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Abstract 
Recent years have seen a dramatic worldwide increase in the use of plug-in electric vehicles 

(PEVs). Their tremendous social, economic, and environmental benefits have made PEVs highly 

promising alternatives to conventional automobiles powered by internal combustion engines. 

Continuing government initiatives and technological advances are expected to lead to an even 

more rapid rise in the PEV penetration in the near future. Despite the important advantages of 

PEVs, however, their integration also raises new concerns and presents a number of special 

difficulties to the power system reliability. There is in fact recognized need to address the 

challenges imposed by PEV charging loads, to study their adverse impact on overall system 

reliability, and to determine whether existing generation capacity is sufficient for accommodating 

these new types of loads with their high penetration levels and different uncertainty characteristics. 

This thesis presents a comprehensive reliability framework for incorporating different PEV 

charging load models into the evaluation of generation adequacy. The proposed framework 

comprises special treatment and innovative models to achieve an accurate determination of the 

impact of PEV load models on reliability. First, a goodness-of-fit statistical analysis determines 

the probability distribution functions (PDFs) that best reflect the main characteristics of driver 

behaviour. Second, robust and detailed stochastic methods are developed for modeling different 

charging scenarios (uncontrolled charging and charging based on TOU pricing). These models are 

based on the use of a Monte Carlo simulation in conjunction with the fitted PDFs to generate and 

assess a large number of possible scenarios while handling the uncertainties associated with driver 

behaviour, penetration levels, charging levels, battery capacities, and customer response to TOU 

pricing.  

When PEV charging loads become a significant factor in power systems and PEV charging 

times are uncontrolled, they are expected to cause a severe risk to system reliability, especially at 

higher PEV penetration and charging levels. Solutions that maintain an acceptable level of system 

reliability and ensure adequate generation capacity must therefore be found. Proposed in this thesis 

is novel reliability-based frameworks for the application of different DR programs for use with 

PEV charging loads. The proposed frameworks are in line with the recent trend toward 

investigating solutions at the demand side and exploiting the existing flexibility to help improve 
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reliability. The first framework is proposed for incorporating PEV charging loads to respond to 

dynamic critical events. The framework involves two models: the first determines the time and 

demand for critical system events, when system supply facilities are unable to meet PEV loads, 

and the second assesses the feasibility of PEV owner response to critical events. The second 

framework is proposed for designing time-of-use (TOU) schedules to mitigate the impact of 

uncontrolled PEV charging load. The proposed framework involves the use of different stochastics 

simulation models, visualization approaches, and expert rules that help to arrive at proper TOU 

schedules for PEV charging load.   
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Chapter 1 
Introduction 

1.1 Motivation 

Recent years have been marked by a dramatic increase in the use of plug-in electric vehicles 

(PEVs) worldwide. From 2010 through September 2016[1], global sales of PEVs exceeded two 

millions, with the China accounting for the largest proportion at a third of the global total, as shown 

in Figure 1.1. Norway has achieved the most successful deployment of PEV with 29% market 

share. The tendency toward PEV use is primarily the result of environmental concerns and the 

increasing fuel costs associated with conventional automobiles (i.e., powered by internal 

combustion engines). Therefore, PEVs are expected to be very promising alternatives to 

conventional automobiles, as PEVs have been proven to have tremendous social, economic, and 

environmental benefits. 

 

Figure 1.1 Global Cumulative PEVs sold 2010-2016 [1] 

The continuation of government initiatives and increases in technological developments are 

expected to lead to a rapid rise in PEV penetration. Different research organizations estimated a 

high PEV market penetration level over the next few decades. For example, the Electric Power 

Research Institute (EPRI) [2] estimated the market share of PEVs in the U.S. to become more than 

50% in 2030 and the National Renewable Energy Laboratory (NREL) [3] estimated a 50% global 

market penetration level of PEVs in 2050.   
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Despite the important advantages of PEVs, however, their integration also raises new 

concerns and presents a number of special difficulties related to the analysis of power system 

reliability. These issues arise from two main areas in which the behaviour of PEV loads is 

fundamentally different from that of conventional loads. First, a PEV charging load is 

comparatively larger than that of typical house appliances, which means that the energy consumed 

by PEVs is expected to represent a considerable draw on electrical power networks. Second, PEV 

loads involve both types of uncertainties: aleatory (i.e., the intrinsic randomness of driver 

behaviour) and epistemic (i.e., lack of knowledge about penetration levels, technological 

developments, and charging infrastructures).  

Numerous studies have explored the development of PEV charging load models and their 

implementation in relation to a variety of power system problems [4]–[12]. For example, a great 

deal of previous research was focused on investigating the implementation of PEVs into 

distribution systems with regard to short- and long-term planning problems [5]–[8]; dynamic 

performance of a power system [9]; economic and financial analyses [10] ; and electricity market 

polices and opportunities [11], [12]. Thus far, however, very little attention has been paid to the 

assessment of the effect of PEV inclusion on power system reliability, and to the adequacy of 

generating capacity in particular. There is in fact recognized need to address the challenges 

imposed by PEV charging loads, to study their adverse impact on overall system reliability, and to 

determine whether existing generation capacity is sufficient for accommodating these new types 

of loads with their high penetration levels and different uncertainty characteristics. To this end, a 

need exists to establish a comprehensive reliability framework that involves consideration of 1) 

adequate representation of the elements that characterize the charging process, 2) suitable and 

sufficient data about the relevant elements, 3) the development of an appropriate model that takes 

into account the inherent variability and randomness associated with PEV profiles, and 4) the 

creation of a robust reliability method for incorporating the significant features of PEV charging 

models with different system characteristics (e.g., inherent component failures and load variations) 

and for anticipating their impact on reliability. Such a framework would provide essential 

assistance for system planners and decision-makers so that they can properly quantify the effect of 

PEVs on system reliability, decide on the correct actions and upgrades required for their grid, and 

update their policies to accommodate PEV charging loads.  
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When PEV charging loads become a significant factor in power systems and PEV charging 

times are uncontrolled, they represent a severe risk to generation reliability, especially at higher 

PEV penetration and charging levels. Solutions that maintain an acceptable level of system 

reliability and ensure adequate generation capacity must therefore be found. The traditional efforts 

and practices directed at meeting new loads and maintain an acceptable level of system reliability 

can be seen in the addition of supply units in the generation-system side. Installing new 

conventional resources (e.g., oil, gas and coal) is not logically acceptable and conflicts with the 

idea of the use of PEV by transferring the emissions from the transportation sector to the electricity 

sector. Renewable energy sources (RES) have been pointed to as an alternative to supply the 

additional demand required for PEVs, and it seems a logical solution from an environmental 

perspective. A large and growing body of literature has thoroughly investigated the RES and 

quantified their positive and negative effects on system reliability [13]–[17]. The 

general consensus of these studies is that the contribution of the RES to improving system 

reliability is far less than that of conventional generation, because the RES is highly dependent on 

a source that is uncertain and variable and unavailable most of the time. Accordingly, increasing 

the share of RES is not yet a cost-effective solution to enhance system reliability bearing in mind 

the technical issues, inherit uncertainty, and challenges they produce.       

Recently, there has been a growing trend towards investigating solutions at the demand side and 

exploiting the existing flexibility to help improve reliability [18], [19].  This trend has, in fact, been 

reinforced and facilitated by the smart grid concept, which emphasizes the maximization of resource 

utilization through 1) appropriate infrastructure that enables information-sharing and 

communication between system service providers and end-user customers, 2) expanded intelligent 

communication and control technologies for facilitating the development and incorporation of 

demand response (DR) programs, and 3) the provision of timely information and control options to 

consumers so that they can participate and adapt their energy consumption accordingly. 

DR is defined by the Federal Energy Regulatory Commission [20] as “Changes in electricity use 

by demand-side resources from their normal consumption patterns in response to changes in the 

price of electricity, or to incentive payments designed to induce lower electricity use at times of 

high wholesale market price or when system reliability is jeopardized.” Common types of DR 

programs include time-of-use (TOU) pricing, real time pricing (RTP), and critical peak pricing 
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(CPP). These programs are acknowledged as useful for maintaining a fairly uniform load level, 

thereby avoiding or deferring the costs of new supply resources, reducing wholesale market prices, 

and operating the grid reliably and efficiently [21]. The benefits of DR programs are also extended 

to participating customers, and these benefits fall into two categories. First, financial benefits can 

be recognized throughout the bill savings and/or incentives payments received by participating 

customers who adjust their electricity demand in response to system critical events. Second, a 

proper DR program helps in reducing the likelihood and consequences of electricity disturbances 

that might decrease customer comfort and satisfaction [19], [21].   

Different DR programs have already been implemented by many North American utilities, and 

TOU programs have been in use for several years [22], [23]. To date, no previous studies have 

investigated the association between PEV owner response to TOU pricing and its effect on system 

reliability. and the following research questions require answers: 1) Are existing TOU rates 

designed for residential loads capable and efficient with regard to new PEV charging loads? 2) Does 

TOU-based billing help adjust consumer charging behaviour and mitigate adverse effects of 

uncontrolled PEV charging loads on system reliability? A primary goal of the research presented 

here was to develop a model that would address these questions. In addition, to the best of the 

author’s knowledge, no study has reported the application of dynamic DR programs (e.g., CPP) for 

use with PEV charging loads from a reliability perspective. Filling this gap is a core contribution of 

the work presented in this thesis.  

1.2 Research Objectives  

Motivated by what has been discussed in the previous section, this thesis proposes an innovative 

reliability framework for the integration of different PEV charging load models. The development 

of the proposed framework is based on clear descriptions of relevant factors, careful collection of 

necessary data, and special treatment and innovative models for ensuring an accurate 

determination of the impact on reliability. The following are the distinctive features and main 

contributions of the proposed work: 

1) For the first time, collections of probability distribution functions (PDFs) have been evaluated 

statistically in order to establish which models best reflect the main variables associated with 
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driver behaviour (e.g., arrival and departure times and daily mileage). Using theoretical PDFs 

offers several advantages [24] include: 

a) They provide a physically realistic description of the behaviour of the variable of interest 

and ultimately produce satisfactorily accurate quantiles, performance indices, and risk 

estimates. 

b) The mathematical formulas are a compact, easy, ready-to-use way of directly describing 

data relevant to driver behaviour variables. They save time and effort for planners, 

researchers, or others who wish to estimate realistic PEV charging load profiles.  

c) They can be used to extend the range of sample data to include generated values that might 

actually occur but were missed in the sample, permitting estimates of extreme events 

beyond the sample range.  

2) Novel stochastic PEV charging load simulations have been developed for use with 

uncontrolled and TOU-based strategies. To handle inherent uncertainties and generate 

multiple scenarios, the models are based on a Monte Carlo simulation (MCS) combined with 

fitted PDFs. A proposed decision tree model is coupled with the uncontrolled charging model 

to enable consideration of driver response to TOU pricing. For an accurate determination of 

the impact on reliability, both models are based on realistic estimates of factors affecting 

charging and explicitly take into account any underlying uncertainties associated with random 

variables.  

3) The effect of PEV charging characteristics on the reliability and performance of generation 

systems has been thoroughly investigated through a comprehensive study of reliability 

assessment. Also provided are a detailed discussion of and important insights into the 

behaviour of reliability indices with respect to PEV charging characteristics: driver behaviour, 

penetration levels, charging levels, battery capacities, and customer response to TOU pricing.  

4) A reliability framework is proposed for incorporating PEV charging loads with dynamic 

critical events programs. The framework involves two models: the first determines the time 

and demand for critical system events, when system supply facilities are unable to meet PEV 

loads, and the second assesses the feasibility of PEV owner response to critical events.  

5) A novel reliability based framework is proposed for designing a TOU schedule well-adapted 

to the PEV charging loads. The proposed framework involves the accomplishment of three 
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main stages. The first stage is targeted at developing different stochastic simulation models 

that can generate a large number of time series data and properly consider the random 

components failures, the stochastic nature of wind generation, and the inherent randomness in 

driving patterns and other uncertainties of PEV characteristics. In the second stage, special 

data treatments, statistical tools, expert criteria are used to arrive at a range of possible 

scenarios of TOU schedules which are then examined exclusively in the third stage to 

determine the best schedule. 

1.3 Thesis Outline  

The remainder of the thesis is organized as follows:  

Chapter 2 presents background information pertaining to power system reliability and its relevant 

aspects. This chapter also reviews the related concepts and available techniques for generating 

system adequacy assessment, and surveys the previously developed models with regard to PEV 

load and wind generation in particular.  

Chapter 3 presents statistical analysis for evaluating groups of PDFs in order to determine the 

models that best reflect the main characteristics of driver behaviour. 

Chapter 4 introduces the methodology of the proposed reliability assessment framework for 

establishing the effect of PEV charging loads under uncontrolled and TOU-based strategies. 

Chapter 5 explains the methodology for applying a dynamic DR program with PEV charging loads 

and shows the effectiveness of the proposed framework with respect to improving system 

reliability using several case studies. 

Chapter 6 introduces the methodology of the proposed reliability framework for designing efficient 

TOU schedules for PEV charging load. 

Chapter 7 presents the thesis summary, conclusion and suggested future work.  
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Chapter 2 
Background and Literature Review 

2.1 Introduction 

In Chapter 1, the motivations and research objectives of the presented work have been discussed, 

whereas this chapter is dedicated to reviewing the related concepts and the available techniques of 

generating system adequacy assessment in general, and surveys the previously developed models 

with regard to plug-in electric vehicle (PEV) charging load and wind generation in particular. This 

chapter is divided into four main parts. The first part reviews the general aspects of power system 

reliability, covering its scientific definitions as well as main types and categories. The second part 

summarizes the basic concepts and the related aspects of the generating system adequacy 

assessment, including the adequacy problem statement, and detailed descriptions of the elements 

involved and the most common probabilistic techniques. The third part discusses the issues 

imposed with the inclusion of PEV loads into the adequacy assessment of generating systems. This 

part of the chapter also reviews the methods proposed in the literature to incorporate PEV loads 

into reliability assessment. The final part provides an examination of the generation adequacy 

problem when wind generation is integrated.  

2.2 Power System Reliability Evolution  

One of the main objectives of modern electrical power system utilities is to provide their customers 

with reliable electrical energy at an acceptable cost. Achieving this goal is a significant concern 

for all parties associated with modern power systems: generation, transmission and distribution 

companies, individual operators, and end users. With respect to power systems, reliability is the 

term used for denoting the measure of the overall system ability to meet customers’ electrical 

energy needs [25]. According to the North American Electric Reliability Corporation (NERC), 

power system reliability can be defined as “the ability to meet the electricity needs of end-use 

customers, even when unexpected equipment failures or other conditions reduce the amount of 

available power supply” [26]. 

 Power system reliability is typically viewed as having two aspects: system adequacy and 

system security [27], [28]. System adequacy can be defined as the existence of sufficient facilities 
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within a power system to meet the load requirements without the violation of steady-state limits. 

System adequacy refers to static conditions rather than dynamic or transient system disturbances, 

and is normally associated with the reliability assessment of system planning over the long term, 

which can range from a year to several years. System security, however, signifies the ability of the 

system to withstand sudden disturbances, such as voltage instability situations or the unanticipated 

sudden loss of system elements. System security is therefore associated with dynamic or 

operational measures over a short-term timeframe of a few minutes to an hour.  

Because modern power systems are very large, complex, highly integrated networks, 

evaluating the reliability of an entire power system is difficult, if not impossible [27]. For this 

reason, experts in the field of power system reliability have traditionally divided a power system 

into three functional zones (generation, transmission, and distribution) in order to provide a 

succinct means of identifying which part of the power system is under analysis. These three 

functional zones can be organized into three hierarchical levels, as shown in Figure 2.1.  

 

 

Figure 2.1 Reliability assessment hierarchical levels [27] 

At hierarchical level I (HL-I), reliability evaluation usually pertains to the adequacy of 

generating capacity, with the only concern being an examination of the ability of the system to 

meet the aggregated system load. At this level, transmission and distribution systems are 
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disregarded from the reliability study; these systems are assumed to have 100% reliability. 

Adequacy evaluation at hierarchical level II (HL-II) includes both generation and transmission 

facilities and normally pertains to the evaluation of the reliability of the composite system, or bulk 

power system. At this level, adequacy evaluation becomes an assessment of the integrated ability 

of the generation and transmission systems to deliver energy to the load points. The last level 

indicates an overall assessment that includes consideration of all three functional segments and is 

identified as hierarchical level III (HL-III). Adequacy evaluation at HL-III, which includes all three 

functional zones simultaneously, is quite difficult to conduct in a practical system due to the 

computational complexity and large-scale modeling involved. Reliability analysis at this level is 

therefore usually performed separately in the distribution functional zone, using the results of HL-

II as input.  

The presented research work is devoted to the aspect of adequacy assessment of power 

generating systems (HL-I) incorporating PEV and wind energy recourses. 

2.3 Generation Adequacy Assessment HL-I  

Generation adequacy assessment is an important aspect in the power system planning and design 

to make sure that sufficient resources are available to meet the expected demand plus required 

reserves. The main purpose of the adequacy assessment is to provide useful information to the 

system planners and the authorities to decide on and advice for new investment plans. With the 

expected rapidly increase in power demand in addition to the stochastic nature inherent in power 

systems (variability and uncertainty of renewable energy sources, components failures, and load 

variations), it becomes extremely important to evaluate the existing facilities and ensure the 

required degree of system reliability and continuity of service. 

The adequacy of the generating capacity can be assessed with the use of either deterministic 

or probabilistic approaches [29], [30]. Deterministic techniques were used early on practical 

applications, and some power system utilities are still dependent on these techniques. With 

deterministic techniques, the estimation of the reserve required for maintaining an acceptable level 

of system reliability is dependent on the past experience and the expert judgment. These techniques 

seek the best installed supply capacity considering a fixed percentage reserve such as affixed 
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reserve equal to the largest generating unit, a fixed percentage of the total installed capacity or the 

peak load, or a mix of these. 

These techniques thus fail to take into account the stochastic nature of the behaviour of power 

systems that result from component failures or variations in demand. In the past, a number of 

factors, such as lack of reliability data and computational resources, created a preference for the 

use of deterministic techniques [25]. However, with the availability of applicable reliability data 

and advancements in computational technologies, these factors no longer apply, and logic now 

dictates the use of probabilistic techniques, which can include consideration of the stochastic 

nature inherent in renewable energy resources, component failures, and load variations and result 

in accurate estimations of risk reliability [29] .  

Most probabilistic techniques developed for the evaluation of generating capacity can be 

categorized into two general types: analytical and Monte Carlo Simulation (MCS) [29], [31]. An 

analytical technique relies on basic mathematical models as representations of system elements 

and then produces system reliability indices using direct numerical solutions. MCS methods, on 

the other hand, estimate reliability indices using simulations of the actual process and random 

behaviour of the system. MCS techniques are further classified into two types: non-sequential and 

sequential. In non-sequential techniques, the system states for all components are sampled, and 

each time point is considered independently without the chronological time being taken into 

account. In contrast, as a means of creating the complete system operating cycle, sequential 

techniques include consideration of chronology so that the operating cycles of all components can 

be simulated and combined. 

 Each method has advantages and disadvantages, so the appropriate method is determined 

based primarily on the type of evaluation desired as well as the nature of the problem. The main 

procedures in the development of a model for assessing generating capacity adequacy, with 

reference to three of the most common probabilistic techniques, are presented in [30]. Also 

presented in [30] is a comparison of these techniques from different perspectives based on their 

application in two well-known test systems. In general, all of these methods are effective and 

efficient for evaluating the adequacy of conventional generating capacity. However, the following 

important points should be noted: 
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1- The analytical technique is very efficient since it requires a much shorter computational 

time than the MCS techniques; especially for the cases when conventional units are 

represented by only 2-states and when the system is relatively small. 

2- The analytical method, however, is inappropriate for a complicated or large system, usually 

represented by multistate units, where variable energy sources such as wind and solar 

generation are included, necessitating further approximations.  

