
Spatially-implicit modelling of disease-behaviour interactions in the

context of non-pharmaceutical interventions

N. Ringa1, C.T. Bauch2

1 Department of Mathematics and Statistical Sciences, Botswana International University of Science and
Technology, Private Bag 16, Palapye, Botswana, 2 Department of Applied Mathematics, University of Waterloo, 200

University Avenue West, Waterloo, ON N2L 3G1, Canada.

Abstract

Pair approximation models have been used to study the spread of infectious diseases in spatially
distributed host populations, and to explore disease control strategies such as vaccination and case
isolation. Here we introduce a pair approximation model of individual uptake of non-pharmaceutical
interventions (NPIs) for an acute self-limiting infection, where susceptible individuals can learn the
NPIs either from other susceptible individuals who are already practicing NPIs (“social learning”), or
their uptake of NPIs can be stimulated by being neighbours of an infectious person (“exposure learn-
ing”). NPIs include individual measures such as hand-washing and respiratory etiquette. Individuals
can also drop the habit of using NPIs at a certain rate. We derive a spatially defined expression
of the basic reproduction number R0 and we also numerically simulate the model equations. We
find that exposure learning is generally more efficient than social learning, since exposure learning
generates NPI uptake in the individuals at immediate risk of infection. However, if social learning is
pre-emptive, beginning a sufficient amount of time before the epidemic, then it can be more effective
than exposure learning. Interestingly, varying the initial number of individuals practicing NPIs does
not significantly impact the epidemic final size. Also, if initial source infections are surrounded by
protective individuals, there are parameter regimes where increasing the initial number of source
infections actually decreases the infection peak (instead of increasing it) and makes it occur sooner.
The peak prevalence increases with the rate at which individuals drop the habit of using NPIs, but
the response of peak prevalence to changes in the forgetting rate are qualitatively different for the two
forms of learning. The pair approximation methodology developed here illustrates how analytical
approaches for studying interactions between social processes and disease dynamics in a spatially
structured population should be further pursued.

Keywords: Pair approximation, network model, social distancing, non-pharmaceutical
interventions, transmission model

1. Introduction

Mathematical models in epidemiology often
make the assumption that successful control of

epidemics is only determined by the availability
and effective deployment of control measures
such as vaccination and isolation, whose suc-
cess largely depends on factors such as quantity
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of vaccine and logistical constraints. In recent
years, some mathematical models are focusing
on endogenously incorporating the impact of
human behavioral patterns on the regulation of
communicable diseases. Upon gaining aware-
ness about an infectious disease outbreak, sus-
ceptible individuals may decrease their infec-
tion risk by isolating themselves or reducing
interactions with their friends, colleagues, etc,
through staying at home and avoiding social
contacts. This practice is known as social dis-
tancing [16, 22]. Along with social distancing,
hand-washing, use of masks, and other respira-
tory etiquette are further examples of so-called
‘non-pharmaceutical interventions’ (NPIs) that
can reduce infection spread [31]. While health-
care providers often advise the public on ap-
propriate NPIs, behavioral choices of individ-
ual members of the host population partially
determine the dynamics and feasibility to con-
trol an infectious disease outbreak.

Social distancing and other NPIs have as-
sisted the control of infections such as flu, se-
vere acute respiratory syndrome (SARS) and
plague [6, 12, 40, 23, 14, 36, 15, 38, 21, 2]. How-
ever despite the availability of a large amount
of information about the dangers and risks of
sexually transmitted infections (STIs), actions
like unsafe sexual behavior and needle sharing
during intravenous drug use have been linked
to the pandemic-scale dissemination of STIs
such as HIV/AIDS [26, 24, 39, 25]. Generally,
negligence or relaxation of precautionary mea-
sures is brought about by factors such as lack of
awareness and engaging in infection-enhancing
social practices such as handshakes, hug, kisses,
sharing of food and concurrent sexual partner,
as well as some cultural practices. The 2014
epidemic outbreak of Ebola in West Africa is
an example of how cultural or religious prac-
tices, such as engaging in risky rituals and in-
appropriate handling of the sick or deceased,
also influence the dynamics of infectious dis-

eases [28].

Human behavior also plays a role in the
regulation of some animal infectious diseases.
For instance, the use of dogs in hunting and
grazing cattle in countries such as Kenya and
Botswana, influences transmission of canine
diseases between domestic dogs and the African
wild dog [1]. Although culling (slaughtering of
infectious or at-risk animals) has been found
to effectively control foot and mouth disease,
farmers’ resistance towards this intervention
measure (because of fear of loss of livestock)
often makes it difficult to bring the disease un-
der control.

In [12] the authors explore the impact of
social distancing on the spread of an infection
by incorporating health status-based contact
behavior patterns into a mean-field equations
epidemic model. Thus, the transmission dy-
namics are governed by differing contact levels
between individuals of different health types.
For example, due to the perceived risk of infec-
tion, susceptible individuals are likely to avoid
contact with infected individuals, while main-
tenance contact with recovered individuals may
have a less significant impact.

In [15] the authors explore the idea that the
adoption of social distancing or other NPIs is
driven by the level of information individuals
have, such that members of the host popula-
tion who possess first hand information become
more cautious and therefore less susceptible
than those who have second hand information.
Similarly, individuals who have second hand in-
formation are less susceptible than those who
posses third hand information, etc. This study
was carried out by modeling information trans-
mission and spread of an infection using mean-
field equations and individual-based epidemic
models. The research also discusses the sig-
nificance of repeated re-generation of aware-
ness into the population to ensure that most
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individuals have access to primary, or close-to-
primary, information, which increases the num-
ber of individuals who exercise contact precau-
tions and/or NPIs.

In [14] the authors capture the dynamic na-
ture of individuals’ decisions leading to adop-
tion or non-practice of social distancing, by
assuming that the network geometry within
which the host population resides (particularly
the neighborhood size) changes over time, de-
pending on individuals’ perceived risk of in-
fection. Thus, adjustment of individuals’ per-
ceptions about the disease over time results
in variation of contact pattens and, therefore,
it affects the infection dynamics. Other re-
searchers have explored game-theoretical [33]
or rule-based simulation models [35, 37] of so-
cial distancing.

The spatial dimension of social distancing
has been explored in some of this previous work
[15, 14, 35, 37]. Spatial dynamics can be an-
alytically intractable, hence the frequent de-
cision to employ agent-based models. How-
ever, one method for implicitly capturing spa-
tial dynamics that often permits analysis is
moment closure approximation (MCA). MCAs
employ pairs, triples, quadruples, etc., of con-
nected individuals, as model state variables,
such that transmission takes place only be-
tween connected susceptible and infectious in-
dividuals on the network. MCAs are usually
comprised by a system of differential equations,
where each equation describes time evolution
of second order, third order, fourth order, etc.,
spatial correlations between individual mem-
bers of the host population. Equations of mo-
tion for pairs involve terms in triples, equa-
tions of motion for triples involves terms in
quadruples, etc. Therefore in order to obtain
a closed system of equations, this hierarchy is
truncated by techniques referred to as moment
closures. Carrying out the closure at the level

of pairs produces a pair approximation model
[34, 8, 7, 5, 29, 30, 32, 13, 9, 19, 11, 17].

