
Resource Orchestration in
Softwarized Networks

by

Md. Faizul Bari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Md. Faizul Bari 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner Yashar Ganjali
Associate Professor
Department of Computer Science
University of Toronto

Supervisor Raouf Boutaba
Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member Martin Karsten
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member Bernard Wong
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal-external Member Pin-Han Ho
Professor
Department of Electrical & Computer Engineering
University of Waterloo

ii

Author’s Declaration for Electronic Submission of Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Md. Faizul Bari

iii

Abstract

Network softwarization is an emerging research area that is envisioned to revolutionize
the way network infrastructure is designed, operated, and managed today. Contemporary
telecommunication networks are going through a major transformation, and softwarization
is recognized as a crucial enabler of this transformation by both academia and industry.
Softwarization promises to overcome the current ossified state of Internet network archi-
tecture and evolve towards a more open, agile, flexible, and programmable networking
paradigm that will reduce both capital and operational expenditures, cut-down time-to-
market of new services, and create new revenue streams. Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) are two complementary networking
technologies that have established themselves as the cornerstones of network softwariza-
tion. SDN decouples the control and data planes to provide enhanced programmability
and faster innovation of networking technologies. It facilitates simplified network control,
scalability, availability, flexibility, security, cost-reduction, autonomic management, and
fine-grained control of network traffic. NFV utilizes virtualization technology to reduce
dependency on underlying hardware by moving packet processing activities from propri-
etary hardware middleboxes to virtualized entities that can run on commodity hardware.
Together SDN and NFV simplify network infrastructure by utilizing standardized and
commodity hardware for both compute and networking; bringing the benefits of agility,
economies of scale, and flexibility of data centers to networks.

Network softwarization provides the tools required to re-architect the current network
infrastructure of the Internet. However, the effective application of these tools requires
efficient utilization of networking resources in the softwarized environment. Innovative
techniques and mechanisms are required for all aspects of network management and control.
The overarching goal of this thesis is to address several key resource orchestration challenges
in softwarized networks. The resource allocation and orchestration techniques presented in
this thesis utilize the functionality provided by softwarization to reduce operational cost,
improve resource utilization, ensure scalability, dynamically scale resource pools according
to demand, and optimize energy utilization.

iv

Acknowledgements

First and foremost, I thank Allah, the Exalted in Might, the Wisest, and the Omniscient,
for bringing me into existence and enabling me to complete this work.

I express my warmest gratitude to my supervisor, Professor Raouf Boutaba, for sup-
porting me with a continuous stream of intellectual, moral, and financial assistance. He
has always encouraged me to pursue my ideas and provided invaluable feedback to im-
prove the quality of my research. I am especially thankful for his honest feedback that
had developed me as a researcher and a person. He is not only a true mentor to me in
the avenues of research but also an invaluable friend in the ways of life. Finally, I want to
extend my gratitude and acknowledgments to Professor Yashar Ganjali, Professor Martin
Karsten, Professor Bernard Wong, and Professor Pin-Han Ho for their insightful comments
and constructive criticisms on this work.

I am truly grateful to my father, Dr. Ali Hossen Bhuyian, and my mother, Dr.
Monowara Begum, for constantly inspiring me in the quest for knowledge, without which
it would be impossible for me to complete this work. Their unconditional love and sup-
port enabled me to secure my career plans. I owe my deepest gratitude to my colleagues
Shihab, Arup, Rabbani, Faten, and Qi for their support, enlightening discussions, and a
lot of cheerful moments. I thank all my teachers for their inspiration, wisdom and endless
efforts. Last but not least, I thank everyone who has contributed to this thesis, directly or
indirectly.

v

Dedication

Dedicated to my father Dr. Ali Hossen Bhuyian.

vi

Table of Contents

Committee ii

Author’s Declaration iii

Abstract iv

Acknowledgements v

Dedication vi

Table of Contents vii

List of Tables xii

List of Figures xiii

List of Algorithms xvi

1 Introduction 1

1.1 Enabling Technologies for Softwarization 4

1.2 Challenges in Softwarized Networks . 5

1.2.1 Multiple Controllers in SDN . 6

1.2.2 Service Function Chain (SFC) Orchestration 9

vii

1.3 Research Contributions . 14

1.3.1 Dynamic Controller Provisioning 14

1.3.2 Orchestrating Virtual Network Functions 14

1.3.3 Energy Smart Service Function Chain Orchestration 15

1.4 Thesis Organization . 15

2 Dynamic Controller Provisioning 16

2.1 Software-Defined Networking (SDN) . 17

2.1.1 Traditional vs. Software-Defined Network 18

2.1.2 SDN Architecture . 18

2.1.3 OpenFlow Switch . 21

2.1.4 Switch – Controller Interaction . 23

2.2 Related Work . 24

2.2.1 Control Plane Scalability . 24

2.2.2 Multi-Controller Provisioning . 26

2.3 Control Plane Assumptions . 27

2.3.1 Logically Centralized – Physically Distributed 27

2.3.2 In-Band vs. Out-of-Band Signaling 28

2.3.3 Control Channel Bootstrapping . 29

2.3.4 Switch Reassignment . 29

2.3.5 Inter-Controller Communication & State Synchronization 30

2.4 System Description . 31

2.4.1 Control Plane Management System 33

2.4.2 Path Setup Process . 35

2.5 Mathematical Formulation . 36

2.5.1 Problem Definition . 36

2.5.2 Problem Formulation . 38

2.6 Proposed Heuristics . 41

viii

2.6.1 Dynamic Controller Provisioning with Greedy Knapsack (DCP-GK) 41

2.6.2 Dynamic Controller Provisioning with Simulated Annealing (DCP-SA) 42

2.7 Evaluation . 46

2.7.1 Simulation Setup . 46

2.7.2 Results . 47

2.8 Conclusion . 53

3 Orchestrating Virtual Network Functions 55

3.1 Introduction . 55

3.2 Network Function Virtualization . 58

3.3 Mathematical Model and Problem Definition 60

3.3.1 Physical Network . 61

3.3.2 Virtualized Network Functions (VNFs) 61

3.3.3 Traffic Request . 62

3.3.4 VNF Orchestration Problem (VNF-OP) 63

3.4 Problem Formulation and Complexity Analysis 64

3.4.1 Physical Network Transformation 65

3.4.2 ILP Formulation . 67

3.5 Heuristic Solution . 75

3.5.1 Modeling with Multi-Stage Graph 75

3.5.2 Heuristic Algorithm . 76

3.5.3 Finding a Near-Optimal Solution 77

3.5.4 Heuristic in Action . 78

3.6 Performance Evaluation . 79

3.6.1 Simulation Setup . 80

3.6.2 Performance Metrics . 83

3.6.3 VNFs vs. Hardware Middleboxes 83

3.6.4 Performance Comparison Between CPLEX and Heuristic 84

ix

3.6.5 Performance Comparison with Previous Work 91

3.6.6 Scalability of Heuristic . 92

3.6.7 Effect of High Traffic Volume . 92

3.7 Related Work . 94

3.7.1 Management and Orchestration of Network Functions 94

3.7.2 VNF and VNF Chain Placement 94

3.7.3 Enabling Technologies for NFV . 95

3.8 Conclusion . 95

4 Energy Smart Service Function Chain Orchestration 97

4.1 Introduction . 97

4.2 Background . 100

4.2.1 Fluctuation in Availability of Renewable Energy 100

4.2.2 Variation in Different Electricity Grids’ Carbon Footprint 100

4.2.3 Energy Consumption States of Networking Equipment 102

4.2.4 Central Office Re-architected as Data Center (CORD) 102

4.2.5 SFC Migration and Virtualization Technology 102

4.3 System Architecture . 103

4.3.1 Assumptions . 103

4.3.2 ESSO Architecture . 105

4.4 Problem Formulation . 107

4.4.1 Multi-Location SFC Orchestration (MLSO) Problem 107

4.4.2 Input Representation . 108

4.4.3 Physical Infrastructure Representation 109

4.4.4 Decision Variables . 112

4.4.5 ILP Formulation . 112

4.4.6 Objective Function . 114

4.5 Heuristics for Orchestration . 116

x

4.5.1 SFC Embedding . 116

4.5.2 SFC Migration . 121

4.5.3 SFC Consolidation . 122

4.6 Performance Evaluation . 122

4.6.1 Datasets . 124

4.6.2 Performance Metrics . 126

4.6.3 Migration and Reduction in Carbon Footprint 127

4.6.4 Simulation Setup . 127

4.6.5 Results . 128

4.7 Related Work . 137

4.8 Conclusion . 139

5 Conclusion and Future Research Directions 140

5.1 Conclusion . 140

5.2 Future Research Directions . 142

References 144

xi

List of Tables

2.1 Characteristics of the simulated ISP topologies 46

2.2 Simulated annealing parameters . 47

3.1 Glossary of symbols . 68

3.2 Server and middlebox data used in evaluation 81

3.3 Average execution time . 88

4.1 Cost-matrix computed by L-Or . 117

4.2 Embedding table for tabu search . 117

4.3 Server, switch, and VNF power consumption 125

4.4 Network topologies . 126

4.5 Running time of heuristic (per SFC request) 133

4.6 Running time of CPLEX (per SFC request) 133

xii

List of Figures

1.1 Flow setup process . 7

1.2 Network with a single controller . 8

1.3 Network with multiple controllers . 8

1.4 Service Function Chains (SFCs) in different domains 10

1.5 Fluctuation in renewable energy production 13

2.1 Routing in traditional vs. software-defined networks 19

2.2 SDN architecture . 20

2.3 Components of an OpenFlow switch . 21

2.4 Components of an OpenFlow flow-entry 22

2.5 Match fields in OpenFlow flow-entry . 22

2.6 Packet forwarding by an OpenFlow switch 23

2.7 Path setup for new flow . 24

2.8 Control plane deployment . 27

2.9 In-band vs. out-of-band control channel . 28

2.10 Distributed data-store for inter-controller state synchronization 30

2.11 Management system architecture . 34

2.12 Path setup method with flow-setup cost 37

2.13 RF-I: Controller count and flow-setup time vs. time 48

2.14 RF-II: Controller count and flow-setup time vs. time 49

2.15 CDF of flow-setup time . 51

xiii

2.16 Summary of overhead and average flow-setup time 52

3.1 NFV architectural framework . 59

3.2 VM sharing and embedding of SFC-A and SFC-B 60

3.3 VNF chain . 62

3.4 Network transformation . 66

3.5 Modeling with multi-stage graph . 78

3.6 Traffic distribution over time for different scenarios 80

3.7 Time vs. cost ratio . 82

3.8 Topological property comparison between hardware middlebox and VNF
deployment (Internet2) . 85

3.9 Resource utilization . 86

3.10 Topological properties of solution . 87

3.11 OPEX components for AS-3967 . 89

3.12 Results for Rocketfuel topology (AS-3967) 90

3.13 Performance comparison . 91

3.14 Scalability of heuristic . 92

3.15 Cost ratio (heuristic / CPLEX) with varying load 93

4.1 Tiered network structure . 99

4.2 Renewable energy and grid carbon footprint data (June 2017) 101

4.3 Multi-tiered NFV-PoD network . 104

4.4 Components of local orchestrator . 105

4.5 Components of global orchestrator . 106

4.6 A Service Function Chain (SFC) . 108

4.7 Graph representation of an SFC . 109

4.8 Example of a service chain . 116

4.9 Traffic pattern and overall carbon footprint for AS-13129 129

4.10 Traffic pattern and overall carbon footprint for AS-7170 130

xiv

4.11 Traffic pattern and overall carbon footprint for AS-3549 131

4.12 Traffic pattern and overall carbon footprint for AS-3561 132

4.13 Green energy utilization (AS-13129) . 134

4.14 Green energy utilization (AS-7170) . 134

4.15 Acceptance ratio . 135

4.16 Impact of migration (AS-13129) . 136

xv

List of Algorithms

1 Algorithm for generating feasible initial state 43
2 Reassignment algorithm . 45
3 ProvisionTraffic(t, Ḡ) . 77
4 Embedding: Stage 1 (runs @G-Or) . 118
5 Embedding: Stage 2 (runs @L-Or) . 119
6 Embedding: Stage 3 (runs @G-Or) . 120
7 Resource consolidation . 123

xvi

Chapter 1

Introduction

The proliferation of the Internet has created a digital society where online communication
has become an essential and ubiquitous part of our lives. Online communication services
have evolved into an infrastructure utility that enables everyone and everything to com-
municate with each other. The Internet’s history is marked by continuous evolution and
growth of user demand and capacity; coupled with the explosive growth of new services and
applications provided on top of it. A direct consequence of this phenomenon is observed
through the tremendous growth experienced by the Internet over the last 30 years [1].
In 2016, per year global Internet traffic was at 1.2 ZB, and is predicted to reach 3.3 ZB
per year by 2021; indicating a threefold increase within a duration of 5 years [2]. This
growth is driven by the rapid surge of devices like smartphones, smart-things, tablets,
and laptops connecting to the Internet and emerging technologies like cloud computing,
storage synchronization services, photo-intensive social networks, big data, on-demand
video streaming, online gaming, Internet of Things (IoT), and Virtual/Augmented Reality
(VR/AR) applications. These new applications and technologies require ultra-low latency
and significantly higher bandwidth; imposing new challenges like on-demand scaling, high-
resiliency, and on-the-fly service configuration for the contemporary and future network
architectures.

Networking technologies have always faced requirements from multiple stakeholders like
network operators, service providers, content providers, application developers, and end-
users. Most often these requirements do not comply with each other, e.g., an end-user may
want to have the best possible Quality of Service (QoS), while the network operator prefers
to minimize cost for providing just enough QoS. Contemporary and emerging Internet
applications and services have highly diverse requirements; for example, streaming one
minute of High Definition (HD) video requires sending around 4 megabytes of data; in

1

contrast, streaming one minute of VR video takes hundreds of megabytes [3]. With the
increasing popularity of VR, a much higher bandwidth requirement will be imposed on the
network infrastructure. In addition, IoT is encouraging the rapid deployment of Internet-
connected devices that are often controlled and monitored through the Internet. Most
IoT applications require ultra-low latency and at the same time generate mountains of
data that must be transported through the network for cloud-based storage and analytics.
The number of IoT devices is estimated to reach 20–50 billion by 2020 [4]; therefore, the
demand for both ultra-low latency and high bandwidth network will continue to rise. The
requirements mentioned above demand sophisticated technologies to diversify and enhance
network transport’s flexibility, agility, and capacity.

Technological innovations in the Internet’s architecture have not progressed at the same
pace as that of the services and applications provided on top of it. The underlying infras-
tructure and technology have mostly remained ossified at the same stage for decades. The
primary reason behind this ossification is the unnecessary coupling between the service-
oriented features and transport-oriented infrastructure of the Internet. A network operator
is constrained within the functionalities provided by equipments of the underlying infras-
tructure. Whenever a new network requirement is identified, a Request For Proposal
(RFP) is issued by the network operator. Several vendors can offer solutions conforming
to the requirements, and then the network operator picks one of them. Vendors typically
use specialized hardware and closed-source software to retain their market position and
optimize their product for both cost and performance. Most often network operators do
not have enough flexibility or programmability to add, modify, or remove any built-in func-
tionality of the appliance. This approach introduces a dependency on proprietary, closed,
and vertically-integrated networking hardware and software; creates vendor and platform
lock-in, and restrains the operator within limited options to upgrade an existing appliance.
In most cases, network operators must purchase a new product, possibly from the same
vendor, to introduce new services in their networks.

Apart from the issues mentioned above, another category of issues arises due to the
way network capacity is planned and the rampant rise of Internet traffic. The traditional
approach to network capacity planning involves over-provisioning of resources to meet es-
timated future requirements. The current rapid growth of traffic forces network planners
to pre-allocate significant amount of additional resources that reduces the overall utiliza-
tion of the network. To overcome this challenge, the current network architecture must
circumvent the hardware-centric design paradigm and transition towards an open-source
and programmable software-centric network paradigm, where network resources are provi-
sioned autonomously and dynamically based on actual traffic volume. For example, Google
developed a private WAN, called B4 [5], to connect its data-centers around the globe us-

2

ing commodity switches built from merchant silicon and software-based control platform.
B4 provided substantial cost-saving by enabling Google to run many network links near
100% utilization for extended periods of time. A move from closed-source and proprietary
hardware-based approach to open-source and programmable software-enabled networking
will enable network operators to adapt their network in the most suitable and optimal
manner to reduce cost and provide better QoS.

The lack of programmability and closed-source nature of network appliances lead to
complex and inflexible network control and management systems, cripple service flexibility
and agility, prolong time to market for new services, and hinder innovation and adoption of
new technologies. Contemporary and emerging Internet applications and services require a
paradigm shift in the networking architecture to ensure a fast, secure, reliable, flexible, and
agile underlying network infrastructure. Network softwarization [6] is an emerging area of
research that can address the limitations mentioned above. It offers a new networking
paradigm that has the potential to overcome inflexibilities in current network architecture,
redesign and significantly enhance service provisioning, reduce capital (CAPEX) and opera-
tional (OPEX) expenditures through better resource utilization, provide self-management,
and bring cloud-like agility, flexibility and economies of scale to the network infrastructure.
Network softwarization revolutionizes the way network infrastructure is designed, operated,
and managed by facilitating the unification of network and cloud applications. This rev-
olution is further driven by the wide availability and adoption of open-source software
platforms like OpenStack [7], OpenDaylight [8] and OPNFV [9]. Network softwarization
enables a network operator to reduce CAPEX by using commodity servers and switches in-
stead of vendor-specific proprietary hardware. Similar to cloud computing, softwarization
empowers an network operator to open up the infrastructure with programmable interfaces
for third-party content providers and software developers as a way to generate new revenue
streams. To fully exploit the benefits of network softwarization, innovative techniques and
mechanisms are required for all aspects of network management and control.

The overarching theme of this thesis is the development of resource allocation and
orchestration techniques for addressing several critical obstacles in softwarized networks.
In the rest of this chapter, an overview of key enabling technologies for softwarization are
provided; then several key challenges in softwarized networks are presented. Next, the
main contributions of this dissertation are summarized, and finally, an outline of the next
chapters is provided.

3

1.1 Enabling Technologies for Softwarization

Transitioning from a hardware-centric to a software-centric paradigm requires the disag-
gregation of packet processing logic from the underlying hardware switching fabric. The
infrastructure should utilize standardized and commodity hardware whenever possible; this
will eliminate vendor lock-ins, and new technological innovations will be easier to integrate.
Moreover, the software for processing network packets can evolve independently of the un-
derlying hardware equipment. A software-driven infrastructure enables a higher degree
of operational automation through standardized APIs, and SDKs. Different software-
based network components can share the commodity hardware pool; thereby reducing cost
and increasing utilization. In addition, network capacity can be planned and scaled in a
fluid manner by adding additional hardware resources only when they are required. The
transformation towards a software-centric network architecture or network softwarization
is envisioned to drive the next evolution of Internet’s underlying network architecture.
This section provides a brief description of Software-Defined Networking (SDN) [10] and
Network Function Virtualiztion (NFV) [11], which have emerged as the primary enabling
technologies for softwarization.

SDN and NFV are two complementary networking technologies that have established
themselves as the cornerstones of network softwarization. SDN proposes to decouple the
control and data planes of the network by stripping the control logic from network de-
vices. The control logic is provisioned on a logically centralized entity called the network
controller that maintains a global network view and is typically deployed on a single or
cluster of servers. In traditional networks, the data and control planes are coupled in
the hardware. The control plane runs distributed routing protocols like OSPF, IS-IS, or
BGP to compute packet forwarding rules that are utilized by the data plane to forward
traffic. In most cases, network devices are proprietary, closed-source, and vertically inte-
grated. It is very complicated or in most cases impossible to deploy a new routing protocol
without upgrading networking devices. In an SDN, the data plane is implemented by
simple commodity network devices that can efficiently forward traffic based on forwarding
table rules. The rules in the forwarding table are computed and installed by the con-
troller using a standardized communication protocol like OpenFlow [12]. SDN promises
flexibility and programmability to dynamically re-configure the data plane in real-time. Al-
though software has been deployed for decades to control networks, SDN enables software
to define network behaviors rather than merely controlling network operations. It facili-
tates simplified network control, scalability, availability, flexibility, security, cost-reduction,
failure-restoration, autonomic management, and fine-grained control of network traffic.

On the other hand, NFV’s objective is to re-design the service provisioning architecture

4

by virtualizing network functions that were previously provided by dedicated hardware ap-
pliances or middleboxes. NFV utilizes virtualization technology to reduce dependency on
underlying hardware by moving packet processing activities from proprietary hardware
middleboxes to virtualized entities called Virtual Network Functions (VNFs) that can be
instantiated on commodity hardware. In traditional networks, services are materialized by
utilizing various types of middleboxes which are usually procured from third-party ven-
dors. Middleboxes are typically vendor-specific, vertically-integrated, and closed-source.
Network operators are locked-in with a vendor once its middleboxes are integrated into
the network. In addition, middleboxes require specially trained personnel for on-going op-
eration and maintenance which leads to high OPEX [13, 14]. Moreover, the closed-source
nature of middleboxes hinders innovation and prolongs the time-to-market of new ser-
vices. NFV resolves these issues by decoupling a middlebox’s packet processing logic from
the underlying hardware through virtualization. VNFs can be deployed in data centers,
telecommunication central offices, network nodes, and even in customer premises equip-
ments. SDN and NFV simplify network infrastructure by utilizing inexpensive commodity
hardware for both compute and networking; bringing the benefits of agility, economies of
scale, and flexibility of data centers to networks.

All together, network softwarization provides the tools required to re-architect the cur-
rent network infrastructure of the Internet. However, the effective application of these tools
requires efficient utilization of network resources in the softwarized environment. SDN pro-
vides control over the paths taken by different traffic flows; NFV enables software-based
packet processing to realize network services, and together they provide the ability to
dynamically orchestrate resources to satisfy application requirements, achieve energy effi-
ciency, and lower operational costs through optimal resource allocation and orchestration.

1.2 Challenges in Softwarized Networks

This section provides an overview of the key research challenges of resource orchestration
in softwarized networks addressed in this thesis. First, we discuss the performance and
scalability challenges for multi-controller deployment in SDN. Then we describe several
issues related to resource allocation and energy efficiency for network function orchestration
in softwarized networks.

5

1.2.1 Multiple Controllers in SDN

A common misconception about SDN based deployment is that a single physical server
operates as the centralized controller [15, 16]. However, the controller is only logically cen-
tralized; it can be physically distributed. In most cases, a single server will not be enough
to meet the processing, delay, or fault-tolerance requirements of a network [17, 18, 19].
First, the number of events like flow-setup requests and packet counter updates grows with
the number of switches, flows, and traffic. A single physical server may not have enough
processing capacity to handle all the incoming requests. Second, a single controller will
always be too far from some switches if the network spans a moderately large geographic
area. Hence, multiple controllers will be required to keep the switch-to-controller latency
within acceptable limits. Finally, a single controller introduces a single-point-of-failure for
the entire network. So, in most SDN deployments, the logically centralized controller is
realized by deploying it as a distributed entity. The controller can be distributed using
different techniques, for example, a good number of research works like FlowVisor [20],
Onix [21], Kandoo [22], SiBF [23], HyperFlow [24], and Devolved-Controllers [25] explored
the system level technicalities of this issue and proposed techniques to distribute the con-
troller. In this work, we focus on the development of efficient algorithms to dynamically
determine the best locations to place multiple controllers within a network.

In an SDN network, the logically centralized controller maintains a global network
view and controls all network devices. Whenever a switch or router receives a new flow,
it first checks its local flow-table(s) for a matching forwarding rule. If no matching rule is
found, then it requests the controller for a traffic forwarding rule. Based on the properties
of the flow, the controller determines the appropriate route for the traffic and installs
forwarding rules on all devices on the path. From that point on, all switches on the
path handle packets in that flow using the newly installed rules. The flow-setup process
is depicted in Figure 1.1, and the time required to perform this operation is commonly
known as the flow-setup time. It includes the controller’s processing delay to determine
the forwarding rules and maximum Round-Trip-Time (RTT) between any switches on
the path and the controller. The controller’s processing delay depends on the number of
pending tasks at that particular time-instance and the computational overhead required
to determine the forwarding rules. Several studies have shown that the processing delay
at the controller increases exponentially once the number of pending requests exceeds a
certain threshold [26, 27, 28]. The RTT component of the flow-setup time depends on the
network topology, maximum network distance between any switch on the path and the
controller, and the amount of congestion on the paths between the switches and controller.

In large-scale WAN and data center deployments, a single controller will certainly lead

6

Figure 1.1: Flow setup process

to performance and scalability issues [15]. Deploying multiple controllers is an effective
solution to this problem. Figure 1.2 and Figure 1.3 show the same network with a single
and then with multiple controllers, respectively. With multiple controllers, the network is
effectively divided into zones where each controller takes the responsibility to control the
switches in its own zone. However, to efficiently utilize multiple controllers, we need to dy-
namically adapt the number and locations of controllers according to demand fluctuations
and topological characteristics of the network. On one hand, the number of controllers
should be sufficient to handle network load, and their locations should ensure acceptable
switch-to-controller latencies. On the other hand, the deployment of multiple controllers re-
quires regular state synchronization between the controllers to maintain a consistent global
network view [19]. The overhead for state synchronization can be significant if the number
of controllers in the network is large. In addition, network dynamicity is a major concern as

7

Figure 1.2: Network with a single controller

Figure 1.3: Network with multiple controllers

traffic pattern and volume in both WAN and data center environments exhibit significant
spatial and temporal fluctuations [29, 30, 31]. The controller provisioning scheme needs to
react to network “hotspots” and dynamically re-adjust the number and locations of con-
trollers to ensure an acceptable flow-setup time. A static controller placement provisioned
for peak usage across all regions will require a large number of controllers and incur a high
state synchronization overhead. Alternatively, if the number of provisioned controllers is
not sufficient to handle the network load, then the performance of all applications and
services provided by the network will degrade. Hence, we need to find the right trade-off
between performance, scalability, and inter-controller state synchronization overhead to
dynamically provision multiple controllers in an SDN.

8

1.2.2 Service Function Chain (SFC) Orchestration

A second challenging issue for softwarized networks is the network service provisioning
platform [6, 11]. Contemporary communication networks deploy a diverse set of net-
work services to achieve different types of security and performance objectives [32, 14].
These services are materialized by utilizing various types of hardware appliances or mid-
dleboxes [13, 14]. Examples of such middleboxes include firewall, proxy, WAN optimizer,
Evolved Packet Core (EPC), IP Multimedia Subsystem (IMS), Intrusion Detection System
(IDS) and Intrusion Prevention System (IPS). These middleboxes have become an integral
part of modern networks to such an extend that several recent studies found the number
of middleboxes to be comparable to the number of routers and switches in enterprise and
data center networks [14, 33, 34]. Although, middleboxes are ubiquitously deployed in
modern networks, they result in a lot of management and operational complexities along
with significant CAPEX and OPEX [35]. The primary reason behind this situation can be
attributed to the vendor-specific, vertically-integrated, and closed-source nature of middle-
boxes.

Hardware middleboxes are expensive and require specially trained personnel for de-
ployment and maintenance. The closed and proprietary nature of traditional middleboxes
makes it very challenging and cumbersome for the network operator to introduce new ser-
vices [11]. It is often impossible to add new functionality to an existing middlebox. In many
cases, the network operator is compelled to upgrade or purchase new hardware. Today’s
networks are facing an ever-increasing requirement to introduce diverse and often short-
lived services to retain customer base. These services often require the purchase of new
network equipment that is operated only for a short time-span; sometimes the equipment
becomes obsolete even before any profit is earned from the offered service [11]. In addition,
diverse services demand rapidly changing skill-sets from the operational and management
team members of the telecommunication network. Moreover, the telecommunication indus-
try is finding it difficult to raise their profit margin due to ever increasing competition with
Over-The-Top (OTT) service providers, as increasing service prices will certainly lead to
customer churn [36, 11]. To overcome these issues, a flexible, agile, and innovative service
provisioning platform is required that can reduce both CAPEX and OPEX for network
services and provide fast and simple mechanisms to introduce new services in the network.

Network services are composed by arranging multiple middleboxes in a specific order
to assemble a processing pipeline. Network traffic passes through this pipeline, procuring
multiple stages of middlebox processing to ensure a particular security or performance
objective [32, 14]. For example, a traffic may need to go through a firewall, then an IDS,
and finally through a proxy [37]. This process is very common for middleboxes and is

9

typically called Service Function Chaining (SFC) [38]. SFCs are used to provide various
types of user-facing services that are crucial for generating revenue and avoiding customer
churn. Different types of SFCs are customarily used for everyday operations in modern
networks. The IETF Network and Service Chaining Working Group has several IETF
drafts showcasing middlebox chaining use-cases in ISP [39], mobile [40], and data center
networks [41]. Figure 1.4 depicts three such SFCs that are frequently deployed in real-
world networks: (i) native IPv4 user subscription chain in broadband, (ii) 3GPP mobile
network services, and (iii) access to application level SFC in data center.

