈𝐷𝑉])](𝑈𝐷𝑉])	

=
1

𝑚 − 1
× 𝑉𝐷`𝑉]  

(6) 

𝑈]𝑈 = 𝐼 since the matrix 𝑈 is defined to be orthonormal. If we take the linear transformation 𝑧 =

𝑥]𝑊, we can ensure that the covariance of matrix 𝑧 is diagonal as required: 

 𝑉𝑎𝑟[𝑧] =
1

𝑚 − 1
× 𝑍]𝑍	

=
1

𝑚 − 1
𝑉]𝑋]𝑋𝑉	

=
1

𝑚 − 1
𝑉]𝑉𝐷`𝑉]𝑉	

=
1

𝑚 − 1
𝐷` 

(7) 

, 𝑉]𝑉 = 𝐼 since the matrix 𝑉 is defined to be orthonormal. 
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Therefore, when projecting the data 𝑥  through a linear transformation 𝑊  to 𝑧 , we obtain 

representations as results with a diagonal covariance matrix as given by 𝐷`	, which indicates that the 

elements of 𝑧 are statistical independent with each other. The dimension of vector 𝑧 represents some 

linear combinations of dimensions of the input data 𝑥, and these dimensions are ordered in the way 

consistent with their variance to the data. Recall that the objective of Distributed Representation 

Learning is to disentangle the underlying explanatory factors hidden behind the data, and PCA exactly 

provides a method to disentangle the data by rotating the input space via 𝑊 to maximize the variance 

of the new representation space.  

However, every coin has two sides, the most obvious shortcomings of PCA can be concluded 

as follows: Firstly, when the scale of the input data is huge (say millions of words or documents), PCA 

takes all data into account for the decomposition, which is pretty infeasible. Secondly, this method is 

not adjustable once the input dataset gets updated, such as adding a new word to the corpus. PCA has 

to re-compute the entire co-occurrence matrix and re-perform every step. Thirdly, PCA only works well 

under certain assumptions. For example,   

• It assumes that the data is linear correlated so that PCA can find orthogonal projections of the 

data containing the highest variance. If the input data is not linearly correlated, for example, 

PCA fails to work under input like 𝑦 = 𝑡 × sin	(𝑡). 

• It assumes that the principal components are orthogonal, which is a restriction to find 

projections with the highest variance. For example, in Figure 2, when the non-orthogonal 

principal components are required to represent data, PCA would be failed not like the other 

methods such as Independent Component Analysis (ICA) [13]. 

 

Figure 2 The blue color vectors are principal components. However, the actual maximum variance 

directions are red color vectors. 
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• It assumes that the principal components with low variance are not essential to the 

representation, such as the removable noise. In fact, the properties of data are not always such 

ideal. Sometimes, these low-variance components count some significant features of data. 

Even though limitations of PCA exist, it still acts as a prestigious dimensionality reduction 

technique which gives great inspiration to many variants such as ICA [13] and Random Indexing [14], 

for addressing those issues brought by standard PCA. 

A popular distributional representation approach, Latent Semantic Analysis (LSA), uses PCA 

to decompose large matrices that capture statistical information for the data [15]. LSA is broadly 

applied for relationship analysis between documents and the terms they contain, by representing 

documents and terms with the concepts. Recall the distributional hypothesis, words with similar 

meaning will also not be far from each other, LSA produces a sparse “term-document” matrix 

containing word counts per document, with rows representing unique words and columns representing 

documents. The matrix describes the occurrences of terms in documents. Each element in this sparse 

matrix has a weight indicating the relative importance of the specific word in the corresponding 

document. A typical weighting scheme is called Term Frequency-Inverse Document Frequency (TF-

IDF) [16], where the weight of an element is proportional to the number of appearing times of the word 

in the document. After applying PCA to the matrix to reduce the dimension, the resulting low-

dimensional matrix can be applied to many applications for semantic analysis. The similarity of any 

two rows is determined by a measurement such as Cosine Distance, or Euclidean Distance between two 

vectors.  

However, shortcomings indeed exist with LSA. For example, not every dimension of the 

resulting low-dimensional matrix can give the reasonable interpretation by human; it fails with 

polysemy or synonymy existing since the words and concept space is in one-to-one relationship; the 

term-document matrix is obtained from the Bag-of-Words (BOW) model, where the order of words in 

the observed text is neglected [17]. 

A similar method to LSA, one named Hyperspace Analogue to Language (HAL) [18], uses a 

kind of “term-term” matrix instead of “term-document” matrix of LSA to represent the word co-

occurrence knowledge, where rows and columns represent unique words in the corpus. Each entry of 

the matrix represents the number of times that the word given by the row appears in the context of 

another word given by the column. One observation of the application of this model is the 

comparatively weak performance in word analogy tasks since it can hardly handle the contribution from 
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some highly frequent words such as “the”, “and”. When computing the degree of similarity, those 

common fixed phrases would have a tremendous bias on the result rather than the meaning of words 

itself. Pointwise Mutual Information (PMI) [19] are designed to address this issue brought by HAL. It 

indicates as the log ratio of the joint probability, and the product of the marginal probabilities of two 

words, which can be expressed in the mathematical formula: 

 
𝑃𝑀𝐼(𝑤, 𝑐) = log k

𝑃(𝑤, 𝑐)
𝑃(𝑤)𝑃(𝑐)

l ≈ log	(
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓(𝑤, 𝑐) × |𝐷|

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	(𝑤) × 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	(𝑐)
) 

(8) 

, where 𝑤 belongs to 𝑉o and 𝑐 belongs to 𝑉p, representing the collection of words in the vocabulary and 

their contexts, respectively; 𝐷 is the collection of observed word-context pairs. 

Although PMI-based methods effectively control the influence of the most frequent words to 

results, the common downside is that it fails to deal with the case of rare context. For example, for the 

given word 𝑤, if the context word 𝑐 is so infrequent that it only occurs once with word 𝑤, then it will 

result in a relatively high PMI score since the term 𝑃(𝑐) in the denominator is a very small value. 

2.2.2 Neural Network-based Model 

The neural network-based approaches directly learn distributed representations for words that help to 

predict the local context of words within a fixed-sized window. In 2003, Bengio et al. proposed an 

architecture for estimating Neural Network Language Model (NNLM) [20]. This model associate 

words in the vocabulary with corresponding distributed word feature vectors and expresses the joint 

probability function of the given word sequences. The model learns the word feature vectors and the 

parameters of the probability function simultaneously. The underlying architecture is a shallow feed-

forward neural network consists of a linear projection layer and a non-linear hidden layer. The input 

data is one-hot vectors, the dimensionality of each vector is 𝑉, where 𝑉 is the number of words in the 

vocabulary. Since only 𝑁 words are fed as input to the model at one time, there is not too much 

computation before the projection layer. After “embedding” the words into the projection layer, the 

matrix becomes denser, so it needs more complex computation. Over the past several years, many 

variants on this model have been proposed, such as the Recurrent Neural Network Language Model 

(RNNLM), which makes use of the “short-term” memory of the recurrent network to fit with the more 

complicated structure of input data [21]. Although differences exist among these models, the core idea 

is to build a reliable language model that would give a comprehensive and logical sentence a high 

conditional probability. When calculating the conditional probability, the fixed-size window 𝑛  is 
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chosen as the range of the contextual words to make it tractable to model the sentence, since the length 

of a sentence can be changeable. In the case of 𝑛 = 1 (unigram), it bases on the assumption that the 

word occurrences are utterly independent of each other. However, this assumption seems not make so 

much sense, since the surrounding contexts of a word are highly related in human's natural language. 

Thus, it makes more sense to set 𝑛 = 2  (bigram) or 𝑛 = 3 (trigram), or some larger values and to learn 

from the conditional probability. 

 

Figure 3 Neural architecture. 

2.2.2.1 Word-level Word Embeddings 

A significant breakthrough in the development of word embeddings occurred in the year of 2013. 

Mikolov et al. proposed two models using contextual information to effectively learn high-quality word 

representation from massive amounts of unstructured text data. One is called Continuous Bag-of-Words 

(CBOW) model, the other is Continuous Skip-gram model (Skip-gram), and both are the shallow neural 

networks [22] [23]. They notably optimize the computational complexity when comparing with the 

traditional feed-forward neural network without dense matrix multiplications. CBOW calculates the 

conditional probability of a target word given by the context words surrounding it within a window of 

size 𝑘. While the Skip-gram model performs in the opposite direction, by predicting the surrounding 

context words within a window of size 𝑘 given the central target word. 
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Figure 4 The architecture of CBOW model. 

 

 

Figure 5 The architecture of Skip-gram model. 

As shown in Figure 4, the CBOW model is simply a fully connected neural network with only 

one hidden layer. Each word has two representation matrices 𝒲 ∈ ℝw×x  and 𝒲′ ∈ ℝx×w , 

representing the input word matrix and the output word matrix, respectively, where 𝑛 is a variable size 

indicating the size of the embedding space, 𝑉 is the number of words in the vocabulary. In the input 

matrix 𝒲, the vector 𝑣z in the 𝑖A{ column represents the 𝑛-dimensional input word embeddings of the 

word 𝑤z. Similarly, the vector 𝑢|  in the 𝑗A{ row of the output matrix 𝒲′ represents the 𝑛-dimensional 

output word embeddings of the word 𝑤z. 

The input layer takes the one-hot vectors 

𝑥p~�,… , 𝑥p~�, 𝑥p��, … , 𝑥p�� 

as the input context words with window size 𝑚 . Then, the one-hot vectors are projected to the 

embedded vectors layer, via the input matrix 𝒲 ∈ ℝw×x , and the embedded word vectors for the 

context are obtained as: 

 𝑣p~� = 𝒲𝑥p~�,… , 𝑣p�� = 𝒲𝑥p�� (9) 

Then calculating the average vector over these contextual word embeddings to get  

 𝑣� =
𝑣p~� + 𝑣p~��� +⋯+ 𝑣p��

2𝑚
 (10) 

as the 𝑛-dimension hidden layer. The hidden layer is connected with the output layer by the output 

matrix 𝒲J ∈ ℝx×w, therefore to obtain a score vector: 



 

  16 

 𝑧 = 𝒲′𝑣� (11) 

A Softmax function is added on the top of the output layer, transforming the individual scores 

on each category to the probability distribution over all words in the vocabulary,  

 𝑦� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) (12) 

to match the true probabilities 𝑦, which is one-hot vector of the actual word. The goal of the model is 

to learn the input matrix and output matrix of the words in the vocabulary, with a loss function based 

on Cross-Entropy between the predicted label 𝑦� and the ground truth label 𝑦, which is 

 𝐻(𝑦�, 𝑦) = −𝑦| 𝑙𝑜𝑔�𝑦�|� (13) 

Therefore, the overall objective function is formulated as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐽 = 	− log 𝑃(𝑤p|𝑤p~�,… ,𝑤p~�, 𝑤p��, … ,𝑤p��)	

= −𝑙𝑜𝑔𝑃	

= − log k
exp(𝑢p]𝑣�)

∑ exp�𝑢|]𝑣��x
|��

l	

= −𝑢p]𝑣� + 𝑙𝑜𝑔?exp�𝑢|]𝑣��
x

|��

 

(14) 

Then using stochastic gradient descent and backpropagation [24] to update all relevant word 

vectors 𝑢p and 𝑣|. 

For the Skip-gram model, illustrated in Figure 5, there is no big difference from the CBOW 

model regarding the model structure and optimization, except that the input word is the central word, 

the output layer predicts the surrounding words. For example, the objective of the Skip-gram model is 

to minimize the average negative log probability: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐽 = −𝑙𝑜𝑔𝑃(𝑤p~�,… ,𝑤p~�, 𝑤p��, … ,𝑤p��|𝑤p) 

= −𝑙𝑜𝑔 � 𝑃�𝑤p~��|�𝑤p�
`�

|��,|��

 

= −𝑙𝑜𝑔 � 𝑃�𝑢p~��|�𝑣p�
`�

|��,|��

	

(15) 
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= −𝑙𝑜𝑔 �
exp�𝑢p~��|] 𝑣p�
∑ exp(𝑢�]𝑣p)x
���

`�

|��,|��

 

= − ? 𝑢p~��|]
`�

|��,|��

𝑣p + 2𝑚𝑙𝑜𝑔?exp�𝑢�]𝑣p�
x

���

 

, where 𝑚	is the size of the context window. It shows that larger contextual window size, which takes 

more words into account in every prediction, could achieve higher accuracy, and takes much more 

training time, however. 

However, performing the Softmax in the loss function of the Skip-gram model is 

computationally expensive, since the Softmax function sums over all words in the vocabulary, which 

is intractable when the vocabulary size is enormous. Same year, Mikolov et al. proposed some novel 

techniques specially to speed up the training process [23]. One is using a Hierarchical Softmax (H-

Softmax) to approximate the full Softmax and reduce the computation perplexity. Concretely, using a 

binary tree with the 𝑊 words as its leaf nodes to reduce the evaluation perplexity from 𝑊 to 𝑙𝑜𝑔`(𝑊) 

to obtain the probability of a word. The second alternative is called Negative Sampling (NEG) [23], 

inspired by Noise Contrastive Estimation (NCE) [25]. Considering logistic regression classifier for a 

binary classification between target words and samples draw from noise, based on the ratio of 

probabilities of samples under the model and the noise distribution, which makes the training time 

independent of the vocabulary size [25].  Moreover, authors in [23] also claimed that Subsampling of 

frequent words can effectively deal with the imbalance between the rare and frequent words, for 

example, the most frequent words like “the”, “a” may occur much more times than some relatively rare 

but more informative words. They defined that the probability of a word to be discarded during training 

time is proportional to its frequency in the training dataset by 

 
𝑃(𝑤z) = 1 −�

𝑡
𝑓(𝑤z)

 
(16) 

, where 𝑓(𝑤z)is the frequency of the word 𝑤z and 𝑡 is the threshold. This technique is also proven to 

be effective to boost the training efficiency and accuracy [23]. Another result found by their work is 

the property of compositionality of words, by which the word embeddings can be composed by the 

simple summation to generate a meaningful phrase embedding. Furthermore, the original words can be 

replaced by newly generated phrase embedding as a single token in the training dataset [23]. 



 

  18 

2.2.2.2 Character-level Word Embeddings  

We have introduced Word2Vec, a model which learns a set of vectors to words by learning parameters 

of a shallow neural network. It is good at capturing the syntactic and semantic information among a 

long sequence of words. However, one of the severe challenges in NLP is the issue of Out-of-

Vocabulary (OOV), which frequently occurs in morphologically rich languages, such as French, 

Spanish, and Finnish. Concretely, there are often dozens of different forms of deformation in a noun, 

and the same circumstance for verbs. Thus, some forms of words may rarely occur in the corpus but 

lots of useful information is involved. Word embeddings models like Word2Vec ignore the internal 

structure of words since the minimal unit for representation is a unigram. This issue can be effectively 

addressed by introducing the character-level information of words. 

In past years, several methods were proposed to take the advantage of the morphological 

information for word embeddings, such as adding knowledge-based morphological features to word 

embeddings [26], obtaining word vector by different composition of morphemes [27] [28] [29], jointly 

learning method for morphologically Chinese characters [30], etc. Another type of approaches makes 

use of the high capacity architectures such as the deep neural network to learn various patterns of the 

combinations of the character sequences to words. For example, composing morphs into word 

embeddings via recursive models [31], using Bidirectional LSTM on characters to learn different types 

of word embeddings [32], and applying character-level word embeddings to machine translation tasks 

with RNN-based models [33] [34]. CNN also plays an important role in character-level word 

representation, related work such as character-level language modeling [35] and text classification [36], 

and the combination structure of CNNs and RNNs [37]. In 2016, Wieting et al. proposed 

CHARAGRAM, a character-based Representation Learning method training with paraphrase pairs, 

which embeds a character sequence by adding the vectors of its character n-gram followed by an 

elementwise nonlinearity [38].  