Here our objective is to demonstrate how
pair approximations and analytical expres-
sions for the basic reproduction number can
be developed for spatially-structured socio-
epidemiological systems. We develop and an-
alyze a pair approximation model and explore
the impacts of NPIs on the spread of an in-
fectious disease. We incorporate impacts of
NPIs by dividing the susceptible population
into susceptible individuals who protect (Sp)
(i.e., those who practice NPIs) and individuals
who do not (S). State S individuals learn from
state Sp and/or infectious (state I) individuals
in their network neighborhood, and then decide
whether or not to adopt NPIs. The dichotomy
between adopting NPIs due to being next to
an infectious person, versus learning NPIs from
other individuals who adopt NPIs, captures the
distinction between practicing NPIs reactively
because of an immediate threat due to an in-
fectious neighbour versus changing one’s habits
pre-emptively based on observing the actions
of other individuals, and forming new habits
(such as using hand sanitizers, or using a pa-
per towel to open a bathroom door). We refer
to learning NPIs from other state Sp contacts
as “social learning”, versus “exposure learn-
ing” that occurs from reacting to infection in
an immediate network neighbour. Because so-
cial learning cannot occur without individuals
who have first adopted NPIs through exposure
learning in the early stages of the outbreak, ex-
posure learning can be viewed as a first order
effect, while social learning can be viewed as a
second order effect. We also derive the basic
reproduction number and analyze the pair ap-
proximation equations to understand how con-
trol success depends on epidemiological and be-
havioral change parameters. The model is de-
scribed in the following subsection.
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2. Model

A state S individual who is neighbouring a
state Sp individual transitions to the Sp state
at a per capita rate ξ. Similarly, a state S indi-
vidual neighbouring a state I individual tran-
sitions to the Sp state at a per capita rate ρ.
These interactions thereby result in suscepti-
ble individuals adopting NPIs. Switching from
state Sp back to state S occurs at a per capita
rate κ, representing forgetting, or complacency.

The rate of infection transmission from an
infectious individual to a neighbouring state
Sp individual is τp, whereas transmission to
a neighbouring state S individual occurs at a
rate τ > τp. Infected individuals recover at

per capita rate σ. Thus, the state variables
of the pair approximation model are numbers
of susceptible, protective, infectious and recov-
ered individuals denoted by [S], [Sp], [I] and
[R], respectively, and numbers of paired indi-
viduals, [XY ] where, for instance [SpI] repre-
sents the number of edges comprising of sus-
ceptible protective and infectious individuals.
We derive equations of motion for our model
in Appendix A. We assume that the disease
spreads on a regular network in which all nodes
have the same degree n, in a population of size
N , and we use the binomial ordinary pair ap-
proximation (Equation (A.2)), to approximate
triples in terms of pairs and singletons, result-
ing in:
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d[S]

dt
= −τ [SI]− ξ[SpS] + κ[Sp]− ρ[SI]

d[Sp]

dt
= −τp[SpI] + ξ[SpS]− κ[Sp] + ρ[SI]

d[I]

dt
= τ [SI] + τp[SpI]− σ[I]

d[R]

dt
= σ[I]

d[SS]

dt
= −2n− 1

n

[SS]

[S]

(
(τ + ρ)[SI] + ξ[SpS]

)
+ 2κ[SSp]

d[SSp]

dt
= −n− 1

n

(
(τ + ρ)

[SI][SSp]

[S]
+ τp

[SSp][SpI]

[Sp]
− ξ [SSp][SS]

[S]
− ρ [SI][SS]

[S]

)
− ξ[SSp]

+ κ([SpSp]− [SSp])

d[SpSp]

dt
= −2n− 1

n

(
τp
[SpI][SpSp]

[Sp]
− ρ [SI][SSp]

[S]

)
+ 2ξ[SSp]− 2κ[SpSp]

d[SI]

dt
=

n− 1

n

(
[SI]

[S]

(
τ [SS]− (τ + ρ)[SI]− ξ[SSp]

)
+ τp

[SSp][SpI]

[Sp]

)
− (τ + σ + ρ)[SI] + κ[SpI]

d[SpI]

dt
=

n− 1

n

(
[SI]

[S]

(
(τ + ξ)[SSp] + ρ[SI]

)
+

[SpI]

[Sp]
τp

(
[SpSp]− [SpI]

))
− (τp + σ + κ)[SpI]

+ ρ[SI]

d[SR]

dt
= −n− 1

n

[SR]

[S]

(
(τ + ρ)[SI] + ξ[SSp]

)
+ σ[SI] + κ[SpR]

d[SpR]

dt
= −n− 1

n

(
τp
[SpI][SpR]

[Sp]
− [SR]

[S]
(ρ[SI] + ξ[SpS])

)
+ σ[SpI]− κ[SpR]

d[II]

dt
= 2

n− 1

n

(
τ
[SI]2

[S]
+ τp

[SpI]
2

[Sp]

)
+ 2τ [SI] + 2τp[SpI]− 2σ[II]

d[IR]

dt
=

n− 1

n

(
τ
[SI][SR]

[S]
+ τp

[SpI][SpR]

[Sp]

)
+ σ([II]− [IR])

d[RR]

dt
= 2σ[IR]. (1)

2.1. The basic reproduction number

The basic reproduction number R0 is the
expected number of secondary infection cases
produced by a single infectious individual upon
introduction into a wholly susceptible popula-
tion [10, 5, 3, 20, 27]. An epidemic may occur if
R0 > 1, but the infection will die out if R0 ≤ 1.

Therefore, effective disease control reduces R0

below 1.

Here we use the pair approximation model
above to derive an expression for R0 that in-
corporates some effects of spatiality and allows
us to study the impact of adoption of NPIs on
the dynamics of the disease at the initial stage
of an outbreak. For simplicity, we derive R0
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for a scenario where individuals start to learn
and practice contact precautions during an out-
break (Sp(0)� N).

