
Dynamic Security Orchestration System
Leveraging Machine Learning

by

Elaheh Jalalpour

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

© Elaheh Jalalpour 2018

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapter 3 and Chapter 4 borrow content from two papers "A Security Orchestration
System for CDN Edge Servers" [72] and "Dynamic Security Orchestration for CDN Edge-
Servers" [71].

ii

Abstract

A Content Delivery Network (CDN) employs edge-servers caching content close to end-
users to provide high Quality of Service (QoS) in serving digital content. Attacks against
edge-servers are known to cause QoS degradation and disruption in serving end-users.
Attacks are becoming more sophisticated, and new attacks are being introduced. Protect-
ing edge-servers in the face of these attacks is vital but represents a complex task. Not
only must the attack mitigation be immediately effective, but the corresponding overhead
should also not negatively affect the QoS of legitimate users.

We propose a software-based security system for CDN edge-servers to detect and miti-
gate various attacks. The approach is to detect threats and automatically react by deploy-
ing and managing security services. The desired system behavior is governed by high-level
security policies dictated by a network operator. Leveraging advanced machine learning
techniques, our system can detect new and sophisticated attacks and generate alerts that
trigger policies. Policy enforcement can result in the deployment of mitigation services
realized using virtualized security function chains created, configured, and removed dy-
namically. We demonstrate how our system can be programmed using these policies to
automatically handle real-world attacks. Our evaluation shows that our system not only
detects known sophisticated attacks accurately but is capable of detecting new attacks.
Moreover, the results show that our system is low-overhead, immediately responds to
threats, and quickly recovers legitimate traffic throughput.

iii

Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisor, Professor
Raouf Boutaba, for his continuous support throughout the course of my Masters studies.
I’ve been so blessed to have a wonderful source of knowledge with extensive experience.
Thank you for your enthusiasm, inspiration, and patience.

I would like to extend a special thank to my thesis committee members for their con-
structive and valuable feedback: Bernard Wong and Samer Al Kiswany.

I am so grateful to Milad Ghaznavi, my colleague, lab-mate, and great friend, for always
patiently motivating me to work hard and guiding me when I was lost. I would also thank
my fellow coworkers in the Network Lab for their feedback, cooperation and of course
friendship, with a special mention to Ali Abedi.

I would also like to thank Stere Preda, Daniel Migault, and Makan Pourzandi, my
fellow coworkers at Ericsson, for their valuable input.

I am truly grateful to my parents Fahimeh Mirrokni and Mohammad Jalalpour, and
to my brother Amin Jalalpour, for their unconditional love, support, and sacrifices during
my studies. I thank Saeed, my dearest, for his tremendous support.

This work benefitted from the use of RIPPLE and SYN Facilities at the University of
Waterloo.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Challenges and Opportunities . 2

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 Background 4

2.1 Content Delivery Networks . 4

2.1.1 Content Delivery Procedure . 5

2.1.2 Attacks against CDN Edge-Servers 6

2.2 Defence Mechanisms . 8

2.2.1 Traditional Security Mechanisms 8

2.2.2 Software Based Security Mechanisms 9

3 Security Orchestration System for CDN Edge Servers 10

3.1 Architecture . 10

3.1.1 Orchestrator . 11

3.1.2 Virtual Infrastructure Manager . 11

v

3.1.3 Security Monitoring Analytic System 12

3.2 Orchestrator . 12

3.2.1 ECA Rules . 12

3.2.2 Rule Components . 13

3.2.3 ECA Rule Examples . 14

3.2.4 Rule Execution . 15

3.3 Virtual Infrastructure Manager . 15

3.3.1 Service Function Chaining Requirements 16

3.3.2 VIM Building Blocks . 18

3.3.3 Specifications . 19

3.3.4 Service Function Chaining . 19

3.3.5 Northbound API . 21

3.4 Security Monitoring Analytics System . 21

3.4.1 Resource Monitoring Analytics . 22

3.4.2 Traffic Monitoring Analytics . 22

3.4.3 Autoencoder-based Network Anomaly Detection (ANAD): 26

3.5 Use-case Scenarios . 29

3.5.1 Rate Limiting Use-case . 29

3.5.2 Mitigating HTTPS DDoS Use-case 29

4 Evaluation 34

4.1 Detection Performance . 34

4.1.1 Experimental Platform . 34

4.1.2 Dataset . 34

4.1.3 Training and Testing . 34

4.1.4 Attack Detection Performance . 35

4.1.5 Anomaly Detection Performance . 38

4.2 Mitigation Performance . 40

vi

4.2.1 Experimental Platform . 40

4.2.2 System in Action . 41

4.2.3 Static vs. Dynamic Security Service 44

4.2.4 Responsiveness . 45

5 Conclusion and Future Work 47

5.1 Conclusion . 47

5.2 Future Work . 48

References 49

vii

List of Tables

3.1 Available Solutions. SF and SP stand for Service Function and Service Path,
respectively . 17

3.2 Resource Statistics . 22

3.3 A Comparison Between Machine Learning Methods 24

4.1 Experimental Dataset of the Attack Detection Performance 35

4.2 Experimental dataset of the anomaly detection experiments 38

4.3 Anomaly Detection Methods Parameters 39

4.4 ANAD’s Hyper Parameters . 41

4.5 The Stages of Responsiveness Experiment 46

viii

List of Figures

2.1 Main entities involved in content delivery 4

2.2 Content delivery through a CDN . 5

3.1 Architecture . 11

3.2 ECA Security Policy Examples . 15

3.3 The Specification of a Chain and its Functions 20

3.4 Service Function Chaining . 20

3.5 VIM API . 21

3.6 AutoEncoder . 27

3.7 Rate Limiting Scenario . 30

3.8 Rate Limiting Policies . 31

3.9 Mitigating HTTPS DDoS Scenario . 31

3.10 HTTPS DDoS Mitigation Policies . 32

3.11 Rate Limiting Policy . 33

4.1 Supervised Algorithm Confusion Matrices 36

4.2 Clustering Algorithms Confusion Matrices 37

4.3 Hybrid Method Performance in Detecting Known and New Attacks 38

4.4 Traditional Anomaly Detection Algorithms Confusion Matrices 40

4.5 ANAD’s Performance . 41

4.6 Chain Deployment Time . 42

ix

4.7 Traffic Round Trip Time . 43

4.8 Throughput vs. Chain Length . 44

4.9 Completion Time of Retrieving Web-pages 45

4.10 Recovering Legitimate Traffic Throughput 46

x

Chapter 1

Introduction

Delivering digital content (e.g., video, images, and Web-pages) accounts for most of today’s
Internet traffic [82, 92, 63]. CDNs play a critical role in delivering digital content to end-
users. Open-Connect [15] carries part of Netflix’s content accounting for 35.2% of all the
traffic across North America, and daily Akamai CDN delivers more than 30 Tbps of traffic
[35]. A CDN contains several servers known as edge-servers distributed in various locations
to cache content close to end-users resulting in high Quality of Service (QoS).

Attacks against edge-servers can cause disruption and QoS degradation in serving end-
users, and loss in revenue for, and reputation of, a CDN provider. The main attacks
against CDN edge-servers include Distributed Denial of Service (DDoS) and application-
layer attacks [65, 105, 2]. DDoS attacks exhaust the resources of an edge-server. They range
from network flooding (e.g., UDP fragment, SYN flood) [30] to amplification/reflection
[94], and HTTP/S flooding [8]. Most CDNs host Web services [3] and are therefore prone
to application-layer attacks. Common application-layer attacks include SQL injection,
cross site scripting (XSS), file inclusion, and remote command execution. These attacks
evolve quickly and are becoming more sophisticated (e.g., by targeting multiple layers
of the protocol stack [65]). Moreover, new attacks are being introduced every day (e.g.,
forwarding-loop attacks [53]).

Securing edge-servers against these main attack vectors is a complex task. Security
services must be immediate in responding to attacks to lessen possible damages (e.g., the
later the response to a denial of service attack, the more the end-users churn). Security
services affect QoS due to their processing overhead. Further, they may consume resources
that are shared with CDN services.

1

1.1 Challenges and Opportunities

To reduce the impact of security services on legitimate end-users while responding to
attacks quickly, these services must be deployed automatically and dynamically in response
to threats. When a threat is detected, the relevant mitigation services must be instantiated,
and these services should be removed when the threat is gone. Security services should
process only relevant subsets of traffic (e.g., suspicious traffic flows). Moreover, to mitigate
sophisticated and new attacks, the protection system should allow security services to
evolve (e.g., be extended with new detection or mitigation mechanisms) and novel ones to
be introduced and employed.

Traditional security mechanisms do not completely meet the above requirements. De-
fense using hardware, e.g., traditional firewalls or IDSs, is expensive in terms of capital ex-
penditure (CAPEX) and operational expenditure (OPEX). Security attacks evolve rapidly
[107], while hardware-based security capabilities do not change as quickly. These mecha-
nisms are constrained to the resources and embedded functionality in hardware. Further,
security capabilities are constrained to the limited number of available products. Protection
using scrubbing-centers is not always applicable. Scrubbing-centers are over-provisioned
cloud data-centers well-equipped with security mechanisms to filter illegitimate traffic.
Redirecting to scrubbing-centers adds latency and may impact QoS. Moreover, scrubbing-
centers mostly employ proprietary mechanisms that limit the ability of CDN providers to
enforce their custom security policies.

The growing movement towards network softwarization is promising. Leveraging soft-
ware defined networks (SDN), Network Function Virtualization (NFV), and service func-
tion chaining, we can instantiate, modify, scale, and release virtualized security functions
on-demand. Such flexibility in security orchestration provides the means to achieve the
desired protection. However, current software-defined security solutions are insufficient.
They are not tailored to the CDN environment and its security requirements. Recent work
[60, 70, 44] focuses on DDoS attacks. Moreover, these solutions mainly provide static DDoS
mitigation mechanisms that rely on a network operator to manually configure and provi-
sion. Finally, some of these solutions require deep and complex modifications to existing
infrastructures.

This thesis presents a security system to secure CDN edge-servers. Our system pro-
tects an edge-server where the security and content-delivery services share the same com-
putational and networking resources. The overhead of security services is dynamically
modulated to offset their negative impact on CDN services. Our system is governed by re-
active high-level security policies translated into executable security orchestration actions.

2

Security services are implemented using service function chaining. Orchestration actions
dynamically create, modify, manage, and remove security services. To realize security
chains, we employ general-purpose mechanisms and tools that are widely accepted in the
industry.

1.2 Contributions

Our main contributions in this thesis are summarized below:

• We design and implement a dynamic and automatic security orchestration system
for protecting CDN edge-servers. We demonstrate how our system can be flexibly
programmed using high-level policies to handle real world use-cases (Chapter 3). We
demonstrate that the orchestration system has a low overhead, and can immediately
respond to threats and quickly recover the throughput of legitimate traffic. In addi-
tion, using our system, we can prioritize end-users and inspect only relevant subsets
of traffic (Chapter 4).

• We propose a Hybrid Classification Clustering (HCC) method that not only de-
tects known sophisticated attacks accurately but is capable of detecting new attacks.
Further, to improve the detection rate of new attacks and anomalies, we propose
an Autoencoder-based Network Anomaly Detection (ANAD) method using a fully-
connected autoencoder model (Chapter 3). Performance evaluation results show that
our system using HCC method is accurate in detecting known attacks (with 99.9%
detection recall) and is capable of detecting new attacks (with 56.4% detection recall).
Using ANAD method, the system can achieve 76.7% recall in detecting anomalies
(Chapter 4).

1.3 Thesis Organization

The remainder of this thesis is organized as follows. We provide a background of content
delivery networks and we discuss the related work trying to secure them in Chapter 2. In
Chapter 3, we present the design and implementation of our security orchestration system.
An extensive evaluation of our system is presented in Chapter 4. We conclude in Chapter 5
by summarizing the thesis and outlining some possible future work to improve the system.

3

Chapter 2

Background

2.1 Content Delivery Networks

A CDN aims at enhancing the quality of experience in delivering digital content to end-
users while utilizing network resources more efficiently. A CDN caches content in multiple
locations nearby end-users, routes a content requests to a location in which the requested
content is cached, and transfers this content to end-users [51, 75, 89].

Fig. 2.1 shows the main parties involved in the content delivery procedure [89]. A
CDN provider manages and operates the CDN infrastructure. The CDN provider supports
services, such as the delivery of static content (e.g., videos and images) and dynamic content
(e.g., dynamic web pages), and streaming (e.g., real time video streaming). A content
owner owns digital content. Content owners establish agreements with CDN providers
and delegate the delivery of their content to CDNs. An end-user consumes digital content
by requesting such content through their digital devices: such as TVs, tablets, and smart
phones.