CPE

User
Management

QoS
Controller

DPI

Load
Balancer

Border
Router

FirewallURL Filter

(a) SFC in broadband network

User
Equipment

eNodeB P-GatewayS-Gateway
IP

Backbone

(b) SFC in mobile network

Border
Router

Web
Optimizer

Monitoring
Edge

Firewall

Segment
Firewall

Application
Firewall

Monitoring
Application
Controller

(c) SFC in data center

Figure 1.4: Service Function Chains (SFCs) in different domains

10

The process of sequencing an in-network middlebox chain is commonly referred to
as SFC Orchestration [42]. Currently, middleboxes are attached to particular routers or
switches within the network. In most cases, operators route traffic through the required
sequence of middleboxes by manually crafting the routing table entries [43]. Moreover, the
proprietary and closed-source nature of these middleboxes creates isolated silos of manage-
ment and operational groups that result in undesirable hindrance in the SFC orchestration
process. Network operators need to coordinate between multiple management groups for
resource allocation and routing table manipulation for setting up a service chain. Mid-
dleboxes effectively behave as bumps on the wire where the traffic leaves the primary
forwarding path to go through the middlebox and then return to the primary path again.
It is a cumbersome and error-prone process that introduces a lot of management and op-
erational headache. Furthermore, the fixed locations of middleboxes forces the network
operator to use suboptimal routing paths. Network flows are negatively impacted in this
architecture; they need to travel to particular middleboxes to get the required services. If
we could instantiate a middlebox in real-time, at locations where they are required, at a
particular time, then we will be able to better serve network flows.

Network Function Virtualization or NFV is an emerging and promising technology that
can address these limitations [44, 42, 11]. It proposes to move packet processing from hard-
ware middleboxes to software programs or Virtual Network Functions (VNFs) running on
commodity (e.g., x86 based systems) servers. This approach decouples the packet process-
ing logic from the underlying hardware appliance and brings the benefits of economies of
scale, similar to that in cloud computing, to the network infrastructure. NFV provides
ample opportunities for network optimization and cost reduction. Previously, middleboxes
were placed at fixed locations, but now we can deploy a VNF at any location where there
are compute resources. In telecommunication networks, these locations are typically called
Central Office (CO) or Point-of-Presence (PoP), and they already contain the required
infrastructural setup for compute and network resources that can be utilized for VNF
deployment. NFV can open-up these resources to enable opportunistic utilization of the
network infrastructure. Efficient algorithms can be designed to simultaneously optimize
VNF locations and traffic routing paths that will significantly reduce the network OPEX.
This approach will not hamper performance as many state-of-the-art software middleboxes
have already shown the potential to achieve near-hardware performance [45, 46, 47].

Another interesting research challenge in service function chaining, is the issue of re-
source orchestration for energy efficiency. Most often middleboxes are provisioned to handle
the peak traffic of a network and consume significant amount of energy. For example, in
2013, worldwide telecommunication networks consumed around 83 Giga-Watts of electric-
ity that is equivalent to the power consumed by 12 New York cities [48]. The huge energy

11

requirement comes with negative environmental implications through emission of several
million tons of carbon [49]. In 2007, the annual carbon footprint for the Information and
Communication Technology (ICT) sector was around 830 metric tons and is projected to
double by 2020 [50]. Within the ICT sector, the telecommunication industry is responsible
for around 47% of the total carbon emissions [50]. With the growing demand for today’s
bandwidth-intensive Internet services, the energy requirement of these networks will con-
tinue to grow and increase their carbon footprint. Several government regulations and
carbon emission taxes were established to drive companies to use renewable sources of en-
ergy [51, 52, 53]. Moreover, an organization’s reputation can significantly decrease if it has
a high carbon footprint or does not disclose carbon emission values [54]. Hence, to comply
with regulations and uphold corporate reputation, telecommunication networks need to
reduce carbon footprint without significantly increasing operational costs [55, 56, 57].

Network softwarization enables innovative ways to reduce the carbon footprint of a
network. For example, the utilization of on-site renewable energy sources like wind turbines
or solar panels can be maximized by migrating service chains across COs or PoPs. SFCs
can be provisioned intelligently in a topology aware manner to opportunistically switch-off
unused servers, switches, and switch ports [58, 59]. However, the availability of renewable
energy sources like solar and wind fluctuates a lot between different locations. They are very
intermittent in nature and vary with time and weather conditions. Using the data collected
by the U.S. Climate Reference Network and Regional Climate Reference Network [60],
estimated energy generation potential from solar and wind for six different cities in six
different states in the U.S. are shown in Figure 1.5(a) and Figure 1.5(b), respectively. As we
can see from the figure, the production rate of renewable energy fluctuates both in spatial
and temporal dimensions significantly. Intelligent and adaptable resource orchestration
schemes are required to handle this fluctuation and efficiently utilize the available renewable
energy.

With SDN and NFV, VNFs are not restricted to any fixed location; they can be pro-
visioned on any compute server within the network. Moreover, coupled with an SDN
controller, VNFs and their associated traffic flows can be migrated to different compute
servers within a short time-frame [61, 62, 63]. Intelligent algorithms can be designed to re-
duce the overall energy consumption and carbon footprint by (i) opportunistically utilizing
more resources at locations with surplus renewable energy while minimizing consumption
at locations where brown energy is the only option and (ii) making VNF placement de-
cisions in a manner that allows switches, switch ports, and servers to be put into low
consumption state to reduce the overall power consumption.

12

 0

 1

 2

 0 12 24 36 48 60 72 84 96

Po
we

r (
kW

)

Time (hour)

CA
UT

KS
IL

OH
NY

(a) Solar energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 12 24 36 48 60 72 84 96

Po
we

r (
M

W
)

Time (hour)

CA
UT

KS
IL

OH
NY

(b) Wind energy

Figure 1.5: Fluctuation in renewable energy production

13

1.3 Research Contributions

This dissertation makes the following contributions:

1.3.1 Dynamic Controller Provisioning

SDN has emerged as a new paradigm that offers programmability required to dynamically
configure and control a network. SDN decouples the data and control planes and relies on
a centralized server to implement the control plane. However, in large-scale WAN and data
centers, a single physical server will have several performance and scalability limitations.
To address these issues, multiple controllers are typically deployed to work cooperatively
to control the switches in the network. Nonetheless, this approach raises an interesting
problem, which we call the Dynamic Controller Provisioning Problem (DCPP). DCPP
requires dynamic scaling of the number of controllers and their locations with changing
network conditions, in order to minimize flow-setup time and communication overhead for
state synchronization between controllers. To tackle this problem, we develop a system for
deploying multiple controllers in a network. Our system dynamically scales-up or down the
number of active controllers and delegates to each controller a subset of OpenFlow switches
according to network dynamics while ensuring minimal flow-setup time and communication
overhead. To this end, we formulate the DCPP as an Integer Linear Program (ILP) and
propose two heuristics to solve it. Simulation results show that our solution minimizes
flow-setup time while incurring very low communication overhead.

1.3.2 Orchestrating Virtual Network Functions

Middleboxes or network appliances like firewalls, proxies and WAN optimizers have become
an integral part of today’s ISP, data center, and enterprise networks. Middlebox function-
alities are usually deployed on expensive and proprietary hardware that require specially
trained personnel for deployment and maintenance. Middleboxes contribute significantly to
a network’s capital and operation costs. In addition, organizations often require their traffic
to pass through a specific sequence of middleboxes for compliance with security and per-
formance policies, which leads to complicated routing configurations for the network. NFV
is an emerging and promising technology that is envisioned to overcome these challenges.
It proposes to move packet processing from dedicated hardware middleboxes to software
running on commodity servers. However, in NFV, it is a challenging problem to determine
the required number and placement of VNFs that optimizes network operational costs and

14

utilization, without violating service level agreements. We call this the VNF Orchestration
Problem (VNF-OP) and provide an Integer Linear Programming (ILP) formulation. We
also provide a dynamic programming based heuristic to solve larger instances of VNF-OP.
Trace driven simulations on real-world network topologies demonstrate that the heuristic
can provide solutions that are within 1.3 times of the optimal solution. Our experimental
results suggest that deploying VNFs instead of hardware middleboxes can provide more
than four times reduction in the operational cost of a network.

1.3.3 Energy Smart Service Function Chain Orchestration

Telecommunication COs and PoPs are deployed in cities and metropolitan areas to provide
broadband and wireless Internet services to both commercial and residential customers.
These locations host a large number of middleboxes to provide last mile connectivity and
different network services [64]. In recent years, the rapid development of technologies
like cloud computing, photo-intensive social networks, on-demand video streaming, online
gaming, and the Internet of Things (IoT) has triggered a tremendous growth in the telecom-
munication industry. With the growing demand for today’s bandwidth-intensive Internet
services, the energy requirement of these networks will continue to grow and increase their
carbon footprint. In this context, we propose an Energy Smart Service Function Chain
Orchestrator called ESSO that reduces the overall carbon footprint of a telecommunication
network by opportunistically adapting the SFC embedding locations to utilize more energy
at locations with surplus renewable energy. ESSO minimizes brown energy consumption by
migrating SFCs across different locations. In addition, ESSO provisions individual VNFs
and the virtual links between them in a manner that allows switches, switch ports, and
servers to be put into low-power consumption state. ESSO employs a number of heuristic
algorithms to take embedding, consolidation, and migration decisions to utilize a maximal
amount of renewable energy and reduce the overall carbon footprint of the network.

1.4 Thesis Organization

The rest of this thesis is organized as follows: The work on dynamic controller provisioning
is discussed in Chapter 2. Next, we describe the issue of VNF orchestration in Chapter 3.
After that we present the work on energy smart SFC orchestration in Chapter 4. Conclud-
ing remarks are presented in Chapter 5 including a summary of the contributions of this
thesis and a discussion of potential future research directions.

15

Chapter 2

Dynamic Controller Provisioning

Software-defined networking (SDN) has emerged as a new paradigm that offers the pro-
grammability required to configure and manage the network dynamically. By separating
the control plane from the data plane and shifting the control plane to a logically central-
ized controller, SDN provides network operators the flexibility to implement a wide-range
of network policies (e.g., routing, security, fault-tolerance) and the ability to rapidly deploy
new network technologies.

The most common SDN implementation today relies on a logically centralized controller
that possesses a global view of the network. Whenever a switch receives a new flow,
it requests the controller to install appropriate forwarding rules along the desired flow
path. The time required to complete this operation is known as the flow-setup time.
However, in a large-scale WAN deployment, this rudimentary centralized approach has
several limitations related to performance and scalability. First, it is not always possible to
find an optimal provisioning of the controller that can ensure acceptable latencies between
the controller and the switches situated at geographically distributed locations. Secondly,
a single controller usually has a limited resource capacity and hence cannot handle a large
number of flows originating from the infrastructure switches. In this case, the average flow-
setup time can rise significantly and degrade application and service performance [28].

To address these limitations, recent proposals have advocated to deploy multiple con-
trollers that work cooperatively to better manage network traffic flows [24, 22]. Nonethe-
less, this approach introduces a new problem: minimizing flow-setup times by dynamically
adapting the number of controllers and their locations according to demand fluctuations in
the network. We call this problem the Dynamic Controller Provisioning Problem (DCPP).
Specifically, DCPP requires the number of controllers to be sufficient to handle the current

16

network traffic, and their locations should ensure low switch-to-controller latencies. How-
ever, the multi-controller deployment also requires regular state synchronization between
the controllers to maintain a consistent view of the network [19]. This communication
overhead can be significant if the number of controllers in the network is large. Finally, as
network traffic patterns and volumes at different locations can vary significantly over-time,
the controller provisioning scheme has to react to network “hotspots” and dynamically
re-adjust the number and the location of controllers. Hence, the solution to DCPP must
always find the right trade-off between performance (in terms of flow-setup time) and
overhead (controller synchronization and management).

To the best of our knowledge, the only work that has investigated the controller pro-
visioning problem is the one by Heller et al. [15]. They studied a static version of the
problem where controller provisioning remains fixed over time and analyzed the impact
of the controller locations on the average and worst-case controller-to-switch propagation
delay. However, a static controller provisioning configuration may not be suitable for very
long as network conditions can change over time.

To address this limitation, we propose a management system for dynamically deploying
multiple controllers within a WAN. Specifically, we consider the dynamic version of the
controller provisioning problem where both the numbers and locations of controllers are
adjusted according to network dynamics. Our solution takes into account the dynamics
of traffic patterns in the network while minimizing costs for (i) switch state collection,
(ii) inter-controller synchronization, and (iii) switch-to-controller reassignment. First, we
provide background on SDN and its control plane in Section 2.1 and Section 2.3, respec-
tively. After that, we describe our proposed management system in Section 2.4. Next,
we formulate DCPP as an Integer Linear Program (ILP) that considers all aforementioned
costs in Section 2.5. We then propose two heuristics that dynamically estimate the number
of controllers and decide their placement in order to achieve the desired objectives in Sec-
tion 2.6. The effectiveness of our solution is then demonstrated using realistic traces and
WAN topologies in Section 2.7. Our results show that the proposed algorithms minimize
the average flow-setup time while incurring very low communication overhead. Related
work is presented in Section 2.2, and finally, we provide concluding remarks in Section 2.8.

2.1 Software-Defined Networking (SDN)

The Open Networking Foundation (ONF) defines Software-Defined Networking or SDN as
an emerging networking architecture that decouples network control from forwarding in the
data plane, enables direct programmability of the network, and abstracts the underlying

17

infrastructure for network applications and services [65]. SDN provides open interfaces to
program and control network elements (e.g., switch or router) to define the data forwarding
and processing operations. SDN separates the control and data forwarding functions and
relocates the control functions into a dedicated entity called the SDN Controller. The
behavior of the network elements is controlled and managed by SDN Applications that
run on top of the controller. Another differentiating feature of SDN is the treatment of
traffic in terms of flows based on protocol headers of a packet. A flow in SDN represents
all packets in a data flow that have the same set of values for a specified set of protocol
header fields.

2.1.1 Traditional vs. Software-Defined Network

Traditional IP networks are operated by running distributed routing protocols that are
embedded within the router or switch. These routing protocols exchange messages with
neighboring devices to converge to a consistent view of the network and then determine
traffic forwarding rules by executing path computation algorithms. Each device constructs
its own perspective of the network, and the only way to inspect this view is by connecting
to the device via its CLI. In a traditional network, the data and control planes are blended
within the device as shown in Figure 2.1(a). Network operators express high-level poli-
cies by manually configuring each device through the device’s CLI or other vendor-specific
tools, which is a complicated, cumbersome, and error-prone process. Moreover, due to
the closed-source, vertically-integrated, and proprietary nature of network devices, auto-
matic reconfiguration and dynamic adaptation to traffic fluctuations are very challenging
in current networks.

SDN proposed to address this issues by decoupling the data and control planes. The
SDN architecture enables the control and data planes to evolve independently. It facili-
tates isolated optimization and life-cycle management of data and control plane technolo-
gies. Figure 2.1(b) depicts an SDN network where the control plane of the network devices
are placed on a logically centralized and programmable software platform known as the
network controller.

2.1.2 SDN Architecture

The SDN architecture, proposed by ONF, is shown in Figure 2.2 [65]. ONF divides the
SDN architecture into three layers: (i) Infrastructure Layer, (ii) Control Layer, and (iii)
Application Layer. The infrastructure layer consists of the data plane devices like switches

18

(a) Traditional network (b) Software-defined network

Figure 2.1: Routing in traditional vs. software-defined networks

and routers. This plane is commonly referred to as the data plane. Its primary functions
include data forwarding, local monitoring, and statistics collection. The control layer
includes the SDN control software or the network controller; it can be deployed either on a
single server or cluster of servers to satisfy performance, reliability, security, and availability
requirements.

The separation between the control and data planes is achieved by means of a well-
defined and standardized communication channel between the controller and data plane
devices. The protocol for the communication between the controller and data plane is
referred to as the Southbound API (SBI). OpenFlow has emerged as the de-facto standard
for SBI by providing flow-level granularity, vendor-neutrality, and an abstraction that
is generic enough to promote innovation and provide adequate functionality for network
programmability. Key control plane functions include the control and monitoring of the
network infrastructure. Data plane devices expose their functionalities, capabilities, and
current state to the control plane through a specific set of messages defined by the SBI.
The controller collects network statistics from network devices using these messages and
maintains a global view of the network. The control plane also provides the means to

19

Figure 2.2: SDN architecture

control data plane devices through a set of SBI messages.

The controller provides the global network view to the application plane through a
standardized and programmable API known as the Northbound API (NBI). The appli-
cation layer consists of applications or services like router, firewall, and load-balancer,
implemented as special purpose software modules that run on top of the controller. These
applications use the NBI to program network devices through the controller. Unlike the
SBI, there is still no standardized NBI; each controller implementation provides its own
feature-set and implementation for the NBI. The controller translates the application logic
to control instructions (defined by SBI) for the network devices enabling infrastructure

20

independent development of SDN applications. The behavior of a switch or router is gov-
erned by the instructions or flow-table rules received from the controller that are sanctioned
through the policies imposed by the applications running on top of it.

2.1.3 OpenFlow Switch

An OpenFlow enabled switch is shown in Figure 2.3. It has one or more flow-tables that
contain forwarding rules to determine how to handle data traffic. Each rule matches a
subset of fields in the packet header; it identifies a flow in the network and can perform
operations like drop packet, modify packet headers, or forward packet through one or more
outgoing ports. The group table contains flow-entries to perform operations like flooding,
aggregation, and multi-path forwarding. The meter table is used to control parameters
related to QoS of the switch. Each switch also contains one or more OpenFlow channel or
agent to communicate with the controller. The communication is usually performed over a
secure channel to exchange both control and data packets. The controller can add, update,
or delete flow-table entries in the flow-tables via the OpenFlow protocol.

Figure 2.3: Components of an OpenFlow switch

Typical components of an OpenFlow flow-entry are depicted in Figure 2.4. The match

21

field contains the ingress port, packet headers, and other metadata to match incoming
packets (Figure 2.5). Match fields can contain wildcards to match aggregate flows. A switch
typically uses Ternary Content Addressable Memory (TCAM) to enable fast lookups for
wildcard matches. The priority field in the flow-entry represents the matching preference
within a flow-table, counters are used for storing match statistics, instructions are used
to control processing of packets through the flow-tables, timeout is used to expire a flow-
entry, and the cookie is used by the controller to filter flow-entries. The counters store the
number of received packets and bytes, which can be used to determine different metrics
about the links connected to the switch. The OpenFlow protocol provides packet and byte
counters at the granularity of flow-table, flow-entry, port, and queue.

Figure 2.4: Components of an OpenFlow flow-entry

Figure 2.5: Match fields in OpenFlow flow-entry

Each OpenFlow switch contains one or more flow-tables. Packet matching always starts
at the first flow-table, then based on the instructions installed in the matching flow-entries
it can be forwarded to other flow-tables in the flow-table pipeline (see Figure 2.3). Flow-
entries are matched according to the priority (higher value means higher priority) of the
flow-entries in the flow-table. The pipeline processing is performed in two stages: (i)
ingress and (ii) egress processing. If a matching entry is found, then the processing ends
with either dropping, modifying and/or forwarding the packet through one or more output
port. If no entry matches the flow, then the outcome depends on the configuration of the
table-miss flow entry, which has the lowest priority and a wild-card match rule to match
all packets. The table-miss flow-entry is usually configured to forward packets to the
controller; however, it can also drop all packets or process packets through the traditional
(non-OpenFlow) pipeline of the switch.

OpenFlow uses a special output port called ‘NORMAL’ to represent the traditional pro-
cessing pipeline of the switch. Any flow-entry with an action to forward a packet to the
NORMAL output port, skips the OpenFlow based flow-table pipeline and hands-over the
packet to the traditional fully-distributed routing protocol based forwarding mechanism of

22

the switch. In this case, the forwarding is performed based on the information gathered in
Routing Information Base (RIB) of the switch using routing protocols like OSPF, STP, or
RIP.

2.1.4 Switch – Controller Interaction

The process of handling packets for which no flow-entry is installed in the switch is depicted
in Figure 2.6 and Figure 2.7. In the traditional OpenFlow switch configuration, if the
packet-miss flow entry specifies that a packet should be forwarded to the controller, then
every first packet of a new incoming flow (without a matching flow-entry) is forwarded
to the controller (step 1© in Figure 2.7). The packet is either buffered at the switch or
encapsulated in the packet forwarded to the controller based on available buffer-space at
the switch (step 2©). In either case, the packet headers are included in the special control
packet called packet in, which is sent from the switch to the controller.

Figure 2.6: Packet forwarding by an OpenFlow switch

The controller extracts the data packet information from the packet in message and
forwards the packet to a controller application responsible for handling such packet in

messages. The application eventually determines one or more flow-table entries to handle
the corresponding flow. The controller then sends back another control packet, called
the flow mod, to install the new rules in the switch’s flow-table (step 3© in Figure 2.7).
Subsequent packets in the flow are processed by the newly installed flow-table entries. In
most cases, the controller sets up the entire path by installing flow-entries in all switches
on the path used to forward the flow packets, as shown in step 4© of Figure 2.7.

23

Figure 2.7: Path setup for new flow

2.2 Related Work

2.2.1 Control Plane Scalability

SDN’s proposal to have a logically centralized control plane has motivated a spate of
research works that explored the scalability, performance, and reliability of the control
plane under different design assumptions. The first and basic design choice is the case of
a single controller. Heller et al. was the first to analyze control plane performance based
on only switch to controller latencies [15]. They analyzed a number of network topologies
and showed that the number and placement of controllers depend on the desired controller
to switch reaction time, the metric of choice to be optimized, and the network topology.
They also reported that for the Internet2 [66] topology that has 34 nodes and 41 links, at
least three controllers are required to ensure a reasonable controller to switch latency [15].
However, in their work, Heller et al. did not consider either the effect of load on the
controller or the variation of traffic load across time and location. Tootoonchian et al.
tested the performance of an SDN controller called NOX [67] in [28]. They developed
a tool called cbench to stress test SDN controllers, and reported that if the number of
switches is far greater than the number of available CPU cores, then the average response
time of the controller increases significantly. Increased contention across threads, TCP
dynamics, and internal task scheduling overhead at the controller are the primary reasons
for this performance degradation. A number of research works have proposed different
techniques to overcome this scalability limitation. These techniques can be classified into

24

two broad categories: (1) pushing intelligence into the switch to offload the controller, and
(2) distributing the control plane across multiple controllers.

Pushing Down Intelligence

DevoFlow [18] and DIFANE [17] fall in the first category of techniques. DevoFlow proposes
to pre-install wildcard rules in the switches that can replicate themselves for the mice flows
to create flow specific rules. The switches also have the intelligence to detect elephant flows.
The controller is only responsible for making the forwarding decision for elephant flows.
Similarly, in DIFANE, the controller generates the forwarding rules, but it is not involved
in the setup of each new flow. Rather, the rules are partitioned and distributed among
a subset of switches called “authoritative switches”. The regular switches, which forward
packets in the data plane, redirect new flows to the authoritative switches to learn about
the forwarding rules. However, both of these proposals require some changes to be made
to the commodity switches to increase their intelligence.

Distributed Control Plane

On the other hand, Kandoo [22], HyperFlow [24], and Onix [21] propose to distribute the
control plane across multiple controllers to improve SDN’s scalability. Each of them dis-
tributes controller states differently. Kandoo distributes controller states by placing the
controllers in a two-level hierarchy comprising a root controller and multiple local con-
trollers. Local controllers respond to the events that do not depend on global network
state (e.g., elephant flow detection), while the root controller takes actions that require
global network view (e.g., re-routing elephant flows). Hyperflow provides a logically cen-
tralized view of the control plane to network applications. However, the control plane itself
is physically distributed. Each physically distinct controller in the network is responsible
for handling requests from a subset of the network switches. HyperFlow handles state dis-
tribution of the distributed controllers through a publish/subscribe system based on the
WheelFS [68] distributed file system. The physically distributed controllers share the same
network-wide view through the publish/subscribe system. Finally, controller state distri-
bution in Onix is managed through a distributed hash table. This allows the controllers to
handle network events locally without the necessity of communicating with remote nodes.

25

2.2.2 Multi-Controller Provisioning

None of the aforementioned works considered the issue of choosing suitable network loca-
tions for controller provisioning and adapting the provisioning according to the dynamic
behavior of the network. To the best of our knowledge, we were the first to identify this
problem as the Dynamic Controller Provisioning Problem (DCPP) [69]. We also proposed
a management system that takes both network performance (in terms of flow-setup time)
and management overhead (for state synchronization) into consideration to determine the
number and placement of controllers in the network. A good number of research works built
upon our work on multi-controller provisioning. Yao et al. considers a variation of DCPP
where different controllers have different processing capacities and allocated switches in
a way that does not overload any controller in the network [70]. While in our experi-
ments we used controllers with the same capacity, there are no restrictions in the problem
formulation or the heuristic algorithm on using a heterogeneous class of controllers.

Another work that followed is the Pareto-Optimal Controller Placement (POCO) frame-
work [71, 72] that considers additional metrics like controller-controller latency, load-
balancing among controllers, and resilience in case of double node or link failures. The
authors propose an algorithm that generates all possible combinations for k -controllers and
then selects the best one based on the metrics mentioned above. The number of controllers
(k) is an input to the algorithms. In contrast, we determine the optimal number of con-
trollers and also change their number and location based on traffic fluctuations. Lange et
al. extended the algorithms in POCO, with heuristics so that it can support larger and
dynamic networks. However, the number of controllers is still taken as an input, instead of
being optimized. Obadia et al. proposed a greedy heuristic to assign switches to a controller
in a manner that minimizes control plane traffic [73]; whereas, our work minimizes both
control plane traffic and flow-setup time. Rath et al. proposed a zero-sum game based
distributed controller provisioning mechanism where a controller communicates with its
neighboring controllers to determine a payoff for staying active. However, the authors did
not provide any details on the control plane messaging overhead.

Another group of works targets the controller provisioning problem from the viewpoint
of reliability. Hu et al. introduce the reliability-aware controller provisioning problem and
propose a metric called control-path loss to measure the reliability of a controller place-
ment [74, 75]. This group of works targets a different problem than DCPP; they are more
similar to fault-tolerant virtual network embedding problems [74]. Another related work
is presented in [76], where the authors provide a mathematical formulation and heuristic
algorithms for ensuring five-nines availability. However, in their work, they assume that a
switch can connect to more that one controller simultaneously and send updates regarding

26

its state to all of the controllers. While the first assumption is in line with traditional SDN
switch-to-controller interaction, the second one will need modifications to the OpenFlow
standard. Authors in [77, 75, 78] proposed algorithms that provision controllers to ensure
that the control network can tolerate single link failures.

2.3 Control Plane Assumptions

2.3.1 Logically Centralized – Physically Distributed

SDN control plane is typically deployed as a logically centralized and physically distributed
collection of servers, as shown in Figure 2.8. A single controller faces problems and issues
related to scalability, reliability, performance, and single-point-of-failure. For this reason, a
cluster of servers at a location or multiple servers distributed across locations are generally
used to implement the SDN control plane. In Figure 2.8, each controller is in-charge for a
subset of the switches. A controller collects network statistics from the switches which are
under its control and then synchronizes the collected data with other controllers using the
Controller-to-Controller API (C2I), which is also known as the East-West API.

Figure 2.8: Control plane deployment

The C2I is not yet standardized; different controller vendors implement different in-
terfaces for inter-controller communication. However, irrespective of the vendor, all SDN

27

controllers provide a global network view to the network applications. The distribution of
control plane responsibilities can be organized in either a flat or hierarchical manner. A
flat structure is similar to the one shown in Figure 2.8, where each controller is responsible
for a subset of switches, and the controllers communicate with each other in a peer-to-peer
manner to synchronize data. In a hierarchical structure, controllers are organized into
layers of nodes in a tree. Controllers on the higher layer manage controllers on a lower
layer. Only the controllers on the lowest layer interact directly with the switches, and their
interactions are governed by the policies enforced by the controller at the higher layers.

2.3.2 In-Band vs. Out-of-Band Signaling

(a) In-band control (b) Our-of-band control

Figure 2.9: In-band vs. out-of-band control channel

The communication between the controllers and switches can be either in-band or
out-of-band. With in-band control, control traffic shares the same network infrastructure
as data traffic, as shown in Figure 2.9(a). This approach does not require a separate
network for control traffic; however, it has security and fault-tolerance issues. Control
traffic is passed through the same network as data traffic, which raises security concerns. In
addition, failure of any link in the data network can affect the control channel as well. Out-
of-band control is an alternative to overcome this issues. The out-of-band model for control
plane signaling is shown in Figure 2.9(b). Out-of-band control requires a separate network

28

between the controllers and the switches, which increases both capital and operational
cost of the network. Moreover, in most cases, out-of-band control is not a feasible solution
for ISPs and carrier wide-area networks, as these networks can span multiple countries or
continents. A separate physical network may not be feasible or cost-effective. Out-of-band
control is commonly used for data center networks, where a separate network is usually
deployed for device management.