The condition under which the infection
will spread is

d[I]

dt
>0⇒ τ [SI] + τp[SpI]− σ[I]>0, (2)

which can be rearranged to yield

τ [SI] + τp[SpI]

σ[I]
>1. (3)

Therefore, we write R0 in terms of (i) suscep-
tibility of individuals who do not protect (cap-
tured by a high transmission parameter τ), (ii)
susceptibility of individuals who practice NPIs
(captured by a low transmission rate τp), (iii)
the rate of recovery σ, and (iv) the numbers of
S-I and Sp-I pairs as well as the overall number
of infections individuals [I]:

R0 =
τ [SI]

σ[I]
+
τp[SpI]

σ[I]
. (4)

Next we express pairs [SI] and [SpI] in
terms of the correlations between state S in-
dividuals and their infectious neighbors, and
state Sp individuals and their infectious con-
tacts, respectively. The correlation between in-
dividuals with status X and Y is given by

CXY =
N

n

[XY ]

[X][Y ]
, (5)

where n and N are the number of contacts each
individual has and the total population size,
respectively. CXY<1 implies avoidance of in-
teraction between state X and state Y indi-
viduals, CXY = 1 assumes homogeneous mix-
ing, while CXY>1 implies strong correlation
between state X and state Y individuals. Note
that Equation (5) can be re-written as

[XY ] =
[n]

N
[X][Y ]CXY , (6)

therefore,

R0 =
n

σN
(τ [S]CSI + τp[Sp]CSpI). (7)

At the initial stage of an epidemic, we as-
sume that the population is comprised mainly
by susceptible individuals, only a few of whom
practice NPIs:

[S] + [Sp] ≈ N,where [Sp] << [S] (8)

We define sp ≡ [Sp]/N , thus the proportion of
state S individuals at the beginning of the epi-
demic is 1− sp, and R0 becomes:

R0 =
n

σ

(
τ(1− sp)CSI + τpspCSpI

)
. (9)

To estimate the values for CSI and CSpI , we
use biologically reasonable assumptions about
disease spread, as follows. There is a very small
number of infectious individuals at the begin-
ning of an outbreak, so CSI ≈ 1. However as
the infection spreads, CSI decreases and the
clustering of infected individuals leads to a de-
crease in the rate of spread, and the disease
may die out if there are not enough susceptible
individuals in the vicinity of the infected clus-
ter to transmit the disease to. The dynamics of
the disease at this point (referred to as the lo-
cal minimum and denoted by Cmin

SI ) determine
whether an epidemic will succeed or fail to take
off. Thus, we need to evaluate Cmin

SI [18]. Sim-
ilar reasoning applies to Cmin

SpI
. Hence

R0 =
n

σ

(
τ(1− sp)Cmin

SI + τpspC
min
SpI

)
. (10)

The quantities Cmin
SI and Cmin

SpI
are the solutions

of d
dt
CSI = 0 and d

dt
CSpI = 0, respectively.

The derivation of these quantities as well as
the full expression of R0 are presented in Ap-
pendix B. The full expression of R0, Equation
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(B.3), is unwieldy but it depends on epidemio-
logical parameters τ, τp and σ, NPIs-based pa-
rameters ξ, ρ and κ, as well as initial network
configuration-dependent correlations CSpS and
CSpSp . It is clear from Equation (B.3) that a
higher rate of recovery σ, reduces R0, but the
equation is too complicated to directly infer the
impacts of other model components. Hence,
numerical computations will be used to explore
dependence of R0 on model parameters and ini-
tial network configurations (Section 3).

We derive reduced versions of R0 by con-
sidering special cases where individuals adopt
NPIs through (a) social learning only (i.e. ξ >
0 day−1 and ρ = 0 day−1) and (b) exposure
learning only (i.e. ξ = 0 day−1 and ρ > 0
day−1). For both of these scenarios we as-
sumed that protective individuals consistently
practice NPIs throughout the outbreak so that
state Sp individuals do not switch back to state
S (i.e. κ = 0 day−1). Furthermore, we assumed
that the initial network configuration consti-
tutes one infectious (state I) individual with
one protective (state Sp) neighbor who also has
one state Sp contact, and the rest of the pop-
ulation is completely susceptible (i.e. state S)
such that at the initial stage of the outbreak
[S] ≈ N , where the population size N is very
large.

2.1.1. High efficacy NPIs adopted through so-
cial learning only

In Appendix B we simplified Equation (B.3)
to derive the expression for the basic reproduc-
tion number for dynamics in which adoption
of NPIs results from social learning only (case
(a) above), and that NPIs are highly effective
as a control measure (τp << τ), and for typi-
cal model parameters (N = 40000, sp = 2/N ,
n = 4, τ = 1 day−1, τp = 0.0025 day−1,

σ = 0.25 day−1 and ξ = 0.25 day−1), to ob-
tain

R0 ≈
τnχ− ξ +

√
τ2n2χ2 + ξ(ξ + 2τnχ)

2σ
, (11)

where

χ ≈
τ(n− 2) +

√
τ 2(n− 2)2 + 4ττp(n− 1)

2τn
.

Equation (11) confirms that social learning
(ξ) reduces the initial spread of the infection.
As expected, a highly transmissible infection
(large τ) will increase R0. We note that R0

increases with χ. We discuss in Appendix B
that χ approximates the minimum of the cor-
relation function Cmin

SI between susceptible and
infectious individuals. Therefore, factors that
increase χ should also increase R0. The quan-
tity χ increases with the transmission rate to
protective susceptible neighbours (τp), as well
as the number of neighbours per individual (n),
confirming the mitigating effects of spatially lo-
calized transmission.

2.1.2. High efficacy NPIs adopted through ex-
posure learning only

For comparison to Equation (11), in Ap-
pendix B we also simplified Equation (B.3) to
derive the expression for the basic reproduc-
tion number for dynamics in which adoption of
NPIs results from exposure learning only (case
(b) above), and that NPIs are highly effective
as a control measure (τp << τ), and for typi-
cal model parameters (N = 40000, sp = 2/N ,
n = 4, τ = 1 day−1, τp = 0.0025 day−1,
σ = 0.25 day−1 and ξ = 0.25 day−1), to ob-
tain

R0 ≈
τnχ+

√(
τ2n2χ+ 4τpρn

)
χ

2σ
, (12)

where
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χ ≈
τ(n− 2)− ρ+

√
τ 2(n− 2)2 − 2τρ(n− 2) + ρ2 + 4ττp(n− 1)

2τn
.

Hence, more rapid adoption of NPIs due ex-
posure learning (ρ) decreases χ, and therefore
also decreases R0. Spatial structure has a mit-
igating effect in this case as well.

In Appendix B we show that when adopted
NPIs are not strict (such that τp << τ does
not hold), then the corresponding expressions
of R0 for cases where individuals practice cau-
tious behavior due to social learning only and
exposure learning only are given by Equations
(B.4) and (B.7), respectively.

3. Results

3.1. Dependence of R0 on model parameters
and network configuration

The spatial distribution of susceptible indi-
viduals (S) and individuals who practice NPIs
(Sp) around the infection source at the initial
stage of an epidemic have a strong influence on
R0, as computed from the full expression ap-
pearing in Appendix B, Equation (B.3) (Figure
1).