Content Provider

CDN ProviderEnd User

Figure 2.1: Main entities involved in content delivery

4

2.1.1 Content Delivery Procedure

A CDN is an infrastructure consisting of numerous servers (e.g., hundreds to thousands
of servers [88]) which are distributed across the Internet to provide high-capacity storage
capability to cache content close to end-users. Fig. 2.2 depicts content delivery through
a CDN. A content owner places digital content in origin servers. The CDN provider
distributes and replicates the content from origin servers into edge servers in the vicinity
of end-users [88]. Fig. 2.2 illustrates how content delivery is performed, as follows. When
an end-user requests a content, a CDN on behalf of a distant content owner serves this
request (Step 1). Note that the CDN infrastructure is generally transparent to end-users.
Using a request routing mechanism, the CDN selects and redirects a legitimate request to
one of its edge servers (Step 2). The selected server performs an admission control, and
if the request is accepted, the server delivers the content from its cache (Step 3) [55]. On
cache misses, an edge server retrieves and forwards the content from either another edge
server or origin server (Step 4).

Origin ServersEdge Servers Content Provider

Request Routing

End Users

(Clients)

1 ‘www.domain.com/video.mp4’?1

2 IP of an Edge Server2

33 34

Figure 2.2: Content delivery through a CDN

5

2.1.2 Attacks against CDN Edge-Servers

In this section, we review security attacks on edge-servers and countermeasures. We start
by common application layer attacks, and then we focus on DDoS attacks.

Application Layer

Common Application Layer Security Challenges. Most CDNs serve Web traffic, and
cache the Web content at edge servers. Serving Web applications can cause edge servers
to be prone to Web and application layer attacks. Common attacks include SQL injection
(SQLi), cross-site scripting (XSS), file inclusion, remote command execution, and illegal
resource access. Focusing on the damages caused to the victim organizations, the authors
of [28] classify threats into three categories: i) hacking by SQLi and XSS, causing data
breaches; ii) business abuse via screen scrapping, spamming; and fake accounts, with a wide
range of negative impacts from business malfunction and links to malware to fraud; and
iii) denial of service, via DoS and DDoS attacks on applications, potentially interrupting
business. The authors of CoDeen [106], an academic CDN testbed, list several threats
inherent to Web deployments including spamming and bandwidth abuse.

Countermeasures. Static and dynamic analyses on the source code of Web applica-
tions can reveal some vulnerabilities and security flaws [104, 9]; however, not all possible
threats can be prevented. CoDeen [106] employs rate limiting and blacklisting. Further-
more, Web Application Firewalls (WAFs), which are installed in or at the front of edge
servers, protect edge servers and origin-servers against common Web application attacks.
A WAF performs a deep inspection of every Web request and response in order to detect
and block common Web application layer attacks [93]. Some commercial WAFs from CDNs
protect Web applications against the Open Web Application Security Project (OWASP)
top 10 security attacks [26], for instance the Alibaba WAF [54]. Other WAFs, for example
the Incapsula WAF [29], are designed to be compliant with Payment Card Industry Data
Security Standard or Health Insurance Portability and Accountability Act standards.

Denial of Service

In a Denial of Service (DoS) attack, “an attacker attempts to prevent legitimate users from
accessing information or services” [85]. For example, an attacker can flood a network to
consume key resources and make them unavailable to legitimate users. An attacker can
also send a number of malicious packets to a victim machine to confuse a protocol or

6

application and cause the machine to reboot or freeze. A Distributed Denial of Service
(DDoS) attack employs multiple attacking entities to achieve the goal. DDoS attacks
cause widespread congestion, jam crucial infrastructure, and cost target businesses loss of
considerable revenue from disrupted services.

Recent DDoS Trends. Historically, flooding attacks (e.g., UDP fragment, SYN
flood) have been the most common DDoS attacks; however, these attacks recently became
less popular [30], while amplification and reflection are becoming more popular. Using
amplification/reflection techniques, attackers launch massive DDoS attacks on the scale of
hundreds of Gbps [94, 1, 5, 95]. Application layer DDoS attacks are rising in popularity
and complexity [8, 30, 31]. Moreover, botnets such as Mirai leveraging the increasing
deployment of IoT devices are becoming the major sources of DDoS attacks [5]. Multi-
vector DDoS attacks employ different attack strategies to assault different layers. These
attacks can last for days or weeks, resembling advanced persistent threats [103]. The aim of
these DDoS attacks is to take down the security applications (e.g., WAFs) or cover other
malicious activities, such as stealing data [11].

Countermeasures. Common defense mechanisms include traffic-blocking and rate-
limiting. CDNs block traffic based on geographical location, black-listing, white-listing,
source of traffic, or traffic behavior, while rate limiting restricts the rate of traffic to a
configurable threshold per IP, request type, or other metrics. In this way, the traffic
volume that a bot can generate is limited. CDNs usually provide always-on and on-
demand DDoS defenses [30, 4]. Always-on solutions use inline scrubbers that constantly
monitor traffic and stop suspicious traffic at edge servers. For instance, at edge servers,
identifiable malicious DNS amplification or SYN flood packets are filtered [10]. Some
CDNs only allow a whitelist of traffic types (for instance, DNS, HTTP/HTTPS, media
streaming) and block other traffics [13]. Moreover, the defense distinguishes between the
traffic generated by humans and good and bad bots. Doing so is a key factor in identifying
application layer DDoS attacks [10]. Another way of filtering the traffic generated by a bad
bot is to use the IP reputation mechanism, which generates a signature for the bot, and if
the signature is matched, the traffic is blocked. On-demand solutions redirect traffic using
dynamic BGP changes and DNS redirection to scrubbing centers. BGP changes route the
traffic belonging to routable addresses (e.g., the IP addresses controlled by a CDN) to
scrubbing centers. BGP changes require a sufficient range of IP addresses (e.g., more than
256 addresses) to be eligible for being routable. Doing so can shut down even very large-
scale layer 3 and 4 DDoS attacks [12]; however, it might slow down legitimate requests.
The effectiveness of such mechanisms depends on how long it takes for a DDoS attack to
be detected and for the operator to react. Therefore, CDN providers also use monitoring
service for detecting network anomalies. On-demand defenses are effective against SNMP-

7

based and SlowLoris attacks; however, they are not aware of layer-7 information and can
miss application layer attacks.

DDoS against known edge servers. By knowing the IP-addresses of edge servers,
attackers can launch denial of service attacks against these servers [91]. Attackers employ
a set of bots to target an edge server and exhaust the server’s resources. To hide the
identities of bots, their IP-addresses are generally spoofed.

Countermeasures. Lee et al. [77] proposed deterring such flooding attacks at the
request routing and edge servers. The basic idea is to serve requests that are redirected
by request routing components with a higher priority in order to save the resources of
edge servers. Edge servers and the request routing components use the same cryptographic
hash function. The inputs to this hash-function are the IP-address of the end-user and
and a secret key. The request routing component assigns a request to an edge server using
the hash function. The edge server also uses the hash-function to validate whether the
request is actually assigned by the routing mechanism by checking that the hash matches
the edge server itself. If the hash does not match with the edge server, it can be concluded
that the request is sent directly without the intervention of a request routing component.
Periodically changing the key can improve the robustness of this strategy. Moreover, in
a Cloud environment using a shuffling mechanism [74], new replicas are instantiated for
edge servers that are under attack, and end-users are shuffled among these replicas (i.e.,
the assignment of end-users to edge servers is changed) in order to isolate attackers.

2.2 Defence Mechanisms

2.2.1 Traditional Security Mechanisms

Scrubbing-centers are over-provisioned cloud data-centers that provide security mecha-
nisms for high traffic loads. Using DNS or BGP mechanisms [6], traffic is redirected to
scrubbing-centers to be inspected. Illegitimate traffic will be scrubbed and the remaining
traffic will be forwarded to the original destination. The primary motivation for deliver-
ing content by CDNs is enhancing QoS by serving requests in the proximity of end-users.
Although scrubbing-centers can provide protection, redirecting traffic to these fixed and
potentially remote locations negatively impacts latency and throughput which results in
QoS degradation. In addition, security services are constrained to proprietary security
mechanisms offered by scrubbing-centers. In general, it is more desirable that custom se-
curity mechanisms can be deployed. Also, it is important that traffic is processed locally
to avoid potential latency and throughput degradation.

8

2.2.2 Software Based Security Mechanisms

DrawBridge [78] employs end-hosts information to improve DDoS attack mitigation in an
SDN-operated ISP network. End-hosts can subscribe and express their preferred traffic en-
gineering rules. A DrawBridge controller (an SDN controller) then installs these rules in its
SDN switches, or sends these rules to DrawBridge controllers of upstream ISPs. Software
Defined Security Service (SENSS) [111] provides interfaces from ISPs that enable victims
to detect and mitigate attacks across multiple SDN-operated ISP networks. These studies
suggest that some or all the network switches should be replaced with OpenFlow compat-
ible switches. None of these proposals have seen any major deployment in real ISPs where
significant changes have proven to be difficult or even impossible. In general it is more
desirable to use standard mechanisms that can be deployed in practice without the need
for major infrastructure changes. VFence [70] proposes a platform which performs SYN
flood mitigation in a scalable manner by using dynamic allocation of virtual functions. To
mitigate DDoS attacks, Bohatei [60] deploys a protection chain based on the attack types.
The protection workflow is as follows: i) flag a suspicious flow, ii) estimate the attack vol-
ume, iii) place defense functions across multiple data-centers, and iv) steer traffic through
the chain. To mitigate SYN Flood attacks, Alharbi et al. [44] present an NFV based
platform consisting of screening and resource allocation modules. The former classifies
and redirects traffic to corresponding security chains, and the latter allocates resources to
chain functions. The application of these systems is limited to DDoS attacks.

9

Chapter 3

Security Orchestration System for CDN
Edge Servers

This thesis present a system that orchestrates security services in an edge-server environ-
ment. The edge-server can be a set of physical servers, a collection of virtual machines, or
a combination of these. We refer to this environment as a virtual edge-server. Our goal
is to design a security orchestration system that automatically and dynamically deploys
and modifies security services under various environment and attack conditions. To do
so, our system reacts to the dynamicity of the environment and attacks by instantiating
and re-configuring customized security services. To minimize overhead on legitimate traf-
fic, only relevant traffic subsets (e.g., suspicious traffic) can be processed by the security
services. The security services are realized by security chains composed of one or multiple
virtual security functions. The behavior of the system is regulated by security policies that
an operator (e.g., a content provider or a CDN provider) specifies to achieve the desired
security. In the following, we first introduce the system architecture, then describe in detail
each component of the system.

3.1 Architecture

European Telecommunications Standards Institute (ETSI) developed monitoring and man-
agement use-cases in the context of NFV security [37]. Our system architecture adapts
some of the definitions from the ETSI use cases. As depicted in Fig. 3.1, it consists of
three components as follows.

10

Security Chains

SF
SF

Function

Virtual
Infrastructure

Manager

Security
Monitoring
Analytics
System

Orchestrator

Security
Policies

SF
SF

Function

Figure 3.1: Architecture

3.1.1 Orchestrator

Interacting with other components, the orchestrator reacts to various environment states
and attack scenarios. This reactive behavior is governed by security policies specified by
the network security administrator. The orchestrator translates these high-level policies
into executable operations, including deploying, modifying, and removing security chains
as needed. We require policies to be simple enough for the network security administrator
to specify, as well as to be independent of the underlying infrastructure and technology
(e.g., independent from whether the security function is deployed in a container or a virtual
machine)

3.1.2 Virtual Infrastructure Manager

According to NFV-MANO [36], the Virtual Infrastructure Manager (VIM) manages and
controls infrastructure resources. In our design, this module controls the resources of
a virtual edge-server and manages security chains. More specifically, it is responsible
for creating, updating, querying, and deleting security chains. VIM provides a north-
bound API, used by the other system components, to manage and query information
about security chains. We require this north-bound API to be independent from underlying
implementation mechanisms.

11

3.1.3 Security Monitoring Analytic System

The Security Monitoring Analytic System (SMAS) monitors and analyzes data collected
across the system. This module queries VIM regarding deployed security services, moni-
tors host’s resources and incoming traffic. Analyzing the collected data, SMAS feeds the
orchestrator with alerts that may trigger security actions. We require SMAS to have a
small footprint in terms of resources utilization.