2.3.3 Control Channel Bootstrapping

Control channel bootstrapping refers to the setup of initial paths for switch-to-controller
and controller-to-controller communication. These paths are essential for the proper oper-
ation of an SDN, as without such paths the switches will not be able to connect with the
controller, and the controllers will be able to set up rules in the switches for data traffic
forwarding. An SDN network can operate only after all required paths between controller
and switches are configured. In case of out-of-band control, the control network typically
uses traditional routing protocols like STP or OSPF to set up these paths, and the data
network is operated based on the flow-table rules installed by the controller. However,
for in-band control, the flow-tables of the switches need to contain rules for forwarding
both control and data traffic. In addition, operating both traditional and software-defined
forwarding protocols for the same network increases the management complexity of the
network [79]. Hence, most SDN networks utilize a bootstrapping phase to set up the ini-
tial paths. Different approaches have been proposed in the literature to learn the topology
information used to bootstrap an SDN network [80, 81]. In our work, we also assume the
existence of a bootstrapping entity other than the controllers used to operate the network,
which is described in detail in Section 2.4.

2.3.4 Switch Reassignment

In this work, we dynamically scale up and down the active controller pool based on the
temporal and spatial variation in traffic load of the network. However, to ensure balanced
load distribution among the controllers, we need to reassign or migrate switches between
controllers. The mechanism to achieve switch reassignment requires coordination between
the source and target controllers and the switch. A number of research works have proposed
switch reassignment or migration mechanisms for this purpose [82, 83, 84]. As our primary
focus in this work is the determination of the optimal number and locations of controllers,
we adopt the switch migration protocol outlined in [83].

29

Authors in [83] propose a four-phase disruption-free switch migration protocol. Phase-I
utilizes the “equal mode” semantics provided by the OpenFlow protocol. In OpenFlow,
a switch typically has a single master and multiple slave controllers [85]. The master
controller has write access to switch configurations, while the slave controllers have read-
only access. However, in equal mode, multiple controllers can have write access to the
switch. In phase-I, the target controller is put into the equal mode so that it will receive
notifications for all events just like the master controller. In phase-II, the current source
or master controller installs a dummy, but pre-specified flow-entry in the switch. It then
sends a barrier request message to force the switch to process all pending events. Upon the
processing of all pending requests at the switch, the master controller removes the dummy
flow-entry, which triggers a flow-removed event and this message is sent to both the source
and target controllers. This event marks the handover of the switch from the source to
target controller. In phase-III, the source controller performs another barrier request-reply
cycle to process any buffered events that might have occurred during phase-II and sends an
end-of-migration message to the target controller. Next, in phase-IV, the target controller
sends a role-request message to the switch to become the new master controller for that
switch. All subsequent events originating from the switch are processed by the target (new
master) controller from this point. Through this mechanism, a switch is migrated from
one controller to another whenever switch-to-controller mapping is updated.

2.3.5 Inter-Controller Communication & State Synchronization

Figure 2.10: Distributed data-store for inter-controller state synchronization

A multi-controller setting requires state synchronization between the controllers both
for maintaining the global network view and ensuring consistent network updates from
the network applications running on top of the control plane. This work assumes that
all switch and topology specific information is saved in a distributed key-value store (e.g.,

30

Cassandra) as shown in Figure 2.10. The global network view might include information
like topology, network devices, device capabilities, reachability between nodes, link latency;
bandwidth; packet-loss rate, and dynamic state like flow-table, flow-entry counters, and
link utilization. Each controller reads network topology and switch related statistics from
the distributed data store. Whenever there is a change within a controllers domain, the
controller updates the relevant information in the distributed data store. We assume
that each controller participates as a node in the distributed data store, so that network
related data is obtained locally. Similar assumptions are made by Onix [21], which is a
distributed OpenFlow controller that uses a Distributed Hash Table (DHT) to store the
global network view. Each controller maintains a local view of the sub-network under
its control and periodically updates the global network view in the DHT. HyperFlow [24]
is a distributed OpenFlow controller that uses a distributed file system called WheelFS.
Each controller is responsible for a certain local area and announces events that affect the
global view of the network periodically. These events are replayed at the other controllers to
achieve a synchronized global network view. OpenDaylight [8] and ONOS [86] are two other
SDN controllers that support distributed control plane and provide mechanisms for state
synchronization. In essence, distributed controllers utilize distributed storage technology
as a backend to achieve state synchronization between multiple controllers. However,
these approaches only work for a particular controller; they are not interoperable as there
is no standardized inter-controller communication protocol. SDNi [87] and East-West
Bridge [88] propose inter-controller messaging protocols to perform state synchronization
between heterogeneous controllers. The state synchronization mechanism is orthogonal to
this work, and any of these proposals can be adopted for our purpose.

2.4 System Description

In this work, we consider a moderate to large size WAN consisting of OpenFlow enabled
switches and compute resources to deploy OpenFlow controllers. We propose a controller
management system that works with a mix of OpenFlow and non-OpenFlow switches,
where non-OpenFlow switches are configured through standard management protocols like
SNMP and behave as opaque forwarding elements between OpenFlow enabled switches.
We also assume that compute resources (e.g., servers) are deployed at designated locations
throughout the network. These servers are used to deploy OpenFlow controllers to control
the OpenFlow enabled switches in the network.

In most cases, a single controller is not sufficient for moderate to large size WAN de-
ployments. Two well known and high-performance SDN controllers NOX [67] and Maestro

31

[89], can process around 30K and 600K PACKET IN requests per seconds, respectively. A
multi-threaded and I/O optimized variation of NOX can process around 2M requests [28].
However, large-scale networks can generate flows at a rate that is several orders of mag-
nitude higher than the processing capacity of a single controller. In [31], a 1500 server
cluster is reported to generate 100K flows per second, and in [89] a 100 switch network is
shown to generate 10M flows per second. In addition, in [83] the authors reported that a
network with 100K hosts, a peak flow arrival rate of 300M (median rate between 1.5M and
10M), and a controller with 2M flow requests per second processing capability; around 1–5
controllers are required to handle the median traffic; however, around 150 controllers are
required to handle the peak traffic. Hence, a dynamic controller provisioning mechanism
is required to avoid resource over-provisioning. This work proposes a management system
to dynamically partitions the set of OpenFlow switches into multiple domains (henceforth
“domain” is used to specify the set of OpenFlow switches that are controlled by a con-
troller) based on network dynamics and assigns one controller per domain. At any time
instance, a switch is controlled by a single controller and each controller is responsible for
setting up paths on switches in its domain.

A controller periodically collects port, flow, and table-level statistics from switches in
its domain using OFPST PORT, OFPST FLOW, and OFPST TABLE OpenFlow messages, respec-
tively. Controllers calculate switch and link level information from the collected data in its
domain and push this information to the distributed data store so that each controller can
make forwarding decisions on its own. Each controller builds its view of the network from
the information stored in the distributed data store. A switch reports to its assigned con-
troller and relies on it to make forwarding decisions. After receiving a flow-setup request
from a switch, the controller utilizes the locally stored global network view to determine
forwarding decisions.

We assume that controllers are deployed on servers located at different network loca-
tions. These locations are pre-determined by the network operator based on the architec-
ture of the network and management policies. A controller is regarded as active if it has at
least one switch assigned to it; otherwise, it is considered inactive. Inactive controllers keep
listening on a particular port for incoming HELLO messages from newly assigned switches
and consume a minimal amount of CPU cycles. With the change in traffic volume, a given
controller placement may become sub-optimal over time. In this case, it is necessary to
adjust the provisioning of controllers according to traffic fluctuations, which is achieved
by dynamically activating and deactivating controllers and adjusting switch–to–controller
assignment in the network. As this is a non-trivial process that can incur significant
reconfiguration costs for controller setup and switch reassignment, we propose a manage-
ment system to dynamically scale-up and down the active controller pool in the network.

32

This system monitors traffic volume and state of active controllers and periodically runs
the switch–to–controller assignment algorithm to optimize the number and placement of
controllers based on the network condition.

2.4.1 Control Plane Management System

The management system maintains an active pool of controllers where each controller
controls a non-overlapping subset of switches. It also periodically evaluates the current
switch–to–controller assignment and decides whether to perform a reassignment based on
the specified constraints. If a reassignment is performed, the management system also
updates the switch–to–controller assignment in the network. The management system
contains four modules as depicted in Fig. 2.11 and explained below:

Bootstrapping Module

In the OpenFlow paradigm, a switch must first connect with its controller, which requires
the initial setup of paths between the switch and the controller. The bootstrapping module
discovers the network topology and sets up these paths. This module uses Link Layer
Discovery Protocol (LLDP) and Address Resolution Protocol (ARP) messages to discover
network topology. It sends LLDP packets to each switch and parses the reply to learn
about its neighborhood. Then incrementally learns the entire network topology by sending
LLDP messages to newly discovered devices. After learning the topology, the bootstrapping
module installs rules in the switches so that control traffic can be transmitted between the
switch and controller.

Monitoring Module

The monitoring module keeps track of the active and inactive controllers through periodic
heartbeat messages. It also collects CPU utilization statistics from the controllers. This
information is used by the reassignment module to scale up or down the active controller
pool dynamically. In addition, the monitoring module records the average number of flows
transmitted between switch pairs in the network, which is used to estimate the number of
possible flow-requests at different controllers.

33

Controllers

Active Controller

Inactive Controller

OpenFlow switch

Reassignment Module

Provisioning Module Monitoring Module

Control Plane Management System

Bootstrapping Module

Figure 2.11: Management system architecture

34

Reassignment Module

This module periodically evaluates the statistics collected by the monitoring module and
decides whether to perform a reassignment. This decision depends on a number of criteria
that are explained in detail in the following section. The reassignment module utilizes a
switch migration protocol for disruption-free switch migration between controllers during
reassignment. During a reassignment, an active controller may become inactive if all of its
switches are assigned to other controllers, and an inactive controller may become active if
a switch is assigned to it. The objective of our system is to keep a set of controllers in the
active state that results in optimal flow-setup times while incurring low communication
overhead.

Provisioning Module

The provisioning module performs two actions: (i) instructs controllers to send role-change
messages to switches to realize the changes in switch–to–controller mapping computed by
the reassignment module and (ii) it transitions controllers between active and inactive state
based on the current switch–to–controller mapping. If an inactive controller is assigned a
new switch, the provisioning module instructs the inactive controller to become active and
then the controller sends a role-change request to the switch to become its master controller.
In a similar manner when a controller becomes inactive, i.e., no switch is assigned to it,
the provisioning module instructs the controller to enter inactive mode.

2.4.2 Path Setup Process

In the OpenFlow protocol, when a new flow arrives at a switch, the switch first checks
its flow-table(s) for a matching entry. If a matching flow-entry exists, packets in the flow
are forwarded according to the matching rule. If no such rule exists, the switch sends
a PACKET IN OpenFlow message to its master controller. After receiving the PACKET IN

message, the controller needs to compute a path using its knowledge about the network
and install forwarding rules in the switches along the path. Two possible cases can arise
next: (i) the flow may pass through switches only under the current controller’s domain, or
(ii) it may pass through switches under more than one controllers’ domain. In both cases,
flow-entry rules must be installed in all switches participating on the flow’s path.

In the first case, the controller can directly install all required flow-entries on the
switches. However, for the second case, there are two possible scenarios: (i) the con-
troller receiving the flow-setup request from the ingress switch just installs flow-entries

35

on switches in its domain and does not take any action for the other switches belong-
ing to other controller(s); then the flow is eventually forwarded to some switch in some
other controller’s domain, which might generate additional flow-setup requests based on
the configuration of the switch, (ii) the ingress controller instructs the other controllers,
involved on the path, to install the required rules in the switches under their domain. The
second scenario requires modification to standard controller implementation to introduce
a controller-to-controller interface for delegating flow-rule installation commands. Hence,
this work adopts the first scenario as it does not require any modification to standard
controller implementations.

The path setup process is shown in Figure 2.12. In this figure, a new flow arrives at
switch i on port a. As the switch does not have a matching forwarding entry, it sends
a flow-setup request to its controller m. This request is called Initial path setup request.
Now, controller m computes a path (contained within its own domain) for the flow. Lets
say the path is i.a → i.b → j.b → j.c (where i.a means port a of switch i) and sets up
the forwarding rules in switches i and j. The packets in the flow are forwarded from port
a to port b of switch i and then from port b to port c of switch j, eventually reaching
port c of switch k. Switch k now searches its forwarding table for a matching rule. If no
such rule exists, it sends a flow-setup request to its controller n. This request is termed as
Intermediate path setup request. Now, controller n computes a path contained in its own
domain and installs forwarding rules in switch k and l in a similar manner.

2.5 Mathematical Formulation

2.5.1 Problem Definition

In this work, we identify and specify the Dynamic Controller Provisioning Problem (DCPP),
whose primary objective is to minimize the flow-setup time by dynamically scaling-up and
-down the poll of active controllers and adjusting their locations according to traffic fluctu-
ations in the network. The other objectives of DCPP are to minimize inter-controller state
synchronization overhead for maintaining a global network view and switch-to-controller
communication overhead for collecting flow-level statistics. The DCPP takes as input the
network topology, traffic matrix, controller capacities, and server locations. The output of
DCPP is the optimal switch-to-controller assignments for the provided network topology
and traffic matrix.

36

Initial path setup request

Rule Setup

Controller

Switch

m

Intermediate path setup request

n

Forwarding Path

i
j k l

When, xim=1, xjm=1, xkn=1, xln=1

τii=1, τij=1, τjk=1, and τkl=1

Initial path setup request cost, Cp
R=τiidim

Additional path setup request cost, Cp
Q=τjkdkn

Rule setup cost, Cp
L=τiidim+τijdim+τjkdkn+τkldln

Flow setup cost = Cp
R+Cp

Q+Cp
L

a

b
b c

Figure 2.12: Path setup method with flow-setup cost

37

2.5.2 Problem Formulation

In this section, we formulate DCPP as an ILP. Specifically, we model the network as an
undirected graph, G = (S,E), where S is the set of switches and E is the set of edges.
Let dij denote the cost of the shortest path between switches i and j expressed in terms
of propagation delay or the number of hops. F (F ⊆ S) is the set of locations where a
controller can be deployed. Let vector U = 〈u1, u2, . . . u|F |〉 represents the capacities of the
controllers. Hence, um is the maximum number of requests controller m can handle per
second. The maximum allowable cost between a switch and its controller is denoted by δ
(expressed in the same unit as dij).

The traffic matrix is denoted by T = [τij]|S|×|S|, where τij represents the average number
of flows over the current time slot originating from switch i to switch j as reported by the
monitoring module. Moreover, each diagonal entry τii of T captures the average number
of flows originated at switch i, i.e., the average number of flows coming from the networks
served by switch i.

The reassignment algorithm is invoked at every Ta time interval. The output of our
ILP is an assignment matrix X = [xim]|S|×|F |, where xim is equal to 1 if switch i is assigned
to controller m, and 0 otherwise. It also provides a binary vector Y = 〈y1, y2, . . . y|F |〉
indicating which controllers are active (i.e., ym = 1) and which are not (i.e., ym = 0).

We consider the following four costs that will be incurred when deploying multiple
controllers across the network:

1) Statistics collection cost (Cl) is the number of messages per second required for the
controllers to collect statistics from their associated switches. Assuming that statistics are
gathered at each time interval Ts (note that Ts < Ta), this cost can be expressed as follows:

Cl =
⌊Ta
Ts

⌋∑
i∈S

∑
m∈F

dimxim (2.1)

This cost is measured in terms of the network delay or number of hops between a switch
and its master controller. Hence, the cost decreases if controllers are located close to the
switches that are under its control.

2) Flow-setup cost (Cp) is the total cost incurred for setting up the flow rules across end-
to-end paths. As explained in Fig. 2.12, this cost can be divided into three components.
First, the initial path setup request for the flows originated at the switches:

Cp
R =

∑
i∈S

∑
m∈F

τiiximdim (2.2)

38

Secondly, the intermediate path setup requests at each switch for the flows coming from a
neighbor switch controlled by a different controller:

Cp
Q =

∑
i∈S

∑
j∈S

∑
m∈F

∑
n∈F

τjixjn(1− xin)ximdim (2.3)

Finally, the rule installation cost incurred for the rule installation messages from the con-
trollers is given by:

Cp
L =

∑
i∈S

∑
j∈S

∑
m∈F

τjiximdim (2.4)

Combining Equations (2.2), (2.3), and (2.4), we can derive the flow-setup cost as follows:

Cp = Cp
R + Cp

Q + Cp
L (2.5)

3) Synchronization cost (Cs) represents the number of messages exchanged between
controllers in order to maintain a consistent network-wide view in all of them. We assume
messages are exchanged every Tx seconds (note that Tx < Ta). We also consider critical
events that force a controller to instantaneously synchronize state with other controllers.
Assuming e is a random variable that represents the occurrence frequency of critical events
in the system. We can define the number of inter-controller state synchronization messages
generated within time Ta considering both periodic and critical events as follows:

NE =
⌊Ta
Tx

⌋
+

∫ Ta

0

e · p(e)de (2.6)

Here, p(e) is the probability distribution function of e. The synchronization cost can be
defined as follows:

Cs =
NE
Ta

∑
m∈F

∑
n∈F

ymyndmn (2.7)

This cost is measured in terms of the network delay or hop count between the con-
trollers. While the previous two costs consider the distance between the switch and its
master controller, this cost considers the distance between controllers. It decreases with
the number of active controllers and the distances between them.

4) Switch reassignment cost (Cr) is the cost of assigning a switch to a new controller.
Ideally, it is better to avoid frequent reassignment of switches. Assume that the previous
assignment is given by the matrix X̃ = [x̃im]|S|×|F |. We define the matrix Z = [zim]|S|×|F |
as the XOR between the new assignment X and the previous assignment X̃ . In particular,

39

zim = 1 if the assignment of switch i has been changed to (or from) controller m, otherwise
zim = 0.

Cr =
∑
i∈S

∑
m∈F

dimzim (2.8)

The objective of our optimization problem is to minimize the weighted sum of the
aforementioned four costs and can be expressed as follows:

αCl + βCp + γCs + λCr (2.9)

Here, α, β, γ, and λ are constants the network operator can use to adjust the relative
significance of the four cost components. Furthermore, the following constraints must be
satisfied in order to guarantee a feasible solution:

∀i∈S:
∑
m∈F

xim = 1 (2.10)

∀m∈F :
∑
i∈S

ximτii +
∑
i∈S

∑
j∈S

∑
n∈F

τjixjn(1− xin)xim ≤ ymum

(2.11)

∀i∈S,m∈F : ximdim ≤ δ (2.12)

∀i∈S,m∈F : xim ≤ ym (2.13)

∀i∈S,m∈F : zim ≤ xim + x̃im

zim ≥ xim − x̃im
zim ≥ −xim + x̃im

zim ≤ 2− xim − x̃im

(2.14)

∀i∈S,m∈F : xim, zim ∈ {0, 1} (2.15)

∀m∈F : ym ∈ {0, 1} (2.16)

Constraint (2.10) guarantees that every switch is controlled by exactly one controller at a
given time. Inequality (2.11) ensures that a controller can satisfy the path setup requests
from the switches assigned to it. Note that the total number of path setup requests to a

40

controller is composed of all initial and intermediate path setup requests from all switches
that it is currently controlling. Inequality (2.12) gives an upper bound δ on the maximum
delay between a switch and its designated controller. The condition on assigning a switch
to an active controller is represented by Inequality (2.13). The inequalities of (2.14) ensure
that zim is the XOR of the variables xim and x̃im. Equations (2.15) and (2.16) indicate
that xim, ym, and zim are binary variables. This formulation generalizes the Single Source
Unsplittable Flow Problem [90], which is known to be NP-Hard. Therefore, we propose
two heuristics to solve this problem that are described in the subsequent sections.

2.6 Proposed Heuristics

In this section, we describe two heuristics for solving DCPP: (i) DCP-GK : a greedy ap-
proach based on the knapsack problem, and (ii) DCP-SA: a simulated annealing based
meta-heuristic approach. The input to both heuristics include network topology G, traffic
matrix T , previous switch–to–controller assignment X̃ , set of switches S, possible controller
locations F , controller capacity vector U , and delay constraint δ. The goal of these heuris-
tics is to find a feasible switch–to–controller assignment that minimizes the cost function
expressed in Equation (2.9) based on current network conditions.

2.6.1 Dynamic Controller Provisioning with Greedy Knapsack
(DCP-GK)

Here, we model each controller as a knapsack. The capacity of each knapsack is equal
to the processing capacity (measured in number of flow-setup requests it can handle per
time interval, 60 minutes in our simulations) of its corresponding controller. We consider
the switch as the objects to be added in the knapsack. We model the weight of a switch
as the number of new flows it generates within the previous time interval, and the profit
of taking a switch is the inverse path cost between the switch and that controller. Each
iteration of our algorithm activates a single controller. This controller is chosen such that
the sum of path costs from that controller to the unassigned switches is minimum and
within the given delay bound δ. Then we run the greedy knapsack algorithm to assign
switches to that controller. If no switch could be assigned to a controller, it is deactivated.
The iterations stop when all the switches are assigned to a controller or no more controllers
can be activated. If there are unassigned switches after all the iterations are completed,
the switches are assigned randomly between the activated controllers. This approach may

41

break the capacity and delay constraints. However, this exceptional case occurred very
rarely during our simulations.

2.6.2 Dynamic Controller Provisioning with Simulated Anneal-
ing (DCP-SA)

The DCP-SA heuristic provides a feasible switch-to-controller assignment X considering
the previous assignment matrix X̃ as an initial state for simulated annealing. However,
due to a change in traffic pattern, X̃ may violate the capacity constraint depicted in
Equation (2.11). Therefore, the objective of Algorithm 1 is to generate a feasible switch–to–
controller assignment from the current unfeasible assignment. The output of this algorithm
is provided as an input to Algorithm 2 which runs the simulated annealing algorithm to
improve the switch–to–controller assignment.

More specifically, Algorithm 1 first identifies the set of controllers Fv for which capacity
constraints are violated (line 1). Then in the while loop between line 2 and 16, it tries
to lower the load on each f ∈ Fv by reassigning one or more switches to other controllers
without violating the capacity constraint. In line 3 and 4, f is the currently selected
controller and Sf is the set of switches assigned to it. In the second nested while loop
between line 5 and 14, Algorithm 1 first sorts all switches Sf assigned to controller f
according to their rank defined by the following equation:

ri =
∑
j∈S

τij (2.17)

Next, in line 7, let s∗ denote the switch with the highest rank in Sf . A set of feasible
controllers Fs∗ is identified for s∗ in line 8 such that each controller in Fs∗ is within the
bound δ from s∗ and also has sufficient capacity to handle requests from s∗. The algorithm
then selects the controller with the smallest remaining capacity f̃ in line 10, and assigns s∗

to f̃ (line 11). The intuition is to minimize the fragmentation of remaining capacity of the
controllers during the reallocation. The assignment matrix X̃ is also updated in line 11
by changing the switch’s mapping from f to f̃ . This reallocation procedure for controller
f continues until the capacity constraint for f is satisfied, i.e., aggregated demand of the
switches assigned to it becomes less than or equal to its capacity. Algorithm 1 repeats this

42

Algorithm 1 Algorithm for generating feasible initial state

Require: Topology, G
Traffic Matrix, T
Previous Assignment, X̃
Set of switches, S
Set of controllers, F
Controller capacity vector, U

Ensure: New Feasible Assignment, X̃
1: Fv ← Set of controllers for which X̃ violates capacity constraints
2: while Fv 6= ∅ do
3: Select a controller f from Fv
4: Sf ← Set of switches assigned to controller f
5: while Capacity of f is violated do
6: Sort Sf according ri defined by Equation (2.17)
7: s∗ ← first node in Sf
8: Fs∗ ← Feasible controllers of s∗ with remaining capacity greater than the demand

of s∗

9: if Fs∗ 6= ∅ then
10: f̃ ← Controller with smallest remaining capacity in Fs∗
11: Assign s∗ from f to f̃ and update X̃
12: end if
13: Sf ← Sf \ {s∗}
14: end while
15: Fv ← Fv \ {f}
16: end while

43

reallocation procedure for each of the controllers in set Fv until the switch to controller
assignment X̃ becomes feasible.

Due to the change in the traffic pattern in the network, the previous switch to controller
assignment, X̃ , may violate the controller capacity constraint depicted in equation 2.11.
Therefore, before invocation of the reassignment algorithm (Algorithm 2), first X̃ is made
feasible using Algorithm 1.

Starting from a feasible assignment X̃ , Algorithm 2 uses a variant of simulated annealing
to optimize the assignment further. We define the following local search moves for this
algorithm:

• Relocate Switch: selects a switch randomly and assigns it to a different active
controller. If no switch is assigned to a controller after this move, it is deactivated.

• Swap switches: selects two switches randomly from two different controllers and
swap their assignments.

• Activate controller: activates a randomly chosen inactive controller.

• Merge assignments: randomly selects two controllers and reassigns all switches of
one controller to the other. The idle controller is then deactivated.

Algorithm 2 denotes the implementation of simulated annealing for switch reassign-
ment. To accelerate future computations, Algorithm 2 pre-calculates the feasible controller
set FS for all switches S in line 3 such that delay constraint (equation 2.12) is satisfied.
Next, the for loop starting at line 5 maintains the temperature based annealing process.
The temperature is adjusted using the Schedule(t) procedure (line 6) in each iteration of
the for loop. Then, the loop between line 10 and 23, uses the Successor procedure to return
a random next state from the current state using one of the aforementioned moves. This
procedure always returns a feasible successor such that no constraint is violated. Following
the standard simulated annealing procedure, a move is always taken if it reduces the cost
according to Equation 2.9. However, to overcome the local minima, a move that leads

to a worse state can also be taken with probability e
∆

Temp , where Temp and ∆ are the
current temperature and difference in cost between current and next states, respectively.
The temperature is initialized so that Algorithm 2 can take many worse moves at the start
to explore the search space. However, it is decremented by Schedule function in such a way
that the probability of taking worse moves diminishes with time. For each temperature,
state space is explored for a pre-defined number of moves. At each step, the algorithm
stores the best solution in X . Finally, the algorithm will stop and return the assignment
X with the lowest cost seen so far when the temperature falls to zero.

44

Algorithm 2 Reassignment algorithm

Require: Topology, G
Traffic Matrix, T
Feasible Previous Assignment, X̃
Set of switches, S
Set of controllers, F
Controller capacity vector, U

Ensure: New Assignment, X
1: X ← X̃
2: FS ← Feasible controllers for S considering delay constraints
3: Select an initial temperature Temp > 0
4: current← X̃
5: for t← 1 to ∞ do
6: Temp←Schedule(t)
7: if Temp = 0 then
8: break
9: end if

10: i← 1
11: repeat
12: next← Successor(current, FS)
13: ∆← Cost(current)−Cost(next)
14: if ∆ > 0 then
15: current← next
16: else
17: current← next only with e

∆
Temp probability

18: end if
19: if Cost(current) < Cost(X) then
20: X ← current
21: end if
22: i← i+ 1
23: until i 6= N
24: end for

45

2.7 Evaluation

We evaluate the performance of our proposed algorithms through extensive simulations.
We opted for an in-house simulator where we simulate the propagation delays between
switch-to-switch, switch-to-host, and switch-to-controller. Controller capacity is simulated
using the results provided by Tootoonchian et al. [28] for the NOX [67] controller. All our
simulations are conducted on a machine with dual quad-core 2.4GHz Intel Xeon E5620
processors and 12-GB of RAM. In the following, we first describe in detail the simulation
setup and the dataset we used. We then describe the metrics used to evaluate the effec-
tiveness of our proposed system. Finally, we compare our DCP algorithms (DCP-GK and
DCP-SA) with two static scenarios: in the first case, a single controller is used for the
entire network (1-CRTL), while in the second, each switch is provided its own controller
(N-CTRL), i.e., a network with N switches will have N controllers.

2.7.1 Simulation Setup

In our experiments, we simulate two different ISP topologies RF-I and RF-II with inter-
node latencies obtained from the RocketFuel repository [91]. Table 2.1 reports the number
of nodes and links in the topologies used in this work. We assume each node in the Rock-
etFuel topology to be an OpenFlow switch, and controllers can be dynamically provisioned
at any of these switch locations. Controllers communicate with each other to exchange
and synchronize switch and port-level statistics. Each controller computes a path for a
new incoming flow from the information it has about the network in its local database and
sets up paths according to the method described in Section 2.4.2.

Table 2.1: Characteristics of the simulated ISP topologies

Topology ID Nodes Links
RF-I 79 294
RF-II 108 306

We simulate TCP flows between the end hosts, where the end hosts of each flow are
chosen randomly. To make the traces more realistic, we generated the flows according to
the distribution of flow sizes, flow inter-arrival times, and the number of concurrent flows
reported in a recent study on network traffic characterization [92]. The generated traffic
spans 48 hours capturing the time-of-day effect.

46

The simulated annealing based heuristic involves a number of tuning parameters. We
performed several test runs to determine a set of suitable but generic values for them, which
are reported in Table 2.2. We used the same parameter values for all of our experiments.