As expected, R0 decreases with the propor-
tion of protective individuals around the infec-
tion source cluster and in the entire population
(Figures 1a versus 1c). This finding implies
that upon inception of an outbreak it is crucial
to identify the infection source promptly, and
sensitize members of the host population about
the disease and prevention measures, so that
they can propagate awareness further through
interactions with their spatial neighbours. We
note that associating R0 (and the overall dis-
ease dynamics) with specific network config-
urations in which diseases and social interac-
tions disseminate would not be possible under

a mean-field equations approach, which ignores
spatial structure altogether. Spatial processes
such as transmission of most infectious diseases
and dessemintion of information can be under-
stood better by the study of spatially oriented
models such as pair approximation models.

Increasing the rate of adopting NPIs, either
through exposure learning (ρ) or through social
learning (ξ), decreases R0. However, increas-
ing the rate of adoption via infectious neigh-
bours reduces R0 more effectively than increas-
ing the rate of adoption via protective suscep-
tible neighbours (Figure 2a, b). This occurs
because being next to infectious neighbors re-
sults in prompt adoption of preventative mea-
sures and avoidance of infection from that in-
fectious neighbor, and hence it reduces R0 bet-
ter than a scenario where adoption of NPIs re-
sults from interaction with protective neighbors
only, which may leave some infectious individu-
als in a part of the network with no protective
individuals, while other parts of the network
may have significant populations of protective
individuals, but no infections. However, we
note that this only applies when social learning
can only begin at the start of an outbreak, and
not beforehand as a pre-emptive measure.

3.2. Numerical analysis of pair approximation
differential equations

3.2.1. Social and exposure learning during an
outbreak

Numerical analysis of our model was carried
out in MATLAB using the ode45 solver. Sim-
ilar to the results from the R0 derivation, nu-
merical simulation of Equation (1) shows that
if both forms of learning can begin only during
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Figure 1: Typical network distributions of susceptible contacts, S, neighbors who practice social distancing techniques,
Sp (as well as the respective calculations of the basic reproduction number) around the initial infection source, where
all other members of the host population are fully susceptible (i.e. state S). The population size is N = 40000, each
individual has n = 4 neighbors and model parameters are τ = 0.75 day−1, τp = 0.1 day−1, σ = 0.25 day−1, ξ = ρ = 0.5
day−1 and κ = 0.01 day−1.

an outbreak, then NPIs adopted due to expo-
sure learning (ρ) have a much larger impact

on the size of the epidemic peak, than NPIs
adopted due to social learning (ξ) (Figure 3i,l
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Figure 2: The basic reproduction number as a function of social learning from protective contacts at a rate ξ, and
from infectious contacts at a rate ρ, where the transmission rate to protective individuals is τp = 0.1 day−1 (a) and
τp = 0.5 day−1 (b). In all these plots N = 40000, n = 4, τ = 0.75 day−1, σ = 0.25 day−1, CSpSp

= 0, CSpS = 3/4,
κ = 0 day−1 and sp = 1/N .

versus 3c,f). We also find that, adoption of
NPIs stimulated by neighbouring infectious in-
dividuals leads to a higher number of protec-
tive individuals throughout and at the end of
the epidemic, than practice of NPIs due to so-
cial learning (Figures 3h,k versus Figures 3b,e).
This occurs because in this situation, learning
from a neighbouring protective susceptible con-
tact may not reach the parts of the network
that need to be protected, resulting in those
parts of the network being infected before they
can adopt NPIs.

Increasing the initial number of infection
source points with n protective neighbours
(i.e. completely surrounded by individuals who

practice NPIs) generally increases the infection
peak (Figures 3a,g,j). This confirms intuition.
However, contrary to phenomena normally ob-
served in homogeneous-mixing models, increas-
ing the number of infection source points who
are surrounded by highly protective individu-
als can actually decrease the infection peak in
other parameter regimes (τp = 0.1day−1, see
Figures 3d and 3f). On the other hand, when
NPIs are not strictly practiced (leading to a rel-
atively high value of τp), increasing the number
of infection source points will increase the infec-
tion peak, as usual, even when each of the ini-
tial infection sources are surrounded by a large
proportion of protective contacts (see Supple-
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Figure 3: Infection peak versus initial distribution of single infected individuals with 4 state Sp neighbors (a, d, g,
j), time series for susceptible individuals who protect (b, e, h, k) and time series for infectious individuals (c, f, i, l),
varying the number of 1 infected node plus 4 Sp neighbors at the beginning of the outbreak (the rest of the population
is fully susceptible ). In (a to f) ξ = 0.25 day−1, ρ = 0 day−1; in (g to l) ξ = 0 day−1, ρ = 0.25 day−1; in (a, b, c and
g, h, i) τp = 0.6 day−1; in (d, e, f and j, k, l) τp = 0.1 day−1 . Model parameters common to all graphs are τ = 0.8
day−1, σ = 0.25 day−1 and κ = 0 day−1.

mentary Material, Figure C.1a). Cumulative infections over a period of two
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Figure 4: Cumulative infections as a function of social learning from both infectious and state Sp neighbors at rates
ρ and ξ, respectively, where the initial conditions are 1 infected node and 1 state Sp neighbor while the rest of the
population is fully susceptible (i.e. state S), and τp = 0.1 day−1 (a), τp = 0.2 day−1 (b), τp = 0.3 day−1 (c). Other
model parameters are τ = 0.8 day−1, σ = 0.25 day−1 and κ = 0 day−1.

months decrease with adoption of precaution-
ary behavior due to social learning at a rate
ξ, and exposure learning at a rate ρ, but, also
as observed in Figures 2 and 3, the decrease in
cumulative infections is more profound when
individuals use exposure learning than social
learning (Figure 4). Furthermore, adoption of
NPIs only moderately decreases cumulative in-

fections if upon learning about the disease and
becoming protective, the new state Sp individ-
uals practice less effective precautionary mea-
sures, resulting in an increased rate of trans-
mission to state Sp individuals, τp (Figure 4a
versus Figure 4b versus Figure 4c). The asym-
metry between effects of ξ and ρ, and the im-
pact of complacency, on cumulative infections,
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shown in Figure 4, are even more obvious in the
corresponding surface plot of the same model
outcomes (see Supplementary Material, Figure
C.2).

If individuals who practice NPIs lose this
habit (captured by conversion from state Sp
to state S at a ‘forgetting’ rate κ) then the
population susceptibility increases, leading to a
large number of infection cases and occurrence
of large epidemic outbreaks, which are char-
acterized by high infection peaks (Figure 5).
However, with respect to the governing model
equations used in this paper, the response of in-
fection peaks to changes in the rates of forget-
ting is qualitatively different for the two types
of learning: κ scales linearly or logistically with
infection peak, depending on whether only ρ
or only ξ, respectively, is active. This stems
from the fact that per capita success of expo-
sure learning–which operates only in immedi-
ate neighbours of an infected node–depends less
on population prevalence than social learning.
In particular, when the rate of forgetting is low,
then the infection peak is roughly the same for
both types of learning. However, when the rate
of forgetting is high, then infection peaks are
very high under social learning, but only mod-
erately high under exposure learning. This oc-
curs because effective social learning requires
large parts of the network to be ‘ready’ for any
infections which may enter the area by having
high and stable populations of protective sus-
ceptible individuals, and large rates of forget-
ting prevent this from happening.