3- Unlike the analytical method, MCS methods are unlikely to provide exact results because 

of their dependence on a random number generator. 

4- In MCS methods, a small number of samples cannot guarantee accurate results, and the 

number of samples should therefore be well defined, a factor usually controlled by stopping 

criteria. 

5- Compared to those of other techniques, the procedures involved in the non-sequential MCS 

method are very simple and straightforward.  

6- The non-sequential MCS method offers no notable benefits over the analytical method, 

since it requires relatively lengthy computational time.    

7- The non-sequential MCS method and the analytical method are characterized by the same 

weakness: failure to include consideration of the chronology in the representation of the 

nature of the generation and load, which means that neither the frequency and the duration 

indices nor the interruption indices can be computed. 

8- The sequential MCS method includes recognition of the chronology of events and the 

stochastic behaviour of the system elements, so it provides additional data about the 

behaviour of a system, such as time-based indices (frequency and duration indices) and 

their probability distributions. 

9- The features offered by sequential MCS method are essential for evaluating a power system 

that includes non-conventional resources such as wind, solar, and PEV, which are time-

dependent and correlated. 

10- The only disadvantage of the sequential MCS method is the need for longer computational 

time than with other methods.  

However, rapid advancements in computer technologies have, to a large extent, eliminated 

this drawback and made the use of sequential MCS method practical and viable. In addition, since 
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generation adequacy assessment problem is a long term planning problem (e.g. off-line problem) 

that is usually performed several years ahead, an accurate model is much desired while the 

computational time is less significant. Therefore, the sequential MCS technique has been 

employed in this research work owing to its remarkable features.  

2.4 Background Information about PEV Load Characteristics 

Currently, there are two main types of PEVs available in the market [32], as follows:  

 Plug-in hybrid electric vehicles (PHEV): These vehicles are known bi-fuel vehicles that have 

the same characteristics as conventional (i.e., powered by internal combustion) cars, with the 

addition of battery storage systems that can be recharged from an external electricity supply. 

 All-electric or battery electric vehicles (BEV): These vehicles run solely by using battery 

storage systems to supply an electrical motor, without the use of an internal combustion engine.   

With respect to the estimated PEV charging load and its impact on different power 

applications, a variety of criteria and techniques have recently been showcased in numerous 

publications [4], [33]. Developing realistic PEV load profiles requires reliable estimates of a 

number of key factors, namely: the amount, place, and time of charge. Estimating these factors, 

however, is challenging, since none of the available data is precise, and therefore cannot be relied 

on. These factors and related aspects are summarized in Figure 2.2 and discussed in detail in the 

following subsections.  

 

Figure 2.2 Factors involved in developing the PEV charging load 
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2.4.1 The Amount of Consumed Energy 

The energy required by a PEV is highly dependent on a number of key considerations, including 

charging equipment characteristics, battery specifications, and driving patterns. Charging 

equipment denotes the rate of electric power at which PEV batteries are charged. For example, the 

Society of Automotive Engineers (SAE) in North America has proposed a set of charging 

standards for PEV, known as the J1772 standard. Table 2.1 provides an overview of the types of 

PEV chargers according to the J1772 standard.  

Table 2.1 Charging levels based on the SAE J1772 standard [32] 

Type 
Voltage Current Power 

Possible Use 
V A kW 

Level 1 120 12/16 1.3/1.9 Residential and workplace charging 

Level 2 208/240 30/80 6.24/19.2 
Residential, workplace, and other public 

charging facilities (e.g., shopping centers, city 
parking lots, airports, hotels, etc.) 

Level 3 Up to 600 Up to 200 50/150 Fast charging stations 
 

The energy consumed by PEVs differs from one type to another according to their battery 

capacities and electric range in miles. Various models of PEVs offered by different brands are 

currently available in the market today, and they are different in terms of size, design, price, and 

powertrains in order to satisfy various consumer preferences.  

Driving behaviours (e.g., daily travel mileages for each vehicle) differ from one driver to 

another. It is illogical to assume that all PEV travel the same daily distance and hence that they 

consume the same energy. Transportation survey data for the USA [34] offers very useful 

information about individual driving patterns. This kind of information helps in capturing real-life 

scenarios and provides a more realistic estimation for PEV charging profiles.  

2.4.2 The Place of Charge 

PEV charging infrastructure is an important aspect that determine the allocation of PEV demand 

for a given day. From the practical point of view, home is the most dominant place for charging, 

although some governments have been attempting to install a number of public charging facilities. 

The PEV owners’ survey results reported in [35] reveal that more than 80% of PEV owners charge 
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their vehicles at home. Where people prefer to charge their PEV is a question that has been 

answered by a large number of drivers (PEV owners and not owners) in several surveys in different 

countries [36]. The majority of respondents preferred to charge at home over public charging 

locations such as charging stations, work parking lots, or shopping parking lots. There are several 

possible explanations for this. One is that homes are considered the main place where people’s 

vehicles are available and parked most of the time. So, the easy accessibility and convenience of 

home charging carries a strong appeal for PEV owners. Second is that a lack of awareness of public 

charging infrastructure due to its limited availability.  

It is still to be determined which charging infrastructure is the best to support PEV deployment 

in a beneficial way for all associated parties. However, home charging infrastructure, compared 

with other public charging infrastructure, appears to be more consistent with the preference of 

most PEV drivers, suggesting that PEV policies should prioritize home charging access over public 

charging deployment. Nevertheless, improving the accessibility and viability of public charging 

facilities is crucially important, since some drivers might not have access to home charging or have 

short battery ranges that also require charging when away from home.  

2.4.3 The Time of Charge 

Time of charging is one of the essential elements in the determination of PEV charging profiles. 

In the literature, the time of charge is usually determined upon the charging schemes, which are 

mainly categorized into three types [37], [38]: uncontrolled, indirect controlled, and direct 

controlled. Further details of these types are discussed in the following: 

Uncontrolled charging (UC): This is when decisions about charging are completely up to the 

PEV owners, and hence they can, without any restrictions, charge their PEVs at any time they 

choose. Studies are widely available in the literature that involve modeling UC using deterministic 

recharging schedules in which all PEVs are charged at predefined times (usually overnight) and 

left until fully charged. However, these models do not reflect the real world, where charging can 

occur at any time during the day, depending on the driver behaviour. Alternatively, other studies 

have used the arrival times at parking locations from transportation data in order to estimate the 

UC.  Due to the lack of real data pertaining to the driving patterns of PEV, the transportation survey 

data for conventional vehicles are acknowledged as a good source to obtain useful information in 
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regard to driving patterns, such as arrival and departure times, number and length of trips, and 

parking locations.  
 
Indirect controlled charging (ICC): This scenario is similar to the previous one in that PEV 

owners can charge their vehicles as they choose. However, the incentives for indirect demand-side 

management activities may create a certain level of control over time of charging, prompting PEV 

owners to adjust their charging behaviour accordingly. With respect to the responses of PEV 

owners to time-of-use (TOU) electricity pricing, for example, it is assumed that PEV users arriving 

at on-peak and mid-peak hours will wait until the start time of an off-peak period. The idea of these 

management polices is to encourage consumers to shift their loads toward off-peak periods, where 

the cost is lower.  

Controlled charging (CC): This scenario envisions an active management system in which PEV 

charging loads are solely controlled and managed by the service providers or an aggregator entity. 

Therefore, the time of charge is determined by the aggregator entity in a way that benefits and 

satisfies all associated parties taking into account the PEV owners’ needs and the system’s 

requirements. The PEV charging load will likely take place during the “valley hours” in order to 

avoid system overload, excessive voltage drops, and the huge investment required for system 

reinforcements or expansions. This context is extended to what is called “smart charging”, which 

relies on a two-way communication infrastructure in a smart grid paradigm. The smart charging 

strategy enables bidirectional power flow between the PEV and the power grid (i.e., the V2G 

concept), where PEV can be discharged to provide ancillary services to the grid.  

2.5 Inclusion of PEV Models into the Evaluation of Generation Adequacy  

 With respect to the estimated electric vehicle charging load and its impact on different power 

applications, a variety of criteria and techniques have recently been showcased in numerous 

publications [4]–[12]. For example, a large and growing body of literature was focused on 

exploring the impact of PEVs on distribution systems with regard to short- and long-term planning 

problems [5]–[8]; dynamic performance of a power system [5]–[8]; economic and financial 

analyses [10]; and electricity market polices and opportunities [11], [12]. However, the literature 

contains insufficient research related to assessing the impact of PEVs on power system reliability 

in general and on generating system adequacy in particular. Although some recent studies have 
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produced very useful findings, most have involved gauging the impact at the power system 

distribution level. For example, the reliability performance of residential distribution systems that 

incorporate PEVs was discussed in [39], and the work presented in [40] evaluated the reliability of 

an urban distribution system in China, where a PEV charging load is considered interruptible. In 

[41], [42], reliability assessment at the distribution level was extended to include varied operation 

modes: vehicle-to-home (V2H) and vehicle-to-grid (V2G). An analytical approach was used in [43] 

for examining the reliability of distribution systems when an electric vehicle (EV) charging load is 

modeled to include consideration of the battery exchange mode. The authors of [39]–[43] focused 

on the assessment of a PEV load in a distribution system as a separate entity and assumed that the 

main supply facilities have unlimited capacity, or 100 % reliability. The focus has therefore not 

been on evaluating the supply-demand balance of a system, but rather on assessing distribution 

system facilities with respect to distributing the energy received from the bulk system to end users 

while maintaining acceptable levels of service continuity. 

Few studies have been targeted at an equally important and related problem: assessing and 

determining whether existed generation facilities are sufficient for reliably accommodating PEV 

charging loads, with their different characteristics and associated uncertainties. Often called 

generation adequacy assessment, this problem represents an important component of power system 

planning and design. This crucial assessment provides system planners and authorities with the 

information they need in order to decide on new investment plans, system reserve margins, 

maintenance scheduling, and competitive markets [28], [44]. In line with the scope of this thesis, 

special attention has been paid to reviewing the literature pertaining to the adequacy assessment of 

generating systems that incorporate PEV charging loads. The authors of [45] investigated the 

potential impact of PEVs on the U.S. electricity supply. However, in the development of their PEV 

model, they relied on unrealistic assumptions and ignored important factors; for example, they 

assumed that all PEVs were driven 20 miles/day, consumed all of the energy in the batteries, and 

were charged simultaneously at an arbitrary start time. The study reported in [46] involved an 

investigation of PEV enhancement of power system reliability when wind energy resources were 

incorporated. In [47], a bidirectional charging power control model was introduced; it was 

developed to manage the power balance between generation and load, thereby reducing or 

eliminating generation shortages. The studies presented in [45]–[47] failed to include consideration 
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of key factors that significantly influence PEV charging profiles: random variables pertinent to 

driver behaviour, such as daily mileage and arrival and departure times, the diversity of battery 

specifications, PEV market shares, and the uncertainties associated with these factors. The study 

presented in [48] was focused on estimating the EV impact on reliability when charging stations 

are operated based on battery swapping. The concept of battery swapping has received less attention 

in the U.S. and Europe than the plug-in mode due to its technical and economic limitations.  

The authors of [49] developed a PEV charging load model as a means of evaluating the reliability 

of the U.S. Northwest Power Pool area for a variety of PEV penetration levels, and then, in [50], 

reported their estimate of the extension of generation facilities required. The work published in [51] 

described an analytical approach for assessing the reliability of a power system integrated with 

PEVs under different charging scenarios. Compared to previous research, the studies presented in 

[49]–[51] provided important findings because they involved the use of sample data from 

transportation sectors in order to incorporate varied daily mileages and arrival times as random 

variables and to develop PEV charging load accordingly. Even these approaches, however, were 

based on oversimplified assumptions and have limitations in common with previous studies; for 

example, small batteries with a fixed electric range are assumed for all PEVs and are considered to 

be charged to full capacity regardless of the randomness of driver stay-at-home habits. In addition 

to the lack of adequate representation of relevant PEV charging features, the manner of modeling 

uncontrolled PEV charging in a reliability analysis also involves oversimplifications and tends to 

be deterministic: only one charging scenario is developed, which is assumed to be constant over the 

reliability assessment time horizon (typically one year). This treatment of the problem is unrealistic, 

since current PEV load characteristics are highly uncertain because of the inherent variations in 

driving patterns and the randomness of PEV profiles (penetration levels, market shares, battery 

specifications, charging levels, etc.). 

Based on the above discussion, it can be observed that, in previous models, several important 

aspects of PEV charging loads were either largely ignored or represented in an excessively 

simplified manner. In reliability analysis, the compound effects of ignoring these factors and their 

related uncertainty and variability are non-trivial. They can significantly affect the accuracy and 

validity of results, leading to inaccurate determinations of the actual PEV impact. For these 

reasons, there is crucial need for robust stochastic techniques that include effective consideration 
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of the input variables associated with PEV charging characteristics and that explicitly take into 

account the underlying uncertainties connected with these variables.  

When PEV charging loads become a significant factor in power systems and PEV charging times 

are uncontrolled, they represent a severe risk to generation reliability, especially at higher PEV 

penetration and charging levels. Solutions that maintain an acceptable level of system reliability 

and ensure adequate generation capacity must therefore be found. The traditional option for 

maintaining an acceptable level of system reliability is to expand power supply facilities to meet 

the required load, with some critical circumstances requiring power utilities to enact load 

curtailment. Modern electric utilities have recently directed increased attention at exploiting the 

flexibility in existing system demand by promoting load side management programs so that energy 

consumption management benefits and satisfies all associated parties [18], [19].  These tend, in fact, 

have been reinforced and facilitated by the notion of the smart grid, which has been envisioned to 

meet a wide range of objectives that include: 1) maximizing asset utilization and automating control 

actions to deliver high quality electricity service and enhanced system reliability; 2) activating 

customer participation by developing intelligent communication and control technologies and 

deploying varied demand response (DR) programs. Achieving these objective rests on overcoming 

a number of the special challenges and difficulties these changes produce in power systems. 

Therefore, addressing these challenges represents a major area of interest for academic and 

industrial researches. 

The basic idea of DR programs is to encourage and incentivize the end users to reduce their 

consumptions when the system is stressed or when system reliability is threatened. Many DR 

programs have therefore already been implemented by several utilities around the world, and some 

are under pilot study. Common types of DR programs include time-of-use (TOU) pricing, real 

time pricing (RTP), and critical peak pricing (CPP). These programs are acknowledged as useful 

for maintaining a fairly uniform load level, thereby avoiding or deferring the costs of new supply 

resources, reducing wholesale market prices, and operating the grid reliably and efficiently. The 

benefits of DR programs are also extended to participating customers, and these benefits fall into 

two categories. First, financial benefits can be recognized throughout the bill savings and/or 

incentives payments received by participating customers who adjust their electricity demand in 

response to system critical events. Second, a proper DR program helps in reducing the likelihood 
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and consequences of electricity disturbances that might decrease customer comfort and satisfaction 

[19], [21]. 

Different DR programs have already been implemented by many North American utilities, and 

TOU programs have been in use for several years. For example, in Canada's most populous 

province, the Ontario Energy Board launched static TOU rates in 2006, and now most residential 

and small business charges are based on these rates [22]. The basic TOU concept is to divide the 

day into annual static time periods (usually 3 periods for summer and winter weekdays) and to 

provide customers with the rate for each period months in advance (usually one or two annual 

announcements). To date, no previous studies have investigated the association between PEV 

owner response to TOU pricing and its effect on system reliability, and the following research 

questions require answers: 1) Are existing TOU rates designed for residential loads capable and 

efficient with regard to new PEV charging loads? 2) Does TOU-based billing help adjust consumer 

charging behaviour and mitigate adverse effects of uncontrolled PEV charging loads on system 

reliability? A primary goal of the research presented here was to develop a model that would address 

these questions. 

Recent notable innovative dynamic DR programs include 1) CPP, whereby participating 

customers pay much higher prices during critical hours (e.g., in cases of severe stress on the grid 

or high market prices) and pay regular rates during other hours, and 2) peak time repeat (PTR) 

programs, whereby participating customers are paid for load reductions during critical events that 

occur for a limited number of hours or days per year (usually not exceeding 100 h/year, or 1 % of 

the year), and about which they receive only short notice [21]. A few studies have focused on the 

application of these DR programs. For example, in 2006, the authors of [52] studied the automated 

critical peak test field in California with the goal of evaluating how CPP automation could increase 

participation rates and load-saving efficiency. The study presented in [53] investigated the optimal 

scheduling of CPP events with the integration of wind energy sales into the day-ahead market. To 

the best of the author’s knowledge, no study has reported the application of dynamic DR programs 

for use with PEV charging loads from a reliability perspective. Filling this gap is a core 

contribution of the work presented in this thesis.  
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2.6 Inclusion of Wind Generation Models into the Evaluation of Generation Adequacy 

Recent decades have seen a dramatic increase in the utilization of renewable energy resources by 

power utilities around the world. Of these resources, wind energy is a proven source of power 

generation with positive global, social, economic, and environmental benefits. Today, wind energy 

has become a mature, abundant, and emission-free power generation technology, with a significant 

percentage of electrical power demand being supplied by wind farms. However, wind generation 

is dependent on wind speed, which is difficult to predict with a high degree of accuracy. The 

intermittent nature of wind generation makes its operation and planning a complex problem. One 

impediment to the increased use of wind generation is linked to reliability assessment: a recognized 

ongoing need to study the contribution of wind generation to overall system reliability and to 

ensure the adequacy of generation capacity. 

With respect to the evaluation of the reliability of power systems that incorporate wind 

energy, a variety of criteria and techniques have been developed over almost thirty years [14]–

[16], [54]. A survey of the literature reveals that, with respect to reliability assessment, 

probabilistic techniques (analytical and simulation) are the most commonly acknowledged means 

of modeling wind generation. Most models developed for including wind generation capacity in 

adequacy assessment analysis can usually be classified based on two types of representation: 1) 

multi-state models or 2) time series models. In the former, a wind farm is treated as a conventional 

unit with multiple states (either fully rated or failed, or potential derated states), and is integrated 

with conventional units using an analytical technique or a non-sequential Monte Carlo simulation 

(MCS) technique [55]–[57]. However, these models and techniques are characterized by two main 

disadvantages. First, the chronological characteristics of wind speed cannot be taken into account, 

which means that some time-based indices (frequency and duration) cannot be accurately 

evaluated. Second, the inaccuracy and complexity associated with the discretization process make 

developing an accurate wind farm model very difficult. Instead, time series models are 

acknowledged as more useful for representing wind generation because of their essential feature 

of preserving the chronological variability associated with wind, which facilitates the integration 

of wind generation into the sequential MCS process used for conventional generation [13], [17]. 

This type of model in fact reinforces the major advantages of a sequential MCS method, which 

can comprehensively evaluate power system reliability and provide a wider range of indices than 
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do analytical or non-sequential MCS approaches. However, it also requires significantly greater 

computing time and effort and involves more complex procedures. Recent rapid advancements in 

computer technology have somewhat dispelled this drawback and have made the use of simulation 

methods both practical and viable. 

To accurately capture the stochastic nature and random behaviour of wind at a particular site, 

modeling wind generation for reliability assessment requires extensive historical wind 

speed/power measurements. However, in the face of the unavailability of sufficient data, reliable 

stochastic wind simulation techniques are called for. In recent years, owing to their ability to 

represent the chronological variability and stochastic nature of the wind, considerable research has 

been directed at time series wind speed/power simulation models. The literature describes two 

categories of proposed stochastic wind simulation models: stochastic wind speed models and 

stochastic wind power models [58]. The former are based on wind speed measurements, while the 

latter are developed from wind power measurements, as outlined in Figure 2.3.  

Stochastic simulation wind
power model

Wind speed measurements

Stochastic simulation wind
speed model

Transformation through a wind turbine power curve

Large amount of wind
speed data

Small amount of wind
speed data

Desired wind power time series
 

Figure 2.3 Classifications of stochastic wind simulation models 

Considerable work has been conducted on the development of wind speed models, including 

autoregressive moving average (ARMA) models [58], [59] and Markov chain Monte Carlo 

(MCMC) models [60]–[65]. When the wind speed is between the cut-in and rated values, any error 

in wind speed modeling is increased by a cubic factor for the corresponding wind power. This 
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drawback can be addressed if the measured wind speed data are first transformed to wind power 

data. 