Table 2.2: Simulated annealing parameters

Parameter Value Parameter Value
α 1 δ 40
β 1 Initial Temperature 1000
γ 1000 Temperature 0.95

decrement rate(r)
λ 10000 Temperature Ti+1 = rTi

update function

The management system operates as follows: the monitoring module periodically pulls
statistics from the controllers, the reassignment module runs a heuristic (either DCP-GK
or DCP-SA) using these statistics to find the next switch-to-controller assignment, and
the provisioning module assigns switches to their controllers according to the assignment
generated by the reassignment module.

In order to show the effectiveness of our system, we have analyzed three metrics, namely,
the number of controllers, flow-setup time, and communication overhead in the number of
exchanged network messages. We plot the change in the number of controllers over time to
show how it varies with traffic. We measure the flow-setup time at regular time intervals
and report that against traffic and number of controllers. We also report the CDF of flow-
setup time to show the effectiveness of our system. We also measure the communication
cost, which is the total number of messages exchanged between the controllers.

2.7.2 Results

The top part of Figure 2.13 depicts the distribution of traffic used for our evaluation. This
traffic is generated using the flow size and flow inter-arrival time distributions provided
in [92]. The generated traffic trace spans two days (48 hours) capturing the time-of-day
effect. We run each simulation for 48 hours with the reassignment heuristic running every
60 minute. The reassignment interval can be further tuned through a more detailed analysis
of the traffic. At each interval, we compute the average flow-setup time, the set of active
controllers, and the number of exchanged messages between the active controllers.

47

 0

 6

 12

 18

 24

 0 8 16 24 32 40 48
 0

 80

 160

 240

 320

 400

#
 C

o
n

tr
o

lle
rs

A
v
g

.
F

lo
w

 S
e

tu
p

 T
im

e
 (

m
s
)

Time (hour)

DCP N-CTRL 1-CTRL
 0

 10

 20
F

lo
w

 C
o

u
n

t
(K

)

(a) DCP-GK on RF-I

 0

 6

 12

 18

 24

 0 8 16 24 32 40 48
 0

 80

 160

 240

 320

 400

#
 C

o
n

tr
o

lle
rs

A
v
g

.
F

lo
w

 S
e

tu
p

 T
im

e
 (

m
s
)

Time (hour)

DCP N-CTRL 1-CTRL
 0

 10

 20

F
lo

w
 C

o
u

n
t

(K
)

(b) DCP-SA on RF-I

Figure 2.13: RF-I: Controller count and flow-setup time vs. time

48

 0

 6

 12

 18

 24

 0 8 16 24 32 40 48
 0

 80

 160

 240

 320

 400

#
 C

o
n

tr
o

lle
rs

A
v
g

.
F

lo
w

 S
e

tu
p

 T
im

e
 (

m
s
)

Time (hour)

DCP N-CTRL 1-CTRL
 0

 10

 20

F
lo

w
 C

o
u

n
t

(K
)

(a) DCP-GK on RF-II

 0

 6

 12

 18

 24

 0 8 16 24 32 40 48
 0

 80

 160

 240

 320

 400

#
 C

o
n

tr
o

lle
rs

A
v
g

.
F

lo
w

 S
e

tu
p

 T
im

e
 (

m
s
)

Time (hour)

DCP N-CTRL 1-CTRL
 0

 10

 20

F
lo

w
 C

o
u

n
t

(K
)

(b) DCP-SA on RF-II

Figure 2.14: RF-II: Controller count and flow-setup time vs. time

49

Fig. 2.13 and 2.14 show the number of active controllers and average flow-setup time
during each interval for both topologies. For the one controller (1-CTRL) case, flow-setup
time varies with traffic load. If there is a peak in traffic, then flow-setup time also increases.
A single controller cannot keep the flow-setup time consistent or within acceptable limits,
which is reported to be 200ms in [93] for mesh restoration. Hence, a single controller cannot
provide any service guarantees. On the other hand in the N-CTRL case, the flow-setup
time is almost zero as expected. However, in this case, the messaging overhead is much
higher (as shown in Fig. 2.16 and explained later in this section).

Fig. 2.13(a) and Fig. 2.13(b) report the above mentioned metrics for topology RF-I,
using greedy knapsack (DCP-GK) and simulated annealing (DCP-SA) heuristics, respec-
tively. DCP-GK keeps the flow-setup time within 140ms and manages to keep it consistent
even during traffic spikes. Even though we can see small spikes in flow-setup time, none of
them is as high as for the 1-CTRL case. DCP-GK also uses much fewer controllers than
N-CTRL. The maximum number of controllers used by DCP-GK is only 25, during time
interval 22, which is around 30% of the N-CTRL (79 controllers) case. From Fig. 2.13(b),
we can see that DCP-SA performs much better than DCP-GK and 1-CTRL. Flow-setup
time is within 60ms and number of controllers is less than that of both DCP-GK and
1-CTRL. It uses a maximum of 18 controllers that are around only 23% of the N-CTRL
case. Effect of traffic spikes is further reduced in this case and the flow-setup time is al-
most constant throughout 48 hours of simulated time. This shows the effectiveness of our
dynamic controller provisioning mechanism. Similar behavior is also observed for RF-II as
reported in Fig. 2.14(a) and 2.14(b).

Although DCP-SA outperforms DCP-GK in both the number of controllers and flow-
setup time, there is a penalty. DCP-SA requires much longer time to run than DCP-GK.
In our simulation setup, DCP-SA took around 2 minutes to perform one reassignment for
topology RF-I, whereas DCP-GK took only 0.41 seconds. For topology RF-II, DCP-SA
took around 4 minutes, and DCP-GK took only 0.44 seconds. So, DCP-SA is preferable
for near-optimal solutions, and DCP-GK is suitable when we need solutions within a small
amount of time.

Fig. 2.15(a) and Fig. 2.15(b) show the CDFs of flow-setup time for topologies RF-I and
RF-II, respectively. We can see that DCP-SA outperforms both DCP-GK and 1-CTRL
in both cases by a large margin. DCP-SA always provides shorter flow-setup time than
1-CTRL and all flows are set up within the acceptable range of 200ms. For RF-I, DCP-SA
takes at most 120ms, and for RF-II, it takes at most 150ms. While DCP-GK takes longer,
it completes 99% flow-setups within the acceptable range of 200ms for both topologies.
On the other hand, 1-CTRL can complete only 60% flow-setups within 200ms and the
maximum time it takes is close to 450ms (more than twice of the acceptable range) for

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

C
D

F

Flow Setup Time (ms)

DCP-GK
DCP-SA
1-CTRL
N-CTRL

(a) RF-I

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

C
D

F

Flow Setup Time (ms)

DCP-GK
DCP-SA
1-CTRL
N-CTRL

(b) RF-II

Figure 2.15: CDF of flow-setup time

both topologies. DCP-GK cannot outperform 1-CTRL for low flow-setup time, which is
evident in Fig. 2.13(a) and Fig. 2.14(a). This happens during low traffic load conditions.
This is a direct consequence of the greediness of this heuristic, as it chooses the best

51

 0

 75

 150

 225

 300

D
C
P-G

K

D
C
P-SA

1-C
TR

L

N
-C

TR
L

 0

 15

 30

 45

 60

 75

A
v
g
.
F

lo
w

 S
e
tu

p
 T

im
e
 (

m
s
)

O
v
e
rh

e
a
d

Avg. Flow Setup Time (ms)

Overhead (messages)

(a) RF-I

 0

 75

 150

 225

D
C
P-G

K

D
C
P-SA

1-C
TR

L

N
-C

TR
L

 0

 25

 50

 75

 100

A
v
g
.
F

lo
w

 S
e
tu

p
 T

im
e

O
v
e
rh

e
a
d

Avg. Flow Setup Time (ms)

Overhead (messages)

(b) RF-II

Figure 2.16: Summary of overhead and average flow-setup time

52

controller at each stage without looking ahead and thereby missing a better solution. The
N-CTRL case shows the lowest flow-setup time, but this is a hypothetical, un-realistic
lower bound. Clearly, connecting one controller per switch – is not an acceptable solution
for this problem. We included it for comparing with the absolute lowest possible flow-setup
time.

Fig. 2.16(a) and Fig. 2.16(b) report the messaging overhead and average flow-setup time
for both topologies. 1-CTRL has the lowest messaging overhead as there is no synchroniza-
tion and controller-to-controller communication overhead. On the other hand, N-CTRL
has the highest messaging overhead as every controller is communicating with every other
controller. Messaging overhead for DCP-GK and DCP-SA is in between these two. Over-
head for DCP-SA is smaller than DCP-GK as it uses a fewer number of controllers and is
very close to the 1-CTRL (lower bound) case for both topologies. As mentioned earlier,
average flow-setup time for DCP-SA is lower than both DCP-GK and 1-CTRL, but higher
than N-CTRL. For topology RF-I and RF-II, average flow-setup time for DCP-SA is 29
and 34ms, respectively. For the N-CTRL case, flow-setup times are much lower (3.5 and
9ms, respectively). So, DCP-SA provides flow-setup times very close to N-CTRL (hypo-
thetical lower bound for the flow-setup time) case and also incurs messaging overhead very
close to 1-CTRL (lower bound for messaging overhead) case. On the other hand, DCP-GK
does not provide as good result as DCP-SA, but the solutions are quite good and require
fractions of seconds to run.

To summarize, running a single controller causes high flow-setup time, as propagation
delay between controller and switches are higher, and flow-setup requests can get queued
at the controller because of limited processing capacity. On the other hand, running one
controller per switch can provide close to zero flow-setup times, but incurs much higher
communication overhead. Our system achieves a balance between flow-setup time and
messaging overhead. Our simulation results show that DCP-SA and DCP-GK succeed to
find a right trade-off between these two extremes and provide near-optimal solutions.

2.8 Conclusion

In this work, we identified and formulated the Dynamic Controller Provisioning Problem
(DCPP) in SDN. We proposed a management system for dynamically deploying multiple
controllers. We also provided a mathematical formulation of DCPP as an ILP. Since DCPP
is an NP-hard problem, we provided two heuristic algorithms (DCP-GK and DCP-SA) to
solve it. The evaluation results presented in this work provide important insights on various
controller provisioning strategies. Running a single controller causes high flow-setup delay,

53

as propagation delay between controller and switches are higher and flow-setup requests
can get queued at the controller because of limited processing capacity. On the other hand,
running one controller per switch can provide close to zero flow-setup times, but incurs sig-
nificant overhead for inter-controller communication. Our simulation results show that our
solution can achieve lower flow-setup time and minimal communication overhead compared
to that of the static version of the problem (using a single or multiple controllers). Our
system achieves a balance between flow-setup time and messaging overhead. Evaluation
results show that DCP-SA and DCP-GK succeed to find a right trade-off between these
two extremes and provide near-optimal solutions. DCP-SA provides better results than
DCP-GK, but takes longer to converge.

54

Chapter 3

Orchestrating Virtual Network
Functions

3.1 Introduction

Today’s communication networks ubiquitously deploy hardware middleboxes or network
appliances to offer different types of network services. Examples of such middleboxes
include firewalls, proxies, WAN optimizers, Intrusion Detection Systems (IDSs), and In-
trusion Prevention Systems (IPSs). Middleboxes are used to achieve various kinds of per-
formance and security related objectives for a network [13, 14]. Recent studies show that
the number of deployed middleboxes is very close to the number of routers in enterprise
and data center networks [14, 33]. Even though middleboxes have become an integral part
of modern networks, they come with high Capital Expenditure (CAPEX) and Operational
Expenditure (OPEX). They are usually vendor specific, vertically-integrated, expensive,
and require specially trained personnel for deployment and maintenance. Moreover, it is
often impossible to add new functionality to an existing middlebox, which makes it very
difficult and cumbersome for the network operator to deploy new services or technologies.
In many cases, the operator is compelled to purchase new hardware, which may lead to
an assessment of new equipment, network deployment strategy, or even considering new
vendors who can offer better products. Reassessment of business and operational strategies
increases cost and time required to introduce new services or technologies that may lead
to loss of customers and revenue.

Another set of problems arise from the fact that most often network traffic is required
to pass through multiple stages of middlebox processing in a particular order, e.g., a traffic

55

flow may be required to go through a firewall, then an IDS, and finally through a proxy [37].
This phenomenon is very common for middleboxes and is typically referred to as Service
Function Chaining (SFC) [38]. The IETF Network and Service Chaining Working Group
has several IETF drafts that demonstrate middlebox chaining use-cases in operator [94],
mobile [40], and data center networks [95]. The task of sequencing in-network middlebox
processing is commonly referred to as middlebox orchestration. Currently, middleboxes
are attached to fixed locations within a network. Traffic flows are routed through the
required sequence of middleboxes by manually crafting the routing table entries in the
routers, which is a cumbersome and error-prone process. Moreover, the fixed location
of middleboxes restricts the traffic routing paths from efficiently utilizing the available
transport capacity of the network, as the attachment points of middleboxes become hot-
spots within the network.

An emerging and promising technology that can address these limitations is Network
Function Virtualization (NFV) [44, 11]. It proposes to move packet processing from hard-
ware middleboxes to software middleboxes or Virtual Network Functions (VNFs) running
on commodity (e.g., x86 based systems) servers. This approach will not hamper perfor-
mance as many state-of-the-art software middleboxes have already shown the potential to
achieve near-hardware performance [45, 46]. NFV provides ample opportunities for net-
work optimization and cost reduction. Previously, middleboxes were hardware appliances
placed at fixed locations, but now a VNF can be deployed on any server in the network.
VNF locations can be determined intelligently to ensure efficient traffic routing. NFV
opens-up the opportunity to simultaneously optimize VNF locations and traffic routing
paths; thereby reducing network OPEX by maintaining a minimal set of active servers and
switches to lower the overall energy consumption of the network.

VNF chains can be orchestrated by dynamically deploying a composition of VNFs either
on a single server or on a cluster of servers. However, several issues need to be considered
before provisioning VNFs: (i) the cost of deploying a new VNF, (ii) energy cost for running
a VNF, (iii) the cost of forwarding traffic to and from a VNF, and (iv) fragmentation of the
underlying physical resource pool. Placing just enough VNFs to match traffic processing
requirements may yield the lowest deployment and energy cost, but steering traffic through
these VNFs will increase traffic forwarding cost and may eventually lead to Service Level
Objective (SLO) violations. On the other hand, one may try to always forward traffic
through the shortest possible path by deploying VNFs in all possible locations. This
approach may avoid SLO violations, but will surely lead to huge deployment and energy
costs. An optimal VNF orchestration strategy must address these issues during the cost
minimization process. Moreover, it must avoid SLO violations and satisfy the capacity
constraints of the physical servers and physical links. We refer to this problem as the

56

Virtualized Network Function Orchestration Problem (VNF-OP).

VNF-OP has similarities with generic Virtual Machine (VM) placement [96] or Con-
strained Shortest Path (CSP) [97] problems. However, VM placement problems only con-
sider the resource capacities of physical servers and links [98, 99], but in case of VNF-OP,
the number of required VNFs is not known in advance and we need to consider the traffic
processing capacity of a VNF as well. CSP problems do not consider finding a shortest
path through an ordered sequence of nodes. To the best of our knowledge, there has been
no prior work that explores the benefits of dynamic VNF orchestration, nor solves the re-
lated algorithmic problems. This work provides a mathematical formulation for VNF-OP
along with both optimal and heuristic solutions to solve this problem.

This work makes the following contributions:

• We provide the first quantifiable results showing that dynamic VNF orchestration
can have more than 4 times reduction in OPEX compared to hardware middleboxes.

• The problem is formulated as an Integer Linear Program (ILP) and implemented in
CPLEX1 to find optimal solutions for small scale networks.

• We prove the NP-hardness of VNF-OP by a reduction from the Capacitated Plant
Location Problem with Single Source constraints.

• We propose a fast heuristic algorithm that can find near-optimal solutions for large
scale networks within seconds.

• The heuristic’s performance in terms of solution quality and scalability is evaluated
using both real-world and synthetic topologies and traffic traces.

• Finally, we compared the performance of our heuristic with related work from the
literature [100].

The rest of the chapter is organized as follows: Section 3.2 provides background on
network function virtualization, then we explain the mathematical model used for our sys-
tem and formally define the VNF Orchestration Problem (Section 3.3). Then the problem
formulation is presented (Section 3.4). Next, a heuristic is proposed to obtain near-optimal
solutions (Section 3.5). We validate our solution through trace driven simulations on real-
world network topologies (Section 3.6) and finally, we summarize the results with some
future research directions (Section 3.8).

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

57

3.2 Network Function Virtualization

The primary objective of NFV is to revolutionize the service provisioning architecture
of communication networks. The transport capacity and speed of current networks have
continued to improve; however, they still struggle to handle the changing landscape of
requirements imposed by different applications and services. As discusses above, tradi-
tional network services are materialized by manually configuring routing table entries to
guide traffic through a sequence of middleboxes. Example of middleboxes include firewalls,
proxies, intrusion detection and prevention systems, load-balancers, and video optimizers.
Each of these middleboxes provides a particular set of packet processing capabilities, e.g.,
a firewall forwards or drops packets based on a pre-configured set of rules, a load-balancer
distributes traffic among a set of servers, and an intrusion detection system identifies ma-
licious traffic entering the network. The processing logic offered by a middlebox is called
a network function, and the software entity that implements this function in a virtualized
environment is called a Virtual Network Function or VNF. Similar to the decoupling of
data and control planes in SDN, NFV proposes to decouple the network functions from
the underlying hardware.

The first and foremost benefit of NFV is vendor-independence. By decoupling the
network functions from the underlying hardware, it enables network operators to utilize
standardized and commodity off-the-shelf hardware. The software running on hardware
middleboxes are tightly integrated with the hardware circuits and focuses exclusively on
performing a specific set of functions. The device is closed-source, as a network opera-
tor does not have access to the embedded software. In contrast, in NFV, the software
implementing a network function can be procured from the hardware vendor, third-party
companies, or developed in-house. This decoupling lowers the barrier to market-entry for
new companies; creating a competitive market-place that reduces the initial and mainte-
nance cost of VNF software. The ability to utilize commodity hardware and the evolution
towards an open VNF market will significantly reduce a network operator’s CAPEX. It is
otherwise hard for the network operator to break-free from a vendor as it would require
significant capital spending and management overhead.

NFV has the potential to change all that by decoupling the packet processing tasks
from the underlying hardware through virtualization. Moreover, NFV provides flexibility,
agility, and better programmability for service composition, and reduction in time for new
service deployment. Virtual network functions can be managed autonomously similar to
the way applications are managed in a cloud data center. NFV also opens-up the network
infrastructure to a broader range of customers. Third-party content or service providers
can rent resources from network operators which are typically much closer to the end-user

58

and provide innovative services and generate new revenue streams that are not possible
with the current proprietary vendor-locked architecture.

Figure 3.1: NFV architectural framework

The European Telecommunications Standards Institute (ETSI) [101] formed the NFV
Industry Specification Group (NFV ISG) to drive research and development in this area.
The NFV ISG proposed an architectural framework for NFV, which is shown in Figure 3.1.
The NFV Infrastructure (NFVI) consists of the underlying hardware infrastructure includ-
ing compute, storage, and network resources. A Virtualized Infrastructure Manager (VIM)
(e.g., OpenStack [7]) manages NFVI and utilizes existing virtualization technologies to
provide virtual resources for VNFs. The VNFs represent virtualized instances of different
network functions. Each VNF has a corresponding Element Management System (EMS)
that provides management and control functionality for that VNF. The VNF Manager
provides life-cycle management functionality for the software components of a VNF. The
Orchestrator manages the life-cycle of VNFs and SFCs though the VIM and VNF man-
agers. It utilizes resource allocation and placement algorithms to ensure optimal usage of
both physical and software resources. The VIM, VNF manager, and orchestrator consti-
tute the NFV Management and Orchestration (MANO) system. MANO interacts with
the Operational and Business Support Systems (OSS/BSS) of the operator to manage the
operational and business aspects of the network.

59

Figure 3.2: VM sharing and embedding of SFC-A and SFC-B

A VNF can be deployed on servers, VMs or containers. In this work, we assume that
VNFs are deployed within VMs, and each VNF can support multiple traffic flows. Figure 3.2
shows an example embedding of two SFCs: SFC-A and SFC-B. SFC-A consists of the chain
traffic analyzer, firewall, and video optimizer (TA → FW → VO), and SFC-B consists of
firewall, intrusion detection system, and load-balancer (FW → IDS → LB). The chains
are embedded on two servers. Server-1 and server-2 are hosting three and two VMs,
respectively. The VNF for firewall, hosted on VM-2 of server-1, is shared by the two chains.
In VNF-OP we need to determine the placement and traffic routing paths for SFCs in such
a manner that the inter-SFC VNF sharing can be maximized without violating SLOs.
Hence, our focus in this work can be summarized as devising algorithms for efficient SFC
and VNF placement while ensuring SLOs and reducing OPEX through optimal energy
utilization.

3.3 Mathematical Model and Problem Definition

In this section we introduce the mathematical model for our system and formally define
the VNF Orchestration Problem.

60

3.3.1 Physical Network

We represent the physical network as an undirected graph Ḡ = (S̄, L̄), where S̄ and L̄
denote the set of switches and links, respectively. We assume that VNFs can be deployed
on commodity servers located within the network. These network locations are traditionally
known as Point-of-Presences or PoPs. The set N̄ represents these servers and the binary
variable h̄n̄s̄ ∈ {0, 1} indicates whether server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄.

h̄n̄s̄ =

{
1 if server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄,
0 otherwise.

Let, R denote the set of resources (CPU, memory, and disk) offered by each server. The
resource capacity of server n̄ is denoted by crn̄ ∈ R+, ∀ r ∈ R. The bandwidth capacity and
propagation delay of a physical link (ū, v̄) ∈ L̄ are represented by βūv̄ ∈ R+ and δūv̄ ∈ R+,
respectively. We also define η(ū) as the set of neighbors for switch ū.

η(ū) = {v̄ | (ū, v̄) ∈ L̄ or (v̄, ū) ∈ L̄}, ū, v̄ ∈ S̄

3.3.2 Virtualized Network Functions (VNFs)

Different types of VNFs (e.g., firewall, IDS, IPS, and proxy) can be provisioned in a
network. The possible VNF types are represented by the set P . Each VNF type p has a
specific deployment cost, resource requirements, processing capacity, and processing delay
represented by D+

p , κrp ∈ R+(∀r ∈ R), cp (in Mbps), and δp (in ms), respectively. These
quantities are explained below:

• Deployment Cost (D+
p) includes the cost of image transfer and booting a VNF of

type p on a server.

• Resource Requirement (κrp) is the amount of resource of category r that must be
allocated to a type p VNF.

• Processing Capacity (cp) represents the amount of traffic (in Mbps) a type p VNF
can process.

• Processing Delay (δp) is the average delay (in ms) experienced by a packet when
traversing through a VNF of type p.

61

The actual values of the above mentioned quantities are highly implementation specific
and depend on a lot of factors. Here, we have assumed approximate values for these
quantities to simplify the mathematical model.

There can be certain hardware requirements (e.g., hardware-accelerated encryption for
Deep Packet Inspection (DPI)) that may prevent a server from running a particular type
of VNF. Furthermore, the network manager may have preferences regarding provisioning
a particular type of VNF on a particular set of servers, e.g., Firewalls should be deployed
close to the network edge. So, we assume that for each VNF type there is a set of servers
on which it can be provisioned. The following binary variable represents this placement
constraint:

dn̄p =

{
1 if VNF type p ∈ P can be provisioned on n̄,
0 otherwise.

3.3.3 Traffic Request

We assume that the network operator is receiving requests for setting up paths for different
kinds of traffic (e.g., VPN setup, security features, and new application or service in a
data center). A traffic request is represented by a 6-tuple t = 〈ūt, v̄t,Ψt, βt, δt, ωt〉, where
ūt, v̄t ∈ S̄ denote the ingress and egress switches, respectively. βt ∈ R+ is the bandwidth
demand of the traffic. δt is the maximum allowed propagation delay according to Service
Level Agreement (SLA). Ψt represents the ordered VNF sequence the traffic must pass
through (e.g., Firewall � IDS � Proxy). lΨt denotes the length of Ψt and ωt denotes the
policy to determine SLO violation penalties.

Ingress

Firewall IDS Proxy

Egress

s1 s2

Figure 3.3: VNF chain

In our mathematical model, we transform a VNF sequence Ψt into a directed acyclic
graph Gt = (N t, Lt), where N t represents the set of traffic nodes (VNFs, ingress and egress
switches) and Lt denotes the links between them. Figure 3.3 shows a sample VNF chains.

62

Here, traffic flows through the chain Firewall � IDS � Proxy. Modeling the traffic flow
in this way makes it easy for the provisioning process to ensure that it passes though the
correct sequence of VNFs. We also define ηt(n1) to represent the neighbors of n1 ∈ N t:

ηt(n1) = {n2 | (n1, n2) ∈ Lt}, n1, n2 ∈ N t

Without loss of generality, we consider n2 > n1 (n1, n2 ∈ N t), iff n2 appears after n1

in the topological order of Gt.

Next, we define a binary variable gtnp ∈ {0, 1} to indicate the type of a node n ∈ N t

gtnp =

{
1 if node n ∈ N t is of type p ∈ P,
0 otherwise.

3.3.4 VNF Orchestration Problem (VNF-OP)

We consider a scenario where an operational network is serving a set of traffic T̂ . It has a set
of VNFs already deployed and the routing paths for the traffic in T̂ are also provisioned.
Now, the network operator is receiving new traffic requests and wants to provision the
required VNFs and routing paths for them. The network operator can choose to provision
resources for one traffic request at a time or leverage a lookahead interval by accumulating
a number of traffic requests and provision resources in batches. Determining the optimal
number or volume of traffic or the length of the lookahead interval for each batch is an
interesting research challenge that is beyond the scope of this work and we plan to pursue
it in the future. In the rest of this chapter, we denote a new traffic batch by T . Based on
the operator’s choice, a batch may contain just one or multiple traffic requests.

In the VNF-OP, we are given a physical network topology, VNF specifications, cur-
rent network status and a set of new traffic requests. Our objective is to minimize the
overall network OPEX and physical resource fragmentation by (i) provisioning an optimal
number of VNFs, (ii) placing them at the optimal locations, and (iii) finding the optimal
routing paths for each traffic request, while respecting the capacity constraints (e.g., phys-
ical servers, links, and VNFs) and ensuring that traffic passes through the proper VNF
sequence.

OPEX: In this work, we consider the network OPEX to be composed of the following
four cost components:

63

• VNF deployment cost: we need to complete tasks like transferring a VM image,
booting it and attaching it to devices before deploying a VNF. We assign a cost (in
dollars) to these operations.

• Energy cost: it represents the cost of energy consumption by the active servers. A
server is considered active if it has at least one active VNF. Servers consume power
based on the amount of resources (e.g., CPU, memory, and disk) under use. A server
is assumed to be in the idle state if it does not have any active VNFs [102].

• Traffic forwarding cost: traffic forwarding cost may be incurred from two sources: (i)
leasing cost of transit links [103] and (ii) energy consumption of the network devices
(e.g., switches and routers). In the rest of this chapter, we use the terms ‘traffic
forwarding cost’ and ‘transit cost’ interchangeably.

• Penalty for Service Level Agreement (SLA) violation: this cost component represents
the penalty that must be paid to the customer for SLA violations, e.g., if a traffic
experienced more that the maximum allowed propagation delay.

Resource Fragmentation: We compute physical resource fragmentation by measur-
ing the percentage of idle resources for the active servers and links. We want to minimize
fragmentation as this approach eventually increases the possibility of accommodating more
traffic on the same physical resources.

3.4 Problem Formulation and Complexity Analysis

VNF-OP is a considerably harder problem to solve than traditional Virtual Network (VN)
embedding problems [104]. There is no node ordering requirement in VN embedding, while
in VNF-OP we need to preserve the ordering of VNFs. Moreover, in VNF-OP we need to
respect the processing capacity constraints of servers and the VNFs to be deployed. How
many VNFs are to be deployed is not known in advance, rather it is an outcome of the
optimization process. Multi-dimensional Bin Packing [105] can also be used to solve VNF-
OP, but this will result in a nested bin packing problem. In the first layer traffic needs
to be packed into VNFs and in the next layer VNFs need to be packed into the physical
servers. The fact that the number and locations of VNFs is not known in advance, results
in quadratic constraints for resource capacity and renders the problem unsolvable even
for very small instances by existing optimization solvers. In this work, we address these
challenges by intelligently augmenting the physical network, as explained in the following.

64

3.4.1 Physical Network Transformation

We transform the physical network to generate an augmented pseudo-network that reduces
the complexity involved in solving VNF-OP. The transformation process is performed in
the following two steps as shown in Figure 3.4:

VNF Enumeration

A part of a physical network topology is shown in Figure 3.4(a). Here, we have three
switches (s1, s2 and s3) and a server n2 connected to switch s2. We enumerate all possible
VNFs in this step by finding the maximum number for each VNF type that can be deployed
on each server. We calculate this number based on the resource capacity of the server and
the resource requirement of a type of VNF. For example, if a server has 16 cores, and CPU
requirement for Firewall and IDS are 4 and 8 cores, respectively, we can deploy 4 Firewalls
and 2 IDSs on it. In Figure 3.4(b) we show enumerated VNFs for server n2.