3.2.2. Social learning before and during an out-
break, and exposure learning during an
outbreak

Many of the behaviours that fall under the
rubric of NPIs, such as hand-washing and respi-
ratory etiquette, are learned preventively and
are practiced in a population even before an

epidemic. This builds up the proportion of pro-
tective individuals before introduction of the
disease. Thus, the effectiveness of social learn-
ing may thus be considerably improved, al-
though it is not clear how far in advance so-
cial learning must begin for it to be useful. In
this subsection we consider scenarios where so-
cial learning can occur both prior to and after
the introduction of an infection. In particular,
we contrast a scenario where only social learn-
ing is practiced (but social learning begins to
spread before the epidemic starts), to a sce-
nario where only exposure learning takes place,
and we compare their performance.

In the absence of exposure learning (ρ = 0),
model simulations confirm how social learning
before an epidemic creates large pools of pro-
tective individuals before the epidemic begins,
leading to a decreased epidemic final size (Fig-
ure 6). At baseline parameter values, intro-
ducing social learning as early as possible is a
highly effective way of decreasing the epidemic
final size; increasing the initial number of pro-
tective individuals, Sp, also works but is less ef-
fective than stimulating social learning as early
as possible (Figure 6a-c). Either of these mea-
sures is made more effective when social learn-
ing is more rapid (large ξ, Figure 6c versus b
and a).

In contrast to observations made in most
of the simulations in the previous subsections,
social learning reduces the epidemic final size
more effectively than exposure learning, except
when social learning is not introduced soon
enough before the epidemic, or when there are
not enough initial protective individuals (Fig-
ure 6a-c). In either of these two exceptional
cases, there is an insufficient pool of protective
susceptible individuals in the population at the
beginning of the epidemic, for social learning to
be effective.

13



Figure 5: Infection peak versus the rate at which protective susceptible individuals forget, κ, varying regimes for social
contagion parameters ξ and ρ. Initial conditions are 1 infected node and 2 state Sp neighbors while the rest of the
population is fully susceptible (i.e state S). Other model parameters are τ = 0.8 day−1, τp = 0.3 day−1 and σ = 0.25
day−1.

14



 

 

Figure 6: Cumulative infections as a function of the initial number of state Sp individuals and the time at which
the infection is introduced, varying ξ and ρ, for the scenario of exposure learning only (dark grey surface) and social
learning only (light grey surface). Other model parameters are τ = 0.8 day−1, τp = 0.001 day−1, σ = 0.25 day−1 and
κ = 0 day−1.

4. Discussion

NPIs partly determine the feasibility of in-
fection control for many infectious diseases, es-

pecially ones where pharmaceutical interven-
tions are not yet available. Here, we con-
structed a pair approximation model of a self-
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limiting infectious disease where individuals
can choose to adopt NPIs either in response
to learning it from other susceptible individu-
als, or having been stimulated to learn it from
neighbouring an infectious person. Our ob-
jective was to demonstrate how pair approx-
imation methods might be useful for study-
ing socio-epidemiological processes in spatially
structured populations.

We found that the impact of NPIs depends
on the structure of the initial network configu-
ration, particularly, the number and the neigh-
borhood distribution of infectious, susceptible
and individuals who practice NPIs, at the be-
ginning of an outbreak. Both social learning
and exposure learning lead to a decrease in the
final size. At baseline parameter values, expo-
sure learning is much more effective than social
learning if social learning can only begin dur-
ing the outbreak. However, social learning can
outperform exposure learning if social learning
begins early enough before the epidemic (al-
though the initial number of protective individ-
uals is not as important). While peak disease
prevalence increases with the rate at which pro-
tective susceptible individuals stop the habit of
practicing NPIs, the response of the infection
peak to the rate of forgetting is qualitatively
different for the two types of learning. We also
found that, under certain parameter regimes, if
infection source points are initially surrounded
by protective individuals, increasing the num-
ber of infection source points at the beginning
of an outbreak actually decreases the infection
peak. This phenomena would not be revealed
by the non-spatial, mean-field equations mod-
els.

Our model makes several simplifying as-
sumptions. The model is based on the assump-
tion that disease propagation and spatially lo-
calized learning take place only between con-
nected neighbors on a regular network. In real

life, networks within which infections spread
are more complex, and mean-field effects (such
as mass media) may be important. Future work
could extend the pair approximation model to
account for these effects. On the other hand,
the importance of higher-order spatial corre-
lations in many spatial systems is known. In
spatially-structured epidemic systems in par-
ticular it may be necessary to use triple ap-
proximations instead of just pair approxima-
tions in order to capture dynamics of the full
spatially explicit model with a high degree of
accuracy [4]. Our paper did not evaluate the
importance of higher-order correlations in spa-
tial socio-epidemiological dynamics, and this
aspect is left for future research as well.

In Section 3.2.2 we found that social learn-
ing is more effective in reducing cumulative in-
fections than exposure learning, provided there
is a sufficient pool of protective susceptible in-
dividuals in the population at the beginning
of the epidemic. Future work could include
derivation of the threshold for the initial popu-
lation size of protective susceptible individuals,
above which social learning will be more effec-
tive than exposure learning. Also, in general,
social networks are structurally different from
networks in which infections spread. Thus, fu-
ture work could also develop pair approxima-
tions for dual-level networks consisting of both
a social network and a disease spread network.

In conclusion, we have shown how pair
approximation models that incorporate both
spatial transmission of diseases and impacts
of NPI decision-making can be developed
and analyzed. Future research using this
methodology might yield insights regarding in-
fection control in spatially-structured socio-
epidemiological systems.
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Appendix A. Derivation of the equation
of motion for [SI]

Here we demonstrate the construction of
equations of motion for pair approximation
models by deriving d[SI]

dt
.

In moment closure approximations the
equation of motion for a state variable g(t), is

determined by expressing dg(t)
dt

as a function of
the sum of all events that affect the state vari-
able. That is

dg(t)

dt
=

∑
ε∈events

r(ε)∆g(ε), (A.1)

where r(ε) is the rate of event ε and ∆g(ε) is
the change this event causes in g(t). Equation
(A.1) is referred to as the master equation. As
illustrated below, at each node on the network
the rates r(ε) and change ∆g(ε) are expressed
in terms of their population-averaged values
and the deviations of those values from the ex-
pected means at a given node. The summation
over each node is carried out in such a way that
any significant stochasticity is incorporated in
the evaluation of a state variable while the re-
maining stochasticity can be treated as random
noise and may be discarded. We illustrate this
concept below.

The time evolution of the number of S-I pairs
is determined by the following events.