In 2017, Bojanowski et al. from Facebook AI Research proposed a character n-gram 

representation model, fastText, which significantly enhances the performance of word embeddings in 

morphologically-rich languages by using character-level information and reduces training time on the 

large corpus. The model is an extension of the continuous Skip-gram model on word embedding, 

considering the representations for every n-gram of a word and representing the word as the summation 

of the composed n-gram vectors. For each word 𝑤, first we add special boundary symbols to the front 

and the end of the word, then create a bag of character n-gram of 𝑤 including 𝑤 itself, where 𝑛 is a 
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variable with a pre-defined range. Concretely, given a dictionary of n-gram of size 𝐺. Denote the set of 

character n-gram appearing in the given word w as 𝐺o ⊂ {1,… , 𝐺}, denote each n-gram 𝑔  as 𝑧H . 

Simply applied with the idea of compositionality among subwords, the word embeddings for word 𝑤 

can be represented by the sum of all the pairwise inner product between its n-gram vectors and the 

context vector, and the representations are shared across words. The scoring function is: 

 𝑠(𝑤, 𝑐) = ? 𝑧H]𝑣p
H∈𝒢!	

 (17) 

The model uses a different objective function from the Skip-gram model: 

 
?[? 𝑙�𝑠(𝑤A, 𝑤p)� + 	 ? 𝑙(−𝑠(𝑤A, 𝑛))

4∈w#,%p∈�#

]
]

A��

 
(18) 

, where 𝑇 is the length of a sequence of words, 𝐶A  is the window size of the target word,	𝑤A  is the target 

word vector from the corpus. With Negative Sampling, a set of data from noise which is denoted as 

𝑁A,p. Function 𝑙(∙) represents the logistic loss function, function 𝑠(∙) is precisely the scoring function 

above. This model is proven to outperform many word-level embeddings and other types of 

morphological representations with the issues as OOV. From experiments, the best size of n-gram is 

between 3 and 6 characters by the fact that n-gram of this length would cover a wide range of 

information well. However, with specific languages and specific tasks, the optimal choice of length 

ranges needs to be tuned appropriately. 

2.2.3 Summary & Discussion 

In this section, we reviewed the development of the distributed representation of word embeddings. 

From the count-based co-occurrence matrix approaches with one-hot representation to the low-

dimensional distributional vectors with dimensionality reduction techniques, and finally arrives at the 

prediction-based methods, by learning the low-dimensional word vectors with a neural network. We 

introduced word embeddings models, and deeply analyzed their implementation process and the 

underlying mathematical theory. Through the series of iterations, the quality of the word embeddings 

models has made remarkable progress, which reflects in some downstream tasks such as word similarity 

analysis that relies heavily on word embeddings. We introduced in detail about the typical 

dimensionality reduction techniques, PCA, and discussed some other popular approaches such as HAL 

and PMI. These methods take the efficient usage of statistics so that they achieve the fast training 
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process, but fail to scale with the variable-sized corpus. However, for those neural network-based 

models such as NNLM, CBOW, Skip-gram, and fastText, they can successfully generalize the model 

itself to corpus with any size and generate the representational vectors capturing more complex patterns 

and properties. Thus, it improves the performance of many downstream tasks. The disadvantage of this 

type of models is the inadequate and inefficient usage of the statistical information. 

Moreover, with the neural network-based models, the performance would be boosted if the size 

of the corpus increases. Some hyperparameters in the model also influence the performance to some 

extent, such as the dimension of embedding vector and the number of negative samples. Too low 

dimension vectors would cause high bias and are not capable of capturing all useful properties in the 

corpus, while too high dimension may cause high variance problem since the model may capture some 

unexpected noise and cause negative influence for generalization. A comprehensive study of these two 

major methods for word embeddings by Levy et al. [39] shows that these hyperparameters of the models 

should be tuned explicitly according to different tasks, which would contribute expressively to the 

improvement of performance much more than using a better algorithm or a larger training corpus. They 

also show that the hyperparameters implemented in prediction-based models are transferable to be 

adapted and applied to the count-based methods. Practically, Mikolov et al. conducted meticulous 

experiments on different word embeddings models with various corpus and summed up many empirical 

rules that can be referred during the training process, such as de-duplicating sentences in large corpus, 

building the phrases in the pre-processing step, adding the position-dependent weights and sub-word 

features to the CBOW model [40]. All these tricks might be useful in boosting the accuracy of the word 

embeddings models. 
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Chapter 3 
Deep Learning Techniques 

3.1 Overview 

Deep Learning is a class of techniques included in Machine Learning research community [41]. It 

consists of several successive multiple layers of non-linear operation nodes, and each layer takes the 

output from the previous layer as the input. Deep Learning algorithms are usually designed in a 

hierarchy structure, learning representations and extracting features of the input data with multiple 

levels of abstraction. In many tasks, such as speech recognition, object detection, language modeling, 

and transfer learning, a variety of state-of-the-art Deep Learning models has achieved the significant 

performance [42]. 

Early in 1965, Ivakhnenko et al. proposed the first supervised and deep feedforward multilayer 

perceptron working learning algorithm [43]. Six years later, an architecture of deep network with eight 

layers trained by a group method of data handling algorithm was described in another paper of 

Ivakhnenko [44]. In 1989, Yann LeCun et al. [45] applied the standard backpropagation algorithm to a 

deep neural network for a handwritten ZIP codes recognition system. The research on neural network 

gained popularity and reached the peak in the early 1990s. However, this boom of neural networks was 

quite short-lived. At that time, due to various difficulties, many attempts at training deep supervised 

neural networks did not feedback with positive results. Thus, people thought that Deep Learning is not 

an efficient way to solve the problem. Neural networks were soon replaced by some other classic 

Machine Learning techniques and became not so that popular until the modern Deep Learning 

renaissance that began in 2006 [3]. Some research groups began to concentrate on stacking 

unsupervised Representation Learning algorithms to gain deeper representation with the complicated 

structure of data [46] [47] [48], and many later. One turning point is the publications by Hinton et al., 

they proposed deep belief nets, showing a multilayered feedforward neural network can be well pre-

trained one layer at a time, introduced the concepts of Restricted Boltzmann Machine, fine-tuned the 

model via supervised backpropagation [46] [49]. Since then, Deep Learning attracted attention not only 

in the academic field, but also many industry-leading technology companies like Google, Microsoft, 

and Facebook. For example, the speech recognition system based on Deep Learning techniques named 

Microsoft Audio Video Indexing Service (MAVIS) was released in 2012 [50]. The same year, Dahl et 

al. claimed that they obtained the relative improvement on the speech recognition benchmark of Bing 
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mobile business search dataset [51]. The research groups of Hinton and Bengio focused on the 

classification problem for MNIST digit numbers and successfully broken the performance record 

maintained by traditional Machine Learning methods [46] [47]. Ciresan et al. proposed the 

convolutional architecture-based model with 0.27% error achieved on MNIST dataset which was the 

state-of-the-art method at that time [52]. The magnificent breakthrough in object recognition of natural 

images was achieved on the ImageNet dataset by Krizhevsky et al. in 2012 [53]. By using the CNN 

structure, the performance of their model has achieved unprecedented improvement over other 

methods. Their successful attempt impressively promoted the development of object recognition and 

other related tasks and brought great inspirations to the research community. Another primary field of 

applications of Deep Learning is NLP. Hinton et al. first introduced the idea of distributed 

representations for symbolic data in 1986, [54]. Later in 2003, Bengio et al. claimed a neural 

probabilistic language model based on the architecture of feedforward neural network [55], which laid 

the groundwork for the enhancement of word embeddings later on. In 2011, the neural net language 

model developed by Mikolov et al. [56] with adding recurrence to the hidden layers beats the state-of-

the-art smoothed n-gram models in the aspect of perplexity, as well as error rate in speech recognition. 

Soon after, many models were proposed with the goal of solving word representation problem and some 

higher-level semantic understanding tasks. Models based on various types of Deep Learning techniques 

such as CNN, RNN, and recursive networks were broadly studied and practiced. 

In recent years, many study cases shown that Deep Learning performs promisingly on various 

intractable tasks. Deep Learning algorithms are good at discovering the intricate structure of complex 

and high-dimensional data. In addition to the field of image recognition and speech recognition, Deep 

Learning also has a significant impact on drug discovery, genetic learning, and disease detection over 

many Machine Learning methods. More surprisingly, in some very complicated tasks in the domain of 

NLP such as topic classification, sentiment analysis, question answering and machine translation, Deep 

Learning-based methods are also able to produce promising results [42]. 

In this chapter, we will first introduce the history and current status of Deep Learning 

techniques comprehensively. Next, we will present different types of deep neural network structures 

closely related to the topic of this thesis, namely, CNN, RNN, as well as the various variations. For 

each model, we will analyze the overall structure, the connection, calculation between layers, the 

intuition, and implication behind the architecture. 
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3.2 Convolutional Neural Network 

Convolutional architecture is one of the essential factors that make Deep Learning successfully in many 

areas [45]. CNN is a specialized class of deep and feedforward neural networks having a known, grid-

like topology [42] [3]. Data with different forms such as one-dimension sequential data, a two-

dimension grid of pixels of image data, three-dimension video, or volumetric images can be inputs to 

CNN. As the name implies, one of the primary features of CNN is the application of a linear 

mathematical transformation between convolutional layers, known as “convolution.” The four core 

ideas behind CNN that make use of the nature of natural signals are local connections, shared weights, 

sub-sampling, and applying multiple layers [42] [57]. 

3.2.1 Architecture Overview 

From a high-level perspective, a CNN consists of the input layer, the output layer, and multiple hidden 

layers. Concretely, the hidden layers typically contain Convolutional Layers (CONV), Pooling Layers 

(POOL), and Fully Connected Layers (FC). These layers are stacked in some specific manners to form 

a full convolutional architecture. For example, the standard CNN is merely a set of layers in sequence: 

[INPUT – CONV- RELU – POOL - FC], and each layer takes an input 3D volume of data and 

transforms it to an output 3D volume through a differentiable function [58]. In more detail, INPUT is 

in the form of multidimensional array of data, while units in CONV layer form feature maps, obtained 

by the convolution operation between the local patches (receptive field) in the feature maps of the 

previous layer, and a multidimensional array of parameters (kernel or filter) that are adapted by the 

learning algorithm. Then the results of convolution are passed through a non-linearity function such as 

Rectified Linear Unit (ReLU) for an elementwise activation operation. The output from ReLU is down 

sampled along the spatial dimensions in the POOL layer. Finally, the FC layer calculates scores 

corresponding to each class, and neurons in a fully connected layer are connected to all activation units 

in the previous layer via matrix multiplication followed by a bias. 

3.2.2 Convolutional Layer 

The most notable difference between CNN and the standard NN is that the layer-to-layer operation of 

the former (at least one of the layers) are achieved through convolution, while the latter is matrix 

multiplication. Convolution helps to enhance the performance of the model through three different 

aspects: Sparse Interactions, Parameter Sharing, and Equivariant Representations [3]. Sparse 

Interactions describe the characteristics of convolutional layers. When met with a very large volume of 
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input data, the size of the filter should be much smaller than the size of the input data, which allows the 

model to have fewer parameters and times of operations. Sparse Interactions reduce the memory 

requirements and boost the computational efficiency. Parameter Sharing scheme in the convolutional 

network is applied by using one same filter for each receptive field in the layer. Although it has no 

influence on the runtime of forward propagation, it dramatically decreases the storage requirement. 

Therefore, combining these two factors makes convolution considerably more efficient. The property 

named Equivariance to Translation, is caused by parameter sharing. When shifting or changing the 

input by some value, the same amounts of shifts or changes will appear in the output. Equivariance is 

quite important when the small but crucial feature information of the input data is useful for many other 

input locations. 

3.2.3 Pooling Layer 

While the convolutional layer is to detect and extract the effective features, the purpose of the pooling 

layer is to yield the approximate characteristics of the output of convolution layer by transforming 

several statistical numbers in a specific range into one via a pooling function. There are various types 

of pooling function being used in different CNN models, such as the max pooling, average pooling, 

and neighboring pooling [42]. The effect of pooling layer is to make the representation Invariance to 

Translation. When shifting the input by a small amount, the most parts of the output stay unchanged. 

This property is advantageous when we care about the presence and functionality of some feature 

extractors, not its exact location. It enables the function learned by each convolutional layer to be 

invariant to small changes, which significantly improve statistical efficiency [3]. The other advantages 

of the pooling layer are reducing the input size, thus makes the model be statistical efficient and requires 

less storage for parameters. The pooling layer can deal with the variable-size input by varying the 

hyperparameters, so that the size of the output keeps consistent regardless of the input size [3]. 

3.2.4 Fully Connected Layer 

The output of the convolutional layers represents the high-level features of the data, and it can be 

flattened and connected to the output layer. Adding a fully connected layer is an inexpensive way for 

learning nonlinear combinations of these features. Every neuron in a fully connected layer is connected 

to every neuron in the other layer, behaving in the same way as the tradition neural networks. 
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3.2.5 Discussion & Summary 

We have introduced the structure of the CNN, the details of each type of layers and their connectivity. 

In practical applications, there are many other issues, such as how to avoid underfitting and overfitting, 

the choice of loss function and optimization methods. However, these issues are involved in the 

framework of tradition neural networks, so we will not introduce in detail in this section. 

The CNN was initially designed for the application of image classification and recognition 

tasks. As early as the 1990s, Yann LeCun developed LeNet, which was used to identify zip codes and 

digits, and it became the first successful attempt on convolutional network in the field of image 

recognition [45]. However, due to the limited computing power of the machine at that time, the 

convolutional network seemed to fade out of sight. Until 2012, Alex Krizhevsky, Ilya Sutskever, and 

Geoff Hinton proposed AlexNet and achieved outstanding results in the ImageNet challenge 

competition [59]. AlexNet was similar to LeNet regarding the overall architecture, but it was deeper 

(increased number of layers) and bigger (increased size of filters). From then on, the convolutional 

network became famous again in the field of computer vision and began to be broadly used in 

commercial systems. Over the next few years, various novel convolutional network-based models 

emerged in an endless stream with improved performance in many scenarios. While pursuing high 

accuracy, researchers are continuously exploring the approaches of optimizing model size and reducing 

computation expense. In 2014, the concept of Inception Model was introduced by GoogleNet, which 

significantly reduced the total number of parameters, from 60M of AlexNet to 4M [60]. In the same 

year, the research group of VGGNet claimed that the depth of the network is a critical factor related to 

quality [61]. Kaiming He et al. solves the problem, that the accuracy becomes saturated or degraded 

severely as the depth of the network becomes deeper, by Skip Connection of the Residual Network 

[62].  CNN has been proved not only suitable for processing data with a precise grid topology, such as 

two-dimension image topology, but also has the auspicious performance for one-dimension word 

sequence data, which will be introduced with examples in the next few chapters. 

3.3 Sequential Model 

3.3.1 Overview 

RNN is a class of neural networks for recognizing patterns in sequences of data. The connections 

between units form a directed graph along the sequence. Just as CNN is a neural network that 
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specializes in processing two-dimension data such as image, RNN is dedicated to processing data in 

the form of a one-dimension sequence such as text. 