We denote the set of these VNFs (called pseudo-VNFs) by M. Each VNF m ∈ M is
implicitly attached to a server n̄ ∈ N̄ . We also attach two additional pseudo-VNFs to each
server to represent the ingress and egress points of a traffic request. We use the function
ζ(m) to denote this mapping.

ζ(m) = n̄ if VNF m is attached to server n̄

We also define a function Ω(n̄) to represent this mapping in the opposite direction:

Ω(n̄) = {m | ζ(m) = n̄}, m ∈M, n̄ ∈ N̄

Next, we define qmp ∈ {0, 1} to indicate the type of a VNF:

qmp =

{
1 if VNF m is of type p ∈ P,
0 otherwise.

We also define the function τ(m) that returns the type of pseudo-VNF m:

65

s1
s2

s3

n2

Switch

Server

(a) Original network

s1
s2

s3

n2

Firewall

Proxy

IDS

(b) VNF enumeration

s1
s2

s3

Pseudo

Switch

(c) Adding pseudo-switches

Figure 3.4: Network transformation

66

τ(m) = {p | qmp = 1}, m ∈M, p ∈ P

As discussed earlier, a given type of VNF can be deployed on a specific set of servers. To
ensure this we must have:

qmp = dζ(m)p (3.1)

We should note that pseudo-VNFs simply represent where a particular type of VNF
can be provisioned. ym ∈ {0, 1} indicates whether a pseudo-VNF is active or not.

ym =

{
1 if pseudo-VNF m ∈M is active,
0 otherwise.

Adding Pseudo-Switches

Next, we augment the physical topology again by adding a pseudo-switch between each
pseudo-VNF and the original switch to which it was connected. This process is shown
in Figure 3.4(c). We perform this step to simplify the expressions of the network flow
conservation constraint in the ILP formulation. This process does not increase the size of
the solution space as we consider them only for the flow conservation constraint.

3.4.2 ILP Formulation

We define the decision variable xtnm to represent the mapping of a traffic node to a pseudo-
VNF:

xtnm =

{
1 if node n ∈ N t is provisioned on m ∈M,
0 otherwise.

Next, we define another variable to represent the mapping between a traffic node and
a switch in the physical network.

67

Table 3.1: Glossary of symbols
Physical Network

Ḡ(S̄, L̄) Physical network Ḡ with switches S̄ and links L̄
N̄ Set of servers
h̄n̄s̄ ∈ {0, 1} If server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄
R Set of resources offered by servers
crn̄ ∈ R+ Resource capacity of server n̄, ∀r ∈ R
βūv̄, δūv̄ ∈ R+ Bandwidth, propagation delay of link (ū, v̄) ∈ L̄
η(ū) Neighbors of switch ū
an̄ ∈ {0, 1} an̄ = 1 if Server n̄ is active
fūv̄ ∈ {0, 1} fūv̄ = 1 if physical link (ū, v̄) is active

Virtualized Network Functions (VNFs)
P Set of possible VNF types
D+
p , κ

r
p, cp, δp Deployment cost, resource requirement, processing

capacity and processing delay of VNF type p ∈ P
dn̄p ∈ {0, 1} dn̄p = 1 if VNF type p can be provisioned on server n̄

Traffic
ūt, v̄t,Ψt Ingress, egress and VNF sequence for traffic t
βt, δt, ωt Bandwidth, expected delay, SLA penalty for t
N t {ūt, v̄t,Ψt}
Lt {(ūt,Ψt

1), . . . , (Ψt
|Ψt|−1,Ψ

t
|Ψt|), (Ψ

t
|Ψt|, v̄

t)}
ηt(n) Neighbors of n ∈ N t

gtnp ∈ {0, 1} gtnp = 1 if node n ∈ N t is of type p ∈ P
M Set of pseudo-VNFs
ζ(m) ζ(m) = n̄ if VNF m ∈M is attached to server n̄
Ω(n̄) {m | ζ(m) = n̄}, m ∈M, n̄ ∈ N̄
qmp ∈ {0, 1} qmp = 1 if VNF m ∈M is of type p ∈ P

Decision Variables
*xtnm ∈ {0, 1} xtnm = 1 if node n ∈ N t is provisioned on m ∈M
*wtn1n2

ūv̄ ∈ {0, 1} wtn1n2
ūv̄ = 1 if (n1, n2) ∈ Lt uses physical link (ū, v̄) ∈ L̄

Derived Variables
*ym ∈ {0, 1} ym = 1 if VNF m ∈M is active
ztns̄ ∈ {0, 1} ztns̄ = 1 if node n ∈ N t is attached to switch s̄
*x̂tnm, ŵ

tn1n2
ūv̄ , ŷm denote value from the previous iteration

68

ztns̄ =

{
1 if node n ∈ N t is attached to switch s̄,
0 otherwise.

ztns̄ is not a decision variable as it can be derived from xtnm:

ztns̄ = 1 if xtnm = 1 and h̄ζ(m)s̄ = 1

We can also derive the variable ym from xtnm as follows:

ym = 1 iff
∑
t∈T

∑
n∈Nt

xtnm > 0

We assume that x̂tnm represents the value of xtnm at the last traffic provisioning event.
To ensure that resources for previously provisioned traffic are not deallocated we must have
xtnm ≥ x̂tnm, ∀ t ∈ T̂ , n ∈ N t,m ∈ M. Now, we define ŷm ∈ {0, 1} that represents the
value of ym at the last traffic provisioning event as follows:

ŷm = 1 iff
∑
t∈T

∑
n∈Nt

x̂tnm > 0

Again, to ensure that resources for previously provisioned traffic are not deallocated
we must have ym ≥ ŷm, ∀ m ∈ M. Next, we need to ensure that VNF capacities are not
over-committed. The processing capacity of an active VNF must be greater than or equal
to the total amount of traffic passing through it. We express this constraint as follows:

∑
t∈T

∑
n∈Nt

xtnm × βt ≤ cτ(m), ∀ m ∈ {a|a ∈M, ya = 1} (3.2)

We also need to make sure that physical server capacity constraints are not violated by
the deployed VNFs. We represent this constraint as follows:

69

∑
m∈Ω(n̄)

ym × κrm ≤ crn̄, ∀ n̄ ∈ N̄ , r ∈ R (3.3)

Each node of a traffic must be mapped to a proper VNF type. This constraint is
represented as follows:

xtnm × gtnp = qmp, ∀ t ∈ T, n ∈ N t,m ∈M, p ∈ P (3.4)

Next, we need to ensure that every traffic node is provisioned and to exactly one VNF.

∑
t∈T

∑
n∈Nt

xtnm = 1, ∀ m ∈M (3.5)

Now, we define our second decision variable to represent the mapping between links in
the VNF chain (Figure 3.3) to the links in the physical network.

wtn1n2
ūv̄ =

{
1 if (n1, n2) ∈ Lt uses physical link (ū, v̄),
0 otherwise.

We also assume that ŵtn1n2
ūv̄ represents the value of wtn1n2

ūv̄ at the last traffic provisioning
event. To ensure that resources for previously provisioned traffic are not deallocated in the
current iteration we must have

wtn1n2
ūv̄ ≥ ŵtn1n2

ūv̄ , ∀ t ∈ T̂ ,∀(n1, n2) ∈ {(a, b)|
a ∈ N t, b ∈ ηt(a), b > a},∀ū, v̄ ∈ S̄ (3.6)

To ensure that each directed link in a traffic request is not mapped to both directions
of a physical link, we must have:

wtn1n2
ūv̄ + wtn1n2

v̄ū ≤ 1,∀ t ∈ T,∀(n1, n2) ∈ {(a, b)|
a ∈ N t, b ∈ ηt(a), b > a},∀ū, v̄ ∈ S̄ (3.7)

70

Now, we present the capacity constraint for physical links:

∑
ū∈S̄

∑
v̄∈S̄

(wtn1n2
ūv̄ + wtn1n2

v̄ū)× βt ≤ βūv̄,∀ t ∈ T,

∀(n1, n2) ∈ {(a, b)|a ∈ N t, b ∈ ηt(a), b > a} (3.8)

Next, we present the flow constraint that makes sure that the in-flow and out-flow of
each switch in the physical network is equal except at the ingress and egress switches:

∑
v̄∈η(ū)

(
wtn1n2
ūv̄ − wtn1n2

v̄ū

)
= ztn1ū

− ztn2ū
,∀ t ∈ T,

∀(n1, n2) ∈ {(a, b)|a ∈ N t, b ∈ ηt(a), b > a}, ∀ū ∈ S̄ (3.9)

Finally, we need to ensure that every link in a traffic request is provisioned on a path
in the physical network:

∑
ū∈S̄

∑
v̄∈S̄

(wtn1n2
ūv̄ + wtn1n2

v̄ū) ≥ 0,∀ t ∈ T,

∀(n1, n2) ∈ {(a, b)|a ∈ N t, b ∈ ηt(a), b > a} (3.10)

Our objective is to find the optimal number and placement of VNFs that minimizes
OPEX and physical resource fragmentation in the network. We formulate them as follows:

OPEX: We consider the following four cost components contributing to OPEX:

1. VNF Deployment Cost: the VNF deployment cost can be calculated based on three
different scenarios. Let us assume that we need to deploy a VNF of type p on server n̄.
Now one of the following three cases may occur:

• Case 1: There is no VNF of type p on n̄, so, we need to deploy a new one.

• Case 2: There is a VNF of type p on n̄, but it does not have enough residual capacity
to support the new traffic. So, we need to deploy a new VNF.

71

• Case 3: There is a VNF of type p on n̄ and it has enough residual capacity to
support the new traffic. So, there is no need to deploy a new VNF.

Considering all three scenarios, the total VNF deployment cost can be expressed as
follows:

D =
∑

m∈M|ym=1

D+
p × qmp × (ym − ŷm) (3.11)

2. Energy Cost: Without loss of generality we assume that the energy consumption of
a server is proportional to the amount of resources being used. However, a server usually
consumes power even in the idle state. So, we compute the power consumption of a server
as follows:

En̄ =
∑
m∈Ωn̄

ym × qmp × er(crn̄, κrp)

where

er(rt, rc) = (ermax − eridle)×
rc
rt

+ eridle

Here, rt and rc denote the total and consumed resource, respectively. eridle and ermax
denote the energy cost in the idle and peak consumption states for resource r, respectively.

Hence, the total energy cost is

E =
∑
n̄∈N̄

∑
m∈Ωn̄

ym × qmp × er(crn̄, κrp) (3.12)

3. Cost of Forwarding Traffic: Let us assume that the cost of forwarding 1 Mbit data
through one link in the network is σ (in dollars). We can compute the total cost of traffic
forwarding as follows:

72

F =
∑
t∈T

∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

∑
ū∈S̄

∑
v̄∈η(ū)

(
(wtn1n2

ūv̄ −

ŵtn1n2
ūv̄)× βt × σ

)
(3.13)

4. Penalty for SLA violation: We can compute the actual propagation delay experi-
enced by a traffic as follows:

δat =
∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

∑
ū∈S̄

∑
v̄∈η(ū)

wtn1n2
ūv̄ δūv̄

Let ρt(ωt, δt, δta) be a function that computes the penalty for SLO violation given the
policy for determining penalty (ωt), expected propagation delay (δt) and actual propagation
delay (δta) for traffic t. So, the total cost for SLA violations can be expressed as follows:

P =
∑
t∈T

ρt(ωt, δt, δ
t
a) (3.14)

– Resource Fragmentation: Our second objective is to minimize resource (e.g.,
server and link) fragmentation of active servers and links. We express it using the same
unit as the above mentioned costs. For this purpose, we assume that pr denotes the unit
price resource of type r ∈ R. We also denote ρβ as the unit price bandwidth.

A physical server n̄ is considered active if it hosts at least one active pseudo-VNF. The
binary variable an̄ captures this property:

an̄ =

{
1 if

∑
m∈Ω(n̄)

ym > 0,

0 otherwise.

Similarly, a physical link (ū, v̄) is considered active if it is hosting at least one traffic
flow. We use the binary variable fūv̄ to represent this:

73

fūv̄ =

1 if

∑
t∈T,

(n1,n2)∈Lt

wtn1n2
ūv̄ > 0,

0 otherwise.

Now, we can compute the total cost for resource fragmentation as follows:

C =
∑
n̄∈N̄

an̄
∑
r∈R

(
crn̄ −

∑
m∈Ω(n̄)

(κrp × qmpym)
)
pr+

∑
ū∈S̄

∑
v̄∈η(ū)

fūv̄

(
βūv̄ −

∑
t∈T

∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

(wtn1n2
ūv̄ × βt)

)
ρβ

(3.15)

Here, the first term represents the cost of server resource fragmentation (e.g., CPU,
memory, and disk) and the second term represents the cost of link bandwidth fragmenta-
tion.

Our objective is to minimize the total network operational cost and resource fragmen-
tation that can be expressed as a weighted sum of the aforementioned costs.

minimize
(
αD + βE + γF + λP + µC

)
(3.16)

Where α, β, γ, λ and µ are weighting factors used to adjust the relative importance of
the cost components.

VNF-OP is NP-Hard. We reduce the NP-Hard Capacitated Plant Location Prob-
lem with Single Source constraints (CPLPSS) [106] to the VNF-OP. In CPLPSS, we are
given a set of potential locations for production plants with fixed costs and capacities. A
commodity produced by these plants is to be supplied to a set of customers with fixed
demands and associated transportation costs. Moreover, each customer must be served by
a single plant. The objective is to find a subset of the plants that should be operated to
minimize cost without violating capacity and demand constraints.

Given an instance of the CPLPSS we can transform it to an instance of VNF-OP in the
following manner: (i) for each customer we create the chain DS → plant → customer,

74

where DS is a dummy ingress switch, customer is the egress switch, and plant is a VNF,
(ii) set the bandwidth of the chain to be equal to the customer demand, (iii) use the
transportation cost as the traffic forwarding cost, (iv) configure each physical machine to
deploy a single VNF of type plant, and (V) set the processing capacity of each plant to
be equal to its production capacity. These operations can be performed in polynomial time
of the problem size. Now, if we can solve this instance of VNF-OP, we will also obtain a
solution for the CPLPSS. However, CPLPSS is NP-hard, so the VNF-OP is NP-hard as
well.

3.5 Heuristic Solution

In this section, we present a heuristic to solve the VNF-OP. Given a network topology, a set
of middlebox specifications and a batch of traffic requests, the heuristic finds the number
and locations of different types of VNFs required to operate the network with minimal
OPEX. We did not explicitly consider resource fragmentation to keep the heuristic simple
and fast. However, our experimental results show that even with this simplification, the
heuristic produces solutions that are very close to the optimal. The heuristic runs in
two steps. First, we model the VNF-OP as a multi-stage directed graph with associated
costs. Then we find a near-optimal VNF placement from the multi-stage graph by running
the Viterbi algorithm [107]. In the following, we first describe the modeling of VNF-OP
using multi-stage graph (Section 3.5.1), followed by the solution using Viterbi algorithm
(Section 3.5.3).

3.5.1 Modeling with Multi-Stage Graph

For a given traffic request, t = 〈ūt, v̄t,Ψt, βt, δt, ωt〉, we represent t as a multi-stage graph
with lΨt + 2 stages. The first and the last (i.e., lΨt + 2) stages represent the ingress and
egresses switches, respectively. These two stages contain only one node representing ūt

and v̄t, respectively. Stage i (∀i ∈ {2, . . . (lΨt + 1)}), represents the (i − 1)-th VNF in
the traffic request and the node(s) within this stage represent the possible server locations
where that type of VNFs can be placed. Each node is associated with a VNF deployment
cost (Eq. 3.11) and an energy cost (Eq. 3.12) as described in Section 3.4.2.

An edge (v̄i, v̄j) in this multi-stage graph represents the placement of a VNF at a server
attached to switch v̄j, given that the previous VNF in the sequence is deployed on a server
attached to switch v̄i. We add a directed edge between all pairs of nodes in stage i and i+1

75

(∀i ∈ {1, 2, . . . (lΨt + 1)}). We associate two costs with each edge: the cost of forwarding
traffic (Eq. 3.13) and the penalty for SLA violations (Eq. 3.14). The traffic forwarding cost
is proportional to the weighted shortest path (in terms of latency) between the switches.
The penalty for SLA violations is obtained by the following process: (i) we equally divide
the maximum allowed delay between the stages, (ii) we assign a SLA violation cost for a
transition between two successive stages in the multi-stage graph whenever we incur more
than the allocated delay due to traffic transport and processing at the nodes. The total
cost of a transition between two successive stages is calculated by summing the node and
edge costs following Eq. 3.16. Finally, a path from the node in the first stage to the node
in the last stage represents a placement of the VNFs. Our goal is to find a path in the
multi-stage graph that yields minimal OPEX.

3.5.2 Heuristic Algorithm

Algorithm 3 gives the pseudcode of the heuristic solution. The procedure ProvisionTraffic
takes as input a traffic request t and the network topology graph Ḡ annotated with the
resource capacities at each switch. We keep two tables, cost and π, to keep track of the
cost and the sequence of middlebox placements, respectively. costi,j represents the cost
of deploying the j-th middlebox in the middlebox sequence Ψt to a server attached with
switch i. The cost computation procedure is the same as described in Section 3.5.3. We
use a number of helper procedures for the ease of implementation. The first helper proce-
dure, IsResourceAvailable checks if a middlebox mbox for a traffic request t can be placed
at switch i, satisfying the minimum bandwidth and resource requirements. The second
helper, GetCost, computes the cost of placing middlebox mbox for a traffic request t at
a server attached to switch j. The previous node k that yields the minimum cost for the
current node in consideration j, is tracked by the entry πk,j. Finally, we backtrace using
entries in π to obtain the desired middlebox sequence.

Running Time: Let the number of switches and the maximum length of a middlebox
sequence be n and m, respectively. Algorithm 3 performs Θ(nm) computations at the
beginning to initialize the cost matrix. Then for each element in the traffic sequence,
the algorithm takes all possible pairs of nodes u, v and computes the cost of deploying
a middlebox at the server attached to switch v given that the previous middlebox in the
sequence was deployed at a server connected to switch u. Therefore, there is a total of
Θ(n2m) operations involved. With some pre-computation steps the costs can be calculated
and resource availability can be queried in O(1) time. Therefore, Algorithm 3 runs in
Θ(n2m).

76

Algorithm 3 ProvisionTraffic(t, Ḡ)

1: ∀(i, j) ∈ {1 . . . |Ψt|} × {1 . . . |S̄|} : costi,j ←∞, πi,j ← NIL
2: ∀i ∈ |S̄| :
3: if IsResourceAvailable(ut, i,Ψt

1, t) then
4: cost1,n ← GetCost(ut, i,Ψt

1, t), π1,n ← n
5: end if
6: ∀(i, j, k) ∈ {2 . . . |Ψt|} × {1 . . . |S̄|} × {1 . . . |S̄|} :
7: if IsResourceAvailable(k, j,Ψt

i, t) then
8: costi,j ← min{costi,j, costi−1,k +GetCost(k, j,Ψt

i, t)}
9: πi,j ← i yielding minimum costi,j

10: end if
11: Π← NIL, C ←∞, ψ ←<>
12: ∀i ∈ |S̄| :
13: C ← min{C, cost|Ψt|,i + ForwardingCost(i, vt)+

SLAV iolationCost(i, vt, t)}
14: Π← i yielding minimum cost|Ψt|,i
15: ∀i ∈< |Ψt|, |Ψt| − 1 . . . 1 > : Append Π to ψ, Π← πi,Π
16: return Reverse(ψ)

3.5.3 Finding a Near-Optimal Solution

Viterbi algorithm is a widely used method for finding the most likely sequence of states
from a set of observed states. To find such a sequence, Viterbi algorithm first models the
states and their relationships as a multi-stage graph. Each stage consists of the possible
states and a transition cost is assigned between all pairs of states in successive stages.
Once the multi-stage graph is constructed, Viterbi algorithm proceeds by computing a
per node cumulative cost, costu. This cost is computed recursively as the minimum of
costv + transition cost(v, u), for all v in the previous stage as of u’s stage. costu represents
the cost of including node u in the final solution. This computation proceeds in the
increasing order of stages. After finishing the computation at the final stage, the most
likely sequence of states is constructed by tracing back a path from the final stage back to
the first that yields the minimum cost.

We borrow the idea of how costs are computed from Viterbi Algorithm and propose a
traffic provisioning algorithm, ProvisionTraffic (Algorithm 3). It takes a traffic request
t and a network topology Ḡ as input and returns a placement of Ψt in Ḡ. For each node
u in each stage i, we find a node v in stage i − 1 that yields the minimum total cost

77

1

2

4

3

5 6

20ms

12ms

(a) Example network topolog

2

4

3

2

4

3
4

3

Firewall IDS Proxy

1 6

(b) Multi-stage graph

2

4

3
3

Firewall IDS

2

4

3
3

Firewall IDS

38

15

21

38

15

21

back_ptr

(c) A single stage

Figure 3.5: Modeling with multi-stage graph

costv,u (costs are defined according to the discussion in Section 3.5.1). We keep track of
the minimum cost path using the table π. After finishing computation for the final stage,
we construct the desired VNF placement by back tracing from the final stage to the first
stage, using the entries in π. During this process we update residual resource capacities
of the servers and the residual bandwidth of the links after each path is allocated. For
each traffic request, the heuristic solution runs in Θ(n2m) time, where n is the number of
switches in the network and m is the VNF sequence length.

3.5.4 Heuristic in Action

Figure 3.5(a) shows an example network topology with six switches, where the servers are
connected to switch 2, 3 and 4. We need to find the path for a traffic which is going from
switch 1 to 6 and must pass through a firewall, then an IDS and finally through a proxy.

First, we generate a multi-stage graph as shown in Figure 3.5(b). Here, we are assuming

78

that the firewall and proxy can be deployed on any server, but the IDS can only be deployed
on servers connected to switches 3 and 4. Each node in the multi-stage graph represents
a decision about where to place a VNF. For example, if we select node 4 in the stage
labeled “IDS”, it means that a VNF corresponding to an IDS will be deployed on the
server connected to switch 4. As explained earlier, there is a cost associated with each
node selection.

Now, we traverse this graph starting at node 1. The first stage is trivial, we just compute
the cost of deploying and running (energy cost) a firewall at node 2, 3 and 4 and add the
cost of routing traffic from node 1 to each node. There is no additional computation as
there is just one incoming link for each node. However, the operations for the subsequent
stages involve comparing the cost of reaching a particular node from different nodes. For
example, node 3 in stage “IDS” can be reached from three different nodes. The operation
performed in this is stage is explained in Figure 3.5(c).

We need to compute the transition cost from nodes 2, 3 and 4 to node 3. These costs
are shown on the left side of Figure 3.5(c). Now, if we select the link between node 4 and
node 3 then the Firewall will be deployed on node 4 and the IDS will be deployed on node
3 and the cost of deploying the IDS will be 38. However, we have links with lower costs
than this one and at each stage we select the incoming link with the minimal cost. So,
here we will select the link between node 2 and 3 as it has the lowest cost of 15. We will
also save a pointer (back ptr) to mark the node that was selected. We continue in this
manner until we reach the destination node (node 6 in this example), then we follow the
back ptrs to re-construct the VNF-to-server mappings.

3.6 Performance Evaluation

We perform trace driven simulations on real-world network topologies to gain a deeper
insight, and to evaluate the effectiveness of the proposed solution. Our simulation is focused
on the following aspects: (i) demonstrating the benefits of dynamic VNF orchestration
over hardware middleboxes (Section 3.6.3), (ii) comparing the performance of the heuristic
solution with that of the CPLEX based optimal solution (Section 3.6.4), (iii) comparing the
performance of our heuristic with state-of-the art (Section 3.6.5), (iv) demonstrating the
scalability of our heuristic (Section 3.6.6), and (v) analyzing the behavior of the proposed
solution for different traffic volumes (Section 3.6.7). Before presenting the results, we briefly
describe the simulation setup (Section 3.6.1) and the performance metrics (Section 3.6.2).
Implementations of both CPLEX and heuristic are available at http://goo.gl/Da7EZu.

79

 0

 0.25

 0.5

 0.75

 1

 0 2000 4000 6000 8000 10000

Fr
ac

tio
n

of
 P

ea
k

Tr
af

fic

Time (min)

(a) Internet2

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30 35 40

Fr
ac

tio
n

of
 P

ea
k

Tr
af

fic

Time (min)

(b) Data center

 0.75

 1

 0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 P

ea
k

Tr
af

fic

Time (min)

(c) Rocketfuel

Figure 3.6: Traffic distribution over time for different scenarios

3.6.1 Simulation Setup

Topology Dataset

We have used a wide range of network topologies: (i) Internet2 research network (12
nodes, 15 links) [66], (ii) A university data center network (23 nodes, 42 links) [108] and
(iii) Autonomous System 3967 (AS-3967) from Rocketfuel topology dataset (79 nodes, 147
links) [109].

Traffic Dataset

We use both real traces and synthetically generated traffic for the evaluation. We use traffic
matrix traces from [66] to generate time varying traffic for the Internet2 topology. This

80

Table 3.2: Server and middlebox data used in evaluation
Server Data [102]

Physical CPU Cores Idle Energy Peak Energy
16 80.5W 2735W

Hardware Middlebox Data
Idle Energy Peak Energy Processing Capacity

1100W 1700W 40Gbps
VNF Data [113, 45]

Network Function CPU Required Processing Capacity
Firewall 4 900Mbps
Proxy 4 900Mbps
Nat 2 900Mbps
IDS 8 600Mbps

trace contains a snapshot of a 12× 12 traffic matrix and demonstrates significant variation
in traffic volume. For the data center network, we use the traces available from [108],
and replay the traffic between random source-destination pairs. Finally, for the Rocketfuel
topology, we generate a synthetic time-varying traffic matrix using the FNSS tool [110].
The traffic matrix follows the distribution from [111] and exhibits time-of-day effect.

Middlebox and Cost Data

We generate a 3-length middlebox sequence for each traffic based on the data provided
in [112] and [37]. We use publicly available data sheets from manufacturers and service
providers to select and infer values for server energy cost, SLA violation cost (for violating
maximum latency), resource requirements for software middleboxes and their processing
capacities. We also obtained energy consumption data for hardware middleboxes from a
popular network equipment manufacturer. Table 3.2 lists the parameters used for servers,
VNFs and middleboxes. In the rest of this section we use the term “middlebox” to refer
to both hardware middlebox and VNF.

81

 3
.7

5
 4

.5

 0 2 4 6 8 10

Time (x103 min)

Total Cost

 1
0

 1
5

Energy Cost

 1
 1

.2
 1

.4
Hardware vs. VNF

Transit Cost

(a) Hardware vs. VNF (Internet2)

 1
 1

.1
 0 2 4 6 8 10

Time (x103 min)

Total Cost

 0
.5

 1 Energy Cost

 1
 1

.2
 1

.4

Heuristic vs. CPLEX

Transit Cost

(b) Internet2

 1
 1

.2
 1

.4

 0 5 10 15 20 25 30 35 40

Time (min)

Total Cost

 1
 1

.5

Energy Cost

 1
 1

.2
 1

.4

Heuristic vs. CPLEX

Transit Cost

(c) Data center

Figure 3.7: Time vs. cost ratio
82

3.6.2 Performance Metrics

Operational Expenditure (OPEX)

We measure OPEX according to Eq. 3.16, and compare CPLEX and heuristic solutions by
plotting the ratio of OPEX and its components. Here, we have assigned equal weights to
the cost components in Eq. 3.16.

Execution Time

It is the time required to find middlebox placement for a given traffic batch and network
topology.

System Utilization

We compute it as the fraction of used CPU for a server. We also report the number of
active servers.

Topological Properties of Solution

We report two topological properties of the middlebox locations: (i) percentage of middle-
boxes placed withing k-hops from the ingress/egress switches and (ii) path stretch, i.e., the
ratio of path length obtained by CPLEX or the heuristic to the shortest path length for the
traffic. The first metric gives us an insight into the location of middleboxes with respect
to the ingress/egress switches, and the second one shows how many additional links (hence
more bandwidth) are required to steer traffic through middlebox sequences.

3.6.3 VNFs vs. Hardware Middleboxes

One of the driving forces behind NFV is that VNFs can significantly reduce a network’s
OPEX. Here, we provide quantifiable results to validate this claim. Figure 3.7(a) shows the
ratio of OPEX for hardware middleboxes to VNFs for incoming traffic provisioning requests
(about 132 requests per batch) over a period of 10000 minutes. We show two components
of OPEX: energy and transit cost. There is no publicly available data that can be used
to estimate the deployment cost of hardware middleboxes. So, for this experiment, we do
not consider deployment cost as a component of OPEX to make the comparison fair. The

83

SLA violation penalty is not shown as it is zero for all time-instances. We implemented
a different CPLEX program to peak provision the hardware middleboxes (peak traffic
occurs at time-instance 7665). VNFs are provisioned at each time-instance by our CPLEX
implementation corresponding to the formulation provided in Section 3.4.

