
Fast Algorithms for Finding the
Characteristic Polynomial of a

Rank-2 Drinfeld Module

by

Yossef Musleh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Yossef Musleh 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis introduces a new Monte Carlo randomized algorithm for computing the
characteristic polynomial of a rank-2 Drinfeld module. We also introduce a deterministic
algorithm that uses some ideas seen in Schoof’s algorithm for counting points on elliptic
curves over finite fields. Both approaches are a significant improvement over the current
literature.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible. In particular, I
would like to thank my supervisor Eric Schost, whose exceptional effort made this thesis
possible. I would also like to thank the readers for their helpful suggestions, as well as
my family and friends for their support.

iv

Dedication

This is dedicated to my mother and late father.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Motivation 1

2 Preliminaries 2

2.1 Basic Algorithms and Notation . 2

2.2 Modular Operations . 3

2.3 Automorphisms and Normal Bases . 4

2.3.1 Linear Recurring Sequences . 4

3 Fast Multiplication of Skew Polynomials 6

3.1 Puchinger and Wachter-Zeh’s Algorithm 6

3.2 Fast Multiplication from Evaluation on Normal Bases 12

3.3 Summary and Comparison . 14

4 Elliptic Curves 15

4.1 Mathematical Background . 15

4.2 Schoof’s Algorithm for Elliptic Curves . 16

4.3 The Hasse Invariant . 18

5 Drinfeld Modules 19

5.1 Mathematical Background . 19

5.1.1 Valuations . 20

5.2 Drinfeld Modules . 20

vi

5.3 An Algorithm for the Characteristic Map 22

5.4 Previous Algorithms for Computing the Characteristic Polynomial of the
Frobenius Map . 23

5.4.1 Gekeler’s Algorithm . 23

5.4.2 The Case L = K . 26

5.4.3 Narayanan’s Algorithm . 27

5.5 New Algorithms for Computing the Characteristic Polynomial 28

5.5.1 A New Randomized Algorithm . 28

5.5.2 Schoof’s Algorithm for Drinfeld modules 30

6 Computational Results 36

Bibliography 39

vii

List of Tables

6.1 Runtime in seconds of our new randomized algorithm when q = pk and n = 6 36

6.2 Runtime in seconds of our new deterministic algorithm when q = pk and
n = 6 . 36

viii

List of Figures

6.1 Log-log plot of n versus runtime with p = 2, k = 1 for our new randomized
algorithm . 37

6.2 Log-log plot of n versus runtime with p = 31, k = 2 for our new randomized
algorithm . 38

6.3 Log-log plot of n versus runtime with p = 31, k = 2 for our new determin-
istic algorithm . 38

ix

Chapter 1

Motivation

Elliptic curves are one of the most well-studied Algebro-geometric objects. Their deep
importance to Number theory is emphasized by a connection to several famous theorems
and conjectures, including Fermat’s Last theorem and the Birch and Swinnerton-Dyer
conjecture. Among the most ground breaking results is Schoof’s algorithm for counting the
number of points on an elliptic curve over a finite field [26]. Along with later improvements
due to Elkies and Atkin, Schoof’s algorithm provides an approach for point counting which
is practical for use in cryptography. Elliptic curve cryptography using the Schoof-Atkin-
Elkies algorithm is currently the most widely used implementation of pre-quantum public
key cryptosystem.

Drinfeld modules were originally introduced in [7] who used them to partially prove the
Langlands conjecture for GL(2, F) when F is an algebraic function field. This proof was
later completed using shtukas, a further generalization of Drinfeld modules. The original
name of “elliptic module” emphasizes the fundamental connection between elliptic curves
and Drinfeld modules, with the latter intended as a function field analogue of the former.
In this vein, significant scholarship has been devoted to producing Drinfeld analogues of
elliptic curve constructions, including cryptographic protocols which are highly insecure
[25]. The primary motivation of this thesis is to extend this scholarship by providing
efficient algorithms for performing computations on Drinfeld modules, and in particular
studying techniques for computing the characteristic polynomial of a Drinfeld module,
which characterizes equivalence classes of Drinfeld modules up to isogeny and performs a
critical role in Schoof’s algorithm for elliptic curves.

The main results of this thesis are two new algorithms for computing the characteris-
tic polynomial of a rank-2 Drinfeld module. The best algorithm given in the literature,
due to Gekeler, runs in O(n3 log2 q) field operations. In contrast, our new randomized
algorithm takes O(n2 log n log log n log q), while our deterministic approach uses approxi-
mately O(n2.6258 log n+ n2 log n log log n log q) operations. Also included is a new divide-
and-conquer algorithm for evaluating the characteristic map of a Drinfeld module which
runs in O(n2rd log(rd) log q) field operations.

1

Chapter 2

Preliminaries

2.1 Basic Algorithms and Notation

There will be core algorithms and notation that we will make use of throughout this
work, but will largely treat as black boxes. We will assume the reader is familiar with
the algebraic concepts of groups, rings, and fields. In determining the complexity of the
algorithms presented, two computational models will be used:

• an algebraic model for algorithms over a ring or field, in which the standard ring
operations of addition and multiplication can be performed at unit cost.

• a boolean model which counts bit complexity of all operations.

The algebraic model will typically be preferred, however the Kedlaya-Umans algorithm
for modular composition does not always admit an algebraic algorithm. Algorithms uti-
lizing modular composition will have their complexity given in both an algebraic and
boolean model.

Operation 1 (Matrix Multiplication). Let R be a ring, and let M be an m × n matrix,
and N an n× ` matrix, both with entries contained in R. Compute M ×N .

We will let ω denote an exponent such that two n×n matrices can be multiplied using
O(nω) ring operations in any ring R. The current best known bound is ω ≈ 2.3728 [9].
Similarly, we let ω2 denote the exponent of n×n and n×n2 multiplication, with the best
known bound of ω2 < 3.2516 [9], and naively ω2 ≤ ω + 1.

Operation 2 (Polynomial Multiplication). Let R be a commutative ring, and let f, g be
polynomials in R[T]. Compute f · g.

We will let M(n) denote the the complexity of polynomial multiplication when f
and g are both of degree at most n. For rings containing sufficiently many primitive

2

roots of unity, methods based on the Fast Fourier Transform achieve operation counts
of M(n) ∈ O(n log n) [10, Chapter 8]. For general rings, the best known ring operation
count is M(n) ∈ O(n log n log log n) [4].

We may interpret a polynomial f =
∑m

i=0 ciT
i as a vector whose ith entry is ci, and

may similarly interpret such a vector as a polynomial. We will also have a standard notion
of interpreting a list of polynomials {f1, . . . , fn} ⊂ R[T] of degree at most m as the matrix
M ∈ R(m+1)×n whose ith column is the vector fi. We will also implicitly assume that, for
a prime power q, any finite field written as Fqm is implemented as a polynomial ring over
Fq modulo an irreducible of degree m.

Definition 1. Let f, g be polynomials of degrees d1, d2 respectively, with coefficients in
a commutative ring R, and roots α1, . . . , αd1, β1, . . . , βd2 in some extension of R. The
resultant of f and g is defined to be

res(f, g) := fd2d1 g
d1
d2

d1∏
i=1

d2∏
j=1

(αi − βj).

2.2 Modular Operations

Operation 3 (Modular Composition). Let R be a ring, and f, g, h ∈ R[T] with h monic.
Compute

f(g(T)) mod h(T).

Fix deg(f), deg(g), deg(h) ≤ d. Naively using polynomial multiplication to substi-
tute g into f yields a runtime of O(dM(d)) operations in R. The classical algorithm
for modular composition due to Brent and Kung [2] solves modular composition using

O(d
ω+1
2) operations in F . A slight improvement to this by Huang and Pan gives a count

of O(d
ω2
2)[14], which for current estimates of ω2 is approximately O(n1.6258). More recent

work due to Kedlaya and Umans, utilizing a reduction to multipoint evaluation and an
FFT approach, gives an operation count of O(d1+δ log1+o(1) |R|) for any δ > 0 when R
is a finite ring of the form Z/rZ[T]/E(T) for some positive integer r and some polyno-
mial E(T) ∈ Z/rZ[T] and containing at least d1+δ elements whose differences are units
[19, Theorem 7.1]. Moreover, they show that this runtime is optimal up to lower order
terms. Since the algorithm involves lifting the ring to characteristic 0, the complexity is
determined in a bit operation model rather than an algebraic one.

Operation 4 (Automorphism Projection). Given a field L, automorphism σ of L fixing
a subfield K with m = [L : K], and a K-linear map u : L → K, for any α ∈ L and
positive integer k, compute u(σi(α)) for all 0 ≤ i ≤ k.

3

For a prime power q, when K = Fq, L = Fqm , and σ : α 7→ αq is the order q Frobenius,
we can take k ≤ m− 1 and an algebraic baby-step/giant-step algorithm due to Kaltofen
and Shoup solves the automorphism projection problem in O(mω2/2+(1−β)(ω−1)/2+o(1) +
m1+β+o(1) log q) field operations in Fq for any 0 ≤ β ≤ 1. For the current best bounds
of ω, ω2, taking β = 0.6258 yields a complexity of O(m1.6258+o(1) log q). Kedlaya and
Umans extend their approach for modular composition to produce an algorithm to solve
automorphism projection in O(d1+δ log |L|) bit operations when L is finite and σ is the
order q Frobenius.