A reliability research group at the University of Saskatchewan developed a time series model 

for the evaluation of wind power reliability based on the ARMA model [59]. They considered 

different orders of the ARMA model in order to determine the optimal fit between the simulated 

wind speed time series and the measured wind data. The ARMA model is further enhanced 

incorporating the hourly mean and standard deviation of wind data over a long period of time (a 

37 years database). They concluded that the wind speed data simulated by their developed ARMA 

time series model satisfied basic statistical tests, such as those related to hourly autocorrelation, 

seasonal characteristics, and diurnal distribution of wind speed, and that it thus could be used as a 

suitable time series model for integrating wind into the reliability evaluation of generating systems. 

In fact, this model is now used extensively for incorporating wind generation into the adequacy 

assessment of generating systems. In [17], the authors compared adequacy indices of generating 

capacity using five wind speed models: Mean Observed, ARMA, Moving Average, Normal 

Distribution, and Markov. The results show that the ARMA model can provide a more 

comprehensive representation of the actual wind regime than the other wind speed models and that 

it is the most suitable for use in a sequential simulation process. However, ARMA models cannot 

guarantee an optimal fit for the probability distribution function (PDF) of the simulated time series, 

as discussed in [61]. The process for obtaining the proper ARMA model involves high complexity 

for estimating coefficients, order and parameters, and should be done carefully for each wind site 

[55].The work reported in [58] also revealed that the direct application of ARMA models for 

building stochastic wind power models is infeasible, since the nature of wind power generation is 

non-stationary, non-Gaussian, and random. 

Alternatively, Considerable work in the literature has widely studied the application of 

MCMC in developing a stochastic time series using either wind speed or wind power data. A 

Markov chain represents a system of elements that move from one state to another over time. In a 

Markov chain process, the probability of a given state at a given instant can be deduced from 

information about the preceding state [61]. The transition matrices in a Markov chain mimic the 

pattern of the hourly changes in historical wind data so that the simulated wind data track that 

pattern. 
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Early models based on MCMC were subject to practical shortcomings, such as the imperfect 

preservation of autocorrelation characteristics as well as the inaccuracy and complexity associated 

with the discretization process. However, a number of published studies have been undertaken in 

order to eliminate these drawbacks and improve the efficiency of MCMC models. The study 

presented in [60] used the first-order and second-order schemes of a Markov chain model as a 

means of simulating synthetic wind speed data; the authors concluded that a higher-order Markov 

chain scheme can provide slightly enhanced results. The effect of the choice of Markov chain states 

was also examined in [62]. The results revealed that increasing the dimensions of the Markov 

model provides more accurate results. In [61], synthetic wind speed was compared with synthetic 

wind power using an MCMC model. The results show that the development of a synthetic wind 

power model from data measured directly in the power domain is more accurate and provides an 

excellent fit for both probability distribution and chronological correlation.  

To further improve the MCMC model, the authors of [63] suggested enhancing probability 

distribution and chronological correlation by representing monthly variations through the use of a 

transition Markov chain matrix for each month. The study presented in [64] investigates the 

application of a seasonal simulation for the synthetic generation of wind speed data using MCMC 

technique with only one month of data from each season. The authors of [64] conclude that only 

one month of data was sufficient to reproduce most of the general statistical characteristics for the 

related season implying that MCMC model can be efficient for completing missing data. In [65], 

two improvements on traditional MCMC method are introduced. The first one is a new state 

discretization process while the second improvement based on the empirical distribution of each 

state. A comparison result reveals that the improved method overperforms the traditional method. 

Although MCMC models are widely used to generate wind speed/power time series, the 

application of MCMC models for use with a wind power time series in the assessment of the 

adequacy of generating capacity is very limited. This is might be due to the fact that MCMC 

models still have some shortcomings that would significantly affect time-based applications, 

which depend greatly on the accuracy of the simulated wind time series. The main shortcomings 

are the imperfect preservation of correlation characteristics with system load as well as the 

inaccuracy and complexity associated with the discretization process. In this thesis, these 
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shortcomings are addressed when incorporating wind farm modeling into the conventional 

evaluation of generation adequacy. 

2.7 Summary 

This chapter first provided a review of the reliability assessment of power systems, including the 

standard definitions and different hierarchical levels. As a focus of the thesis, the related models, 

and commonly used techniques for generation adequacy assessment HL-I are discussed. This 

chapter also presented background information about PEV types, PEV load characteristics, and 

associated uncertainties. This was followed by a discussion on the existing work with regard to the 

reliability assessment of power generation systems that include PEV load. The last part of the 

chapter discussed the generation adequacy problem when wind generation is integrated, and also 

surveyed the models most-used in the literature to assess the reliability of wind generation 

capacity. 
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Chapter 3 
Statistical Models for the Variables of the PEV Driver Behaviour Using 

Goodness of Fit Analysis 

3.1 Introduction  

Preceding chapter provided an overview of power system reliability in general, and emphasized 

the essential concepts of generating system adequacy assessment for HL-I. In addition, it reviewed 

the general information on plug-in electric vehicles (PEVs) and highlighted the existing work with 

regard to the adequacy assessment problem that include PEV load and wind generation. This 

chapter focuses on an innovative feature of the proposed work for modelling PEV charging load 

for use in many power system applications: the use of statistical analysis for evaluating groups of 

probability distribution functions PDFs in order to determine the model that best reflects the main 

characteristics of driver behaviour (e.g., home arrival and departure times and daily mileage).  

Developing PEV charging load profiles for use in many power system applications requires 

reliable estimates of a number of random variables that characterize the charging process. Among 

these variables are the variables relevant to the driver behaviour. Determining reliable estimates of 

these variables is challenging, since no currently available sufficient real data that can be relied 

upon for precise descriptions of these variables. With respect to this topic, the literature are 

classified into three categories. Earlier studies that model PEV charging load for different power 

system problems either largely ignored the random variables pertinent to driver behaviour or else 

represented them in an excessively simplified manner [45], [46], [66]. For example, the study 

presented in [66] was based on the assumption that all PEVs were driven 30 mi/d, consumed all of 

the energy in the batteries, and were charged simultaneously at an arbitrary start time. Implementing 

these assumptions for modelling the PEV load will produce considerable errors in determining the 

actual PEV impact. Some other studies [4], [49], [50] involved the use of sample data extracted 

from the available transportation mobility data in order to incorporate varied daily mileages and 

arrival and departure times as random variables and to develop PEV charging load accordingly. The 

use of the sample data has two main limitations: 1) the accuracy of these studies is primarily based 

on the availability of large sample sizes which may not be accessible, and 2) the direct use of the 

sample data is implicitly based on the assumption that no values beyond the sample data can occur, 
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which is unreasonable for many real-life situations. Alternatively, some recent studies [51], [67] 

fitted a theoretical PDFs to the sample data to describe the intrinsic randomness of driver behaviour 

variables and then generate the desired synthetic data from the fitted PDFs. The authors in [51] 

assumed Normal PDF for the arrival time and Lognormal PDF for daily travel mileage, while the 

authors in [67] assumed Chi-square PDF for the arrival and departure times and truncated power 

law PDF for daily travel mileage. There are, however, two main observations in many previous 

studies that use the theoretical PDFs. First, having no general consensus about certain PDF to be 

used for representing a certain variable can ultimately lead to contradictory findings. Second, most 

of these studies were built based on assumed PDFs (without providing statistical validation for this 

assumption); thus, the assumed PDFs may not accurately describe the behaviour of the variable of 

interest and ultimately not produce accurate quantiles, performance indices, and risk estimates 

[24].      

Based on the above discussion, there is a crucial need for conducting a statistical evaluation 

study among a wide range of available theoretical PDFs in order to find the best model to reflect 

the random characteristics of each driver behaviour variable. Addressing this need is a core 

contribution of the work presented in this chapter. The presented work appears to be the first study 

to compare the performance of different statistical PDFs for preserving different variables of driver 

behaviour. 

3.2 Proposed Methodology  

Figure 3.1 shows the general procedures for the conducted statistical evaluation study. The 

details of the proposed procedures are discussed next.  

3.2.1 Data Collection and Preprocessing  

The U.S. National Household Travel Survey (NHTS) is used, since it is considered the most 

comprehensive reference for transportation data [34]. The NHTS offers highly useful information 

about individual driving patterns (e.g., arrival and departure times, number and length of trips, and 

parking locations). This survey encompassed 1,048,576 usable households and 309,164 vehicles. 

The data were filtered to include only four classes of vehicles: passenger cars (light, compact, 

medium, heavy); sport utility vehicles; pickup trucks; and vans. Hence, the resulting data group 
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comprises approximately 350,000 usable households and 150,000 vehicles. The data pertaining to 

home arrival time, home departure time, and daily travel mileage of the selected classes were 

processed for the statistical evaluation study. 

 
Figure 3.1 Layout for the statistical evaluation study 

Figure 3.2 shows the important features need to be extracted from the NHTS, and explains the way 

of treating these features to obtain samples pertinent to the involved diver behaviour variables.    

3.2.1 Theoretical Distribution Types 

In this research, a selection of twelve different PDFs is used to examine their goodness of fit 

with the observed samples of different driver behaviour variables. Some of these PDFs have been 

used in previous studies for modelling driver behaviour characteristics (i.e., normal, lognormal, 

and chi-square), and others which are commonly used in different fields may have the potential to 

become the underlying distribution models for the variables of driver behaviour. Table 3.1 presents 

the PDFs of the selected distributions along with their equations and parameters. Further details 

are discussed in [68], [69]. 
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National Household Travel Survey (NHTS) 

Include the relevant features: 
#1: Household ID       #6: Trip  mileages 
#2: Vehicles ID          #7: Trip  start times 
#3: Vehicles types      #8: Trip  end times
#4: Number of trips    #9: Type of starting place (where from)
#5: day types              #10:Type of destination (where to)

Data Cleaning and Filtering: 
Exclude irrelevant data for vehicles (e.g., Motorcycle, 
bicycle, and public Transit vehicles)
Remove duplicated trips  
Remove outliers 

Start 

Count total  number of vehicles (NV)

v = 1: NV 

Count total  number of trips (tr) for each vehicle 
(NT)

tr = 1:NT

tr =1

#1: Household ID
#2: Vehicles ID

#4: Number of trips

Record First Departure 
Time (FDT)

#7: Trip start times

tr =NT

Accumulate Daily Driven 
Mileages (DDM)  

  #6: Trip  mileages

Record Last Arrival Time 
(LAT)

 #10:Type of destination 
(where to)

tr = tr + 1

Home?

v = v + 1

 #8: Trip end times

v = NV 

Yes

Yes

Yes

Yes
End

No

Yes/No

No

No

 
Figure 3.2 General procedures data collection and preprocessing    
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Table 3.1 Probability distribution functions (PDFs), related symbol, PDF equations, and parameters 

Distribution Symbol  Parameters  

Scale Shape Location Others 

Beta BE  NA  NA a , b - continuous 

boundary parameters 

Burr BU     NA 

Chi-Squared CS  NA NA   - degrees of 

freedom (positive 

Dagum DA     NA 

Exponential EX   NA  NA 

Gamma GA     NA 

Johnson S 

unbounded 
JSU 

 

 

   NA 

Johnson S 

bounded 
JSB 

 

 

   NA 

Log-Gamma LGG    NA NA 

Lognormal LGN 
 

 NA  NA 

Normal NO  
 NA  NA 

Rayleigh RA 
 

 NA  NA 

Weibull WE     NA 
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3.2.2 Goodness of Fit Tests 

With respect to the goodness of fit tests, a variety of criteria and techniques has been showcased 

in numerous publications. The basic idea of these tests is to measure how well the selected 

theoretical PDFs fit a set of observations [70]. In this presented work, the Kolmogorov-Smirnov 

(K-S) test is used since it is an efficient goodness-of-fit test commonly employed in different 

applications. The K-S test is used to test the difference between theoretical and empirical (actual) 

PDFs. Equation (3.1) presents the K-S statistic (D) which is based on the largest vertical difference 

between the theoretical and empirical cumulative distribution function [70]:  

 

where  is the value of the ith sample of the total number of samples (n), and  is the fitted 

cumulative distribution function (CDF).   

The K-S test is based on the definition of the following hypotheses: 

 H0: the data follow the specified theoretical PDF;  

 HA: the data do not follow the specified theoretical PDF.  

The null hypothesis (H0) regarding a theoretical PDF is rejected if the K-S test statistic (D) is 

greater than the critical statistic obtained from the standard table at a selected significance 

confidence level (α). A value of significance confidence level is typically set to be 5% in many 

applications. 

3.3 Results and Analysis 

3.3.1 Case 1: Home Arrival Time 

In this case, the selected PDFs are fitted to the home arrival time data. In Table 3.2, the PDFs 

are ranked based on the lowest statistics obtained from the K-S test. Figure 3.3 shows the three 

best-fitted PDFs along with the three worst-fitted PDFs. As stated earlier, the K-S test measures 

the difference between theoretical and empirical (actual) PDFs; thus, the PDF with the lowest 

statistic is the distribution that best fits the actual data. At a significant confidence level of 5%, if 

the K-S test statistic for a PDF is greater than the critical statistic obtained from the standard table 

(shown in the first row in Table 3.2), then this PDF is significantly different from the real data and 
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cannot guarantee an excellent fit. From the table and chart, the most obvious findings to emerge 

are as follows:  

1- The statistics of the selected PDFs, with the exceptions of Log-Gamma, Exponential, and 

Rayleigh, are less than the critical statistic. This indicates the ability of these PDFs to capture 

the variable characteristics of the driver’s behaviour regarding arrival times.  

2- Degum, Burr, and Johnson-SU PDFs are shown to be the three best-fitted PDFs with the lowest 

statistics. These PDFs are very flexible because of their additional shape parameters that enable 

them to be fitted with a wide range of real-life data. 

3- Log-Gamma, Exponential, and Rayleigh are shown to be the three worst-fitted PDFs, revealing 

a significant difference from the real data. Figure 3.3 shows how significantly these PDFs are 

different from the sample data of home arrival time.  

Table 3.2 Goodness of fit results for different PDFs for home arrival time 

Critical Statistic is 0.2690 

Rank PDF Statistics Parameters 

1 DA 0.0834 
k=0.4958  =3.1271E+7 

=4.365E+7  =4.365E+7 

2 BU 0.0894 
k=3.9332  =280.31 

=721.0  =-699.44 

3 JSU 0.0920 
=1.6677  =2.3166 

=5.776  =21.885 

4 BE 0.0942 
1=4.0788E+6  2=8.265 

a=-5.0128E+6  b=27.07 

5 WE 0.0950 =5.6649  =18.236  =0 

6 NO 0.1140 =3.5483  =16.916 

7 LGN 0.1144 
=0.00271  =7.1793 

=-1295.1 

8 GA 0.1159 
=17680.0  =0.02684 

=-457.57 

9 CS 0.1910 =18  =-0.84555 

10 LGG 0.2032 =79.793  =0.03502 

11 RA 0.2625 =13.497   

12 EX 0.4287 =0.06283  =1.0 
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Figure 3.3 The three best and three worst PDFs plotted against a histogram of home arrival time data 

3.3.2 Case 2: Home Departure Time 

This case is conducted to examine how well the selected theoretical PDFs fit the data pertaining 

to the home departure time. The PDFs are ranked based on the statistical values obtained from K-

S test, as listed in Table 3.3. As is evident from the table, Degum, Burr, and Johnson-SB PDFs 

represent the best-fitted PDFs, revealing an evident agreement with the results of Case 1. As shown 

in Figure 3.4, these PDFs almost comply with the pattern of the real data. It is apparent from this 

figure that Normal, Exponential, and Rayleigh PDFs are the worst-fitted PDFs; thus, the use of 

these PDFs to model the variable of home departure time might significantly affect the accuracy 

and validity of the intended results.  

Table 3.3  Goodness of fit results for different PDFs for home departure time 

Critical Statistic is 0.2693 

Rank PDF Statistics Parameters 

1 BU 0.1062 
k=0.19202  =4.014E+8 

=2.463E+8  =2.4632E+8 

2 DA 0.1166 
k=2.6209  =4.529 

=6.7842     =0 

3 JSB 0.1242 
=1.5186  =0.97264 

=20.809  =5.1345 

4 LGG 0.1250 =49.45  =0.04469 

5 LGN 0.1359 =0.33655  =2.1395  =0.58916 
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6 GA 0.1369 =8.7439  =1.0973 =0 

7 BE 0.1411 
1=6.7948  2=7.1668E+6 

a=0.96097  b=9.2119E+6 

8 CS 0.1546 =9  =0.98751 

9 WE 0.1592 =2.7566  =9.6709  =0.98989 

10 NO 0.1803 =3.2447  =9.5945 

11 RA 0.2350 =7.6553   

12 EX 0.4094 =0.11635  =1.0 

 

 
Figure 3.4 The three best and worst PDFs plotted against a histogram of home departure time data 

3.3.3 Case 3: Daily Travel Mileage 

In this case, the selected PDFs are fitted to the daily travel mileage data. In Table 3.4, The PDFs 

based on the K-S test are ranked from best- to worst-fit. Figure 3.5 shows different fitted PDFs 

plotted in conjunction with the histogram of daily travel mileage data. It is clear that the 

Lognormal, Burr, and Johnson-SB are the closest PDFs to the observed data and hence are the best 

fit, an outcome which is also confirmed from the test results presented in Table 3.4.  

In contrast, Chi-square, Normal, and Rayleigh are the worst-fitted PDFs, which indicates their 

deficiency of considering the stochastic nature of this variable of driver behaviour. 
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Table 3.4 Goodness of fit results for different PDFs for daily travel mileage data 

Critical Statistic is 0.2010 

Rank PDF Statistics Parameters 

1 LGN 0.0781 =0.90619  =3.1741  =0.90546 

2 BU 0.0792 
k=1.7716  =1.7068 

=40.922     =0 

3 JSB 0.0796 
=2.1464  =0.89427 

=271.73  =2.7744 

4 WE 0.094 =1.2449  =38.588 =0 

5 DA 0.095 
k=0.88553  =2.0913 

=28.107   =0 

6 EX 0.114 =0.03252  =5.0 

7 GA 0.114 =1.2861  =27.795 =0 

8 LGG 0.115 =14.129  =0.2285 

9 BE 0.191 
1=0.64335  2=3.4433 

a=5.0  b=200.26 

10 CS 0.223 =421  =-385.83 

11 NO 0.262 =31.521  =35.747 

12 RE 0.328 =40.128  =-11.443 

 
Figure 3.5 The three best and worst PDFs plotted against a histogram of daily travel mileage data 
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3.4 Summary 

The aim of the presented research was to examine and validate the use of different statistical 

models for preserving the random characteristics of different driver behaviour variables. Overall, 

the results show that Dagum, Burr, and Johnson are among the best-fitted PDFs for all random 

driver behaviour variables. Their additional shape parameters enable them to be very flexible and 

fitted with a wide range of real-life data. In addition, these results indicate that the Lognormal is 

the best-fitted PDF to describe the daily mileage.  

We believe that the study presented in this chapter makes contribution to the current literature 

tackling the PEV charging modeling. This study provides a realistic description models for the 

behaviour of the variable of interest and ultimately produces accurate quantiles, performance 

indices, and risk estimates. Planners, researchers, or anyone endeavoring to estimate a realistic 

PEV charging load profile can directly use these PDFs, thus saving time and effort.  