Infection at a rate τ of a susceptible, S in-
dividual by their infectious, I neighbour (in
a S-I pair) converts S into I, i.e. SI 7→ II,
where 7→ means ’transformed to’. This process
destroys a S-I pair. Similarly, infection at a
rate τ of a susceptible individual ’from the left’
in a triple I-S-I, i.e. I ↔ SI also destroys a
S-I pair. However a S-I pair is created as a
susceptible individual is infected at the same
rate, τ , in a triple I-S-S.
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Transmission of the disease from an infectious,
I individual to their protective contact, Sp at
a rate τp in a triple S-Sp-I transforms Sp to I,
and therefore create a S-I pair.

Recovery of the infectious individual at a rate,
σ in a pair S-I implies SI 7→ SR. Therefore
the process destroys S-I.

Adoption of NPIs at a rate ξ, by a state S
individual as a result of social learning from
their state Sp neighbor in a triple Sp-S-I con-
verts S to Sp, and therefore it destroys a S-I
link.

Adoption of NPIs at a rate ρ, by a state S
individual due to being in the neighborhood of
a state I individual in a pair S-I or a triple I-
S-I converts S to Sp, and therefore it destroys
a S-I link.

Stopping the use of NPIs by a protective indi-
vidual at a rate κ in a Sp-I pair increases their
susceptibility, i.e. Sp converts to S, and the
process creates a S-I pair.

To demonstrate the next steps of the deriva-
tion of the equation of motion for [SI], the
following notations will be useful:

nx(i): number of state i neighbours of a node x;

nxy(i): number of state i neighbours of a node
x, which has node y as a neighbour;

ζx: disease state of node x;

ζxy: disease state of an edge involving x and y.

Using this notation, the master equation for
the dynamics of [SI] can now be represented
as the sum of all the events (listed above) as

d[SI]
dt =

∑
ζxy=SS

τ(nxy(I))(+1) +
∑

ζxy=SI

τ(nxy(I))(−1) +
∑

ζxy=SSp

τp(nxy(I))(+1) +
∑
ζx=S

σ(nx(I))(−1)

+
∑

ζxy=SI

ψ(nxy(I))(−1) +
∑

ζxy=SI

ξ(nxy(Sp))(−1) +
∑

ζxy=SI

ρ(nxy(I))(−1) +
∑
ζx=I

κ(nx(Sp))(+1).

The positive (+) and negative (−) signs
in the master equation above indicate that
the corresponding events create or destroy S-I
pairs, respectively.

Next we replace quantities such as nx(I) and
nxy(I) by their population-averaged values
(means) plus the stochastic deviations of those
quantities from the means at nodes x and pairs
xy. Let n(i|j) be the population-averaged
value of nx(i) when ζx = j and let n(i|jk) be
the population-averaged value of nxy(i) when
ζxy = jk. Then at each node we replace nxy(I)
by n(I|SI) + θxy(I|SI) where θxy(I|SI) repre-
sents the stochastic fluctuation from the mean.
The resulting expression is then simplified by
taking out constants such as n(I|SI) and the

model parameters out of the sums and further
noting that terms such as

∑
ζx=S

θx(I|S) that rep-

resent fluctuations are zero by definition. Fur-
thermore the following identities (which apply
to all network types):

n(i|jk) = [ijk]
[jk]

; n(i|ji) = 1 + [iji]
[ji]

; n(i|j) = [ij]
[j

and n(i|i) = 1 + [ii]
[i]

,

enable us to write the equation of motion for
[SI] as

d[SI]
dt

= τ([ISS] − [ISI] − [SI]) + τp[SSpI] −
σ[SI]− ξ[SpSI] + κ[SpI]− ρ([ISI] + [SI]).

We assume the disease spreads a regular net-
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work where neighbors of an individual are
themselves conditionally independent, there-
fore, third order correlations take the form

n(i|jk) = (n−1)
n
n(i|j) and n(i|ji) = 1 +

(n−1)
n
n(i|j).

That is, to close the system (i.e. approx-
imate higher-order moments by lower-order
moments) of equations we use the binomial
ordinary pair approximation (OPA):

[ijk] =
(n− 1)

n

[ij][jk]

[j]
. (A.2)

The binomial OPA is based on the idea that
the disease state of a node j is directly influ-
enced by the states of two of its indirectly con-
nected neighbors i and k. That is, there are no
triangles in the network.

Appendix B. Derivation of the basic re-
production number

Here we derive the expressions for Cmin
SI and

Cmin
SpI

, and present expressions of the basic re-
production number resulting from a number of
disease scenarios.

CSI = N
n

[SI]
[S][I]

, therefore the equation of mo-
tion for CSI is given by

d
dtCSI = N

n

(
1

[S][I]
d
dt [SI] +

[SI]
[S][I](−

1
[I]

d
dt [I]− 1

[S]
d
dt [S])

)
.

We substitute the equations of motion for the
number of susceptible-infectious pairs, [SI],
the number of infectious individuals, [I], and
the number of susceptible individuals, [S] from
Equation (1) into the equation above, and ap-
proximate triples by the OPA to show that

d
dtCSI = τ(n−1) [S]

[N ]CSSCSI−τ(n−1) [I]N C
2
SI−τCSI+τp(n−1)

[Sp]
N CSpSCSpI−σCSI−ξ(n−1)

[Sp]
N CSpSCSI+

κ
[Sp]
[S] CSpI − ρ(n − 1) [I]N C

2
SI − ρCSI − τn [S]

N C
2
SI − τpn

[Sp]
N CSpICSI + σCSI + τn [I]

N C
2
SI + ξn

[Sp]
N CSpSCSI −

κ
[Sp]
[S] CSI + ρn [I]

N C
2
SI .

Similarly, the equation of motion for
the correlation between susceptible individuals

who protect and infectious individuals can be
written as

d
dtCSpI = τ(n − 1) [S]

[N ]CSSpCSI + τp(n − 1)
[Sp]
N CSpSpCSpI − τp(n − 1) [I]N C

2
SpI
− τpCSpI − σCSpI + ξ(n −

1) [S]N CSpSCSI−κCSpI+ρ
[S]
[Sp]

CSI−τpn [Sp]
N C2

SpI
−τn [S]

N CSpICSI+σCSpI+τpn
[I]
N C

2
SpI
−ξn [S]

N CSpSCSpI+κCSpI .

We make biologically reasonable assump-
tions about the disease to simplify the equa-
tions above as follows. At the beginning of the
epidemic there are very few infectious individ-
uals (initial inoculation: [I] = 1) such that the
entire population, N comprises almost only of
susceptible individuals who protect, [Sp] and
those who do not protect, [S] i.e. [I] << N
(where total population N is very large) and
[Sp] + [S] ≈ N . We remind the reader that our

derivation of R0 is based on the idea that both
social and exposure learning take place only
after the disease has been introduced. There-
fore, we assume that at the initial stage of
an outbreak the public has little information
about the disease and only a small proportion
of the population is aware and can decide to
practice NPIs. Thus, at the beginning of an
outbreak [Sp]/N = sp, [S]/N = 1 − sp, where
0 < sp << 1. Therefore, we can simplify fur-
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ther the equations of motion for CSI and CSpI
above by equating to zero all terms in which
the denominator is large and [I] is the numer-
ator.