2.3 Automorphisms and Normal Bases

We again let L be a field, K a subfield of L, and let σ : L→ L be a K-automorphism.

Definition 2. A basis {b0, . . . , bm−1} for L as a vector space over K is normal with
respect to σ if σ(bi) = bi−1 for i = 0, . . . ,m− 1, with indices taken modulo m.

Operation 5 (Normal Basis Construction). Find an element b ∈ L such that

{b, σ(b), . . . , σm−1(b)} is a basis for L/K.

In the finite field case, with K = Fq, L = Fqm , σ : α 7→ αq, von zur Gathen and Gies-
brecht [28] give a randomized algorithm that runs in O(m2 log q) Fq. Kaltofen and Shoup
in [18] give an improved algorithm, again randomized, that determines a normal element
in O(mω2/2+(1−β)(ω−1)/2+o(1) + m1+β+o(1) log q) Fq operations for any 0 ≤ β ≤ 1. Kedlaya
and Umans in [19] produce an overall runtime for selecting a normal basis, and converting
to and from the standard basis for Fqm over Fq, of O(mω2/2 log1+o(1) q+m1+o(1) log2+o(1) q)
bit operations. This is achieved by utilizing the algorithm due to Kaltofen and Shoup,
which depends on algorithms for automorphism projection and evaluation, in conjunction
with their own asymptotically optimal algorithm for modular composition and modular
power projection. This yields a complexity of roughly O(m1.6258+o(1) log q) Fq operations

for Kaltofen-Shoup when β = 0.6258, and O(m1.6258 log1+o(1) q + m1+o(1) log2+o(1) q) bit
operations for Kedlaya-Umans.

2.3.1 Linear Recurring Sequences

Definition 3. A sequence {ai}∞i=0 with entries in a field L is said to be a linear recur-
ring sequence if there exists c0, c1, . . . , cd−1 in L such that

ad+j + cd−1ad+j−1 + cd−2ad+j−2 + . . .+ c0aj = 0 ∀j ≥ 0

The polynomial xd +
∑d−1

i=0 cix
i is called a characteristic polynomial of {ai}∞i=0. The

minimal polynomial of the sequence is the unique monic polynomial
∑d

i=0 kix
i of smallest

degree d such that
∑d

i=0 kiaj+i = 0 for all j ≥ 0.

4

Operation 6. Given a linear recurring sequence {ai}∞i=0, compute its minimal polynomial.

If the linear recurring sequence {ai}∞i=0 is known to have a minimal polynomial of de-
gree at most d, the Berlekamp-Massey algorithm [21] determines the minimal polynomial
given 2d entries in O(d2) field operations over any field.

5

Chapter 3

Fast Multiplication of Skew
Polynomials

As part of the general view towards providing efficient algorithms for basic operations
on Drinfeld modules, efficient techniques for arithmetic on skew polynomial rings become
necessary. We begin with a field K = Fq and an irreducible commutative polynomial
p ∈ Fq[x] of degree m. Let L = Fq[x]/p = Fqm be a field extension of degree m, and
let σ be a K-automorphism of L. Then the ring of skew polynomials L[X, σ] consists of
polynomials in a new variable X with coefficients in L together with the commutation
relation Xa = σ(a)X for a ∈ L.

Example 1. Let q = 2, p = x2 + x + 1. Then L = {0, 1, x, x + 1}, σ : x 7→ x2, and we
have the following defining relations for L[X, σ]:

X ·x = (x+ 1) ·X

X · (x+ 1) = x ·X.

The goal of this section is to examine efficient algorithms to solve the following problem.

Operation 7 (Skew Polynomial Multiplication). Let a, b ∈ L[X, σ]. Compute a · b.

An algorithm due to Giesbrecht [13] for multiplying skew polynomials of degree at most
d in L[X, σ] has a runtime of O(d2M(m) log q + dmM(m) logm log q). In the following
section we will provide two more recent algorithms.

3.1 Puchinger and Wachter-Zeh’s Algorithm

The first algorithm for skew polynomial multiplication we will present is due to Puchinger
and Wachter-Zeh [24], and is valid when σ is the order q Frobenius map. We provide a

6

more detailed analysis than in [24], particularly in light of the fact that, in their original
work, the authors assume that K-automorphisms of L can be evaluated in constant time,
whereas here we will drop this assumption.

Theorem 1. Let a, b ∈ Fqm [X, σ] be skew polynomials of degree at most d. The product
a · b can be computed in

• O(dω2/2M(m) + d3/2mω2/2)) Fq operations in the algebraic model using Brent-Kung
Modular composition

• O(dω2/2M(m) + d3/2m1+δ log1+o(1) q) bit operations using the Kedlaya-Umans algo-
rithm for modular composition.

Proof. Let d∗ = d
√
d+ 1e We write a and b as

a =
d∑
i=0

aiX
i

b =
d∑
i=0

biX
i

for ai, bi ∈ Fqm . Now define

a(i) =
d∗−1∑
j=0

aid∗+jX
id∗+j

a =
d∗−1∑
i=0

d∗−1∑
j=0

aid∗+jX
id∗+j

=
d∗−1∑
i=0

a(i).

Let then

c(i) = a(i) · b, for i = 0, . . . , d∗ − 1.

Then we can rewrite a · b as

c =
d∗−1∑
i=0

a(i) · b =
d∗−1∑
i=0

c(i).

For i = 0, . . . , d∗ − 1, each c(i) can be expanded as

7

c(i) =
d∗−1∑
i=0

aid∗+jX
id∗+j

(
d∑

k=0

bkX
k

)

=
d∗∑
i=0

d∑
k=0

aid∗+jσ
id∗+j(bk)X

id∗+j+k

=
d+d∗−1∑
h=0

(
h∑
j=0

aid∗+jσ
id∗+j(bh−j)

)
X id∗+h.

For h = 0, . . . , d+ d∗ − 1, let

c
(i)
h =

h∑
j=0

aid∗+jσ
id∗+j(bh−j).

Then

c =
d∗−1∑
i=0

d+d∗−1∑
h=0

c
(i)
h

and

σ−id
∗
(c

(i)
h) =

h∑
j=0

σ−id
∗
(aid∗+j)σ

j(bh−j).

Let A be a d∗ × d∗ and B,C be d∗ × (d+ d∗) matrices such that

Ai,j = σ−id
∗
(aid∗+j)

Bi,k = σi(bk−i) (1)

Ci,k = σ−id
∗
(c

(i)
k)

for 0 ≤ i, j < d∗, 0 ≤ k < d + d∗. By (1) we have C = A ·B. This leads to the following
algorithm for computing c:

1. Build matrices A,B as given in (1)

2. Compute the matrix product A ·B

3. Determine c
(i)
j from the entries of C and compute c

In determining the complexity of step 1, the following two approaches may be used to
compute the entries of A,B:

8

(a) Compute matrices for σ, σ−1 as K-linear maps on L and compute matrix powers

(b) Use “polynomial representations” of both σ, σ−1 and fast modular composition.

The notion of a “polynomial representation” of the Frobenius map, which is credited
to Kaltofen in [29], proceeds as follows: first compute α := xq mod p, and then exploit the
observation that, for any element g(x) ∈ Fqm [x]/p, g(xq) = g(x)q. This allows evaluation
of the Frobenius map by computing the modular composition of g with α.

In either case, we begin by representing the automorphism σ : x 7→ xq on Fqm as α, a
polynomial of degree at most m− 1, which can be done in O(M(m) log q) Fq-operations.

Using the matricial approach, computing the matrix representation Mσ requires eval-
uating σ on the standard polynomial basis {1, x, . . . , xm−1} for Fqm over Fq, which can be
done by computing α2, . . . , αm−1 in time O(M(m)m), and Mσ−1 can be computed from
Mσ in O(mω).

To determine the entries of A we compute Mσ−id∗ for 1 ≤ i ≤ d∗. Computation of the
matrix power Mσ−d∗ costs O(mω log d), and computing Mσ−id∗ for all 1 ≤ i ≤ d∗ takes
O(d∗mω). With d possible values for aid∗+j, evaluation costs O(m2d) for all entries. To
determine the entries of B we determine Mσi for i ≤ d + d∗ with a total cost O(dmω)
Fq-operations using matrix multiplication, and evaluation takes O(d3/2m2) since there are
d∗(d + d∗) entries of the form σi(bk−i) to compute. The overall runtime of step 1 using
the matricial approach is therefore O(log(q)M(m) + dmω + d3/2m2).

We may instead compute σi by composing α with itself. Each individual composition
takes O(mω2/2) field operations using Brent-Kung, or m1+δ log1+o(1) q bit operations using
Kedlaya-Umans. The polynomial representation of σ−1 can be determined by computing
σq

m−1
, which can be done in O(logm) compositions. Computing the entries of A of the

form σ−id
∗
(aid∗+j) requires O(log(d)) compositions to compute σ−d

∗
, and a further O(d)

compositions to compute each of σ−id
∗
(aid∗+j) for all choices of 0 ≤ i, j ≤ d∗. Moreover, to

determine B, we use up to O(d3/2) compositions to compute all entries of the form σi(bk−j)
for i ≤ k, i ≤ d∗, k < d+d∗. This gives step 1 a runtime of O(d3/2mω2/2+M(m) logm) field
operations using Brent-Kung, or O(d3/2m1+δ+M(m) logm) bit operations using Kedlaya-
Umans. The best overall runtime of the procedure is then O(dω2/2M(m) + d3/2m1+δ)
Fq-operations using Kedlaya-Umans modular composition when p ≤ do(1).