Next chapter presents a real application for the best fitted PDFs in conjunction with MCS 

simulation in order to develop a wide range of possible PEV charging profiles. The generated 

profiles thereafter convolve with the conventional adequacy models to assess the imposed impacts 

of different PEV charging characteristics on adequacy indices.  
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Chapter 4 
Generation Adequacy assessment Framework for the Impact of 

Uncontrolled PEV Charging load  

4.1 Introduction  

In the previous chapter, a goodness-of-fit statistical study is conducted to determine proper 

probability distribution functions (PDFs) models that best reflect the main characteristics of driver 

behaviour. This chapter presents a comprehensive reliability framework for incorporating different 

plug-in electric vehicle (PEV) charging load models into the evaluation of generation adequacy. 

Addressing the drawbacks of previous studies reviewed in details in Chapter 2, the proposed 

framework comprises special treatments and innovative models to achieve an accurate 

determination of the impact of PEV load models on reliability. The main research objectives and 

expected contributions of this work are as follows: 

1) Development of a probabilistic model for PEV charging loads that includes realistic estimates 

of the elements characterizing the charging process and explicitly takes into account the 

underlying uncertainties of the random variables. The activities carried out in developing 

realistic load profiles for PEV are:  

i. Use of high-quality data: The research data in this thesis are drawn and analyzed from four 

main sources: 1) Vehicle mobility data, to precisely capture driver behaviours that are 

essential in characterizing the charging process (e.g., mileage driven, arrival times, and 

departure times); 2) market sales data to extract information pertinent to PEV types and their 

market share percentages; 3) manufacturers’ data to obtain data pertinent to battery 

technologies in terms of capacities and PEV ranges; and 4) SAE J1772 standards to obtain 

data pertinent to charging levels. 

ii. Development of a reliable stochastic model: MCS is deployed to simulate the input variables 

needed to assess PEV charging loads in view of the underlying uncertainty of the random 

variables. Hence, a multitude of scenarios for PEV charging loads are generated and assessed. 

2) Development of a comprehensive reliability evaluation model to investigate the effect of 

different PEV charging load characteristics on the reliability and performance of generation 

systems. This model is applied to a well-known test system (IEEE-RTS), and the behaviour of 
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different reliability indices, including basic system indices and frequency and duration indices, 

are thoroughly studied. Within this study, special attention is paid to investigating the influence 

of each PEV load parameter on system reliability, including the effect of different penetration 

levels, different charging levels, and different PEV types with different battery specifications. 

3) Assessment for the effectiveness of the application of the current TOU tariff in controlling 

consumers’ charging behaviour and investigate whether or not TOU efficiently mitigate the 

effect of uncontrolled charging on generation adequacy. 

4.2 Reliability Assessment Framework for the Effect of PEV Load Characteristics 

This section describes the methodology for the proposed framework for assessing the effect of 

uncontrolled and TOU-based strategies on the reliability performance of generation systems.  

4.2.1 Input Data Required for PEV Charging Models 

To develop realistic PEV load profiles, a reliable estimate of the elements characterizing the 

charging process must be obtained: penetration levels, charging equipment characteristics, battery 

specifications, and driving patterns. This task is challenging, however, since no currently available 

data can be relied on for precise definitions of these elements. To estimate PEV loads as accurately 

as possible, this work was based on a number of key considerations: 

1) The U.S. National Household Travel Survey (NHTS) [34] is used to extract information about 

individual driving patterns, and helps capture real-life scenarios that can provide a more 

realistic estimate of PEV charging profiles. As previous chapter discussed, the data pertaining 

to the home arrival time (HAT), home departure time (HDT), and daily travel mileage (DTM) 

of the selected classes were used for producing the PDFs employed in the MCS to generate 

random samples for each parameter. As is evident from the statistical analysis conducted in 

Chapter 3, the Burr distribution represents the best-fit PDF for weekend HAT and weekday 

HDT, while the Dagum distribution represents the best-fit PDF for weekday HAT and 

weekend HDT. Equations (4.1) and (4.2) are the formulae for Burr and Dagum PDFs, 

respectively. For both weekday and weekend DTM, the best-fit PDF is the lognormal 

distribution, as given by (4.3).  
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where  are the shape parameters,  is the scale parameter,  is the location parameter 

for the Burr and Dagum distributions,  is the location parameter, and  is the scale parameter 

for the lognormal distribution. Table 4.1 presents the values for the parameters of the best-fit 

PDFs obtained for each driver behaviour variable.  

Table 4.1 Parameters of the fitted PDFs for each driver behaviour variable 

 
Fitted 

Distribution 
Parameters 

HAT-WD Dagum    -1.4E+5 

HAT-WE Burr     

HDT-WD Burr     

HDT-WE Dagum     

DTM-WD Lognormal   

DTM-WE Lognormal   

 

2) U.S. PEV market sales [71] were analyzed, and four of the most popular types were chosen. 

Two are hybrid EVs (Chevrolet Volt (CV) and Toyota Prius (TP)), and the other two are 

battery EVs (Nissan LEAF (NL) and Tesla S (TS)). Table 4.2 lists their market share 

percentages, battery capacities, and electric ranges.  

3) In this study, for consistency with the available finalized SAE J1772 standards for residential 

use [32], two charging levels were used, as indicated in Table 4.3.  
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Table 4.2 Data for the PEVs used in this research 

PEV Type 
Battery capacity Range Specific energy Market share 

(KWh) (Miles) (kWh/mile) (%) 
CV 16 35 0.457 32 
NL 24 73 0.327 32.5 
TP 4.4 11 0.400 16.5 
TS 85 265 0.320 19 

Table 4.3 Charging levels based on the SAE J1772 standard 

Type 
Voltage Current Power 

V A kW 

Level 1 120 12 1.44 

Level 2 240 30 7.2 

 

4) For the case studies presented in this thesis, it was assumed that PEV charging occurs at home. 

This assumption is based on the results of several surveys [35], [36] that revealed that the 

majority of respondents tend to charge their PEVs at home rather than at public charging 

stations. This preference has several possible explanations: homes are considered the primary 

place where vehicles are parked most often, and most daily mileage is less than the available 

electric range of most PEVs. The easy accessibility and convenience of home charging has 

strong appeal for PEV owners. 

5) An important preliminary step in developing the PEV charging load models was to determine 

the number of PEVs in a system. For this purpose, the following equation was used for 

establishing the number of PEVs in a system at different penetration levels:  

 

where is the number of PEVs,  is the percentage of PEVs with respect to the total 

number of vehicles,  is the number of houses in a given system, and  is the estimated 

average number of vehicles per household according to the 2009 NHTS: 1.9 vehicles.  is 

calculated by dividing the total residential load ( ) by the average load of each house in a 

given system ( ), where  was estimated by the IEEE committee in [72] to be 35 % of the 

system peak, and  was estimated to be 2.08 kW.  
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To illustrate the use of (4.4), consider a system with a peak load of 1000 MW. As mentioned 

above, the percentage share of residential loads is about 35 % (i.e., 350 MW), and therefore the 

number of houses in this system can be calculated by dividing the residential load by the 

average load of a typical house (350 MW/2.08 kW = 168,000 houses). Now, a PEV 10 % share 

can be estimated as  32,000vehicles.  

6)  Five PEV penetration levels are assessed, ranging from 10 % to 50 %, in 10 % increments. 

The maximum penetration level in this work is set to 50% as estimated in 2030 by the Electric 

Power Research Institute [2]. For each penetration level, the number of PEVs in the system is 

distributed based on the percentage of each vehicle class according to its market share [71].  

4.2.2 Simulation Model of Uncontrolled PEV Charging Loads 

The charging profile of each PEV is determined based on three factors: the energy required to 

charge the battery, the duration of the charge, and the time of the charge [4], [6], [73], [74]. The 

stochastic uncontrolled PEV charging simulation model is outlined in Figure 4.1 and in the 

following step-wise procedures.  

Step 1: Read the customer behaviour data (i.e., the fitted HAT, HDT, and DTM PDFs ) plus 

any additional PEV-related data (e.g., battery capacity, electric range, market share, charging 

level, charging efficiency, SoC limits, and PEV penetration level).  

Step 2: Start with the simulation of the first day’s charging profile for the whole PEV fleet. 

Step 3: Begin to simulate the charging profile for the first PEV in the fleet. 

Step 4: Generate a uniform random number, interpreted as a probability, between 0 and 1. 

Step 5: Equate the value of the random number with the inverse CDF of the DTM in order to 

estimate the DTM driven for each PEV.  

Step 6: Determine the battery SoC for each PEV when it arrives home. The SoC can be 

estimated as in (4.5)[6], [74]: 

4.5) 

where  is the daily travel mileages driven by each PEV in miles, and is the electric 

range in miles that can be driven by each PEV in electric mode. 
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Step 7: With respect to battery life, a 70 % maximum allowable depth of charge is often assumed 

[6], [75]; i.e., the battery cannot be charged if the SoC ≥ 90 % and cannot be run down if the SoC 

≤ 20 %. If this condition is satisfied, then continue to the next step. Otherwise, go to Step 3 to 

simulate the charging profile for the next vehicle.  

Step 8: Calculate the daily charging energy  required for each PEV using (4.6)[6], [74]: 

                                                      (4.6) 

where  is the battery capacity in kWh. 

Step 9: Calculate the charging duration  required for a PEV, as expressed in (4.7), based on 

the  the charging levels ( ), and the efficiency ( , where  is the charging efficiency, 

which is often assumed to be 90 % [5]. 

4.7) 

Step 10: Generate another two uniform random numbers between 0 and 1. 

Step 11: Estimate the arrival and departure times for each PEV using the generated random 

numbers and the inverse CDFs of the HAT and HDT.  

Step 12: Determine the stay duration (SD) by calculating the difference between the arrival and 

departure times. If the stay duration for a PEV at home is greater than the time needed for charging, 

then the PEV is charged at the charging level power rate starting from its arrival and ending once 

it is fully charged, as expressed in (4.8). Otherwise, it keeps charging until its departure time, as 

expressed in (4.9). 

4.8) 

4.9) 

Step 13: The same procedures (Step 3 to Step 12) are repeated sequentially in order to simulate 

the daily charging profile for each PEV. 

Step 14: The simulated individual PEV charging profiles are then combined chronologically in 

order to determine the total charging profile for the entire fleet, as given in (4.10). 

4.10) 
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i= 1: Total number of PEV 

Random number (0,1)

Driven mileage CDF 

Estimate daily mileage driven by vehicle i.

20 ≤ SoC ≤ 90

Compute charging energy (CE) using Eq. (4.6), and
 charging duration (CD) using Eq. (4.7) for vehicle i.

Random number (0,1)

Arrival home time CDF 

Estimate the time of arrival and departure for vehicle i.

Update the daily demand profile for the whole fleet 
using Eq. (4.10).

Last i?

Compute SoC for vehicle i using Eq. (4.5).

Yes 

Yes 

No

No

Departure home time CDF 

 Calculate the stay duration (SD) (i.e., the difference 
between the departure time and the arrival time). 

SD ≥ CD

Create the daily charging profile for vehicle i using 
Eq. (4.9). The start charging time is its arrival and 
the end time is its departure.

Create the daily charging profile for vehicle i using Eq. 
(4.8). The start charging time is its arrival and the end 
time is when it is fully charged.

No Yes

Random number (0,1)

Last d?
Yes 

No

SD ≥ CD

Create the daily charging profile for vehicle i using 
Eq. (4.9). The start charging time is its arrival and 
the end time is its departure.

Create the daily charging profile for vehicle i using Eq. 
(4.8). The start charging time is its arrival and the end 
time is when it is fully charged.

No Yes

Start

End

Customer behavior data (i.e., Fitted PDFs of home arrival time and 
home departure time and daily mileage)
 Other PEV-related data (i.e., battery capacity, electric range, market 
share, charging level, charging efficiency, SoC limits, and PEV 
penetration level)
TOU schedules  

d= 1: 365

Figure 4.1 Main procedures for determining the uncontrolled PEV charging load.  
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4.2.3 Simulation Model of the PEV Charging Load Based on TOU pricing 

The model described in the previous section concerned the development of the uncontrolled PEV 

charging load, with the PEV considered to be charged upon arrival at home. Without incentives 

for drivers, this charging strategy is more rational because it is based on the assumption that the 

PEV will be charged by the time the driver next needs it. However, TOU electricity pricing may 

create a level of control over PEV charging loads. Driver decisions to wait and charge during off-

peak periods are based primarily on individual customer driving behaviour, including charging 

energy required, the charging duration required, and the duration of the home stay. Accordingly, 

a decision tree model is proposed for use with the uncontrolled charging model so that driver 

decisions in response to TOU pricing can be taken into account. Figure 4.2 simplifies the basic 

logistics for the development of PEV charging load with the response to the TOU rates, and further 

details are provided in the simulation steps below. For modeling driver response to TOU rates, the 

California TOU residential rates [23] were used in this work.   

 

Off-peak hours Mid-peak hours   On-peak hours  Potential charging hours

8 9 10 11 12 1 2 3 47 5 6
PM AM

8 9 10 11 12 1 2 3 47 5 6

AM

AT DT
SD

Case #1

Case #2

Case #3

Case #4

Case #5

On-peak or Mid-peak Arrivals

Case #5: SD > CD & CD < DD

Case #4: SD > CD & CD ≥ DD

Case #1: SD ≤ CD 

Off-peak Arrivals

Case #2: SD ≤ CD 

Case #3: SD > CD

AT: Arrival time;  DT: Departure time;  SD: Stay home duration;  CD: Charging duration
DD: the difference between the start of the off-peak hour and the departure hour

 
Figure 4.2  Basic logistics of the development of PEV charging load with the response to the TOU 
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Execute Step-1 to Step-11 from the uncontrolled PEV charging loads, 
discussed in Section II-C.

Arrive at
 on-peak or 
mid-peak ?

SD ≥ CD
Create the daily charging profile for vehicle i using 
Eq. (4.9). The start charging time is its arrival and 

the end time is its departure.

Create the daily charging profile for vehicle i using 
Eq. (4.8). The start charging time is its arrival and 

the end time is when it is fully charged.

No

Yes

No

Yes

 Calculate the difference between the start of the off-
peak hour and the departure time  (DD).

DD≥ CD

Create the daily charging profile for 
vehicle i using Eq. (4.11). The start 
charging time is the start of the off-
peak hour and the end time is when it 
is fully charged.

Create the daily charging profile for 
vehicle i using Eq. (4.12). The start 
charging time is the departure time 
mines the hours of CD and ending at 
its departure. 

No Yes

Execute Step-13 to Step-14 from the uncontrolled PEV 
charging loads, discussed earlier.  

Figure 4.3 Main procedures for determining the PEV charging load considering the responses of PEV 
owners to TOU. 

 

The core procedure in the driver decision tree model for establishing the TOU-based charging load 

is shown in Figure 4.3 Essentially, the steps within the dotted box in Figure 4.1 are replaced by 

those within the dotted box in Figure 4.3, and they are described in the following step-wise 

procedures. 

Step 1: Execute Step 1 to Step 11 from the uncontrolled PEV charging model discussed earlier. 

Step 2: Determine the stay duration (SD) by calculating the difference between the arrival and 

departure times. If the stay duration for a PEV at home is shorter than the charging duration (CD), 

then the PEV is charged beginning upon arrival and ending at its departure, as expressed in (4.9). 

Otherwise, continue to the next step.  

Step 3: If the estimated arrival time is within an off-peak period, then the start time for charging 

is set to correspond to the arrival, as expressed in (4.8). If not, continue to the next step. 
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Step 4: Calculate the period from the off-peak time to the departure time.  

Step 5: If the period calculated for on-peak or mid-peak arrivals is greater than the time needed 

for charging the vehicle, then the start time for charging is set to correspond to the start time of 

the off-peak period ( , as expressed in (4.11). For those with a charging duration greater 

than the period from the off-peak time to the departure time, the start time for charging is set to 

correspond to the departure time mines the hours of CD, as expressed in (4.12). 

11) 

4.12) 

Step 6: Execute Step 13 and Step 14 from the uncontrolled PEV charging model discussed earlier. 

4.2.4 Reliability Evaluation Including PEV Charging Models     

In this research, a sequential MCS technique was employed owing to its remarkable features of 

including consideration of the chronology of events and the stochastic behaviour of system 

elements and its ability to provide a comprehensive evaluation of the reliability of power systems 

by offering a wider range of indices. The following is a brief description of the general simulation 

procedures for incorporating PEV charging load modeling into the evaluation of generation 

adequacy:    

1) Develop hourly sequential PEV charging load profiles using the approaches discussed in the 

previous sections.  

2) Construct a chronological conventional load profile using the IEEE Reliability Test System 

(IEEE-RTS) load data points [76] given on an hourly basis for a typical one-year period. The 

IEEE-RTS chronological hourly load profile is widely used in reliability studies and was applied 

in this work to represent conventional loads. The hourly IEEE-RTS load is given as a percentage 

of the annual system load peak so that daily, weekly, and seasonal patterns are included. Once 

the annual peak load ( is determined, the chronological hourly load model (8760 hours) 

can be developed using (4.13).  
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where  is the system load at each hour (i.e., ,  is the weekly peak 

load as a percentage of the annual peak load,  is the daily peak load as a percentage of the 

weekly peak load, and  is the hourly peak load as a percentage of the daily peak load. Equation 

(4.14) shows the total system load ( ). 

 

3) Construct the generation capacity model by simulating the sequential operating cycles for all 

generating units using the conventional MCS procedures for generation system reliability 

evaluation. These procedures are discussed in detail in [30], [31] and the essential concept is 

summarized as follows.  

Due to the intrinsic uncertainties associated with component failures, the unavailability of 

generation capacity has a major influence on the reserve margin of the system and on the 

supply/demand balance. In a reliability analysis, a two-state Markov model (up state and down 

state) is commonly used for modeling the operational cycles of a conventional generating unit. 

The up state signifies that a unit is operating at its fully rated capacity, while the down state 

indicates that the unit is out of order due to failure or maintenance. The duration of both the up 

state and the down state (i.e., the time to failure (TTF), and the time to repair (TTR)), is 

recognized as following an exponential distribution. In a sequential MCS approach, the time 

during which the component works or fails is simulated in a sequential order for each unit based 

on a random selection from their residence time distribution, as expressed in (4.15) and (4.16), 

respectively. The operating capacity cycles for each unit can then be simulated using (4.17). The 

simulated operating capacity cycles of all units are then combined chronologically in order to 

determine the overall available system capacity, as given in (4.18). 

 

 

4.17) 
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where  is the component failure rate,  is the component repair rate,  is the output power 

generated from each component (c) at each hour (t),  is the rated power for each 

component, and is the total system generation capacity.  

4) Superimpose the total available capacity of the generation system on the overall system load, 

and observe the system capacity reserve margin. A wide range of reliability indices can be 

calculated after the above procedures are repeated for a large number of sampling years. The 

simulation is terminated whenever it reaches 5 % as a coefficient of variation tolerance. As 

presented below in (4.19)-(4.22), these indices are viewed as two categories: annual system 

indices and interruption indice [31]. 

(4.19) 

 

 

 

where  is the one-zero indicator variable for the system state at each hour, LOLE is the loss 

of load expectation (h/yr), LOEE is the loss of energy expectation (MWh/yr), and LOLF is the 

loss of load frequency (int/yr). 
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4.3 Cases under Study  

The previously described models were applied on a well-known test system: the IEEE-RTS, which 

entails 32 conventional generators with capacities ranging from 12 MW to 400 MW, a total 

installed capacity of 3405 MW, and an annual peak load equal to 2850 MW. The relevant reliability 

data for IEEE-RTS generators are listed in Table 4.4. The relevant data for the load model are 

given in Appendix A. Figure 4.5 shows the single line diagrams of the IEEE-RTS. 