Although it may be necessary to also derive
the equations of motion for three other corre-
lation functions (for CSS, CSpS and CSpSp) that
appear in the equations of motion for CSI and
CSpI above, we estimate them from the network
configuration of the disease at the beginning of
an outbreak. This step will help explore the
relationship between the initial network con-
figuration of the population with respect to
the disease, and the evolution of the epidemic
outbreak. We assume that at the beginning of
the outbreak susceptible neighboring individ-
uals mix homogeneously. That is, CSS ≈ 1.

This value remains constant throughout cal-
culations of the basic reproduction number for
the initial network configurations considered in
this paper, but the same does not hold for CSpS
and CSpSp , since the latter take different val-
ues depending on various initial distributions
of state S and state Sp individuals around the
infection source. Since at the beginning of the
outbreak sp is very small, it is reasonable to
assume that [S] ≈ N . Therefore, at the initial

stage of an infection CSpS = N
n

[SpS]

[Sp][S]
≈ 1

n

[SpS]

[Sp]

while CSpSp = N
n

[SpSp]

[Sp][Sp]
. These values are cal-

culated from actual initial network configura-
tions as shown in Figure 1. We proceed with
the derivation of Cmin

SI and Cmin
SpI

.

Note that now

d
dtCSI = τ(n−1)(1−sp)CSI−τCSI+τp(n−1)spCSpSCSpI+ξspCSpSCSI+κspCSpI−ρCSI−τn(1−sp)C2

SI−
τpnspCSpICSI − κspCSI

and

d
dtCSpI = τ(n−1)(1− sp)CSpSCSI + τp(n−1)spCSpSpCSpI − τpCSpI + ξ(n−1)(1− sp)CSpSCSI +ρ

1−sp
sp

CSI −
τpnspC

2
SpI
− τn(1− sp)CSpICSI − ξn(1− sp)CSpSCSpI .

Solving d
dt
CSI = 0 and d

dt
CSpI = 0 yields:

CminSI =

R− τpnspCminSpI
+

√
(R− τpnspCminSpI

)2 + 4τnsp(1− sp)
(
τp(n− 1)CSpS + κ

)
CminSpI

2τn(1− sp)
, (B.1)

CminSpI
=

T − τn(1− sp)CminSI +

√(
T − τn(1− sp)CminSI

)2

+ 4τpnsp(1− sp)
(
(n− 1)(τ + ξ)CSpS + ρ/sp

)
CminSI

2τpnsp
, (B.2)

where

R = τ(n − 1)(1 − sp) − τ − ρ − κsp + ξspCSpS
and T = τp(n−1)spCSpSp−τp−ξn(1−sp)CSpS.

Simplifying assumptions

Note that at the beginning of an outbreak
the initial network configuration constitutes
very few susceptible individuals who practice
NPIs, so that while sp ≈ O(1/N) (for a network
where the infection source has at least 1 protec-
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tive contact), CSpI is large (i.e. Cmin
SpI

= O(N)).
Therefore we can simplify Equation (B.1) by
assuming that spC

min
SpI
≈ 1, so that

CminSI ≈
R−τpn+

√√√√(R−τpn)2+4τn(1−sp)

(
τp(n−1)CSpS+κ

)
2τn(1−sp)

= χ

is a constant determined by the initial propor-

tion of susceptible individuals who protect, sp,
the model parameters τ, τp, σ, ρ, ξ and κ, as well
as the initial network configuration-specific val-
ues of correlation functions CSpS and CSpSp .
Substituting χ and the resulting expression of
Cmin
SpI

into Equation (10) yields

R0 ≈
T + nτ(1− sp)χ+

√(
T − τn(1− sp)χ

)2

+ 4τpnsp(1− sp)
(
(n− 1)(τ + ξ)CSpS + ρ/sp

)
χ

2σ
, (B.3)

where

T = τp(n− 1)spCSpSp − τp − ξn(1− sp)CSpS,

χ ≈
R−τpn+

√√√√√(R−τpn)2+4τn(1−sp)

(
τp(n−1)CSpS+κ

)
2τn(1−sp)

and

R = τ(n− 1)(1− sp)− τ − ρ− κsp + ξspCSpS.

Simulation results involving the basic re-
production number (in the Results section) are
based on Equation (B.3).

Below we explore other scenarios of the dis-
ease to present simpler expressions of R0. We
consider cases where protective susceptible in-
dividuals are assumed to maintain the habit of
practicing NPIs throughout the epidemic out-
break (i.e. κ = 0). Also let the initial network
configuration constitute 1 infectious individual
with 1 state Sp neighbor (who also has 1 state
Sp contact) and let the rest of the population
be state S individuals so that for a large pop-
ulation size, initially [S] ≈ N . Thus, the prop-
erties of the network at the initial stage of an

outbreak are sp = 2/N,CSpS = 5/2n,CSpSp =
N/4n.

(a) Adoption of NPIs through social learning
only

Here individuals are assumed to learn about
the disease, and therefore adopt NPIs, from
their contacts who already practice preventa-
tive behavior, and not from their infectious
neighbors. That is we let ξ>0, and ρ = 0.

If the population size, N is very large, and there
are very few state Sp individuals at the begin-

ning of the outbreak, so that sp = [Sp]

N
≈ 0, then

we can simplify R by noting that 1−sp ≈ 1 and
ξspCSpS ≈ 0 (since 0 ≤ ξ ≤ 1 and CSpS = O(1)
). Therefore

R ≈ τ(n− 2).

Also, we simplify T by further noting that
spCSpSp ≈ O(1) and nCSpS ≈ O(1), so that

T ≈ τp(n− 2)− ξ.
Thus, the expression of the basic reproduction
number can be written as

R0 ≈
τp(n− 2)− ξ + τnχ+

√(
τp(n− 2)− ξ − τnχ

)2

+ 4τpsp(n− 1)(τ + ξ)χ

2σ
, (B.4)
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where χ ≈
τ(n−2)−τpn+

√√√√√
(
τ(n−2)−τpn

)2

+4ττp(n−1)

2τn
.

High efficacy case

Here we estimate the expression of R0 for
a case where individuals acquire preventive be-
havior through interaction with contacts who
practice NPIs only, and the adopted NPIs are
highly effective (i.e. τp is small so that τ 2p ≈ 0).
Therefore,(
τp(n − 2) − ξ − τnχ

)2

= τ 2n2χ2 − 2τp(n −

2)(ξ + τnχ) + ξ(ξ + 2τnχ) + τ 2p (n − 2)2 ≈
τ 2n2χ2 − 2τp(n− 2)(ξ + τnχ) + ξ(ξ + 2τnχ)

and(
τ(n − 2) − τpn

)2

= τ 2(n − 2)2 − 2ττpn(n −

2) + τ 2pn
2 ≈ τ 2(n − 2)2 − 2ττpn(n − 2) =

τ(n− 2)

(
τ(n− 2)− 2τpn

)
.