Step two takes the time of multiplying an d∗ × d∗ matrix with an d∗ × (d + d∗)

matrix, which is no more than O((d∗)ω2M(m)) = O(dω2/2M(m)). Computing c
(i)
j requires

computing and evaluating σid
∗
(Ci,k) for i < d∗, k < d+d∗ which addsO(d3/2m2) operations

using the matricial approach or O(d3/2m) using the polynomial representation.

Under the current bounds for ω2 and M(m), the Brent-Kung approach has a complex-
ity of O(d1.6258m logm log logm + d1.5m1.6258) Fq operations, while the Kedlaya-Umans

9

Algorithm 1 Puchinger-Wachter-Zeh (Matrix Multiplication)

1: procedure SkewMultiplication
2: Input A prime power q, integer m, skew polynomials a, b
3: Output a · b
4: d←Max(Degree(a),Degree(b))
5: d∗ ← d

√
d+ 1e

6: Mσ ←Matrix(1, xq, x2q, . . . , x(m−1)q)
7: Mσ−1 ←M−1

σ

8: Mσ−d∗ ←Md∗

σ−1

9: Mσd∗ ←Md∗
σ

10: for i = 2 to d∗ − 1 do
11: Mσ−id∗ ←Mσ−(i−1)d∗Mσ−d∗

12: for i = 2 to d+ d∗ − 1 do
13: Mσi ←Mσi−1Mσ

14: for i = 0 to d∗ − 1 do
15: for j = 0 to d∗ − 1 do
16: A[i, j]←Mσ−id∗ (aid∗+j)

17: for i = 0 to d∗ − 1 do
18: for k = 0 to d+ d∗ − 1 do
19: B[i, k]←Mσi(bk−i)

20: C ←MatrixMultiply(A,B)
21: c← 0
22: for i = 0 to d∗ − 1 do
23: for i = 0 to d+ d∗ − 1 do
24: c← c+Mσid∗ (C[i, k])

25: return c

10

Algorithm 2 Puchinger-Wachter-Zeh (Modular Composition)

1: procedure SkewMultiplication
2: Input A prime power q, integer m, skew polynomials a, b
3: Output a · b

4: ModularCompose(α, i) :=

i times︷ ︸︸ ︷
α ◦ α ◦ . . . ◦ α

5: d←Max(Degree(a),Degree(b))
6: α← xq mod p
7: d∗ ← d

√
d+ 1e

8: α−1 ←ModularCompose(α,m− 1)
9: α−d∗ ←ModularCompose(α−1, d

∗)
10: for i = 2 to d∗ − 1 do
11: ασ−id∗ ← ασ−(i−1)d∗ ◦ ασ−d∗

12: for i = 2 to d+ d∗ − 1 do
13: ασi ← ασi−1 ◦ ασ
14: for i = 0 to d∗ − 1 do
15: for j = 0 to d∗ − 1 do
16: A[i, j]← ασ−id∗ ◦ aid∗+j

17: for i = 0 to d∗ − 1 do
18: for k = 0 to d+ d∗ − 1 do
19: B[i, k]← ασi ◦ bk−i
20: C ←MatrixMultiply(A,B)
21: c← 0
22: for i = 0 to d∗ − 1 do
23: for i = 0 to d+ d∗ − 1 do
24: c← c+ ασid∗ ◦ C[i, k]

25: return c

11

variant has a complexity of O(d1.6258m logm log logm + d1.5m1+δ log1+o(1) q) bit opera-
tions. The pseudocode for the Puchinger-Wachter-Zeh algorithm is given in figures 1 and
3.

The main limiting factor is computing the evaluations of the σi. The next algorithm
we will look at will attempt to eliminate this by exploiting a normal basis for σ.

3.2 Fast Multiplication from Evaluation on Normal

Bases

A more recent algorithm for multiplication of skew polynomials is given by Caruso and
Le Borgne in [5], which again requires that L = Fqm . Their main results are contained in
the following two theorems:

Theorem 2. Let a, b ∈ L[X, σ] such that deg(a) + deg b ≤ d < m. Then there is an
algorithm that can compute a · b in O(dω−2m2 + mω2/2+(1−β)(ω−1)/2+o(1) + m1+β+o(1) log q)
K operations for any constant 0 ≤ β ≤ 1 [5].

Theorem 3. Let a, b ∈ L[X, σ] such that deg(a), deg(b) ≥ m. Then there is a probabilistic
algorithm that can compute a · b in O(dmω−1 +mω2/2+(1−β)(ω−1)/2+o(1) +m1+β+o(1) log q) K
operations for any constant 0 ≤ β ≤ 1 with likelihood at least 1

2
. [5].

The first lemma, given in [5, lemma 1.4], establishes a natural correspondence between
elements of L[X, σ] and EndK(L).

Lemma 1. The map

χ : L[X, σ]→ EndK(L)

X 7→ σ∑
i

aiX
i 7→

∑
i

aiσ
i

induces an isomorphism χ : L[X, σ]/(Xm − 1)→ EndK(L).

The next lemma, which is [5, proposition 1.6], allows us to exploit multiplication on
commuting polynomials to evaluate the automorphisms efficiently on normal bases:

Lemma 2. Suppose A(X) =
∑

i aiX
i ∈ L[X, σ], and let Ā(T) =

∑
i aiT

i be the poly-
nomial with identical coefficients in a commuting variable T . Let B(T) =

∑m−1
i=0 biT

i,
C(T) =

∑
i χ(A)(bi)T

i. Then:

C(T) = Ā(T)B(T) (mod Tm − 1).

12

The proofs for Theorems 2 and 3 rely largely on a more general version of the following
result, which is sufficient for multiplying two skew polynomials of total degree at most
m− 1. We present a more detailed version of the proof that appears in [5, corollary 1.7],
to account for the cost of constructing and converting to and from a normal basis.

Theorem 4. Let a, b ∈ L[X, σ]/(Xm − 1). The product a · b can be computed in O(mω +
mω2/2+(1−β)(ω−1)/2+o(1) +m1+β+o(1) log q) Fq operations.

Proof. Select a normal basis {β0, . . . , βm−1} of L over Fq using the Kaltofen-Shoup algo-
rithm seen in 2.3, and let Ω represent the change of basis matrix from a chosen stan-
dard basis to the the normal one. Assuming the standard basis is the usual power
basis {1, x, x2, . . .}, Ω can be constructed from the coefficients of the previously com-
puted normal basis in O(m2) Fq-operations. Moreover let B(T) =

∑m−1
i=0 βiT

i. Compute
a′(T) = a(T)B(T), b′(T) = b(T)B(T) which can be done in O(M(m)2) Fq-operations us-
ing commutative polynomial multiplication. From Lemma 2, a′(T) =

∑m−1
i=0 χ(a)(βi)T

i,
and so we may construct the matrices of χ(a), χ(b), where the domain uses the normal
basis and the codomain has the standard one, by extracting the coefficients of a′ and
b′ in O(m2) operations. Then χ(ab) = χ(a)Ωχ(b) which can be computed in O(mω)
Fq-operations, and the column entries give the coefficients χ(ab)(βi) which allows us to
compute c′(T) =

∑m−1
i=0 χ(ab)(βi)T

i in O(m2) operations. Using Lemma 2 again, we have
that c′(T)B−1(T) = ab(T), which takes at most O(M(m)), and the result is obtained.

Algorithm 3 Caruso-Le Borgne

1: procedure SkewMultiplication
2: Input A prime power q, integer m, a =

∑m−1
i=0 aiX

i, b =
∑m−1

i=0 biX
i ∈ Fqm [X, σ]

3: Output a · b
4: Generate a normal basis {β0, . . . , βm−1}
5: Ω←Matrix(β0, . . . , βm−1)
6: B ←

∑m−1
i=0 βiT

i

7: a←
∑m−1

i=0 aiT
i

8: b←
∑m−1

i=0 biT
i

9: a′ ← aB
10: b′ ← bB
11: Mχ(a) ←Matrix(χ(a)(β0), . . . , χ(a)(βm−1))
12: Mχ(b) ←Matrix(χ(b)(β0), . . . , χ(b)(βm−1))
13: C ←MatrixMultiply(Mχ(a),Ω,Mχ(b))
14: for i = 0 to m− 1 do
15: Ci ← ith column of C

16: c′ ←
∑m−1

i=0 CiT
i

17: c← c′(T)B−1(T)
18: return c(X)

13

3.3 Summary and Comparison

The bottleneck in the Puchinger and Wachter-Zeh approach is the computation of powers
and evaluation of the automorphism σ. Representing σ and σ−1 as polynomials and
utilizing fast modular composition to compute the σi eliminates an mω term over the
matricial approach guaranteeing a run time at worst quadratic in m. The Caruso-Le
Borgne manages to evade this difficulty completely by relying on a normal basis relative
to σ, which in the case where σ is the Frobenius map we can guarantee the existence of
with natural assumptions, and algorithms to compute these bases are well studied.

The Caruso-Le Borgne algorithm’s runtimes of smω−1 (for large degree) and sω−2m2

(for small degree) offer a lower total degree than Brent-Kung’s s3/2m
ω2
2 . The Puchinger-

Wachter-Zeh approach offers an asymptotic advantage over the Caruso-Le Borgne algo-
rithm in the low degree case when we roughly have s3/2 ≤

√
m.