In the previous section, we mentioned the idea of Parameter Sharing, which makes the model 

flexible, allowing the model to be adapted to handle different forms of data (including variable-length 

data for text information) and to generalize across them [3]. Conversely, if units in different time steps 

have separate parameters, it is hard for the model to be generalized to a sequence of unseen length 

during the training process. The Parameter Sharing mechanism is especially important for dealing with 

semantic understanding issues. For example, a particular piece of information may appear in multiple 

locations in the long sequence data. A good model is required to discover this particular information 

regardless of its location. A feed-forward neural network can hardly achieve this because a fully 

connected neural network uses separate parameters for each input features. For a specific sentence, the 

model needs to learn all rules of the language according to different locations to extract corresponding 

features. In other words, a feed-forward network takes no care about time steps, it considers the current 

input training example only and forgets about the previous ones. However, RNN makes use of the idea 

of Parameter Sharing in time series through a very deep structure of computational graph to overcome 

this issue.  

3.3.2 Recurrent Neural Network 

One of the most significant differences between RNN and the feed-forward neural network is that the 

former has a “memory” which captures information about what has been calculated so far by a feedback 

loop structure connected to the past decisions, while the latter treats all inputs independently with each 

other. The term Recurrent means that an RNN applies the same rule for every unit of a sequence, and 

each member of the output is a function of previous members of the output. For every computation unit 

of an RNN, there are two sources of inputs, one is from the present input, the other is from the recent 

past information. Therefore, the output of every time steps is affected by the combination of these two 

factors.  

The purpose of adding this memory function to the network is inspired by the fact that the 

information of the sequential data is not independent in time, but the sequence itself contains much 

useful information. That kind of sequential information is represented by the corresponding hidden 

states of RNN and is fed into the next recurrent unit, along with the new example of the next time step. 

As there is a saying that, “The past that does not pass away.” The correlations called “Long-Term 
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Dependency” among these separate moments are probably the underlying factors that influence each 

other. 

 

Figure 6 The basic architecture of an RNN in two forms. 

Two forms of an RNN are shown in Figure 6, the left one is in the loop form, and the right one 

is unrolled into a full network. 𝑥A is the input at time step 𝑡. For example, 𝑥A could be a word vector 

corresponding to the 𝑡-th word in the given sentence. 𝑠A  is the hidden state at time step 𝑡 , which 

represents the “Memory” holding by the network so far, not only contains information from the 

previously hidden state, but also all those that preceded 𝑠A~� for as long as memory can persist. 𝑠A  is 

obtained from the previous hidden state 𝑠A~� and the present input 𝑥A. In the mathematical formula,  

 𝑠A = 𝑓(𝑈𝑥A +𝑊𝑠A~�) (19) 

, where 𝑈 and 𝑊 are the matrices of weights, which can be viewed as filters that determine how much 

attention is paid to the present input and the past hidden state, and they	will be updated through 

backpropagation [24] until the error no longer increasing. The weighted summation of the input and 

the past information is then squashed by the function 𝑓(∙), which can be nonlinearity functions such as 

𝑅𝑒𝐿𝑈 or 𝑡𝑎𝑛ℎ, making gradients workable for backpropagation. Usually, we initialize the hidden state 

𝑠A~�of the first unit to all zeroes. 𝑜Ais the output at time step 𝑡. A Softmax function is added on the top 

of the output to produce a probability distribution across all labels. In the formula, 

 𝑜A = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠A) (20) 

and 𝑜A is calculated based on the memory at time step 𝑡. 
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Tradition neural networks uses different parameters without Parameter Sharing scheme at each 

layer. On the contrary, RNN shares the same parameters 𝑈,𝑊, 𝑉 across all time steps, while the only 

change is the input at each time step. With the idea of Parameter Sharing, the total number of parameters 

is significantly reduced, thus alleviating the need for memory and computational power.  

RNN proves to perform well on many tasks in NLP, while various drawbacks existing. Gradient 

Vanishing and Exploding is among the most severe obstacles to improve the performance of RNN [63] 

[64]. RNN explores the connections among the present unit and the units of many time steps before, 

and sometimes it fails since the way of information passing through is by several multiplication with 

the weight matrix. When the data sequence is longer, the gradients during backpropagation are prone 

to be infinitely close to 0 (Gradient Vanishing) or infinitely close to 1 (Gradient Exploding). Gradient 

Exploding can be handled via truncation or some squashing functions on the exploded gradients [65]. 

However, the vanishing gradients are too small for the network to learn.  

3.3.3 Long Short-Term Memory Network 

The RNN-based structure called LSTM was proposed by Hochreiter and Schmidhuber in 1997 as the 

solution to Gradient Vanishing problem [66] and was improved in 2000 by Felix Gers et al. [67]. An 

RNN composed of LSTM units is called an LSTM network, which is initially designed for solving the 

problem of Long-Term Dependency. The overall structure of LSTM is similar to RNN, but the structure 

and connectivity among units is entirely different. A LSTM unit consists of three gates and one cell. 

The cell is similar to the hidden state of RNN, called Memory Cell, which is responsible for 

remembering the information in the past time steps. Three gates, namely, Input Gate, Output Gate, and 

Forget Gate, can be viewed as a neuron of the traditional neural network, for computing an activation 

of a weighted sum. In other words, these gates regulate how much information could pass through the 

current unit. Unambiguously, the forget gate decides what information will be forgotten from the cell 

state. The input gate decides which values from the previous hidden states and new input data should 

be updated. The “𝑡𝑎𝑛ℎ” layer next to the input gate creates a vector of new candidate which will be 

added to the current state, 𝑢A . Then the old cell state 𝑐A~�can be updated into the new cell state 𝑐A with 

the regulation of the input gate and the forget gate. Finally, the output is obtained by the current cell 

state with regulated by the output gate. 

Mathematically, at time step 𝑡, we denote input gate as 𝒊A, forget gate as 𝒇A, output gate as 𝒐A, 

memory cell as 𝒄A , hidden state as 𝒉A, input data as 𝒙A, ⨀ denotes element-wise multiplication. The 
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range of values for these gate variables is limited to [0, 1]. Then the overall transition equations of a 

LSTM network are as follows: 

 𝒊A = 𝝈(𝑾(z)𝒙A + 𝑼(z)𝒉A~� + 𝒃(z)) (21) 

 𝒇A = 𝝈(𝑾(D)𝒙A + 𝑼(D)𝒉A~� + 𝒃(D)) (22) 

 𝒐A = 𝝈(𝑾(©)𝒙A + 𝑼(𝒐)𝒉A~� + 𝒃(©)) (23) 

 𝒖A = 𝝈�𝑾(«)𝒙A + 𝑼(«)𝒉A~� + 𝒃(«)� (24) 

 𝒄A = 𝒊A⨀𝒖A + 𝒇A⨀𝒄A~� (25) 

 𝒉A = 𝒐A⨀tanh	(𝒄A) (26) 

𝑊,𝑈, 𝑎𝑛𝑑	𝑏 are weight matrices and bias vector parameters which are learned during the training 

process, where the superscripts 𝑖, 𝑓, 𝑜, 𝑢 refer to the corresponding types of gates such as input, forget 

output, and the intermediate candidate value.  

3.3.4 Gated Recurrent Unit (GRU) 

The architecture of LSTM network is quite complicated, and the functionality of each gate and the state 

of the internal components does not seem so clear. Some voices questioned there might exists better 

architectures [68]. Gated Recurrent Unit is one of the variants of LSTM network, proposed by Cho et 

al. in 2014 [69]. It makes a slight modification to the standard LSTM, combining the forget and input 

gates into a single update gate. Thus, the cell state and hidden state in LSTM are merged as one. Gated 

Recurrent Unit can be viewed as a simpler version of LSTM network, which has fewer parameters. 

Specifically, GRU only has two types of gates. One is the reset gate (denote as 𝑟), the other is the update 

gate (denote as 𝑧). The reset gate decides the way of combining the input at the current time step with 

the past information, while the update gate regulates how much previous memory needed to be kept. 

The extreme case comes when all reset gates become 1 and all update gates be all 0, which is the same 

as the standard RNN. 

In the following equations, at time step 𝑡, we define 𝑥A as the input, 𝑟A as the reset gate, 𝑧A  as 

the update gate, ℎA as the hidden state. 𝑊 and 𝑏 is the weight matrices and bias vector, which is quite 

similar to LSTM network as we discussed above. 

 𝒓A = 𝜎(𝑾¯𝒙A + 𝑼¯𝒉A~�) (27) 
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 𝒛A = 𝜎(𝑾±𝒙A + 𝑼±𝒉A~�) (28) 

 𝒉²A = 𝑡𝑎𝑛ℎ(𝑾𝒙A + 𝑼(𝒓A ⊙ 𝒉A~�)) (29) 

 𝒉A = (1 − 𝒛A)⊙ 𝒉A~� + 𝒛A ⊙ 𝒉²A (30) 

According to [68], it is hard to say which one is better between GRU and LSTM. Depending 

on specific tasks and datasets, both architectures produce relatively good performance. Besides, 

different hyperparameters seem to be one of the critical factors having influences on the quality of the 

model. GRU is the winner regarding the number of parameters. Thus, it can be generalized easier and 

requires less memory storage. However, LSTM may show somewhat stronger power when the training 

data is sufficiently enough. 

3.3.5 Bidirectional RNN 

All recurrent networks we described are organized in a “casual” structure, meaning that each time step 

𝑡 only captures the information from the past time steps and the current new input. The restriction is 

that the future input information cannot be reached from the current state. In many applications of NLP, 

people hope that the output at every time step 𝑡 is not only determined by the recent past information 

but also determined by the whole input sequence. For example, in the task of speech recognition, 

because of co-articulation, the correct understanding of the present phoneme is based on several nearby 

phonemes. It may even be influenced by words in the future or past since the semantic dependencies 

among nearby words [3]. 

Bidirectional RNN was introduced in 1997 by Schuster and Paliwal to increase the amount of 

the input information available to the network [70]. The high-level structure of bidirectional RNN 

consists of two standard RNNs. One of them moves forward from the beginning of the input sequence 

to the end (positive time direction), the other moves backward through time (negative time direction). 

At time step 𝑡, we denote 𝑥A as the input, ℎA with the forward arrow as the forward hidden state of the 

sub-RNN that moves forward through time, ℎA with the backward arrow as the backward hidden state 

of the sub-RNN. Thus, the information from past and future can be used to compute the output 𝑦A. 

𝑊,𝑉, 𝑎𝑛𝑑	𝑈 are weight matrices, and 𝑐 is the bias. 𝑓(∙) represents one of the nonlinear functions such 

as 𝑡𝑎𝑛ℎ or 𝑅𝑒𝐿𝑈. 



 

  31 

Bidirectional RNN has been applied to many applications such as handwriting recognition [71], 

speech recognition [72], and bioinformatics [73]. It improves the performance significantly compared 

to the standard RNN.  

3.3.6 Other variants of RNN 

There are some other notable variants of recurrent network such as Depth Gated RNNs [74], Grid 

LSTM [75], which seems to perform promising as well. In general, the computation in most RNN-

based models is made up of three parts, respectively, from the input to the hidden state, from the 

previously hidden state to the next hidden state, and from the hidden state to the output. Different weight 

matrices are associated with these transformations, and each of the computation is quite shallow thus it 

can be viewed as just a single layer network. However, Graves et al. claimed that introducing depth in 

each of these operations can benefit a lot in performance [76], which is the basic concept of Deep 

Recurrent Network. Specifically, a standard RNN can go more in-depth with many methods, such as 

using deeper computation in those three computational parts or breaking the hidden states into groups 

in a hierarchical way [77]. 

3.3.7 Recursive Neural Networks 

Recursive Neural Network was proposed by Pollack et al. in 1990 [78], and it has been successfully 

applied in NLP by Socher et al. [79]. Recursive Neural Network can be understood as a generalization 

of RNN with a different structure of the computational graph, which is organized in a deep tree-like 

structure, rather than the chain-like structure. It is a special type of deep neural network, which predicts 

over variable-size input with the same set of weights applied to the input recursively. Recursive Neural 

Network works well on learning sequence and tree structures. Especially, it is good at learning a phrase 

or sentence representation based on word embedding since the representation of a phrase or sentence 

is determined by both the meaning of its words and the rules that combine them, and Recursive Neural 

Network can jointly learn compositional vector representation as well as parse trees. Specifically, the 

input of Recursive Neural Network is two candidate children’s representations. While the output 

consists of two parts, one is the merged representation of two children nodes, and the other is the score 

indicating how likely the new node would be or whether it is a correct merging decision. Children nodes 

are combined into a parent node by a weight matrix which is shared across the whole network, and a 

non-linearity function such as 𝑡𝑎𝑛ℎ is applied to the parent node. Mathematically,  
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 𝑝z,| = tanh	(𝑊µ𝑐z; 𝑐|· + 𝑏) (31) 

 𝑆z,| = 𝑈]𝑝z,|  (32) 

, where the representation 𝑐¹	𝑎𝑛𝑑	𝑐º of children node which has the same dimension as the parent node 

𝑝¹,º. Assume the dimension of the representation vectors is 𝑛, then 𝑊 is the weight matrix with the 

dimension of 𝑛 × 2𝑛 and 𝑏 is the bias. The score is computed based on the parent node and the weight 

matrix 𝑈 with dimension 1 × 𝑛.  

The objective of the learning process is to increase the scores of good segment pairs. During 

each iteration, scores of all pairs of neighboring nodes (say they are all in the set 𝐶) are being computed 

by the same weight matrices, and then the pair with the highest score will be selected to be the new 

node. Then this pair is removed from set 𝐶, as well as pairs contain either one of them. After that, the 

corresponding row and column in the weight matrices that indicate the changes is updated. The process 

will not stop until only one parent node is left in the set 𝐶, which represents the overall meaning of the 

input sequence. Then, the tree can be recovered by unfolding every merged decision down to the 

original segments which are leaf nodes of the tree. Moreover, the final score for prediction is merely 

the summation of all sub-scores of the decisions: 

 𝑠(𝑅𝑁𝑁(𝜃, 𝑥z, 𝑦′)) =? 𝑠»
»∈w(¼J)

 (33) 

where 𝜃 is all the parameters for computing a score 𝑠, 𝑥z is the input sequence, 𝑦J is the prediction, 

𝑁(𝑦J) is the set of non-terminal nodes. 

Compared with the RNN, one distinct advantage of recursive networks is that for the input 

sequence of length 𝑙, the number of nonlinear computing operations can be drastically reduced from 𝑙 

to the 𝑂(𝑙𝑜𝑔	𝑙) due to the tree-like architecture, which relieves the problem of long-term dependency. 
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Chapter 4 
Sentence Embedding Models 

4.1 Overview to Semantic Compositionality 

In Chapter 2, we discussed several word embeddings models, such as count-based co-occurrence 

matrix, prediction-based Word2Vec, and fastText. The feasibility and effectiveness of these methods 

have been confirmed on many downstream tasks. For the word embeddings problem, research focuses 

on the interpretability of the distributed representation of a token or a set of tokens. However, in this 

chapter, the concentration will be shifted to composability. In other words, when multiple individual 

words are grouped in a specific manner, such as words consist of a phrase, phrases consist of a sentence, 

sentences consist of a document, whether the distributed representation of the resulting larger unit is 

still interpretable or not?  