3.2 Orchestrator

We express security policies in a language articulated around the notion of events that
can be associated to security alerts (e.g., high-CPU load). The occurrence of an event is
then associated to performing a set of actions (e.g., the deployment of specific security
services). Further, the current state of the environment must be considered to decide
whether an action should be performed. This almost naturally leads us to adapt the Event-
Condition-Action (ECA) paradigm [58]. Accordingly, if a certain event happens, provided
that particular conditions hold, a specific sequence of actions is executed. Compared to the
Condition-Action (CA) paradigm in which events are implicit and limited in scope [68, 87],
in ECA, events are separated from actions and conditions. This explicit separation enables
us to define custom events to capture various attacks and environment states.

We adapt Lactive [46], an ECA language, for the specification of our security policies.
Here, first we list useful types of ECA rules, then we define the components of these rules.

3.2.1 ECA Rules

The following propositions are defined.

Active-rule.

The occurrence of event e triggers the execution of action a if conditions c1, . . . , cn (n ≥ 1)
hold:

e initiates a if c1, . . . , cn

12

Causality.

If conditions c1, . . . , cn (n ≥ 1) hold, the complete execution of action a makes p1, . . . , pm
(m ≥ 1) to be true:

a causes p1, . . . , pm if c1, . . . , cn

pi is either a condition (the same as a cj) or a predefined procedure. In the latter case,
the predefined procedure is run (e.g., timer(t) that starts a timer counting t units of time).

Event.

Event e occurs after the execution of action a if conditions c1, . . . , cn (n ≥ 1) hold:

e after a if c1, . . . , cn

3.2.2 Rule Components

The event in an ECA rule specifies the signal that invokes this rule. An event may carry
parameters providing more information regarding the event occurrence. We consider two
types of events: i) security alerts generated by SMAS, and ii) internal events that happen
as a result of executing an action. An example of a security alert is cpu_high denoting
that CPU utilization is higher than a given threshold. An example of internal events is
timeout meaning that a certain timer has expired. The orchestrator listens on a selected
TCP port to receive external events. Running an action, the orchestrator may fire internal
events.

The conditions of an ECA rule are predicates evaluated and if satisfied, the rule
actions are performed. Examples include time-related conditions, such as date(d) holding
if the current date is d; service related ones, e.g. chain(x) and function(y) holding if a
chain x and function y are deployed, respectively; traffic-related, for instance steered(t, x)
indicating if traffic flow t, identified by a 5-tuple, is being processed by chain x.

The actions of an ECA rule constitute the security service logic performed if the con-
ditions are satisfied. An action is a sequence of operations applied to security services.
Actions must be defined carefully to avoid redundancy and ease policy consistency ver-
ification. As security services in our system are implemented using virtualized security
function chains, we define the following elementary actions:

13

• create_chain(x : t, {y1:k1, . . . , yn:kn}) deploys a chain named x to process traffic flow
t with the ordered sequence of functions. yi:ki denotes a function named yi of type
ki (n ≥ 0 where n = 0 means the empty sequence of functions).

• delete_chain(x) deletes deployed chain named x.

• insert(x, y:k) inserts a function named y of type k into existing chain named x.

• run(y, c) runs command c in function named y.

• delete(x, y) deletes function named y from chain named x.

Traffic flow t in action create_chain(.) is defined by tuple <f, i, j>. In this tuple, f is
a Berkeley packet filter expression [83] (e.g., “ip” to filter IP traffic). A chain and traffic
traversing through this chain create a virtual network. i and j are the symbolic ingress
and egress of traffic in this network. We will discuss this further in Section 3.3.3.

3.2.3 ECA Rule Examples

Fig. 3.2 shows security policies that automatically deploy and remove a security chain.
Rule 3.1 instructs that upon receiving the event high_cpu meaning high CPU usage, the
orchestrator deploys the chain named x, containing an IDS function named y, and steers all
traffic coming from symbolic ingress 1 through this chain, then forwards traffic to symbolic
egress 2. Rule 3.2 fires event conf after create_chain(.) action if condition function(y)
is valid showing that y has been installed. Rule 3.3 runs command “conf.sh” to configure
function y. Rule 3.4 instructs that after the chain is created, a timer named tx is set for
10 time units. Rule 3.5 deletes the chain upon a timeout event for a timer tx, if condition
chain(x) is true, meaning that chain x exists.

14

high_cpu initiates create_chain(x:_, 1, 2, {y:IDS})
if not chain(x) (3.1)

conf after create_chain(x)

if function(y) (3.2)
conf initiates run(y, “conf.sh”)

if true (3.3)
create_chain(x) causes timer(tx, 10)

if true (3.4)
timeout(tx) initiates delete_chain(x)

if chain(x) (3.5)

Figure 3.2: ECA Security Policy Examples

3.2.4 Rule Execution

The run-time behavior of the system depends on how ECA rules are executed. More
specifically, (i) how conditions are monitored and evaluated; (ii) what is the relative tim-
ing of executing the components of an ECA rule; and (iii) how rules are scheduled when
an event triggers multiple rules, multiple events occur simultaneously, or a rule triggers
other events that invoke other rules. For (i), a process checks the validity of a defined
condition. Coupling modes [84] describe different timing strategies to deal with (ii). For
(iii), the orchestrator maintains the list of fired events ordered based on their priorities and
occurrence time. For more details, we refer the reader to existing work on active databases
[84, 50, 46]. Finally, to execute actions introduced in Section 3.2.2, the orchestrator trans-
lates these declarations to actual VIM API calls discussed in Section 3.3.5.

3.3 Virtual Infrastructure Manager

Virtual Infrastructure Manager (VIM) is responsible for managing host resources and de-
ploying and managing security function chains. VIM provides an API for creating/deleting
a chain, inserting/deleting a function to/from a chain, and for querying information about

15

deployed chains. This API is used by the orchestrator to manage security services, and by
SMAS to query deployed functions.

3.3.1 Service Function Chaining Requirements

Service function chaining involves (i) defining and instantiating the service functions and
(ii) steering traffic through a service path, the ordered sequence of service functions, and
(iii) the ability to carry metadata. Thus, an appropriate solution has to manage service
functions running on compute-resources and manage network-resources to route traffic and
carry metadata through service paths. To implement requirements (ii) and (iii), we need a
flexible protocol to steer traffic and carry metadata, and a network controller that supports
this protocol. Implementing requirement (i) is simple. The hard part in realizing service
function chaining is to implement requirement (ii) and (iii) and integrates this implementa-
tion with a compute-resource manager that realizes requirement (i). In summary, to realize
service function chaining, we require a platform that provides the following features:

• orchestrating compute-resources to deploy and manage service functions,

• enabling a flexible protocol to carry metadata and steer traffic through service func-
tions,

• providing a software switch fabric supporting the protocol mentioned above, and

• integrating the switch with a network controller that programs the switch fabrics
mentioned above.

Existing Platforms

Service functions are usually packaged in virtual machines or containers (LXC and Docker
containers), for which there are several stable platforms. Popular solutions to orchestrate
compute-resources and deploy VMs and containers are OpenStack Nova [23], OpenStack
Zun [32], Docker [86], and Linux containers [14].

Routing based on Ethernet and IP is not flexible for service function chaining. At each
hop in a service path, an entity (e.g., a service function) has to be aware of the next service
function address and modify IP and Ethernet addresses accordingly. Moreover, IP and
Ethernet do not support metadata natively, and we need to hack them to carry metadata
to inside their headers. Encapsulation protocols, such as VLAN [69], VXLAN [81], MPLS

16

Platform SF Management NSH Support SP using NSH Issues

OPNFV VM and Container Yes Yes Complex deployment and performance

OpenStack VM and container Yes Yes The lack of documentation, deprecated
branches, unstableness

OpenStack Nova VM N/A N/A -

Kubernetes Container No No Not realizing service-paths

ODL SFC No Yes Yes No support for VM or container

Table 3.1: Available Solutions. SF and SP stand for Service Function and Service Path,
respectively

[99], NVGRE [62], and STT [57] provide flexible routing using tags. In terms of carrying
metadata, VLAN supports 12-bit; VXLAN, MPLS, and NVGRE provide 24-bit; and STT
supports 64-bit length metadata fields. Less than 64-bit size is not sufficient to carry
metadata. To overcome the limitation of metadata size, Geneve [66] provides variable-
length metadata; however, switch fabrics strip this header before forwarding traffic to a
service function, meaning that the service function does not receive carried metadata.

Network Service Header (NSH) [96] is the protocol that overcomes all limitations men-
tioned, and we have selected this protocol as our routing protocol. NSH is imposed to
realize routing through service paths independent of physical addresses and is able to
carry metadata. There are two versions of NSH. NSH metadata type 1 supports 128-bit
metadata, and NSH metadata type 2 provides variable-length metadata. Although the
second version is not yet well-supported, there are significant attempts in the industry to
support variable length metadata, and we expect that this version will be widely supported
in the near future. Currently, OVS NSH patch [25] provides the support of matching NSH
rules and taking NSH actions. OpenDaylight (ODL) [21] and Open Network Operating
System (ONOS) [19] are NSH-aware network controllers.

Kubernetes [27], ODL service function chaining [18], and OpenStack [22] are platforms
that meet the above requirements to some extent as summarized in Table 3.1. Kubernetes
automates the deployment, scaling, and management of Docker containers across a network;
however, this system does not support NSH. OPNV is the integration of OpenStack with
several other services. ODL service function chaining integrates OVS, OVS NSH patch, and
SFC agents to realize service function chaining. However, SFC agents in this initiative are
simple service functions developed for demo purposes. For these reasons, we first focused
on OpenStack to realize service function chaining. However, we encountered several issues
as discussed next, and we decided to implement our own service function chaining system.

17

OpenStack Issues: OpenStack includes several services orchestrated for creating pub-
lic and private clouds. Devstack is a set of scripts used to quickly configure and deploy an
OpenStack development environment. Service function chaining is not natively supported
by OpenStack. We need to manually configure and orchestrate several services to realize
service function chaining. These services are Docker, Nova Docker, and Nova service to
deploy service functions, and NSH supported OVS, an NSH-aware Openflow controller
(ODL or ONOS), and Neutron service [24] to steer traffic through service chains. Nova
Docker was deprecated a few weeks after the beginning of the project. The replacement
service is Zun [32]. There is no official documentation or tutorial to explain the integration
of services mentioned with the basic services that a bare OpenStack deployment requires.
There are a few blog posts [45, 49] on how to integrate a subset of these services. Unfortu-
nately, all these blog posts use Mitaka, a deprecated branch of OpenStack. Therefore, we
resorted to other OpenStack branches called Newton [16] and Ocata [17]. After numerous
unsuccessful attempts to deploy our desired configuration with these branches, we decided
to omit some of the services, including Zun. However, even with a subset of the services
enabled, these branches are unstable due to failure of one of the services (either a bare
service or the services for service function chaining).

Facing the limitations and issues of existing solutions, we decided to develop our own
service function chaining platform using general purpose mechanisms and tools, as part of
VIM.

3.3.2 VIM Building Blocks

Docker: Containers have a low resource overhead and are fast to create and destroy. VIM
utilizes Docker [86] to manage container-based functions.

Network Service Header (NSH): NSH is a modern service plane protocol for dy-
namic service function chaining [97]. NSH specifies a sequence of functions through which
packets are steered before reaching the destination address. NSH is independent of the un-
derlying transport protocol. Further, it can carry metadata that can be exploited for more
sophisticated chain operations. Using NSH, service functions can exchange information
[67]. NSH is a widely accepted industry standard.

Open Virtual Switch: VIM implements the networking aspect of service function
chaining using Open Virtual Switch (OVS) [20]. OVS operates at the kernel level and
achieves fast, and constant-time traffic forwarding with very low overhead. We use NSH
rules to forward traffic between functions.

18

3.3.3 Specifications

The following are used in calling the VIM’s API.

Chain Specification

VIM uses the specification depicted in Fig. 3.3 where chain_name specifies ch to be the
unique name of this chain. As mentioned in Section 3.2.2, traffic traverses a virtual network
connecting functions. ingress and egress respectively denote from which point in this
network traffic enters the chain and to which point the traffic is forwarded after the chain
process completes. A point in the network can be the Network Interface Cards (NICs) of a
virtual edge-server, an explicit OVS port, or a deployed function’s ingress or egress NICs.
In Section 3.5, we use this powerful notation to compose chains. classification_rules
serves as a traffic filter applied on the ingress. This field specifies which traffic subset
from ingress is forwarded to the chain. Two chains cannot have the same ingress and
classification_rules. Field functions denote the sequence of functions in the chain.