14

Chapter 4

Elliptic Curves

The primary objective of this thesis is to develop a function field analog of techniques
used in counting rational points on elliptic curves. To that end, we first present classical
concepts and results pertaining to elliptic curves. In particular we will describe Schoof’s
algorithm, which together with improvements due to Atkin and Elkies is one of the fastest
methods available.

4.1 Mathematical Background

We will give a basic introduction to some of the core concepts of classical algebraic ge-
ometry. For further exposition, see [8].

Definition 4. Let L be a field. An (affine irreducible) variety is a set V ⊂ Ln such that
there exist polynomials f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) ∈ L[x1, . . . , xn] such that for all
v ∈ V we have that fi(v) = 0 for 1 ≤ i ≤ m. We may replace Ln with n-dimensional
projective space Pn to obtain the notion of a projective variety, in which case we also
require that each fi is a homogeneous polynomial.

Example 2. Let L be a field and n = 2. The polynomial f(x, y, z) = x3 +axz2 +bz3−y2z
is irreducible for any a, b ∈ L and therefore the set V = {(x, y, z) : f(x, y, z) = 0} is a
projective variety over P2

For the purposes of this thesis we will consider “projective curves” with domain L2 ∪
{∞}; the plane together with a ”point at infinity”. Over this domain we can represent
f(x, y, z) from the preceding example as f(x, y) = x3 + ax2 + b− y2.

Definition 5. An abelian variety is a projective variety whose points form an abelian
group whose group operation and element inversion can be defined by regular maps.

Definition 6. An elliptic curve E is a smooth abelian variety over L2 ∪ {∞} defined
by the affine equation

y2 = x3 + ax+ b

15

For a, b ∈ L such that 4a3 + 27b2 6= 0.

Addition on E can be defined as follows:

∞+∞ =∞
(x, y) +∞ = (x, y)

For x, y ∈ L, let:

µ =
3x2 + a

2y

and then we have:

2(x, y) = (µ2 − 2x, 3µx− µ3 − y)

.

For any pair of points (x1, y1), (x2, y2) with x1 6= x2, define:

λ =
y2 − y1

x2 − x1

.

Then we have:

(x1, y1) + (x2, y2) = (λ2 − x1 − x2, λ(2x1 − λ2 + x2)− y1)

When L is finite, we let |E| denote the number of points on the curve in L2 ∪ {∞}.

Operation 8. Given an elliptic curve E over a finite field, compute |E|.

4.2 Schoof’s Algorithm for Elliptic Curves

Schoof’s algorithm for counting the number of points on an elliptic curve is based on a
result due to Hasse:

Theorem 5 (Hasse). Let E be an elliptic curve over Fq. Then

||E| − q − 1| ≤ 2
√
q

Letting h = |E| − q − 1, by Hasse’s theorem, it is sufficient to compute h modulo any
m ≥ 4

√
q. The approach used by Schoof computes h mod p for a number of primes pi

such that
∏

i pi ≥ 4
√
q and uses the Chinese Remainder theorem to then reconstruct h.

We now let σ denote the order q Frobenius map. Moreover, let E be the curve with the
same defining equation of E but whose entries now come from Fq, the algebraic closure
of Fq. We then have the following theorem.

16

Theorem 6 (Hasse’s Theorem for Elliptic Curves). Let σ be the order q Frobenius endo-
morphism defined over Fq. Then σ has the following characteristic equation over E:

X2 + hX + q = 0

For any a ∈ Z, define a(x, y) :=

a times︷ ︸︸ ︷
(x, y) + . . .+ (x, y), then Hasse’s theorem tells us

that, for any point (x, y) ∈ E, we have that:

σ2(x, y) + q(x, y) = −hσ(x, y)

.

Rather than attempt to solve for h directly, we restrict to the p-torsion subgroups
Ep = {(x, y) ∈ E : p(x, y) = ∞} for a set of primes p ∈ P , and compute an integer hp
such that the restricted morphisms satisfy the equation

µp(x, y) := σ2
p(x, y) + qp(x, y) = −hpσ`(x, y) for (x, y) ∈ E`

where q` ≡ q (mod p), hp ≡ h (mod p).

In order to compute the restricted morphism µp, we construct a class of polynomials
in Fq[x, y] whose roots are exactly the elements of Ep inductively as follows:

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6ax2 + 12bx− a2

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

...

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1

ψ2m =
ψm
2y

(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)

Lemma 3. The points (x, y) ∈ E satisfying ψi(x, y) = 0 are exactly the set Ei.

To determine hp (mod p), we let µp(x, y) = (µxp(x, y), µyp(x, y)), where µxp(x, y), µyp(x, y)
are rational functions over Fq[x, y]/(y2−x3−ax−b, ψp) computing the x-coordinate and y-
coordinate of µp(x, y) respectively. We may then solve for an hp such that (µxp(x, y), µyp(x, y))
= −hpσ(x, y). Having computed hp for each p ∈ P , we can use the Chinese Remainder
Theorem to solve for an integer h such that h = hp mod p for all p ∈ P , and by Hasse’s
theorem, |E| = h+ q + 1.

The runtime of Schoof’s original algorithm in [26] is O(log5+o(1) q).

17

Algorithm 4 Schoof’s Algorithm for Point Counting on Elliptic Curves

1: procedure EllipticPointCount
2: Input A prime power q and an elliptic curve E represented by y2 = x3 − ax+ b
3: Output |E|
4: Fix a set of primes P ← {p : gcd(p, q) = 1} and

∏
p∈P p > 4

√
q

5: for each p ∈ P do
6: ψp ← DivisionPolynomial(p)
7: µp(x, y)← σ2(x, y) + q(x, y) mod y2 − x3 − ax− b, ψp
8: solve µp(x, y) = −hpσ(x, y) for hp mod p

9: h← CRTSolve({hp mod p}p∈P)
10: Return h+ q + 1

4.3 The Hasse Invariant

An alternate approach to point counting utilizes the Hasse invariant of an elliptic curve

Definition 7. The Hasse invariant Hq(E) of an elliptic curve E over the field Fq with
characteristic p and defined by the equation y2 = f(x) = x3 + ax + b is the coefficient of
xq−1 in f (q−1)/2.

Theorem 7. For any prime power q = pe and elliptic curve E over Fq we have:

|E| = 1−Hq(E) mod p.

If q = p, this uniquely determines Hq(E).

In the prime field case, this leads to an alternative algorithm for point counting on
elliptic curves that runs in O(p) Fp operations by simply expanding the expression for
f (q−1)/2. More involved algorithms reduce this to O(

√
p) operations [1].

18

Chapter 5

Drinfeld Modules

The primary goal of this thesis is to translate machinery for point counting from the
classical elliptic case to the function field analog. To this end, we now introduce some
theoretical machinery required to introduce the generic definition of a Drinfeld module.

5.1 Mathematical Background

Definition 8. The (finite) transcendence degree of a field L over a subfield K is the
largest cardinality n of a set {x1, . . . xn} contained in L such that there is no non-zero
polynomial f in n variables with coefficients in K with f(x1, . . . , xn) = 0. If such a set
can be found for all n > 0 then we say that the transcendence degree of L/K is infinite.

Example 3. Let K be any field, T1, . . . , Tn a set of n indeterminates and L = K(T1, . . . , Tn).
Then L has transcendence degree n over K.

Definition 9. A function field L over a field K is a field extension of K with tran-
scendence degree n ≥ 1

Given a field extension L/K, any element ` ∈ L corresponds to a linear operator
ˆ̀ : L→ L defined by ˆ̀ : a 7→ `a. Let M` be the matrix for ˆ̀, with entries in K.

Definition 10. Let L/K be a field extension. For any ` ∈ L, define:

NL/K(`) := det(M`)

TrL/K(`) := trace(M`)

which are referred to as the norm and trace of ` respectively.

19

5.1.1 Valuations

Definition 11. A valuation on a field F into an ordered abelian group G is a map
v : F → G ∪ {∞} satisfying the following conditions:

1. v(a) =∞ if and only if a = 0

2. v(ab) = v(a) + v(b)

3. v(a+ b) ≥ min(v(a), v(b))

Example 4. Let F = Q. For any prime p we can define the p-adic valuation νp : Q →
Z ∪ {∞} as follows:

• νp(0) =∞

• νp(x) = max(n : pn|x) for all x ∈ Z

• If x = a
b

for a, b ∈ Z, then νp(x) = νp(a)− νp(b)

Two valuations v1 : F → G1, v2 : F → G2 are equivalent if there is an order-preserving
group isomorphism ϕ : G2 → G1 such that v1(a) = ϕ(v2(a)).

Example 5. Recalling the example of the p-adic valuations on Q, if p1, p2 are two distinct
primes, then νp1(p2) = 0 = ϕ(νp2(p2)) = ϕ(1), which implies ϕ is the trivial map. So all
p-adic valuations are non-equivalent.

Definition 12. A place of a field F is an equivalence class of valuations.

In the typical number field setting, one can construct the the finite places of a number
field F as follows: consider the ring of integers Z of F and let p be a maximal prime ideal.
We define v : Z → Z by setting v(a) to be the largest n such that a ∈ pn, and then extend
v to F as done in the p-adic case form the preceding example. This same construction
can be repeated for F (T), over an underlying field F , by replacing the ring of integers
with F [T].