Table 4.4 Generator data for the IEEE-RTS [76] 

No. of Units Unit Size 
(MW) Unit Type Forced Outage 

(%) 
Failure Rate 

( ) 
Repair Rate 

( ) 

1-5 12 Oil/Steam 0.02 3.40E-04 1.67E-02 

6-9 20 Oil/CT 0.1 2.22E-03 2.00E-02 

10-15 50 Hydro 0.01 5.05E-04 5.00E-02 

16-19 76 Coal/Steam 0.02 5.10E-04 2.50E-02 

20-22 100 Oil/Steam 0.04 8.33E-04 2.00E-02 

23-26 155 Coal/Steam 0.04 1.04E-03 2.50E-02 

27-29 197 Oil/Steam 0.05 1.05E-03 2.00E-02 

30 350 Coal/Steam 0.08 8.70E-04 1.00E-02 

31-32 400 Nuclear 0.12 9.09E-04 6.67E-03 

The primary focus of this study was to provide a comprehensive evaluation of the effect of different 

PEV charging models on the reliability performance of generation systems. To verify the success 

of this work in achieving this goal, five case studies were conducted, as set out in Table 4.5.  

Table 4.5 Scenarios under study 

 

Case  
Studies 

Charging  
Scenarios 

Charging 
Levels PEV  Types Penetration 

 Levels 

Case 1.A 
Uncontrolled (Arrive & Plug) 

Level-1 M
arket share 

 

0 %
  to 50 %

 

Case 1.B Level-2 

Case 2.A Indirect controlled (Static TOU 
tariff) 

Level-1 

Case 2.B Level-2 

Case 3 Uncontrolled (Arrive & Plug) Level-1 One-at-a time 
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Figure 4.4  Single line diagram of the IEEE Reliability Test System (IEEE-RTS) 
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4.3.1 Case 1: Uncontrolled PEV Charging Load  

In this case, the key considerations include different penetration levels (the distribution of each 

penetration level among the PEV types based on their market shares) and PEV charging upon 

arrival at home (designated “uncontrolled charging”) at different charging levels. Figure 4.5 shows 

uncontrolled PEV charging profiles for different scenarios over one simulation trial. Figure 4.6 

reveals that the addition of uncontrolled PEV charging loads on top of the conventional load does 

not significantly alter the shape of the conventional load except for scaling it up, which indicates 

a high degree of correlation between the PEV charging load and the conventional load profile. 

Compared with the PEV charging profiles when charging level-1 is used, the PEV charging load 

at level-2 causes a significant increase in the peak system load. Although PEVs consume the same 

amount of energy at both charging levels, with level-2, they require a shorter charging time with a 

significantly higher magnitude of power, which tends to be concentrated and synchronized with 

the peak system hours. On the other hand, a PEV charged using level-1 requires a lower magnitude 

of power, which tends to be distributed over longer time periods, and also exploits off-peak hours.  

 

Figure 4.5 Expected peak-day uncontrolled PEV charging profiles. 
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Figure 4.6 Expected peak-day system load profiles when uncontrolled PEV charging profiles are 

included. 
  

A range of indices for different PEV penetration levels is listed in Table 4.6, which can be 

interpreted from a variety of perspectives. Overall, these results indicate that the addition of 

PEVs has a significant effect on reliability indices. The LOLE with charging level-1, for example, 

increases exponentially at a rate of 27 %: the LOLE increases by an approximate growth factor of 

1.27 each time the PEV penetration is increased by 10 %. For the case when charging level-2 is 

used, the LOLE increases exponentially at an average rate of 38 %. From Table 4.6, it can be seen 

that with level-2 charging, the adequacy indices are much higher than those obtained in the case 

of level-1. Figures 4.6 and 4.7 show the percentage increase in the adequacy indices for charging 

level-1 and level-2, respectively. As the penetration level increases, the percentage increases 

become more significant. It can also be observed that the adequacy indices at a 50 % PEV 

penetration level using level-1 charging are relatively close to what they would be for a 30 % PEV 

penetration level using level-2 charging. 
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Table 4.6 Adequacy evaluation indices for case study 1 

PEV  

Penetration 

% 

Case 1.A Case 1.B 

Uncontrolled PEV charging load using level-1 Uncontrolled PEV charging load using level-2 

Peak Load LOLE LOEE LOLF Peak Load LOLE LOEE LOLF 
MW (h/yr) (MWh/yr) (int/yr) MW (h/yr) (MWh/yr) (int/yr) 

0 2850 9.36 1193 1.96 2850 9.36 1193 1.96 

10 2907 11.14 1400 2.42 2941 13.16 1699 2.86 

20 2965 14.60 1927 3.18 3033 20.69 2861 4.67 

30 3022 19.37 2568 4.42 3124 29.68 4411 7.10 

40 3080 25.54 3540 5.96 3216 43.39 6627 11.30 

50 3137 35.09 5060 8.08 3307 63.74 10478 17.30 

  

Based on these results, it can be concluded that the PEV charging load is highly dependent on 

the charging level, thus clearly making it a major factor that strongly affects system adequacy. 

From a customer perspective, a higher charging level is preferable because a shorter time is 

required to charge the vehicle. Crucial steps must therefore be taken to prepare the system for 

expected increases in power demand, either by expanding existing facilities or by investigating 

appropriate demand-side management programs. 

 

 
Figure 4.7 Percentage increase in the adequacy indices with charging level-1. 
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Figure 4.8 Percentage increase in the adequacy indices with charging level-2. 

4.3.2 Case 2: PEV Charging Load with Response to TOU Tariffs  

The previous case studies were concerned with evaluating the effect of PEV charging loads on 

system adequacy, with PEVs considered to be charged upon arrival at home using charging level-

1 and -2. This assumption is more rational in the absence of any incentives for the driver. However, 

TOU pricing can create a degree of control over PEV charging loads so that PEV owners are 

encouraged to adjust their charging behaviour accordingly. This section discusses the impact of 

this charging strategy on generation system adequacy.  

 
Figure 4.9 Peak-day PEV charging profiles in response to the TOU tariff. 
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Figure 4.10 Expected peak-day system load profile with the inclusion of PEV charging profiles based on 

a TOU strategy. 

Figure 4.9 shows different PEV charging profiles in response to TOU pricing over one simulation 

trial. A significant spike can be observed at hour 21, the start time of off-peak pricing. This finding 

indicates that a large proportion of PEV owners arriving during on-peak or mid-peak hours will 

wait and begin charging once the off-peak hours start. Figure 4.10 shows the changes in the 

conventional base load profile with the inclusion of TOU-based PEV charging profiles. A 

considerable change in the base load characteristics can be observed where the peak shifts from 

hour 19 to hour 21, especially at higher penetration and charging levels.  

An interesting finding is that the system peaks with the addition of different PEV load 

penetration levels under the TOU strategy using level-1 charging are somewhat lower than the 

peaks when the PEV charging load is left uncontrolled. Compared with the indices obtained for 

the uncontrolled charging strategy (Case 1.A in Table 4.6), a reasonable reduction in the LOLE 

and LOEE is observed when using the TOU charging strategy (Case 2.A in Table 4.7). For 

example, at 50 % PEV penetration, the LOLE and LOEE are reduced by approximately 30 % 

compared to the arrive-and-plug charging strategy (Case 1.A). However, the behaviour of the 

LOLF index is quite different in this case: the LOLF is less than that for the case of the uncontrolled 

scenario for PEV penetration levels of 30 % or less. Nonetheless, compared to the case involving 

no TOU response (Case 1.A), the LOLF is worst when the penetration level exceeds 30 %. This 
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effect is attributable to the characteristics of the PEV charging load and the way it varies from hour 

to hour, which is a contributing factor in the LOLF. Hence, a load profile with smooth changes 

does not cause as great a loss of load events as a load profile with high-amplitude spikes.  

On the other hand, with level-2 charging, compared with the uncontrolled charging mode (i.e., 

Case 1.B vs. Case 2.B), the TOU charging strategy causes a significant increase in the system 

peaks for all penetration levels considered. As is evident from the results of Case 2.B listed in 

Table 4.7, the reliability indices are much higher than those obtained when PEV owners plug in 

their vehicles as soon as they arrive home (i.e., Case 1.B). This result can be attributed mainly to 

the finding extracted from the load profiles shown in Figure 4.10: a large proportion of PEV 

owners begin charging during the same hour, which creates a significant new system peak. 

Table 4.7 Adequacy evaluation indices for case study 2 

PEV  

Penetration 

% 

Case 2.A Case 2.B 

PEV charging load based on TOU response  
using level-1 

PEV charging load based on TOU response using 
level-2 

Peak Load LOLE LOEE LOLF Peak Load LOLE LOEE LOLF 
MW (h/yr) (MWh/yr) (int/yr) MW (h/yr) (MWh/yr) (int/yr) 

0 2850 9.36 1193 1.96 2850 9.36 1193 1.96 

10 2859 10.36 1343 2.13 2996 13.90 1796 6.07 

20 2868 11.35 1409 2.65 3399 51.44 9122 42.01 

30 2899 14.30 1836 4.07 3801 186.14 48763 171.98 

40 3001 17.73 2326 6.38 4204 355.21 155047 327.36 

50 3103 24.16 3321 10.58 4607 418.91 300716 365.34 

 

These results indicate that the applicability of the TOU pricing rate at charging level-2 is no longer 

valid and creates a severe risk with respect to generation reliability. The findings underscore the 

need for practical solutions to address the new problems arising from PEV integration, such as 

appropriate DR incentives, two-way communication for smart charging, and/or facilities 

expansion. 

4.3.3 Case 3: Uncontrolled PEV Charging Load, and Different PEV Types  

In previous case studies, the number of PEV in the system is distributed based on the percentages 

of each vehicle class according to its market share. However, the considered factors in this case 

are the same as in Case 1.A except that the number of PEV in the system is represented by each 
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PEV type individually. Figure 4.11 shows the effect of each PEV type on the LOLE index. Overall, 

these results indicate that PEV type is a factor that strongly affects the system adequacy, and that 

developing a study based on PEV types with small battery capacities produces too optimistic 

results.  

A comparison of these results reveals that the indices obtained using the TP are much lower 

than those obtained using CV, NL, and TS. This is because the TP has a smaller battery with a 

shorter range, which requires lower daily energy consumption than the other types. An interesting 

finding is that the contribution of TS to the increased adequacy indices is relatively similar to those 

of CV and NL, although TS has a much higher battery capacity and electric range. This result can 

be explained by the following two reasons. First, most of the vehicles drive 35 miles or less per 

day, according to the NHTS, and this range can be offered by all of these PEV (i.e., CV, NL, and 

TS). This means that these PEV consume approximately the same daily amount of energy. Second, 

the energy consumed per mile for a CV is relatively higher than for NL and TS. For example; 1 

mile driven in electric mode by a CV consumes 0.45 kWh, while the consumption is about 0.32 

kWh for NL and TS. 

 
Figure 4.11 LOLE index for different PEV types over different penetration levels 
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4.4 Summary 

The expected rapid increase in PEV integration and the unique challenges accompanying PEV 

loads motivated the research presented in this chapter. An innovative, comprehensive framework 

has been created for understanding and evaluating PEV charging behaviour characteristics and 

their effect on power system reliability. Models development were based on clear definitions of 

relevant factors, careful selection of necessary data, and simple and efficient algorithms for 

ensuring an accurate determination of any effect on reliability. A groundbreaking statistical 

analysis technique guided the evaluation of best-fit PDFs for use with MCS to devise novel 

stochastic simulations of PEV charging loads and their associated uncertainties, which were then 

applied with uncontrolled and TOU-based charging strategies. The proposed framework enables a 

thorough investigation of the impact on reliability of PEV charging characteristics: driver habits, 

vehicle type, charging level, penetration level, and TOU rates. 

The important findings to emerge from this work are as follows. First, the deployment of 

PEV load under uncontrolled charging scenario is very likely to add considerable loading on 

electrical systems, severely threatening system reliability. The risk arises because large proportion 

of PEV owners will arrive and expect to charge during peak system hours. Solutions that maintain 

an acceptable level of system reliability are therefore required. Second, the application of current 

TOU rates with respect to PEV loads at charging level-1 somewhat reduces the system peak and 

helps in achieving a reasonable reduction in the reliability indices. When charging level-2 is used, 

however, the TOU rates is no longer valid, which creates a severe risk on the system reliability, 

worse than the case involving no response to TOU. 
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Chapter 5 
Assessment Framework for Flexibility of Plug-in Electric Vehicles 

Charging Load to Respond to System Critical Events   

5.1 Introduction 

The previous chapter described the development of detailed and realistic PEV charging models 

under uncontrolled and TOU strategies for facilitating an accurate and comprehensive assessment 

of the impact of PEV on the system reliability. The uncontrolled PEV charging model represents 

a realistic scenario that can occur when electric utilities charge their customers based on flat rates: 

PEV owners will likely start charging upon arrival in order to ensure that the PEV will be charged 

by the time it is needed. The massive deployment of PEV under this charging scenario is very 

likely to add considerable loading on an electric system, severely threatening system reliability. 

This risk is attributable primarily to the finding based on arrival rates that a large proportion of 

PEV owners arrive and expect to charge during peak system hours.  

For utilities who charge their customers based on static TOU tariff rates, it is anticipated that 

most PEV owners arriving at on-peak and mid-peak hours will wait until an off-peak period to 

take advantage of the off-peak price. This expectation is based mainly on the results from the 

NHTS of driver behaviour, which gives the average duration of vehicle at-home time as 16 hours, 

and the average time required for charging as about 7 hours using a level-1 charger and 2 hours 

using a level-2 charger. When a large number of PEVs begin charging simultaneously, a new 

system peak would be expected, thus exacerbating the negative effect on system reliability.  

While the importance of developing accurate models for assessing the reliability impact of the 

above charging scenarios must be recognized, investigating potential solutions for mitigating the 

negative impact of these scenarios is also crucial. An apparent trend on the part of many modern 

electric utilities is to encourage and incentivize customers to reduce consumption when the system 

is stressed or during unbalanced supply-demand events. Before the implementing of any DR 

programs, electric grid regulators or planners must have confidence about two facts that are 1) the 

loads of end-users (targeted customers) should have the ability to be easily modified (i.e., inherit 

flexibility); 2) the existing flexibility should match the system needs (i.e., load can be shifted from 

peak hours to valley hours without breaking customer satisfactions).   
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This chapter presents a daily basis assessment framework for the application of a dynamic 

critical events call program for use with adequacy assessment in the presence of PEV charging 

loads. The framework involves the development of two models: The first model is targeted at 

determining the time of critical system events (day and hours), when system supply facilities are 

unable to meet the PEV load, as well as the PEV demand not supplied. The second model examines 

the feasibility of PEV owner response to the critical events. It worth mentioning that the proposed 

framework is in line with the recent trend of many modern electric utilities so that customers are 

encouraged and incentivized through a proper dynamic DR program to reduce consumption when 

the system is stressed or during unbalanced supply-demand events. The basic principle of these 

programs is based on customer response to limited critical events. 

 

5.2 Proposed PEV Charging Model Based on a Dynamic Call DR Program    

This section introduces a new reliability framework for the application of a dynamic critical events 

call program for use with adequacy assessment in the presence of PEV charging loads. The overall 

structure of the proposed framework comprises two main stages as shown in Figure 5.1 and 5.2 

respectively, and detailed discussions of these stages are provided in the following subsections. 

5.2.1 Stage 1: Critical Event Determination  

New model is developed in this chapter to determine the time and duration of critical events as 

described in Figure 5.1 and in the following step-wise procedure:  

Step 1: Using the approaches described in the previous chapter, develop the yearly generation 

capacity model, the conventional load model, and the uncontrolled model on an hourly basis.  

A detailed discussion of these models provided in section 4.2 in the previous chapter, and an 

explanation of this step in the proposed framework is thus omitted. 

Step 2: Assess the ability of the system generation capacity to meet the system demand on a day-

to-day basis. At this point, the PEV charging load during normal days, when the system supply 

facility is adequate for meeting the system demand, will be left under uncontrolled mode. On 

days with a shortage of supply (critical events), the PEV charging load will be subject to further 

analyses, which entail the following new indices: 
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a. For the critical hours of critical days: PEV demand not supplied ( ), as expressed in 

(5.1), is obtained. This index is then used for determining the number of PEVs required to 

participate in the DR program ( ), as expressed in (5.2). 

  (5.1) 

 

                                                     (5.2) 

 

b. For the non-critical hours of critical days, the extra accommodation level (EAL) is 

determined, as expressed in (5.3), which indicates the additional number of PEVs that can 

be accommodated without threating the supply-demand balance. This index is very 

important because it provides information about the candidate hours and their 

accommodation levels, to be used for shifting the PEV load from critical hours. 

 

           

 

Step 3: Along with other PEV charging parameters, these indices are set as input for adapting the 

uncontrolled PEV charging load to include consideration of the flexibility of driver behaviour in 

response to the critical events call.  

Step 4: The PEV charging profile adapted for critical days then replaces the uncontrolled one and 

is used for evaluating the system reliability indices and determining the effectiveness of this 

program.     
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Start

Y= 1: Total number of simulation years (Yn)

Generation model
(Section  4.2.4) 

Conventional load model 
(Section 4.2.4) 

Uncontrolled PEV model 
(Section  4.2.2) 

d= 1: 365

t= 1: 24

Loss of load?
PG ≥ PCL+PPEV

Calculate Cat. 1 index:
ACLPEV (Eq. 5.3)

t ϵ TNCR

Calculate Cat.2 index:
DNSPEV (Eq. 5.1 )

t ϵ TCR

t=24

No loss of load for all t ?

All Cat. indices are sent and set as 
inputs for next stage.

All PEVs are following uncontrolled 
charging mode for this day.

d =365 Execute PEV charging model with response to 
critical events. (Section 5.2.2)

Develop adapted yearly PEV charging model considering the customer 
response to critical events.

Conduct reliability assessment
(Section  4.2.2)

Converge?

Stop

Yes No

Yes 

No

Yes 

No

No

No

Yes 

Yes 

 
Figure 5.1 Stage 1 procedures for critical event determination 
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5.2.2 Stage 2: Development of the PEV Charging Load with Customer Response to 

Critical Events     

In this stage, the PEV charging load is adapted by exploiting the customers’ inherent flexibility in 

response to critical system events. To ensure the practicality of the application of this program, the 

decision to respond to critical system calls is based mainly on the customers’ flexibility; i.e., it 

should be within customer behaviour boundaries and not cause inconvenience. PEV owners can 

participate in this program if both of the following conditions are applied: 1) the duration of the 

home stay is greater than the charging time required, and 2) the charging hours intended under the 

uncontrolled mode intersect with the critical hours. Figure 5.2 and the following steps outline the 

primary procedures for developing a PEV load response to a critical system event: 

Step 1: Read the data pertaining to critical event calls (outcomes from Stage 1) and other PEV 

charging data (customer behaviour data, battery specifications, market share, charging levels, 

etc.) (discussed in section 4.2.1). 

Step 2: As discussed in section 4.2.2, execute Step 1 to Step 12 in the uncontrolled PEV charging 

model to determine the following parameters: HAT, HDT, SoC, CE, and CD.  

Step 3: Define the following time periods:  denotes non-critical hours during which the 

system can provide an extra level of PEV accommodation,  defines critical hours during 

which the system must shift a specific level of demand,  defines hours during which a PEV 

was intended to be charged, and  defines hours during which a PEV is at home. The example 

in Figure 5.3 illustrates the definitions of these time periods.  

Step 4: When a PEV requires a charging time greater than or equal to its time at home (i.e., CD 

>= SD), the PEV owner cannot respond to critical events, and hence the PEV remains charging 

under uncontrolled mode according to (4.9). In other cases, (i.e., CD < SD), two further scenarios 

are investigated:  

1) If the intended charging hours for a PEV under uncontrolled mode do not intersect with the 

critical hours (i.e. ), the PEV owner is not a subject for participation in this 

program, and hence the PEV remains charging under uncontrolled mode using (4.8).  
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Execute Step-1 to Step-12 from uncontrolled PEV 
charging loads, discussed earlier

TSH ≥ TUNC

Create the daily charging profile for vehicle i using 
Eq. (4.9). The start charging time is its arrival and 

the end time is its departure.

No Yes

      Outcomes indices from stage-I:
 DNSPEV 

 ACLPEV

TCR

 TNCR  

Define the following Time periods:TUNC,TSH,TCR, and TNCR 

TUNC ∩ TCR ≠ ɸ 

Create the daily charging profile for vehicle i using 
Eq. (4.8). The start charging time is its arrival and 

the end time is when it is fully charged.

