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Abstract

Current modelling practices in mathematical epidemiology are predicated on mechanisms

stemming from theoretical assumptions, such as mass action incidence. Deterministic disease

models can describe many patterns observed in empirical incidence data but challenges re-

main in creating accurate, parsimonious models that offer predictive value. Recent advances

in data-driven techniques give rise to new model discovery methods that forego theoretical

assumptions and attempt to create sparse, dynamic models directly from real-world data.

Our goal is to apply these techniques to empirical case notification data of epidemiological

systems, to either confirm current practices or give new insight not accessible by human

intuition.

We adapt a recently developed technique called Sparse Identification of Nonlinear Dy-

namics (SINDy), which has demonstrated ability to recover governing equations of complex

dynamical systems. To lend insight into this process, the SINDy algorithm was first applied

to simulated data from various forms of the SIR model, a standard compartmental model

of epidemics. Several conversion processes were then utilized to recover both the susceptible

and infectious classes from raw incidence data. Finally, the SINDy algorithm was applied

to empirical data from measles, varicella, and rubella datasets, three diseases that offer

contrasting dynamic behaviour, and the resulting time-series and model coefficients were

analysed.

The resulting models closely mimic the dynamics of the empirical data, most notably

the frequency of epidemics, for all three diseases considered. The coefficients discovered ex-

hibit sparsity, though not to the extent that current compartmental models do. Similarities

between the discovered model equations and fitted SIR models can be noted, including a

strong dependence on the cross-term corresponding with the mass action incidence mecha-

nism. These encouraging results indicate this data-driven technique may be of use in verifying

and improving current theoretical models in mathematical epidemiology.
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Chapter 1

Introduction

1.1 Mathematical Epidemiology

The work discussed in this thesis focuses on the application of dynamic statistical modelling

techniques to the field of mathematical epidemiology. It is important, then, to have an under-

standing of the history and theory of this relatively modern field. Mathematical epidemiology

applies mathematical methods, specifically methods of studying dynamical systems, to the

spatiotemporal analysis of infectious diseases. The ability to create effective mathemati-

cal models is imperative to epidemiology, as experimental methods do not naturally lend

themselves to the study of infectious diseases, especially in the case of epidemics.

1.1.1 History

In 1662, shortly before the Great Plague of London, the English statistician John Graunt

published his book “Natural and Political Observations made upon the Bills of Mortality”

[1]. In this work he estimated comparative risk of mortality caused by the current bubonic

plague epidemic against other causes of death. It is this analysis that is considered the

earliest attempt to use mathematical theory to explain epidemiological outbreaks. Towards

the end of the 18th century, the Swiss mathematician Daniel Bernoulli published what is

considered the first epidemiological model to advocate for inoculation against smallpox [2].

The first major stride in creating what is now known as mathematical biology was taken

by William Hamel when he applied the Law of Mass Action (though this is alleged to be

unwitting on his part) to create a simple epidemic model in discrete time [3, 4]. It is this
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law that motivated Kermack and McKendrick in 1927 to develop theory that is used as the

foundation of many modern epidemiological models [5].

1.1.2 Compartmental Modelling

A compartmental model is a mathematical model of a population that classifies each member

of the population as one of multiple categories, known as compartments. These models are

structured such that members can be transferred from one compartment to another, where

this transfer is governed by dynamic model equations [6, 7, 8].

The prototypical compartmental model is the SIR model, stemming from the work of

Kermack and McKendrick in 1927 [5]. The system they constructed models the spread of

an infectious disease by separating a given population into three compartments:

• Susceptible (S): Each member is susceptible to the disease.

• Infectious (I): Each member has been infected by the disease and is infectious to

susceptible members they come in contact with.

• Recovered (R): Each member has recovered from the disease and is now immune.

The variables S, I, and R represent the number of members in the respective compartment.

Given that members can be transferred between compartments, these variables are actually

functions of time and should be written as S(t), I(t), and R(t). Under the most basic

representation of the SIR model, these state variables are governed by the dynamical system

given by the differential equations:

S ′(t) = −βS(t)I(t) (1.1)

I ′(t) = βS(t)I(t)− γI(t) (1.2)

R′(t) = γI(t) (1.3)

In the standard formulation of the SIR model, several key assumptions are made. First,
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the population is assumed to be constant throughout the duration of the epidemic, such that

S(t∗) + I(t∗) +R(t∗) = N ≡ constant

for all t∗ ≥ t0. Often the system will be scaled such that N = 1, meaning that the state

variables now represent the proportion of the population that are members of the respective

compartment.

Another important assumption is that the system adheres to the principle of mass action

mixing, which is the primary mechanism behind the dynamic behaviour of the model [7, 8].

This principle was originally used to describe the rate of a well-mixed chemical reaction by

relating it to the concentration of reactants [9]. In mathematical epidemiology it predicts

that, given a homogeneous population, the rate at which members of the susceptible class

become infected will be directly proportional to the size of the susceptible and infectious

classes. The rate at which this infection occurs is dictated by the encounter rate β. In

the most basic form of the SIR model this parameter is assumed to be temporally invariant,

though later work shows this assumption to be an invalid one. Seasonally-varying alternatives

are discussed in the next section. The only other parameter of the model (γ) controls the

rate at which individuals recover from the disease and is assumed to be constant.

It should be noted that there is no closed form solution to the SIR system of equations

(Eqs. 1.1 - 1.3), so numerical simulations must be used to obtain realizations of the system.

Below is shown a simulation of the SIR model with certain parameters.
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Figure 1.1: A simulation of the basic SIR model with initial conditions S0 = 0.999, I0 =
0.001, R0 = 0 and parameters β = 0.5 day−1, γ = 0.1 day−1

This seminal model, while accurate in modelling some infectious diseases for a single

infection in isolation, fails in recreating disease dynamics from reoccurring infections. This

is due to two notable simplifying assumptions: a constant transmission rate and the lack

of birth/death rates. Subsequent developments have expanded the model to relax both

assumptions, resulting in more realistic dynamics [10, 11, 12, 13, 14].

1.1.3 Time-Varying Mass Action Transmission

Th mass action transmission parameter (β in Eqs. 1.1-1.3) has been noted to be non-constant

for most notable infectious diseases, especially in diseases most prevalent among school-aged

children [11, 15, 16, 17], as there is a notable shift in individual contact when the school

season begins. Estimates of this parameter can be done by giving an approximate recursion

relation for the disease incidence:

Ct+1 = βStCt (1.4)
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where Ct is the number of cases at time t. Therefore, given sufficient case and susceptible

population data, rough estimates for a time-variant parameter β(t) can be made. This does,

of course, require a method of estimating the susceptible time series, as direct empirical data

in this area requires an invasive serological survey and is rarely available, never in a sufficient

temporal scale [18]. There exist several methods of estimating the susceptible time series

[19, 20, 10]. The method used in this work was taken from Ref. [21] and is described in

detail in the Methods chapter.

Solving Eq. 1.4 for β and iterating over empirical data for measles, varicella (chickenpox)

and rubella give the time series found in Figure 1.2. Given that each of these diseases is

most common amongst school-aged children [18, 10, 22] it is unsurprising that the period

corresponding with the lowest transmission is in the summer, followed by a peak in September

correlating with a return to school. These findings are further discussed and confirmed by

Refs. [10, 23], though more analysis by Ref. [18] indicate the peak in transmission rate occurs

several weeks earlier, alleging this effect may be better attributed to weather fluctuations.

Regardless, there is undoubtedly a seasonal variance in the transmission rate for each of these

diseases, one which occurs consistently each year. A common practice in disease modelling

is to model the transmission rate functionally as sinusoidal [10, 24, 25, 26], of the form

β(t) = β0(1 + β1cos(2πt/T − φ)), (1.5)

where T = 1 year is the period of the oscillation and φ is the phase shift corresponding with

the seasonal behaviour of the transmission rate. This method of seasonal forcing will be

used for the remainder of this thesis, though other methods such as term-time forcing [11,

22, 12, 13] do exist.
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(a) Incidence (measles) (b) Transmission rate estimate (measles)

(c) Incidence (varicella) (d) Transmission rate estimate (varicella)

(e) Incidence (rubella) (f) Transmission rate estimate (rubella)

Figure 1.2: Reconstructed time-varying transmission rate β(t) for three infectious diseases.
Subpanels show weekly case notifications for (a) measles, (c) varicella, and (e) rubella and
(b, d, f) their corresponding reconstructed β(t). Red line in (b,d,f) shows mean value of
reconstruction, and shaded areas show +/- one standard deviation.
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1.1.4 Demographics

The basic SIR model (Eqs. 1.1-1.3) emits solutions that do not exhibit nontrivial long-term

behaviour. The phase-plane analysis (shown in Section 1.1.6) shows that each realization of

the system will converge to a steady-state, which does not mimic the endemic nature of many

real-world infectious diseases. Part of this issue lies in the fact that the basic SIR model has

no mechanism to recruit members to the susceptible class (often we call this “birth”), so the

susceptible population becomes depleted over time. To remedy this, birth and death rates

(ν and µ, respectively) are introduced to the model, resulting in the differential equations

S ′(t) = ν − β(t)S(t)I(t)− µS(t) (1.6)

I ′(t) = β(t)S(t)I(t)− γI(t)− µI(t) (1.7)

R′(t) = γI(t)− µR(t) (1.8)

Simulating this model results in much more complex dynamics than with the basic SIR

model. Oscillations in each state variable can occur within a biologically relevant parameter

space, where the system can exhibit annual, biennial, or multiennial attractors, each consis-

tent with observed dynamics of real-world infections. In Figure 1.3, the above model was

simulated using the time-varying transmission rate found in Eq. 1.5 to produce an annual

attractor.
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Figure 1.3: A simulation of the SIR model with demographics and seasonal forcing, with
initial conditions S0 = 0.1, I0 = 0.001, R0 = 0.899 and parameters β0 = 0.12 day−1, β1 =
0.08, γ = 0.1 day−1, andµ = ν = 0.0002 day−1

1.1.5 Discrete Time Model

The SIR model presented in Eqs. 1.1 - 1.3 is a continuous time model, represented by

differential equations and continuous state variables. However, given the discrete nature of

the empirical data (case and birth data is often given in a weekly or biweekly format), it can

be advantageous to approximate the SIR model as a discrete time model using difference

equations:

St+1 = St + ν − βStIt − µSt (1.9)

It+1 = It + βStIt − γIt − µIt (1.10)

Rt+1 = Rt + γIt − µRt (1.11)

In the limit as ∆t → 0 the discrete model (Eqs. 1.9 - 1.11) converges to the continuous

model (Eqs. 1.1 - 1.3). In our case, use of this approximation is advantageous as we require

empirical data for the response of the system, which in the continuous case is the derivative
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vector ẋ(t) = 〈Ṡ(t), İ(t), Ṙ(t)〉. As this requires numerical differentiation of a potentially

noisy system, valuable information can be lost. However, when using the discrete system,

the response vector is xt+1 = 〈St+1, It+1, Rt+1〉, which is simply the next data point and thus

is implicitly available without numerical approximations.