What related tightly to the concept of composability is the concept of compositionality. In 1995, 

Partee et al. [80] claimed the concept of compositionality, the meaning of a whole is a function of the 

meaning of the parts. Concretely, compositionality of language is not only the summation of the 

meanings of constituents but also the ability to combine these constituents [81]. Fodor et al. [81] and 

Holyoak et al. [82] claimed that the meaning of the combination of symbols is not merely the 

concatenation of the meaning of these symbols, while each symbol preserves its identities. Pinker [83] 

described the discrete combinatorial systems and the blending systems of language and argued that the 

blending-based composition would make better generality than specificity. For the former, the 

meanings of some complex structures within the unlimited number of distinct combinations go beyond 

those individual elements. While the latter, the meaning of the composition stands in between of those 

individual elements and some properties are lost in blending.  

Composability indicates the ability of compositionality, which is a crucial factor in measuring 

the quality of the distributed representation model. Representations for word sequences is the focus of 

the study for the semantic composability. Recent studies for creating representations for sentences can 

be divided into the following two categories [12], one is semantic aspect approach, the other is 

representational aspect approach. The semantic aspect approach focuses on how and why symbols are 

composed together and what is the resulting distributional representation for these symbols. The 

representational aspect is biased towards the analysis, decoding, and deconstruction of the overall 

structures of the composed distributional representation. Concretely, the compositional model can be 
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achieved through simple addition operations, complex deep neural network structures, or autoencoders. 

A distributional representation of sentences can be obtained through all these approaches, some are in 

a supervised learning manner, some are in an unsupervised manner. For these methods as mentioned 

earlier, we will conduct detailed analysis and evaluation of some typical models of each category. 

4.2 BOW-based Model 

4.2.1 Paragraph Vector 

There are two different types of Paragraph Vector, one is called Distributed Memory Model of 

Paragraph Vectors (PV-DM), the other is Distributed Bag of Words version of Paragraph Vector (PV-

DBOW). It was proposed by Mikolov et al. in 2014 and inspired by the CBOW model and the Skip-

gram model in Word2Vec [84]. Since these two models for word embeddings can well capture the 

semantic features of each word in the process of achieving the final prediction, the same idea can be 

applied to learning representations for paragraphs. For the PV-DM, each word is mapped to a unique 

word vector, and each paragraph is mapped to a unique paragraph vector. The prediction for the next 

word in the sentence is based on both context word vectors and the paragraph vector, in a manner of 

averaging or concatenating vectors. The paragraph vector plays the role of a memory of the whole 

context that has been considered so far. The same paragraph vector is shared by all context within the 

same paragraph during the learning process, while the paragraph vectors for different paragraphs are 

utterly distinct to each other. For each word vector, it is shared across the whole training dataset, no 

matter from which paragraphs it comes. The learning processing is achieved via stochastic gradient 

descent and backpropagation [24].  The learned representations can be directly used as the features of 

the corresponding paragraph for the downstream tasks. The PV-DBOW model works in a way that only 

slightly different from the PV-DM model, similar to the difference between the Skip-gram model and 

the CBOW model. Instead of relying on the word vectors of the context words, the PV-DBOW model 

only uses the paragraph vector as the input and forces itself to predict words randomly sampled from 

the paragraph, then applies as the classification over them.  

Collecting and labeling data is the most time-consuming and labor-intensive work. One 

remarkable advantage of the Paragraph Vector is the unsupervised learning process. Thus, it works well 

for tasks with large unlabeled data. The Paragraph Vector starts from the BOW model but does not stop 

there. One of the most significant problems of BOW-based models is the insensitivity of the order, 

which fails to preserve so much useful information of the paragraph. The Paragraph Vector indeed 
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considers the order of words in a given context window. Moreover, since the Paragraph Vector is in an 

almost same training rule as Word2Vec, it successfully maintained the persuasive ability of Word2Vec 

to capture semantic information. However, the shortcoming of the Paragraph Vector is at prediction 

time. The paragraph vectors for new paragraphs need to be computed and applied with gradient 

descending, which is not time-saving, although the parameters for the rest of the model is fixed. 

4.2.2 FastSent 

FastSent is a sentence-level log-linear bag-of-words model for semantic distributed representation, 

proposed by Hill et al. in 2016 [85]. It is an unsupervised method, thus only requires massive unlabeled 

dataset for training and predicts next sentences of the given sentence with distributed representations. 

Concretely, for a word 𝑤 in the text, the model learns two types of embeddings, one is source vector 

𝑢o, the other is target vector 𝑣o. The vector representation 𝑠z for sentence 𝑆z can be represented as the 

summation of all source vectors of the words consists of 𝑆z: 

 𝑠z = 	 ? 𝑢o
o∈¾&

 (34) 

Given a sentence tuple (𝑆z~�, 𝑆z, 𝑆z��), the loss function of this tuple is: 

 ? 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠z, 𝑣o)
o∈¿&'(∪¿&)(

 (35) 

They also experimented with a variant model, which is 

 ? 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠z, 𝑣o)
o∈¿&'(∪¿&∪¿&)(

 (36) 

The difference is that words in the target sentence are also considered when predicting the 

sentence embedding of the target sentence. At testing time, the model proceeds the encoding process 

and finally produces the distributional representations for the new sentence 𝑆: 

 𝑠 = 	? 𝑢o
o∈¿

 (37) 

The log-linear models generally have a reliable performance in unsupervised learning tasks. It 

is quite surprising that the role of words order seems unclear after the experiments. Since they found 

that both of the types of models, the models which do not care about the word order (like BOW model) 

and the models which are very sensitive to word orders (like the RNN-based model), have almost the 
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same scores for both supervised and unsupervised evaluation tasks. The authors threw a guess that the 

robust model used for generating distributed representations of sentences can disambiguate most 

sentences in the corpus, even some order-critical sentences can be captured regarding the inner 

conceptual semantics. However, the reason might be the testing data currently used for evaluation does 

not reflect the traits of the word order. This presumable reason also reflects in some of the models, such 

as Siamese Continuous Bag of Words model and Smooth Inverse Frequency model. 

4.2.3 Siamese CBOW 

Inspired by the authors of FastSent, who claimed that the order of words have little effect on the 

performance of the sentence vector representation, Kenter et al. developed the Siamese CBOW model 

in 2016 [86]. Before their work, one of the simplest ways to generate sentence embedding is to compute 

the average word embeddings of all words in the sentence, and this has proven to be a quite robust 

baseline in multiple tasks [87] [88]. The word embeddings being used mostly are the pre-trained word 

embeddings from the Word2Vec or GloVe, which are not explicitly learned for representing sentences 

in such way. Siamese CBOW provides an approach to optimize the word embedding’s objective 

function to obtain sentence embedding with word embeddings being averaged. It proves to be better 

suited for this type of tasks than Word2Vec model does.  

Mathematically, define a probability p(s¹, sº) indicates how likely it is for the given pair of 

sentences (s¹, 𝑠|) to be adjacent to each other in the training corpus. It is computed via a Softmax 

function, where the denominator should iterate through all existing sentences in the corpus theoretically 

and computing the cosine similarity between the two sentences: 

 
pÁ�𝑠z, 𝑠|� =

exp�cos�𝑠zC, 𝑠|C��
∑ exp�cos�𝑠zC, 𝑠�C��¾*∈¿

 
(38) 

, where 𝑠ÃC  denotes the embedding of sentence 𝑠Ã  and 𝜃  represents the parameters of the model. 

However, when the size of the corpus is enormous, it is intractable to compute the part of the 

denominator to get the probability pÁ�𝑠z, 𝑠|�. Thus, the objective function is then modified as: 

 
pÁ�𝑠z, 𝑠|� =

exp�cos�𝑠zC, 𝑠|C��
∑ exp�cos�𝑠zC, 𝑠�C��¾*∈{¿)∪¿'}

 
(39) 

, where 𝑆� represents sentences that located next to the current sentence in the corpus and 𝑆~ represents 

𝑛 sentences that are randomly chosen from those which are not next to the current sentence. Finally, 
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the overall objective of the model is to minimize the negative log function based on the categorical 

Cross-Entropy: 

 minimize	L = 	− ? 𝑝�𝑠z, 𝑠|� × log	(𝑝C(𝑠z, 𝑠|))
¾+∈{¿)∪¿'}

 (40) 

, where 𝑝(𝑠z, 𝑠|) is the ground truth probability defined as: 

 
𝑝�𝑠z, 𝑠|� = Ç

1
|𝑆�|

, if	sº ∈ 𝑆�

0,								if	sº ∈ 𝑆~	
			 

(41) 

Every word in the input sentence and the sampled sentences is mapped to a projection layer 

which selects the corresponding word embeddings in word embeddings matrix 𝑊. These selected word 

embeddings in one sentence are being averaged to obtain a sentence embedding with the same 

dimension as the word embeddings. The cosine layer is used to compute the cosine similarity between 

the input sentence and the other sentences. A Softmax function is added on the top of the cosine layer 

to produce the probability distribution for final prediction. The model is optimized by stochastic 

gradient descent and parameters are updated via backpropagation [24]. 

It can be readily observed that many factors might affect the performance of the model, such 

as the number of iterations, the number of negative examples, and the number of dimensions.  As the 

training time increases, the performance of the model does not change obviously. Two negative 

examples every time seems an excellent choice for stable performance, and the 200 or 300 

dimensionalities of word embeddings are preferred across tasks.  

Siamese CBOW predicts a sentence given its neighboring sentences and generates sentence 

embeddings by averaging the embeddings of its components. However, the most significant difference 

between Siamese CBOW and CBOW is that the former directly compares the distance between two 

sentences vectors while the latter compares partial information of a sentence with a word embedding, 

which is also one of the differences between Siamese CBOW and FastSent [85]. Apart from that, the 

number of parameters of Siamese CBOW is about half of FastSent, and the modification to the original 

Softmax function dramatically helps the model to be much more efficient than FastSent. 

4.2.4 CHARAGRAM 

CHARAGRAM is an approach for learning character-based distributed representations of words or 

word sequences, proposed by Wieting et al. in 2016 [89]. CHARAGRAM model encodes a word or a 



 

  38 

word sequence as a vector containing counts of character n-grams. Then the vector is projected into a 

low-dimensional space via a single nonlinear transformation, which is the resulting representations of 

character n-grams. Finally, the sequence embeddings indicating both word embeddings and sentence 

embeddings can be obtained through a summation operation over all the character n-grams of that 

sequence. 

Concretely, character is the smallest unit of the sequence of texts in CHARAGRAM. Given a 

word sequence, denote it as 𝑥 =< 𝑥�, 𝑥`, … , 𝑥� >, and special characters such as spaces and start-of-

sequence, end-of-sequence are included. Denote the subsequence of characters from position 𝑖  to 

position 𝑗  as 𝑥z
| =< 𝑥z, 𝑥z��, … , 𝑥| > , and 𝑥zz = 𝑥z . To embed a character sequence, the model 

computes the summation of the vectors of all character n-grams of the sequence, then applied an 

elementwise nonlinearity function to the result: 

 
𝑔�Ë=Ì(𝑥) = ℎ(𝒃 + ? ? 𝕀µ𝑥|z ∈ 𝑉·𝑊

Ã+
&

z

|���z~�

���

z��

) 
(42) 

, where ℎ is one type of nonlinear functions, 𝒃 ∈ ℝ» is a bias term, and 𝑘 is the maximum length of 

any character n-gram. 𝕀[𝑝] represents the indicator function, which returns 1 if 𝑝 is true and returns 0 

if 𝑝 is false. 𝑉 represents the vocabulary of character n-grams in the model and 𝑊Ã+
&
 is the vector 

representation for character n-grams 𝑥|z  with the same dimension as the bias term 𝒃.  

Before training, the vocabulary of character n-grams 𝑉 needs to be constructed. The number of 

n-grams and the order of n-grams can affect the performance of the model. It shows that for different 

tasks, the influence of the number of n-grams varies, especially for semantic similarity tasks it is better 

to include more n-grams in the vocabulary. In the experiments of how the length of n-grams influence 

the performance, the authors used all character bigram, trigram, and 4-grams appearing in the training 

corpus at least 𝐶 times, where 𝐶 is a hyperparameter varying in {1,2}. The CHARAGRAM model has 

a significant advantage regarding the number of parameters compared with character-based CNN and 

character-based LSTM model with the same training examples since it has nearly ten times parameters 

fewer than those two models. Besides, it is confirmed again with CHARAGRAM model that the OOV 

problem can be effectively addressed when utilizing the character-level models. Compared with the 

other semantic representation model, PARAGRAM-PHRASE, which is trained with large volumes of 

paraphrase pairs [87], CHARAGRAM outperforms the model, especially with more unknown words. 

Since the character-level model can embed any character sequences, and the behavior is quite robust 
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with different length of sentences. Another superiority of CHARAGRAM is that it considers word 

order while PARAGRAM-PHRASE averages merely the word embeddings in the sequence, and one 

interesting phenomenon is CHARAGRAM can handle the meaning of negation very well. The 

advantages of this feature are highlighted in finding etymological links of words. 

4.2.5 Sent2Vec  

Proposed by Pagliardini et al. in 2017 [90], Sent2Vec is another CBOW-based sentence embedding 

model with as lower model complexity as the averaging word embeddings approach [87]. Sent2Vec 

embeds sentences via learning word vectors, n-gram embeddings of the sentence, and the semantic 

composition of these components. The model can be viewed as an extension from the CBOW model to 

a larger sentence context with a modified unsupervised objective function, which significantly helps 

the model to learn efficiently on the large dataset in an unsupervised manner. 

Same as the CBOW model, for each word 𝑤 in the vocabulary, there is a source embedding 

𝒗o ∈ ℝ{ and a target embedding 𝒖o ∈ ℝ{ to learn, with the particular form for the objective function: 

 min
𝑼,𝑽

?𝑓¿(𝑼𝑽𝓵¿)
¿∈𝒞

 (43) 

, where 𝑼 ∈ ℝ�×{,𝑽 ∈ ℝ{×|𝒱|  are the source and target embedding matrices respectively and 𝒱 

represents the vocabulary. The final learned word embeddings are stored in the columns of 𝑽. 𝓵¿ ∈

ℝ|𝒱|  is the indicator vector that encodes the words occurring in the sentence as a set of bag-of-word 

binary vectors. The input sentence is mapped into a numerical loss via each loss function within one 

window 𝑓¿ ∶ ℝ� → ℝ  and 𝑆  is the context window size that iterates over the training corpus 𝒞 . 

Sent2Vec embeds a sentence 𝑆 by computing the average source word embeddings as well as the n-

grams embeddings appearing in the sentence: 

 𝒗¿ ∶=
1

|𝑅(𝑆)|
? 𝒗o

o∈Ì(¿)

 (44) 

, where 𝑅(𝑆) represents a set of each word and all n-grams appearing in the sentence 𝑆. 

Sent2Vec also uses the speeding up techniques proposed along with the Word2Vec model, 

negative sampling, and subsampling, to improve the training efficiency. The overall objective function 

of Sent2Vec model becomes as: 
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min
𝑼,𝑽

? ? Õ𝑞Ö(𝑤A)ℓ�𝒖o#
] 𝒗(¿\{o#})� + |𝑁o#| ? 𝑞4(𝑤J)ℓ�−𝒖o,

] 𝒗(¿\{o#})�	
o,∈𝒱

Ù
o#∈¿¿∈𝒞

 
(45) 

, where ℓ(𝑥) = log	(1 + 𝑒~Ã) is a binary logistic loss function. Each negative word 𝑤′ are sampled 

from the training corpus (denote all negative samples as 𝑁o#) with the probability 𝑞4(𝑤′) consistent 

with the overall frequency of that word 𝑓oJ: 

 
𝑞4(𝑤′) ∶=

Ú𝑓oJ
∑ Ú𝑓o&o&∈𝒱

 
(46) 

𝑞Ö(𝑤A) is the probability of a word 𝑤A  can be sampled through subsampling process, defined in the 

same way as in the Word2Vec model: 

 
𝑞Ö(𝑤A) ≔ min	{1,�

𝑡
𝑓o#

+
𝑡
𝑓o#
	} 

(47) 

, where 𝑡 is the subsampling hyper-parameter that can be tuned during training process. The learning 

process is done with backpropagation [24], and the parameters get updated via stochastic gradient 

descent with a linearly learning rate decay. Moreover, the authors applied dropout mechanism to the n-

grams set 𝑅(𝑆)	excluding all unigrams 𝑈(𝑆)  of each sentence and L1 regularization to the word 

embeddings to prevent overfitting. Compared with the CBOW model, the vocabulary set of Sent2Vec 

is considerably enlarged by these n-grams of sentences, while the computational complexity keeps the 

same. 