Function Specification

VIM instantiates a function based on three fields as follows. function_image specifies the
Docker image. function_name is a unique name for the function. Each function in a chain
or across chains must have a unique function_name. Referring to this field, a function can
be shared among multiple chains. Finally, field nsh_aware is used for compatibility with
legacy functions and states whether the function can parse NSH header.

3.3.4 Service Function Chaining

Functions are deployed based on the function specification using Docker. VIM creates
and configures an OVS bridge which acts as the networking medium between functions.
VIM connects each function to the OVS bridge by creating a veth-pair. One side of this
veth-pair is attached to the OVS bridge, and the other side is connected to the container.
Fig. 3.4a illustrates the deployment of the chain defined in Fig. 3.3.

Three sets of rules are inserted to steer traffic through the chain. i) Classification
rules filter incoming packets from ingress based on classification_rules and attach
NSH header to these packets. ii) Forwarding rules are NSH-based match/action rules
that forward packets between functions. In packet forwarding based on NSH, functions

19

{
"chain_name": "ch",
"ingress": "1",
"egress": "2",
"classification_rules": "ip",
"functions": [

{
"function_image": "Firewall",
"function_name": "firewall",
"nsh_aware": false

},
{

"function_image": "IDS",
"function_name": "ids",
"nsh_aware": false

}
]

}

Figure 3.3: The Specification of a Chain and its Functions

Bridge

Firewall

eth0 eth1

IDS

eth0 eth1

4 5 63

21

(a) A Deployed Chain

NSH

Unaware

Function

Proxy

PacketNSH

Packet Packet

PacketNSH

1

2 3

4

(b) Function-Proxy

Figure 3.4: Service Function Chaining

have to participate in forwarding by modifying the NSH header. In the case of NSH-
unaware functions, a function-proxy parses and performs NSH-based forwarding actions.
VIM implements this proxying using a third set of rules as shown in Fig. 3.4b. iii) Proxy

20

1 def create_chain(chain_sp)
2 def delete_chain(chain_name)
3 def insert(chain_name, func_sp, position)
4 def delete(chain_name, func_name)
5 def run(func_name,cmd)
6 def chains()
7 def chain(chain_name)
8 def chain_functions(chain_name)
9 def functions()

10 def function(func_name)
11 def steered(bpf,chain_name)

Figure 3.5: VIM API

rules match and remove the NSH header before forwarding packets to an NSH-unaware
function. After receiving from the NSH-unaware function, the appropriate NSH header
will be reattached to packets by proxy rules.

3.3.5 Northbound API

VIM provides the API shown in Fig. 3.5. Arguments chain_sp and func_sp are re-
spectively the specifications of a chain and a function and must follow the specifications
presented in Section 3.3.3. The first five methods correspond to actions defined in Sec-
tion 3.2.2. The others are query methods about chains, functions, and traffic used by
SMAS and the orchestrator.

3.4 Security Monitoring Analytics System

The Security Monitoring Analytics System (SMAS) is responsible for monitoring the re-
sources of the edge-server and the incoming traffic to the edge-server, collecting and an-
alyzing important metrics, and generating security alerts towards the orchestrator. The
first part of this section presents how SMAS monitores the usage of resources, analyzes
them, and fires alerts. Next, we explain monitoring and analyzing incoming traffic to the
edge-server. SMAS uses two proposed machine learning methods to detect known and new
attacks.

21

Table 3.2: Resource Statistics

Bandwidth CPU Memory Storage

Per-NIC util.
Bytes rec./sent
Packets rec./sent
Packet drops

Total util.
Per-core util.
Sys./user modes util.
Context switches
Interrupts and IOs

Pages-
ins/outs
Swap-ins/outs

Free space
Transfer per sec.
Read/write per sec.

3.4.1 Resource Monitoring Analytics

The focus here is on handling misuse attacks through monitoring and analyzing the re-
sources of the virtual edge-server. SMAS periodically monitors and collects statistics on
network-bandwidth, CPU, memory, and storage resources. Our implementation relies on
Linux standard tools, such as the /proc/stat file, free command, and iostat command
for data collection. Typically, when the value of a relevant metric passes some predefined
threshold, SMAS generates an alert indicating that this value is either over or under the
threshold. For instance, if the CPU utilization is above a predefined threshold or is under
another predefined threshold, SMAS generates high_cpu or low_cpu, respectively.

The statistics collected for each resource are listed in Table 3.2. To decide which statistic
to collect, we carefully select the metrics that do not require high monitoring overhead.
We also select metrics that provide immediate and rewarding information. For instance,
SMAS does not monitor the average file size, since it is an expensive process; in contrast
SMAS monitors page-ins and page-outs whose high rates mean that the memory is short,
or the system is spending more resources moving pages than running actual applications.

3.4.2 Traffic Monitoring Analytics

This section focuses on monitoring and analyzing the incoming traffic of the virtual edge-
server to generate alerts. Traditionally, attack signatures are used to detect intrusions.
Human experts manually craft these signatures based on their knowledge of the intrusions,
which requires substantial delay to recognize new attacks and identify their signatures. This
limitation motivates the application of machine learning and data mining methods that
automatically devise models replacing manually crafted attack signatures. In the literature,
misuse and anomaly detection have been extensively used for intrusion detection.

22

Misuse detection is commonly done using supervised machine learning, which requires
training over a labeled dataset’s records [98]. Although accurate in detecting known attack
types, supervised learning methods are weak in detecting new attacks not seen in their
training dataset. Unsupervised anomaly detection methods model the normal behavior
of a system and detect deviations from it; they are capable of detecting new attacks. A
number of anomaly detection algorithms have been proposed before. However, they often
suffer from low accuracy rate and higher false alarms compared to supervised methods [76].

To tackle the aforementioned limitation of supervised machine learning, we propose a
Hybrid Classification Clustering (HCC) method that not only achieves high accuracy in the
detection of known attacks, but it can recognize new attacks. To address the limitations of
traditional anomaly detection methods, we propose Autoencoder-based Network Anomaly
Detection method (ANAD). This method improves the accuracy of HCC on detecting new
attacks.

SMAS monitors the incoming traffic to the edge-server, analyzes it using our proposed
ML methods, and fires attack alerts, such as app_ddos, port_scan, and anomaly. Based
on these alerts, appropriate security policies are triggered to mitigate attacks. To do So,
SMAS periodically monitors the incoming traffic of the edge-server and extracts features
of traffic flows identified using the five tuple (Source and Destination IP addresses, Source
and Destination ports, and protocol). Then, SMAS runs our proposed ML algorithms to
analyze these features for attack and anomaly detection. In the following, we describe our
proposed ML methods, namely HCC and ANAD.

Hybrid Classification Clustering (HCC)

Table 3.3 compares HCC with classification and clustering methods. As shown, HCC pro-
vides the benefits of both classification and clustering. Similar to a classification method,
HCC detects the type of a known attack. Similar to a clustering method, HCC identifies
whether a flow is a new attack (though the type of a new attack is not determined). HCC
trains a classifier using labeled training dataset to detect existing attacks in the dataset,
which we refer to as known attacks. HCC uses a clustering method to discover clusters
that contain new attacks, i.e., previously unseen attacks in the classifier’s training dataset.

Let X = (x1, . . . , xn) be a set of n data points where xi ∈ X for all i ∈ {1, . . . , n}. The
goal of supervised learning is to find a mapping from data points to labels from a training
set of pairs (xi, yi), where yi ∈ Y is the label of a data point xi. An unsupervised learning
method aims to infer interesting structures in data points X. For instance, a clustering

23

Table 3.3: A Comparison Between Machine Learning Methods

Classification Clustering HCC
Known Attack Type 3 5 3

New Attack 5 3 3

New Attack Type 5 5 5

Labeled Training Dataset 3 5 3

algorithm categorizes X into clusters, each of which contains data points that are believed
to have similar structures.

Overview: As shown in Algorithm 1, HCC receives as incoming traffic features f
and the number of clusters C (line 1). Note that C is always greater than the number
of classes. For each class there is a corresponding cluster. Additional clusters correspond
to new attacks. In addition to known class labels, the algorithm predicts the new_attack
label. First, the algorithm runs a pre-trained classifier and a clustering method (lines 2
and 3). Next, HCC recognizes the clusters that most probably contain the data points of
a class and returns the rest of the clusters as new attacks (line 4). Combining all results,
HCC predicts new labels for the data points (line 5). Still to clarify is how to find new
attack clusters and how to find a new prediction.

Algorithm 1 Hybrid Classification Clustering
1: procedure HCC(f, C)
2: y1 ← classification(f)
3: y2 ← clustering(f, C)
4: N ← NOVELS(y1, y2)
5: y3 ← PREDICT(y1, y2, N)
6: return y3
7: end procedure

Finding New Attack Clusters: Algorithm 2 receives the predictions and finds clus-
ters that contain new attacks. To do so, it compares the classification and clustering
predictions and relates clusters to classes. A cluster is considered known, if its intersection
with at least one class is larger than other clusters’. The algorithm finds known clusters
and considers the remaining clusters as new attacks.

The algorithm receives the results of the classifier and clustering methods in the form
of two lists with indices showing the data points and values showing the predictions. Next,

24

it creates two dictionaries d1 and d2 (line 2). The former is a mapping of the classes to
their corresponding data points, and the latter is a dictionary from the clusters to their
corresponding data points. The algorithm initializes a list K that is iteratively extended
with known clusters (lines 3-11). For each class l1, the algorithm finds the size of the
intersection of the members of l1 with all the clusters’ members (lines 6-9). The clusters
with the biggest intersection with each class are identified and added to K (line 10). Each
class can be mapped to one or multiple clusters. The algorithm returns the clusters that
are not in K (line 12).

Algorithm 2 Finding New Attack Clusters
1: procedure novels(y1, y2)
2: d1, d2 ← map(y1),map(y2)
3: K ← ∅
4: for l1 in d1 do
5: c← array(|keys(d2)|)
6: for l2 in d2 do
7: s← |values(d1, l1) ∩ values(d2, l2)|
8: set value of c at l2 to s
9: end for

10: K ← K ∪ argmaxes(c)
11: end for
12: return keys(d2)−K
13: end procedure

Finding A New Prediction: Dictionary d2 maps clusters to their corresponding
data points (line 2). List L is initialized and iteratively updated by the data points in
the new attack clusters (line 4-6). List y3 that stores the final results is first initialized
by the classification results, then updated by changing the values of data points in L to
new_attack (lines 7-9).

25

Algorithm 3 Finding a New Prediction
1: procedure predict(y1, y2, N)
2: d2 ← map(y2)
3: L← ∅
4: for c in N do
5: L← L ∪ values(d2, c)
6: end for
7: y3 ← y1
8: set values of y3 at L to new_attack
9: return y3

10: end procedure

3.4.3 Autoencoder-based Network Anomaly Detection (ANAD):

Anomaly detection approaches are able to discover new intrusions by modeling the normal
behavior of the system and detecting any deviation from it [52, 61, 100]. Several factors,
such as the difficulty of having a boundary around the normal behavior, intelligent adver-
saries who adapt themselves to new detection methods, and insufficient training/testing
data make anomaly detection a complex task. Anomaly detection methods are categorized
as supervised, semi-supervised, and unsupervised. The first category is classifies traffic into
two classes, normal and anomalous. As discussed before, the supervised methods are not
adequate in detecting new attacks. Semi-supervised approaches are trained based on nor-
mal traffic only. Providing real traffic traces which only contain normal data is a complex
task. Unsupervised learning approaches detect the anomalies without any labeled train-
ing data with the assumption that normal traffic instances are much more frequent than
anomaly instances [52, 47]. However, most unsupervised anomaly detection methods suffer
from low accuracy.

Deep Learning based anomaly detection recently received significant attention in dif-
ferent fields, such as fraud detection, medical diagnosis, and network intrusion detection
[109, 90, 73]. In [101], a generative adversarial network simultaneously trains a generator
to produce anomalous data which are close to healthy data and trains a discriminator to
detect the anomalies. Unsupervised deep learning models are also employed for learning a
representation of the data in a lower dimension than the input’s. Later, this representa-
tion is used for supervised anomaly detection [109, 59, 73]. In [59], a one-class SVM uses
features extracted by a deep belief network for classification. A stacked non-symmetric
deep autoencoder has been used in [73] to extract features for random forest classifier.