1.1.6 Stability Analysis

In order to understand the behaviour of any dynamical system it is important to analyse

the existence and stability of equilibrium points of the system. An equilibrium point of an

autonomous system f(x(t)) is any point x∗ in the phase space such that f(x∗) = 0. There

exists two main classifications defining behaviour of a system around an equilibrium point:

local asymptotic stability and global asymptotic stability. To define these concepts, suppose

x∗ is an equilibrium point of the system f(x(t)). Then

• the system is globally asymptotically stable if, for every trajectory x(t) present in

the phase space, x(t)→ x∗ as t→∞.

• the system is locally asymptotically stable near or at x∗ if there exists an R > 0

s.t. ||x(0)− x∗|| ≤ R⇒ x(t)→ x∗ as t→∞.

Below we find the equilibrium points of the SIR model with demographics (Eqs 1.6 - 1.8)

and show that, when each exists, it is globally asymptotically stable.

Equilibrium Points

First we note that given the assumption of a fixed population size (i.e. ν = µ) and using a

system scaled by population size we have R = 1−S− I, so the dimensionality of the system

may be reduced to the 2-dimensional system

S ′(t) = µ− βS(t)I(t)− µS(t) (1.12)

I ′(t) = βS(t)I(t)− γI(t)− µI(t) (1.13)
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To simplify the analysis we will also assume the parameters β, µ, and γ are temporally invari-

ant. We first find the equilibria of the system by setting the derivatives vector [S ′(t), I ′(t)]

identically to zero and solving the system:

0 = µ− βS(t)I(t)− µS(t)

0 = βS(t)I(t)− γI(t)− µI(t)

which gives the two steady-states

E1 = (S̄1, Ī1) = (1, 0)

E2 = (S̄2, Ī2) =

(
µ+ γ

β
,
µ(β − µ− γ)

β(µ+ γ)

)
.

Note that for the equilibrium (S̄2, Ī2) to be biologically relevant each of the state variables

must be positive and ≤ 1. Thus in order for the steady-state to exist it is required that
µ+ γ

β
≤ 1. This gives rise to the threshold parameter R0, defined as

R0 =
β

µ+ γ
. (1.14)

This parameter is called the basic reproductive ratio and is a crucial feature of any

endemic infection. Biologically, it can be interpreted as the number of new cases produced

by a single member of the infectious class in an otherwise susceptible population. Given this

definition, it is logical to conclude that a disease will become endemic if and only if R0 > 1.

Classification of Equilibria

In order to classify the stability of each equilibrium point, we utilize the Lyapunov Theorem

for Global Asymptotic Stability [27]:

Theorem 1.1.1. Let ẋ = f(x) and f(x∗) = 0 for some x∗ ∈ Σ ⊂ Rn. If there exists a C1

function V : Rn → R such that

1. V (x∗) = 0
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2. V (x) > 0 ∀ x 6= x∗

3. V̇ (x) < 0 ∀ x 6= x∗

4. V (x)→∞ as ||x|| → ∞

then x∗ is a globally asymptotically stable equilibrium.

Note that the time derivative of the Lyapunov function can be found using the Chain

Rule:

V̇ (x) =
∂V

∂x
ẋ =

∑
i

∂Vi
∂xi

fi(x) (1.15)

Case I: R0 ≤ 1

In this case, the endemic equilibrium E2 = (S̄2, Ī2) =

(
1

R0

,
µ

µ+ γ

[
1− 1

R0

])
is not bio-

logically relevant, as S̄2 =
1

R0

> 1. Thus the only equilibrium to consider is the trivial

E1 = (S̄1, Ī1) = (1, 0).

The analysis done in Ref. [28] discovers the Lyapunov function

L(S, I) = S̄1

(
S

S̄1

− ln
S

S̄1

)
+ I − 1 = S − ln(S) + I − 1

which gives the time derivative

L̇(S, I) =
µ

S
(1− S)2 − (1−R0)I ≤ 0 when R0 ≤ 1 and S, I ≥ 0.

By inspection we also see that L(1, 0) = 0, L(S, I) > 0 ∀ (S, I) 6= (1, 0) and L(S, I) →

∞ as S, I →∞. Thus by Theorem 1.1.1 the trivial equilibrium E1 is globally asymptotically

stable.

Case II: R0 > 1

When the basic reproductive ratio exceeds 1 the disease becomes endemic and cycles of

epidemics are allowed to occur. The endemic equilibrium point E2 is now biologically rele-

vant, so we consider its stability. Ref. [28] presents a different Lyapunov function for this

equilibrium, given by
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V (S, I) = S̄2

(
S

S̄2

− ln
S

S̄2

)
+ Ī2

(
I

Ī2
− ln

I

Ī2

)
− (S̄2 + Ī2)

which gives the time derivative

V̇ (S, I) = −µS̄2

S

(
1− S

S̄2

)2

≤ 0 when R0 > 1 and S, I ≥ 0.

By inspection we see that V (S̄2, Ī2) = 0 and that V (S, I) → ∞ as S, I → ∞. To note

that (S̄2, Ī2) is the global minimum of V it is sufficient to compute the partials

∂V

∂S
= 1− S̄2

S
,

∂V

∂I
= 1− Ī2

I
.

Thus by Theorem 1.1.1 the endemic equilibrium E2 is globally asymptotically stable. As

a result of this, it can be concluded that the trivial equilibrium E1 is unstable.

Figure 1.4 shows an example of this stability by plotting the direction field of the system

(using R0 = 8 to ensure an endemic equilibrium point) as well as a specific trajectory of the

model with (S0, I0) = (0.12, 0.02).
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Figure 1.4: Direction field of a subset of the phase space for the system found in Eqs. 1.6
- 1.8 with parameters γ = 0.01, β = 0.08, µ = 0.00005. Also plotted is a trajectory of the
system with initial conditions (S0, I0) = (0.12, 0.02). This demonstrates that the endemic

equilibrium E2 =

(
µ+ γ

β
,
µ(β − µ− γ)

β(µ+ γ)

)
is stable.

1.2 Data-driven Modelling and SINDy

The previous section outlines the evolution of creating epidemiological models based on

theoretical assumptions and validated using empirical data, which historically has been the

fundamental method of mathematically describing disease dynamics. In the next section we

introduce a different approach: the derivation of dynamic models directly from prevalence

data.
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1.2.1 Origins of Data-Driven Dynamical Modelling

Complex nonlinear dynamics lie at the heart of many natural systems in science and engi-

neering [29, 30, 31], including epidemiology [25, 26, 12]. Centuries of mathematical research

have been devoted to creating models that accurately describe and predict the behaviour

of these systems [32], usually in the form of deductive models from mechanics derived from

pre-existing theory. In recent years, with advances in machine learning [33] and the increased

availability and understanding of data [34, 35, 36] strides have been made in automating the

model discovery process, creating inductive models. Rigorous techniques such as regression

methods are currently in place to understand static data [37], but analogous advancements

given dynamic data have not been developed as quickly.

One of the first and most influential attempts made to motivate dynamic models using

empirical data was made by Edward Lorenz with his 1963 paper entitled “Deterministic

Nonperiodic Flow” [38]. Through this famous work he developed theory that would lay the

foundations for modern weather prediction, deriving nonlinear statistical modelling tech-

niques from atmospheric data [39]. This led to a much better understanding of the chaotic

dynamical systems which are often present in nature, including in epidemiology [17, 25, 12].

Other early attempts at reconstructing nonlinear dynamics that stem from chaos theory

involved the methodology of delay-coordinate systems [40, 41]. This method, though suc-

cessful at reconstructing features of the system such as dimensionality, Lyapunov exponents,

and unstable periodic orbits [42], could not be used to recover a functional symbolic form

that could be analysed using traditional phase-plane methods.

A breakthrough in modelling nonlinear dynamics functionally came in Ref. [43] and

supplemented by Ref. [44] by applying symbolic regression (genetic programming [45]) to

recover differential equations. This work was the first successful attempt at automating

the process of finding the symbolic structure of the dynamical system governing a natural

process. Being able to model a system symbolically rather than numerically is crucial due

to the explanatory value of a model built with elementary functions. It is the goal of

these symbolic modelling techniques to automatically uncover the nonlinearities active in

14



the governing equations of a system, a process which traditionally is difficult for human

intuition. However, these early attempts utilizing genetic programming were subject to

overfitting, as well as being computationally expensive and lacking the ability to scale well

to systems with higher dimensionality.

1.2.2 Sparsity and Regularization

The idea of achieving a high level of accuracy when creating a mathematical model is not

quite as simple as it may seem. Traditional methods of obtaining accuracy are usually centred

around the minimizing the residual squared error between the predicted response and the

data. The most common and simplest method is known as ordinary least squares, or OLS.

However, this is not always the most satisfactory result, for two reasons [46]. Firstly, simply

minimizing the residuals results in a high level of variance, leading to inefficient prediction

value from the resulting model. Despite high descriptive value, these models tend to overfit

to any noise present in the data and lack the ability to identify the true predictors that drive

the system in question. The idea of cross-validation [37] is useful in identifying instances

where overfitting takes place, but does not in and of itself remedy the problem. Secondly,

in an era where data is plentiful, creating a model that uses all possible predictors detracts

from the interpretability of the model. These complex models may perform well but are

beyond human analytic ability and are not useful in expanding theoretical knowledge. This

temptation to create overly complicated models led to the reflection in Ref. [47] that “the

best material model of a cat is another, or preferably the same, cat”.

Most alternative methods to OLS that promote the ideas of predictability and inter-

pretability fall under one of two classes [37]. The first is subset selection, which attempts to

identify some subset of the predictors that adequately describes the system, disregarding the

rest [48, 49]. The second is shrinkage (or regularization), which fits the model using all of the

available predictors but forces the coefficients of select predictors towards zero, effectively

performing an approximate form of variable selection. One such method is known as ridge

regression which, rather than minimizing the residual squared error, instead minimizes the
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quantity
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j , (1.16)

where yi are the response data, xij are the predictor data, βi are the adjustable linear

coefficients, and λ is the tuning parameter that is determined beforehand to adjust the level

of shrinkage. Note that this method is simply the residual sum of squares with a second

term subtracted, known as the shrinkage (l2 regularized) penalty. While ridge regression is

effective in obtaining shrinkage of coefficients that remedies overfitting, it will always include

all predictors in the model and therefore is ineffective in variable selection and improving

interpretive value. This leads to a slight alternative to this method, known as the LASSO

(least absolute shrinkage and selection operator). This method is instead an l1 regularized

regression and minimizes the quantity

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj|. (1.17)

The effect of an l1 penalty is that now some coefficients will be forced to zero. Thus applying

the LASSO can accomplish both subset selection and shrinkage, resulting in sparse models

that have both predictive and interpretive value. This does not, of course, come without

cost, as this method can tend to be computationally expensive when applied to large datasets

[50].