5.2 Drinfeld Modules

Definition 13. Let F be a function field with a place ∞, and A a sub-ring of F of
elements regular at every point except possibly ∞ containing the field Fq for a prime
power q. Consider a map γ : A → L and set σ : a 7→ aq. Then a Drinfeld A-module
over L is an injective morphism φ : A→ L[X, σ] such that

φ(a) = γ(a) + a1X + . . . arX
r

With the further requirement that r ≥ 1 and ar 6= 0 for at least one a ∈ A.

20

There is a simpler construction when L is an extension of a finite field Fq, say L =
Fq[T]/f = Fqn for some monic irreducible f ∈ Fq[T] of degree n. Here we have A = Fq[T],
and we fix an inclusion γ : A → L where ker(γ) is a prime ideal of A generated by a
monic irreducible polynomial p of degree d referred to as the A-Characteristic of L. Then
K = A/p and γ(a) represents the canonical mapping of a ∈ A into L. Let m := [L : K].
Finally, let σ : L → L be the order q Frobenius map. Then a Drinfeld module is a ring
homomorphism φ : A→ L[X, σ] such that

φ(a) = γ(a) + a1X + . . . arX
r

and r ≥ 1 and ar 6= 0 for at least one a ∈ A. For the remainder of this thesis, this will
be the definition we will make use of. If a = T , a Drinfeld Module is completely specified
by the parameters (q, f, p, a1, . . . , ar) or as (q, f, p, φT), though we will frequently drop the
references to q,f, and p. Since each of these parameters can be specified with coefficients
in Fq, all cost analysis will be done in the algebraic model using Fq operations unless
specified otherwise.

Example 6. Let q = 2, A = F2[T], f = T 2 + T + 1, and L = A/f = F4. Then let
γ : A→ L be the quotient map by f and define the Drinfeld Module φ : A→ L as

φT = T +X +X2

We will often write φa in place of φ(a). Since φ is a ring homomorphism, we have
φab = φaφb, and so the Drinfeld module is determined entirely by φT ; the degree of φT is
referred to as the rank of the Drinfeld Module.

There is a map ι of elements of L[X, σ] into EndFq [L] given by:

ι : a0 + a1X + a2X
2 + . . . 7→ a0I + a1σ + a2σ

2 + . . .

where I : L → L is the identity operator. This mapping is a ring homomorphism, and
given a Drinfeld module φ we will interpret elements φa as operators L → L under this
association for all a ∈ A.

We will restrict our consideration to rank-2 Drinfeld modules, which are widely viewed
in the literature as a direct function field analogue of elliptic curves [11]. Letting φT =
γ(T) + gX + ∆X2, we can represent any rank-2 Drinfeld module with the pair (g,∆).
From [12], we have the following theorem.

Theorem 8. Suppose φ is a rank-2 Drinfeld module over L, a degree n extension of Fq,
and suppose σ is the order q Frobenius map. Then there is a polynomial T 2−aT+b ∈ A[T]
such that the absolute Frobenius operator τ = σn : L → L satisfies the characteristic
equation

21

τ 2 − φaτ + φb = 0 (5.1)

as an element of L[X, σ] under ι; that is, (Xn)2−φaXn+φb = 0 in L[X, σ]. The coefficients
a and b are referred to as the Frobenius trace and Frobenius norm respectively.

5.3 An Algorithm for the Characteristic Map

One of the most basic operations that can be performed on a Drinfeld module is the
computation of φa ∈ L[X, σ] for an arbitrary element a =

∑d
i=0 aiT

i ∈ A.

Operation 9 (Evaluating the Characteristic Map). Given a Drinfeld Module φ : A→ L
and an element a ∈ A, compute φa.

Let θ be the exponent such that two skew-polynomials in Fqm [X, σ] of degree at most
e can be multiplied in O(eθ) Fq operations, dropping dependence on all other parameters.
Since φ is a ring homomorphism, we have that:

φ :
d∑
i=0

aiT
i 7→

d∑
i=0

aiφ
i
T

which leads to a naive algorithm for computing φa by computing φiT via skew-polynomial
multiplication for all 2 ≤ i ≤ d, which works for any rank r Drinfeld Module. This involves
at least d/2 multiplications of skew-polynomials of degree at least rd/2, and therefore has
a complexity of Ω(dθ+1).

Theorem 9. There is an algorithm that evaluates the characteristic map of any finite
Drinfeld module (q, f, p, φT) of rank r at an element a ∈ Fq[T] of degree at most d in
O(n2rd log(rd) log q) Fq operations.

Proof. Given an element a ∈ Fq[T], without loss of generality we may assume deg(a) =
d = 2e for some integer e. Then we may factor a as

a = b+ T d/2c

with deg(b), deg(c) ≤ d/2. We then have:

φa = φb + φT d/2φc

where each of φb, φT d/2 , and φc have degree at most rd
2

in X. This suggests a divide
and conquer algorithm which recursively computes φb, φc and φT d/2 = φT d/4φT d/4 when
e ≥ 2, with runtime O(t(n, dr)) Fq operations for some t depending on n, d, q, and r.

22

Suppressing the dependence on n and q, set d = rd and t̂(d) = t(n, d, q, r). Using the
Caruso-Le Borgne algorithm for skew multiplication twice to compute φT d/2 and φT d/2φc,
which from theorems 2 and 3 has worst case runtime O(dn2 log q) for any value of d, n,
and q, to recombine the subproblems, we obtain the following recurrence:

t̂(d) = 2t̂(d/2) +O(d).

Therefore t̂ ∈ O(d log d), and O(t(n, d, r)) ∈ O(m2rd log(rd) log q).

Algorithm 5 Evaluating the Drinfeld Characteristic Map

1: procedure CharMapEval
2: Background A Drinfeld Module (q, f, p, φT)
3: Input An element a ∈ A
4: Output φa
5: a :=

∑d
i=0 aiT

i

6: if deg(a) ≤ 1 then return a0 + a1φT

7: b←
∑bd/2c

i=0 aiT
i

8: c←
∑bd/2c

i=0 ai+dd/2eT
i

9: Memoize φbd/2c ← SkewMultiplication(φbbd/2c/2c, φbbd/2c/2c)
10: if d is odd then
11: φdd/2e ← SkewMultiplication(φbbd/2c/2c, φT)
12: else
13: φdd/2e ← φbd/2c

14: φb ← CharMapEval(b)
15: φc ← CharMapEval(c)

return φb + SkewMultiplication(φdd/2e, φc)

5.4 Previous Algorithms for Computing the Charac-

teristic Polynomial of the Frobenius Map

We now state the central problem of this thesis

Operation 10 (Computing the Characteristic Polynomial). Given a rank-2 Drinfeld mod-
ule φ = (g,∆), compute its Frobenius Trace and Norm.

5.4.1 Gekeler’s Algorithm

Determining the Frobenius norm is done using the following theorem from [12]:

23

Theorem 10. The Frobenius norm b of a rank-2 Drinfeld Module (g,∆) is given by:

b = (−1)nNFqn/Fq(∆)−1pm

Furthermore, the above expression can be determined in O(M(n) log n) Fq operations.

Proof. We will provide only the cost analysis, which is new. Note pm is a degree n poly-
nomial and can compute pm in time O(M(n) logm) Fq operations. Moreover NL/Fq(∆) =
±res(∆, f) [23], which can be computed in O(M(n) log n) Fq operations [23].

Gekeler in [12] gives a general algorithm that determines the Frobenius trace for any
rank-2 Drinfeld module. We present that algorithm now, together with a new cost analysis
which is not provided in the original paper.

Theorem 11. The Frobenius trace of a rank-2 Drinfeld Module φ = (g,∆) over L can be
determined in

• O(n3 log2 q) Fq operations

• O(n3+ε log1+o(1) q) bit operations for any ε > 0.

Proof. From [12] we obtain that deg(a) ≤ n
2
. Set :

a =
∑
i≤n/2

aiT
i

pm =
∑
i≤n

piT
i

φT i =
∑
j≤2i

fi,jX
j

With ai,pi, and fi,j ∈ Fqn for all choices of i, j, and fi,0 = γ(T i), f1,1 = g, f1,2 = ∆. Using
theorem 10, we can compute φb in O(M(n) log n) Fq operations, and by theorem 8 we
have:

σ2n +
∑
i≤n/2

aiφT iσn + φb = 0

which gives

σ2n +
∑
i≤n/2

ai
∑
j≤2i

fi,jσ
j+n + (−1)nNL/Fq(∆)−1

∑
i≤n

pi
∑
j≤2i

fi,jσ
j = 0.

24

Factoring out σ2n, this gives a system of n+ 1 equations

−
∑
i≤n/2

aifi,j−n + (−1)nNL/Fq(∆)−1
∑

bj/2c≤i≤n

pifi,j = 0 for j < 2n

and
−
∑
i≤n/2

aifi,n + (−1)nNL/Fq(∆)−1pnfn,2n = −1

with pi already computed while determining the Frobenius norm, and fi,j determined
using a method that is to be discussed later. From known values, we can compute

αj = (−1)nNL/Fq(∆)−1
∑

b(j+n)/2c≤i≤n

pifi,j+n for 0 ≤ j < n

αn = 1 + (−1)nNL/Fq(∆)−1pnfn,2n

Since bn
2
c = bn+1

2
c when n is even, we have that the equations are redundant when

j ∈ {n+ 2i− 1 : 1 ≤ i ≤ n
2
} for even n, while for odd n this occurs when j ∈ {n+ 2i+ 2 :

0 ≤ i ≤ n−1
2
}. Eliminating redundancies and noting that fi,j = 0 whenever i < 2j leaves

the following upper triangular system of bn
2
c+ 1 equations

f0,0 f1,0 . . . fbn/2c,0
0 f1,2 . . . fbn/2c,2

0 0
. . .