26

Encoding Decoding

x x'

z

input output

Figure 3.6: AutoEncoder

Unlike other methods, we use autoencoders to design an unsupervised network anomaly
detection method. Our unsupervised method is not only capable of detecting new attacks,
but achieves higher accuracy in comparison with commonly used unsupervised anomaly
detection methods.

Autoencoder: Autoencoders are deep neural networks trained to learn efficient data
coding. A sample autoencoder is represented in Fig. 3.6. An autoencoder contains an
input layer, one or more hidden layers, and an output layer. The input and output layers
of an autoencoder have the same dimension, while the number of neurons may vary in
hidden layers. The first part of this model, the encoder, transforms the high dimensional
input x into a lower dimensional representation z. Equation (3.6) presents the encoder
function of a single encoder layer, where σ is the activation function, W is the weight
matrix, and b is the bias vector of the hidden layer. The autoencoder decodes data in
what is called the latent space and learns to extract the most important features in the
decoding phase. The second part, decoder, uses this lower representation to rebuild the
input in x′. Equation (3.7) presents the decoder function; W ′ is the weight matrix, and b′
is the bias vector of the hidden layer. The loss function of an autoencoder is based on the
reconstruction error, the difference between the input x and prediction x′.

z = σ(Wx+ b) (3.6)

x′ = σ(W ′z + b′) (3.7)

ANAD: Our method trains a fully-connected autoencoder with unlabeled training

27

dataset. Note that the training dataset consists of mostly normal data points. The re-
construction errors of anomalies are higher than those of the normal data points, because
the autoencoder tries to learn the encoding and decoding of the normal data points which
constitute most of the data. To compute the reconstruction error of a data point, we use
its Residual Sum of Square (RSS) as presented in Equation (3.8), where x is the input, x′
is the prediction, and n is the number of input features.

n∑
i=1

(xi − x′i)
2 (3.8)

ANAD analyzes incoming flows as shown in Algorithm 4. This method receives the input
data points x and contamination parameter c stating the proportion of anomalies in the
given data points (line 1). ANAD runs the autoencoder and stores the predictions in x′

(line 2). For each data point, this method computes and stores its reconstruction error
using RSS (lines 3-6). The algorithm sorts the data points descendingly based on their
reconstruction errors and returns the top c percent as anomalies (lines 7-8). For a constant
number of alerts, a network operator can set the contamination parameter c based on the
flow incoming rate.

Algorithm 4 Autoencoder-based Network Anomaly Detection
1: procedure ANAD(x, c)
2: x′ ← autoencoder(x)
3: e← ∅
4: for x1, x2 in x, x′ do
5: e← e ∪ RSS(x1, x2)
6: end for
7: sort x based on e descendingly
8: return top c% of x
9: end procedure

28

3.5 Use-case Scenarios

3.5.1 Rate Limiting Use-case

Rate limiting is a common practice [38, 43, 40] that CDNs use against threats ranging
from network layer attacks, e.g. DDoS, to application layer attacks, e.g. brute-force login
attempts. Various rate-limiting mechanisms exist, such as limiting traffic-rate per user,
geography, or server. In this use-case, traffic is rate-limited per-user. Fig. 3.7 illustrates
this scenario, and Fig. 3.11 lists the applicable security policies.

Monitoring Stage. Fig. 3.7a shows the initial system deployment. At the beginning,
SMAS performs light resource monitoring of the virtual edge-server. Large traffic volume
causes high bandwidth and CPU consumption. SMAS identifies this suspicious behavior
as bandwidth and CPU are consumed beyond certain thresholds. SMAS raises an alert,
high_rate, to notify the orchestrator regarding this suspicious traffic.

Rate Limiting Stage. Based on Rules 3.23-3.25, upon receiving the alert high_rate,
if no rate-limiting service exists, the system deploys chain r containing a Rate-limit func-
tion to limit the traffic-rate per IP (representing per end-user traffic). A white-list of
IP addresses are exempted from rate-limiting. Fig. 3.7b shows this chain. To enforce
Rule 3.12, a timer starts after the installation of the chain for the predefined period of
time d. Upon the expiry of this timer, a timeout event is generated with a parameter tr.
Finally, upon receiving the timeout event carrying tr parameter, Rules 3.13 and 3.14 are
matched. First, executing Rule 3.13, chain n with no function is deployed. As chain n
connects ports 1 and 2, traffic is forwarded to the Web-server. Then, Rule 3.14 is matched,
and chain r is removed.

3.5.2 Mitigating HTTPS DDoS Use-case

HTTPS DDoS attacks exploit HTTP and HTTPS and target Web applications running on
a server [56, 108]. Such attacks usually generate less traffic and use seamingly legitimate
requests, and are, therefore, harder to detect. CDNs commonly utilize Web Application
Firewalls (WAFs) to mitigate these attacks [39, 42]. Inspection at the application layer is
a heavy process that can affect the application response time [34]. In this use-case, our
system deploys a security service to mitigate HTTPS DDoS attacks. This service inspects
the content of suspicious traffic to mitigate the attack, while legitimate traffic is served
directly without inspection. Fig. 3.9 depicts this use-case scenario, and Fig. 3.10 lists ECA
policies enforced.

29

Bridge

eth0

Web

Server
2 eth0

Virtual Edge

Server

1

SMAS

(a) Monitoring Stage

Bridgeeth0 1

Rate-Lim.

Web

Server

eth0 eth1

3 4

2 eth0

Virtual Edge

Server

SMAS

(b) Rate Limiting Stage

Figure 3.7: Rate Limiting Scenario

L3 Mitigation Stage. An HTTPS DDoS attack exhausts the CPU power of the
virtual edge-server. SMAS generates cpu_high alert to notify the orchestrator that CPU is
consumed beyond a predefined threshold. Upon reception of this alert to enforce Rule 3.15,
the system instantiates chain u composed of a Firewall named f , as shown in Fig. 3.9a.
Chain u processes IP traffic coming from port 1, going to 2 (the ingress of the Web-server).
This chain starts to filter non-HTTPS traffic (Rules 3.16 and 3.17); however, since the
attack targets the application layer, CPU load is still high.

L4 Mitigation Stage. Upon creating chain u, a timer starts to count (Rule 3.18).
When this timer expires, another chain l comprising a TLS-Term (a TLS termination) and
aWAF is instantiated to perform mitigation at the application layer (Rule 3.19). Fig. 3.9b
depicts this deployment. Chain l processes a subset of traffic coming out of function f ,
going to the Web-server. Note that legitimate traffic, i.e. originating from a white-list of
source IP-addresses in range 99.231.0.0/16, is still directly steered to the Web-server, while
the rest of the traffic, i.e. suspicious traffic, is steered through chain l. TLS-Term decrypts
suspicious traffic, andWAF inspects plain-text traffic to mitigate application layer attacks
including HTTPS DDoS. If the CPU utilization drops under a predefined threshold, the
traffic is directly forwarded to the Web-server, and both chains u and l are deleted (Rules

30

high_rate initiates create_chain(r:
<“not src net 129.97.124.0/24”, 1, 2>,

{f :Rate-limit})
if not chain(r) (3.9)

lim after create_chain(r)

if true (3.10)
lim initiates run(f, “rate_limit.sh”)

if true (3.11)
create_chain(r) causes timer(tr, d)

if true (3.12)
timeout(tr) initiates create_chain(n:<_, 1, 2>, {})

if true (3.13)
timeout(tr) initiates delete_chain(r)

if chain(r) (3.14)

Figure 3.8: Rate Limiting Policies

Bridgeeth0 1

Firewall

Web

Server

eth0 eth1

3 4

2 eth0

Virtual Edge

Server

SMAS

(a) L3 Mitigation Stage

Bridgeeth0 1

Firewall

Web

Server

eth0 eth1

2 eth0

Virtual Edge

Server

TLS-Term

3

SMAS

eth0 eth1

WAF

eth0 eth1

5

4

6 7 8

(b) L4 Mitigation Stage

Figure 3.9: Mitigating HTTPS DDoS Scenario

31

cpu_high initiates create_chain(u:<“ip”, 1, 2>,
{f :Firewall})
if not chain(u) (3.15)

block after create_chain(u)
if true (3.16)

block initiates run(f, “block.sh”)
if true (3.17)

create_chain(u) causes timer(td, d)
if true (3.18)

timeout(td) initiates create_chain(l:
“not src net 99.231.0.0/16”, f, 2,
{t : TLS-Term,w : WAF})
if not chain(l) and chain(u) (3.19)

cpu_low initiates create_chain(n:<_, 1, 2>, {})
if true (3.20)

cpu_low initiates delete_chain(u)
if chain(u) (3.21)

cpu_low initiates delete_chain(l)
if chain(l) (3.22)

Figure 3.10: HTTPS DDoS Mitigation Policies

32

anomaly initiates create_chain(r:
<“”, 1, 2>, {r:Rate-limit})
if not chain(r), not date("Christmas") (3.23)

rate_limit after create_chain(r)

if true (3.24)
rate_limit initiates run(r,

“rate_limit.sh anomaly.suspicious_ips 1Gbps”)
if true (3.25)

Figure 3.11: Rate Limiting Policy

3.20-3.22).

Rate-limit New Attacks: A flash-crowd happens when websites suddenly become
popular due to a big event taking place. Flash-crowds can be easily mistaken for a DDoS
attack, when a resource misuse alert is generated. It is important for network operators
to over-provision resources for handling the requests of legitimate users during peak work-
load periods (e.g., during Black Friday). However, during regular workload periods, the
protection system must deploy a mitigation service, such as rate-limiting when anomalies
are detected. Several Rate-limiting mechanisms exist, e.g, limiting traffic-rate per user or
server [110, 38, 40].

In the use-case of Fig. 3.11, SMAS using ANAD algorithm detects anomalies and gen-
erates corresponding alerts. First, receiving anomaly alert, the policy deploys a per user
rate-limiting service. The security chain contains a Rate-limit function, if it does not al-
ready exist, and if the date is not in the Christmas week (Rule 3.23). Second, a limit of
1 Gbps is forced for the accumulated traffic of suspicious IPs detected by ANAD (Rule 3.24
and Rule 3.25).

33

Chapter 4

Evaluation

4.1 Detection Performance

4.1.1 Experimental Platform

We use a cluster of machines (256 GB RAM, 32-cores 2.00 GHz Xeon CPUs), equipped
with NVIDIA Tesla K10 GPU (320 GBps memory bandwidth, 3072 CUDA cores 745 MHz).
The server runs Ubuntu 16.04 with Linux kernel version 4.4.0.

4.1.2 Dataset

We leverage a labeled dataset CIC-2017 [64] to train and test our models. This dataset
consists of normal and multiple types of attack traffic. In addition to packet capture
(pcap) files, network flows and their corresponding features have been extracted using
CICFlowMeter [7]. To simulate an edge-server traffic, we use flows towards a victim server.

4.1.3 Training and Testing

We use 70% and 30% of the labeled data points as the training dataset and testing dataset,
respectively. These data points are labeled either normal or an attack (e.g., DDoS and
port scan). There are 81 features for each flow from which we extract 76 features. IP
addresses and port numbers are 32-bit and 16-bit numerical values, respectively. These

34

Table 4.1: Experimental Dataset of the Attack Detection Performance

Attack # of Flows Label

Benign 182491 0
DoS Hulk 230124 1
PortScan 158804 2

numerical features are commonly used to train machine learning algorithms; however,
flows from different classes might have close numerical port numbers, and the machine
learning algorithm interprets the close numbers as similarity between data points. The
same argument is valid for IP addresses; therefore, the source and destination IPs, the
source and destination ports, and the flow identification are removed from our feature set.

Throughout this section, the performance of machine learning methods is reported
using the normalized confusion matrix, where an element ij represents what percentage of
class i is classified under class j. In this way, the elements on the diagonal show the recall
or true positive rate values. The sum of the non-diagonal elements of a row shows the false
negative rate for the corresponding class.

4.1.4 Attack Detection Performance

To evaluate the performance of HCC, we need to equip this algorithm with a classifier and
a clustering method. To do so, we run and compare a number of classification methods and
select a classifier that achieves the highest performance. HCC performs the same search
for clustering methods. Then, to show the effectiveness of HCC in mitigating new attacks,
we compare our hybrid method with the best selected classifier. For training and testing
purposes, we use three classes of flows listed in Table 4.1.