1.2.3 Model Selection

There exists another group of rigorous statistical metrics that are used to balance goodness-

of-fit with model complexity, called information criteria. These metrics are useful in the

comparison and selection of models when first given a space of candidate models from which

to choose. In the context of symbolic modelling this space is usually constructed from a

functional basis, often heuristically defined given contextual theory [51, 52, 53]. Given a

computationally tractable basis, each possible model would be fitted and the information

criterion would be computed and used to select the model that best balances parsimony
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and predictive power. The information criterion used in this thesis is called the Akaike

information criterion (AIC) [54] and is derived from use of maximum likelihood. The AIC

value for a given candidate model i is defined by

AICi = 2k − 2ln(L(x, µ̂), (1.18)

where L is the conditional probability of the observations x given the set of best-fit model

parameters µ̂, and k is the number of free parameters in the model. During application, if

sample size is a concern then (as noted by Ref. [55]) a correction should be applied of the

form

AICc = AICi +
2(k + 1)(k + 2)

m− k − 2
, (1.19)

where m is the number of observations in the sample.

1.2.4 Sparse Identification of Nonlinear Dynamics

The previous sections have laid the groundwork for the main topic of this thesis: applica-

tions of the SINDy (Sparse Identification of Nonlinear Dynamics) algorithm to epidemio-

logical data. This algorithm was developed by Brunton, Proctor, and Kutz in their 2016

paper entitled “Discovering governing equations from data by sparse identification of non-

linear dynamical systems” [50]. The methods outlined in this paper approach the problem

of automating the discovery of dynamic equations that describe natural systems through

the lens of sparsity-promoting regression techniques. Through the understanding that the

governing equations of many of these systems are expected to be sparse in the space of all

possible functions, they demonstrate it to be feasible to create an algorithm that automates

the discovery of these active terms. The derivation of this algorithm as well as its application

to epidemiological data is discussed in Chapter 2. Further work on this algorithm, including

extensions and applications, can be found in Refs. [55, 56, 57, 58, 59, 60, 61, 62]. Of partic-

ular note is Ref. [55], which combines the notion of sparse regression with model selection

to further promote parsimonious models with predictive and interpretive ability. This work
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also applies the SINDy algorithm to simulated data from a discrete compartmental disease

model, successfully recovering the active terms in the model.

1.3 Objectives and Rationale

The central motivation for this thesis is to expand upon the efforts to automate the model

discovery process and to create models simply from empirical data with minimal knowledge

of the system. As discussed in Section 1.2.4, recent work by Ref. [50] has demonstrated that

their SINDy algorithm is effective in recovering the governing equations of dynamical systems

given simulated realizations of the system. Accurate model rediscovery from a simulated

model deductively derived lends valuable insight towards determining whether discovering

an inductive model of the system from data is feasible. However, to our knowledge this work

and subsequent research using this algorithm has not successfully discovered the governing

equations given empirical data of a natural system. My objective in this thesis, then, is to

apply the SINDy algorithm to empirical disease data to discover functional forms for the

nonlinear dynamics that govern epidemics, and to demonstrate the potential that data-driven

techniques have to either confirm current epidemiological modelling practices or to enhance

them with new insight.

The motivation to understand these epidemiological systems better are twofold. The

obvious incentive stems from a public health importance, as accurate disease models are

beneficial in advising government policy on vaccination strategy and predicting the occur-

rence and effect of infection outbreak [13, 63, 64, 65]. In the modern era of vaccination, these

models are most often applied to the allocation of resources [66] to both temper the spread of

severe epidemics and to completely eradicate infections that mass vaccination has drastically

reduced. Through the development of epidemiological modelling techniques, mathematicians

seek to understand the cause and spread of infections diseases, leading to the most efficient

ways to control and eradicate them.

The second incentive is a more mathematical one, motivated by a desire to study complex

dynamical systems. In the pre-vaccination era, epidemics exhibited a range of regular and
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irregular dynamics, depending on type of disease and geographical location. For example,

measles prevalence could exhibit annual, biennial, or multiennial cycles, leading to new

research into what mechanisms facilitated the sustainment of and transition between these

oscillations [11, 13]. These epidemiological systems also can exhibit chaotic behaviour [12,

25] depending on the levels of biological realism (e.g. age structure, vital dynamics, etc.)

and stochasticity.

The complex nature of dynamic disease systems, coupled with the lack of availability and

quality of pre-vaccination data and inherent noise present, makes the idea of discovering a

revolutionary new symbolic mathematical model that describes epidemics in a parsimonious

and interpretable way a lofty goal. It is important to note, then, that the intention of this

thesis is not to create an automatically-discovered model that immediately sets a standard

for modelling practices of infectious diseases. We simply wish to present this method as a

proof-of-concept, demonstrating the feasibility of data-driven models that have the potential

to be both predictive and interpretive, reconciling these models with current theory.

To this end, this thesis will be structured as follows: The SINDy algorithm is described

in Chapter 2, as well as the nuances of applying it to epidemiological data. The results are

detailed in Chapter 3, demonstrating the ability of the algorithm to recover compartmental

disease models from simulated data, as well as discover parsimonious models given epidemi-

ological data from a range of disease types, each exhibiting different dynamic behaviour.

Finally, Chapter 4 includes a discussion of the methods and results presented, as well as

outlining limitations and future work.
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Chapter 2

Methods

2.1 Sparse Identification of Nonlinear Dynamics (SINDy)

This work builds on the sparse regression methods outlined in Ref. [50]. Given the recent

advances in both compressed sensing [67, 68, 69] and sparse regression [37, 46] it has become

computationally feasible to extract system dynamics from large, multimodal datasets. These

techniques rely heavily on the fact that many dynamical systems can be represented by

governing equations that are sparse in the space of all possible functions. In this work we

focus on dynamical systems that are given by a system of ordinary differential equations of

the form

ẋ = f(x(t), t), (2.1)

where x(t) = (x1(t), x2(t), ..., xn(t)) represents the state of the n-dimensional system at time

t, and f = (f1, f2, ..., fn) is the sparse set of functions that dictate the dynamics of the

system.

It is assumed that the time series data is sampled at points t1, t2, . . . , tm for both x

and ẋ, usually given as either data from simulations or empirical data from measurements.

Depending on the system in question, numerical differentiation methods to approximate ẋ

that are well-suited for the level of noise must be used. The method used in Ref. [50] is

total variation regularization [70, 71] that works well on a noisy system when only the state

variables are available. Alternatively, a discrete adaptation of SINDy may be used, where

the response of the system f(xt, t) is xt+1. Regardless, the time series data of the state
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variables and the response are represented by the matrices

X =


x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

...
. . .

...

x1(tm) x2(tm) . . . xn(tm)



Ẋ =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)
...

...
. . .

...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 .

We then construct a library of linear and nonlinear candidate functions for the model,

given prior knowledge of the system we wish to describe. Common choices for these functions

are polynomial and trigonometric functions of the state variables, though other functions

(e.g. exponential, rational) functions may be included as well. This function library is then

evaluated at each time-step, generating the m× p matrix

Θ(X) =
[
1 X XP2 XP3 . . . sin(X) cos(X) sin(2X) cos(2X) . . .

]
, (2.2)

where XPn represents all possible polynomials of degree n that can be constructed by the

state variables. Now, relying on the assumption that the derivative Ẋ can be described

by relatively few of the nonlinearities active in Θ(X), we may set up the sparse regression

problem

Ẋ = Θ(X)Ξ, (2.3)

where Ξ = (ξ1, ξ2, . . . , ξp) is a set of sparse coefficient vectors.

There are several current methods that have been developed to perform sparse regression.

A common choice is the LASSO (least absolute and shrinkage operator) [37, 46], a regression

method that promotes sparsity by applying an l1 penalty on the norm of the coefficient vector.
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However, this method does not scale well to large datasets. This thesis utilizes an iterative

method developed by Brunton et. al., as described below:

1. Perform a least-squares regression on the relation in Eq. [2.3].

2. Set all terms in Ξ that are less (in absolute value) than some threshold λ to zero.

3. Create new library Θ′, dropping functions that correspond to zero entries in Ξ.

4. Repeat steps 1-3 until equilibrium (i.e. no terms in Ξ are smaller in magnitude than

λ), or some other stopping criteria is reached.

This yields the set of sparse vectors that provides an approximate solution to Eq. [2.3].

We can then reconstruct the kth row of the dynamical system by taking

ẋk = Θ(xT
k )ξk, (2.4)

where Θ(xT
k ) is the symbolic representations of the elements of x.

Finally, combining all of the rows of the discovered dynamical system results in the system

of equations

ẋ = ΞTΘ(xT )T . (2.5)

The code for this algorithm, along with several examples that demonstrate its application,

can be found at Ref. [72]. The modified repository used for all computation done for this

theis can be found at Ref. [73].

2.2 Applying SINDy to Epidemiological Systems

The application of data-driven model discovery methods to epidemiological systems presents

a unique set of challenges. Firstly, incidence data is often subjected to noise at several

levels, notably inconsistent reporting of disease cases from medical clinics [18, 74, 75]. In

addition, the derivative data must be approximated using numerical methods, leading to

another source of inaccuracy. Secondly, as presented in Chapter 1, most compartmental
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disease models depend on both the infected and the susceptible classes. However, temporal

data of the seropositive individuals in a population would require extensive and invasive

surveying and is not currently available for any demographic. Instead, several methods for

approximating the susceptible class from the given incidence data are outlined in Section

2.2.2.

2.2.1 Data Preprocessing

Temporal data of disease incidence of various infections and time periods has been made

available by numerous sources, often from governmental reporting programs. The three

infectious diseases and the corresponding locations and time periods used for this study are

measles in England and Wales from 1948-1967 (from Ref. [76]), varicella (chicken pox) in

Ontario (Canada) from 1946-1967, and rubella in Ontario from 1946-1960 (both from [13]).

These diseases and time periods were chosen as they exhibit contrasting dynamic behaviour,

most notably in the period of the epidemic cycle. It is important to note that for each of

these diseases, the time frame chosen is before the vaccines for the respective diseases became

commonly available. Once this data was imported and both the time and case vectors were

labelled, both the birth and population data (taken from [76, 77, 78, 79, 80]) were imported

and interpolated to be given per week, the same scale as the disease data.

As outlined in Chapter 1, the compartmental models that motivate our development of

these methods have two main classes: the susceptible population and the infectious popu-

lation. The latter is referred to as the prevalence of the disease, defined by the number (or

proportion) of infectious individuals at any given time. However, the data are most often

given in the form of newly occurring cases, referred to as incidence data. Hence both the

susceptible and the prevalence data must be recovered from the incidence data before the

SINDy algorithm can be applied. The subsequent sections illustrate several methods for

recovering each of these two time series.
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2.2.2 Susceptible Reconstruction

The problem of estimating the susceptible class given prevalence data is an issue that has not

been conclusively addressed, and at present there is no convention on what method provides

the best approximation. We apply several of the current methods to the sources of data

listed above and compare the resulting time series to known qualities of the dynamics of

susceptible classes, from both epidemiological theory and compartmental models.