TSH ≥ TUNC+TCR

Create the daily charging profile for vehicle i 
using Eq. (5.4). The  charging time is determined 

using Eq. (5.5)-(5.7).  

Create the daily charging profile for vehicle i using 
Eq. (5.8). The  charging time is determined using 

Eq. (5.9)-(5.11). 

Update the daily demand profile for the whole fleet. 

Update the following indices: DNSPEV , ACLPEV,TCR,TNCR 

No

No

Yes

Yes

No participation 

No participation 

Partial 
participation Full participation 

Last vehicle?

PEV charging model with response to critical events 
is completed.

Customer behavior data (i.e. Fitted PDFs of home arrival time 
and home departure time and daily mileage)
 Other PEV-related data (i.e. battery capacity, electric range, 
market share, charging level, charging efficiency,

        SoC limits, and PEV penetration level).

No

Yes

 
Figure 5.2 Development of PEV load model that are responsive to the system critical events 
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8 9 10 11 12 1 2 3 47 5 6

PM
Time

AM
8 9 10 11 12 1 2 3 47 5 6

AM

TNCR TCR TNCR

TUNC

TSH

Arrival time at 7 pm
Departure time at 7 am
Charging duration is 6  hours

 TCR =[7PM,…, 10PM]  

 TNCR =[7AM,…, 6PM]& [11PM,…, 6AM] 

 TUNC =[7PM,…, 12AM]  

 TSH =[7PM,…, 6AM]  

Arrival time at 7 pm
Departure time at 7 am
Charging duration is 6 hours

TCR =[7PM,…, 10PM]  

TNCR =[7AM,…, 6PM]& [11PM,…, 6AM]
TUNC =[7PM,…, 12AM]  

TSH =[7PM,…, 6AM]  

Example Information 

 
Figure 5.3 Example that illustrates the definitions of the time periods. 

2) Otherwise, (i.e. ), the PEV owner can then partially or fully participate in 

responding to critical hours based on the following scenarios: 

a) Partial participation: When the hours in which a PEV stays at home are less than the sum 

of the required charging hours and the critical hours (i.e. )), the 

PEV owner can participate partially in the program and avoid charging during some critical 

hours. The participation is partial because the non-critical hours that coincide with the 

vehicle’s stay hours are insufficient to charge the vehicle. In this scenario, the PEV is 

therefore charged during two periods, defined as follows:  contains the non-critical 

hours that coincide with the vehicle’s stay hours, and  contains the critical hours that 

coincide with the vehicle’s stay hours and that are arranged in ascending order based 

on , as expressed in (5.4)-(5.7). It should be noted that the PEV is charged during 

some hours of the  period, which are equal to the number of hours in  minus the 

required charging hours. 

                                    (5.4) 

                                                                      (5.5) 

                                                                          (5.6) 
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                                   (5.7) 

 

b) Full participation: When a PEV stays at home more than or equal to the required charging 

hours plus the critical hours, the PEV owner can participate by avoiding charging during 

all critical hours. In this scenario, the PEV is charged according to (5.8)-(5.11), in which 

 contains the non-critical hours that coincide with the intended hours of charging under 

uncontrolled mode, and  contains the complementary hours of that intersect with 

the vehicle’s stay hours and are arranged in descending order based on . It should 

be pointed out that the PEV is charged during some hours of the  period that are equal 

to the number of hours in  minus the required charging hours. 

                                       (5.8) 

                                                                       (5.9) 

                                                        (5.10) 

                                   (5.11) 

Step 5: Update the charging profile of the entire fleet ), , and   

Step 6: The same procedures (Step 1 to Step 5) are repeated sequentially until all critical events 

are responded to or the charging profiles are simulated for the entire fleet.  

5.3 Cases under Study  

The results presented in the previous chapter provide important insights about the need for 

solutions that maintain overall system reliability and ensure adequate generation capacity. Based 

on these considerations, the work in this chapter was extended to include an examination of a 

dynamic DR program based on utilizing the flexibility of driver behaviour in response to critical 

system events. The considered system and the key factors in this chapter are the same as the base 

case in the previous chapter. 
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This section presents the results of the application of a dynamic critical events call program 

for use with PEV charging loads. For both charging levels, Figure 5.4 shows a 50 % PEV charging 

load penetration level with/without response to the critical events program. It is clear that, during 

peak hours (15PM to 20 PM), the uncontrolled PEV charging load is shifted to less critical hours, 

thus largely reducing the system peak to the base profile, as shown in Figure 5.5. It should be 

pointed out that with level-2 charging, the system peak hours are reduced so that they are equal to 

the original base load (i.e., the case without PEV), while a slight increase in the peak hours load 

compared to the original base load cannot be avoided when using level-1 charging. This effect is 

due to the charging duration being highly dependent on the use of charging levels. A level-1 

charger hence results in a longer charging time than a level-2 charger does. 

 
Figure 5.4 The 50 % PEV penetration charging load with/without response to the critical events program, 
for both charging levels. 
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Figure 5.5 The system load profile that includes 50 % PEV penetration charging load with/without 

response to the critical events program, for both charging levels. 

It is worth mentioning that the response to critical events calls is based mainly on the customers’ 

flexibility; i.e., it should be within customer behaviour boundaries and not cause inconvenience. 

With these points in mind, the considerable reduction achieved in the system peak with the 

application of this DR program indicates that customers have enough flexibility and ability to 

respond to critical system events without violating their behavioural limits. As stated earlier, the 

PEV charging load with response to the dynamic DR is developed based on two stages: the first is 

targeted at determining critical system events and the amount of PEV demand not supplied. Figure 

5.6 shows a sample of the outcome indices of the first stage at a 30 % PEV penetration level: PEV 

demand not supplied, number of critical days per year, and number of critical hours per year. These 

kinds of indices offer highly essential information about system behaviour that can be used for 

managing the PEV charging load.  

This figure reveals that the critical system events caused by the addition of PEV loads over 

a large number of simulation years are limited to a relatively small number of days and hours per 

year. This is, in fact, the essential key to the practicality of this program for managing the PEV 

charging load. The second stage involves examining the feasibility of PEV owner response to 

critical events and then adapting the PEV load accordingly. To assess the contribution of the PEV 

charging load to system reliability when customers respond to the critical events program, Table 

5.1 shows the results of different indices for both charging levels.  
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Figure 5.6  Sample of the first-stage outcome indices at a 30 % PEV penetration level using charging level-2. 
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These results demonstrate that adequacy indices at all penetration levels and for level-2 

charging are significantly reduced so that they are equal to the case without PEV. Figure 5.6 and 

5.7 shows the comparison of LOEE indices obtained using PEV load model with and without the 

DR program. At all penetration levels, for level-1 charging with the use of DR program, a 

significant reduction in all adequacy indices can be observed compared with uncontrolled charging 

strategy (Case 1.A in Table 4.6). Small differences from the results of the base case are to be 

expected for the reasons mentioned earlier in the Figure 5.5 discussion. With respect to system 

reliability, this reduction in the indices is considered significant and reveals that the critical event 

DR program is a very promising option that should be considered for the effective management of 

PEV charging loads. 

Table 5.1 Adequacy evaluation indices for both charging levels 

PEV  

Penetration 

% 

Case 1 Case 2 

PEV charging load based on dynamic DR  
using level-1 

PEV charging load based on dynamic DR  
using level-2 

Peak Load LOLE LOEE LOLF Peak Load LOLE LOEE LOLF 
MW (h/yr) (MWh/yr) (int/yr) MW (h/yr) (MWh/yr) (int/yr) 

0 2850 9.36 1193 1.96 2850 9.36 1193 1.96 
10 2851 9.52 1196.44 1.96 2850 9.36 1193 1.96 

20 2853 9.70 1202.51 1.97 2850 9.36 1193 1.96 

30 2854 9.92 1214.60 1.98 2850 9.36 1193 1.96 

40 2856 10.25 1240.33 2.02 2850 9.36 1193 1.96 

50 2857 10.78 1293.39 2.08 2850 9.36 1193 1.96 

 
Figure 5.7 LOEE indices obtained for PEV load model with and without the DR program using levlel-1 
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Figure 5.8 LOEE indices obtained for PEV load model with and without the DR program using levlel-2 

5.4 Summary  

To mitigate the impact on reliability that would be expected when PEVs are charged in 

uncontrolled mode, this chapter presented a methodology to investigate the level of compatibility 

between system critical events and PEV charging flexibility. Two integrated models were 

developed, the first of which determines the time and duration of critical system events as well as 

the amount of PEV demand not supplied. The second model uses the outcomes of the first model 

and examines the existing flexibility in PEV loads to respond to critical events. The important 

finding to emerge is that PEV charging loads offer a large degree of flexibility to avoid system 

critical events without violating customer behaviour boundaries and causing inconvenience. This 

finding supports the current trend that calls for an investigation into solutions on the demand side 

to help improve reliability. The finding also provides insights into the application of dynamic DR 

programs as promising solutions that may be considered for the effective management of PEV 

charging loads.  
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Chapter 6 
Reliability-Based Framework for Designing Time-of-Use Schedules 

Well Adapted to PEV Charging Loads 

6.1 Introduction 

The previous chapter reported the investigation of compatibility between system-critical events 

and plug-in electric vehicle (PEV) charging flexibility. The important finding was that a PEV 

charging load has a substantial degree of flexibility with respect to avoiding system-critical events 

without violating customer behaviour boundaries and causing inconvenience. This conclusion 

supports the current trend of improving reliability by investigating solutions at the demand side. 

The results also provide insights related to the application of dynamic demand response (DR) 

programs as promising solutions for facilitating the effective management of PEV charging loads. 

However, major challenges are associated with the implementation of these programs [21], [51]: 

1) they require robust infrastructure that enables information-sharing and communication between 

system service providers and the huge number of customers in residential sectors, and 2) without 

automating technologies, responding to and keeping track of hourly price changes is difficult for 

residential customers. For these reasons, dynamic DR programs have thus far been targeted at 

special customers, such as large industrial and commercial customers who have the manpower to 

negotiate with utilities and track dynamic changes in the hourly rates. In contrast, TOU programs 

are the ones most widely employed at residential and small business load levels. The basic concept 

of TOU rates is the setting of three rate blocks, each of which is predetermined and constant for a 

relatively lengthy time period (usually a season). The consistency of the tariff over a long time 

makes a TOU program easy to understand and follow and thus practicable enough for residential 

customers. However, significant difficulty is associated with establishing only one TOU tariff that 

is valid for an entire season and that at the same time reflects the realistic random behaviour of the 

system, including random component failure, the stochastic nature of non-dispatchable 

components, and load variability and uncertainty.  

In light of the above discussion, the aim of the work presented in this chapter was to 

develop a reliability-based framework for designing a TOU schedule well adapted to PEV charging 

loads. The following are the primary contributions of the proposed framework:  
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1) Stochastic simulation models have been developed with the goal of quantifying the reliability 

performance of existing generation facilities that incorporate massive PEV deployment and 

increased shares of wind power generation. The models created generate a multitude of 

scenarios for each individual system component based on consideration of the uncertainties 

associated with random component failure, the stochastic nature of wind generation, and the 

inherent randomness of driving patterns and of other PEV characteristics.  

2) A Markov chain Monte Carlo (MCMC) method is employed in a novel manner in conjunction 

with a k-means clustering technique as a means of taking into account the chronological 

correlation between two variables (system load and wind generation) and of reducing the 

number of variables in the simulation.  

3) This thesis proposes innovative data treatment, a box-plot method, and expert rules in order to 

deal with the massive amount of data generated for each individual system component and to 

facilitate the simple and effective representation of the system reserve margin (SRM) at each 

hour.  

4) The above models and output are incorporated into a novel proposed methodology for arriving 

at TOU schedules that are well adapted for PEV loads. The proposed methodology entails the 

following processes:  

a) Use the outcomes of the box-plot method and expert rules to determine an initial decision 

about the type of each hour (off-, mid-, or on-peak).  

b) From the initial decision, reduce all combinations of these hour types to a reasonable number 

of possible combinations, in this way facilitating the assessment of those scenarios.  

c) Develop PEV charging load profiles that are responsive to the predefined set of TOU 

schedule scenarios, and examine the improvement in reliability provided by each scenario.  

6.2 Proposed Framework for designing a TOU Schedules for PEV Charging Loads. 

This section introduces a new reliability-based framework for designing appropriate TOU 

schedules for PEV charging loads. Figure 6.1 provides an overall schematic of the proposed 

framework, which involves the completion of three main stages. The first is targeted at the 

development of a variety of stochastic simulation models that can generate large amounts of time 

series data and that include effective consideration of random component failure, the stochastic 
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nature of wind generation, and the randomness inherent in driving patterns and other uncertainties 

associated with PEV characteristics. The outcomes of these models are fed into Stage II, which 

involves the application of special data treatment and statistical tools based on expert criteria in 

order to produce an initial decision with respect to the type of each hour (off-, mid-, or on-peak). 

The output from Stage I and Stage II is then employed in Stage III for the assessment of a range 

of possible TOU schedule scenarios in order to determine the optimal schedule. 

Stage I: Stochastic models for individual components

Input data sets Processing Methods

Develop conventional generation 
capacity model 
(Section 4.2.4)

Develop net-demand model
(Section 6.2.1.2) 

Units capacities 
Failure rates  
Repair rates

IEEE-RTS conventional 
load  
Wind speed data
Wind power curve 

Home arrival time
Home departure time
Daily travel distance
PEV types 
Market share 
Battery capacity  
Mileage range 
SAE J1772 standards 

Develop uncontrolled PEV charging 
load model

(Section 4.2.2) 

Sequential Monte 
Carlo Simulation 

(SMCS)

Markov Chain Monte 
Carlo Simulation 

(MCMC) & 
K-means clustering 

technique 

Monte Carlo 
Simulation & best-

fitted PDFs

Stage II: System reserve margin model
Use Stage I outcomes:

Simulated hourly sequential profiles for 
conventional generation, net system 
demand, and uncontrolled PEV load 

Compute the system reserve margin (SRM)

Cluster the SRM  into 8  groups, 2 for each 
season, and convert the SRM for each 
season from vector form to matrix form 

Use box plot method to analyse and 
visualise the  pattern of the SRM at each 

hour of each season    

Use expertise judges and the output of box 
plot method to determine initial decision 

about the type of each hour        

Stage III: Evaluation and validation 

Use Stage II  outcomes:
Initial decision about the type of each hour 

Determine the possible combinations  from 
the initial decision   (i.e. possible schedules 

for TOU)  

Develop PEV charging model with respond 
to each TOU schedule

Conduct reliability analysis  to determine 
the best TOU schedule

Convolve the developed PEV model with 
the models developed in Stage 1   

 
Figure 6.1 Overall structure of the proposed framework 
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6.2.1 Stage I: Stochastic Models for Individual System Components   

6.2.1.1 Conventional Generation Capacity Model 

The rated installed capacity of existing generation resources is not always available because the 

generating units are exposed to unplanned or planned outages (i.e., unexpected failures or scheduled 

maintenance). This deficiency underscores the need for probabilistic techniques that can address 

the intrinsic uncertainties associated with component failure and determine the generation capacity 

available at each instant. In the work described in this chapter, a sequential Monte Carlo simulation 

(MCS) approach was employed for simulating the chronological capacity available from all 

generating units using equations (4.15-4.18) in section 4.2.4. The detailed sequential MCS process 

is presented in section 4.2.4.  

6.2.1.2 Wind generation and system demand models (Net demand model) 

Modeling wind generation for use in different power system applications requires a large database 

of historical wind speeds so that the stochastic behaviour of the wind generation can be accurately 

analyzed. However, the lack of sufficient data calls for reliable stochastic wind simulation 

techniques. Such wind power/speed models should preserve the main characteristics of the 

historical measurement data (e.g., distributional and temporal variations of the wind speed) and 

generate the desired wind speed/power time series. Most of the available time series models 

described in the literature can be classified into two categories: autoregressive moving average 

(ARMA) models and Monte Carlo Markov Chain (MCMC) models. These models are 

acknowledged as being useful for wind generation because of their essential feature of preserving 

the special and chronological variability of the wind, which facilitates the integration of wind 

generation into various time-based applications. The models based on MCMC offer basic 

advantages compared with the ARMA models, discussed in details in section 2.6. Although the 

MCMC models are widely used to generate wind speed/power time series, they still have some 

downsides, such as the imperfect preservation of correlation characteristics with system load as 

well as the inaccuracy and complexity associated with the discretization process. To address these 

issues and further improve the efficiency of this approach, we propose a novel way of deploying 

the MCMC model. First, the development of simulation procedures is based on data measured 

directly from the net system demand (the residual amount of system demand after wind generation 
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is deduced from the total demand). Combining these variables (i.e., wind generation and system 

load) in this way has the advantages of 1) considering the inclusion of the chronological correlation 

between these variables; 2) reducing the number of variables so that the simulation estimates one 

random variable instead of dealing with two variables independently. The letter feature helps in 

reducing the states of the Markov chain and, complexity and computational time consequently. 

The second improvement to the existing MCMC model is the application of the k-means clustering 

technique to identify a proper number of system states needed to build the Markov chain transition 

matrices. The basic idea of the k-means technique is to cluster a big and scattered data into a finite 

number of centroids with aim minimizing the error between the data points and the centroids. In 

this way, the accuracy associated with the discretization process will be to, large extent, enhanced.  

The main procedures of the stochastic simulation model can be summarized as in Figure 6.2 

and are discussed in detail in the following subsection. 

Input the hourly measured wind speed (WS) data for T-years 

Transform the WS data to hourly wind power WP data   

Calculate system net load (NL) (i.e. PD-WP)

Simulate the desired synthetic hourly NL states using Monte Carlo 
simulation method combined with the Markov chain transition  matrices

Transform the simulated NL states to their corresponding real NL data

Build the Markov chain transition  matrices (8 matrices: 4 seasons X
2 WD/WE)   

Cluster the actual NL data to a finite number of states using K-means 
method

Input the hourly measured system power demand (PD) data for T-years 

Group the NL data on a seasonal basis 

 

Winter
21 Dec-20 Mar

Spring
21 Mar-20 Jun 

Summer 
21 Dec-20 Mar

Fall
21 Dec-20 Mar

 
Figure 6.2 Main procedures of the MCMC model  
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6.2.1.2.1 Data collection and preprocessing  

The hourly wind speed data observed over three years for the Bonavista site located in 

Newfoundland, Canada, were collected from Environment Canada [77] and used in this study. 

These data were applied to the power curve of the wind turbine generator, as expressed in (6.1), to 

transform the data from the wind speed domain to the wind power domain. Doing so helps reduce 

the number of Markov transition states, because the data of all wind speed states that lie outside 

the cut-in or the cut-out zones of the wind turbine power curve are represented by only one power 

state (i.e., zero), and the wind speed states that are within the rated power of the wind turbine are 

represented by only one power state (i.e., rated).    

 

 

 

The constant terms , , and can be expressed in terms of the cut-in speed ( ) and the rated 

wind speed ( ) [78].  

 

For the system demand data, the IEEE-RTS chronological hourly load model [76] is extensively 

used as a benchmark system to represent conventional loads in different power system applications. 

The IEEE-RTS load is given as a percentage of the annual system load peak so that daily, weekly, 

and seasonal patterns are included. Once the annual peak load ( is determined, the 

chronological hourly load model (8760 hours) can be developed using (6.2).  

 

 where  is the system load at each hour,  is the weekly peak load as a percentage of the 

annual peak load,  is the daily peak load as a percentage of the weekly peak load, and  is 

the hourly peak load as a percentage of the daily peak load. 

Then, the net system demand  at each observed instance can be calculated by 

subtracting the wind power generation from the system load , as expressed in (6.3).  

Prior to commencing the MCMC process, the hourly historical net load data are clustered into 8 
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groups, two group (weekdays, and weekends) for each of the four season. Each group contains a 

series of data points equal to 24 hours multiplied by the number of days in each season multiplied 

by the number of available years. 