Classifiers and Clustering Methods Performance

We trained a decision tree, a random forest, and a bagging classifier. We also trained
an ensemble voting, which uses a voting mechanism between the above three classifiers.
A bagging classifier uses random subsets of a dataset to train multiple decision trees. A
random forest takes random features as well as random subsets to train multiple decision
trees. Both of these ensemble methods [79] take the average of the trained decision trees’
predictions. Fig. 4.1 shows the confusion matrices of the classifiers. Although these models

35

have close recall values, the bagging classifier has a recall of 100% for both normal and DoS
Hulk classes and 99% for the port scan class which makes this classifier the best among
those tested.

0 1 2

0
1

2

99.9 0.0613 0.00323

0.0515 99.9 0.0258

0 0.053 99.9

Decision Tree

0

20

40

60

80

100

(a) Decision Tree

0 1 2
0

1
2

100 0.0484 0

0.0419 99.9 0.0129

0 0.053 99.9

Voting

0

20

40

60

80

100

(b) Voting

0 1 2

0
1

2

100 0.0484 0

0.0387 100 0.00644

0 0.053 99.9

Bagging

0

20

40

60

80

100

(c) Bagging

0 1 2

0
1

2

99.7 0.316 0

0.0548 99.9 0.00967

0.00757 0.0606 99.9

Random Forest

0

20

40

60

80

100

(d) Random Forest

Figure 4.1: Supervised Algorithm Confusion Matrices

We used k-means and mini-batch k-means to divide flows into 3 clusters. Both al-
gorithms start by randomly initializing the cluster centroids and iteratively adjust the
centroids. In each iteration, the k-means assigns all the data points to cluster centroids,
whereas the mini-batch k-means does that on only a batch of data points. Then, the cluster
centroids are updated based on new data points assigned to them. The performance of the

36

0 1 2

0
1

2

78.8 2.91 18.3

37.8 56 6.19

0.0455 0.0152 99.9

KMeans

0

20

40

60

80

100

(a) k-means

0 1 2

0
1

2

18.3 2.91 78.8

6.19 56 37.8

99.9 0.0152 0.0455

MiniBatch KMeans

0

20

40

60

80

100

(b) mini-batch k-means

Figure 4.2: Clustering Algorithms Confusion Matrices

clustering methods is shown in Fig. 4.2. A cluster with the most data points of a class c is
mapped to c and the recall of c is computed based on the data points in mapped cluster.
For example, in Fig. 4.2b, the recall for normal class is 78.8% which is the percentage of
normal data points in cluster 2. The different mappings for the two algorithms is due to
the random initialization of the cluster centroids. Fig. 4.2 shows that these two algorithms
have the same recall values suggesting both of them as good candidates.

HCC Performance

We equip HCC with the best classification method, the bagging classifier, and one of
the clustering candidates, k-means. HCC and its competitor, bagging, are trained over
two classes (normal and port scan), then they are tested for all three classes shown in
Table 4.1. The goal is to evaluate the performance of HCC in detecting the data points
of the unseen class (DoS Hulk). From the new attack data points, the bagging classifier
mis-classifies 97.7% and 2.3% under the normal and port scan classes, respectively. Mis-
classification as the normal class can cause undesirable outcomes; no mitigation service
is deployed, and DoS attack can exhaust the resources of the victim and take down its
services. Mis-classification as a wrong attack results in the deployment of inappropriate
mitigation services that not only does not mitigate the threat, but contributes to the attack
and consumes more resources of the victim.

The performance of HCC is reported in Fig. 4.3b. HCC correctly detects 96.7% and

37

0 1 2

0
1

2

100 0 0.0259

97.7 0 2.3

0.0122 0 100

Bagging

0

20

40

60

80

100

(a) Bagging

0 1 2

0
1

2

96.7 3.28 0.0259

41.4 56.4 2.2

0.0122 0.0489 99.9

Enhanced Classification

0

20

40

60

80

100

(b) Hybrid

Figure 4.3: Hybrid Method Performance in Detecting Known and New Attacks

Table 4.2: Experimental dataset of the anomaly detection experiments

Class # of Flows Label

Benign 438693 0
Anomaly 10293 1

99.9% of the normal and port scan data points, respectively. For the new attack data
points, HCC is able to detect 56.4%, while mis-classifies 41.4% and 2.2% as normal and
port scan classes. The false alarm rate is 3.3% due to the inaccuracy of the unsupervised
clustering method, k-means. We believe that a more advanced clustering algorithm can
improve HCC’s performance.

4.1.5 Anomaly Detection Performance

We evaluate ANAD by comparing its accuracy with that of LOF [48] and isolation forest
[80], two commonly used anomaly detection methods. These anomaly detection methods,
including ANAD, receive several input parameters which affect their detection performance.
We tune the values of these parameters to optimize their recalls for anomalies. To do so,
we employ exclusive grid search that examines all the combinations of given values for all
parameters. Finally, we use the data points of the two classes provided in Table 4.2.

38

Parameters Isolation Forest LOF
examined default chosen examined default chosen

n_jobs 1, 1 1 -1 1, 1 1 -1
contamination .1, .05, .022 .1 .1 .1, .05, .022 0.1 0.1
n_estimators 50, 100, 300, 500 100 300 - - -
max_samples autoa, .001, .01 auto 0.01 - - -
max_features .02, .05, 1.0 1.0 .02 - - -
n_neighbors - - - 20, 25, 30 20 30

amin(256, number of samples)

Table 4.3: Anomaly Detection Methods Parameters

Anomaly Detection Methods Performance

For each data point, LOF computes the local density which is the metric depicting how
isolated this data point is compared with its k neighbors. Isolation forest is an ensemble
learning method that combines the results of multiple decision trees each of which produces
an anomaly score. The isolation forest takes the average over these anomaly scores. Both
methods are given contamination, an input parameter that identifies the proportion of
anomalies. Optimized using the grid search, the default, examined, and chosen values of
the input parameters are shown in Table 4.3. n_jobs denotes the number of jobs to run in
parallel. If given -1, this parameter is set to the number of cores. contamination represents
the percentage of outliers and n_estimators specifies the number of decision trees trained
by the isolation forest. Isolation forest receives the number of samples, and the number
of features to draw for training each decision tree, as max_samples and max_features,
respectively. LOF receives n_neighbors to set k, the numbers of neighbours considered of
each datapoint. This value can be absolute or a percentage of the dataset.

The performance of these two methods is shown in Fig. 4.4. LOF’s recall for the anoma-
lies is 10.5%, and that of isolation forest is 68.3%. The recall of the normal class is almost
90% for both methods. The remaining 10% causes low precision results for anomalies, i.e.,
LOF and isolation forest produce 98% and 88% false alarm rates, respectively. These poor
results motivate the use of deep learning based approaches for anomaly detection.

ANAD Performance

ANAD employs an autoencoder with input and output layers of size 76 and two hidden
layers. The hyper parameters, examined values, and chosen ones are reported in Ta-

39

0 1

0
1

90 9.99

89.5 10.5

LOF

0

20

40

60

80

100

(a) LOF

0 1

0
1

91.2 8.83

31.7 68.3

Isolation Forest

0

20

40

60

80

100

(b) Isolation Forest

Figure 4.4: Traditional Anomaly Detection Algorithms Confusion Matrices

ble 4.4.n_neurons denotes the number of neurons in the hidden layers. activation_function
specifies the function of the neurons. drop_out regulates a rate of randomly selected neu-
rons to be set to zero during each training iteration. This parameter helps the model not
to overfit [102]. training_epoch denotes the number of times the model should be trained
on the whole training dataset. The number of data points that the model processes be-
fore each update of the weights and biases is represented by batch_size. kernel_initializer
indicates the distribution from which the weights are initialized.

Fig. 4.5 reports ANAD performance. ANAD outperforms LOF significantly. In compar-
ison with isolation forest, the recall values are improved by 0.4% and 8.4%. These results
confirm that the autoencoder-based anomaly detection achieves higher performance in the
detection recalls of normal and anomaly data points compared to the two commonly used
anomaly detection methods.

4.2 Mitigation Performance

4.2.1 Experimental Platform

Testbed. We use a cluster of machines (16GB RAM, 8-cores 3.30GHz Xeon CPUs) con-
nected with 10 Gbps NICs. The servers run Ubuntu 14.04 with Linux kernel version 3.16.

40

Table 4.4: ANAD’s Hyper Parameters

Hyper-params examined chosen
contamination .1, .05, .022 .1
n_neurons 5, 35 5
activation_function relu, tanh, linear linear
epochs 100, 150 150
batch_size 100, 1000 100
dropout_rate 0.0, 0.2 0.0
weight_constraint 1, 5 5
kernel_initialization uniform, normal normal

0 1

0
1

91.6 8.4

23.3 76.7

Auto Encoder

0

20

40

60

80

100

Figure 4.5: ANAD’s Performance

We use 1 to 4 servers as load generators, a server as the Device under Test (DuT) to host
chains, and a server as the traffic sink. An active daemon of our system runs on DuT.

Traffic generation. We use iperf and Apache benchmark (ab) to generate line-rate
TCP and Web traffic, respectively. iperf clients and ab run on the load generator servers,
and iperf server runs on the traffic sink server.

Service functions. We use two service functions. Function fwd passes traffic from a
virtual interface to another. We intentionally use this function in experiments in which we
benchmark the overhead of our service function chaining platform independent from the
complex functionality of a service function. The other function is Rate-limit which limits
the rate of the incoming traffic.

4.2.2 System in Action

We measure the overhead of deploying chains using our system, and the overhead of our
chaining mechanisms in terms of latency and throughput.

Chain Deployment Time

This experiment measures the time it takes to deploy a chain using our system. We vary the
chain length (the number of functions in a chain) from 1 to 7 and repeat each experiment
5 times. In the process of creating a chain, instantiating functions and connecting them

41

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

T
im

e
(s

)
Adding VNICs Delay
Instantiating Function(s)

Chain Length

Figure 4.6: Chain Deployment Time

to OVS are the two most time-consuming procedures. As shown in Fig. 4.6, the chain
of length 1 has the lowest deployment time of 1.06 s, and the chain of length 7 has the
highest deployment time of 6.13 s. The VM-based platforms (e.g. Bohatei [60]) have a
chain creation time in the order of minutes, while it is evident from this experiment that
our system is capable of deploying service function chains in less than 7 seconds.

Round Trip Time

In this experiment, we measure the Round Trip Time (RTT) of traffic steered through
chains deployed by our system. We use ping for the RTT measurements, and repeat each
experiment 5 times. As depicted in Fig. 4.7, we vary the chain length from 1 to 7 fwd
functions, and report the RTT average and standard-deviation for each chain-length. As
expected, the chains of length 1 and 7 have the lowest RTT (405.13 µs) and the highest
RTT (495.04 µs), respectively. Although the longer the chain, the higher the RTT, the
delay introduced by our routing mechanism is small. As shown, the RTT of the chain of
length 7 is only 89.91 µs more than that of the chain of length 1.

42

0 1 2 3 4 5 6 7 8

Chain Length

300

350

400

450

500

550

600

R
ou

nd
T

ri
p

T
im

e
(µ

s)

Figure 4.7: Traffic Round Trip Time

Resource Utilization and Throughput

In this experiment, we measure the maximum throughput of chains composed of 1 to 7 fwd
functions using iperf. We repeat each experiment 5 times. All functions of a chain are
instantiated in a single server. As shown in Fig. 4.8, the chain-length has a direct impact
on the chain throughput. The chains of length 1 and 7 have respectively the highest
throughput (7272 Mbps) and the lowest throughput (2818 Mbps) on average. All cycles
of CPU-cores are utilized during this experiment. We observe that fwd functions consume
a negligible amount of the CPU power, while the process softirq consumes the most of
CPU power meaning that the packet reception in the Linux kernel of the host becomes the
bottleneck. The workflow of the packet reception in the Linux kernel (version 2.5.7 and
above) is as follows. The NIC transfers a packet from the ring buffer to the main memory
via direct memory access and notifies the CPU with input queue interrupt request (IRQ).
This IRQ is mapped to a CPU core which runs Interrupt Service Routine (ISR) [33] to
handle this interrupt. At the end, ISR raises a softirq to defer the reception of the packet
from the interrupt context to the process context. Packet reception is an expensive process.
In a chain, each function generates IRQs by forwarding packets. Making the chain longer
increases the number of IRQs, thus doing so decreases the throughput.