Perhaps the simplest method for the reconstruction of the susceptible class is to iterate

the equation

St+1 = St − αCt,t+1 +Bt,t+1, (2.6)

where St represents the number of susceptibles at the start of week t, Ct,t+1 and Bt,t+1 are

the number of new cases and births respectively in week t, and α is the rate at which cases

are reported (i.e. α−1 is the average proportion of all cases that are reported to the data

collection agency) [18]. The idea behind this method is simple: each week the suceptible

class grows by the number of new births into the population (in the absence of vaccination),

and shrinks by the number of new infections. If the reporting rate α was well known, this

relation would provide a good approximation. However, reporting varies significantly for

different diseases and locations [75] as well as changing temporally [21]. It is also difficult to

estimate explicitly, due to the lack of serological data available.

An extension of this method is derived in Ref. [21]. They assume the discrete relation

St+1 = St − αtCt,t+1 +Bt−d,t−d+1 + ut, (2.7)

where u describes the additive noise (E(u) = 0, V (u) = σ2
u), and d represents a short delay

to allow for the period of time between birth and susceptibility to the disease.

Now let Zt describe the deviation from the mean E(S) = S̄ at week t, i.e.

St = S̄ + Zt. (2.8)
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By substituting Eq. [2.8] into Eq. [2.7] we see that Zt also satisfies the relation

Zt+1 = Zt − αtCt,t+1 +Bt−d,t−d+1 + u. (2.9)

Iterating this expression results in the relation

Zt = Z0 −
t∑

i=1

αiCi,i+1 +
t∑

i=1

Bi−d,i−d+1 +
t∑

i=1

ui (2.10)

Finkenstadt and Grenfell in Ref. [21] use the simplifying notation

Xt =
t∑

i=1

Ci,i+1, Yt =
t∑

i=1

Bi−d,i−d+1, Ut =
t∑

i=1

ui, Rt =
t∑

i=1

(αi − ᾱ)Ci.

This simplifies Eq. [2.10] to

Zt = Z0 − ᾱXt + Yt −Rt + Ut. (2.11)

If it is assumed that the reporting rate is constant (Rt ≈ 0) and noise is negligible

(Ut ≈ 0), this reduces to the linear relationship

Yt = ᾱXt + (Zt − Z0). (2.12)

Hence, applying a linear regression to the cumulative births (Yt) against the cumulative

cases (Xt) provides an estimate for the residuals Zt − Z0 and the average reporting rate ᾱ.

Applying this reconstruction method yields susceptible classes for each of the datasets in

Section 2.2.1, as shown in Figure 2.1.
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(a) Measles (UK) (b) Varicella (Ontario)

(c) Rubella (Ontario)

Figure 2.1: Suceptible reconstructions for measles (a), varicella (b), and rubella (c) using
the global regression method.

From these figures it can be seen that each reconstruction (especially from the varicella

and rubella case notification data) suffers from local shifts in the mean, caused by the

assumption that the reporting rate is temporally invariant. Finkenstadt and Grenfell account

for this by supposing the dominant fluctuations in Eq. 2.11 are caused by variation in the
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reporting rate αt rather than in external noise (ut). Eq. 2.11 can then be expressed as

Yt+1 = Rt − UtZ0 − (αt+1 − ᾱ)Xt + αt+1Xt+1 + Zt+1 − ut+1. (2.13)

Local linear regression techniques can then be applied to estimate both the reporting rate

and the susceptible class. The method used in this work is the same as in Ref. [21] which is

sensitive to the bandwith parameter, and must be tuned beforehand to minimize large-scale

fluctuations from the global mean.

Utilizing this locally linear regression method, the susceptible time series for the measles,

varicella and rubella data used previously in Figure 2.1 are now
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(a) Measles (UK) (b) Varicella (Ontario)

(c) Rubella (Ontario)

Figure 2.2: Suceptible reconstructions for measles (a), varicella (b), and rubella (c) using
the locally linear regression method.

2.2.3 Incidence to Prevalence Conversion

As noted in Section 2.2.1, prevalence data is required to create models analogous to typical

compartmental modes, but empirical data is usually presented in incidence form. Hence,

before performing any model extraction, we must first convert the given incidence data into

prevalence data.
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Given temporal case data Ct, suppose that the duration of infection (Di), the mean

individual lifespan (L), and the proportion of people that will contract the disease in their

lifetime (p) are known and constant. The average proportion of the population that is

infected at any given time is then given by

〈Pt〉 =
pDi

L
(2.14)

From the relation

Pt

〈Pt〉
=

Ct

〈Ct〉

we then obtain

Pt =
CtpDi

〈Ct〉L
(2.15)

which is used to construct the prevalence (infectious) class given incidence data.

2.2.4 Weighted Thresholding

The engine that drives the SINDy model discovery algorithm is sparse regression, a statistical

learning technique that performs feature selection while fitting the active terms to the data.

The realization of this technique used in Ref. [50] is the iterated thresholding method,

outlined in Section 2.1. The key parameter in this algorithm is λ, a chosen threshold below

which coefficients (and their corresponding functions) are eliminated on any given iteration.

In Ref. [50] and subsequent papers this parameter is taken as constant, though Ref. [55]

analyses the effects of fitting λ using cross-validation. However, epidemiological data present

an additional challenge, as the state variables are often orders of magnitude apart (see Figures

3.17a - 3.19b for examples of this). When evaluating a higher order function library using

data on contrasting scales, high order functions of small state variables (such as I3) have a

much smaller column norm than larger state variables or functions with a smaller polynomial

order. As a result, the iterated sparse regression algorithm can assign them large coefficients

to account for this, which are much less likely to be eliminated by a fixed thresholding value.
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To account for this, we introduce a threshold for each function in the library that is scaled

according to the norm of the corresponding column. For each column k in the function library

Θ(X), we construct the threshold

λ(k)w =
λc

|Θ(k)(X)|
, (2.16)

where Θ(k)(X) is the kth column in the function library, | · | is the l2− norm, and λc is a

constant threshold value. The algorithm in Section 2.1 is then performed in the same way,

using this function-dependent sparsity knob instead. This is the technique utilized in the

rest of this thesis, and any reference to a constant λ value is the λc parameter in Eq. 2.16.

2.2.5 Choice of a Functional Basis

Determining the correct basis of elementary functions is a key step when generating a model

using SINDy, and the lack of a rigorous method to identify such a basis is one of its notable

downfalls [50]. Nevertheless, most compartmental models in epidemiology have been con-

structed using a simple basis of polynomial and trigonometric functions, which is what we

use in this analysis. Many compartmental disease models only use polynomial functions on

the second degree or lower, so we commonly limit our function library to second or third

order polynomials.

Depending on the nature of the system and the assumptions made, it becomes necessary

to add several features to the function library. As discussed in Section 1.1.3, the dynamics of

the prevalence of both measles and varicella are strongly dictated by a seasonal component.

Hence, a new parameter β is constructed such that

β = β0(1 + β1cos(2πt/T − φ)), (2.17)

where T is the period of the seasonal oscillations (usually 1yr−1) and φ is the phase shift.

This parameter is then multiplied by each of the p columns in Θ to create p new features in

the function library.
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Given that the susceptible population is influenced heavily by the birth rate, the addition

of a birth parameter is also beneficial. A functional form of the birth rate can be assumed

and added to the library, but given that in the place and time period of this study the birth

rate does not behave in a way that can be described by a linear or exponential function we

choose to represent the birth rate in the function library by simply including a column of

the empirical data B(t) that gives the total number of births in week t. This data is already

required to scale the state variables and the source for each location used in this thesis is

given in Section 2.2.1.

2.2.6 Power Spectral Density

Perhaps the most characteristic feature of a pre-vaccination infectious disease is the frequency

at which epidemics occur. The diseases studied in this thesis exhibit three distinct patterns:

an annual cycle (varicella, Fig. 1.2(c)), a biennial cycle (measles, Fig. 1.2(a)) and a multi-

annual cycle (rubella, Fig (1.2(e)). When using automated model discover from data it

is important to ensure the model captures the underlying attractor and exhibits the same

temporal pattern. However, a number of factors such as initial conditions or the phase of the

seasonal forcing can give model instances that captures these patterns but are out-of-sync

with the data, resulting in a poor evaluation by a model selection metric such as AIC or

residual error.

Another method of comparing time series that captures the frequency of temporal oscil-

lations is the power spectral density (PSD), which shows the relative strength of the various

frequencies present within the data. Comparing the PSDs generated from time series of

different models can identify which models have similar cycles regardless of whether the

peaks are synchronized. Given situations where the overarching dynamic behaviour of the

model is seen as more important the accuracy of a specific realization, this technique can be

advantageous in the model selection process.

In order to compute the PSD of a given infectious time series the data was first trend-

corrected, tapered with a split cosine bell and smoothed using a moving average [13, 81].

The PSD was then computed using the MATLAB function periodogram [82]. The results
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from each disease given in Section 2.2.1 are given in Figure 2.3.

(a) Measles (UK) (b) Varicella (Ontario)

(c) Rubella (Ontario)

Figure 2.3: Power spectral density estimates for the prevalence time series of the measles
(a), varicella (b), and rubella (c) datasets. These estimates show the underlying attractor(s)
present within the data and can be used for qualitative time series analysis and comparison.
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Chapter 3

Results

The main results from this thesis can be separated into two distinct sections: recovering

model equations given simulated data from a known (SIR) system, and discovering model

equations given empirical disease data. The former has been the focus of most research

conducted using the SINDy algorithm [50, 55, 56, 59, 60, 61] and is motivated in part to

developing understanding of the method with the intention of applying the algorithm to

observable systems. With this motivation in mind, we apply the SINDy algorithm to contin-

uous and discrete SIR models, both the basic model and then adding seasonal forcing and

demographics. This then lends insight to the second section, which examines the models dis-

covered by the algorithm when applied to empirical data from the three datasets mentioned

in Section 2.2.1.

3.1 Model Rediscovery from Simulated Data

This work explores modelling disease outbreak using both the continuous and discrete tem-

poral regimes. Both have benefits and drawbacks depending on the system in question and

the problem the model attempts to solve. Additionally, when working in the context of using

SINDy as a model discovery technique, the need to estimate the response of the dynamical

system is an important consideration. In order to use a continuous time-scale when applying

SINDy it is necessary to evaluate the derivative of the input data, which can yield noisy

and unpredictable values when using empirical data. Hence, when using simulated data to

emulate the model discovery process, it is beneficial to consider both the continuous and

discrete time-scales to lend insight into what techniques might translate well when applying
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SINDy to empirical data of disease dynamics.

As discussed in Chapter 1, the standard model of disease dynamics is the SIR compart-

mental model. In its most basic form, realizations of this system model single outbreaks,

though with the additions of vital dynamics (birth and death rates) and seasonal forcing,

more complex dynamics that describe long-term patterns of endemic infectious diseases can

be achieved. Thus we seek to rediscover various forms of the SIR model given simulated data,

to lend insight to how the SINDy algorithm behaves when presented with epidemiological

time series.