...
...

...
. . .

...
0 0 . . . fbn/2c,n

a0

a1
...

abn/2c

 =

α0

α2
...
αn

 (5.2)

whose diagonal entries are fi,2i, which are the coefficients of the leading terms of φT i , and
therefore are of the form fi,2i = ∆e 6= 0 for some exponent e and for 0 ≤ i ≤ bn

2
c since

∆ 6= 0. The upper triangular system can be solved in O(n2) Fqn operations, and therefore
O(n2M(n)) Fq operations, by solving for abn/2c using fbn/2c,nabn/2c = αn and recursively
solving for ai using the solution for ai+1, . . . , abn/2c. However, determining the system
requires computing fi,j for i ≤ n/2, j ≤ n. Techniques for skew polynomial multiplica-
tion offer a naive approach, however an improvement can be obtained by determining a
recurrence:

φT i+1 = φTφT i = (γ(T) + gX + ∆X2)
∑
j≤2i

fi,jX
j

=
∑
j≤2i

γ(T)fi,jX
j +

∑
j≤2i

gf qi,jX
j+1 +

∑
j≤2i

∆f q
2

i,jX
j+2

25

So the fi,j satisfy the recurrence

fi+1,j = γ(T)fi,j + gf qi,j−1 + ∆f q
2

i,j−2

With initial conditions f0,0 = 1, f1,0 = γ(T), f1,1 = g, and f1,2=∆. Evaluating one
instance of the recurrence involves three applications of the Frobenius map, which is the
dominating step, and takes O(M(n) log q) Fq operations. There are O(n2) choices of i
and j on which we want to evaluate this recurrence and so we obtain a worst case runtime
of O(M(n)n2 log q) field operations to determine all fi,j. Using Kedlaya-Umans modular

composition, however, gives a bit operation count of O(in1+ε log1+o(1) q), and computes all
fi,j in time O(n3+ε log1+o(1) q) for any constant ε > 0. The cubic complexity in n is due to
the need to solve O(n) recurrences to determine all fi,j, and therefore can not be repaired
in an elementary manner.

Algorithm 6 Gekeler’s Algorithm for the Frobenius Trace

1: procedure FrobeniusTrace
2: Input A rank-2 Drinfeld Module (g,∆)
3: Output The Frobenius Trace
4: f0,0 ← 1
5: f1,0 ← γ(T)
6: f1,1 ← g
7: f1,2 ← ∆
8: for i = 2 to bn

2
c do

9: for j = 1 to bn
2
c do

10: fi,j ← (T mod p) · fi−1,j−1 + g · f qi−1,j−2 + ∆ · f q
2

i−1,j−3

11: for i = 0 to bn
2
c do

12: for j = 0 to bn
2
c do

13: A[j, i]← fi,2j

14: for j = 0 to bn
2
c do

15: α[j]← (−1)nNL/Fq(∆)−1
∑
b(2j+n)/2c≤i≤n pifi,2j+n

16: Solve Ax = α
17: Return x

5.4.2 The Case L = K

Gekeler in [12] gives a much simpler algorithm in the case where L = K. In analogy with
the elliptic case, we may define the Hasse Invariant hφ for a rank-2 Drinfeld module.

Definition 14. Let (q, f, p, g, δ) be a rank-2 drinfeld module with f = 0. We define the
Hasse invariant hφ of φ to be the coefficient of Xn in φp.

26

Theorem 12. Let (g,∆) be a rank-2 Drinfeld module, L = Fq[T]/p, [L : Fq] = n. We let
gi for i ≤ n be the sequence defined by g0 = 1, g1 = g and

gk+1 = gq
k

gk − (T q
k − T)∆qk−1

gk−1.

Then γ(a) = hφ = gn

Using fast modular composition and techniques for solving linear recurrences with
polynomial coefficients as given in [6], we obtain a runtime for solving the recurrence for
gn of O

(
n(1−β)(ω−1)/2+(ω+1)/2 + M(n1+β log qn)

)
Fq operations for any positive constant

β < 1. Again making use of Kedlaya-Umans modular composition, all of gq
i
, ∆qi , and

T q
i − T for i < n can be computed in O(n2+ε log1+o(1) q) bit operations, and therefore gn

can be computed with the same asymptotic cost.

5.4.3 Narayanan’s Algorithm

A first randomized approach based on computing minimal polynomials of sequences due
to Narayanan [22, 3.1], is below. This algorithm works only for Drinfeld modules where
CharPoly(φT) = MinPolyFq(φT), which holds for generic choices of g and ∆; that is, for
more than half of all elements of the parameter domain [22, theorem 3.6]. It further
requires that the automorphism power projection algorithm of Kaltofen and Shoup can
be extended elements of L[X, σ]. Narayanan stated the latter assumption as a fact, and
although he was contacted regarding this statement, no resolution regarding whether it
holds was reached.

We first state the following lemma due to Kaltofen and Saunders [17] :

Lemma 4. Let A be an n× n matrix over a field F , u : F n → F a linear map, and b a
vector of length n whose entries come from a set S ⊂ F . Then:

Prob
[
MinPoly({uAib}i) = MinPoly({Aib}i)

]
≥ 1− deg(MinPoly({Aib}i))

2|S|

and

Prob
[
MinPoly({Aib}i) = MinPoly({Ai}i)

]
≥ 1− deg(MinPoly({Ai}i))

2|S|

Theorem 13. Let φ = (∆, g) be a rank-2 Drinfeld module over L, [L : Fq] = n,
and suppose CharPoly(φT) = MinPolyFq(φT). There exists a Monte Carlo random-
ized algorithm for determining the characteristic polynomial Cφ = X2 − aX + b in

O(n(ω2)/2+o(1) log1+o(1) q + n1+o(1) log2+o(1) q) Fq field operations.

27

Proof. Choose an α ∈ L and an Fq linear map ` : L→ Fq uniformly at random. By Lemma
4, with probability at least half and at least 1− n

2q
, MinPoly({`(φiT (α)}i) = MinPolyFq(φT).

The determination of MinPoly({`(φiT (α)}i) can be done using the Berlekamp-Massey al-
gorithm in time O(n1+o(1) log q) using the first 2n − 1 entries. Narayanan claims that
computing the collection {`(φiT (α)}2n−2

i=0 is a restatement of the automorphism projec-
tion problem for elements of the endomorphism ring L{σ}, for which the algorithm of
Kedlaya-Umans in [19] yields a runtime of O(n(ω2)/2+o(1) log1+o(1) q+n1+o(1) log2+o(1) q) bit
operations.

5.5 New Algorithms for Computing the Characteris-

tic Polynomial

5.5.1 A New Randomized Algorithm

Theorem 14. Let φ = (∆, g) be a rank-2 Drinfeld module over L, [L : Fq] = n. There
exists a Monte Carlo randomized algorithm for determining the characteristic polynomial
Cφ = X2 − aX + b in O(M(n)n log q) Fq operations.

Proof. Letting τ denote the Frobenius map σn, by theorem 8, the characteristic equation
for τ tells us that for any α ∈ L

τ 2(α) + φb(α) = φa(τ(α))

Determining b using Gekeler’s algorithm, we may compute the left-hand side efficiently
by determining φiT (α) for i ≤ n. Each individual application of φT requires three Frobenius
operations on polynomials of degree n giving an individual runtime of O(M(n) log q) and a
complexity of determining φb(α) of O(M(n)n log q). Define r := α+φb(α) and ` : L→ Fq
a linear projection map, we can write down the following relations with

a =

bn/2c∑
i=0

aiT
i ∈ Fq[T]

we get

r =

bn/2c∑
i=0

aiφ
i
T (α)

.

For j ≥ 0 this implies

`(φjT (r)) =

bn/2c∑
i=0

ai`(φ
i+j
T (α)),

28

which gives us the following Hankel system Hκ for some parameter κ to be determined:

Hκ =

`(α) `(φT (α)) . . . `(φ

bn/2c
T (α))

...
...

...

`(φjT (α)) `(φ1+j
T (α)) . . . `(φ

bn/2c+j
T (α))

...
...

...

`(φκT (α)) `(φ1+κ
T (α)) . . . `(φ

bn/2c+κ
T (α))

a0

a1
...
ai
...

abn/2c

=

`(r)
`(φT (r))

...

`(φjT (r))
...

`(φκT (r))

There are O(κ + n) entries of the form `(φiT (α)), `(φiT (r)) that need to be computed.

Evaluating the projection map takes O(n) time on each φiT (α). We have φi+1
T (α) =

(T + gσ+ ∆σ2)φiT (α) and evaluating the operator T + gσ+ ∆σ2 on an element of L takes
O(M(n) log q) time, giving a complexity of O((n+ κ)M(n) log q)

If κ ∈ O(n), then the solution of the Hankel system can be solved in O(n2) operations
using classical algorithms or O(n log2(n)) using algorithms due to Kaltofen [15]. It remains
to show κ ∈ O(n). This depends in part on a lemma of Kaltofen and Pan [16]

Lemma 5. Let {ai}∞i=0 be a linear sequence over Fq and d the degree of its minimal
polynomial. For any m > 0 let Tm be the matrix given by:

a0 a1 . . . am−1

a1 a2 . . . am
...