The resulting expression of the basic reproduc-
tion number is

R0 ≈
τp(n− 2)− ξ + τnχ+

√
τ2n2χ2 − 2τp(n− 2)(ξ + τnχ) + ξ(ξ + 2τnχ) + 4τpsp(n− 1)(τ + ξ)χ

2σ
, (B.5)

where

χ ≈
τ(n−2)−τpn+

√√√√√τ(n−2)

(
τ(n−2)−2τpn

)
+4ττp(n−1)

2τn
.

Model parameter-based R0 for high efficacy
case

We simplify Equation (B.5) further by pre-
scribing a reasonable model parameter regime.
Let N = 40000, sp = 2/N, n = 4, τ = 1
day−1, τp = 0.0025 day−1, σ = 0.25 day−1 and
ξ = 0.25 day−1. Then the following features of
Equation (B.5) become apparent:

τ(n− 2) >> τpn;

τ(n− 2) >> 2τpn;

ξ >> τp(n− 2);

τnχ >> τp(n− 2);

τ 2n2χ2 >> 4τpsp(n− 1)(τ + ξ)χ;

τ 2n2χ2 >> 2τp(n− 2)(ξ + τnχ);

ξ(ξ + 2τnχ) >> 4τpsp(n− 1)(τ + ξ)χ;

ξ(ξ + 2τnχ) >> 2τp(n− 2)(ξ + τnχ).

We use these observations to cancel terms of
Equation (B.5) that are insignificant (as per
the prescribed parameter regime) to write the
expression of the basic reproduction number as

R0 ≈
τnχ− ξ +

√
τ2n2χ2 + ξ(ξ + 2τnχ)

2σ
, (B.6)

where χ ≈ τ(n−2)+
√
τ2(n−2)2+4ττp(n−1)

2τn .

(b) Adoption of NPIs due to exposure learning
only

Here we consider a scenario where individ-
ual members of the population gain awareness
about the disease, and in turn adopt NPIs, due
to being next to infectious contacts only. Thus,
we assume ρ > 0 and ξ = 0.

Applying similar arguments as in part (a)
above, we simplify the original values of R, T
and χ so that R ≈ τ(n− 2)− ρ, T ≈ τp(n− 2)
and
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R0 ≈
τp(n− 2) + τnχ+

√(
τp(n− 2)− τnχ

)2

+ 4τpnsp

(
τ(n− 1)CSpS + ρ/sp

)
χ

2σ
, (B.7)

where

χ ≈
τ(n−2)−ρ−τpn+

√√√√√
(
τ(n−2)−ρ−τpn

)2

+4ττp(n−1)

2τn
.

High efficacy case

Applying the condition for a high efficacy
case (i.e. τp << τ) and simplifying assump-
tions also applied in part (a) to a scenario
where susceptible individuals adopt positive
behavior through exposure learning only, trans-
forms Equation (B.7) to

R0 ≈
τp(n− 2) + τnχ+

√[
τ2n2χ− 2ττpn(n− 2) + 4ττpsp(n− 1) + 4τpρn

]
χ

2σ
, (B.8)

where

χ ≈
τ(n− 2)− ρ− τpn+

√
τ 2(n− 2)2 − 2τ(n− 2)(ρ+ τpn) + ρ(ρ+ 2τpn) + 4ττp(n− 1)

2τn
.

.

Model parameter-based R0 for high efficacy
case

We prescribe the same parameter regime
used in part (a) above, but note that here
ξ = 0. Thus, N = 40000, sp = 2/N, n = 4,
τ = 1 day−1, τp = 0.0025 day−1, σ = 0.25
day−1 and ρ = 0.25 day−1. We cancel out parts
of Equation (B.8) that are numerically less sig-
nificant so that the expression of the basic re-

production number becomes

R0 ≈
τnχ+

√(
τ2n2χ+ 4τpρn

)
χ

2σ
, (B.9)

where

χ ≈
τ(n− 2)− ρ+

√
τ 2(n− 2)2 − 2τρ(n− 2) + ρ2 + 4ττp(n− 1)

2τn
.

.

Scenarios considered for the development of the above expressions of the basic re-
production number, are summarized in Table B.1.
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Table B.1: Summary of expressions of the basic reproduction number R0 developed in this paper

(a) General expression of R0 Equation (10)
(b) Expression of R0 used in simulation results in this manuscript:
obtained by assuming that initially the proportion of susceptible
individuals who practice NPIs is very small sp ≈ O(1/N) Equation (B.3)
(c) Simplification of R0 in Part (b) above by further assumptions:
adoption of NPIs is through social learning only (i.e. ξ > 0, ρ = 0);
once adopted NPIs are practised consistently (i.e. κ = 0); at initial
stage there is 1 state I with 1 state Sp contact who has 1 state Sp,
and the rest of the population is of state S Equation (B.4)
(d) Simplification of R0 in Part (c) above by a further assumption:
high efficacy NPIs (i.e. τp ≈ 0) Equation(B.5)
(e) Simplification of R0 in Part (d) above by cancelling out
insignificant terms dependent on the parameter regine: N = 40000;
initially sp = 2/N ; n = 4; τ = 1; τp = 0.0025; σ = 0.25; ξ = 0.25 Equation (B.6)

(f) Simplification of R0 in Part (b) above by further assumptions:
adoption of NPIs is through exposure learning only (i.e. ξ = 0, ρ > 0);
other conditions are as in Part (c) above Equation(B.7)
(g) Simplification of R0 in Part (f) above by a further assumption:
high efficacy NPIs (i.e. τp ≈ 0) acquired through exposure learning only Equation (B.8)
(h) Simplification of R0 in Part (g) above by cancelling out
insignificant terms dependent on the parameter regine: N = 40000;
initially sp = 2/N ; n = 4; τ = 1; τp = 0.0025; σ = 0.25; ξ = 0.25 Equation (B.9)
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Appendix C. Supplementary Material

 

 

Figure C.1: Infection peak versus rate of disease transmission to protective individuals, τp, and the initial distribution of
single infected individuals with 4 state Sp neighbors (and all other members of the host population are fully susceptible,
S), where ξ = 0.25 day−1, ρ = 0 day−1 (a) and ξ = 0 day−1, ρ = 0.25 day−1 (b). Other model parameters are τ = 0.8
day−1, σ = 0.25 day−1 and κ = 0 day−1.
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Figure C.2: Cumulative infections as a function of social learning from both infectious and state Sp neighbors at rates
ρ and ξ, respectively, where the initial conditions are 1 infected node and 1 state Sp neighbor while the rest of the
population is fully susceptible (i.e. state S). Model parameters are τ = 0.8 day−1, σ = 0.25 day−1 and κ = 0 day−1.
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