3.1.1 Continuous Regime

The SIR Model

The model equations for the continuous SIR model are

S ′(t) = ν − βS(t)I(t)− µS(t) (3.1)

I ′(t) = βS(t)I(t)− γI(t)− µI(t) (3.2)

R′(t) = γI(t)− µR(t) (3.3)

where S, I, and R are state variables describing the proportion of the population that are

susceptible, infected and recovered respectively, β is the transmission rate, γ−1 is the mean

duration of infection, ν is the mean birth rate and µ is the mean death rate.

Firstly, it is relevant to note that R is a redundant state variable, meaning that the

remaining state variables do not depend on it explicitly. This creates unnecessary complica-

tions in the model selection process, as noted in Ref. [55]. Therefore the equation for R′(t)

is omitted when applying SINDy to the simulated data.

The model described by Eqs. 3.1 - 3.3 was simulated using the parameter values and

initial conditions found in Tables 3.1 and 3.2, corresponding to simple and more complicated

versions of the model (Cases I and II, respectively). The data for the derivative vector

x(t) = [S(t), I(t)] was also found through model simulation, rather than from numerical

differentiation methods. Additive noise at various levels was introduced after simulation in
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each of the state variables. The function library was then compiled (taking polynomials up

to the second order) and the SINDy sparse regression algorithm was run.

Case I: Constant transmission rate, no demographics

The transmission rate in the simulated model was assumed to be time-invariant (i.e. β is

constant) and the birth and death rate were taken to be zero. The corresponding function

library taken was

Θ(X) =
[
1 S I S2 I2 SI

]
In Figures 3.1 and 3.2, the simulated model and the model discovered by SINDy are compared

at varying levels of additive noise.

(a) Time-series (b) Model Coefficients

Figure 3.1: Comparison of the simulated SI model with no vital dynamics, time-invariant
transmission rate, and additive noise of ε = 0.00001 with the corresponding discovered model.
In this example with low relative noise, SINDy successfully identifies the correct active terms
of the system, as well as the magnitude of the corresponding coefficients. Parameters used
are found in Table 3.1.
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(a) Time-series (b) Model Coefficients

Figure 3.2: Comparison of the simulated SI model with no vital dynamics, time-invariant
transmission rate, and additive noise of ε = 0.001 with the corresponding discovered model.
The correct terms are still present in the discovered model, but the coefficients are no longer
accurate. Other terms have also been selected in an attempt to overfit the model to the
noisy data. Parameters used are found in Table 3.1.

β γ µ ν

0.5 0.01 0 0

Table 3.1: Model coefficients for the SIR model (Eqs. 3.1 - 3.3) displaced in Figures 3.1 and
3.2. Units for all parameters are wk−1.

In this relatively simple model, SINDy was able to correctly identify the active terms

and parameter values (β = 0.5, γ = 0.01) given a sufficiently low level of additive noise. As

the noise level increases, terms that are not active in the simulated model are given nonzero

coefficients, in an attempt to locally overfit the resulting model to the noise. However, the

resulting SINDy model still exhibits the same noticeable behaviour as the noisy simulated

model.
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Case II: Seasonal transmission rate, constant demographics

In this case a seasonally-varying transmission rate was introduced, of the form:

β = β0(1 + β1cos(2πt/T − φ)), (3.4)

where T = 1yr−1 is the period of the oscillations, and φ is an arbitrary phase shift corre-

sponding with the yearly peak of the force of infection. When the model coefficients are

given in figures describing SINDy-discovered models, this parameter is represented by B. In

addition, a constant and equal (but nonzero) birth and death rate were included (parameters

ν and µ in Eqs. 3.1 - 3.3). These additions give a function library of

Θ(X) =
[
1 S I S2 I2 SI β βS βI βS2 βI2 βSI

]
In Figures 3.3 and 3.4, the simulated model and the model discovered by SINDy are compared

at varying levels of additive noise.

(a) Time-series (b) Model Coefficients

Figure 3.3: Comparison of the simulated SI model with vital dynamics, seasonal forcing,
and additive noise of ε = 1×10−8 with the corresponding discovered model. In this example
with low relative noise, SINDy successfully identifies the correct active terms of the system,
as well as the magnitude of the corresponding coefficients. Note that the infectious time
series in both plots have been scaled by a factor of 10 to improve readability. Parameters
used are found in Table 3.2.
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(a) Time-series (b) Model Coefficients

Figure 3.4: Comparison of the simulated SI model with vital dynamics, seasonal forcing, and
additive noise of ε = 0.00001 with the corresponding discovered model. The correct terms
are still present in the discovered model, but the coefficients are no longer accurate. Other
terms have also been selected in an attempt to overfit the model to the noisy data. Note
that the infectious time series in both plots have been scaled by a factor of 10 to improve
readability. Parameters used are found in Table 3.2.

β0 β1 γ µ ν

1.1 0.1 0.1 0.00007 0.00007

Table 3.2: Model coefficients for the SIR model simulated above. Units for all parameters
are wk−1.

The inclusion of both a seasonally-varying transmission rate and nonzero birth and

death rates yields a model that more accurately represents observed epidemiological sys-

tems, namely the existence of seasonal oscillations in both the susceptible and infectious

classes. Even with these more complex dynamics and expanded functional library, SINDy

was able to accurately identify the active terms and parameter values, though once again

these results were sensitive to the level of additive noise.
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3.1.2 Discrete Regime

The SIR Model

Analogous to the continuous case, the equations for the discrete SIR model are

St+1 = St + ν − βStIt − µSt (3.5)

It+1 = It + βStIt − γIt − µIt (3.6)

Rt+1 = Rt + γIt − µRt (3.7)

where t is now a discrete independent variable and the parameters have the same meaning

as in the previous section. As in the continuous case, we may treat the state variable R as

redundant and exclude it from simulations.

Discrete simulations were again run using both the simple and more complicated versions

of the model given by Eqs. 3.5 - 3.7 (taking the parameter values and initial conditions

found in Tables 3.3 and 3.4). The response vector used in the sparse regression is now

xt+1 = [St+1, It+1] and is also found directly through model simulation. Additive noise at

various levels was introduced after simulation in each of the state variables. The function

library was then compiled (taking polynomials up to the second order) and the SINDy sparse

regression algorithm was run.

Case I: Constant transmission rate, no demographics

The transmission rate in the simulated model was assumed to be constant (i.e. β is time-

invariant) and the birth and death rate were taken to be zero. The corresponding function

library taken was

Θ(X) =
[
1 S I S2 I2 SI

]
In Figures 3.5 and 3.6, the simulated model and the model discovered by SINDy are compared

at varying levels of additive noise.
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(a) Time-series (b) Model Coefficients

Figure 3.5: Comparison of the simulated SI model with no vital dynamics, time-invariant
transmission rate, and additive noise of ε = 0.0000001 with the corresponding discovered
model. In this example with low relative noise, SINDy successfully identifies the correct
active terms of the system, as well as the magnitude of the corresponding coefficients. Pa-
rameters used are found in Table 3.3.

(a) Time-series (b) Model Coefficients

Figure 3.6: Comparison of the simulated SI model with no vital dynamics, time-invariant
transmission rate, and additive noise of ε = 0.0001 with the corresponding discovered model.
The correct terms are still present in the discovered model, but the coefficients are no longer
accurate. Other terms have also been selected in an attempt to overfit the model to the
noisy data. Parameters used are found in Table 3.3.
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β γ µ ν

8.0 0.1 0 0

Table 3.3: Model coefficients for the SIR model simulated above. Units for all parameters
are wk−1.

Again, when using the simplest form of the SIR model, SINDy can successfully recover

the model coefficients given a library of first and second order polynomials. Increasing the

noise again leads to the inclusion of active nonlinearities that are not active in the model, in

an attempt to fit to the noise, but the effects of these terms appear negligible in the resulting

time series.

Case II: Seasonal transmission rate, constant demographics

The same functional form for the transmission rate and function library as in the continuous

case were used to introduce seasonality to the simulated model. In Figures 3.3 and 3.4,

the simulated model and the model discovered by SINDy are compared at varying levels of

additive noise.
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(a) Time-series (b) Model Coefficients

Figure 3.7: Comparison of the simulated SI model with vital dynamics, seasonal forcing, and
additive noise of ε = 1 × 10−10 with the corresponding discovered model. In this example
with low relative noise, SINDy successfully identifies the correct active terms of the system,
as well as the magnitude of the corresponding coefficients. Parameters used are found in
Table 3.4.

(a) Time-series (b) Model Coefficients

Figure 3.8: Comparison of the simulated SI model with vital dynamics, seasonal forcing,
and additive noise of ε = 1 × 10−7 with the corresponding discovered model. The correct
terms are still present in the discovered model, but the coefficients are no longer accurate.
Other terms have also been selected in an attempt to overfit the model to the noisy data.
Parameters used are found in Table 3.4.
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β0 β1 γ µ ν

8 0.25 0.1 5.4795×

10−5

5.4795×

10−5

Table 3.4: Model coefficients for the SIR model simulated above. Units for all parameters
are wk−1.

Even with the inclusion of a seasonal transmission rate and demographics, SINDy was

still able to correctly recover the coefficients of the simulated model. It should be noted,

however, that the noise level required for this accurate identification is significantly lower

than in Case I, indicating that the inclusion of more complex dynamics impacts the tolerance

of the algorithm to random variation.

The results in this section demonstrate the ability of the SINDy algorithm to correctly

identify the dynamics of models commonly used to analyse and make predictions about

real-world disease systems. This suggests that given empirical data with similar dynamics,

SINDy may be able to recover analogous models that can either confirm or expand upon

current theory. The subsequent section describes our attempt to apply this algorithm to

case notification data from several infectious diseases and details the resulting models.

3.2 Model Discovery from Empirical Data

Previously we have discussed the ability of SINDy to rediscover dynamic disease models given

simulated realizations of these systems. The motivation behind this was to lend insight into

the next topic of discussion, which is the discovery of dynamical systems that describe em-

pirical data of disease prevalence. This is, of course, a much more interesting and influential

area of research; the ability to either confirm the compartmental models currently used or

discover new models that describe these systems in more accurate detail could be of great

use to the field of mathematical epidemiology.
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3.2.1 Overview of Features

Given the complex nature of the epidemiological systems and the structure of current mod-

elling practices there were a number of crucial choices that were found to impact the accuracy

of the discovered model. Some of these factors related directly to features of the epidemio-

logical data, while others apply more generally to statistical modelling methods. Below we

list each of these factors along with a brief discussion of the impact that the choice has on

the identification algorithm.

• Type of Disease: There were three diseases and corresponding locations and time

periods selected: measles in the UK from 1948-1967, varicella in Ontario (Canada),

from 1946-1967, and rubella in Ontario from 1946-60. Each provides a different example

of an attractor class: measles is biennial, varicella is annual, and rubella is multiennial.