43

0 1 2 3 4 5 6 7 8

Chain Length

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

T
hr

ou
gh

pu
t

(M
bp

s)

Figure 4.8: Throughput vs. Chain Length

4.2.3 Static vs. Dynamic Security Service

Our system allows agile deployment of security services and the ability to redirect subsets of
traffic on-the-fly. These features make it easy to deploy security chains to process a subset
of traffic. In this experiment, we compare a static service with a dynamic one securing a
Web-server. These security services perform deep inspection of incoming HTTPS traffic.
The traffic passes through a TLS termination (decrypting HTTPS to HTTP) and a WAF
(deep inspection of HTTP traffic matching OWASP core-rules-set [41]). In addition to
security functions, a Web-server is installed in the DuT.

In this experiment, we measure the time to download 400 Web-pages concurrently.
The static security service (Static) corresponds to the manual deployment of the security
chain through which all requests are steered. In the dynamic security service (Dynamic),
300 legitimate requests are directly served without any inspection, while 100 suspicious
requests are analyzed in the security chain. As shown in Fig. 4.9, all pages are retrieved
within 104.205 ms in the case of Static. In the case of Dynamic, the legitimate requests
are retrieved in less than 43.09 ms, and others are served within 110.309 ms. The dynamic
security service serves the legitimate requests 2.4× faster. To further evaluate the over-
head introduced by security services, we measure the completion time of requests when
all requests are directly served (Baseline). In the case of Baseline, all Web-pages are
downloaded within 10.496 ms. One would think that legitimate requests in the case of
Dynamic should be served with the same latency as in the case of Baseline. However,

44

0 10 20 30 40 50 60 70 80 90 100

Completion Time (ms)

0
50

100
150
200
250
300
350
400

C
om

pl
et

ed
Pa

ge
s

Dynamic Static Baseline

Figure 4.9: Completion Time of Retrieving Web-pages

there is an overhead of 32.6 ms explained by the high CPU utilization (mostly consumed by
the WAF) when security chains inspect traffic. Consequently, the Web-server is deprived
of some of the CPU resources.

4.2.4 Responsiveness

In this experiment, we evaluate the effectiveness of our system in performing traffic en-
gineering actions similar to the use-case scenario presented in Section 3.5.1. We use our
system to recover the QoS of legitimate traffic in the case of a flooding attack. To emulate
such a scenario, we perform a five-stage experiment summarized in Table 4.5. As shown
in Fig. 4.10, we start by sending only legitimate traffic (8.39 Gbps) in the first stage. In
the next three stages, the flooding traffic is gradually increased to drain the network band-
width and decrease the legitimate traffic throughput. During these stages, the legitimate
traffic experiences a throughput decrease of ∼ 8.4 Gbps down to ∼ 2 Gbps. In the last
stage, in response to the generated alert, our system deploys a mitigation chain consisting
of a Rate-limit function through which the flooding traffic is steered. The flooding traffic
is limited to two different rates (1 Gbps and 3 Gbps). In the case of 1 Gbps rate-limit,
the legitimate throughput is almost fully recovered (8.02 Gbps). We observe a recovered
throughput of 6 Gbps in the case of 3 Gbps rate-limit. In both cases, we achieve imme-
diate recovery (in less than 1 second) after deploying the mitigation chain. These results
demonstrate that our system provides fast and effective recovery of the legitimate traffic

45

Table 4.5: The Stages of Responsiveness Experiment

StageDuration (s) Flooding traffic share

1 0-30 0%

2 30-60 50%

3 60-90 66.6%

4 90-120 75%

5 120-170 Limited to 1 Gpbs / 3 Gbps

throughput.

0 20 40 60 80 100 120 140 160 180

Time (s)

0

2000

4000

6000

8000

10000

L
eg

.T
hr

ou
gh

pu
t

(M
bp

s) 1 Gbps 3 Gbps

Figure 4.10: Recovering Legitimate Traffic Throughput

46

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The dynamicity of CDN edge-server environments requires that the systems deployed to
protect them are also dynamic. It is also important that such protection system have low
overhead not to adversely affect legitimate user traffic. In this thesis, we have designed and
implemented a policy-based security system that automatically and dynamically deploys
security function chains. We illustrated how our system can be flexibly programmed to
handle real world use-cases. Our system is capable of accurately generating alerts for known
attacks as well as generating fairly accurate alerts for unseen attacks using a proposed
hybrid classification clustering method and anomaly detection approaches. Upon, detecting
attacks, the system generates alerts that might trigger policies. With our hybrid method,
the recall for known attacks ranges from 96.7% to 99.9%, and the recall for the new attack
classes increases from 0% to 56% compared to a bagging classifier. Using an autoencoder
based anomaly detection method, our system can detect 76.7% of anomalies which improves
the isolation forest anomaly recall by 12%. The evaluation results demonstrate that our
system has low overhead in terms of chain deployment time and latency of traffic passing
through a chain. Our mitigation system is able to immediately respond to threats and
quickly recover legitimate traffic throughput (∼1 second). Using our system, legitimate
traffic can be exempted from the high overhead imposed by heavy security services. To
do so, security policies dictate redirecting only suspicious traffic to security chains while
legitimate traffic is directly served without inspection. Accordingly, we have shown that
legitimate requests are served 2.4× faster than in the case of static security services.

.

47

5.2 Future Work

Here, we present the following possible extensions to our work:

Orchestration: In the current implementation of the orchestrator, conflicting and
redundant rules might be applied. For example, a rule that is triggered to build a chain for
a subset of a traffic can override an already deployed chain for the traffic. There should be
methods to ensure policy consistency through formal verification. Additionally, we have
studied how to reduce the signaling overhead in the Orchestration process. As well as the
ECA defined actions based on which the VIM is commanded to instantiate chains of various
service functions, we tested delegating part of the service function chain management. An
enabler for this purpose is the NSH protocol, which can carry metadata between different
service functions. Thus, a decision from the Orchestrator may be propagated among the
various service functions without full involvement of the Orchestrator in every decision.
This type of delegation is challenging and remains a work in progress.

Attack methods: As part of the traffic monitoring analytics, we have proposed a
hybrid learning method. This method uses a traditional clustering mechanism, namely
k-means. Recently in the field of deep learning, variational and adversarial autoencoders
are proposed for unsupervised clustering. In these models, the latent space is forced to
have a normal mixed Gaussian distribution by which different clusters are separated. As
future work, k-means can be replaced by these models.

48

References

[1] 400gbps: Winter of whopping weekend ddos attacks. https://goo.gl/XwQuL4.

[2] Akamai’s [state of the internet] / security q3 2016 report. https://goo.gl/pliMHT.

[3] Cdn hosting vs traditional web hosting. https://goo.gl/ynnku2.

[4] Cloud ddos protection service. https://goo.gl/hDGE9M.

[5] Ddos security trends report - state of the internet. https://goo.gl/ZSDcSu.

[6] Fastly ddos mitigation. https://goo.gl/wwco7U.

[7] Flowmeter. http://www.unb.ca/cic/datasets/flowmeter.html.

[8] Global ddos threat landscape q3 2016. https://goo.gl/kgT6pM.

[9] Ibm appscan source. https://goo.gl/xa3yeM.

[10] Imperva incapsula ddos protection. https://goo.gl/6z9hwm.

[11] The imperva incapsula network ops ddos playbook. https://goo.gl/Z4R5Cx.

[12] Infrastructure ddos protection | bgp routing | incapsula. https://goo.gl/qMyhXy.

[13] Is your website available? https://goo.gl/h1Z5r1.

[14] Linux containers. https://linuxcontainers.org. Accessed: 2017-10-05.

[15] Netflix open connect. https://openconnect.netflix.com.

[16] Newton release of openstack. https://www.openstack.org/software/newton/.
Accessed: 2017-10-05.

49

https://goo.gl/XwQuL4
https://goo.gl/pliMHT
https://goo.gl/ynnku2
https://goo.gl/hDGE9M
https://goo.gl/ZSDcSu
https://goo.gl/wwco7U
http://www.unb.ca/cic/datasets/flowmeter.html
https://goo.gl/kgT6pM
https://goo.gl/xa3yeM
https://goo.gl/6z9hwm
https://goo.gl/Z4R5Cx
https://goo.gl/qMyhXy
https://goo.gl/h1Z5r1
https://linuxcontainers.org
https://openconnect.netflix.com
https://www.openstack.org/software/newton/

[17] Ocata release of openstack. https://releases.openstack.org/ocata/. Accessed:
2017-10-05.

[18] Odl service function chaining. https://wiki.opendaylight.org/view/Service_
Function_Chaining:Main. Accessed: 2017-10-05.

[19] Open network operating system (onos). http://onosproject.org. Accessed: 2017-
10-05.

[20] Open vswitch. http://openvswitch.org.

[21] Opendaylight. https://www.opendaylight.org. Accessed: 2017-10-05.

[22] Openstack. https://www.openstack.org.

[23] Openstack compute (nova). https://docs.openstack.org/nova/latest/. Ac-
cessed: 2017-10-05.

[24] Openstack neutron. https://wiki.openstack.org/wiki/Neutron. Accessed: 2017-
10-05.

[25] Ovs nsh patches. https://github.com/yyang13/ovs_nsh_patches. Accessed:
2017-10-05.

[26] Owasp top 10-2013. https://goo.gl/Ne1M5e. Accessed: 2017-02-28.

[27] Production-grade container orchestration. https://kubernetes.io. Accessed:
2017-10-05.

[28] Web application firewall: More than web security. https://goo.gl/SZvMbp.

[29] Web application firewall (waf) | application security | incapsula. https://goo.gl/
Dv5LQf.

[30] What to look for when choosing a cdn for ddos protection. https://goo.gl/HiaCA9.

[31] Wordpress default leaves millions of sites exploitable for ddos attacks. https://goo.
gl/jVwoP7.

[32] Zun. https://wiki.openstack.org/wiki/Zun. Accessed: 2017-10-05.

[33] Assign interrupts to processor cores on intel ethernet controller. https://goo.gl/
nWXjzU, 2009.

50

https://releases.openstack.org/ocata/
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
http://onosproject.org
http://openvswitch.org
https://www.opendaylight.org
https://www.openstack.org
https://docs.openstack.org/nova/latest/
https://wiki.openstack.org/wiki/Neutron
https://github.com/yyang13/ovs_nsh_patches
https://goo.gl/Ne1M5e
https://kubernetes.io
https://goo.gl/SZvMbp
https://goo.gl/Dv5LQf
https://goo.gl/Dv5LQf
https://goo.gl/HiaCA9
https://goo.gl/jVwoP7
https://goo.gl/jVwoP7
https://wiki.openstack.org/wiki/Zun
https://goo.gl/nWXjzU
https://goo.gl/nWXjzU

[34] Ways to improve performance of your server in modsecurity 2.5. https://goo.gl/
EdRzJR, 2009.

[35] Sandvine global internet phenomena report 2h-2013. https://goo.gl/GWqQWV, 2013.

[36] Network functions virtualisation (nfv); management and orchestration. https://
goo.gl/wRm9LK, 2014.

[37] Network functions virtualisation (nfv) release 3; security; security management and
monitoring specification. https://goo.gl/hQMXNP, 2014.

[38] Cloudflare rate limiting. https://goo.gl/PovNvK, 2017.

[39] Ddos prevention: Ddos protection product | defencepro. https://goo.gl/FBazjJ,
2017.

[40] Defend http rate limiting: Stop application layer ddos attacks at the edge of the
internet. https://goo.gl/UajPrT, 2017.

[41] Owasp modsecurity core rule set project. https://goo.gl/ihxX98, 2017.

[42] Web application ddos protection | layer 3-4 and 7 | incapsula. https://goo.gl/
Dkdbct, 2017.

[43] What is rate limiting? https://goo.gl/HxWRC9, 2017.

[44] T. Alharbi, A. Aljuhani, and Hang Liu. Holistic ddos mitigation using nfv. In 2017
IEEE CCWC, 2017.

[45] Deepak Nadig Anantha. Sdn service function chaining with onos and devstack.
https://deepaknadig.com/blog/sdn-sfc-onos-devstack/. Accessed: 2017-10-
05.

[46] Chitta Baral, Jorge Lobo, and Goce Trajcevski. Formal characterizations of active
databases: Part II, pages 247–264. Springer Berlin Heidelberg, 1997.

[47] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly detection:
Methods, systems and tools. IEEE Communications Surveys Tutorials, 16(1):303–
336, First 2014.

[48] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:
Identifying density-based local outliers. SIGMOD Rec., 29(2):93–104, May 2000.