The bottom part of Figure 3.7(a) shows that VNFs provide more than 4 times reduction
in OPEX. The individual reductions in energy and transit costs are also shown in the same
figure. The reduction in energy cost is much higher than that of the transit cost. This
is due to the fact that hardware middleboxes consume considerably higher energy than
commodity servers. From Figure 3.7(a) and Figure 3.6(a), we can also see that with
the increase in traffic volume (after time-instance 4000) the total cost ratio decreases.
Interestingly, the energy cost ratio decreases, but the transit cost ratio increases. Handling
higher traffic volume requires higher number of VNFs to be deployed, which increases the
energy consumption of commodity servers, thus decreasing the energy cost ratio. However,
VNFs are provisioned at optimal locations by CPLEX, which causes the transit cost to
decrease and increases the transit cost ratio. The cost ratio relationship between VNFs
and hardware middleboxes depends on a number of factors like processing capacity, traffic
volume, idle and peak energy consumption.

The topological properties of VNF and hardware middlebox placement locations are
reported in Figure 3.8. The CDF of hop distance between the ingress switch and middlebox
is shown in Figure 3.8(a). Higher percentage of VNFs are located within 2 hops of the
ingress switch (mostly withing 1 hop), compared to hardware middleboxes. Some VNFs are
also located at 4 hop distance. This only occurs when placing a VNF farther away reduces
the OPEX by decreasing the energy cost. Similar results are obtained for the hop distance
between middlebox and egress switch (Figure 3.8(b)). These two figures also demonstrate
the fact that CPLEX places middleboxes in a more balanced (symmetric) way on the path
between the ingress and egress switch. The path stretch for both hardware middleboxes and
VNFs are shown in Figure 3.8(c). VNFs consistently achieve a lower path stretch than
hardware middleboxes, as VNF locations are not static like the hardware middleboxes.
They can be provisioned on any server to reduce OPEX.

3.6.4 Performance Comparison Between CPLEX and Heuristic

Now, we compare the performance of our heuristic with that of the optimal solution. Fig-
ure 3.7(b) and Figure 3.7(c) show the cost ratios for Internet2 and data center networks,
respectively. The traffic patterns for these two topologies are shown in Figure 3.6(a)
and Figure 3.6(b), respectively. The deployment cost and penalty for SLO violation are

84

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Hop Distance of Middlebox from Ingress Switch

VNF-Internet2 Hardware-Internet2

(a) Distance between middlebox and ingress

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Hop Distance of Middlebox from Egress Switch

VNF-Internet2 Hardware-Internet2

(b) Distance between middlebox and egress

 0

 0.25

 0.5

 0.75

 1

 1 2 3 4 5 6 7

C
D

F

Stretch

VNF-Internet2 Hardware-Internet2

(c) Path stretch

Figure 3.8: Topological property comparison between hardware middlebox and VNF de-
ployment (Internet2)

85

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2000 4000 6000 8000 10000

M
ea

n
U

til
iz

at
io

n

Time (min)

Heuristic Solution CPLEX Solution

(a) Mean server utilization (Internet2)

 0.5

 1

 1.5

 2

 2.5

 0 2000 4000 6000 8000 10000

N
um

be
r o

f A
ct

iv
e

S
er

ve
rs

Time (min)

Heuristic Solution CPLEX Solution

(b) Number of active servers (Internet2)

 0

 0.2

 0.4

 0.6

 0.8

 1

Ser
ve

r-1

Ser
ve

r-3

Ser
ve

r-4

M
ea

n
U

til
iz

at
io

n

Server ID

Heuristic Solution CPLEX Solution

(c) Per server utilization (Internet2)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

M
ea

n
U

til
iz

at
io

n

Time (min)

Heuristic Solution CPLEX Solution

(d) Mean server utilization (data center)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

N
um

be
r o

f A
ct

iv
e

S
er

ve
rs

Time (min)

Heuristic Solution CPLEX Solution

(e) Number of active servers (data center)

 0

 0.2

 0.4
 0.6

 0.8

 1

Ser
ve

r-6

Ser
ve

r-1
1

Ser
ve

r-1
2

Ser
ve

r-1
3

Ser
ve

r-1
4

Ser
ve

r-2
0

Ser
ve

r-1
3

Ser
ve

r-1
4

Ser
ve

r-1
6

Ser
ve

r-1
7

Ser
ve

r-2
0

M
ea

n
U

til
iz

at
io

n

Server ID

Heuristic Solution CPLEX Solution

(f) Per server utilization (data center)

Figure 3.9: Resource utilization

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

Hop Distance of Middlebox from Ingress Switch

Heuristic-Internet2
CPLEX-Internet2

Heuristic-DC
CPLEX-DC

(a) Distance between middlebox and ingress

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

Hop Distance of Middlebox from Egress Switch

Heuristic-Internet2
CPLEX-Internet2

Heuristic-DC
CPLEX-DC

(b) Distance between middlebox and egress

 0

 0.25

 0.5

 0.75

 1

 1 2 3 4 5 6 7

C
D

F

Stretch

Heuristic-Internet2
CPLEX-Internet2

Heuristic-DC
CPLEX-DC

(c) Path stretch

Figure 3.10: Topological properties of solution

not shown, as the deployment cost is equal in both cases and the SLA violation penalty is
zero for all time-instances. From Figure 3.7(b), we can see that the heuristic finds solutions
that are within 1.1 times of the optimal solution. During peak traffic periods, the ratio
of energy cost goes below 1, but the ratio of transit cost increases. The optimal solution
adapts to high traffic volumes by deploying more VNFs (increasing energy cost) and plac-
ing them at locations that decrease the transit cost. As a result, the ratio of energy cost
decreases and the ratio of transit cost increases. However, the total cost ratio stays almost
the same (varying between 1 and 1.1). Similar results are obtained for the data center
network (Figure 3.7(c)), where the cost ratio is also very close to 1 and varies between 1.1
and 1.3.

The average execution times of the heuristic and CPLEX are shown in Table 3.3. They
were run on a machine with 10 × 16-Core 2.40GHz Intel Xeon E7-8870 CPUs and 1TB

87

Table 3.3: Average execution time
Topology CPLEX Heuristic

Internet2 (12 nodes, 15 links) 34.99s 0.535s
Data center (23 nodes, 43 links) 1595.12s 0.442s
AS-3967 (79 nodes, 147 links) ∞ 2.54s

memory. As we can see, our heuristic provides solutions that are very close to the optimal
one and its execution time is several orders of magnitude faster than CPLEX.

Figure 3.9 shows results related to server resource utilization for Internet2 and data
center networks. Figure 3.9(a) and Figure 3.9(b) show the mean utilization and the total
number of active servers, respectively, for the Internet2 topology. Figure 3.9(c) shows the
average utilization per server over all time-instances. The mean utilization of the heuristic
is less than that of CPLEX, as CPLEX uses more servers than the heuristic (Figure 3.9(b)).
CPLEX achieves lower OPEX by deploying more VNFs during higher traffic periods to
route traffic through shorter paths. However, the solutions provided by the heuristic are
within 1.1 times of the optimal results (Figure 3.7(b)). In case of the data center network,
CPLEX uses less servers than the heuristic (Figure 3.9(e)) and the utilization is also higher
(Figure 3.9(d)). The solution provided by the heuristic has higher resource fragmentation
than the CPLEX one (Figure 3.9(f)). The data center topology offers higher number of
locations to deploy VNFs compared to Internet2. Hence, the heuristic falls a little short of
the optimal placement as it explores a smaller solution space. CPLEX finds the optimal
value, but at the cost of much higher execution time (Table 3.3).

The topological properties for middlebox deployment for Internet2 and data center
networks are shown in Figure 3.10. The CDF of hop distance from the ingress switch to a
VNF is shown in Figure 3.10(a). The hop distances for the heuristic is very close to that
of the optimal solution. In case of the data center network, there is a relatively larger gap.
This occurs due to the higher path diversity offered by a data center network. Each pair of
nodes has more than one equal cost path. CPLEX finds the optimal solution by exploring
all of them. However, the heuristic always picks the first shortest path. It does not
explore the alternate paths to keep the execution time within practical limits (Table 3.3).
Similar results are observed for the egress case (Figure 3.10(b)). From Figure 3.10(a)
and Figure 3.10(b) we can also see that the CDFs are quite similar, which means that
both CPLEX and heuristic place VNFs uniformly on the path between the ingress and
egress switches. The path stretch is shown in Figure 3.10(c). As before, the heuristic’s
performance is close to that of the optimal solution. In case of the data center network,
the heuristic has a larger stretch, which is a result of the path diversity inherent in data

88

 120

 140

 160

 180

 0 200 400 600 800 1000 1200
 1

 1.25

 1.5

Tr
an

si
t C

os
t (

$)

E
ne

rg
y

C
os

t (
$)

Time (min)

Transit Cost Energy Cost

Figure 3.11: OPEX components for AS-3967

center networks.

The results for the AS-3967 topology are shown in Figure 3.11 and Figure 3.12. The
traffic for this topology is shown in Figure 3.6(c). As mentioned earlier, this traffic was
generated using the FNSS tool [110] and it exhibits time-of-day effect. We cannot provide
a comparison with the optimal solution as the CPLEX program is not able to solve the
problem for this topology. It failed to fit the optimization model in its memory even though
the physical machine had 1TB of memory. The program crashes after the total memory
usage reaches around 300 GB. We observed similar behavior when experimenting with high
traffic volumes. CPLEX is not able to solve the problem for the Internet2 topology when
traffic is increased to utilize the network by more than 40%. We tuned different parameters
(e.g., solving the dual problem, storing branch and bound tree data on disk, and reducing
the number of threads) of the CPLEX solver according to the guidelines provided by IBM2,
but could not solve the problem. We plan to investigate this issue further in the future.
Still, the heuristic solution is able to solve the same problem in less than 3 seconds.

The transit and energy cost for the AS-3967 topology is reported in Figure 3.11. The
transit cost is two orders of magnitude higher than the energy cost, which is expected for
a larger network with large amount of traffic. From Figure 3.6(c) and Figure 3.11, we
can see that our dynamic VNF orchestration approach adapts nicely with the changing
traffic conditions. It can dynamically scale-up or scale-down the number of active VNFs
(demonstrated by the rise and fall of the energy cost). It can also adapt the location of
the VNFs according to the variation in the traffic volume.

The results for system resource utilization and topological properties for middlebox lo-

2http://www-01.ibm.com/support/docview.wss?uid=swg21399933

89

 0.7

 0.75

 0.8

 0.85

 0 200 400 600 800 1000 1200
 11

 12

 13

 14

 15

 16

M
ea

n
U

til
iz

at
io

n

N
um

be
r o

f A
ct

iv
e

S
er

ve
rs

Time (min)

Utilization Active Servers

(a) Mean server utilization

 0

 0.2

 0.4
 0.6

 0.8

 1

Ser
ve

r-9

Ser
ve

r-1
2

Ser
ve

r-1
3

Ser
ve

r-1
5

Ser
ve

r-1
8

Ser
ve

r-2
1

Ser
ve

r-3
1

Ser
ve

r-3
6

Ser
ve

r-4
8

Ser
ve

r-5
1

Ser
ve

r-6
6

Ser
ve

r-6
9

Ser
ve

r-7
2

Ser
ve

r-7
5

Ser
ve

r-7
6

Ser
ve

r-7
7

M
ea

n
U

til
iz

at
io

n

Server ID

Heuristic Solution

(b) Per server utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F

Hop Distance

Heuristic-AS3967-Ingress
Heuristic-AS3967-Egress

(c) Distance to middlebox

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Stretch

Heuristic-AS3967

(d) Path stretch

Figure 3.12: Results for Rocketfuel topology (AS-3967)

90

cations are shown in Figure 3.12. From Figure 3.12(a) we can see that the mean utilization
and number of active servers vary with fluctuation in traffic volume. The mean utilization
of the servers is around 80%, but there is a small number of servers that are underutilized
(Figure 3.12(b)). The CDF of percentage of middleboxes deployed within k-hop distance
from the ingress switch is reported in Figure 3.12(c). More than 90% middleboxes are
deployed within 5 hops, which is quite reasonable for a network with 79 switches and 147
links. Similar results are obtained for the egress case as shown in the same figure. Fi-
nally, the path stretch is shown in Figure 3.12(d). We can observe that 20% traffic passes
through the shortest path even after going though the VNF sequence. So, in 20% of the
cases VNFs are provisioned on the shortest path between the ingress and egress switches
that the traffic is passing through.

3.6.5 Performance Comparison with Previous Work

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250 300

D
ep

lo
ye

d
VN

Fs

Requested VNFs

NFO-DP NFO-BS

(a) VNFs deployed

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100Ex
ec

ut
io

n
Ti

m
e

(s
) [

Lo
g

Sc
al

e]

Number of Chaining Requests

NFO-DP NFO-BS

(b) Execution time

Figure 3.13: Performance comparison

We demonstrate the effectiveness of our proposed heuristic (NFO-DP) over prior work
by comparing with a very recent and relevant proposal. We implemented the binary search
based heuristic proposed in [100] (NFO-BS). We adjusted the heuristic parameters accord-
ing to the provided guideline in [100]. We experimented with a moderate size ISP network
topology with 79 nodes and 147 links (AS3967 from RocketFuel topologies [109]). We
varied the number of VNF chaining requests from 10 to 100 and measured the execution
time along with the number of deployed VNFs. The results are reported in Figure 3.13.
NFO-BS could not find a feasible solution for more than 60 traffic requests within a time

91

limit of 24 hours. Moreover, the solution quality is not consistent, as shown by the irreg-
ular line in Figure 3.13. Our findings show that on similar problem instances NFO-DP
outperforms NFO-BS in both solution quality and execution time.

3.6.6 Scalability of Heuristic

 1

 4

 16

 64

 256

 10 20 30 40 50 60 70 80 90 100Ex
ec

ut
io

n
Ti

m
e

(s
) [

Lo
g

Sc
al

e]

Number of Chaining Requests

AS1239 28-port Fat Tree

Figure 3.14: Scalability of heuristic

In this scenario, we test the scalability of our proposed heuristic by running it on larger
network topologies and report the execution time. For larger network topologies, we used
a 28-port fat tree [114] with around 1000 nodes and 10K links as a data center network
and an ISP network topology with 315 nodes and 972 links (AS1239 from RocketFuel ISP
topologies [109]). For each of these topologies we varied the number of VNF chaining
requests from 10 to 100 and reported the execution time. Figure 3.14 shows the results of
this experiment. As we can see, even for a very large data center network, our proposed
heuristic could embed 100 requests in under 6 minutes. It is worth mentioning that the
heuristic proposed in [100] could embed only less than 30 VNF chaining requests withing
6 minutes on a much smaller network.

3.6.7 Effect of High Traffic Volume

Now, we show the impact of higher traffic volume on our solution. We perform this
experiment by increasing the original traffic by 10% to 40% (in increments of 10%) for
the Internet2 topology (Figure 3.15). We observed a linear relationship between OPEX

92

 0.75

 1

 1.25

10% 20% 30% 40%

C
os

t R
at

io
 (H

eu
ris

tic
 /

C
P

LE
X

)

Network Utilization (%)

Total Cost
Energy Cost
Transit Cost

(a) Cost ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10 20 30 40

M
ea

n
S

er
ve

r U
til

iz
at

io
n

(%
)

Network Utilization (%)

Heuristic
CPLEX

(b) Server Utilization

Figure 3.15: Cost ratio (heuristic / CPLEX) with varying load

and network utilization for both of our solutions. The cost also grows almost at the same
rate for both CPLEX and heuristic as evident from Figure 3.15(a). The heuristic is able
to follow the optimal solution very closely. Although it might seem a bit unintuitive by
looking at the ratio of the individual cost components, this occurs as the transit cost is
two orders of magnitude larger than the energy cost.

The server utilization increases sub-linearly with increasing network load (Figure 3.15(b)).
The number of used servers remains the same for different network loads, but more cores
were used since more VNFs were deployed. The larger error bar for CPLEX indicates
the deployment of more VNFs, which increases the energy cost. However, more VNFs
eventually decreases the transit cost, which is the major contributor to OPEX in this case.

93

3.7 Related Work

The initial drive for NFV was from several telecommunication operators back in 2013 [44].
The motivation behind NFV is to break the barrier of proprietary hardwares and have
more flexibility in the network in terms of service placement, introducing new services, and
vendor independence. To this date, research efforts have been made in different aspects
of NFV. In this section, we first discuss about state-of-the-art NFV management and
orchestration proposals (Section 3.7.1), then we describe some placement algorithms for
VNFs and VNF chains (Section 3.7.2), followed by some enabling technologies for NFV
(Section 3.7.3).

3.7.1 Management and Orchestration of Network Functions

Some of the early works on managing VNFs, propose to outsource them to a cloud ser-
vice [14, 115]. Such outsourcing is motivated in the literature by studying experiences of
different network operators. [14, 115] show how the management complexities arising in
today’s enterprise networks can be mitigated through outsourcing.

A more formal management approach towards NFV is taken by projects such as Stratos
[116], and OpenNF [61]. Stratos proposes an architecture for orchestrating VNFs out-
sourced to a remote cloud by taking care of traffic engineering and horizontal scaling. On
the other hand, OpenNF proposes a converged control plane for VNFs and network for-
warding plane by extending the centralized SDN paradigm. Our proposed orchestration
algorithms for VNF chain placement can be used by such management systems.

Some recent works on managing VNFs focus on traffic engineering issues such as steering
the traffic through some existing sequence of VNFs [117, 37]. This problem becomes
more challenging when some VNF modifies the packet headers, thus changing the traffic
signature. Authors in [117, 37] propose tagging based mechanisms to identify a traffic
during its lifetime and also to keep track of the visited sequence of VNFs. These works
are complementary to ours as we focus on determining the placement and traffic routing
paths for VNF chains, while the tagging based approaches can be utilized to deploy the
VNF chain in an SDN network.

3.7.2 VNF and VNF Chain Placement

Authors in [118] proposed a grammar for specifying VNF chains and then provided a
mathematical formulation for VNF chain placement. Their formulation is quadratic and

94

does not allow VNF sharing between multiple tenants. In contrast, we provide a linear
formulation and allow for VNF sharing. In [119], the authors provided an LP-relaxation
based approach for finding inter-data center VNF chain placement. However, due to LP-
relaxation, their solution violates physical resource capacities by a factor of at most 16.
Our solutions do not have such issue, and we provide extensive simulations to show that
our proposed heuristic achieves near-optimal performance within a second. A genetic
algorithm for VNF chain placement is proposed in [120], but it does not address the issue
of dynamically adjusting the placement of VNFs to balance between network operating cost
and performance. An orchestration architecture for automated VNF placement is proposed
in [121], but the authors do not provide any concrete algorithms for orchestration. Our
proposed solutions can be used by such systems to determine the placement locations.

The VNF placement problem is also addressed in [122, 123, 124, 125], where the authors
formulated the problem as an ILP or MILP and proposed heuristic algorithms. Pham et
al. provided a sampling-based Markov approximation solution for this problem [126], while
Ma et al. formulated this as a graph optimization problem [127]. However, these works
solve the problem in a two-step process. In the first step the VNF locations are determined,
and in the second step, routing paths between these locations are selected. In contrast,
our proposed solution determines the VNF placement and routing paths in a single shot.

3.7.3 Enabling Technologies for NFV

In recent years, a number of research efforts have been targeted to achieve near line speed
network I/O throughput with commodity servers [128, 129]. Apart from accelerating the
packets along the network I/O stack, more recent works have proposed changes to virtu-
alization technologies to support deployment of modular VNFs on lightweight VMs [45].
Hundreds of these VMs can be instantiated on a single physical machine within millisec-
onds. CoMb [130] and xOMB [131] propose an extensible and consolidated framework for
incrementally developing scalable middleboxes by leveraging the idea of reusable network
processing pipelines. These works are orthogonal to our work. They focus on developing
the technologies for scalable VNFs, while we focus on optimization algorithms for VNF
chain placement.

3.8 Conclusion

Virtualized network functions provide a flexible way to deploy, operate and orchestrate net-
work services with much less capital and operational expenditures. Software middleboxes

95

(e.g., ClickOS) are rapidly catching up with hardware middlebox performance. Network
operators are already opting for NFV based solutions. We believe that our model for dy-
namic VNF orchestration will have significant impact on middlebox management in the
future. Our model can be used to determine the optimal number of VNFs and to place
them at the optimal locations to optimize network operational cost and resource utiliza-
tion. Our trace driven simulations on the Internet2 research network demonstrate that
network OPEX can be reduced by a factor of 4 over hardware middleboxes through proper
VNF orchestration. In this chapter, we presented two solutions to the VNF orchestration
problem: CPLEX based optimal solution for small networks and a heuristic for larger ones.
We found that the heuristic produces solutions that are within 1.3 times of the optimal
solution, yet the execution-time is about 65 to 3500 times faster than that of the CPLEX
solution.

96

Chapter 4

Energy Smart Service Function
Chain Orchestration

4.1 Introduction

The rapid proliferation of bandwidth intensive and latency sensitive applications like on-
demand video streaming, augmented/virtual reality, Internet-of-things, etc. is pushing the
Information and Communication Technology (ICT) industry to expand continuously. For
example, AT&T, one of the leading telecommunication service providers in the US, re-
portedly experienced 100,000 percent increase in traffic over a period of eight years (2008
to 2016) [132]. Such large-scale expansion is also increasing the energy requirement of
ICT infrastructure and contributing to the global carbon emissions [49]. Statistics from
2013 show that telecommunication infrastructure alone accounted for 47% of the total en-
ergy consumed by the ICT sector [48]. When translated into carbon footprint, this sector
produced 2.5% of global carbon footprint, and this is projected to double by 2020 [50].
Governments are trying to minimize the environmental impact of carbon emission by in-
troducing regulations and taxes, driving companies to use renewable energy (i.e., green
energy) [51, 52, 53]. However, renewable energy is still not cost-effective compared to
traditional sources of energy (i.e.,brown energy), and their availability varies significantly
across time and geographic locations. Therefore, it is a challenge for telecommunication
companies to comply with regulations and minimize carbon footprint [55, 56, 57] without
significantly increasing their operational cost.

In order to address the challenge mentioned above, telecommunication network oper-
ators can employ several possible approaches such as reduce electricity consumption by

97

optimizing resource usage, buy energy from green(er) energy vendors, install on-site re-
newable energy sources (e.g., wind turbines or solar panels), etc. For example, Google
achieved zero carbon emission for its data centers in 2017, by combining on-site renewable
sources with energy bought from third-party renewable energy vendors [133]. In this pa-
per, we particularly focus on reducing carbon emission of a telecommunication network by
increasing resource efficiency through the following two techniques: (i) migration of net-
work services between different geographic locations to maximize the utilization of on-site
renewable energy sources, and (ii) intelligent topology aware placement and consolidation
of network services to save energy by opportunistically switching off unused equipments.
To this end, we propose an Energy Smart Service Orchestrator (ESSO) that employs these
techniques to reduce the overall carbon footprint of a telecommunication network.

A major obstacle in implementing ESSO, is the telecommunication operators’ reliance
on proprietary and vertically integrated hardware middleboxes for realizing different net-
work services [14]. Telecommunication operators typically deploy middleboxes such as
firewall, load-balancer, WAN optimizer, intrusion detection and prevention systems in
Telecommunication Central Offices (COs) [132] and Point-of-Presence (PoP) locations. In
recent year, these locations have evolved into mini-data centers that host small to moderate
number of servers and network equipments. COs and PoPs are geographically distributed
and located in cities and metropolitan areas to provide broadband and wireless Inter-
net services to both residential and commercial customers. A telecommunication service
provider’s transport network is typically organized into edge, metro, and core regions [134]
as shown in Figure 4.1. Typically, there are 10k to 100k access locations within a region,
which host resources very close to the subscriber. The access locations are aggregated at
the Tier-1 CO or PoP locations, which are further aggregated at the Tier-2 metro CO
locations. Finally, the core transport network connects all these locations to the core data
center of the network.

Depending on the type of traffic, network flows at a CO are processed through different
sequences of middleboxes or Service Function Chains (SFCs) [135] to ensure fast, reliable,
and secure access to the Internet [13]. Despite the telecommunication operators’ extensive
reliance on middleboxes, their closed and vertically-integrated nature pose a number of
operational challenges [14]. Hardware middleboxes are attached to fixed locations in the
network and offer little or no programmability and dynamicity [14]. As a result, it becomes
a daunting task to dynamically migrate SFCs across COs to leverage on-site renewable
energy or consolidate SFCs withing the same location to turn-off underutilized equipment.

Recently, telecommunication networks are going through a transformation known as
network softwarization [136]. It provides the necessary flexibility and agility to dynami-
cally control network elements and traffic flows that are required to build ESSO. Software

98

Figure 4.1: Tiered network structure

Defined Networking (SDN) [137], and Network Functions Virtualization (NFV) [11] are two
cornerstones of network softwarization. On one hand, SDN decouples the network’s con-
trol and data planes and implements the control plane as a logically centralized software;
facilitating network programmability. NFV, on the other hand, moves the data plane from
proprietary hardware middleboxes to software in the form of Virtual Network Functions
(VNFs) running on commodity servers. SDN and NFV simplify network infrastructure
by permitting the utilization of inexpensive commodity off-the-shelf (COTS) hardware for
both compute and network; bringing benefits such as economies-of-scale, agility, and flex-
ibility of cloud computing to the COs and PoPs of telecommunication networks. In the
rest of the chapter, we refer to locations like COs, PoPs, and core data centers, which host
servers to deploy VNFs, as NFV Point-of-Delivery or NFV-PoDs, as all these locations can
be used to deploy and deliver a network service.

With SDN and NFV, VNFs are no longer restricted to fixed locations; they can be
provisioned on any compute server within the network. Moreover, coupled with an SDN
controller; VNFs and their associated traffic flows can be migrated within a short time-
frame to a different compute server [61, 62, 63] within or across NFV-PoDs. The flexibility
provided by SDN and NFV make it possible to compose and reconfigure network services
on the fly. ESSO builds on SDN and NFV and reduces the overall energy consumption
and carbon footprint by (i) opportunistically utilizing more resources at locations with
surplus renewable energy while minimizing consumption at locations where brown energy
is the only option, and (ii) taking VNF placement and consolidation decisions in a manner
that allows switches, switch ports, and servers to be put into low-power consumption state
to reduce the overall power consumption. Specifically, this work consists of the following
contributions:

• An ILP formulation for the SFC orchestration problem across multiple NFV-PoDs
that considers the availability of renewable energy.

• An architectural design for an SFC orchestrator that enables efficient resource and

99

energy utilization for a geographically distributed infrastructure.

• A set of heuristic algorithms for taking SFC embedding, consolidation, and migration
decisions across the NFV-PoDs of a telecommunication network.

The rest of the chapter is organized as follows: Section 4.2 provides the required
background to delineate the concepts applied in this work. The architecture of ESSO is
presented in Section 4.3. Next, we provide a mathematical formulation for the network ser-
vice orchestration problem in Section 4.4. Section 4.5 presents a set of heuristic algorithms
for the placement, consolidation, and migration of network services based on fluctuations
in the availability of renewable energy. After that, we present the results obtained from
performance evaluation of the presented algorithms in Section 4.6. We discuss related work
in Section 4.7, and finally, conclude with some future research directions in Section 4.8.

4.2 Background

4.2.1 Fluctuation in Availability of Renewable Energy

The availability of renewable energy sources such as solar and wind significantly fluctuates
across different locations and time. They are very intermittent in nature and fluctuate
with both time and weather conditions even at the same location. Using the data collected
by the U.S. Climate Reference Network and Regional Climate Reference Network [60] for
June 2017, estimated energy generation potential from solar and wind for six US cities
in different states are shown in Figure 4.2(a) and Figure 4.2(b), respectively. The solar
energy is estimated for a single 4m2 PV panel, and the wind energy is estimated for a 250
feet diameter wind turbine [138]. As we can see from the figure, solar energy follows a
diurnal pattern. However, wind energy does not show any particular pattern. Telecommu-
nication operators have initiated different renewable energy projects to reduce their carbon
footprint. For example, in 2014, AT&T expanded its solar energy capacity to 3 MW in
California and New York [139]. AT&T is also planning to achieve 60 percent reduction
in brown energy consumption by 2020 and ten times reduction in carbon footprint by
2025 [140].

4.2.2 Variation in Different Electricity Grids’ Carbon Footprint

Electricity grids in different areas use different technologies and hence the carbon footprint
per MWh of energy is not the same across different locations. Figure 4.2(c) shows the av-

100

 0

 1

 2

 0 12 24 36 48 60 72 84 96

Po
we

r (
kW

)

Time (hour)

CA
UT

KS
IL

OH
NY

(a) Solar energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 12 24 36 48 60 72 84 96

Po
we

r (
M

W
)

Time (hour)

CA
UT

KS
IL

OH
NY

(b) Wind energy

 0

 500

 1000

 1500

 2000

CA KS OH UT IL NY

CO
2

Em
is

si
on

 (l
bs

/M
W

h)

State

(c) Grid carbon footprint

Figure 4.2: Renewable energy and grid carbon footprint data (June 2017)

101

erage carbon footprint (lbs/MWh) for the same six states reported in the previous section.
ESSO considers the variation in carbon footprint between different locations while making
placement decisions. We collected data on the carbon footprint of local electricity grids
for various states in the U.S. [141] and used them during performance evaluation.