• Continuous vs. Discrete Time Scale: As discussed in Chapter 1, disease dynamics

can be modelled using both the continuous and discrete time models. Due to the

necessity of numerically computing derivative data, operating in the continuous regime

can lead to noisy response variables and make it difficult for the sparse regression

algorithm to obtain a global minimum. Conversely, due to the weekly or bi-weekly

structure of the empirical data, the discrete SINDy framework seems to lend itself

naturally to this problem. Any systems following hereafter will use the discrete time

scale.

• Polynomial Order: When selecting the function library, an important consideration

is the largest order of polynomials that will be included. Selecting polynomials of at

most 2nd order gives models most comparable to the current compartmental models,

whereas selecting polynomials of at most 3rd order allows SINDy to capture extra

features of the data, but sometimes at the cost of overfitting. Both function libraries

will be considered and contrasted, though only the 2nd order libaries will be contrasted

with fitted compartmental models.

• Initial Susceptible Value (S0): As the nature of the susceptible class (and, by
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extension, the infectious class) depends heavily on its initial value this parameter plays

an important role in the resulting dynamics. Notably, the susceptible population scales

inversely with the basic reproductive ratio R0 [63], and as the initial value impacts the

temporal average of the susceptible class it is important that S0 is selected carefully

to ensure accurate replication of dynamics. Additionally, as data on the susceptible

class is not explicitly available, the initial value is not known for any of the analysed

datasets. As a result, we most often make the choice to treat S0 as a varying parameter

and consider the resulting discovered model across an appropriate range.

• Threshold Value (λ): As discussed in the Methods chapter, at each sparse regres-

sion iteration of the SINDy algorithm this parameter acts as a cutoff value, dictating

that the algorithm remove any functions corresponding to coefficients smaller than it.

Usually a wide range of threshold values are selected, then either the optimal model

will be chosen or each model across the range will be considered and contrasted.

Another important factor when considering the quality of the discovered model is the

level of sparsity present within the coefficient matrix. To quantify this we introduce the

concept of a sparsity ratio, the ratio of coefficients of value 0 to total possible functions, i.e.

r = 1− ||Ξ||0
||Θ||0

,

where Ξ is the set of coefficient vectors and Θ is the collection of library functions.

3.2.2 Algorithm Demonstration

For each disease dataset (see Section 2.2.1), the adapted SINDy algorithm was applied to

each point of a S0 − λ parameter grid, where S0 is the initial susceptible proportion and λ

is the cutoff value used in SINDy’s thresholding algorithm. The sensitivity of the algorithm

to these parameters is discussed further in Section 3.2.3. In addition, realizations of these

models are also sensitive to the phase shift in the seasonal forcing (the parameter φ in Eq.

1.5). However, this parameter cannot be fit using the sparse regression algorithm as it
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is not a coefficient of a function in the library. To account for this, at each point of the

parameter sweep a range was selected to uniformly sample the phase shift (using a step size

of ∆φ = 0.5wk across 52 weeks) and the model with the best AIC score was selected to

capture any shifts in dynamics caused by phase changes.

First we demonstrate the effectiveness of the SINDy algorithm by applying it to each of

the three datasets, exploring the results using libraries including up to 2nd order polynomials

and 3rd order polynomials. Figures 3.9-3.14 show the most parsimonious discovered models

(the models with the lowest AIC score after the parameter sweep) plotted against the data,

as well as the model coefficients. The AIC scores and further analysis of the effects of the

parameters are presented in Section 3.2.3.

When using up to 2nd order polynomials, the function library used was

Θ(X) =
[
1 S I S2 I2 SI β βS βI βS2 βI2 βSI

]
,

and when using up to 3rd order polynomials, the function library used was

Θ(X) = [1 S I S2 I2 SI S3 S2I SI2 I3

β βS βI βS2 βI2 βSI βS3 βS2I βSI2 βI3]
,

where β is the seasonally-varying transmission rate given in Eq. 2.17. When the model coeffi-

cients are given in figures describing SINDy-discovered models, this parameter is represented

by B.

46



Measles (UK), 2nd Order Polynomials

Figure 3.9: Comparison between measles data and the best SINDy-discovered model using a
function library of polynomials up to 2nd order. The discovered model accurately replicates
the biennium present in the data in both the susceptible and infection classes. It also
identifies a strong dependence on the SI and βSI cross terms, the driving terms behind the
mass action incidence mechanism present in the SIR model. The sparse regression resulted
in the exclusion of six terms, giving a sparsity ratio of 0.25.
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Measles (UK), 3rd Order Polynomials

Figure 3.10: Comparison between measles data and the best SINDy-discovered model using
a function library of polynomials up to 3rd order. As in the case above, the discovered model
accurately replicates the biennium present in the data in both the susceptible and infection
classes. It also again identifies a strong dependence on the SI cross term, as well as the
S2I and (to a lesser extent) the S3 terms. The sparse regression resulted in the exclusion of
thirteen terms, giving a sparsity ratio of 0.325.
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Varicella (Ontario), 2nd Order Polynomials

Figure 3.11: Comparison between varicella data and the best SINDy-discovered model using
a function library of polynomials up to 2nd order. The discovered model accurately replicates
the annual cycle present in the data in both the susceptible and infection classes. As in the
measles case, it also identifies a strong dependence on the mass action incidence term in both
the S and I equations. Note also that the coefficient of S and I in their respective equations
are close to 1, as expected in discrete disease models. The sparse regression resulted in the
exclusion of six terms, giving a sparsity ratio of 0.25.
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Varicella (Ontario), 3rd Order Polynomials

Figure 3.12: Comparison between varicella data and the best SINDy-discovered model using
a function library of polynomials up to 3rd order. Again the discovered model accurately
replicates the annual cycle present in the data in both the susceptible and infection classes.
The dependence on the mass action incidence term is again noticeable, though the S2I,
SI2 and S3 terms have dominant coefficients as well. The sparse regression resulted in the
exclusion of nine terms, giving a sparsity ratio of 0.225.
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Rubella (Ontario), 2nd Order Polynomials

Figure 3.13: Comparison between rubella data and the best SINDy-discovered model using
a function library of polynomials up to 2nd order. The algorithm was unable to discover a
model that exhibited the multiennial cycle observed in the data, instead returning an annual
cycle. Despite this, strong dependence on the mass action incidence term is again present.
The sparse regression resulted in the exclusion of fourteen terms, giving a sparsity ratio of
0.7.
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Rubella (Ontario), 3rd Order Polynomials

Figure 3.14: Comparison between rubella data and the best SINDy-discovered model using a
function library of polynomials up to 3rd order. The discovered model successfully recovers a
multiennial cycle in the prevalence time series, similar to the one present in the data. It also
replicates the temporal fluctuations from the mean present in the susceptible reconstruction.
The dependence on the mass action incidence term again exists, though perhaps not as
strong as in models recovered from the other diseases. The sparse regression resulted in the
exclusion of six terms, giving a sparsity ratio of 0.15.

The time series plots in Figures 3.9-3.14 demonstrate the effectiveness of the SINDy algorithm

at recovering a sparse model that closely mimics the dynamics of the empirical disease

data for both the susceptible and infectious classes. Specifically, in the case of a biennium

(Figures 3.9 and 3.10) and of an annual cycle (Figures 3.11 and 3.12) a second order library

of polynomials was sufficient for SINDy to identify the attractor class of the underlying

dynamics of the system. The algorithm also successfully identified the phase shift of the
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seasonal transmission rate, correctly syncing the peaks of the model with those of the data.

In the case of the multi-annual rubella (Figures 3.13 and 3.14), a third order library was

required to produce the appropriate cycle, despite it being shown previously that a second

order library is sufficient to obtain a multi-annual attractor [11]. However, the inability of

the model selection criteria to identify a model that exhibits a multiennial attractor is most

likely caused by a misalignment of major peaks, which results in a poor residual error. In

this case, comparison of power spectral density estimates can be more effective at selecting

models with similar dynamics, as discussed in Section 2.2.6. The results when using this

technique are presented in section 3.2.5.

The promotion of sparsity within the model is also noticeable within the model co-

efficients, where dominant terms are clearly present. Specifically, the algorithm assigned

dominant coefficients to terms corresponding with bilinear incidence (SI and βSI), a driv-

ing mechanism in the standard SIR model. Additionally, when a third order library was

included, a strong dependence was put on the S2I and SI2 terms (and their corresponding

seasonal terms), which may indicate a more general nonlinear incidence mechanism is present

in the underlying system. It has been shown in Refs. [83, 84] that an incidence function of

the form SpIq (where p, q > 0) may more adequately represent some endemic cycles, a form

that is present when a 3rd order polynomial library is included. Impacts of this result are

discussed further in Section 4.3.

It is also important to note that the algorithm has sensitivity to both the initial suscepti-

ble value and the thresholding cutoff value, which creates a segue to both of the subsequent

sections: a connection with compartmental modelling techniques and the need to balance

the goodness of fit of the recovered model with relative sparsity in the selection of active

terms.

3.2.3 Balancing Sparsity with Goodness of Fit

Perhaps the most important parameter of the SINDy algorithm is the sparsity knob λ. This

value defines the threshold below which coefficients (and their corresponding features) are

removed from the library at each iteration. Varying this parameter has a dramatic effect
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on the sparsity and resulting behaviour and predictive value of the discovered model. If the

threshold is set too low then the generated model will include most (or all) of the functions in

the library, resulting in overfitting. Conversely, if the threshold is set too high then features

required to emulate the dynamics of the system may be removed, resulting in a model that is

too simplistic. AIC scores (see Section 1.2.3) provide a measure of relative quality between

models and is used for model selection when sparsity is desirable. When applying SINDy to

empirical data, then, it is possible to automate the model selection process by running the

algorithm over a chosen range of the thresholding parameter and choosing the model that

gives the lowest AIC value.

In the context of epidemiological data used in this work, another key parameter is the

initial susceptible value (S0). There is no feature of the raw case notification data that

would suggest a starting point for the susceptible time series, and empirical data on the

susceptible class is rarely available for a given demographic. Theory dictates [63] that the

average susceptible value can be approximated as

S̄ ≈ 1

R0

which gives an estimate for the initial value, as the basic reproductive ratio is known for the

infectious diseases in question. However, this estimate is not without uncertainty, and the

dynamics of the system are strongly influenced by the initial condition. Thus it is necessary

to investigate the SINDy-discovered models across a biologically relevant range of initial

susceptible proportions.

For each of the three diseases, a range of initial susceptible and threshold values were

selected. The susceptible class was reconstructed (using the locally linear regression method

described in Section 2.2.2) and the SINDy algorithm was applied to the data using each pos-

sible pair (S0, λ) from a parameter grid created by linear sampling from the respective ranges.

The AIC values comparing the discovered models to the empirical data were recorded, and

the values for the UK measles dataset are presented in Figure 3.15 (the results for the other

two datasets are found in Appendix A).
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Figure 3.15: The AIC values for SINDy models across a range of both initial susceptible and
threshold values, utilizing the measles dataset and a 2nd order polynomial library. Darker
colour refers to a lower AIC value, which indicates a higher quality model. Cells without
value refer to a model which, when simulated, resulted in a diverging time series.