51

https://goo.gl/EdRzJR
https://goo.gl/EdRzJR
https://goo.gl/GWqQWV
https://goo.gl/wRm9LK
https://goo.gl/wRm9LK
https://goo.gl/hQMXNP
https://goo.gl/PovNvK
https://goo.gl/FBazjJ
https://goo.gl/UajPrT
https://goo.gl/ihxX98
https://goo.gl/Dkdbct
https://goo.gl/Dkdbct
https://goo.gl/HxWRC9
https://deepaknadig.com/blog/sdn-sfc-onos-devstack/

[49] B. Cafarelli. Service function chaining demo with devstack. http://blog.
cafarelli.fr/2016/11/service-function-chaining-demo-with-devstack/.
Accessed: 2017-10-05.

[50] M. J. Carey, R. Jauhari, and M. Livny. On transaction boundaries in active
databases: a performance perspective. IEEE TKDE, 1991.

[51] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, and M. Varvello. From content
delivery today to information centric networking. Computer Networks, 57(16):3116
– 3127, 2013. Information Centric Networking.

[52] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[53] Jianjun Chen, Tao Wan, and Vern Paxson. Forwarding-loop attacks in content de-
livery networks. In the 23st Annual Network and Distributed System Security Sym-
posium, 2016.

[54] Bram Cohen. Alibaba cloud mobile security service is an online mobile application
security service that protects applications from potential risks, threats and vulnera-
bilities. https://goo.gl/wnrXx6.

[55] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A. Pat-
terson. Cooperative caching: Using remote client memory to improve file system
performance. In Proceedings of the 1st USENIX Conference on Operating Systems
Design and Implementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX Associa-
tion.

[56] Y. G. Dantas, V. Nigam, and I. E. Fonseca. A selective defense for application layer
ddos attacks. In IEEE JISIC, 2014.

[57] B. Davie and J. Gross. A stateless transport tunneling protocol for network virtual-
ization (stt). Rfc, RFC Editor, April 2016.

[58] Umeshwar Dayal, Alejandro P. Buchmann, and Dennis R. McCarthy. Rules are ob-
jects too: A knowledge model for an active, object-oriented database system. Springer,
1988.

[59] Sarah M. Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher
Leckie. High-dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning. Pattern Recognition, 58:121 – 134, 2016.

52

http://blog.cafarelli.fr/2016/11/service-function-chaining-demo-with-devstack/
http://blog.cafarelli.fr/2016/11/service-function-chaining-demo-with-devstack/
https://goo.gl/wnrXx6

[60] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bohatei: Flexible
and elastic ddos defense. In USENIX Conference on Security Symposium. USENIX
Association, 2015.

[61] P. GarcÃŋa-Teodoro, J. DÃŋaz-Verdejo, G. MaciÃą-FernÃąndez, and E. VÃązquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges.
Computers and Security, 28(1):18–28, 2009.

[62] P. Garg and Y. Wang. Nvgre: Network virtualization using generic routing encap-
sulation. RFC 7637, RFC Editor, September 2015.

[63] A. Gerber and R. Doverspike. Traffic types and growth in backbone networks. In
OSA OFC and NFOEC, 2011.

[64] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. An evaluation
framework for intrusion detection dataset. In 2016 International Conference on In-
formation Science and Security (ICISS), pages 1–6, Dec 2016.

[65] D. Gillman, Y. Lin, B. Maggs, and R. K. Sitaraman. Protecting websites from attack
with secure delivery networks. Computer, 2015.

[66] J. Gross, I. Ganga, and T. Sridhar. Geneve: Generic network virtualization encap-
sulation. Rfc, RFC Editor, September 2017.

[67] Joel M. Halpern and Carlos Pignataro. Service Function Chaining (SFC) Architec-
ture. RFC 7665, October 2015.

[68] Weili Han and Chang Lei. A survey on policy languages in network and security
management. Computer Networks, 2012.

[69] S. HomChaudhuri and M. Foschiano. Cisco systems’ private vlans: Scalable security
in a multi-client environment. RFC 5517, RFC Editor, February 2010.

[70] A. H. M. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman. Vfence: A
defense against distributed denial of service attacks using network function virtual-
ization. In 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), 2016.

[71] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M. Pourzandi, and R. Boutaba.
Dynamic security orchestration for cdn edge-servers. In 2018 IEEE Conference on
Network Softwarization (NetSoft), June 2018.

53

[72] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M. Pourzandi, and R. Boutaba.
A security orchestration system for cdn edge servers. In 2018 IEEE Conference on
Network Softwarization (NetSoft), June 2018.

[73] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep learning
approach for network intrusion detection system. In Proceedings of the 9th EAI Inter-
national Conference on Bio-inspired Information and Communications Technologies
(Formerly BIONETICS), BICT’15, pages 21–26, ICST, Brussels, Belgium, Belgium,
2016. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering).

[74] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell. Catch me if you
can: A cloud-enabled ddos defense. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 264–275, June 2014.

[75] I. Lazar and W. Terrill. Exploring content delivery networking. IT Professional,
3(4):47–49, Jul 2001.

[76] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Sri-
vastava. A Comparative Study of Anomaly Detection Schemes in Network Intrusion
Detection. In Proceedings of the Third SIAM International Conference on Data Min-
ing, 2003.

[77] Kang-Won Lee, S. Chari, A. Shaikh, S. Sahu, and Pau-Chen Cheng. Protecting
content distribution networks from denial of service attacks. In IEEE International
Conference on Communications, 2005. ICC 2005. 2005, volume 2, pages 830–836
Vol. 2, May 2005.

[78] Jun Li, Skyler Berg, Mingwei Zhang, Peter Reiher, and Tao Wei. Drawbridge:
Software-defined ddos-resistant traffic engineering. In ACM. ACM, 2014.

[79] Wei-Chao Lin, Shih-Wen Ke, and Chih-Fong Tsai. Cann: An intrusion detection
system based on combining cluster centers and nearest neighbors. Knowledge-Based
Systems, 78:13 – 21, 2015.

[80] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection.
ACM Trans. Knowl. Discov. Data, 6(1):3:1–3:39, March 2012.

[81] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright. Virtual extensible local area network (vxlan): A framework for

54

overlaying virtualized layer 2 networks over layer 3 networks. RFC 7348, RFC Editor,
August 2014. http://www.rfc-editor.org/rfc/rfc7348.txt.

[82] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. On dominant char-
acteristics of residential broadband internet traffic. In ACM IMC. ACM, 2009.

[83] Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture for
user-level packet capture. In USENIX, 1993.

[84] Dennis McCarthy and Umeshwar Dayal. The architecture of an active database
management system. SIGMOD Rec., 18(2):215–224, June 1989.

[85] Mindi McDowell. Understanding denial-of-service attacks. https://www.us-cert.
gov/ncas/tips/ST04-015, 2013.

[86] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, page 2, 2014.

[87] Tim Moses et al. Extensible access control markup language (xacml) version 2.0.
Oasis Standard, 200502, 2005.

[88] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: A plat-
form for high-performance internet applications. SIGOPS Oper. Syst. Rev., 44(3):2–
19, August 2010.

[89] M. PATHAN. A taxonomy of cdns. Content Delivery Netowrks, LNEE, 9, 2008.

[90] E. L. Paula, M. Ladeira, R. N. Carvalho, and T. MarzagÃčo. Deep learning anomaly
detection as support fraud investigation in brazilian exports and anti-money laun-
dering. In 2016 15th IEEE International Conference on Machine Learning and Ap-
plications (ICMLA), pages 954–960, Dec 2016.

[91] Vern Paxson. An analysis of using reflectors for distributed denial-of-service attacks.
SIGCOMM Comput. Commun. Rev., pages 38–47, 2001.

[92] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios Smaragdakis, and Anja
Feldmann. Improving content delivery using provider-aided distance information. In
ACM IMC. ACM, 2010.

[93] Stefan Prandl, Mihai Lazarescu, and Duc-Son Pham. A Study of Web Application
Firewall Solutions, pages 501–510. Springer International Publishing, Cham, 2015.

55

http://www.rfc-editor.org/rfc/rfc7348.txt
https://www.us-cert.gov/ncas/tips/ST04-015
https://www.us-cert.gov/ncas/tips/ST04-015

[94] M. Prince. Technical details behind a 400gbps ntp amplification ddos attack. https:
//goo.gl/5Fn84x.

[95] Matthew Prince. The ddos that almost broke the internet. https://blog.
cloudflare.com/the-ddos-that-almost-broke-the-internet, 2013.

[96] P. Quinn, U. Elzur, and C. Pignataro. Network service header (nsh). Rfc, RFC
Editor, October 2017.

[97] Paul Quinn, Uri Elzur, and Carlos Pignataro. Network Service Header (NSH).
Internet-Draft draft-ietf-sfc-nsh-28, IETF, 2017. Work in Progress.

[98] Jamal Raiyn et al. A survey of cyber attack detection strategies. International
Journal of Security and Its Applications, 8(1):247–256, 2014.

[99] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architec-
ture. RFC 3031, RFC Editor, January 2001. http://www.rfc-editor.org/rfc/
rfc3031.txt.

[100] F. Sabahi and A. Movaghar. Intrusion detection: A survey. In 2008 Third Inter-
national Conference on Systems and Networks Communications, pages 23–26, Oct
2008.

[101] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth,
and Georg Langs. Unsupervised anomaly detection with generative adversarial net-
works to guide marker discovery. In Marc Niethammer, Martin Styner, Stephen
Aylward, Hongtu Zhu, Ipek Oguz, Pew-Thian Yap, and Dinggang Shen, editors,
Information Processing in Medical Imaging, pages 146–157, Cham, 2017. Springer
International Publishing.

[102] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[103] Colin Tankard. Advanced persistent threats and how to monitor and deter them.
Network Security, 2011(8):16 – 19, 2011.

[104] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri.
Andromeda: Accurate and scalable security analysis of web applications. In Vittorio
Cortellessa and Dániel Varró, editors, Fundamental Approaches to Software Engi-
neering, pages 210–225, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

56

https://goo.gl/5Fn84x
https://goo.gl/5Fn84x
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt

[105] Sipat Triukose, Zakaria Al-Qudah, and Michael Rabinovich. Content delivery net-
works: protection or threat? In ESORIS. Springer, 2009.

[106] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S Pai, and Larry L Peterson.
Reliability and security in the codeen content distribution network. In USENIX
Annual Technical Conference, General Track, pages 171–184, 2004.

[107] Candid Wueest. The continued rise of ddos attacks. https://goo.gl/EuLPr2, 2013.

[108] Yi Xie and Shun-Zheng Yu. Monitoring the application-layer ddos attacks for popular
websites. IEEE/ACM Trans. Netw., 2009.

[109] Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe. Learning deep
representations of appearance and motion for anomalous event detection. CoRR,
abs/1510.01553, 2015.

[110] Xiaowei Yang, David Wetherall, and Thomas Anderson. Tva: A dos-limiting network
architecture. IEEE/ACM Trans. Netw., 16(6):1267–1280, December 2008.

[111] Minlan Yu, Ying Zhang, Jelena Mirkovic, and Abdulla Alwabel. Senss: Software
defined security service. In ONS, Santa Clara, CA, 2014. USENIX.

57

https://goo.gl/EuLPr2

	List of Tables
	List of Figures
	Introduction
	Challenges and Opportunities
	Contributions
	Thesis Organization

	Background
	Content Delivery Networks
	Content Delivery Procedure
	Attacks against CDN Edge-Servers

	Defence Mechanisms
	Traditional Security Mechanisms
	Software Based Security Mechanisms

	Security Orchestration System for CDN Edge Servers
	Architecture
	Orchestrator
	Virtual Infrastructure Manager
	Security Monitoring Analytic System

	Orchestrator
	ECA Rules
	Rule Components
	ECA Rule Examples
	Rule Execution

	Virtual Infrastructure Manager
	Service Function Chaining Requirements
	VIM Building Blocks
	Specifications
	Service Function Chaining
	Northbound API

	Security Monitoring Analytics System
	Resource Monitoring Analytics
	Traffic Monitoring Analytics
	Autoencoder-based Network Anomaly Detection (ANAD):

	Use-case Scenarios
	Rate Limiting Use-case
	Mitigating HTTPS DDoS Use-case

	Evaluation
	Detection Performance
	Experimental Platform
	Dataset
	Training and Testing
	Attack Detection Performance
	Anomaly Detection Performance

	Mitigation Performance
	Experimental Platform
	System in Action
	Static vs. Dynamic Security Service
	Responsiveness

	Conclusion and Future Work
	Conclusion
	Future Work

	References