4.2.3 Energy Consumption States of Networking Equipment

A network switch usually consumes the major portion of power when it is just turned
on [142]. Ideally, consumed power should increase with the amount of traffic processed
by the switch; however, in reality, it is not the case. For example, the maximum wattage
of the Dell PowerConnect 8024F switch is 160 Watts, and it consumes around 110 Watts
without any traffic load [143]. However, the switch consumes only 10 Watts when put into
sleep mode [59]. Switch ports consume power depending on the configured maximum link
rate. For the Dell PowerConnect 8024F switch, a port in 1 Gbps and 10 Gbps link rate
settings consumes 1.2 and 4.3 Watts, respectively [59]. Switch ports consume the same
amount of power regardless of their utilization. A number of works have focused on the
energy efficiency of SDN-enabled switches as well [144, 58]. According to Vu et al. [58],
for an OpenFlow-enabled switch, sleep mode for the switch ports can save around 9.8% of
total power, and sleep mode for the entire switch can save 60% of total power.

4.2.4 Central Office Re-architected as Data Center (CORD)

The CORD [145] project combines features from cloud, SDN, and NFV to re-architecture
telecommunication COs. It proposes to organize commodity servers, switches, and GPON
access ports in a leaf-spine fabric similar to a data center. CORD brings the economies of
scale and flexibility of data centers to telecommunication COs. Additional details about
the architecture of CORD can be found in [146]. In this work, we assume that the COs
and PoPs have been re-architected by using a concept similar to CORD, and refer to them
as NFV-PoDs. We also assume that VNFs can be deployed on the compute servers and
an SDN controller dynamically routes flows within and across NFV-PoDs.

4.2.5 SFC Migration and Virtualization Technology

A network function can be softwarized in many different ways. For example, a firewall,
can be deployed on a Virtual Machine (VM) running on-top of a hypervisor such as Xen
or KVM. We can also deploy it using lightweight OS containers such as LXC, Docker, or

102

Rocket. Furthermore, VNFs can be deployed in a holistically different environment such as
those considered by OpenNF [61], Split/Merge [63], and Stateless [147], where the internal
state of the VNF is decoupled from its processing logic. In most cases the state is stored
in a networked, fast, and reliable distributed storage system. Depending on the technology
used to deploy a VNF, migration times can vary widely. If a VNF is deployed in a VM,
then the traditional migration of VMs with moderate amount of downtime applies. In case
of containers, the downtime is significantly less than that of a VM migration. Moreover,
in case of solutions like OpenNF or Stateless, the migration time is negligible. In [62],
authors demonstrate how a moderately loaded state-decoupled VNF (like OpenNF) can
be migrated with negligible service disruption.

4.3 System Architecture

4.3.1 Assumptions

We make the following assumptions regarding the underlying infrastructure and energy
usage policy: Without loss of generality, we assume a telecommunication network architec-
ture similar to the one depicted in Figure 4.3. NFV-PoDs are geographically distributed
and connected through access, metro, and core transport networks. They serve residential,
commercial, and mobile customers by providing last-mile and wireless connectivity. Each
NFV-PoD contains a set of compute and networking resources. Depending on the size of
customer base supported by a NFV-PoD, the volume of servers can vary from a few servers
to multi-rack deployments. In this work, we assume that each NFV-PoD hosts a leaf-spine
or fat-tree like network topology along with multiple servers or racks of servers for hosting
VNFs.

The number of NFV-PoDs in a single city or metropolitan area depends on population
density and can range from 10s to 100s [148]. Each NFV-PoD may or may not have on-site
renewable energy sources (e.g., solar, wind, etc.) and resorts to the traditional electricity
grid when the amount of renewable energy is insufficient. Renewable energy sources are
considered carbon free, while the energy drawn from the grid (brown energy) generates a
certain amount of carbon depending on the particular electricity generation technique used
by local energy grid.

ESSO keeps track of the following metrics at each NFV-PoD: (i) amount of available
compute and networking resources, (ii) lease duration of allocated resources for currently
deployed SFCs, (iii) availability of renewable energy, and (iv) carbon footprint of brown

103

Figure 4.3: Multi-tiered NFV-PoD network

104

energy. It also tracks the amount of available bandwidth on the inter-NFV-PoD backbone
links. ESSO receives SFC requests and based on the above mentioned metrics, takes
orchestration decisions with the high-level objective to reduce the overall carbon footprint
of the network. Service chains are migrated based on the (i) fluctuation in availability of
renewable energy and (ii) expiry of previously deployed service chains.

4.3.2 ESSO Architecture

Our proposed orchestration architecture has two components: a Global Orchestrator (G-
Or) and one Local Orchestrator (L-Or) for each NFV-PoD. G-Or monitors the overall
network infrastructure, receives service chaining requests, allocates resources across mul-
tiple NFV-PoDs to deploy service chains, and migrates service chains within or across
NFV-PoDs. Each NFV-PoD has a Local Orchestrator (L-Or) that monitors and collects
information about the intra-NFV-PoD network links, switches, and server resources and
sends the data to the G-Or. The G-Or accumulates data received from the L-Ors and
creates a global view of the entire infrastructure. The L-Ors collect data regarding the
amount of renewable energy and track the usage of both renewable and brown energy,
which are used to measure the total carbon emissions. Data provided by the L-Ors allow
the G-Or to optimize resource allocation and migration decisions. In the following, we
describe the architecture of L-Or and G-Or in detail.

L-Or Architecture

Figure 4.4: Components of local orchestrator

The components of an L-Or are shown in Figure 4.4. There are six components: (i)
Resource Tracker, (ii) SFC Tracker, (iii) Energy Tracker, (iv) Resource Allocator, (v)
Migration Controller, and (iv) R-Or Agent. As their names suggest, the first three com-
ponents keep track of local resources (e.g., intra-NFV-PoD servers, switches, and links),

105

currently embedded SFCs, and energy usage, respectively. The resource allocator receives
SFC embedding requests from the G-Or and determines the mapping of VNFs on physical
servers and switches based on local resource availability. Then, it instantiates the required
virtual machines or containers to deploy the VNFs and also creates the virtual links be-
tween them to instantiate the SFC. The migration controller is responsible for migrating
a VNF from one server to another, along with its incident virtual links. The source and
destination physical servers involved in the migration can reside either in the same NFV-
PoD or different NFV-PoDs. The R-Or Agent facilitates the communication between an
L-Or and the G-Or.

G-Or Architecture

Figure 4.5: Components of global orchestrator

The components of the G-Or are shown in Figure 4.5. The Resource, SFC, and Energy
Monitors collect data from the L-Ors used during the embedding process. The Global
Resource Allocator receives an SFC request and then decides the placement of VNFs
from the SFC. It considers the availability of renewable energy sources, the amount of
free compute and networking resources at different NFV-PoDs, and makes embedding
decisions. We assume that each SFC request has an expiry time; after which the SFC is
removed from the system. The Inter-NFV-PoD Migration Controller keeps track of SFC
expiry events and changes in the availability of renewable energy at different NFV-PoDs.
When an existing SFC expires and leaves the system, the freed resources can be used to
consolidate existing SFCs to reduce power consumption. When a renewable energy source
starts generating electricity, e.g., there is a strong wind or during morning hours when
the sun rises; the migration controller makes migration decisions to take advantage of
surplus renewable energy. The migration controller decides a VNF migration only when
the migration reduces the total carbon footprint of the SFC.

106

4.4 Problem Formulation

In this section, we first formally define the “Multi-Location SFC Orchestration” or MLSO
problem and then provide a mathematical formulation to construct an Integer Linear Pro-
gramming (ILP) model for it.

4.4.1 Multi-Location SFC Orchestration (MLSO) Problem

In the MLSO problem, the resource capacities of compute and networking resources, car-
bon footprint per unit of brown energy, availability of renewable energy for each NFV-PoD,
and the link bandwidth of the inter-NFV-PoD backbone network are provided as input. A
stream of SFC requests is also provided for which the ILP solution will determine the op-
timal embedding. The amount of available renewable energy varies over time. The carbon
footprint of brown energy is different at different locations. A solution to the MLSO prob-
lem must utilize these facts to reduce the overall carbon footprint of the telecommunication
network.

Each SFC request consists of an ingress NFV-PoD, an egress NFV-PoD, and a sequence
of Network Function (NF) types and flavors that the traffic needs to pass through. Types
distinguish NFs into categories like firewall, NAT, IPS, proxy, etc. and flavors represent
VNF variations in terms of resource requirements. For example, a firewall can have two
flavors: (i) one uses 2 cpu cores and can process traffic at a maximum rate of 500Mbps
and (ii) the other one uses 4 cpu cores and can process at a maximum rate of 900Mbps.

We assume that embedding, migration, or consolidation decisions are made at partic-
ular time-instances. These time-instances are identified by the occurrence of one or more
of the following events: (i) arrival of a new SFC request, (ii) departure of one or more pre-
viously embedded SFC request(s), and (iii) changes in the amount of available renewable
energy. When a new SFC request arrives, it needs to be embedded. After the departure
of one or more previously embedded SFC request(s), resources at the corresponding NFV-
PoDs can be consolidated. If the availability of renewable energy changes in a subsequent
time-instance then existing (i.e.,already embedded) VNFs can be migrated to a different
NFV-PoD. A VNF is migrated only if the cost of migration is less than the savings achieved
in terms of carbon footprint. The ILP makes embedding, migration, and/or consolidation
decisions based on the set of events for each time-instance. The objective of the ILP is
to minimize carbon footprint by determining the initial placement of new SFC requests,
subsequent consolidation and migration of existing VNFs based on the availability of re-
sources and renewable energy, while guaranteeing that the total latency of any SFC does

107

not violate the maximum allowed delay constraint.

The MLSO problem is NP-Hard, because for each time-instance of the MLSO problem,
we actually need to solve the general SFC orchestration problem [149] for the newly arriving
SFCs, which is known to be NP-Hard [43]. The general SFC orchestration problem can
be reduced to the MLSO problem by considering one time-instance and assuming all SFC
requests as new requests that need to be embedded. In this setting, a solution to the MLSO
problem will also be a solution to the general SFC orchestration problem, and hence the
MLSO problem is NP-Hard.

4.4.2 Input Representation

Figure 4.6: A Service Function Chain (SFC)

An SFC request is composed of one of more VNFs belonging to various types. Figure 4.6
demonstrates an SFC consisting of the chain Firewall → IPS → Video Optimizer.
The nodes at the beginning and the end represent the ingress and egress NFV-PoDs,
respectively. For each VNF type p ∈ P , we have a set of flavors Fp, and the function φ(f)
(for flavor f ∈ Fp) returns the type (p) of a VNF. The resource requirements of a particular
VNF flavor f , is represented by ϕrf ∈ R+, ∀ r ∈ R, where R represents resource types like
CPU, memory, disk-space, etc. We also assume that a VNF of flavor f introduces a traffic
processing delay of δf .

Let, Itn and Itp represent the set of new (incoming) and pre-existing SFC requests in
the system at time-instance t ∈ T , respectively. Here, the set T represents all possible
time-instances considered for the ILP. Each SFC request has an associated active duration
or lifetime, after which it leaves the system and is removed from the set Itp. Therefore,
at each time-instance, the ILP needs to take migration and/or consolidation decisions for
the SFCs in Itp and at the same time determine the embedding of the SFCs in Itn. We
also define the set It = Itn ∪ Itp to represent both new and pre-existing SFC requests at
time-instance t.

108

We define the following binary variables to establish the active duration, arrival, and
departure events for an SFC:

ν̈ti =

{
1 if SFC i ∈ I arrives at time-instance t ∈ T ,
0 otherwise.

äti =

{
1 if SFC i ∈ I is active at time-instance t ∈ T ,
0 otherwise.

d̈ti =

{
1 if SFC i ∈ I departs at time-instance t ∈ T ,
0 otherwise.

Figure 4.7: Graph representation of an SFC

An SFC request, i ∈ It, is represented as a directed acyclic graph Gi = (Ni, Li) as
shown in Figure 4.7. Here, Ni represents the set of nodes in the SFC. There are two types
of nodes; placeholder nodes for designating the ingress and egress NFV-PoDs of the chain
and VNF nodes. The embedding location of the placeholder nodes are predetermined as
they need to be embedded at particular NFV-PoDs. The embedding of VNF nodes need
to be determined. Each VNF node n ∈ Ni, is of a particular NF flavor denoted by the
function f(n). The flavor of an NF determines its resource requirements. Each link l ∈ Li
has a bandwidth requirement βl. The maximum tolerable delay for the entire chain is δi.
We also define two functions s(.) and d(.) to denote the source and destination nodes of
each link l ∈ Li.

4.4.3 Physical Infrastructure Representation

The physical infrastructure is represented by a graph Ḡ = (N̄ ∪ S̄, L̄), where N̄ and S̄
represent the servers and switches of all NFV-PoDs, respectively. L̄ represents the inter-

109

and intra-NFV-PoD links of the telecommunication network. The set C, represents the
NFV-PoDs in the network and an individual NFV-PoD is denoted by c. We define etcr as the
amount of available renewable energy at NFV-PoD c during time-instance t. The amount
of carbon per watt of brown power generated by the local electricity grid is represented by
ζc and the Power Usage Effectiveness (PUE) of a NFV-PoD is represented by µc.

Let, R denote the set of resources (CPU, memory, disk, etc.) offered by a server. The
resource capacity of server n̄ ∈ N̄ is denoted by κrn̄ ∈ R+, ∀ r ∈ R. The ports of a switch
s̄ ∈ S̄ is represented by the set Π̄s̄ and individual ports are represented by π̄ ∈ Π̄s̄. The
operational mode of a port is denoted by the function m(π̄). em(π̄) denotes a port’s energy
consumption in a particular operational mode. The bandwidth capacity and propagation
delay of a physical link l̄ ∈ L̄ is represented by βl̄ ∈ R+ and δl̄ ∈ R+, respectively. Energy
consumed per unit bandwidth is represented by ξβ.

Here, we assume a linear power model for server power consumption [150]. So, ebn̄ and
emn̄ represent the base and max power consumption of a server, respectively. The base
power is consumed when the server is active but there is no workload. Next, esn̄ represents
the power consumption when the server is in sleep mode. We define the following binary
variable to denote whether a server is active or not. This variable is utilized to measure
the total power consumption.

ätn̄ =

{
1 if n̄ ∈ N̄ is active between [t, t+ 1),
0 otherwise.

Next, we define an additional binary variable to denote whether a switch port is active
or not. This variable is utilized to measure the total energy consumption of a switch.

ätπ̄s̄ =

{
1 if port π̄ is active between [t, t+ 1),
0 otherwise.

A switch is considered to be in the active mode if at least one of its ports is active,
otherwise it is in the sleep mode. The base energy of a switch s̄ in active mode is represented
by ebs̄ and the energy consumption of a switch in sleep mode is denoted by ess̄. The total
energy consumption of an active switch depends on the number of active ports and their
operational modes, as discussed in Section 4.2.3. If all ports of a switch are inactive, then
the switch is considered to be in the sleep mode and consumes substantially less energy.
The following binary variable denotes whether a switch is in active mode or in sleep mode:

110

äts̄ =

{
1 if switch s̄ is active between [t, t+ 1),
0 otherwise.

All possible paths between the servers and switches in N̄ ∪ S̄ are represented by P̄ , and
the following variable denotes whether a physical link l̄ ∈ L̄ belongs to a path:

ψl̄p̄ =

{
1 if link l̄ ∈ L̄ belongs to path p̄ ∈ P̄ ,
0 otherwise.

The following binary variable expresses the connectivity between physical paths and
switch ports:

wπ̄s̄p̄ =

{
1 if port π̄ of switch s̄ is on physical path p̄ ∈ P̄ ,
0 otherwise.

Next, we define N̄ c, S̄c, L̄c, and P̄ c as the set of servers, switches, physical-links, and
physical-paths belonging to NFV-PoD, c ∈ C. We define the function s̄(.) and d̄(.) to
denote the source and destination nodes of a physical link and path. The function ν(.)
maps a server or link to it’s corresponding NFV-PoD. We also define the function B(P̄)
to denote the backbone links between NFV-PoDs on the physical paths. Next, βp̄ denotes
the available bandwidth of the path p̄ and is equal to the minimum bandwidth capacity
over all physical links in a path: βp̄ = minl̄∈p̄ βl̄.

There can be certain hardware requirements (e.g., hardware-accelerated encryption for
Deep Packet Inspection (DPI)) that may prevent a server from running a particular type
of VNF. Furthermore, the network operator may have preferences regarding provisioning
a particular type of VNF on a particular set of servers, e.g., Firewalls should be deployed
close to the network edge. So, we assume that for each VNF type there is a set of servers
on which it can be provisioned. The following binary variable represents this relationship:

dn̄p =

{
1 if VNF of type p ∈ P can be provisioned on n̄,
0 otherwise.

111

Moreover, each VNF in a chain can have location restrictions expressed by the following
binary variable:

zcin =

{
1 if VNF n ∈ Ni can be provisioned in NFV-PoD c,
0 otherwise.

4.4.4 Decision Variables

Now, we define the following decision variables to denote the placement of a VNF and the
routing path of a chain on the physical infrastructure:

x̂tinn̄ =

{
1 if VNF n ∈ Ni provisioned on n̄ ∈ N̄ between [t, t+ 1),
0 otherwise.

ŷtilp̄ =

{
1 if link l ∈ Li provisioned on p̄ ∈ P̄ between [t, t+ 1),
0 otherwise.

4.4.5 ILP Formulation

The above mentioned variables must satisfy the following constraints of the optimization
problem:

∑
n̄∈N̄

x̂tinn̄ = äti, ∀ t ∈ T , i ∈ It, n ∈ Ni (4.1)

∑
p̄∈P̄

ŷtilp̄ = äti, ∀ t ∈ T , i ∈ It, l ∈ Li (4.2)

x̂tinn̄ ≤ dn̄φ(f(n)), ∀ t ∈ T , i ∈ It, n ∈ Ni, n̄ ∈ N̄ (4.3)

112

x̂tinn̄ ≤ zν(n̄)i
n , ∀ t ∈ T , i ∈ It, n ∈ Ni, n̄ ∈ N̄ (4.4)

ŷtilp̄ ≤ x̂tis(l)s̄(p̄), ∀ t ∈ T , i ∈ It, s(l) ∈ Ni, p̄ ∈ P̄ (4.5)

ŷtilp̄ ≤ x̂tid(l)d̄(p̄), ∀ t ∈ T , i ∈ I
t, d(l) ∈ Ni, p̄ ∈ P̄ (4.6)

∑
t∈T

∑
i∈It

∑
n∈Ni

x̂tinn̄ × ϕrf(n) ≤ κrn̄, ∀ n̄ ∈ N̄ , r ∈ R (4.7)

∑
t∈T

∑
i∈It

∑
n∈Ni

ŷtilp̄ × βl ≤ βp̄, ∀ p̄ ∈ P̄ (4.8)

∑
l∈Li

ŷtilp̄ × δp̄ +
∑
n∈Ni

δf(n) ≤ δi, ∀ t ∈ T , i ∈ It (4.9)

ätn̄ ≤
∑
i∈It

∑
n∈Ni

x̂tinn̄, ∀ t ∈ T , n̄ ∈ N̄ (4.10)

ätn̄ ≥
∑

i∈It
∑

n∈Ni
x̂tinn̄∑

i∈I |Ni|
, ∀ t ∈ T , n̄ ∈ N̄ (4.11)

äts̄ ≤
∑
π̄∈Π̄

ätπ̄s̄, ∀ t ∈ T , s̄ ∈ S̄ (4.12)

113

äts̄ ≥
∑

π̄∈Π̄ ä
t
π̄s̄

|Π̄s̄|
, ∀ t ∈ T , s̄ ∈ S̄ (4.13)

ätπ̄s̄ ≤
∑
i∈It

∑
l∈Li

∑
p̄∈P̄

wπ̄s̄p̄ × ŷtilp̄,∀ t ∈ T , s̄ ∈ S̄, π̄ ∈ Π̄s̄ (4.14)

ätπ̄s̄ ≥
∑

i∈It
∑

l∈Li

∑
p̄∈P̄ wπ̄s̄p̄ × ŷtilp̄∑

i∈It
∑

l∈Li

∑
p̄∈P̄ ŷ

ti
lp̄

,∀ t ∈ T , s̄ ∈ S̄, π̄ ∈ Π̄s̄ (4.15)

Constraints (4.1) and (4.2) ensure that all VNFs and virtual links for the active SFCs
are embedded. Next, (4.3) and (4.4) ensure that VNFs are embedded on servers and NFV-
PoDs that can support them and do not violate placement constraints for the VNF type
and NFV-PoD. Then constraint (4.5) and (4.6) make sure that the endpoints of virtual
link embedding on physical path and VNF embedding on physical server match with each
other. Next, constraint (4.7) and (4.8) denote the capacity constraints for the servers and
links, respectively. Constraint (4.9) represents the end-to-end latency constraint for the
SFC. Constraint (4.10) ensures that a server is not in the active state when any VNF is
not embedded on it, and constraint (4.11) ensures that a server is activated when there is
at least one VNF embedded on it. Similarly, (4.12) and (4.13) make sure that a switch
is in the active state when any active path passes through it, otherwise it will be in sleep
mode. Finally, (4.14), and (4.15) ensure that switch ports are activated only when there
is a virtual link embedded on a physical path that passes through that port.

4.4.6 Objective Function

Here, we calculate the total carbon footprint of the network. First, we define the function
d(t, t + 1) to denote the time-duration between time-instances t and t + 1. Now, for any
time-duration d(t, t+1) and a NFV-PoD c ∈ C, the total energy consumption is calculated
as follows:

SFC Migration:

An SFC is selected for migration when the new embedding reduces the cost by a certain
proportion, specified by the migration threshold ϑ.

114

Energy Consumption of an SFC:

The energy consumption for active SFCs has three components: energy consumption by (i)
physical servers, (ii) physical switches and ports, (iii) inter-NFV-PoD or backbone links.
We measure the total energy consumption for the active SFCs as follows:

Etc
a = äti ×

∑
i∈Itn

(∑
n̄∈N̄c

(
esn̄ × (1− ätn̄) + ätn̄ ×

(
ebn̄ + (emn̄ − ebn̄)×

∑
n∈Ni

∑
r∈R

x̂tinn̄ × ϕrf(n) × ξr
))

+
∑
s̄∈S̄c

(
ess̄ × (1− äts̄) + äts̄ ×

(
ebs̄ +

∑
π̄∈Π̄s

ätπ̄s̄ × em(π̄)

))
+
∑
l∈Li

∑
p̄∈B(P̄ c)

ŷtilp̄ × βl × ξβ
)
× d(t, t+ 1)

(4.16)

Now, the total brown energy consumption for time-duration [t, t+ 1) and NFV-PoD c
is equal to:

Etc = max(Etc
a − etcg , 0)

Finally, the carbon footprint during a time-duration [t, t+ 1) for the whole network is:

Kt =
∑
c∈C

Etc × ζc

Our objective is to minimize the above equation over all time-instances. So, the objec-
tive function of the MLSO problem can be states as:

minimize
∑
t∈T

Kt (4.17)

Computing the optimal solution for large scale networks will require a substantial
amount of time as the MLSO problem is NP-Hard. Hence, solving for the optimal so-
lution is not a suitable approach in an online setting, where SFC requests must be embed-
ded within seconds. In the following section, we present three heuristic algorithms that
break down the MLSO problem into three subproblems and provide very fast near-optimal
solutions.

115

4.5 Heuristics for Orchestration

In this section, we describe three heuristic algorithms for SFC embedding, consolidation,
and migration. After receiving a new SFC request the heuristic for embedding is used
to determine the mapping for the VNFs and inter-VNF links in the SFC. SFC migration
and consolidation decisions are taken based on events like (i) changes in the availability of
renewable energy and (ii) when one or more SFCs leave the system. We first describe the
heuristic for SFC embedding. After that we present the heuristic algorithm used to take
migration decisions. Finally, we present the heuristic for resource consolidation.

4.5.1 SFC Embedding

The SFC embedding algorithm is a three-stage heuristic. Stages one and three are executed
by the G-Or, and stage two is executed by the L-Or(s) who are selected by the G-Or to
host the service chain. The G-Or receives the SFC request as input and determines a set of
NFV-PoDs as candidates to eventually host the service chain. An example chain is shown
in Figure 4.8. The output of the embedding algorithm is a mapping for each VNF and
inter-VNF links in the chain to a set of NFV-PoDs and physical links within and across
these NFV-PoDs. The three stages of the embedding heuristic are as follows:

Figure 4.8: Example of a service chain

• Stage-1: This stage is executed by the G-Or. The G-Or calculates a set of potential
paths between the ingress and egress NFV-PoDs of the SFC. Paths with a higher
delay than the maximum allowed latency of the chain are immediately discarded.
Among the remaining paths, the one with the maximum aggregate renewable energy
is chosen. Then the G-Or sends the details of the SFC to each NFV-PoD (L-Or) on
this path for initiating Stage-2.

• Stage-2: The L-Ors (chosen by the G-Or in the previous stage) run the second stage
of the heuristic. Each L-Or computes a cost-matrix representing the embedding cost

116

Table 4.1: Cost-matrix computed by L-Or
a b c d e

a c(a) c(a-b) c(a-b-c) c(a-b-c-d) c(a-b-c-d-e)
b - c(b) c(b-c) c(b-c-d) c(b-c-d-e)
c - - c(c) c(c-d) c(c-d-e)
d - - - c(d) c(d-e)
e - - - - c(e)

Table 4.2: Embedding table for tabu search
a b c d e

U 0 0 0 0 0
V 1 0 0 0 0
W 0 1 1 0 0
X 0 0 0 1 0
Y 0 0 0 0 1
Z 0 0 0 0 0

of sub-chains of the original SFC. An example cost-matrix for the SFC in Figure 4.8
is shown in Table 4.1. Each cell of the cost-matrix represents the cost of embedding
a particular sub-chain of the original chain. The L-Ors return the computed cost-
matrix to the G-Or for further processing.

• Stage-3: The final stage of the heuristic is executed by the G-Or. Upon receiving
the cost-matrices from the NFV-PoDs selected in Stage-1, the G-Or constructs an
embedding table as shown in Table 4.2. Each cell of this table represents the mapping
of a VNF (on the column) to a NFV-PoD (on the row). Each cell will either contain
a zero or one. In the final mapping, each column will contain exactly one one. A row
can contain multiple ones, denoting the embedding of more than one VNF on the
same NFV-PoD. There can be an exponential number of possible embeddings with
respect to the number of rows; therefore, the final embedding is determined by using
Tabu Search to selectively explore the search-space of all possible embeddings within
a reasonable amount of time.

Algorithm 4, demonstrates the process of path selection in Stage-1. The algorithm
takes as input the service chain s and the number of paths k to consider between the
ingress and egress NFV-PoDs. The second parameter is used for finding the k-shortest

117

paths between the NFV-PoDs (Line 1). A small value of k reduces the running time of the
algorithms, but restricts the search space of embedding paths. A large value of k increases
the chance of finding a better embedding at the cost of increased processing time. During
our performance evaluation, the value of k if varied between 3 to 7. Next, line 2 removes
any path with a higher delay than the maximum tolerable delay of the chain. After that,
the aggregate renewable energy of each path is computed, and finally, the path with the
maximum renewable energy is returned.

Algorithm 4 Embedding: Stage 1 (runs @G-Or)

Require: service chain, s; number of considered paths between ingress and egress NFV-
PoDs, k

Ensure: path p for embedding s
1: P ← kShortestPaths(s.ingress, s.egress, k)
2: Remove any path p ∈ P s.t. p.δ > s.δ
3: for all path p ∈ P do
4: for all NFV-PoD c ∈ p do
5: p.er ← p.er + c.er
6: end for
7: end for
8: sort(P) {In decreasing order of renewable energy}
9: return P [1]

The computation performed in Stage-2 is shown in Algorithm 5. It is a Dynamic
Program (DP) to calculate the embedding cost of sub-chains (chain suffixes) in a bottom-
up manner. Line 3 works as the base case for the DP. Each cm[i][i] entry of the cost-matrix
is initialized with the cost of embedding the i−th VNF in the chain. Next line 5 is the
recursive call for computing embedding cost of a chain longer by one VNF in-terms of
pre-computed costs. The embedding cost is computed based on a first-fit strategy, where
the servers are pre-sorted according to their ids. Then, servers are considered in increasing
order of id and the first server with enough capacity to host a VNF is chosen as the
target server. The size of the cost-matrix is n × n, where n is the length of the service
chain. Algorithm 5 needs to fill the upper diagonal of the matrix, so there are n(n+1)

2

entries in total. For each embedding, the above-mentioned process might need to check
all servers. Assuming that there are k servers within a single NFV-PoD, the running time
of Algorithm 5 is O(kn2) that is polynomial in size of the input chain and intra-NFV-PoD
network.