...
. . .

...
am−1 am . . . a2m−2

Then detTd 6= 0 and for any m > d, detTm = 0.

Since L is a degree n extension of Fq there must be a degree n monic polynomial f
over Fq such that f(φT) = 0. Now let f be the minimal of φT with deg(f) = d. For any
positive integers i, j with i < j < n, σi = σj implies σj−i is the identity on Fqn , which can’t
occur since j− i < m. Therefore by independence of characters, σ, σ2, . . . , σn−1 satisfy no
non-trivial Fq-linear relation; that is, there are no constants c0, . . . , cn−1 with at least one
ci 6= 0 such that c0 + c1σ + . . .+ cn−1σ

n−1 = 0. So if 0 = f(φT) = c0 + c1σ + . . .+ c2dσ
2d,

where the lead term c2dσ
2d is given by (∆σ2)d, so c2d = ∆(1−q2d)/(1−q) 6= 0, then 2d ≥ n−1

and so n−1
2
≤ d = deg MinPolyFq(φT) ≤ n.

By lemma 4, with probability at least (1− n
2q

)2 we have that MinPolyFq({`(φiT (α)}i) =

MinPolyFq(φT), in which case by lemma 5 and the upper bound deg MinPolyFq(φT) ≤ n
we can guarantee that an upper left submatrix of

29

Hκ =

`(α) `(φT (α)) . . . `(φ

bn/2c
T (α)) `(φ

bn/2c+1
T (α)) . . . `(φ

2bn/2c
T (α))

...
...

...
...

...

`(φjT (α)) `(φ1+j
T (α)) . . . `(φ

bn/2c+j
T (α)) `(φ

bn/2c+j+1
T (α)) . . . `(φ

2bn/2c+j
T (α))

...
...

...
...

...

`(φκT (α)) `(φ1+κ
T (α)) . . . `(φ

bn/2c+κ
T (α) `(φ

bn/2c+κ+1
T (α)) . . . `(φ

2bn/2c+κ
T (α)))

of size at least n−1

2
is invertible when κ = MinPolyFq({`(φiT (α)}i) and n−1

2
≤ κ ≤ n.

Therefore a solution to the system

Hκ

a0

a1
...
ai
...

abn/2c
a0

a1
...
ai
...

abn/2c

=

`(r) + `(φ
bn/2c
T (r))

`(φT (r)) + `(φ
bn/2+1c
T (r))

...

`(φjT (r)) + +`(φ
bn/2c+j
T (r))

...

`(φκT (r)) + `(φ
bn/2c+κ
T (r))

determines unique values for a0, . . . , abn/2c with probability at least (1 − n
2q

)2. We may

determine the value of κ using the Berlekamp-Massey algorithm in O(n2) operations. One
final observation is that when n is even and deg MinPolyFq(φT) = n

2
, then the invertible

upper left matrix guaranteeing uniqueness has dimension n
2
, which does not guarantee a

unique solution for an/2. Using [12, proposition 2.14], this coefficient may be computed
as

an/2 = TrFq2/Fq(NL/Fq2
(∆)−1)

where Fq2 is the unique degree 2 extension of Fq contained in Fqn . Using TrFq2/Fq(x) =

x+ xq we can compute an/2 in O(M(n)(log n+ log q)) Fq operations.

5.5.2 Schoof’s Algorithm for Drinfeld modules

We present here an alternative approach inspired by Schoof’s algorithm for elliptic curves.
Supposing n

2
+ 1 < q, for some choice of elements e0, e1, . . . , en/2 ∈ Fq, we aim to compute

30

Algorithm 7 A New Randomized Algorithm for Finding the Frobenius Trace

1: procedure RandomizedFrobeniusTrace
2: Input A rank-2 Drinfeld Module (q, f, p, g,∆) and Frobenius Norm b
3: Output The Frobenius Trace a
4: Choose a map ` : L→ Fq uniformly at random from Fnq
5: Choose an element α ∈ L uniformly at random from L
6: r ← α + φb(α)
7: A[0]← α
8: B[0]← r
9: for i = 1 to bn−1

2
c do

10: B[i] = φT (φi−1
T (r))

11: B[i− 1]← `(B[i− 1])

12: for i = 1 to n− 1 do
13: A[i] = φT (φi−1

T (α))
14: A[i− 1]← `(A[i− 1])

15: for i = 0 to bn−1
2
c do

16: for j = 0 to bn
2
c do

17: M [i, j] = A[i+ j]

18: Solve Hankel system Mx = B return x

a(ei). Invoking either the Universal Property of Quotients for rings, or the observation
that φa+r(T−ei) = φa + φrφT−ei , this can be determined using φa (mod φT−ei) = φa(ei) =
a(ei) for each index i. Reducing the characteristic equation mod φT−ei we obtain

a(ei)σ
n = σ2n + b(ei) (mod φT − ei). (5.3)

Therefore it is sufficient to determine

σn (mod φT − ei)

for each ei and solve for a satisfying equation 5.3.

Theorem 15. Let φ = (∆, g) be a rank-2 Drinfeld module over L, [L : Fq] = n. There
exists a deterministic algorithm for determining the characteristic polynomial Cφ = X2−
aX + b in

• O(nω2/2+1 log n+M(n)n log q) Fq operations

• O(n2+δ log1+o(1) q log n) bit operations for any δ > 0.

Proof. Let

σj = νj + µjσ (mod φT − ei)

31

for νj, µj ∈ L and let γ(T) = γT . Then we obtain the recurrence relation:

σj+1 = νqjσ + µ2
jσ

2 = νqjσ + µqi
(
− γT − ei

∆
− g

∆
σ
)

(mod φT − ei).

That is, νj+1 = −γT−ei
∆

µqj and µj+1 = νqj −
g
∆
µqj . Letting α = −γT−ei

∆
, β = − g

∆
, and

M (qi) =

[
0 αq

i

1 βq
i

]
[
νn
µn

]
= MM (q) . . .M (qn−1)

[
1
0

]
.

Therefore, efficiently computing σn relies on computing the products Pj = MM (q) . . .M (qj).
This can be done effectively using the following observation:

P2j+1 = PjP
(qj+1)
j .

We then compute σ2n as

σ2n = (νn + µnσ)(νn + µnσ) (mod φT − ei)
= ν2

n + νnµnσ + µnν
q
nσ + µq+1

n (α + βσ) (mod φT − ei)
= ν2

n + µq+1
n α + (νnµn + µnν

q
n + µq+1

n β)σ (mod φT − ei)

Substituting back into 5.3 results in the relation

a(ei)(νn + µnσ) = ν2
n + µq+1

n α + b(ei) + (νnµn + µnν
q
n + µq+1

n β)σ (mod φT − ei). (5.4)

Therefore when µn 6= 0 we conclude that

a(ei) = νn + νqn + µqnβ

which allows the determination of a(ei) without computing the Frobenius norm before-
hand. Otherwise, 5.4 gives

a(ei) = νn + b(ei) (5.5)

when µn = 0.

The algorithm may be summarized as follows:

1. Compute σn (mod φT − ei) by computing Pn.

32

2. Solve for a(ei) ∈ Fq such that a(ei)σ
n = σ2n + b(ei) (mod φT − e).

3. Interpolate the values a(ei).

The only potential degeneracy occurs when σn = 0 (mod φT − ei), which can be
excluded when γT 6= ei. Suppose σn =

∑n−2
i=0 aiσ

i(φT − ei). Then clearly a0 = 0 if
γT − e 6= 0. Moreover, if ai = 0 for all i < d < n− 2, then 0 = ad(γT − ei)d + ad−1g

d−1 +
ad−2∆d−2 = ad(γT − ei)

d, therefore ad = 0. So σn = an−2σ
n−2σi(φT − ei) which is a

contradiction.

We can compute polynomial representations for all σi beforehand using modular com-
position for at most O(log n) choices of index i. Next, for each ei, we perform O(log n) 2×2
matrix multiplications and modular compositions to evaluate the Frobenius map up to
order qn/2. These two steps together contribute O(nω2/2 log n+M(n) log q) Fq operations

using Brent-Kung composition, or O(n1+δ log1+o(1) q log n) bit operations, for any δ > 0,
using Kedlaya-Umans. Repeating for n

2
+ 1 choices of ei raises the cost in either case by a

factor of O(n). The interpolation step takes at most O(n2) operations, so the total cost
remains either O(nω2/2+1 log n+M(n)n log q) Fq operations or O(n2+δ log1+o(1) q log n) bit
operations

We expect the algorithm may be extended to the case n
2

+ 1 > q by computing
σn mod φg for irreducible polynomials g, though an exposition of this approach will not
be given.

Example 7. Let q = 5, n = 4. Then L = F5[T]/(T 4 + 4T 2 + 4T + 2). Take φ to be
a rank-2 Drinfeld module over L with g = 1,∆ = 1. Then for e0 = 0 we have α = 4t,
β = 4. Letting

M =

[
0 4T
1 4

]
.