                                     

6.2.1.2.2 Markov chain model  

The Markov chain model has frequently been used to mimic the sequence behaviour of 

stochastic systems by modeling the transitions probabilities between a system’s states, as 

illustrated in Figure 6.3. The basic idea of deploying the Markov chain model in time series 

applications is to preserve the system-transition characteristics and sort them in a matrix form with 

a dimension of (number of system states). This matrix can be then used to generate a large 

number of possible sequential data that are maintaining the main characteristics of the measured 

data.   

 

 

Figure 6.3 Illustrative example for some states transitions of Markov chain 

For a system with the state space S= [1, 2,….., n], the system at each time instant can reside in 

any state, and there will be  possible numbers of transitions between two successive time 

instances. Defining these transitions from the measured data facilitates the formation of Markov 

discrete transition matrix ( ), as shown in (6.4). Each row of the matrix relates to the current 

state, while each column relates to a possible next state. Each element of the matrix represents the 

transition probability  between any two system states.  
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As expressed in (6.5), the state probabilities can be calculated from the relative frequencies of 

the possible states where  is the number of transitions from state i to state j for successive times 

in the measured data set. As each row relates to the probabilities of transition from one state, the 

summation of theses probabilities should equal one ( .  

 

 

After the discrete transition matrix is constructed, the cumulative probability transition matrix 

( ) can be created. The element of the  can be computed as follows:  

 

 

 

An essential step before creating the transition matrices is to cluster the measured net load data 

into a finite number of states. Determining the number of states is crucial but represents a trade-

off between the accuracy of the results and the complexity of the process. To address this issue, 

some researchers have used clustering techniques that are dedicated to determining the minimum 

number of states that guarantee less complexity and reasonable accuracy. For this purpose, a 

clustering technique called K-means is used because of its simplicity and the reasonable accuracy 

it provides. The K-means clustering technique is discussed in detail in [79], [80], and its procedures 

can be summarized as follows: 

1- Select the initial cluster means (centroids)  of the clusters, where k is the number of 

clusters. Eleven centroids (i.e., k = 11) were initially selected for this study, as determined 

by dividing the states of  equally into 0.2 steps (i.e., k = 0, 0.2,..., 2). 
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2- Calculate the distance  from each net load value  to each centroid , as given in 

(6.7). 

 

 

3- Assign all of the wind power data to the nearest centroid. 

4- Calculate new cluster means or centroids using (6.8), where the average of the wind power 

data in cluster k is divided by the total number of data points in the same cluster . 

 

 

5- Repeat steps 2 to 4 until the centroids remain unchanged after a number of iterations.  

6.2.1.2.3 MCMC for the Simulated Wind Power Time Series 

Using the MCMC transition matrices, the number of sequences desired for the hourly  

samples are simulated for each season. The initial state is selected randomly, and a random value 

between 0 and 1 is then produced by a uniform random number generator. To determine the next 

state in the Markov process, the value of the random number is compared with the elements of the 

ith row of the cumulative probability transition matrix. If the value of the random number is greater 

than the cumulative probability of the preceding state but less than or equal to the cumulative 

probability of the succeeding state, the succeeding state is chosen to represent the next state.  

The same procedures are repeated sequentially in order to simulate the required hourly  

data for each season. Based on these calculations, the hourly  time series can be obtained for 

a year (1, 2, 3…8760). The loop is repeated for the desired or prespecified number of years.   

6.2.1.3 Uncontrolled PEV Charging Model 

In Chapter 4, a comprehensive uncontrolled PEV load model is presented based on the use of an 

MCS in conjunction with fitted probability distribution functions (PDFs). Because the 

uncontrolled PEV load model is an essential part of the proposed framework, the same model 

presented in section 4.2.2 is used in the work presented in this chapter. A discussion of this model 
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is therefore not repeated in this chapter, and an explanation of this step in the proposed design 

framework is thus omitted.   

6.2.2 Stage II: System Reserve Margin Assessment 

Different stochastic approaches to modelling and representing the diverse components of power 

systems have already been discussed. These approaches enable the generation of a desired number 

of synthetic data that preserve the spatial and chronological characteristics of the original samples 

while addressing the inherent natural variability and randomness associated with component 

failure. This section explains how to treat the massive number of generated scenarios obtained 

from each model and, hence, evaluate the SRM at each hour of each season throughout all of the 

simulated years. The SRM provides an indication of the level of system accumulation at each hour 

and determines whether the system is operating under critical or normal conditions. The key 

question is how to deal with the massive amount of data for each hour of each season, all of which 

have different characteristics. These data must be presented in a simple but adequate manner in 

order to facilitate decisions about the type of each hour (off-, mid-, or on-peak). A primary goal of 

the research presented in this section was to develop an effective approach that would address this 

challenge. To achieve this goal, a methodology based on four main steps is proposed. For 

illustration purposes, the following steps explain how the methodology is applied to a winter 

weekday; however, the same analysis is carried out for the other seasons as well.  

1- Seasonal synthetic time series data are generated for all variables using the approaches 

discussed for the first stage. For each data point in each season, the SRM is calculated based on 

(6.9): 

 

A vector (one row matrix) of the SRM sequential data for each type of day in each season is 

obtained. The length of each vector is equal to the total number of hours in each season 

multiplied by the number of years simulated (e.g., for a winter weekday, 24 h/d * 22 d/mo * 3 

mo/season = 1584 h/simulated yr).  

2- The data vectors are reshaped from one-row matrices to a matrix of 24 columns * N rows, where 

N is equal to the total number of days in each season multiplied by the number of simulated 
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years. The matrix takes the form of (6.10), where each row represents one chronological daily 

profile (24 h) while each column represents the possible SRM scenarios for each hour. This 

data arrangement preserves the main characteristics of each hour and simplifies the assessment 

analysis and decision process for determining the hour type. With this treatment, eight matrices 

are created: two matrices (weekdays and weekends) for each season.  

 

No. of days in a season 
Multiplied by number of years

1

1

24

SRM 1,N

-----------

-----------

SRM 1,2

SRM 1,1

SRM 2,N

-----------

-----------

SRM 2,2

SRM 2,1

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

-----------

SRM 24,N

-----------

-----------

SRM 24,2

SRM 24,1

(6.10)

 
 

3- The matrices developed are then set as input that enables the statistical analysis tool to provide 

a visualization and analysis of the SRM behaviour at each hour before and after the inclusion 

of an uncontrolled PEV load. From a wide range of statistical tools, a box-plot technique was 

chosen because it offers a standardized method for the display and visualization of the 

quantitative data pattern for easier and more effective decision-making. In an elegant miniature 

package, a box plot enables a comparison of datasets for each hour and displays the degree of 

data dispersion (from min to max), the likely range of variation (the interquartile range (IQR)), 

a typical value (the median), and outliers [81]. As shown in Figure 6.4, a box-plot provides a 

clear visual format of the variability or spread in the data sets, along with five summary 

measures: first quartile, median, third quartile, and lower and upper fences.    

4- The box-plot measures are applied to the expert techniques, which represent the usual practices 

employed by many utilities for determining the SRM; here the method is used to help set up the 

initial decision about hour type. The following are the most common expert techniques [28], 

[82]: 
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i. Percentage Margin: A required reserve margin should be equal to a fixed percentage value 

of the predicted demand (usually 10 %). 

ii. Loss of the Largest Unit plus Percentage Margin: A required reserve margin should be equal 

to the capacity of the largest generator unit plus a fixed percentage value of the predicted 

demand.  

0σ 1σ 2σ 3σ -3σ -2σ -1σ 

IRQ

Q1 Q3 Q3+1.5*IRQQ1-1.5*IRQ

50% 24.65%24.65%

 

Figure 6.4 Box plot with five important distribution measures 

For this research, these techniques were used as thresholds that are mapped against the box-plot 

measures in order to distinguish the level of risk, as illustrated in Figure 6.5.  

 

 

Negligible Risk (NR)

Marginal Risk (MR)

Critical Risk (CR)

Severe Risk (SR)

Capacity of the Largest 
Unit plus 10 % Margin 

10 % Margin 

Zero % Margin 

Figure 6.5 Expert techniques mapped against the box-plot measures 
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The following set of rules are used for arriving at an initial decision about the type of each hour 

(off-, mid-, or on-peak): 

a) If at least 75 % of the SRM is greater than the marginal risk (MR) threshold (i.e., Loss of 

the Largest Unit and Percentage Margin) and the remaining percentage of the SRM is 

greater than the severe risk (SR) threshold, then the hour examined is set to be off-peak.  

b) If at least 75 % of the SRM is greater than the critical risk (CR) threshold (i.e., Percentage 

Margin) and the remaining percentage of the SRM is greater than the SR threshold or less 

than the SR threshold but the addition of the PEV load does not significantly worsen the 

SRM, then the hour examined is set to be either off- or mid-peak.    

c)  For conditions different from those considered in (a) and (b), the hour examined is set to be 

either mid- or on-peak.     

It is worth emphasizing that the first off-peak hour just after the mid- or on-peak period is set to be 

either off- or mid-peak even if it meets the conditions set out in (a). This provision is applied in 

order to check whether this hour can accommodate the energy shifted from the mid- or on-peak 

hours. Figure 6.6 shows the hourly SRM pattern for a winter weekday before and after the inclusion 

of a PEV charging load. Applying the proposed procedures for the SRM enables the initial decision 

about the type of each hour to be determined, which significantly helps reduce the possible 

combinations: from (324 = 2.8 x 1011) to (26 = 64) (Figure 6.7). The outcome of Stage II is a range 

of possible TOU schedule scenarios, which are then fully examined during Stage III in order to 

determine the optimal schedule for improving system reliability.   

 
Figure 6.6 SRM for a winter weekday before and after inclusion of the PEV charging load 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID MID

ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

MID

MID MID MID MID

MIDON ON ON ON

3^24=2.8E+11 Scenarios

2^6=64 Scenarios

SRM Data Matrix & 
          Box Plot Method &

       Expert Rules

 

Figure 6.7 Illustrative example of the initial decision about the type of each hour and possible 
combinations 

6.2.3 Stage III: Evaluation and Validation Model  

During this stage, possible TOU schedule scenarios are examined with respect to reliability 

measures (e.g., loss of load expectation (LOLE) and loss of energy expectation (LOEE)). To 

evaluate the performance of these scenarios, a model is developed of the PEV charging load, taking 

into account individual customer driving behaviour and the hour type in each TOU schedule. The 

developed PEV charging model is then convolved with the other system models (generation and 

conventional load) in order to assess the reliability indices. The following is the step-wise 

procedure executed by the proposed PEV model, as outlined in Figure 6.8:    

Step 1: Read the data pertaining to the possible TOU schedules (Stage II outcomes) and other PEV 

charging data (i.e., driver behaviour data, battery specifications, market share, charging levels, 

etc.), as discussed in section 4.2.1. 

Step 2: Start with the simulation of the PEV charging load for the first TOU schedule. 

Step 3: Execute Step 1 to Step 12 in the uncontrolled PEV charging model, as discussed in section 

4.2.2, in order to determine the following parameters: HAT, HDT, SoC, CE, and CD. 

Step 4: Define the time period , which identifies the hours during which a PEV is at home.  

Step 5: When a PEV requires a charging time greater than or equal to its time at home (i.e., CD 

>= SD), the PEV owner cannot respond to the TOU rates, and the PEV hence remains charging 

under uncontrolled mode according to (4.10). For other cases, (i.e., CD < SD), the following 

scenarios are investigated: 
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      Outcomes indices Stage-I:
  Number of TOU schedules 

 TOFF,TMID,TON 

S=1:Total number of scenarios

CD ≥ SDCreate daily charging profile for vehicle i suing Eq. (4.9). The start 
charging time is its arrival and the end time is its departure

TSH TOFF 

i= 1: Total number of PEV 

Create the daily charging profile for vehicle i using Eq. (4.8). The 
start charging time is its arrival and the end time is when it is fully 

charged.

TSH  TOFF U TMID  
Create the daily charging profile for vehicle i using Eq. (6.11). The  

charging time is determined using eq. (6.12)-(6.14).  

Create the daily charging profile for vehicle i using Eq. (6.15). The  
charging time is determined using eq. (6.16)-(6.17).  

Customers’ behavior data
Other PEV related data (i.e. battery capacity, electric 
range, market share, charging level, and PEV 
penetration level, ect.).

Execute Step-1 to Step-12 from uncontrolled PEV charging loads, 
discussed earlier to estimate the following :HAT,HDT,CD 

Update the daily demand profile for the whole fleet 

Last vehicle? PEV charging load model with response 
to TOU schuldes is completed

Develop conventional generation capacity 
model  (Section 4.2.4)

Develop Net-demand model
(Section 6.2.1.2) 

Calculate the reliability indices  to 
determine the best TOU schedule

Record the reliability indices

Last scenario?Decision making process

Yes

Yes

Yes

No

No

No

Yes

Yes No

 
Figure 6.8 Development of PEV load model profiles that are responsive to the predefined set of TOU 

schedule scenarios 
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a) When the set of hours during which a PEV stays at home  is a subset of the off-peak 

hours , the PEV is charged at the charging level power rate starting from its arrival 

and ending once it is fully charged, which is mathematically expressed in (4.11). If not, the 

next two further cases are examined. 

b) If the  is a subset of the union of the off-peak and mid-peak hours , the 

PEV is then charged during the periods defined as , as expressed in (6.11). 

contain the off-peak and mid-peak hours that coincide with the vehicle stay-

at-home hours, as expressed in (6.12) and (6.13), respectively. The charging time is set to 

correspond to all elements (hours) of and some hours of that are equal to the 

required charging duration (CD) minus the total hours of (n), as expressed in (6.14). 

 

     

 

 

 

c) If cases (a) and (b) do not apply, it means that  is a subset of the union of all block tariff 

periods  In this scenario, the PEV is charged during the periods 

defined as , as expressed in (6.15). contains the union of the off-peak and 

mid-peak periods that coincides with the vehicle’s stay-at-home hours, as expressed in 

(6.16), while contains the on-peak period that coincides with the vehicle’s stay-at-

home hours, as expressed in (6.17) .  
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Step 7: Repeat the procedures set out in Step 3 to Step 6 sequentially until the charging profiles 

are simulated for the entire fleet.  

Step 8: Convolve the PEV charging profile that has been adapted for the TOU schedule with the 

other system profiles (i.e., generation and other load) in order to evaluate the system reliability 

indices using the models described in section 4.2.4. 

Step 8: Record the indices and repeat the same procedures (Step 2 to Step 8) until all possible 

TOU schedules have been examined. 

Step 9: Analyze the reliability indices obtained for each scenario and determine the optimal 

TOU schedule. 

6.3 Cases under Study  

The primary focus of this chapter is the design of an appropriate TOU schedule that is adapted to 

the PEV charging demand in a way that mitigates its impact on system adequacy. To this end, the 

proposed framework was tested on the IEEE Reliability Test System (RTS) [76]. Two main case 

studies were considered: 50 % PEV penetration level with and without wind generation.  

The vehicles considered are makes commonly found in the US market that were sold from 

2009 to 2016 [71]. Details about the vehicles, including their market share percentage, are provided 

in Table 4.1. The 2009 National Household Travel Survey (NHTS) data [34] have been employed 

for simulating driver behaviour. Two different charging levels were used in this study: Level-1 

(1.44 kW) and Level-2 (7.2 kW), with shares of 65 % and 35 %, respectively [83]. The charging 

efficiency is assumed to be 90 % [5], and the penetration level is assumed to be 50 %, as estimated 

for 2030 by the Electric Power Research Institute [2]. In the first case study, the generation model 

is developed using the data pertaining to conventional IEEE-RTS generators, as given in Table 4.4 

(section 4.3): a total installed capacity of 3,405 MW and an annual peak load equal to 2,850 MW. 

For case 2, a 1000 MW wind farm consisting of 500 identical 2 MW wind turbine generators 

(WTGs) was added to replace one 400 MW conventional nuclear unit.   

6.3.1 Case 1: Conventional Generation and 50 % PEV Penetration   

This subsection reports and analyzes the results of applying the proposed methods to the 

conventional-generation IEEE-RTS model with a 50 % PEV penetration level. The proposed 
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approaches explained for Stage I (section 6.2.2) are used for determining the initial hour-type 

decision, which helps reduce the enormous number of combinations of TOU schedules to a 

reasonable number for assessment. These combinations are examined using the proposed Stage II 

model described in section 6.2.2 (based on system reserve margin assessment) in order to arrive at 

the optimal TOU schedule.  

Figure 6.9 shows the outcomes of these stages for the seasons that are affected by the 

addition of the PEV charging load. The proposed methodology is used for extracting an initial 

decision about the type of each hour so that the total number of TOU schedule scenarios can be 

reduced to 64 for the winter season, for example. Corresponding to these schedules, 64 PEV 

charging load profiles are developed and assessed using the reliability measures, as indicated in 

Figure 6.10. The difference between the summer and winter seasons in terms of the number of 

scenarios (possible combinations) and the hourly decisions is attributable primarily to the different 

load profile characteristics for those seasons. It can also be observed that the final decision 

regarding the mid- and on-peak hours is strongly correlated with the hours during which a large 

proportion of PEV owners arrive and expect to charge during peak system hours. These results 

validate the effectiveness of the proposed framework with respect to designing an appropriate TOU 

that takes into account driver behaviour as well as other system component characteristics. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

Season Day Scenarios Decision 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Winter WD 64 
ID                         

FD                         

Summer WD 128 
ID                         

FD                         

 

 Off-peak  Mid-peak  On-peak  Off or Mid-peak  Mid or On-peak 

 

WD : Weekday WE: Weekend ID: Initial decision  FD: Final decision 

Figure 6.9 Initial and final TOU schedule decisions for the affected seasons by the addition of the 

PEV charging load 
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The results shown in Figure 6.9 reveal that the hours 22 pm and 23 pm were initially selected as 

off-peak hours and then subsequently changed to mid-peak hours. As mentioned earlier in this 

chapter, the start hour of the off-peak period is subjected to further analysis in order to check 

whether it can accommodate the energy shifted from the mid- and on-peak hours. This step is 

implemented in order to avoid the significant spike in the system load that might occur when a 

large proportion of PEV owners arrive during on-peak or mid-peak hours to begin charging as 

soon as the off-peak period begins. Figure 6.11 displays the system LOLE for different off-peak 

start times. These indices represent the optimal scenario for each start time. Based on the results, 

starting the peak period at hour 24 am is clearly the best scenario for the winter season. These 

results also indicate that if the off-peak start time is set after hour 24 am, then the indices will start 

to deteriorate because the duration of the off-peak hours might be insufficient for charging the 

vehicles, which means that some PEV owners will be forced to charge their vehicles during mid- 

or on-peak hours. 

 

 
Figure 6.10 LOLE indices for the 64 winter TOU schedules 
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Figure 6.11 LOLE indices for different off-peak start times     

 

Reliability indices for all seasons for all of the case studies considered are computed; the results 

are presented in Table 6.1. The findings for the season affected by the addition of the PEV load 

are highlighted and illustrated in Figures 6.12 to 6.14. The main observations stemming from a 

closer inspection of these results can be summarized as follows: 

1) Only winter and summer weekdays are significantly affected by the addition of the PEV load. 

Determining the affected seasons by the addition of the PEV charging load can help planners 

or decision makers look at solutions specific to those seasons so that they do not waste effort 

and resources assessing other unaffected seasons.  

2) A comparison of the base case with the case in which the PEV load is added under uncontrolled 

mode reveals that the system indices increase at the same rate (approximately by four times) 

for both the winter and summer seasons. The reliability indices for the winter season are higher 

than for other seasons because the peak day of the system under study (IEEE RTS) occurs 

during the winter.  