These values show that there exists an optimal region in the S0 − λ plane that should

be chosen to ensure the SINDy algorithm can generate regularized, accurate models from

empirical disease data. The model selected by the AIC scores as the most parsimonious used

an initial susceptible value of S0 = 0.11286 and a sparsity knob of λ = 0.00517. This is the

model shown in Figure 3.9 and is an example of a model that balances a well-fitting time

series with a sparse set of active terms. Using the same dataset, function library, and initial

susceptible value, a much lower sparsity knob (λ = 0.0001) was taken and the resulting

model is shown in Figure 3.16a. As expected, the model is overfit, resulting in a time series

that is too closely fit to the random fluctuations in peak height as well as a model that has

all possible functions active. Conversely, if the sparsity knob is set much higher (λ = 0.1) the

discovered model no longer exhibits the biennium that the data does, but rather an annual

attractor that does not match the dynamics of the system (Figure 3.16b).
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(a) λ = 0.0001.

(b) λ = 1.

Figure 3.16: Resulting time series and coefficients from SINDy-discovered models of the
measles dataset (with a 2nd order polynomial library) using extreme sparsity thresholds.
Using a relatively small threshold (λ = 0.0001) results in a good fit and accurate recovery of
attractor class, but a very low number of non-active terms, which is an indicator of an overfit
model (a). Conversely, using a relatively large threshold (λ = 1) gives a sparse model, but
at the cost of a good fit and recovery of attractor class (b).

56



3.2.4 Comparison with Compartmental Models

The basis for many modern mathematical models in epidemiology lies in compartmental

modelling, primarily stemming from the seminal work of Kermack and McKendrick [5].

The theory behind these modelling techniques is discussed in depth in Chapter 1. For the

purposes of this section, recall that perhaps the most fundamental compartmental model

used to model periodically-occurring infectious diseases is the seasonally-forced SIR model,

which (given a discrete timescale) takes the form

St+1 = St + ν − βtStIt − µSt

It+1 = It + βtStIt − γIt − µIt

Rt+1 = Rt + γIt − µRt

where βt is the discrete analogue of the seasonally-varying transmission rate given in Eq.

1.5, given by

βt = β0(1 + β1cos(2πt/T − φ)).

Several prominent features exist within this model, the most important of which is the

existence of the mass action incidence term (βtStIt) in both the St+1 and It+1 equations. This

term represents the theoretical mechanism by which susceptible individuals are transferred

to the infectious class, and the weight that this term is given heavily influences the dynamics

of the model. Besides this term, the only other active terms present are linear.

It is of interest, then, to compare the data-driven models discovered by the SINDy algo-

rithm to the theoretically-derived SIR model presented above. In order to do this, we must

first obtain estimates for the parameters in the SIR model by fitting it to the empirical data.

This can be done by simulating the model across a wide range of linearly-spaced parameter

values and selecting the model which minimizes the sum of squares error between the simu-

lated model and the observed data. Baseline values for the parameters were taken from Refs.

[11, 63]. For simplicity a closed system was assumed, implying that the birth and death rates
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were equal (ν = µ). Also, recall that given basic reproductive ratio R0 and recovery rate γ,

the mean transmission rate is completely determined by β0 = R0 · γ. The parameters that

were varied, with corresponding ranges and step sizes, are presented in Table 3.5:

Symbol R0 γ β1 µ φ

Description Basic rep.

ratio

Recovery rate Forcing

amplitude

Birth/death

rate

Forcing phase

Range 6 - 16 0.55 - 1.25 0.05 - 0.35 3×10−4 -

6×10−4

0-51.5

Step Size 0.5 0.05 0.025 5×10−5 0.5

Table 3.5: Parameters, ranges, and parameter step sizes used for fitting discrete SIR model
(Eqs. 3.5 - 3.7) to empirical data for each of the three disease datasets, using a timestep of
∆t = 1week.

Simulations of the discrete SIR model were run at each point in the parameter plane,

beginning 150 years prior to the temporal range of the data to eliminate the effects of

transients and the impact of the initial conditions, which were fixed at (S0, I0) = (0.1, 5 ×

10−5). The resulting models with the minimal sum of squares error when compared with the

data were selected and plotted in Figures 3.17a - 3.19b.
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(a) Susceptibles (b) Infectious

β0 β1 γ µ
7.7 0.03 0.7 0.0005

Figure 3.17: Comparison between the empirical data (orange) and a fitted SIR model (blue)
for the measles dataset. Parameters used when simulating the discrete SIR model (defined
by Eqs. 1.9 - 1.11, using a time step of ∆t = 1week) were obtained by sweeping across the
grid defined by the ranges and parameter step sizes given in Table 3.5, selecting parameters
that gave the model that minimized residual error.

.
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(a) Susceptibles (b) Infectious

β0 β1 γ µ
7.8 0.3 0.6 0.0002

Figure 3.18: Comparison between the empirical data (orange) and a fitted SIR model (blue)
for the varicella dataset. Parameters used when simulating the discrete SIR model (defined
by Eqs. 1.9 - 1.11, using a time step of ∆t = 1week) were obtained by sweeping across the
grid defined by the ranges and parameter step sizes given in Table 3.5, selecting parameters
that gave the model that minimized residual error.

.
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(a) Susceptibles (b) Infectious

β0 β1 γ µ
7.7 0.15 0.7 0.0004

Figure 3.19: Comparison between the empirical data (orange) and a fitted SIR model (blue)
for the rubella dataset. Parameters used when simulating the discrete SIR model (defined
by Eqs. 1.9 - 1.11, using a time step of ∆t = 1week) were obtained by sweeping across the
grid defined by the ranges and parameter step sizes given in Table 3.5, selecting parameters
that gave the model that minimized residual error.

.

Once the models were fit, the most-parsimonious 2nd order SINDy models (Figures 3.9,

3.11, and 3.13) were selected and compared to the corresponding models. Bar chart fig-

ures were constructed for each of the datasets that contrast the magnitude and sign of the

coefficients.
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Measles

Figure 3.20: Comparison of coefficients between SINDy-discovered (using a function library
of 1st and 2nd order polynomials) and fitted SIR model for the measles dataset.

Varicella

Figure 3.21: Comparison of coefficients between SINDy-discovered (using a function library
of 1st and 2nd order polynomials) and fitted SIR model for the varicella dataset.
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Rubella

Figure 3.22: Comparison of coefficients between SINDy-discovered (using a function library
of 1st and 2nd order polynomials) and fitted SIR model for the rubella dataset.

Perhaps the most noticeable feature in this comparison is the striking similarities in the SI

terms for both the data-driven and theoretical models, most notably in the model of the

measles data but to a lesser extent in the model of the varicella data. This demonstrates the

effectiveness of the SINDy algorithm in capturing the theoretical principle of mass action

incidence, a driving component of most epidemiological models. The SINDy models also

exhibit dependence on the corresponding linear terms for each of the S and I equations,

though not always with the expected magnitude and sign. Additionally, several other features

are noticeably different than the theoretically-dictated model, indicating that drawing direct

biological conclusions from any given term at present is not feasible. However, the algorithm’s

success recovering a 2nd order model that captures both the observed disease dynamics

(Figures 3.9, 3.11, and 3.13) and prominent features of current theoretical models shows

promise that this data-driven technique could lend insight to model creation and selection

practices.
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3.2.5 Using Power Spectral Density for Model Selection

Model selection using AIC score, while adept at selecting parsimonious models that fit the

data well, can fail when qualitative features of the underlying system are viewed as more

important that accuracy of fit. When modelling disease dynamics, recovery of the attractor

class present within the data is a key concern, and in certain cases more so than a precise

fit to the specific data. This is exemplified when using AIC as a model selection metric to

identify the most parsimonious SINDy recovered model based on the rubella dataset (Figures

3.13 - 3.14). When using a second order library, the model with the lowest AIC score does

not recover the multiennial pattern present in the data. However, given the right set of

initial parameters (initial susceptible value, sparsity knob, and seasonal transmission phase)

SINDy can identify a model that recovers these dynamics, though perhaps not with correctly

aligned major outbreaks. This will result in large residual error which gives a higher AIC

score, despite the model being qualitatively better. Thus in cases where identifying the

frequency and magnitude of outbreaks (peaks) is more important than exactly fitting the

data, another model selection criteria is necessary, one that quantitatively compares these

elements.

Power spectral density (discussed in Section 2.2.6) is useful for this exact purpose, by

providing a quantitative way to compare the attractor present within a discovered model to

that present within the data. Determining the fit (through residual error or similar means)

of the spectral density plot computed from a simulated model to that computed from the

empirical data can be used to identify which model provides the best fit of attractor class.

However, sparsity is still to be valued within these models, which is why the AIC score

was initially used for model selection. This leads to a model selection process of computing

the AIC score of the spectral densities of the model and the data, which will promote a

parsimonious model that attempts to match the qualitative features present in the data.

SINDy models were computed using a similar parameter sweep as when using the stan-

dard AIC selection method (see Section 3.2.3) except in this instance the power spectral

density of the infectious time series of each model was computed and the AIC score between
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each spectral density and that of the corresponding data was found. These values for models

discovered from the rubella dataset using a function library of up to 2nd order polynomials

are shown in Figure 3.23.

Figure 3.23: The AIC values for SINDy models generated from power spectral density es-
timates of the infectious time series across a range of both initial susceptible and threshold
values, using the rubella dataset and a 2nd order polynomial library. Darker colour refers to
a lower AIC value, which indicates a higher quality model.

The most parsimonious model as determined by this model selection criterion is shown

in Figure 3.24. The corresponding power spectral density estimates of the infectious time

series of both the simulated model and the data are shown in Figure 3.25. Despite qualitative

improvement from the model selected using a 2nd order library and the standard AIC method

(Figure 3.13), the multiennial pattern is still lacking in the resulting infectious time series.

However, given inspection of other ”candidate” models with low AIC values from Figure

3.23, the model presented in Figure 3.26 was discovered, which does recover a multiennial

pattern similar to the one present in the data.
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Figure 3.24: Comparison between rubella data and the best SINDy-discovered model using
a function library of polynomials up to 2nd order and spectral density estimates for model
selection.

Figure 3.25: Comparison of power spectral density estimates of rubella data and the most
parsimonious SINDy-discovered model. The peaks corresponding to the most notable at-
tractors present within the data (with periods of 1 year and 5 years) are noted with the
dashed lines.
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Figure 3.26: Comparison between rubella data and a selected parsimonious SINDy-
discovered model using a function library of polynomials up to 2nd order and spectral density
estimates for model selection.

Figure 3.27: Comparison of power spectral density estimates of rubella data and a selected
SINDy-discovered model. The peaks corresponding to the most notable attractors present
within the data (with periods of 1 year and 5 years) are noted with the dashed lines.
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Chapter 4

Discussion and Future Work

4.1 Conclusions

Applying the SINDy algorithm to epidemiological data yielded models that mimicked the

dynamic behaviour of the data while still exhibiting sparsity through regularization. The

models discovered from both the measles and varicella datasets successfully recovered the

attractor class present in the underlying dynamics of the system using a polynomial library

of no more than 2nd order, whereas the model discovered from the rubella dataset required

a polynomial library of no more than third order to replicate the multiennial cycle. In the

case of measles and varicella, use of the AIC metric was also used to find a parsimonious

model that correctly identified the phase of the seasonal transmission rate.