4.3 Deep structure-based Model 

4.3.1 Skip-Thought Vectors  

Proposed by Kiros et al. [91] in 2015, Skip-Thought vector is an unsupervised approach for learning a 

generic and distributed representation of sentences. Inspired by the idea of the Skip-gram model, this 

method modifies the objective function to generalize to the sentence level. Instead of using a word to 

predict the other words within a fixed-length context window, Skip-Thought vector predicts the two 

sentences surrounding the central sentence. The model is a style of sequence-to-sequence manner with 

a structure of encoder-decoder, which is very similar to the RNN Encoder-Decoder structure in neural 

machine translation task [92]. The encoder of Skip-Thought vector is an RNN network with GRU cells, 

while the decoder is also an RNN network with a condition on the output of the encoder. Thus, both 
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encoder and decoder are sensitive to the order of the word in the sentences. The authors described that 

there is a unidirectional or bidirectional RNN for the encoder, while the decoder uses two single layers 

RNN to predict the previous and the next sentence in the document. The learning process are done via 

backpropagation [24] and Adam optimization. As a result, the model would produce the word 

embeddings for all words existing in the vocabulary as a side product. Thus, it is also feasible to use 

the pre-trained word vectors such as Word2Vec for the training. Sentence embeddings are generated at 

the intermediate stage between the encoder and the decoder. 

 

Figure 7 The RNN encoder-decoder architecture for neural machine translation [69].  

Concretely, for a given sentence tuple (𝑠z~�, 𝑠z, 𝑠z��), denote the 𝑡-th word for sentence 𝑠z as 

𝑤zA , denote the word embeddings of this word as 𝑥zA . For the sentence 𝑠z, assume the length is N, and it 

consists of a sequence of words 

𝑤z�, 𝑤z`, … ,𝑤zw~�, 𝑤zw  

The GRU-like encoder produces a hidden state 𝒉zA at every time step 𝑡 which represents the 

overall meaning of the sequence in the past, 𝑤z�, 𝑤z`, … ,𝑤zA~�. Thus 𝒉zw represents the information of 

the full sentence 𝑠z. The encoding process follows in this way: 

 𝒓A = 𝜎(𝑾¯𝒙A + 𝑼¯𝒉A~�) (48) 

 𝒛A = 𝜎(𝑾±𝒙A + 𝑼±𝒉A~�) (49) 

 𝒉²A = 𝑡𝑎𝑛ℎ(𝑾𝒙A + 𝑼(𝒓A ⊙ 𝒉A~�)) (50) 
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 𝒉A = (1 − 𝒛A)⊙ 𝒉A~� + 𝒛A ⊙ 𝒉²A (51) 

, where 𝒉²A	is the candidate hidden state at time 𝑡, 𝒓A  is the reset gate, and 𝒛A  is the update gate, ⊙ 

denotes an element-wise product. The decoder of Skip-Thought vector works similarly except for one 

extra condition to the GRU, which comes from the encoder of the corresponding sentence 𝑠z . 

Specifically, the decoder follows a GRU network as: 

 𝒓A = 𝜎�𝑾¯
»𝒙A~� + 𝑼¯»𝒉A~� + 𝑪¯𝒉z� (52) 

 𝒛A = 𝜎�𝑾±
»𝒙A~� + 𝑼±»𝒉A~� + 𝑪±𝒉z� (53) 

 𝒉²A = 𝑡𝑎𝑛ℎ�𝑾»𝒙A~� + 𝑼»(𝒓A ⊙ 𝒉A~�) + 𝑪𝒉z� (54) 

 𝒉z��A = (1 − 𝒛A)⊙ 𝒉A~� + 𝒛A ⊙ 𝒉²A (55) 

, where 𝑪¯, 𝑪±, and 𝑪 are the bias matrices introduced to the reset gate, update gate and the hidden 

state, respectively. For two decoders, the bias matrices are not shared between them. As we can see 

from the equations above, at time step 𝑡, we can calculate the hidden state of the sentence 𝑠z�� given 

the hidden state of the sentence 𝑠z. We can also obtain the hidden state of the sentence 𝑠z~� in the same 

way. The objective function of the given tuple (𝑠z~�, 𝑠z, 𝑠z��) is the sum of the log-probabilities for the 

next sentence and the previous sentence given the encoder of the current sentence and the total objective 

function over the whole dataset is the summation of all these tuples: 

 ?𝑙𝑜𝑔𝑃�𝑤z��A �𝑤z��
ÞA , 𝒉z)

A

+	?𝑙𝑜𝑔𝑃�𝑤z~�A �𝑤z~�
ÞA , 𝒉z)

A

 (56) 

, where the probability of a word 𝑤z��A  given the previous 𝑡 − 1 words and the encoding result 𝒉z is 

proportional to the cosine similarity of the word vector of 𝑤z��A  and the hidden state representation of 

the sentence 𝑠z~�: 

 𝑃�𝑤z��A �𝑤z��
ÞA , 𝒉z) ∝ exp	(𝒗o&)(# 𝒉z��A ) (57) 

4.3.2 Tree-LSTM 

LSTM network [66] [67] has been proven to be useful to keep the valuable information of the long 

sequential context, and many novel approaches inspired by LSTM network have been proposed in the 

past few years for language modeling and semantic composition [93] [94]. Although the standard 

LSTM network can capture the Long-Term Dependencies and representational power, it still neglects 
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some crucial features and information carried by the language itself, such as the syntactic interpretations 

of sentence structure. Tree-LSTM structure is one of the various types of LSTM-based sequential 

models, which generalizes from the standard LSTM architecture and introduces tree-structured network 

topologies, proposed by Tai et al. in 2015 [95]. Recall that in the standard LSTM, the hidden state of 

the current time step is determined by the hidden state of the previous time step and the current input. 

Tree-LSTM treats the gating vectors and the memory cell of one-time step dependently with the current 

input word embeddings and the states of arbitrarily many child units based on the s of dependency 

parsing. This main discrepancy between the standard LSTM and Tree-LSTM makes it possible for 

Tree-LSTM to capture relatively important information regarding the syntactic structure of sentences.  

Concretely, given a dependency parsing tree, let 𝐶(𝑗) denotes the set of children of node 𝑗. For 

a word 𝑤|  in a sentence, denote the word embeddings with dimension ℎ of that word as 𝑥| ∈ ℝ{ and 

denote the input gate, the output gate, the memory cell, the hidden state corresponding to the word 𝑤|  

as 𝑖|, 𝑜|, 𝑐|  and ℎ|, respectively. As for the forget gate, every unit 𝑗 in Tree-LSTM architecture can have 

𝑘  forget gates as many as the number of children belongs to the unit 𝑗 , each forgets gate can be 

represented as 𝑓|� . The equations illustrating Tree-LSTM network are the following: 

 ℎà² = ? ℎ�
�∈�(|)

 (58) 

 𝑖| = 𝜎�𝑊(z)𝑥| + 𝑈(z)ℎà² + 𝑏(z)� (59) 

 𝑓|� = 𝜎�𝑊(D)𝑥| + 𝑈(D)ℎ� + 𝑏(D)�, 𝑘 ∈ 𝐶(𝑗) (60) 

 𝑜| = 𝜎(𝑊(©)𝑥| + 𝑈(©)ℎà² + 𝑏(©)) (61) 

 𝑢| = tanh	(𝑊(«)𝑥| + 𝑈(«)ℎà² + 𝑏(«)) (62) 

 𝑐| = 𝑖|⨀𝑢| + ? 𝑓|� ⊙ 𝑐�
�∈�(|)

 (63) 

 ℎ| = 𝑜| ⊙ tanh	(𝑐|) (64) 

, where 𝑊,𝑈, 𝑏 are the weight matrices and bias vectors of each type of gates that can be learned 

through the learning process. As we can observe from these equations, each child of unit 𝑗 has its own 

forget gate, and the memory cell 𝑐|  is related to every child unit, which forms the tree-structured 

topology. In their experiments, the model uses pre-trained word embeddings from GloVe vectors [96], 
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uses AdaGrad [97] for the learning process, and applies L2 regularization to prevent overfitting. In the 

tasks of semantic relatedness analysis and sentiment classification, Tree-LSTM architecture shows its 

effectiveness when the length of sentences varies a lot compared with the standard LSTM and 

Bidirectional LSTM. It is probably because of the impact of the syntactic information. However, 

compared with those unsupervised models, the much more promising results of Tree-LSTM model are 

based on the high-quality labeled dataset, which can be obtained costly and cumbersomely. Besides, 

the other limitation of Tree-LSTM is that the tree-structured topology is derived from dependency 

parsing of sentences. Therefore, this model is only applicable to languages that can perform dependency 

parsing. 

4.3.3 DCNN 

Dynamic CNN (DCNN) is a CNN-based sentence modeling approach developed by Kalchbrenner et 

al. in 2014 [97]. From a high-level view, DCNN consists of several consecutive layers of a 

convolutional layer followed by a max pooling layer, which is quite similar to the classical Time-Delay 

Neural Network (TDNN) [98] [99] and the sentence model proposed by Collobert et al. [100]. The 

convolutional layer applies the operation named One-Dimensional Convolution to the input sentences 

𝒔 ∈ ℝ¾ with a vector (filter of the convolution) 𝒎 ∈ ℝ�. The idea is mainly operating the dot product 

of the vector 𝒎 with each m-gram of the sentence 𝒔 to yield a vector 𝒄, where 

 𝒄| = 𝒎]𝒔|~���:| (65) 

There are usually two types of convolution operation, Narrow Convolution and Wide 

Convolution, which determines different ranges of the index 𝑗. As the name shows, Wide Convolution 

takes the words at the margins of the sentence into account when operating the convolution. In the other 

word, Wide Convolution uses all weights in the filter vector to convolve with every part of the sentence, 

thus resulting in the broader dimension of 𝒄, while Narrow Convolution produces a resulting sequence 

𝒄 with narrow dimension.  

Before diving into DCNN, we firstly discuss the other model called Max-TDNN proposed by 

Collobert et al. [100] briefly. The Max-TDNN is developed upon the classical TDNN architecture, 

where a sequence of inputs 𝒔 ∈ ℝ»×¾  and a weight matrix 𝒎 ∈ ℝ»×�  were convolved in the 

convolutional layer, and multiple such convolutional layers were stacked by taking the resulting matrix 

𝒄 as the input to the next layer. Each column (denoted as 𝒘z ∈ ℝ») in 𝒔 represents the 𝑑-dimensional 

word vector of the word at the position 𝑖 of the sentence. To make the model adapted to variable-length 
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input sentences, a Max Pooling operation was introduced after the convolutional layer, where only the 

maximum of each row in matrix 𝒄 is preserved and thus yielding a fixed-size vector 𝒄�åÃ ∈ ℝ» : 

 
𝒄�åÃ = æ

max	(𝒄�, : )
⋮

max	(𝒄», : )
è 

(66) 

Then the vector 𝒄�åÃ  is used as the input to the fully connected layer for classification. 

DCNN improves the Max Pooling layer in Max-TDNN model to the so-called Dynamic 𝑘-Max 

Pooling operation, where  𝑘 is a function of the length of the sentence and the depth of the whole 

network: 

 
𝑘é = max	(𝑘A©Ö, ê

𝐿 − 𝑙
𝐿

𝑠ë) 
(67) 

, where 𝑙 is the number of the current convolutional layer to which the pooling is applied, and 𝐿 is the 

total number of convolutional layers in the network; 𝑘A©Ö is the fixed pooling parameter for the topmost 

convolutional layer. The intuition behind this modification is that adjusting the number of features that 

being extracted by each layer according to the overall process over the input sentence. The overall 

architecture of DCNN is alternating the wide convolutional layer with the Dynamic 𝑘-Max Pooling 

Layer, except that after the topmost convolutional layer applied with the original max pooling layer to 

ensure the input to the fully connected layer become independent of the length of the input sentence. 

The intuition behind the CNN-based sentence modeling approach is quite straightforward. The 

convolutional layers apply one-dimensional filters (with size 𝑚) across each sentence in the input 

sentences matrix, and the features of every 𝑚-gram of the sentence can be extracted independently of 

their position. The max pooling layer in the traditional CNN for object recognition [45] is a type of 

non-linear subsampling function returning the maximum of the set of given values, which makes the 

output to be invariant to some little changes of input. Dynamic 𝑘-Max Pooling not only extracts 𝑘 most 

active features of the input sequence but also preserves the order and relative positions of the features 

that have been occurred in the layer before.  

Compared with some other structures such as RNN-based or BOW-based models, CNN-based 

models have some promising advantages over them. Concretely, since CNN is a position-sensitive 

architecture, DCNN is good at capturing the order of the words and the relative position of the most 

relevant 𝑛-grams in the input sentence, at the same time, preserving the invariance to the absolute 
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positions due to the Dynamic 𝑘-Max Pooling scheme. However, the most obvious shortcoming of the 

BOW-based models is order-insensitivity. Although RNN can remember the order of the word 

sequence, it was found that a strong bias can be introduced by the latest words in the input [101] and 

the same issue appears in the Recursive Neural Network [102].  

On the other side, the particular property of CNN helps the model build up an internal feature 

graph over the input. In DCNN, nodes in the lower layer are connected with nodes in the higher layer 

via a convolution operation, and nodes without being selected by the pooling layer are thrown out of 

the graph, which results in a tree-structured topology after the final pooling layer. This characteristic is 

coincidentally the same as CNN for object recognition, where a weighted, connected and directed 

acyclic graph is also induced over the input image. BOW-based models are too shallow to form such 

kind of graph. Traditional RNN-based models result in linear-chain architecture. Recursive Neural 

Network-based models have to rely on an external parsing tree. DCNN forms a hierarchical architecture 

making features ordered. This resulting tree is similar to a parser tree derived from the dependency 

parser but is more than that, the resulting graph also includes information, indicating the short or long-

range semantic relations between words which might or might not have relations according to syntax, 

captured by DCNN. Thus, DCNN can be applied with context or some languages which are not able to 

be parsed. 