We get:

MM5M25M125 =

[
T 3 + T 2 + 3 T 3 + 2T + 3

2T 3 + 2T 2 + 3T + 4 4T 3 + 4T 2 + 4

]
So ν4 = T 3 + T 2 + 3 and µ4 = 2T 3 + 2T 2 + 3T + 4 and

a(0) = ν4 + ν5
4 + 4µ5

4 = 2

For e1 = 1 we have

33

Algorithm 8 Schoof’s Algorithm for Drinfeld modules

1: procedure FrobeniusTrace
2: Input A rank-2 Drinfeld Module (q, f, p, g,∆) and Frobenius Norm b
3: Output The Frobenius Trace a
4: E ← {e0, . . . , en/2} ⊂ Fq
5: σ ← xq mod f
6: while i < n do
7: if 2i+ 1 < n then
8: σi+1 ← σi ◦ σ
9: σ2i+1 ← σi ◦ σi ◦ σ
10: i← 2i+ 1
11: else
12: σi+1 ← σi ◦ σ
13: i← i+ 1

14: for ei ∈ E do
15: α← −(γT − ei)/∆
16: β ← −g/∆

17: P0 ←
[
0 α
1 β

]
18: i← 0
19: while i < n− 1 do
20: if 2i+ 1 < n then

21: P σi+1

i ←
[
Pi[0, 0](σi+1) Pi[0, 1](σi+1)
Pi[1, 0](σi+1) Pi[1, 1](σi+1)

]
22: P2i+1 ← PiP

σi+1

i

23: i← 2i+ 1
24: else

25: Mi ←
[
0 α(σi)
1 β(σi)

]
26: Pi+1 ← PiMi

27: i← i+ 1

28: νn ← Pn−1[0, 0]
29: µn ← Pn−1[1, 0]
30: if µn 6= 0 then
31: a(ei)← νn + νqn + µqnβ
32: else
33: a(ei)← νn + b(ei)

return Interpolate({(e0, a(e0)), (e1, a(e1)), . . . , (en/2, a(en/2))})

34

M =

[
0 4t+ 1
1 4

]
MM5M25M125 =

[
4T 4T 2

2T 3 + 2T 2 + 3T + 2 T + 3

]

and we get a(1) = 3. Repeating this calculation once more yields a(2) = 3 and we can
interpolate to get

a = (T − 1)(T − 2) + 2T (T − 2) + 4T (T − 1) = 2T 2 + 4T + 2.

35

Chapter 6

Computational Results

We attempted to verify the runtime of the two new algorithms presented here with an
implementation using SageMath [27]. The rank-2 Drinfeld module with parameters g = 1,
∆ = 1 was used for all computations. The runtimes shown in tables 6.1 and 6.2 are for
fields of characteristic p = 1299827 and p = 179426549 for varying values of k such that
the base field has order q = pk, and n = [L : Fq] was fixed at n = 6. The values given are
the averages over 10 trials. The results appear to confirm the logarithmic dependence on
q for both new algorithms.

p = 1299827 p = 179426549
k = 1 0.0791 0.0951
k = 3 1.1438 1.418019056
k = 6 5.3689 11.35429311

Table 6.1: Runtime in seconds of our new randomized algorithm when q = pk and n = 6

p = 1299827 p = 179426549
k = 1 0.0791 0.0951
k = 3 1.1438 1.418019056
k = 6 5.3689 11.35429311

Table 6.2: Runtime in seconds of our new deterministic algorithm when q = pk and n = 6

We then attempted to verify the order of dependence on n by producing a log-log plot
on n versus runtime. Logarithms are taken base 2, and results are averaged over 10 trials.
The linear regressions for our randomized algorithm shown in figures 6 and 6 have slopes
below 3, which is consistent with the sub-cubic runtime given by our analysis.

36

Figure 6.1: Log-log plot of n versus runtime with p = 2, k = 1 for our new randomized
algorithm

In contrast, our linear regression for the deterministic algorithm exceeds 3. This is
almost certainly due to difficulties in finding library implementations for fast modular
composition. The only reference implementations we could find worked only in the case
where the base field was F2, which due to the requirement q > n

2
+ 1 was insufficient for

testing our deterministic algorithm. Efforts to produce our own general implementation
of fast modular composition were unsuccessful in the time available.

37

Figure 6.2: Log-log plot of n versus runtime with p = 31, k = 2 for our new randomized
algorithm

Figure 6.3: Log-log plot of n versus runtime with p = 31, k = 2 for our new deterministic
algorithm

38

Bibliography

[1] Alin Bostan, Bruno Salvy, Francois Morain, and Eric Schost. Fast algorithms for
computing isogenies between elliptic curves. Research report, 2006.

[2] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
J. ACM, 25(4):581–595, October 1978.

[3] Anne Canteaut. Berlekamp-Massey algorithm, pages 29–30. Springer US, Boston,
MA, 2005.

[4] David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28:693–701, 1991.

[5] Xavier Caruso and Jérémy Le Borgne. Fast multiplication for skew polynomials.
CoRR, abs/1702.01665, 2017.

[6] J. Doliskani, A. K. Narayanan, and É. Schost. Drinfeld Modules with Complex
Multiplication, Hasse Invariants and Factoring Polynomials over Finite Fields. ArXiv
e-prints, December 2017.

[7] V. G. Drinfel’d. Elliptic modules. Matematicheskii Sbornik, 94(23):561593, 1974.

[8] W. Fulton. Algebraic curves: an introduction to algebraic geometry. Advanced book
classics. Addison-Wesley Pub. Co., Advanced Book Program, 1989.

[9] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication
using powers of the coppersmith-winograd tensor. CoRR, abs/1708.05622, 2017.

[10] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 2 edition, 2003.

[11] Ernst-Ulrich Gekeler. On finite drinfeld modules. Journal of Algebra, 141(1):187 –
203, 1991.

[12] Ernst-Ulrich Gekeler. Frobenius distributions of drinfeld modules over finite fields.
360:1695–1721, 04 2008.

[13] M. Giesbrecht. Factoring in skew-polynomial rings over finite fields. Journal of
Symbolic Computation, 26(4):463 – 486, 1998.

39

[14] Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and
applications. Journal of Complexity, 14(2):257 – 299, 1998.

[15] Erich Kaltofen. Asymptotically fast solution of toeplitz-like singular linear systems.
pages 297–304, 01 1994.

[16] Erich Kaltofen and Victor Pan. Processor efficient parallel solution of linear systems
over an abstract field. In Proceedings of the Third Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA ’91, pages 180–191, New York, NY,
USA, 1991. ACM.

[17] Erich Kaltofen and B. David Saunders. On wiedemann’s method of solving sparse
linear systems. In Proceedings of the 9th International Symposium, on Applied Al-
gebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-9, pages 29–38,
London, UK, UK, 1991. Springer-Verlag.

[18] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials over fi-
nite fields. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’95, pages 398–406, New York, NY, USA, 1995. ACM.

[19] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM J. Comput., 40(6):1767–1802, December 2011.

[20] F. Le Gall. Powers of Tensors and Fast Matrix Multiplication. ArXiv e-prints,
January 2014.

[21] J. Massey. Shift-register synthesis and bch decoding. IEEE Transactions on Infor-
mation Theory, 15(1):122–127, January 1969.

[22] Anand Kumar Narayanan. Polynomial factorization over finite fields by computing
euler-poincare characteristics of drinfeld modules. CoRR, abs/1504.07697, 2015.

[23] M. Pohst and H. Zassenhaus, editors. Algorithmic Algebraic Number Theory. Cam-
bridge University Press, New York, NY, USA, 1989.

[24] Sven Puchinger and Antonia Wachter-Zeh. Fast operations on linearized polynomials
and their applications in coding theory. Journal of Symbolic Computation, 2017.

[25] Thomas Scanlon. Public key cryptosystems based on drinfeld modules are insecure.
Journal of Cryptology, 14(4):225–230, Sep 2001.

[26] René Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Mathematics of Computation, 44(170):483–494, 1985.

[27] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
x.y.z), YYYY. http://www.sagemath.org.

[28] Joachim von zur Gathen and Mark Giesbrecht. Constructing normal bases in finite
fields. J. Symb. Comput., 10:547–570, 1990.

40

[29] Joachim von zur Gathen and Victor Shoup. Computing frobenius maps and factoring
polynomials. computational complexity, 2(3):187–224, Sep 1992.

[30] D H Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theor., 32(1):54–62, January 1986.

41

	List of Tables
	List of Figures
	Motivation
	Preliminaries
	Basic Algorithms and Notation
	Modular Operations
	Automorphisms and Normal Bases
	Linear Recurring Sequences

	Fast Multiplication of Skew Polynomials
	Puchinger and Wachter-Zeh's Algorithm
	Fast Multiplication from Evaluation on Normal Bases
	Summary and Comparison

	Elliptic Curves
	Mathematical Background
	Schoof's Algorithm for Elliptic Curves
	The Hasse Invariant

	Drinfeld Modules
	Mathematical Background
	Valuations

	Drinfeld Modules
	An Algorithm for the Characteristic Map
	Previous Algorithms for Computing the Characteristic Polynomial of the Frobenius Map
	Gekeler's Algorithm
	The Case L = K
	Narayanan's Algorithm

	New Algorithms for Computing the Characteristic Polynomial
	A New Randomized Algorithm
	Schoof's Algorithm for Drinfeld modules

	Computational Results
	Bibliography