These models also compare favourably to their theoretical counterpart, the seasonally-

forced SIR model with demographics. The discovered models all demonstrated significant

dependence on the mass action incidence terms (SI and βSI), which provide the driving

mechanism behind current compartmental models of epidemiological systems. While certain

features of the discovered model remain difficult to reconcile with theoretical modelling,

these similarities indicate the potential of sparse modelling techniques to inductively verify

the current modelling practices in mathematical epidemiology.

4.2 Limitations

One notable limitation when working with epidemiological systems is the availability and

quality of data. Since the introduction of vaccination in the 1970s the temporal behaviour of
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endemic infections changed dramatically [18, 22, 85, 86] and data from the two eras are thus

inconsistent with each other. In addition, as noted in Refs. [18, 21, 74, 75], case reporting is

inefficient and inconsistent, leading to several necessary assumptions to simplify the process

of susceptible reconstruction. Given that empirical susceptible data is not available on the

necessary scale, the results of this reconstruction are difficult to verify other than with a

heuristic comparison to compartmental models. As this reconstruction comprises one of the

two state variables of the system, the nature of the reconstruction will strongly affect the

resulting statistical model.

The results generated by applying SINDy to simulated disease data (Section 3.1) demon-

strate that another limitation when applying this technique is sensitivity to noisy systems.

In Figures 3.1 - 3.8 it is shown that increasing the level of additive noise in the system

reduces the ability of the algorithm to accurately recover the correct sparse basis, instead

including terms that are not present in the original model. While these figures also show that

this increase in noise does not drastically impact the resulting time series, these erroneous

coefficients detract from the sparsity of the model and will impact its use. We hypothesize

that noise is also the cause of unexpected terms in models discovered from empirical data.

Given this sensitivity, the results in Section 3.2.4 are more encouraging as the high level of

noise in disease data makes it surprising that SINDy was able to recover features that are

expected in a compartmental disease model.

Another limitation, cited by Ref. [50] as the largest challenge when using the SINDy ap-

proach, is the proper choice of functional basis, and certainly this issue exists when identifying

epidemiological systems. The choice of time-varying transmission function and polynomial

order, as well as the inclusion of non-constant demographic variables and other necessary

features may be limiting the discovery of a more parsimonious and interpretable model. The

state variables themselves are also defined to facilite theoretical mechanisms and may not

be the appropriate choice to recover the dynamics of the data.
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4.3 Future Work

There still remains much room to develop further techniques that assist in applying sparse

identification methods to epidemiological data. A more exhaustive literature review of cur-

rent disease modelling practices would aid in determining a functional basis that could suc-

cessfully capture a sparse model using subset selection methods. There exist many modern

adaptations on compartmental modelling of infectious diseases [87, 88] which incorporate

functions that extend beyond a simple polynomial basis constructed from state variables.

Specifically, it is noted in Section 3.2.2 that there is a strong dependance on special cases

of a general nonlinear incidence (a transmission function of the form SpIq, where p, q > 0).

Extending the function library to include non-integer values for p and q may allow a more

accurate representation of the transmission mechanism and result in a more parsimonious

discovered model. In addition, the choice of a sinusoidal function for the transmission rate

may not be appropriate [11] and while a term-time alternative was tested in our research,

further analysis in this area is necessary.

Considering a coupled behaviour-disease system, one that incorporates human decision

to vaccinate by including vaccination proportion as a state variable as well as infection

dynamics, could also be of interest. Given the influence of social pressure on vaccination

rates, the complex interplay between human behaviour and disease prevalence can lead

to interesting dynamics that are relevant for current governmental decisions. Models are

currently being developed that capture this interplay [89, 90], an excellent review is provided

by [91]. Given the availability of vaccination rate data, sparse identification methods could

assist the model discovery process of these coupled behaviour-disease models by providing a

data-driven approach.
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Appendix A

Supplementary Figures

A.1 Varying Sparsity Threshold

Measles (Third Order Library), AIC Values

Figure A.1: The AIC values for SINDy models across a range of both initial susceptible and
threshold values, utilizing the measles dataset and a 3rd order polynomial library. Darker
colour refers to a lower AIC value, which indicates a higher quality model. Cells without
value refer to a model which, when simulated, resulted in a diverging time series.
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Measles (Third Order Library), Low Threshold

Figure A.2: Resulting time series and coefficients from SINDy-discovered models of the
measles dataset (with a 3rd order polynomial library) using a relatively low threshold (λ =
0.0001). The resulting model exhibits a good fit and accurate recovery of attractor class,
but a very low number of non-active terms, which is an indicator of an overfit model.
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Measles (Third Order Library), High Threshold

Figure A.3: Resulting time series and coefficients from SINDy-discovered models of the
measles dataset (with a 3rd order polynomial library) using a relatively high threshold (λ =
1). The resulting model exhibits sparsity, but at the cost of a good fit and recovery of
attractor class.
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Varicella (Second Order Library), AIC Values

Figure A.4: The AIC values for SINDy models across a range of both initial susceptible and
threshold values, utilizing the varicella dataset and a 2nd order polynomial library. Darker
colour refers to a lower AIC value, which indicates a higher quality model. Cells without
value refer to a model which, when simulated, resulted in a diverging time series.
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Varicella (Second Order Library), Low Threshold

Figure A.5: Resulting time series and coefficients from SINDy-discovered models of the
varicella dataset (with a 2nd order polynomial library) using a relatively low threshold (λ =
0.0001). The resulting model exhibits a good fit and accurate recovery of attractor class,
but a very low number of non-active terms, which is an indicator of an overfit model.
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Varicella (Second Order Library), High Threshold

Figure A.6: Resulting time series and coefficients from SINDy-discovered models of the
varicella dataset (with a 2nd order polynomial library) using a relatively high threshold
(λ = 1). The resulting model exhibits a high level of sparsity, but the linear fit does not
accurately represent the dynamics of the system whatsoever.
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Varicella (Third Order Library), AIC Values

Figure A.7: The AIC values for SINDy models across a range of both initial susceptible and
threshold values, utilizing the varicella dataset and a 3rd order polynomial library. Darker
colour refers to a lower AIC value, which indicates a higher quality model. Cells without
value refer to a model which, when simulated, resulted in a diverging time series.
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Varicella (Third Order Library), Low Threshold

Figure A.8: Resulting time series and coefficients from SINDy-discovered models of the
varicella dataset (with a 3rd order polynomial library) using a relatively low threshold (λ =
0.0001). The resulting model exhibits a good fit and accurate recovery of attractor class,
but all possible terms are active, which is an indicator of an overfit model.
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Varicella (Third Order Library), High Threshold

Figure A.9: Resulting time series and coefficients from SINDy-discovered models of the
varicella dataset (with a 3rd order polynomial library) using a relatively high threshold
(λ = 1). The resulting model exhibits sparsity and recovers the attractor class, but the
asymptotic behaviour appears to diverge from the data.
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Rubella (Second Order Library), AIC Values

Figure A.10: The AIC values for SINDy models across a range of both initial susceptible and
threshold values, utilizing the rubella dataset and a 2nd order polynomial library. Darker
colour refers to a lower AIC value, which indicates a higher quality model. Cells without
value refer to a model which, when simulated, resulted in a diverging time series.
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Rubella (Second Order Library), Low Threshold

Figure A.11: Resulting time series and coefficients from SINDy-discovered models of the
rubella dataset (with a 2nd order polynomial library) using a relatively low threshold (λ =
0.0001). The resulting model exhibits neither sparsity nor a well-fitting time series, indicating
there is no benefit decreasing the sparsity threshold.
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Rubella (Second Order Library), High Threshold

Figure A.12: Resulting time series and coefficients from SINDy-discovered models of the
rubella dataset (with a 2nd order polynomial library) using a relatively high threshold (λ =
1). Once the threshold is increased past a critical value, the model is reduced to a linear,
which is certainly sparse but does not match the dynamics of the system.
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Rubella (Third Order Library), AIC Values

Figure A.13: The AIC values for SINDy models across a range of both initial susceptible and
threshold values, utilizing the rubella dataset and a 3rd order polynomial library. Darker
colour refers to a lower AIC value, which indicates a higher quality model. Cells without
value refer to a model which, when simulated, resulted in a diverging time series.
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Rubella (Third Order Library), Low Threshold

Figure A.14: Resulting time series and coefficients from SINDy-discovered models of the
rubella dataset (with a 3rd order polynomial library) using a relatively low threshold (λ =
0.0001). The resulting model attempts to capture the peaks of the underlying multiennial
attractor, but at the cost of a high number of active nonlinearities. Note that the negative
peaks in the infectious time series are not biologically relevant, but can be adjusted using a
constraint when simulating.
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Rubella (Third Order Library), High Threshold

Figure A.15: Resulting time series and coefficients from SINDy-discovered models of the
rubella dataset (with a 3rd order polynomial library) using a relatively high threshold (λ =
1). The resulting model exhibits sparsity but is linear in the susceptible time series and has
an annual oscillation in the infectious time series, neither of which match the dynamics of
the system.
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A.2 Models Discovered Using PSD for Model Selection

Measles - AIC Values, Best Model, and Selected Model

Figure A.16: The AIC values for SINDy models generated from power spectral density
estimates of the infectious time series across a range of both initial susceptible and threshold
values, using the measles dataset and a 2nd order polynomial library. Darker colour refers
to a lower AIC value, which indicates a higher quality model.
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Figure A.17: Comparison between measles data and the best SINDy-discovered model using
a function library of polynomials up to 2nd order and spectral density estimates for model
selection.

Figure A.18: Comparison of power spectral density estimates of measles data and the most
parsimonious SINDy-discovered model. The peak corresponding to the most notable attrac-
tor present within the data (with period of 2 years) are noted with the dashed line.
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Figure A.19: Comparison between measles data and a selected parsimonious SINDy-
discovered model using a function library of polynomials up to 2nd order and spectral density
estimates for model selection.

Figure A.20: Comparison of power spectral density estimates of measles data and a selected
SINDy-discovered model. The peak corresponding to the most notable attractor present
within the data (with period of 2 years) are noted with the dashed line.
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Varicella - AIC Values, Best Model, and Selected Model

Figure A.21: The AIC values for SINDy models generated from power spectral density
estimates of the infectious time series across a range of both initial susceptible and threshold
values, using the varicella dataset and a 2nd order polynomial library. Darker colour refers
to a lower AIC value, which indicates a higher quality model.
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Figure A.22: Comparison between varicella data and the best SINDy-discovered model using
a function library of polynomials up to 2nd order and spectral density estimates for model
selection.

Figure A.23: Comparison of power spectral density estimates of varicella data and the most
parsimonious SINDy-discovered model. The peak corresponding to the most notable attrac-
tor present within the data (with period of 2 years) are noted with the dashed line.
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