4.3.4 Character-Aware 

Character-Aware is a sentence modeling approach based on a mixed structure of a Character-level CNN 

(CharCNN), a Highway Network [103] and a Multi-layer LSTM network. At time step 𝑡, the input of 

the model is a word represented in character-level embeddings instead of word embeddings as in many 

other language models, while the output of the model is still at word-level. The character embeddings 

of the word are concatenated as a matrix then convolved with multiple filters of different widths. The 

resulting matrix produced by the convolutional layer is then applied to a Max-Over-Time Pooling 

operation, which can make the dimension of the embedding of that word become fixed. After that, this 

fixed-size representation vector becomes the input of the Highway Network. The next component of 

the model is the Multi-layer LSTM network, which takes the output of the Highway Network as its 

input, as well as the hidden state from the previous time step. Finally, the Softmax function is added on 

the top of each hidden state of the LSTM network to obtain the probability distribution to predict the 

next word. 
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Concretely, in the part of CharCNN, given a word 𝑘  consists of a sequence of characters 

[𝑐�, 𝑐`, … , 𝑐é], the character-level representational matrix	of the word 𝑘 is denoted as 𝑪� ∈ ℝ»×é, where 

𝑑 is the dimensionality of the character embeddings and 𝑙 is the length of the word 𝑘. There is a narrow 

convolution between 𝑪�  and the filter 𝑯 ∈ ℝ»×o  of width 𝑤  followed by a nonlinearity function 

yielding a feature map 𝒇� ∈ ℝé~o��. Different width of the filters corresponds to the features to be 

extracted from the same size of character n-grams. The 𝑖-th element of 𝒇� computed as follows: 

 𝒇�[𝑖] = tanh	(〈𝑪�[∗, 𝑖: 𝑖 + 𝑤 − 1],𝑯〉 + 𝑏) (68) 

, where 〈𝑴,𝑵〉 = 𝑇𝑟(𝑴𝑵]) is the component-wise inner product of two matrices and 𝑏 is a bias. The 

Max-Over-Time operation produces the feature 𝑦� of word 𝑘 representing the most relevant feature for 

the given filter, and the dimension of the feature vector 𝒚� is consistent with the number of filters with 

different width: 

 𝑦� = max
z
𝒇�[𝑖] (69) 

After CharCNN, the Highway Network takes the feature vector 𝒚� as the input and outputs the 

vector 𝒛 with the same dimension as the 𝒚�: 

 𝒛 = 𝒕⊙ 𝑔(𝑾Ë𝒚 + 𝒃Ë) + (1 − 𝒕)⊙ 𝒚 (70) 

 𝒕 = 𝜎(𝑾]𝒚 + 𝒃]) (71) 

, where 𝑔 is a nonlinear transformation, 𝑾Ë,𝑾] are the square weight matrices, 𝒃Ë,𝒃]  are the bias 

vectors, and 𝒕 is the transform gate while (1 − 𝒕) is the Carry Gate [103]. 

The last component of the model is the Multi-layer LSTM, where it takes the output of the 

Highway Network as its input, performs several steps which are the same as the standard LSTM as we 

have introduced before and outputs the hidden states to a Softmax function, which generates: 

 
Pr(𝑤A�� = 𝑗|𝑤�:A) =

exp	(𝒉A ⋅ 𝒑| + 𝑞|)
∑ exp	(𝒉A ⋅ 𝒑|J + 𝑞|J)|,∈𝒱

 
(72) 

, where 𝒑|  is the output embedding and 𝑞|  is a bias. The objective of the model is to minimize a 

negative log-likelihood of the training sequence, and the model is trained by truncated backpropagation 

through time [104] [105]: 
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𝐽 = −?log Pr	(𝑤A|𝑤�:A~�)

]

A��

 
(73) 

, where 𝑇 is the length of word sequence in the training corpus. 

Unlike the models which are merely built on a single type of deep neural networks, the 

Character-Aware model is built on the combination of three types of neural work. CharCNN produces 

the encodings of words in a simple level, focusing on the morphological similarities. The Highway 

Network further improves the encoding in semantic level. CharCNN seems to be well-suited to work 

with the Highway Network since the most active features extracted by each filter can be better 

combined with the Highway Network. The Character-Aware maintains the most distinct advantages of 

the character-level representation models, capturing the morphological information of words and 

dealing with the OOV issue. Moreover, Character-Aware effectively controls the number of parameters 

in the model since it does not require the word embeddings as inputs.  

4.4 Auto-Encoder 

4.4.1 Recursive Autoencoder 

As we have already introduced in Chapter 3, the tradition Semi-Supervised, Recursive Autoencoder 

(RAE) learns vector representations for the input phrases or sentences given the prior knowledge of 

sentences such as a parse tree. In the paper published by Socher et al. in 2011, they described Greedy 

Unsupervised Recursive Autoencoder with no requirement on the prior tree of the sentence, but instead, 

building a tree by a greedy approximation [106]. The idea is to calculate the reconstruction error of all 

possible trees of the given sentence and choose the one with the minimal error as the desired tree 

structure: 

 𝑅𝐴𝐸C(𝑥) = arg	min
¼∈=(Ã)

? 𝐸¯ùp([𝑐�; 𝑐`]¾)
¾∈](¼)

 (74) 

, where 𝐴(𝑥) is the set of all possible trees and 𝑇(𝑦) represents all triplets for one tree. Given an input 

sentence consists of 𝑚 words, the autoencoder firstly takes the first pair of adjacent nodes (𝑥�; 𝑥`) as 

the candidate child nodes, thus (𝑐�; 𝑐`) = (𝑥�; 𝑥`) and produces the embedding of the parent node 

𝑝(�,`). Assume that the model starts from the very left side of the sentence, then the model moves one 

position to the right, takes (𝑐�; 𝑐`) = (𝑥`; 𝑥ú) as the current input and again produce parent embedding 

𝑝(`,ú). This process will be repeated until the full sentence is covered. Then the pair with the minimal 
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reconstruction error will be selected, and the corresponding parent node will replace its children in the 

further process. There is a difference when computing the reconstruction error from the traditional 

Recursive Autoencoder, where they take a weighted summation scheme due to different length the of 

the child nodes may have different degrees of influence to the parent node representation: 

 𝐸¯ùp([𝑐�; 𝑐`]; 𝜃) =
𝑛�

𝑛� + 𝑛`
�|𝑐� − 𝑐�J |�

`
+

𝑛`
𝑛� + 𝑛`

�|𝑐` − 𝑐`J |�
`
 (75) 

, where 𝑛�, 𝑛` are the number of words of the current candidate child nodes. To avoid the situation that 

the magnitude of the hidden layer becomes very small (since the model always attempts to make the 

reconstruction error lower), the parent node is obtained after normalization: 

 
𝑝 =

𝑓�𝑊(�)[𝑐�; 𝑐`] + 𝑏(�)�

û�𝑓(𝑊(�)[𝑐�; 𝑐`] + 𝑏(�))�û
 

(76) 

, where 𝑊(�) ∈ ℝ4×`4 is the weight matrix,  𝑏(�) is a bias vector, [𝑐�; 𝑐`] is the concatenation of the 

embeddings of two children, and 𝑓(⋅) is the nonlinearity function such as 𝑡𝑎𝑛ℎ. The reconstructed 

representations of the original inputs are the same as traditional Recursive Autoencoder: 

 [𝑐�J ; 𝑐`J ] = 𝑊(`)𝑝 + 𝑏(`) (77) 

, where 𝑊(`) is the weight matrix and 𝑏(`)	is a bias vector. Thus, the proposed Recursive Autoencoder 

can build a tree of the given sentence, and each node of the tree has a vector, as a vector, which can be 

viewed as the distributed representation of the corresponding phrase. 

Furthermore, a Semi-Supervised Recursive Autoencoder is developed on this completely 

unsupervised model, with a simple Softmax function added on the top of each parent node to do a 

classification task: 

 𝑑(𝑝; 𝜃) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(𝑊éåüùé𝑝) (78) 

So, the loss function is based on Cross-Entropy error: 

 
𝐸p>(𝑝, 𝑡; 𝜃) = −? 𝑡� log 𝑑�(𝑝; 𝜃)

ý

���

 
(79) 

, where 𝑡� is the 𝑘-th element of the multinomial target label distribution 𝑡 and 𝑑� is the outputs of the 

Softmax function. The error of each node can be represented as the weighted sum of reconstruction 

error and Cross-Entropy error: 



 

  50 

 𝐸([𝑐�; 𝑐`]¾, 𝑝¾, 𝑡, 𝜃) = 𝛼𝐸¯ùp([𝑐�; 𝑐`]¾; 𝜃) + (1 − 𝛼)𝐸p>(𝑝¿, 𝑡; 𝜃) (80) 

, where 𝛼 is a hyperparameter controls the weight applied to these two parts. Moreover, for each 

possible tree, the error is to sum over the error of every node of the tree constructed by the greedy 

scheme: 

 𝐸(𝑥, 𝑡; 𝜃) = ? 𝐸([𝑐�; 𝑐`]¾, 𝑝¾, 𝑡, 𝜃)
¾∈](Ì=>-(Ã))

 (81) 

The overall loss function of this semi-supervised model is: 

 𝐽 =
1
𝑁
? 𝐸(𝑥, 𝑡; 𝜃) +

𝜆
2
�|𝜃|�

`

(Ã,A)

 (82) 

, where (𝑥, 𝑡) is the pair of sentence and label in the given corpus. Finally, the Recursive Autoencoder 

ends up producing a hierarchical structure of the input sentence, and learning distributed representations 

of words, phrases and the full sentence from the tree. Even though the resulting structures are not very 

interpretable according to syntax, the model manages to capture as many useful features from semantic 

aspect as possible. 

4.4.2 SDAEs  

Sequential Denoising Autoencoders (SDAEs) is proposed by Hill et al. in 2016 [85]. SDAEs was 

developed with the goal of making use of plenty of data that are not in the strict order or artificial 

language generated from symbolic knowledge. Denoising Autoencoders (DAEs) take high-dimensional 

data as inputs, adding some noises to the input data and learning parameters of encoder and decoder 

via the objective of recovering the original data from the corrupted data.  Finally, the encoder of DAEs 

captures the useful features describing the input data and represents the given data as a fixed-size vector. 

Concretely, to corrupt the input data, the authors applied a well-designed noise function to the 

sentence 𝑆, which can be seen as  𝑁(𝑆|𝑝©, 𝑝Ã), 𝑝© is the probability of each word 𝑤 in sentence 𝑆 to be 

dropped off, and 𝑝Ã represents the probability of each non-overlapping bi-gram 𝑤z𝑤z�� in sentence 𝑆 

to be swapped. Then the corrupted input data is fed into the model, which is an LSTM-based encoder-

decoder architecture. The objective of the model is to reconstruct the original input 𝑆 from the corrupted 

input 𝑁(𝑆|𝑝©, 𝑝Ã) and minimize the reconstruction error. Finally, word sequences with an arbitrary 

order in the training corpus can be encoded in the style of distributed representations. 
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4.5 Weighted Averaging Model 

4.5.1 SIF-Model 

As we have observed so far, the distributed representation of sentences can be derived from different 

types of architectures of the models. Some approaches are based on high-capacity deep neural networks, 

such as RNN and CNN [91] [94] [95] [97]. Some rely on shallow neural network and the idea of bag-

of-words [84] [85] [86] [89] [90], and others take advantage of autoencoder to achieve an unsupervised 

Representation Learning [85] [106]. Depending on specific tasks and domains, good performance can 

be achieved through these models with some pre-processing, post-processing techniques, and fine-

tuning of the hyperparameters. In 2016, Wieting et al. proposed a sentence embedding model trained 

on paraphrastic pairs and showed that the best sentence embeddings is obtained by merely averaging 

word embeddings of each word in the sentence [87].  

Inspired by their results, in 2017, Arora et al. [2] claimed an improved sentence embedding 

method based on the weighted averaging summation of word embeddings in the given sentence, 

followed by a post-processing technique of subtracting the first principal component of the given set of 

sentences. The proposed weighting scheme is called Smooth Inverse Frequency (SIF), saying that the 

weight of each word is associated with the frequency of that word in the entire corpus. The theoretical 

justification of this reweighting scheme is based on the generative model for sentences proposed by 

Arora et al. [107] in 2016. The generative model is used to generate the next word in a sentence with 

the restrictions bounded by the discourse vector 𝒄¾ of the current sentence, where the discourse vector 

represents things are being talked about: 

 
Pr{𝑤	emitted	in	sentence	𝑠|𝒄¾} = 𝛼𝑝(𝑤) + (1 − 𝛼)

exp�𝒄¾"
]𝒗o�

𝑍𝒄.#
, 

(83) 

where 𝑍𝒄.# ≔ ∑ exp(𝒄¾"
]𝒗o)o∈𝒱  is the normalizing constant, and 𝒄¾" ≔ 𝛽𝒄� + (1 − 𝛽)𝒄¾ , 𝛼,𝛽  are 

scalars hyperparameters and 𝒄� ⊥ 𝒄¾ . 𝒄�  is the common discourse vector, which represents as a 

correction term for the most frequent discourse often related to syntax. From the above equation, we 

observe that the probability of one word is generated in the sentence can be boosted as long as one of 

the following factors is satisfied: when the word has a high frequency, which is associated with 𝑝(𝑤); 

when the word is correlated with the context that the sentence is talking about, represented by 𝒄¾; when 

the word matches the common discourse vector 𝒄� according to syntax. 
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The probability of the sentence is generated under the discourse vector can be computed as the 

product of the probability of each word that generated by the discourse vector 𝒄¾. With the assumption 

that all words are roughly uniformly distributed, they treat 𝑍𝒄.# for different 𝒄¾"  as the same one as 𝑍. 

Thus, the probability of generating the sentence 𝑠 for the given discourse vector 𝒄¾ is: 

 
𝑃𝑟[𝑠|𝒄¾] =�𝑃𝑟(𝑤|𝒄¾)

o∈¾

=� &𝛼𝑝(𝑤) + (1 − 𝛼)
exp�𝒄¾"

]𝒗o�
𝑍

' .
o∈¾

 
(84) 

So, they further applied a log likelihood to each term as: 

 
𝑓o(𝒄¾" ) = log	[𝛼𝑝(𝑤) + (1 − 𝛼)

exp�𝒄¾"
]𝒗o�
𝑍

] 
(85) 

After taking Taylor expansion, which approximates the term as: 

 
𝑓o(𝒄¾" ) ≈ 𝑓o(0) + ∇𝑓o(0)]𝒄¾" = constant +

1 − 𝛼
𝛼𝑍

𝑝(𝑤) + 1 − 𝛼𝛼𝑍
�𝒄¾"

]𝒗o� 
(86) 

Thus, the Maximum Likelihood Estimator of 𝒄¾"  can be approximated as: 

 argmax?𝑓o(𝒄¾" )
o∈¾

∝ ?
𝑎

𝑝(𝑤) + 𝑎
o∈¾

𝒗o (87) 

, where 𝑎 = �~)
)*

. Thus, the Maximum Likelihood Estimation is approximately the weighted summation 

of the embeddings of all words in the sentence, where the weight of each word is represented as å
Ö(o)�å

. 

The weight of the word would be smaller if the frequency of that word is higher, and vice versa, where 

the influences of some frequent words are weighted down. The final sentence embeddings can be 

produced via subtracting 𝒄� which is estimated by the first principal component of 𝒄¾"  given a set of 

sentences, where observed that 𝒄� is roughly corresponding to the syntactic information or the common 

words, such as “just”, “but”, “there”, so on and so forth. 

With this reweighting scheme and the post-processing step of subtracting the first principal 

component of the given sentences, each sentence can be represented as a fixed-size vector with the 

same dimension as the word embeddings being used. The word embeddings can be derived from the 

pre-trained word embeddings such as GloVe [96], Word2Vec [22] [23].  
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Generally, the SIF-method does not rely on deep neural structures or some other kinds of the 

neural network, while only requires the pre-trained word embeddings. It is considerably straightforward 

to apply to various domains with the corresponding word embeddings library. Hence, the speed of this 

model is also fast. Same as most of the BOW-based models, the most noticeable drawback of this 

method is the ignorance of the words order. Thus, for some sentences whose semantic meaning is 

heavily dependent on the words order, this model fails to work properly. 
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Chapter 5 
Main Works 

5.1 Sentence Similarity Measurement: Word2Sent 

In this chapter, we described our proposed model, Word2Sent-V1. The model is designed to measure 

the degree of relatedness of two sentences, which takes two sentences with arbitrary length as input and 

outputs a sentence similarity score. The sentence similarity score is a numerical value ranging from −1 

to 1 indicating the degree of similarity between the sentences. Specifically, if the two sentences have a 

relatively high degree of semantic similarity, then the sentence similarity score would be closer to 1; 

otherwise, the score would be closer to −1. To represent each word of the input sentences, the model 

uses pre-trained word embeddings generated by different approaches (i.e., Word2Vec, GloVe, or 

fastText) trained on distinct unlabeled dataset. Particularly, all words are in the form of 300-dimension 

word vectors from one specific word embeddings library.  