3) Adapting the PEV load to be responsive to the proposed TOU schedules significantly reduces 

the system indices and helps enhance system reliability. The percentage decrease in the system 

indices resulting from the proposed TOU schedules is about 64 % compared with the 

uncontrolled PEV charging load. The LOLE index, for example, is reduced from 31.8 h/yr to 

10.5 h/yr for the winter season, while that index is decreased from 9.6 h/yr to 3.6 h/yr for the 
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summer season. With respect to adequacy assessment, this reduction is considered significant 

and reveals that appropriate TOU rates can be highly beneficial for mitigating the impact on 

reliability imposed by the massive deployment of PEV loads. 

 

Table 6.1 Adequacy indices for the case studies (conventional generation with 50 % PEV penetration) 

Season Day type 
Base case (No PEV) Base case plus 

50 % uncontrolled PEV load 
Base case plus 50 % PEV load 
 based on the proposed TOU 

LOLE 
(h/yr) 

LOEE 
(MWh/yr) 

LOLE 
(h/yr) 

LOEE 
(MWh/yr) 

LOLE 
(h/yr) 

LOEE 
(MWh/yr) 

Winter 
WD 7.11 928.9 31.80 5095 10.54 1390 

WE 0.02 2.36 0.14 15.40 0.14 15.40 

Spring 
WD 0.04 4.17 0.44 44.35 0.44 44.35 

WE 0.00 0.00 0.00 0.02 0.00 0.02 

Summer 
WD 2.12 252.7 9.61 1267 3.60 446.3 

WE 0.00 0.01 0.02 1.27 0.02 1.27 

Fall 
WD 0.07 5.48 0.72 70.88 0.72 70.88 

WE 0.00 0.00 0.00 0.04 0.00 0.04 

System 9.36 1193.6 42.74 6493.9 15.46 1968.7 

 

 
Figure 6.12 LOLE indices obtained for the winter season on weekdays 
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Figure 6.13 LOLE indices obtained for the summer season on weekdays 

 

 
Figure 6.14 LOLE indices obtained for the overall considered system (all seasons) 

6.3.2 Case 2: Wind Generation and 50 % PEV Penetration Level   

The key considerations in this case are the same as for the previous case except that a 1000 MW 

wind farm replaces a 400 MW conventional unit. It is expected that when a high PEV penetration 

occurs, there will be a dramatic change in the generation type and more renewable will be deployed 

in the system. This case study was conducted in order to investigate the effect on the TOU 

schedules and reliability indices due to a massive deployment of PEV loads plus an increased share 

of wind power generation. From the findings presented in Figure 6.15, it is apparent that the 
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presence of wind generation noticeably alters the TOU schedules and increases the number of the 

scenarios examined. This effect is due to the intermittent nature of wind generation, with its 

extreme dependence on variable wind speed characteristics at a particular site. It can also be 

observed that in addition to both the winter and summer seasons, the fall season also appeared to 

be affected by the inclusion of wind generation.  

 
Season Day Scenarios Decision 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Winter WD 512 
ID                         

FD                         

Summer WD 1024 
ID                         

FD                         

Fall WD 64 
ID                         

FD                         

Figure 6.15 Initial and final TOU schedule decisions for the affected seasons by the addition of the PEV 
charging load 

Table 6.2 lists the reliability indices computed for all seasons for the case studies considered. The 

results for the season affected by the addition of the PEV load and wind generation are highlighted. 

The following are the main findings to emerge from these studies: 

1- When the results of the base case in this section (with wind generation and without a PEV load) 

are compared with the results of the base case in the previous case (with neither wind generation 

nor a PEV load), the system indices are relatively higher, and it is impossible to maintain the 

same reliability indices, even if the capacity added by the wind generation is 2.5 times greater 

than that of the replaced conventional unit. These results are consistent with an important 

consideration often stated in the literature [13]–[16]: the wind turbine capacity required to 

maintain a given reliability measure can be considerably higher than that of conventional units. 

In some circumstances, it might also be impossible to maintain a given criterion through the 

addition of wind generation since it is highly dependent on both site-specific wind conditions 

and the particular design parameters of the wind turbines. 

2- In confirmation of the results from the previous case study, when 50 % PEV penetration is 

added under uncontrolled mode, the results obtained in this section also show that the winter 
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and summer weekdays are significantly more affected than in other seasons. The indices 

obtained for these seasons are increased by more than three times compared with the base case. 

As previously mentioned, a possible explanation for the increased reliability indices for the 

winter season is that the peak day of the system under study (IEEE-RTS) occurs during the 

winter. It can also be observed that the indices for a fall weekday are somewhat affected by the 

increased share of wind generation.     

3- When the PEV charging load is responsive to the proposed TOU tariff, a significant decrease 

in the system reliability indices results. For all seasons affected by the addition of the 

uncontrolled PEV load, all of the indices are reduced by approximately 70 % if the proposed 

TOU tariff is well designed and followed. These results are very encouraging with respect to 

establishing the TOU program as one effective solution for mitigating the impact of PEV 

charging loads and maintaining an acceptable level of reliability.     
 

Table 6.2 Adequacy indices for the case studies (conventional and wind generation and 50 % PEV 
penetration) 

Season Day type 
Base case (No PEV) Base case plus 

50 % uncontrolled PEV load 
Base case plus 50 % PEV load 
 based on the proposed TOU 

LOLE 
(h/yr) 

LOEE 
(MWh/yr) 

LOLE 
(h/yr) 

LOEE 
(MWh/yr) 

LOLE 
(h/yr) 

LOEE 
(MWh/yr) 

Winter 
WD 10.49 1351.0 42.98 7073 14.38 1880 

WE 0.03 2.53 0.21 23.23 0.21 23.23 

Spring 
WD 0.10 6.64 0.73 77.63 0.73 77.63 

WE 0.00 0.00 0.00 0.02 0.00 0.02 

Summer 
WD 3.75 414.5 17.28 2215 5.59 636.9 

WE 0.00 0.11 0.03 2.28 0.03 2.28 

Fall 
WD 0.17 12.80 1.37 141.87 0.61 56.33 

WE 0.00 0.00 0.00 0.02 0.00 0.02 

System 14.53 1787.6 62.60 9533.1 21.75 2696.29 
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6.4 Summary  

This chapter has presented a reliability-based framework for designing TOU schedules in order to 

mitigate the impact of an uncontrolled PEV charging load. The proposed framework involves the 

use of different stochastic simulation models, visualization approaches, and expert rules that help 

determine appropriate TOU schedules for the PEV charging load. Different TOU schedules are 

designed for the season affected by the deployment of the PEV load. The process of designing 

these schedules incorporates consideration of the realistic random behaviour of system elements, 

including random component failure, the stochastic nature of wind generation, and the variability 

and uncertainty of the load. To demonstrate the performance of the proposed framework, a number 

of case studies were applied using the IEEE-RTS. The results reveal that charging PEVs in 

accordance with the proposed TOU schedules would considerably mitigate the impact on 

reliability that would otherwise be expected when PEVs are charged in uncontrolled mode.      
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Chapter 7 
Conclusion, and Future Work 

7.1 Summary and Conclusion  

Electrification of the transportation sector and the widespread implementation of PEVs are 

expected to impose more challenges and complications for electrical systems. One such challenge 

is the quantification of the new supply infrastructures or reinforcements that are required for 

existing facilities to meet this new mobile load. In addition, the future profiles of these types of 

loads entail numerous uncertainties, including the intrinsic randomness in driver behaviour, lack 

of knowledge related to PEV penetration levels, and the unknown future of upcoming 

technological developments and charging infrastructures.   

Current power system facilities are neither well designed nor sufficiently prepared to 

accommodate these new types of loads with high penetration levels and uncertain characteristics. 

Before encountering these issues, essential actions should be taken into consideration: 1) the 

development of thorough research that can carefully address the issues imposed by PEV charging 

loads in order to realistically evaluate their impact on the reliability and performance of generation 

systems; 2) an investigation into solutions to smoothly accommodate widespread implementation 

of PEV charging loads while maintaining overall system reliability. In summary, a consideration 

of PEVs with regard to reliability is a timely and challenging task that needs to be thoroughly 

studied, and therefore represents the main motivation for the research presented in this thesis.  

Chapter 2 in this thesis presented a brief background to some basic definitions, reliability 

measures, and common approaches that are used to evaluate the reliability of the power system. 

This is followed by a general review of PEV types, PEV load characteristics, and associated 

uncertainties, together with a discussion related to previously developed models that discuss the 

inclusion of PEV charging modeling and wind generation into the adequacy assessment problem.   

In Chapter 3, a statistical evaluation study on different collections of PDFs is presented in an 

attempt to find the best model that reflects the variable characteristics of driver behaviour. The 

most commonly used PDFs, along with some advanced PDFs, have been verified against sample 

data pertinent to different variables of driver behaviour based on a consideration of well-known 

goodness of fit statistical tests. This statistical study has identified that Dagum, Burr, and Johnson 
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are among the best-fit PDFs for all random driver behaviour variables. These PDFs, which are 

statistically validated to represent realistic description models for the variables of driver behaviour, 

can be used directly in the simulation process of estimating PEV charging load profiles.  

Chapter 4 provided a comprehensive reliability evaluation framework that incorporates an 

adequate representation of all the factors that influence PEV charging loads and offers a realistic 

assessment of their adverse impact on the reliability performance of generation systems. A 

stochastic model based on the Monte Carlo simulation (MCS), combined with fitted PDFs, was 

deployed to explicitly take into account any underlying uncertainties and to generate a wide range 

of potential PEV charging scenarios. The proposed framework, which was applied to a well-known 

test system (IEEE-RTS), offers a thorough investigation into the reliability impact of different PEV 

charging characteristics, including the effect of penetration levels, charging levels, and PEV types 

with different battery specifications. Within the proposed framework, particular attention was paid 

to investigating the capability of current TOU rates, designed for residential loads, to mitigate the 

reliability impact of uncontrolled PEV charging loads.  

From the results of the case studies outlined in Chapter 4, it is noted that penetration level, 

charging level, and battery capacity are clearly major factors that affect uncontrolled PEV charging 

load profiles and, ultimately, computed reliability indices. Therefore, it is important for planners or 

researchers to acknowledge the consequence of either neglecting or representing these factors in an 

excessively simplified manner.  The results also reveal that the massive integration of PEV load 

under uncontrolled mode is very likely to draw considerable load and significantly increase the 

reliability indices. The reason for this significant increase lies in the trend that a large proportion of 

PEV owners arrives and starts charging during peak system hours. The results also show that the 

application of current TOU rates with respect to PEV loads is no longer an effective solution but 

one that can adversely impact system reliability, particularly with the use of charging level-2.   

While the importance of developing appropriate models for measuring the reliability impact 

of the different characteristics of PEV charging loads must be recognized, investigating potential 

solutions for mitigating the anticipated impact is also crucial. A novel reliability-based framework 

for the application of dynamic critical event programs for use with PEV charging loads was 

proposed in Chapter 5. The framework comprises two main models, the first of which determines 

the time and duration of critical system events as well as the amount of PEV demand not supplied 
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in the case of a shortage of supply. The second model examines the existing flexibility in PEV 

loads to respond to critical events. The proposed framework entails new indices, and these indices 

provide highly essential information about system behaviour that can be used for managing PEV 

charging loads.  

The results of the proposed framework highlight important findings, including: 1) There is 

enough flexibility in a PEV load to respond to critical system events without violating driver 

behaviour limits. 2) A considerable reduction in the system peak was achieved and the adequacy 

indices at all penetration levels, and for both charging levels, were significantly reduced. An 

important conclusion made in this chapter is that although the dynamic DR program (critical event 

call program) is a very promising alternative that is worthy of consideration for managing PEV 

charging loads, the application of these programs thus far for residential use involves major 

challenges. The successful deployment of these programs depends strongly on: 1) The availability 

of a well-designed infrastructure to facilitate information sharing and communication between 

electricity utilities and a significantly high volume of residential customers; 2) The development 

of automation technologies that would assist residential customers to respond and keep track of 

hourly price changes.  

The TOU program is the common DR program at residential and small business load levels. 

The TOU is designed to be static over a season, thus helping residential customers to easily 

understand and follow. However, designing such a static program that is valid for the whole season 

and that, at the same time reflects the realistic random behaviour of the system, is very challenging. 

Addressing these challenges was the core contribution of Chapter 6, which relates to the 

development of a proper reliability framework for designing TOU schedules for PEV loads. The 

proposed framework comprises different simulation models, a visualization method, and expert 

rules to simplify the assessment analysis and decision process for determining the type of each 

hour (off-, mid-, or on-peak). The models developed to design the TOU schedules consider the 

random behaviour of the system elements, including random component failures, the stochastic 

nature of wind generation, and load variability and uncertainty. Detailed studies are applied to the 

IEEE-RTS to demonstrate the applicability of the proposed framework. The results of these studies 

support the idea of developing TOU schedules specifically designed for PEV loads, hence TOU 
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can be considered as a viable and practical option to lessen the adverse impact of uncontrolled 

PEV charging loads on system reliability.   

7.2 Research Contributions       

The main contributions of the research presented in this thesis can be summarized as follows: 

1- A statistical evaluation study among a wide range of available theoretical PDFs was conducted 

to determine the best model that reflects the random characteristics of each driver behaviour 

variable. This study is very useful for system planners and researchers as it provides compact, 

easy, ready-to-use equations for directly describing data relevant to driver behaviour variables. 

2- PEV charging load models have been developed in a novel and detailed manner for use with 

uncontrolled and TOU-based strategies. The models are based on a Monte Carlo simulation 

(MCS) combined with fitted PDFs to manage inherent uncertainties and generate multiple 

scenarios. For an accurate determination of the impact on reliability, both models were based on 

the use of high-quality data and realistic estimates of factors affecting the charging process. 

3- The PEV charging load models are included in the reliability assessment problem to enable 

thorough investigations into the effect of PEV charging characteristics on the reliability and 

performance of generation. Also provided are a detailed analysis and better understanding of the 

behaviour of reliability indices with respect to PEV charging characteristics: driver behaviour, 

penetration levels, charging levels, battery capacities, and customer response to TOU pricing.  

4- A reliability framework is proposed to assess the flexibility of PEV charging loads in response 

to system-critical events. The framework is built upon two aspects: the first determines the time, 

duration, and amount of shortage for critical system events, when system supply facilities are 

unable to meet PEV loads, while the second assesses the feasibility of PEV owner response to 

critical events.  

5- A novel reliability based framework is proposed to help design a TOU schedule that is well-

adapted to PEV charging loads. The proposed framework involves the use of different 

stochastic simulation models, special data treatments, statistical tools, and expert criteria to 

simplify the decision process and determine the type of each hour (off-, mid-, or on-peak). 
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7.3 Future Work      

Based on the work presented in this thesis, the following suggestions represent areas for future 

investigation: 

1- The assessment framework proposed in Chapter 4 is a solid foundation to build upon in 

order to include transmission line facilities and conduct a composite reliability assessment. 

Therefore, the effect of a PEV charging load on nodal system indices (bus-wise indices) 

can be assessed. This would enable system planners to focus on identifying solutions for 

only buses affected by the presence of PEVs.  

2- It is assumed in this thesis that PEV charging occurs at home since in practice this is where 

people’s vehicles are available and parked most of the time. However, improving the 

accessibility and viability of public charging facilities (e.g., charging stations, work parking 

lots, or shopping parking lots) is crucially important. Further research needs to be 

conducted in order to include public charging facilities in the proposed models and to 

assess their impact on system reliability.  

3- The model-based DR programs developed in Chapters 5 and 6 can be further extended to 

evaluate the economic benefits of implementing these programs and to compromise their 

benefits with the expected reliability improvement. This can be achieved by improving the 

present framework to include a planning cost model that would measure the benefits of 

such programs together with traditional planning options such as new supply units, as well 

as system upgrades and reinforcements.
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Appendix A 
IEEE-RTS Load Data 

Table A.1 Weekly peak load in percent of annual peak  
 

Week 
 

Peak Load 
 

Week 
 

Peak Load 
 

1 
 

86.2 
 

27 
 

75.5 
 

2 
 

90.0 
 

28 
 

81.6 
 

3 
 

87.8 
 

29 
 

80.1 
 

4 
 

83.4 
 

30 
 

88.0 
 

5 
 

88.0 
 

31 
 

72.2 
 

6 
 

84.1 
 

32 
 

77.6 
 

7 
 

83.2 
 

33 
 

80.0 
 

8 
 

80.6 
 

34 
 

72.9 
 

9 
 

74.0 
 

35 
 

72.6 
 

10 
 

73.7 
 

36 
 

70.5 
 

11 
 

71.5 
 

37 
 

78.0 
 

12 
 

72.7 
 

38 
 

69.5 
 

13 
 

70.4 
 

39 
 

72.4 
 

14 
 

75.0 
 

40 
 

72.4 
 

15 
 

72.1 
 

41 
 

74.3 
 

16 
 

80.0 
 

42 
 

74.4 
 

17 
 

75.4 
 

43 
 

80.0 
 

18 
 

83.7 
 

44 
 

88.1 
 

19 
 

87.0 
 

45 
 

88.5 
 

20 
 

88.0 
 

46 
 

90.9 
 

21 
 

85.6 
 

47 
 

94.0 
 

22 
 

81.1 
 

48 
 

89.0 
 

23 
 

90.0 
 

49 
 

94.2 
 

24 
 

88.7 
 

50 
 

97.0 
 

25 
 

89.6 
 

51 
 

100.0 
 

26 
 

86.1 
 

52 
 

95.2 
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Table A.2 Hourly peak load in percent of daily peak [76] 
 
 

 
winter weeks 

 
summer weeks 

 
spring/fall weeks  

 
 

1 -8 & 44 - 52 
 

18 -30 
 

9-17 & 31 - 43  
Hour 

 
Wkdy 

 
Wknd 

 
Wkdy 

 
Wknd 

 
Wkdy 

 
Wknd 

 
12-1 am 

 
67 

 
78 

 
64 

 
74 

 
63 

 
75  

1-2 
 

63 
 

72 
 

60 
 

70 
 

62 
 

73  
2-3 

 
60 

 
68 

 
58 

 
66 

 
60 

 
69  

3-4 
 

59 
 

66 
 

56 
 

65 
 

58 
 

66  
4-5 

 
59 

 
64 

 
56 

 
64 

 
59 

 
65  

5-6 
 

60 
 

65 
 

58 
 

62 
 

65 
 

65  
6-7 

 
74 

 
66 

 
64 

 
62 

 
72 

 
68  

7-8 
 

86 
 

70 
 

76 
 

66 
 

85 
 

74  
8-9 

 
95 

 
80 

 
87 

 
81 

 
95 

 
83  

9-10 
 

96 
 

88 
 

95 
 

86 
 

99 
 

89  
10-11 

 
96 

 
90 

 
99 

 
91 

 
100 

 
92  

11-noon 
 

95 
 

91 
 

100 
 

93 
 

99 
 

94  
Noon-1pm 

 
95 

 
90 

 
99 

 
93 

 
93 

 
91  

1-2 
 

95 
 

88 
 

100 
 

92 
 

92 
 

90  
2-3 

 
93 

 
87 

 
100 

 
91 

 
90 

 
90  

3-4 
 

94 
 

87 
 

97 
 

91 
 

88 
 

86  
4-5 

 
99 

 
91 

 
96 

 
92 

 
90 

 
85  

5-6 
 

100 
 

100 
 

96 
 

94 
 

92 
 

88  
6-7 

 
100 

 
99 

 
93 

 
95 

 
96 

 
92  

7-8 
 

96 
 

97 
 

92 
 

95 
 

98 
 

100  
8-9 

 
91 

 
94 

 
92 

 
100 

 
96 

 
97  

9-10 
 

83 
 

92 
 

93 
 

93 
 

90 
 

95  
10-11 

 
73 

 
87 

 
87 

 
88 

 
80 

 
90  

11-12 
 

63 
 

81 
 

72 
 

80 
 

70 
 

85 

 

Table A.3 Daily peak load in percent of weekly peak [76] 
 

Day 
 

Peak Load 
 

Monday 
 

93 
 

Tuesday 
 

100 
 

Wednesday 
 

98 
 

Thursday 
 

96 
 

Friday 
 

94 
 

Saturday 
 

77 
 

Sunday 
 

75 
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