Given two sentences with the length of 𝑚 and 𝑛, respectively. After mapping words into the 

corresponding word vectors, the input becomes two sequences of word vectors with the length of 𝑚 

and 𝑛. We then bundle every word of the first sentence with every word of the second sentence as a 

pair, so, there are (𝑚 × 𝑛) pairs in total. The word similarity score for the two words in every pair can 

be computed by the Cosine Distance between two corresponding word vectors, which ranges from −1 

to 1. A higher word similarity score indicates the degree of similarity between two words is also higher, 

and vice versa. After computing the word similarity scores for all pairs, we sort all pairs according to 

their word similarity scores in descending order. For example, if a pair contains two same words, 

meaning the word similarity score of this pair would be 1, then this pair would be the first among all 

other pairs after sorting. Now the pair with the highest word similarity score is selected as the first 

candidate pair, and other pairs which contains either one of the words in this selected pair would be 

removed from the rest of the sorted list. This step finds merely the most similar words regarding 

semantics in two sentences. The selected word pair would be kept as one of the candidate pairs for 

computing the sentences similarity score and would not be considered in the further selection. Next, 

we repeat the previous steps: Select the pair with the highest word similarity score from all remaining 

pairs and remove it, then remove all other pairs containing either one of the words of the selected pair. 

Until there is no left pair in the original sorted pairs list, which indicates that we have selected 

min	(𝑚, 𝑛) pairs as the candidate pairs for computing the final sentence similarity score. Finally, we 
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directly compute the average of the word similarity scores of those candidate pairs as the sentence 

similarity score.  

Algorithm 1: Word2Sent-V1, sentence similarity measurement without weighting scheme 
INPUT: Word embeddings {𝑣1:𝑤 ∈ 𝒱}, two sentences 𝑠8(with length 𝑚) and 𝑠: (with length 𝑛), an empty set 𝒫, and an 
empty set 𝒞. 
OUTPUT: A sentence similarity score 𝑠𝑖𝑚_𝑢𝑛𝑤𝑡 for the input two sentences. 
1. Bundle every word of 𝑠8with every word of 𝑠: as a pair and put all pairs {B𝑤8C,𝑤:DE: 𝑖 = 0,1,… ,𝑚 − 1, 𝑗 =

0,1,… , 𝑛 − 1} into 𝒫. 
2. for each pair 𝑝M in 𝒫 do:  

Unweighted word similarity score: 𝑊OP_QR ← 𝑐𝑜𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣1(& , 𝑣1Z+) 
end for 

3. while 𝒫 is not empty do: 
Move the pair 𝑝\: (𝑤8],𝑤:P) into set 𝒞, where 𝑊OP_Q^  is the maximal among all other pairs in 𝒫; Delete pairs 
containing either 𝑤8] or 𝑤:P from 𝒫. 

end while 
4. Compute the average 𝑊OP__`a	of all pairs in set 𝒞, and output 𝑠𝑖𝑚_𝑢𝑛𝑤𝑡 ← 𝑊OP1b__`a. 

Example 1: 

Sentence 1: “Children in red shirts are playing with leaves.” 

Sentence 2: “Three kids are sitting in the leaves.” 

The length of the first sentence is 8, while the second is 7. Thus, the number of pairs of the 

whole set is 8× 7 = 56. After sorting these 56 pairs by their word similarity scores, 3 pairs, (leaves, 

leaves), (are, are), (in, in), would have the word similarity score as 1 since the word vectors within 

those pairs are exactly the same. 

After picking the first most similar word pair (leaves, leaves) as the candidate pair, all other 

pairs containing the word “leaves” would be removed from the sorted list. The same rules would be 

applied to the next several steps. Finally, we would obtain the following candidate pairs for computing 

the final sentence similarity score between the input sentences: 

(leaves, leaves), (are, are), (in, in), (children, kids), (with, three), (playing, sitting), (red, the). 

The word similarity scores for these pairs are: 

[1.0, 1.0, 1.0, 0.814095, 0.545506, 0.463181, 0.352678] 

The sentence similarity score for the two input sentences merely takes the average of those 

word pair similarity scores, which is 0.739352. 

Example 2: 
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Sentence 1: “A boy is standing outside the water.” 

Sentence 2: “The boy is wading through the blue ocean.” 

After sorting and selecting, the resulting candidate pairs are: 

(the, the), (is, is), (boy, boy), (water, ocean), (outside, through), (a, blue), (standing, wading) 

The word similarity scores are:  

[1.0, 1.0, 1.0, 0.600632, 0.519733, 0.321847, 0.300111] 

Thus, the sentence similarity score for the input sentences is 0.677475. 

The time complexity of this algorithm is 𝑂(𝑚 × 𝑛). 

Weighting Scheme Inspired by the experiments and results done by Arora et al. [2], we introduced 

the same weighting scheme as the SIF-model in the second version of our proposed model, Word2Sent-

V2. The idea is to assign a weight to each word, and the weight of each word is associated with the 

frequency of that word in the whole corpus. The weight of the word is computed by å
D(o)�å

, where 

𝑓(𝑤)  represents the (estimated) frequency of the word 𝑤  and 𝑎  is a parameter. Arora et al. [2] 

demonstrated that the weighting parameter  𝑎 = 10~ú is the optimal setting in most cases. Thus, we 

applied the same configuration of the weighting parameter  𝑎 in all our experiments.  

For a specific word, if the frequency is higher, then its weight would be lower, and vice versa. 

This weighting scheme weakens the influences of some frequent words, such as “and”, “a”, and “the”. 

The SIF-model obtained sentence embeddings by computing the weighted average of word embeddings 

of words from the sentence. The overall performance for the SIF-model is boosted significantly by 

introducing this weighing scheme on various semantic similarity tasks [2]. In the domain of legal 

language, the length of sentences is prone to be longer and the meaning of a sentence is carried by key 

words which are relatively not so frequent in the entire corpus. Instinctively, this experimental 

conclusion could be adapted to many scenarios in human languages. Thus, it is reasonable and 

necessary to pay less attention to very frequent words such as stop words, because those words usually 

contribute less meanings to build the overall meanings of the sentence.  

We applied such a weighting scheme to Word2Sent-V2. Specifically, after computing the 

Cosine Distance between the two word embeddings of all pairs, each word similarity score is multiplied 

by the average weight of the weights of two words to obtain the weighted word similarity score. Then 
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all pairs are sorted by the weighted word similarity scores in descending order, and it comes with the 

selection of the highest weighted word similarity score. However, as the selection is based on the 

weighted word similarity scores, the model would also record the unweighted word similarity score of 

each candidate pair. The rest steps of Word2Sent-V2 is the same as the original version. Finally, the 

sentence similarity score is computed by taking the average of the unweighted word similarity scores 

of all candidate pairs. 

To illustrate the difference between Word2Sent-V1 and Word2Sent-V2, we use the same input 

sentences as Example 1 and 2. 

Example 3: 

Sentence 1: “Children in red shirts are playing with leaves.” 

Sentence 2: “Three kids are sitting in the leaves.” 

After calculating the weighted word similarity score for each pair and sorting all pairs by their 

weighted word similarity score, we can obtain the following candidate pairs: 

(leaves, leaves), (children, kids), (playing, sitting), (are, are), (red, the), (shirts, three), (with, in). 

The unweighted word similarity scores are:  

[1.0, 0.814095, 0.463181, 1.0, 0.352678, 0.190496, 0.461608], 

and the overall sentence similarity score is 0.611723. 

Example 4: 

Sentence 1: “A boy is standing outside the water.” 

Sentence 2: “The boy is wading through the blue ocean.” 

The candidate pairs are obtained by the weighted word similarity scores:  

(boy, boy), (water, ocean), (outside, through), (standing, wading), (is, is), (a, blue), (the, the) 

The unweighted word similarity scores are: 

[1.0, 0.600632, 0.519733, 0.320120, 1.0, 0.158368, 1.0], 

and the overall score is 0.656979.  
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As shown by Example 3 and 4, after introducing this weighting scheme, some relatively 

frequent but meaningless words move backward or directly be filtered out from the candidate pairs. 

Meanwhile, some meaningful word pairs with lower frequency have chance to move forward so as to 

be selected as the candidate pairs and contribute to the sentence similarity. 

Algorithm 2: Word2Sent-V2, sentence similarity measurement with weighting scheme 
INPUT: Word embeddings {𝑣1:𝑤 ∈ 𝒱}, two sentences 𝑠8(with length 𝑚) and 𝑠: (with length 𝑛), an empty set 𝒫, an 
empty set 𝒞, parameter 𝑎, estimated frequency {𝑓(𝑤):𝑤 ∈ 𝒱} of each word. 
OUTPUT: A sentence similarity score 𝑠𝑖𝑚_𝑤𝑡 for the input two sentences. 
1. Bundle every word of 𝑠8with every word of 𝑠: as a pair and put all pairs {B𝑤8C,𝑤:DE: 𝑖 = 0,1,… ,𝑚 − 1, 𝑗 =

0,1,… , 𝑛 − 1} into 𝒫. 
2. for each pair 𝑝M in 𝒫 do:  

Weighted word similarity score : 

𝑊1b_QR ← 𝑚𝑒𝑎𝑛d
𝑎

𝑎 + 𝑓(𝑤8C)
,

𝑎
𝑎 + 𝑓B𝑤:DE

f × 𝑐𝑜𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣1(& , 𝑣1Z+ ) 

Unweighted word similarity score:  
𝑊OP_QR ← 𝑐𝑜𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣1(& , 𝑣1Z+) 

end for 
3. while 𝒫 is not empty do: 

Move the pair 𝑝\: (𝑤8],𝑤:P) into set 𝒞, where 𝑊1b_Q^  is the maximal among all other pairs in 𝒫; Delete pairs 
containing either 𝑤8] or 𝑤:P from 𝒫. 

end while 
4. Compute the average 𝑊OP__`a	of unweighted word similarity scores of all pairs in set 𝒞, and 𝑠𝑖𝑚_𝑤𝑡	 ← 𝑊OP__`a. 

To demonstrate the influence of introducing the weighting scheme, we evaluated the proposed 

two versions on the test datasets with different word embeddings libraries. The details for experiment 

settings and results analysis can be found in Chapter 6. 

5.2 Insight into SIF-model 

The other contribution of this thesis focuses on the SIF-model proposed by Arora et al. [2]. On the one 

hand, we improved the overall performance of the SIF-model generally on all tasks by introducing a 

parameter	𝜎. On the other hand, to adapt the SIF-model to the legal scenario and obtain better prediction 

results, we applied and experimented the post-processing technique to the model. 

Recall that in the SIF-model, a discourse vector 𝒄¾ of the current sentence represents the topics 

that are being talked about. When calculating the probability that a word 𝑤 would be generated given 

the current discourse vector, an assumption is made as 𝒄¾" ≔ 𝛽𝒄� + (1 − 𝛽)𝒄¾ , where 𝒄�  is the 

common discourse vector representing a correction term for the most frequent discourse related to 

syntax, such as “just”, “but”, “there” and so on. Besides, 𝒄�  is estimated by the first principal 

component of the given set of sentences, 𝛽 are scalars hyperparameters, and 𝒄� ⊥ 𝒄¾. In the last, 𝒄� is 
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subtracted from the sentence embedding to generate the final sentence embedding. They observed that 

𝒄� is roughly corresponding to the syntactic information or the common words. 

As demonstrated in the original paper [2], the post-processing step, subtracting the first 

principal component of a set of sentences (𝒄� ), is a very crucial step to boost the performance. 

Moreover, we found that it is also important for the post-processing step to be consistent with the 

theoretical assumption made when computing the probability of the generation of the specific word 

given the current discourse vector. Therefore, we introduced a parameter 𝜎 ∈ (0,1)  to the post-

processing step, where 𝒄¾ = 𝒄¾" − 𝜎 ∗ 𝒄� , to control the ratio of 𝒄�  that is subtracted from 𝒄¾ . The 

parameter 𝜎 is designed as the reflection of 	𝛽 in the assumption 𝒄¾" ≔ 𝛽𝒄� + (1 − 𝛽)𝒄¾. Through the 

experiments in Chapter 6, we found that when 𝜎 = 0.8, the overall performance of the SIF-model could 

be boosted slightly (about 1%) for all textual similarity tasks evaluated in the original paper.  

Algorithm 3: Improved SIF-model 

INPUT: Word embeddings {𝑣1:𝑤 ∈ 𝒱}, a set of sentences 𝑆, parameter 𝑎, estimated frequency {𝑓(𝑤):𝑤 ∈ 𝒱} of each 
word. 
OUTPUT: Sentence embeddings {𝑣i: 𝑠 ∈ 𝑆} 
1. for all sentences 𝑠 in 𝑆 do: 

𝑣i ←
1
|𝑠|k

𝑎
𝑎 + 𝑓(𝑤)𝑣11∈i

 

end for 
2. Compute the first principal component 𝑢 of {𝑣i: 𝑠 ∈ 𝑆} 
3. for all sentence 𝑠 in 𝑆 do: 

𝑣i ← 𝑣i − 𝜎 × 𝑢𝑢m𝑣i 
end for 

Moreover, the sentence similarity scores generated by the SIF-model range from −1 to 1, 

while most of the real-world scenario tasks require the scores in different scales. Take the task with the 

ground-truth label indicating the degree of sentence similarity ranging from 1 to 5 as an example, the 

first and simplest option is applying a linear transformation on top of SIF-model to map the prediction 

score from [−1,1] to [1,5]. From the experiments, we found that it is not effective to boost the overall 

performance regarding Pearson Correlation Coefficient (Pearson’s r) [108] or Mean Square Error 

(MSE). Secondly, we used a small labeled dataset (LawSents) with scores ranged from 1 to 5 to train 

an SVM score predictor in a supervised manner and applied it on top of the SIF-model as the non-linear 

transformation. Experiments in Chapter 6 demonstrated that the SVM-applied model could deliver 

better performance than the original SIF-model. The Pearson’s r is boosted about 1~2%. The same 

idea can also be applied to our proposed model. 
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As the last part of the main work in this thesis, we explored the influence of different methods 

for measuring the degree of similarity between two word vectors. The SIF-model calculates Cosine 

Distance between two fixed-dimension vectors as the word similarity score, which compares the 

difference between two vectors in direction. Some models apply Euclidean Distance as the metric for 

the degree of similarity, which considers the absolute distance between two vectors. Instead of merely 

using Cosine Distance, we experimented several different settings for the evaluation. For example, only 

using Euclidean Distance, or using the different combinations of Cosine Distance and Euclidean 

Distance. However, the evaluation results show that simply using Cosine Distance as a measurement 

metric achieves the best performance, and the performance decreases rapidly as taking more Euclidean 

Distance into considerations in the combined measurement experiments. The Cosine Distance is better 

at catching the semantic similarity, the direction the word vectors indicating its meaning. Thus, for 

words with similar meanings, their embeddings would be similar. The similarity metrics applied in 

word embeddings training methods (Word2Vec, GloVe, and fastText) is Cosine Distance, and the SIF-

model is based on the word embeddings library trained by one of these models to represent each word. 

Therefore, the metric being used in the model should keep the consistency as Cosine Distance. 
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Chapter 6 
Evaluation 

In this chapter, we first evaluate our proposed model with two different versions on two datasets, using 

distinctive hyper-parameters, and compared the performance with the baseline SIF-model. Then, we 

interpret and analyze the evaluation results regarding the characteristics of these models, word 

embeddings, and datasets. 

6.1 Word Embeddings 

The two versions of our proposed model highly rely on the word embeddings, since the degree of 

similarity between two sentences is determined by the degree of similarity between each candidate 

pairs. Several factors influence the properties of word embeddings such as different training methods, 

the domain, size, and the quality of the training data. Thus, these factors would further influence the 

experiment results. In our experiments, three different word embeddings libraries are utilized, namely, 

GloVe-Common Crawl (2.2M vocab, cased, 300d vectors), fastText-Common Crawl (2M vocab, cased, 

300d vectors), and Word2Vec-LegalDocs. The dimension of all word vectors is 300. 

GloVe and fastText are the pre-trained word embeddings libraries. Word2Vec-LegalDocs is 

trained on a corpus with 500K various types of unlabeled legal contracts by Beagle. Before training, 

we first removed various types of noises from all massive unstructured plain text files. Then the Skip-

gram model is applied to proceed with the training process. 

6.2 Datasets 

We test our models on two textual similarity datasets, namely, SICK2014 [109] and LawSents 

(https://github.com/yvettewang/Word2Sent/tree/master/eval_data). The purpose is to predict the 

degree of similarity between every sentence pair in the dataset. The metric is the Pearson’s r between 

the predicted similarity score and the gold-standard human judgments. LawSents consist of 200 pairs 

of long legal sentences. The average length of sentences in LawSents is around 27 words, while for 

SICK2014 is approximately 10 words per sentence. Sentences in LawSents cover the domain of legal 

language, while SICK2014 dataset involves compositional knowledge with diverse topics.  
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6.3 Experiments 

The objective of the experiments is to evaluate the two versions of our proposed model and compare 

the performance with the baseline SIF-model. We experimented every model with three word 

embeddings libraries on two datasets. Specifically, we use “name of word embeddings” + “name of 

models” to represent each combination of the model and the word embeddings library. For instance, 

“fastText+SIF” indicates SIF-model with fastText word embeddings library and “LegalDocs + V2” 

indicates our proposed Word2Sent-V2 model with LegalDocs word embeddings library. All 

experiments are completely in an unsupervised manner. 

Models LawSents SICK2014 

fastText+SIF 51.81% 71.00% 
fastText+V1 74.62% 64.72% 
fastText+V2 76.53% 66.61% 

GloVe+SIF 42.32% 70.90% 
GloVe+V1 73.73% 65.92% 
GloVe+V2 79.00% 68.62% 

LegalDocs+SIF 56.74% 57.59% 
LegalDocs+V1 73.80% 56.99% 
LegalDocs+V2 80.66% 54.79% 

Table 1 Experimental results (𝑃𝑒𝑎𝑟𝑠𝑜𝑛’𝑠	𝑟	 × 100) on textual similarity tasks. The highest score in 

each row is in bold. “GloVe+V1” stands for applying our Word2Sent-V1 to the GloVe word vectors; 

“LegalDocs+V1” is for Word2Vec-LegalDocs word vectors. See the main text for the description of 

the methods. 

6.4 Results & Analysis 

The results can be found in Table 1. There are three splitting datasets in the SICK2014 dataset, train, 

dev, and test. For clarity, we only report the average result for the SICK2014 task. 

For LawSents dataset, the advantages of our proposed model are very significant, as both 

versions of the proposed model beat the baseline SIF-model by 20% to 25%. Especially, the LegalDocs 

word embeddings with Word2Sent-V2 model achieves the highest Pearson’s r at 80.66%, which 

strongly demonstrates the influence of the word embeddings library to the overall performance of the 

model. The LegalDocs word embeddings library is trained on massive legal documents, contrast with 

fastText and GloVe trained on the universal context. The relatively frequent words in legal language 
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have a narrower range of meanings compared with them in the universal context. The LegalDocs word 

embeddings library is trained to capture these types of narrower and more specific meanings. Therefore, 

we may confidently presume that it is comparatively optimal to apply the domain-specific word 

embeddings to test datasets in the same domain. 

 

Figure 8 Evaluation results in bar chart for all proposed models and the baseline SIF-model on 

LawSents and SICK2014 dataset. 

In the evaluation of SICK2014 dataset, the advantages of our models are not as significant as 

in LawSents. As we can observe from Table 1, the Pearson’s r achieved by the SIF-model on either 

GloVe word embeddings or fastText word embeddings is around 71%. While the best performance 

achieved by our models is 69%, which is slightly lower than the SIF-model. It is quite hard to conjecture 

the specific factors causing this phenomenon, however, we may presume that our proposed model is 

much more suitable for longer sentences. As the length of the sentence increases, more information 

would be contained in the sentence. Therefore, when comparing the degree of similarity between two 

longer sentences, more complicated and mixed information should be considered. The SIF-model 

generates a sentence embedding for each sentence with 300-Dimension, which is the same as the 

dimension of word embeddings. In such a process of generating sentence embeddings, plenty of 

valuable information of the sentences would be lost due to this simple weighted average operation, and 

the longer the sentence, the more information will be missed. However, our proposed model measures 

the degree of similarity between two sentences by considering the semantic similarity of all candidate 

word pairs. The number of these candidate pairs are dynamically changed due to different lengths of 
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the given sentences. If both sentences are longer, then more candidate pairs would be selected to 

influence and decide the final similarity score. If the length of two sentences varies a lot, more words 

of the longer sentence cannot be considered as the candidate pairs. But in terms of human intuition and 

the characteristics of legal language, if one sentence is very long while the other is quite short, it is less 

possible for these sentences to be similar regarding semantics. Therefore, the advantage of our proposed 

model becomes more magnificent when the input sentences become longer or vary a lot in length, while 

the performance of the other weighted average SIF-model decays severely in the same circumstance. 

Then, we analyzed the difference of the overall performance of the models according to 

different word embeddings libraries. On SICK dataset, we can observe that any of the models with 

fastText or GloVe word embeddings achieves almost the same Pearson’s r. One of the reasons is that 

fastText and GloVe word embeddings are trained with the almost the same context covering diverse 

topics. And the Common Crawl dataset is relatively cleaner than the various types of legal contracts 

for the training usage of LegalDocs. The performance decreases severely when any models plus 

LegalDocs with SICK dataset. One possible reason is that the LegalDocs is trained on massive legal 

documents, and the overall performance of the models are highly determined by the word embeddings 

library, in terms of quality, size, and domains. The LegalDocs word embeddings library is trained to 

capture the semantic and syntactic relationship within the domain of legal language. Thus, this very 

domain-specific word embeddings library contains relatively narrow information regarding the 

semantics of words, and some words appearing in the testing dataset even failed to be mapped to the 

word vector through the library. However, the SICK2014 dataset essentially covers a variety of topics. 

Therefore, merely considering semantic information features extracted by LegalDocs word embeddings 

cannot fulfill the actual semantic analysis in other domains. 

 Particularly, we looked at LegalDocs+V2 on LawSents dataset and obtained more insights 

through examples with relatively larger MSE between the ground-truth label and predicted label. For 

example, in the pair: 

The requirement to protect Confidential Information disclosed under this Agreement shall survive 

termination of this Agreement. 
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This undertaking shall be governed by the laws of New South Wales and shall terminate upon cessation 

of obligations under the Confidentiality Deed in accordance with clause 6 (Term) of the Confidentiality 

Deed.  

The ground-truth label indicating the degree of similarity between the above two sentences is 

one, since in terms of legal professional’s interpretation, the two sentences have no semantic relation 

at all. However, all models find several candidate word pairs containing exactly the same words. Thus, 

the predicted score is much higher than it should be. Moreover, from the aspect of LegalDocs word 

embeddings library, the word similarity score of some pairs is relatively divergent from legal 

professional’s judgement. For example, the pair (cessation, termination) has a very low word similarity 

score while they are actually synonyms to each other. This phenomenon is definitely affected by the 

quality of the word embeddings library. For example, in the training dataset of the word embeddings, 

some common-used phrases are not correctly separated, some words in the vocabulary set are 

misspelled, as well as lots of capital errors occur. These noises greatly diminish the ability of the word 

embeddings model to capture the proper semantic relationship between words. The overall performance 

of the model is decreased severely as expected. Therefore, we anticipated that if the quality of the word 

embeddings is enhanced, then the overall performance of the model would have a noticeable growth. 

In Table 2, we refer to the evaluation results obtained by [90] for different unsupervised models 

testing on SICK2014 dataset and compare with our evaluation results. The Skip-gram and C-BOW 

represent the sentence embedding obtained by averaging of word embeddings generated by those two 

models. Unigram TF-IDF represents the weighted averaging model using TF-IDF frequencies as the 

weighting scheme. As we can observed from Table 2, FastSent model achieves the best performance 

on Pearson’s r as 72%, followed by the SIF-model with fastText word embeddings, Sent2Vec, and our 

proposed model Word2Sent-V2 with GloVe word embeddings, which achieves 69% Pearson’s r. 

Models SICK2014 

SAE 31% 

SAE + embs. 49% 

SDAE 46% 

SDAE + embs. 46% 

ParagraphVec DBOW 46% 

ParagraphVec DM 40% 

Skip-gram 69% 



 

  66 

C-BOW 69% 

Unigram TF-IDF 58% 

Sent2Vec uni. + bi. 70% 

SkipThought 60% 

FastSent 72% 

FastSent+AE 65% 

fastText+SIF 71% 

GloVe+V2 69% 

Table 2 Comparison of the performance of different unsupervised models on 𝑃𝑒𝑎𝑟𝑠𝑜𝑛’𝑠	𝑟 × 100 

(results collected from [90]). An underline indicates the best performance for the SICK2014 dataset. 

The top performances are shown in bold. 

 

Figure 9  Evaluation results in bar chart for different unsupervised models on Pearson’s r on SICK2014 

dataset. 

Next, for the SIF-model, we experimented different values of the parameter 𝜎, from 0.5 to 1. 

𝜎 scales the first principal component that is being removed from every sentence embedding, where 

𝜎 = 1 means the entire first principal component is removed, 𝜎 = 0.5 means half of the first principal 

component is removed. We evaluated the overall performance of the improved SIF-model on the 

SICK2014 test dataset by only adjusting the value of parameter 𝜎. The evaluation results can be found 
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in Figure 10. As the value of 𝜎 increases, the Pearson’s r also increases steadily. Until 𝜎 = 0.8, the 

Pearson’s r achieves at the peak value, 75.01%. The Pearson’s r then decreases significantly as the 

value of 𝜎 continues increasing. 

 

 

Figure 10 Tested on SICK2014 dataset, the Pearson’s r becomes higher as the value of 𝜎 increases. 

Figure 11 shows the influence of the SVM non-linear score predictor. As described in Chapter 

5, we trained an SVM score predictor with LawSents dataset in a supervised manner and applied it on 

top of the SIF-model. We tested this combined model on the other dataset, SICK2014 test dataset, it 

demonstrated that the strength of this slight change is quite significant since the overall performance is 

boosted by the SVM predictor about 1.5%. 

 

Figure 11  Tested on SICK2014 test dataset, with 𝜎=1, the model with an SVM predictor beats the one 

without the SVM by about 1.5%. 
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In Chapter 5, we attempted to apply different methods for measuring the degree of similarity 

between two words in a pair. In the experiments (see Figure 12), we displayed different results by 

applying different ratios of linear combination between Cosine Distance and Euclidean Distance as the 

metric for the degree of similarity. From the results, we demonstrated that the overall performance of 

the model continues decaying as more Euclidean Distance being considered as the metric. Thus, we 

simply applied Cosine Distance as the metric for the degree of similarity between two words in all 

experiments. 

 

Figure 12  Evaluation result related to different types of similarity metrics. 
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Chapter 7 
Conclusion and Future Works 

In this thesis, we studied about the development of representation learning and inspected the concept 

of distributional hypothesis. Then, based on the conception of semantic compositionality, we reviewed 

a variety of sentence embeddings models for distributed representation of higher context levels. As the 

main contribution, on the one hand, we introduced a novel model named Word2Sent for legal sentence 

similarity analysis in a simple but entirely unsupervised manner. The idea behind the proposed model 

stands on both distributional hypothesis and semantic compositionality. On the other hand, we also 

improved the overall performance of the SIF-model by controlling the ratio of the common discourse 

vector being removed. Then, we evaluated the proposed model as well as the baseline SIF-model with 

different word embeddings on several datasets in diverse domains. From the evaluation results, we 

observed that the proposed weighted model with LegalDocs word embeddings achieves the best 

performance for the sentence similarity analysis of legal language. Lastly, we found that applying the 

fine-tuned SVM score predictor on top of the model can effectively enhance the final performance. To 

improve the performance of the proposed model, attention could be paid to the following aspects as the 

future work: 

Improving the quality of the word embeddings library: As digging into the training data of the 

LegalDocs word embeddings library, we found that several issues related to the cleanness of the data 

may reduce the quality of LegalDocs. For example, some common-used phrases are not perfectly 

separated, some words in the vocabulary set are misspelled, as well as lots of capital errors occur. 

Therefore, the overall performance of the model is decreased severely. Removing those noises in the 

training data is quite time-consuming and intricate. However, it is indeed one of the most critical factors 

to boost the quality of the word embeddings library. 

Improving the weighting scheme: By observing the evaluation results in Chapter 6, we 

concluded that the weighting scheme contributes a lot for the enhancement of the overall performance. 

With the current weighting scheme, the weight of each word is only relevant to its frequency. Words 

with higher frequency have comparatively lower weights, while the rare words are assigned with higher 

weights. However, this weighting scheme might not be the best. Instinctively, the distribution of words 

for different datasets can be varied a lot. Thus, designing the corpus-specific weighing scheme might 

be helpful to heighten the performance of the model. For example, the word “not” appears very 
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frequently; thus, the weight of this word is relatively low among all words in the vocabulary set. 

However, the word “not” often expresses a negative of a statement, which plays a turning point role in 

a sentence. When comes with a pair of almost identical sentences, where one expresses positively, while 

the other expresses negatively with a “not”, a more rational weighting scheme should assign “not” a 

relatively larger weight to distinguish the utterly contradictory meaning of two sentences.  

Improving the model: Our model concentrates on the degree of semantic similarity of every 

unigram word pair, then computes the overall sentence similarity score for the given sentences. 

However, human language is frustratingly ambivalent and complicated in some circumstances. For 

example, polysemy, homonymy, and collocations are significant language phenomenon in every 

language. Take the phrase “Toronto Blue Jays” as an example, when a single word “Jays” appears in a 

sentence, it might be understood as the particular strain of birds. However, if the preceding word of 

“Jays” is “Blue”, then the phrase “Blue Jays” refers to the particular baseball association. Due to the 

characteristic of semantic compositionality, the meaning of a sentence is composed of the meanings of 

its components, which might be the single words or longer phrases. Thus, the other potential aspect of 

improving the overall performance is to enhance the model itself, by means of considering the similarity 

of phrases in the entire sentence. It might be helpful to deliver a more comprehensive analysis between 

two sentences, especially from the perspective of semantics. 
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