The third and final part of the heuristic is presented in Algorithm 6. In this stage, we

118

Algorithm 5 Embedding: Stage 2 (runs @L-Or)

Require: service chain, s;
Ensure: cost-matrix for s

1: initialize cm
2: for i = 1 to s.size do
3: cm[i][i] = embeddingCost(s[i])
4: for j = i+ 1 to s.size do
5: cm[i][j]← cm[i][j − 1] + embeddingCost(s[j])
6: end for
7: end for
8: return cm

assume that chain embedding always progresses in the forward direction on the selected
path. So, for the path U->V->W->X->Y->Z, if the second VNF b is embedded on NFV-PoD
W, then the subsequent VNFs (i.e., c, d, e) cannot be embedded on any NFV-PoD that
comes before W on the path (i.e., U and V); they must be embedded on either W or NFV-PoDs
that come after W, i.e., X, Y, and Z. Algorithm 6 first initializes an embedding-table (e.g.,
Table 4.2) by filling all the cells with zeros. Then, line 3, fills the embedding table with
suboptimal solution based on the first-fit approach. Here, each VNF is embedded on the
first NFV-PoD that has enough capacity maintaining the ordering constraint mentioned
above. After that, we perform a tabu search on the embedding-table to find a better
solution. The steps of the tabu search are described below:

Initial Solution:

In line 3, the initial solution is generated based on the first-fit approach; the algorithm
attempts to embed the next VNF in the next NFV-PoD on the path. It maintains the
constraint that an SFC’s links always move in the forward direction on the path. If the
first-fit approach fails to generate a valid solution, then the initial solution is generated by
randomly embedding VNFs on any NFV-PoD with enough capacity (line 5).

Solution Neighborhood:

Each iteration of the tabu search moves from the current solution to a neighboring solution.
Here, solutions are defined by the values in the embedding-table, hence, one solution is
the neighbor of another solution if they differ in exactly one column, i.e., the embedding

119

Algorithm 6 Embedding: Stage 3 (runs @G-Or)

Require: cost-matrix for s from each NFV-PoD on path p;
Ensure: mapping of VNFs and inter-VNF links in s to NFV-PoDs on path p

1: S ← φ {S: current solution}
2: if firstF itSolution() is valid then
3: S ← firstF itSolution()
4: else
5: S ← randomSolution()
6: end if
7: S∗ ← S {S∗: best solution so far}
8: while stopping criteria not met do
9: SS ← φ

10: for Sc ∈ N(S) do
11: if Sc /∈ T then
12: SS ← SS ∪ Sc
13: end if
14: end for
15: S ← best(SS)
16: add(T, S, S∗)
17: if cost(S) < cost(S∗) then
18: S∗ ← S
19: end if
20: update(T)
21: end while
22: return S∗

120

location of one VNF. The key element for the performance of tabu search is the fast
computation of costs for a solution. Here, we can calculate the cost of an embedding
quickly from the cost-matrices calculated in the previous step. The computation of cost
reduces to at most m lookups from cost-matrices where m is the number of VNFs in the
service chain.

Tabu List:

A list of solutions or rules which are deemed tabu (forbidden) for a specific amount of time,
enables the tabu search meta-heuristic to avoid getting stuck at locally optimal solutions.
Here, if a VNF v is moved away from a server s, then the pair 〈v, s〉 is added to the tabu
list T (line 16 or Algorithm 6). The item stays in the list for m− 1 iterations, which gives
other VNFs the opportunity to change their embedding locations. The amount of time
each rule stays in the tabu list is updated at line 20.

Stopping Criteria:

If the best solution (S∗) does not improve for m + n iterations, where m and n are the
number of VNFs and NFV-PoDs, then the tabu search is terminated.

4.5.2 SFC Migration

SFC migration decisions are also made using the tabu search algorithm described above.
The algorithm first builds a list of potential paths between the ingress and egress NFV-
PoDs and then orders them according to the number of overlapping NFV-PoDs with the
current path. These paths are monitored for changes in renewable energy and available
resource. Whenever there is an increase in embedding cost or availability of new resource
at one or multiple NFV-PoDs on these paths, the embedding-table with updated costs
is used to perform another tabu search for the candidate path. This approach restricts
migrations on a subset of the possible paths but provides a fast and simple algorithm for
taking migration decisions. An SFC migration decision is made based on the value of
the parameter migration threshold, ϑ, which is an input to the algorithm. ϑ specifies the
percentage gain in-terms carbon footprint that must be achieved when migrating an SFC
to a new path. More specifically, if ϑ is set to 0.2, then an SFC is migrated to a new path
only when it reduces the embedding cost by at least 20%. This approach provides network
operators a tunable parameter to control the migration of SFCs.

121

4.5.3 SFC Consolidation

The consolidation heuristic is run locally by the L-Or at each NFV-PoD, after an SFC’s
lifetime expires and resources allocated for that SFC are freed. Consolidation is performed
by moving VNFs towards one side (represented by sequential numbering of the servers) of
the server racks of the NFV-PoD. We assume that each server in a NFV-PoD is numbered
and the numbering starts from one side and increases towards the other side of the server
racks. The consolidation algorithm moves VNFs towards lower numbered servers and up-
dates their routing paths accordingly. This problem is similar to the bin-packing problem,
where VNFs on a candidate server to be turned off are considered to be the items and the
rest of the active servers are considered as bins with different capacities. Here, we use a
modified version of the Best Fit Decreasing (BFD) [151] algorithm to find a solution. The
BFD algorithms is known to perform reasonably well for bin packing problems[152]. The
algorithm is shown in Algorithm 7.

The consolidation algorithm takes the current resource allocation state as input and
determines a sequence of VNF moves for resource consolidation. If all VNFs from a server
can be moved to other active servers, then that server is put in sleep mode. In line 1 and 2,
the set S is initialized with all active servers, then the set is sorted in decreasing order of
server ids, as we want to move VNFs from servers with higher ids to servers with lower ones.
In the for loop starting at line 3, each server is considered in decreasing order of id, and
in the for loop between lines 6 and 21, all VNFs currently hosted on a server are checked
and the destination server that minimizes energy consumption (line 9 to 14) is selected.
This information is saved in the vnfDests data structure. vnfDests is implemented as
a map that saves the mapping from a VNF to its new destination server’s numerical id.
If all VNFs hosted on a server can be moved to some other servers with lower ids, then
vnfDests is used to move out all VNFs from server s, and then server s is put into sleep
mode (line 23 and 24) to save energy.

4.6 Performance Evaluation

We perform trace-driven simulations on different network topologies and SFC request pat-
terns to compare and contrast the performances of our proposed algorithms. In the fol-
lowing, we first describe the datasets in Section 4.6.1, then the performance metrics in
Section 4.6.2, followed by the simulation setup in Section 4.6.2. Finally, a detailed discus-
sion of the simulation results is provided in Section 4.6.5.

122

Algorithm 7 Resource consolidation

Require: resource allocation state of the NFV-PoD
1: S ← active servers
2: sortDecreasingID(S)
3: for all server s ∈ S do
4: canMoveAllV NFs← true
5: vnfDests← φ
6: for all VNF v hosted on s do
7: minPower ←MAX
8: selectedServer ← NULL
9: for all server t ∈ S and t.id < s.id do

10: if t.residual >= v.req and t.power(v) < minPower then
11: minPower ← t.power(v)
12: selectedServer ← t
13: end if
14: end for
15: if selectedServer = NULL then
16: canMoveAllV NFs← false
17: break
18: else
19: vnfDests← vnfDests ∪ {v, selectedServer}
20: end if
21: end for
22: if canMoveAllV NFs = true then
23: moveV NFs(s, vnfDests)
24: put s in sleep mode
25: end if
26: end for

123

4.6.1 Datasets

SFC Data

We generate SFCs of length between three and six consisting of a pre-determined set of
VNFs from Table 4.3. Due to the lack of any published real-world data on the type and
length of SFCs, we resort to a synthetic generation method. We surveyed the relevant
research literature [37, 153, 43, 154, 155] and Internet drafts [156] to determine the set
of VNFs, and the length of SFCs to use in our simulations. VNF characteristics listed
in Table 4.3 were obtained by studying the relevant literature and product data sheets [113,
45, 153].

SFCs are generated between random source-destination locations according to a Poisson
process with an arrival rate of λ. The duration of each SFC is determined based on an
exponential distribution with a mean of 1/µ. The specific values of λ and µ are determined
based on the objectives of a particular simulation. The bandwidth demands of the SFCs are
generated according to a sin cyclostationary traffic matrix sequence generated according
to the process described in [157]. The mean and standard deviation of traffic volume is set
to 500mbps and 0.9, respectively. The maximum allowable delay for an SFC is uniformly
distributed between 100 milliseconds to one second.

Power Consumption Data

The power consumption data for the server, switch, and VNFs are listed in Table 4.3.

Renewable Energy Data

The publicly available renewable energy data from the U.S. Climate Reference Network
and Regional Climate Reference Network [60] for June 2017 is used in this work. The
data provide an estimate of energy generation potential from solar and wind for a large
number of U.S. cities in different states. NFV-PoDs are assumed to host solar panels sizes
varied randomly between four to eight square meters. For wind energy, the number of wind
turbines is varied randomly between one to three.

Network Topology

We use Point-of-Presence (PoP) level topologies of four ISPs obtained from the RocketFuel
topology dataset [109]. The node and edge counts, and the maximum latency of any edge

124

Table 4.3: Server, switch, and VNF power consumption
Server Data [102]

Physical CPU Cores Idle Energy Peak Energy
16 80.5W 2735W

Switch Data [143, 59]
Dell PowerConnect Sleep Mode Energy Active Mode Energy

10W 110W
Port Link Rate 1 Gbps 10 Gbps

1.2W 4.3W
VNF Data [113, 45]

Network Function CPU Required Processing Delay
Firewall 1 4 0.5 ms
Firewall 1 2 0.8 ms
Proxy 1 4 0.025 ms
Proxy 2 8 0.001 ms
NAT 1 8 0.1 ms
NAT 2 16 0.05 ms

IDS 4 0 ms

125

Table 4.4: Network topologies
Topology Node Count Edge Count Maximum Edge Latency
AS-13129 7 9 3 ms
AS-7170 18 60 43 ms
AS-3549 61 486 66 ms
AS-3561 92 329 60 ms

for these topologies are reported in Table 4.4. The PoP locations in these topologies
are assumed to represent potential locations for deploying NFV-PoDs. Inside each PoP,
we assumed the presence of a fat-tree like data center network topology consisting of
switches, gateway router, and servers. For the sake of simplicity, we assume a linear power
consumption model for the servers i.e.,the amount of consumed power increases linearly
with the number of CPUs [158].

4.6.2 Performance Metrics

Carbon Footprint

Carbon footprint is measured for all nodes and edges in the network. We report the
carbon footprint by summing the carbon footprint for each NFV-PoD and the inter-NFV-
PoD edges. So, even if an NFV-PoD is not participating in embedding a particular SFC, its
contribution is summed to calculate the overall carbon footprint (Eq. 4.17). This approach
ensures a fair comparison between the optimal and heuristic solutions.

Renewable Energy Usage

This metric measures how much renewable energy is utilized at each time-instance by the
optimal and heuristic solutions. Even though the utilization of renewable energy is not
a direct objective of the addressed problem, this metric is optimized indirectly, as more
renewable energy leads to less carbon footprint. We report the proportion of renewable and
brown energy usage to measure how effectively the proposed algorithms utilize available
energy sources.

126

SFC Acceptance Ratio

We measure SFC acceptance ratio as the ratio of embedded SFCs to the total number of
received SFC requests. Acceptance ratio is correlated with the overall carbon footprint; a
lower acceptance ratio will obviously reduce the overall carbon footprint. Therefore, during
the simulations, datasets are pre-processed to avoid the impact of one of these metrics on
the other one. When measuring carbon footprint, datasets are per-processed to ensure
that both optimal and heuristic solutions can embed 100% of the SFC requests; thereby,
nullifying the impact of acceptance ratio. In turn, when comparing acceptance ratios for
optimal and heuristic solutions, it is ensured that an SFC request is not rejected when
there is adequate free resources in the network. SFC requests are embedded in a sequential
manner while the optimizer (optimal or heuristic) minimizes the overall carbon footprint
for each SFC.

4.6.3 Migration and Reduction in Carbon Footprint

The impact of SFC migration across NFV-PoDs is measured by calculating the percentage
reduction in carbon footprint. Two identical simulations are executed with and without
enabling migration and then the reduction within each hour is measured to demonstrate
the impact of migration on carbon footprint.

4.6.4 Simulation Setup

We perform extensive simulations to show the effectiveness of the proposed algorithms in
terms of overall carbon footprint, utilization of available renewable energy, and acceptance
ratio. In addition, the impact of migration on the overall carbon footprint is also reported.
In all experiments, we simulate 24 hours of inbound and outbound SFC requests. Renew-
able energy at the NFV-PoDs is simulated by assigning them to different US cities obtained
from the renewable energy data [60]. The mathematical formulation of the MLSO problem
is implemented as an ILP using the IBM CPLEX Optimizer v12.5 [159]. All simulations
are conducted on a machine with a six core AMD FX-6300 1.4 GHz processor and 16 GB of
memory running Ubuntu 14.04. The heuristic is implemented in C++, and a discrete-event
simulator is developed in Python to invoke either CPLEX or heuristic implementations to
run the simulations.

127

4.6.5 Results

Overall Carbon Footprint

In these simulations, the arrival rate of new SFC requests (λ) is set to 10 requests per
hour, and the average lifetime of an SFC (µ) is set to 1.5 hours. The traffic patterns
and overall carbon footprint for AS-13129 is shown in Figure 4.9. The number of new
(inbound) and expired (outbound) SFC requests are shown in Figure 4.9(a). Here, a
positive number represents inbound SFCs, and a negative number represents outbound
SFCs. As we can see from the figure, the average number of inbound SFC requests is
around 10. The expiry event of an SFC depends on its lifetime; therefore, the number of
outbound SFCs does not show any pattern and is mostly arbitrary. The number of active
SFCs is shown in Figure 4.9(b). An SFC is considered to be in the active state between its
arrival and departure time-instances. New SFC requests at a time-instance are considered
for embedding, while already existing (that arrived at a previous time-instance) SFCs are
considered for migration.

Figure 4.9(c) shows the overall carbon footprint for the optimal and heuristic solutions.
The carbon footprint obtained from the heuristic solution is close to that of the optimal
solution for all time-instances. The maximum deviation is observed at time-instance 7,
where the heuristic solution’s cost is 1.3 times the cost of the optimal solution. The increase
and decrease in the overall carbon footprint for both heuristic and optimal solutions show a
similar pattern, which demonstrates the adaptability of the heuristic algorithms with traffic
fluctuations. The heuristics for embedding, consolidation, and migration work together to
achieve near-optimal carbon footprint for the network.

The results for AS-7170 is shown in Figure 4.10. The inbound and outbound SFC
counts are shown in Figure 4.10(a), and the number of active SFCs over the 24 hours is
shown in Figure 4.10(b). The overall carbon footprint for the entire network is shown
in Figure 4.10(c). AS-7170 has a higher proportion of edges compared to AS-13129. A
higher number of edges increases the number of possible paths to embed an SFC. The
optimal solution always chooses the least-cost path by paying the price of higher running
time. However, as presented in the following section, the heuristic algorithm provides near-
optimal solutions without any noticeable sacrifice in running time. The performance gap
is very similar to that obtained for the previous experiment.

For AS-3549 and AS-3561, the CPLEX implementation could not find the optimal
embedding for a single SFC even after an hour. Hence, we refrained from running these
experiment for the optimal solution. Figure 4.11 and Figure 4.12 report the simulation
results of the heuristic algorithm for AS-3459 and AS-3461, respectively.

128

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

S
F

C
 C

o
u

n
t

Time (Hour)

Inbound
Outbound

(a) In- and out-bound traffic (10 reqs/hour)

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

A
c
ti
v
e

 S
F

C
 C

o
u

n
t

Time (Hour)

Active SFC Count

(b) Active SFC counts

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
a

rb
o

n
 F

o
o

tp
ri
n

t

Time (Hour)

CPLEX
Heuristic

(c) Overall carbon footprint

Figure 4.9: Traffic pattern and overall carbon footprint for AS-13129

129

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

S
F

C
 C

o
u

n
t

Time (Hour)

Inbound
Outbound

(a) In- and out-bound traffic (10 reqs/hour)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

A
c
ti
v
e

 S
F

C
 C

o
u

n
t

Time (Hour)

Active SFC Count

(b) Active SFC counts

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
a

rb
o

n
 F

o
o

tp
ri
n

t

Time (Hour)

CPLEX
Heuristic

(c) Overall carbon footprint

Figure 4.10: Traffic pattern and overall carbon footprint for AS-7170

130

-20

-10

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

S
F

C
 C

o
u

n
t

Time (Hour)

Inbound
Outbound

(a) In- and out-bound traffic (10 reqs/hour)

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

A
c
ti
v
e

 S
F

C
 C

o
u

n
t

Time (Hour)

Active SFC Count

(b) Active SFC counts

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

C
a

rb
o

n
 F

o
o

tp
ri
n

t

Time (Hour)

Heuristic

(c) Overall carbon footprint

Figure 4.11: Traffic pattern and overall carbon footprint for AS-3549

131

-20

-10

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

S
F

C
 C

o
u

n
t

Time (Hour)

Inbound
Outbound

(a) In- and out-bound traffic (10 reqs/hour)

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

A
c
ti
v
e

 S
F

C
 C

o
u

n
t

Time (Hour)

Active SFC Count

(b) Active SFC counts

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

C
a

rb
o

n
 F

o
o

tp
ri
n

t

Time (Hour)

Heuristic

(c) Overall carbon footprint

Figure 4.12: Traffic pattern and overall carbon footprint for AS-3561

132

Table 4.5: Running time of heuristic (per SFC request)
Topology Min 5th %tile Mean Median Mode 95th %tile Max
AS-13129 2.0 ms 2.0 ms 4.4 ms 4.0 ms 3.0 ms 7.0 ms 8.0 ms
AS-7170 3.0 ms 3.0 ms 4.5 ms 5.0 ms 3.0 ms 7.0 ms 8.0 ms
AS-3549 4.0 ms 4.0 ms 5.5 ms 5.0 ms 5.0 ms 9.0 ms 12.0 ms
AS-3561 4.0 ms 4.0 ms 5.9 ms 5.0 ms 5.0 ms 13.0 ms 17.0 ms

Table 4.6: Running time of CPLEX (per SFC request)
Topology Min 5th %tile Mean Median Mode 95th %tile Max
AS-13129 1.2 s 2.1 s 4.4 s 3.6 s 2.1 s 7.5 s 13.2 s
AS-7170 8.0 s 27.5 s 1 m 28.3 s 1 m 15.5 s 1 m 2.5 s 2 m 55 s 4 m 16.5 s
AS-3549 > 1 h - - - - - -
AS-3561 > 1 h - - - - - -

Running Time of Optimal and Heuristic Algorithms

Running time statistics of the optimal and heuristic algorithms for a single SFC is reported
in Table 4.5 and Table 4.6, respectively. AS-13129 is the smallest topology included in the
simulations; it has 7 nodes and 9 edges. The optimal solution requires a minimum of 1.2
seconds to embed an SFC, while the mean and maximum time required are 4.4 and 13.2
seconds, respectively. Other statistics like mode, median, 5th and 95th percentiles are also
reported in Table 4.6. In contrast, the heuristic requires a maximum of only 8 milliseconds
to embed an SFC, which is a 150 times improvement compared to even the minimum
time required for the optimal solution. Additional relevant statistical data are reported
in Table 4.5. Now, for AS-7170 (18 nodes and 60 edges) the optimal solution requires 1
minute and 28 seconds on average, whereas the heuristic requires only 4.5 milliseconds, an
improvement of around 20000 times. The maximum time required by the heuristic is 8
milliseconds, whereas the minimum time required by the optimal solution is 8 seconds.

We ran the CPLEX code on AS-3549 and AS-3561; however, it could not even generate
the first feasible solution. However, the heuristic took only 5.5 and 5.9 milliseconds on
average for AS-3549 and AS-3561, respectively.

Utilization of Renewable Energy

Renewable energy utilization is calculated as the proportion of renewable energy that is
utilized within an hour for running all servers and switches in the network. For each hour,

133

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n

e
rg

y
 P

ro
p

o
rt

io
n

Time (Hour)

Green Energy Brown Energy

(a) Optimal solution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n

e
rg

y
 P

ro
p

o
rt

io
n

Time (Hour)

Green Energy Brown Energy

(b) Heuristic solution

Figure 4.13: Green energy utilization (AS-13129)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n

e
rg

y
 P

ro
p

o
rt

io
n

Time (Hour)

Green Energy Brown Energy

(a) Optimal solution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
n

e
rg

y
 P

ro
p

o
rt

io
n

Time (Hour)

Green Energy Brown Energy

(b) Heuristic solution

Figure 4.14: Green energy utilization (AS-7170)

134

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

A
c
c
e

p
ta

n
c
e

 R
a
ti
o

Number of SFC requests per hour

CPLEX
Heuristic

(a) AS-13129

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

A
c
c
e

p
ta

n
c
e

 R
a
ti
o

Number of SFC requests per hour

CPLEX
Heuristic

(b) AS-7170

Figure 4.15: Acceptance ratio

we measure the total amount of renewable and brown energy used by the network, then
the proportion of renewable energy is calculated as the ratio of renewable energy to the
total (renewable + brown) energy.

Figure 4.13(a) and Figure 4.13(b) show the renewable and brown energy proportions for
AS-13129 for optimal and heuristic solutions, respectively. The optimal solution achieves
much better renewable energy utilization than the heuristic. The primary cause behind
this issue is the way the heuristic chooses a path to embed an SFC. The heuristic chooses
a path that offers the highest amount of renewable energy; however, the total renewable
energy might be concentrated only on one or a few NFV-PoDs on the path. Choosing such
a path can reduce the carbon footprint of the servers, but significantly increases the carbon
footprint for embedding the SFC’s edges. This behavior is discovered by closely examining
the embedding locations of the optimal and heuristic solutions. The performance of the
heuristic can be improved by examining more paths; however, this approach increases the
running time and does not improve performance in all cases. Therefore, we opted for a
lower running-time and simpler heuristic algorithm by choosing the current approach of
path selection. The renewable and brown energy proportions for the optimal and heuristic
in AS-7170 are shown in Figure 4.14. The heuristic shows similar performance for this
topology as well.

135

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10
 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24

P
e
rc

e
n
ta

g
e
 r

e
d
u
c
ti
o
n
 i
n
 c

a
rb

o
n
 f
o
o
tp

ri
n
t

Time (Hour)

Optimal
Heuristic

Figure 4.16: Impact of migration (AS-13129)

Acceptance Ratio

In these simulations, we increase the number of inbound SFC requests from 10 to 100
requests per hour. At each step, we simulate 24 hours and track the percentage of SFCs
that are successfully embedded within each hour. The acceptance ratio is calculated per
hour, and then the min, 5th-percentile, mean, 95th-percentile, and the max values are
plotted for the optimal and heuristic solutions in Figure 4.15(a) and Figure 4.15(b) for
AS-13129 and AS-7107, respectively. We can see from the figure that the acceptance ratios
for the heuristic solution are very close to those of the optimal solution in both cases.
For AS-13129, the acceptance ratio of the heuristic is usually within 12% of the optimal;
except for the 100 request per hour setting. In case of AS-7170, the heuristic performs
much better as there are more paths compared to AS-13129, which offer more embedding
opportunities to the heuristic. For AS-7170, the acceptance ratio of the heuristic is within
7% of the optimal.

Impact of Migration

To measure the impact of migration, we run simulations with and without enabling migra-
tion of SFCs. We also pre-process the renewable energy data to start SFC embedding at
a time-point when there is no renewable energy, and then the amount of renewable energy
rises, and finally, it decreases. This approach represents a renewable energy source that
shows the time-of-day effect, like a solar panel, and captures the impact of migration in
three possible scenarios. The results for AS-13129 is shown in Figure 4.16. At each hour,

136

the normalized value of the overall renewable energy, and the percentage reduction in car-
bon footprint due to migration is plotted for both optimal and heuristic solutions. The
overall renewable energy is calculated by summing the available renewable energy amounts
at all NFV-PoDs.

The differences between the percentage reduction in carbon footprint for the optimal
and heuristic solutions are very small. The initial rise in carbon footprint reduction is due
to the fact that at hour 4 renewable energy becomes available for the first time, and a
significant number of SFCs are migrated to reduce carbon footprint. However, the effect
subsides after hour 5 as the only candidate SFCs that can reduce overall carbon footprint
are the ones that arrived during hour 4. After that, the percentage reduction increases
with increasing renewable energy. However, when the amount of renewable energy starts
decreasing, the percentage reduction in carbon footprint also keeps decreasing. At this
stage, the only opportunity to reduce carbon footprint occurs when some SFCs expire, and
resources powered by renewable energy become available. The performance of optimal and
heuristic solutions is close. Similar results are obtained for AS-7170 and are not included
for the sake of brevity.

4.7 Related Work

SFC orchestration has received much attention in recent years [149, 43, 160, 161, 162, 163].
However, none of the previous works in the literature targeted the problem addressed in this
work. A survey of SFC placement algorithms is provided in [149], where the authors have
classified the existing algorithms under categories like basic, dynamic, online, multiple-
provider, schedule, mobile network, and data center. However, none of the surveyed papers
consider a problem similar to MLSO. The existing online algorithms consider placement
of SFC requests but do not examine the migration of existing SFCs or consolidation of
freed resources to reduce cost. Eramo et al. addressed a similar problem where SFCs are
provisioned and migrated with the objective to reduce energy cost; however, their work
does not consider renewable energy sources [160]. Besides, they assume that each server
will pre-active a VNF of each type and their proposed algorithm determines the number
of cores for each such pre-activated instance. However, this is not a suitable assumption
as most VNFs have a fixed set of cores that are required for its operation.

The works in [43, 161, 163], focus on the general SFC orchestration problem to reduce
energy consumption but do not consider the possibility of migration and utilization of
renewable energy sources. In [160], the authors address the issue of migration; however,
they do not consider the availability of renewable energy, and they assume that all SFC

137

requests are known in advance for their proposed heuristics. In essence, their algorithms
are offline, where we consider the online version of the problem and propose heuristics for
embedding and migration of SFCs, along with consolidation of resources. In [162], the
authors propose a polynomial time heuristic for SFC embedding; however, they do not
model the energy consumption of servers and switches, or migration of VNF chains. Their
model tries to maximize the service provider’s revenue by accepting more SFC requests
without providing any details on how the provider’s operational cost is calculated.

Authors in [118] proposed a grammar for specifying VNF chains and then provided a
quadratic formulation for VNF chain placement. In contrast, we provide a linear formu-
lation for SFC embedding across multiple locations and consider VNF migration between
these locations to reduce carbon footprint. In [119], the authors provided an LP-relaxation
based approach for finding inter-data center VNF chain placement. However, due to LP-
relaxation, their solution violates physical resource capacities by a factor of 16. Our so-
lutions do not have such issues, and we provide extensive simulations to show that our
proposed heuristic achieves near-optimal performance within milliseconds. A genetic algo-
rithm for VNF chain placement is proposed in [120], but it does not address the issue across
multiple locations. An orchestration architecture for automatic VNF placement is proposed
in [121], but the authors do not provide any particular algorithms for orchestration.

Green energy aware placement strategies are also explored in areas like Virtual Network
(VN) and Virtual Data Center (VDC) embedding [104, 96]. The problem of VN embedding
across multiple data centers to reduce the total energy consumption of switches and servers
is considered in [164]. This work assumes that the workload of the VNs can be predicted in
the future and takes future migration decisions based on the predicted values. It considers
two time periods, workload during day and night while taking VN embedding decision.
Moreover, this work does not consider the availability of renewable energy sources. In
contrast, our algorithm is online and takes migration decisions based on the fluctuation of
renewable energy in real-time.

Authors in [165] introduced FORTE, a framework that enables large-scale Internet ap-
plication providers to navigate the three-way tradeoff between carbon footprint, electricity
cost, and access latency. FORTE also provides green data center upgrade and expansion
plans that can reduce carbon footprint. Authors in [166, 167, 168] propose VDC embed-
ding algorithms across geographically distributed data centers while minimizing carbon
footprint by utilizing green energy sources; however, these works do not consider migra-
tion of virtual nodes (or VNFs) to utilize green energy. They consider one-shot embedding
of VDC requests across distributed data centers. Furthermore, they do not model the inter-
nal server and bandwidth of each data center separately. They consider data centers with
infinite capacity and only consider the bandwidth of the backbone network while taking

138

embedding decisions. In contrast, we consider both inter- and intra-NFV-PoD networks
and the server capacities inside each NFV-PoD while taking embedding, migration, and
consolidation decisions.

4.8 Conclusion

In recent years telecommunication networks have experienced a monumental rate of expan-
sion, and this rate is going to accelerate at an even higher pace in the future. A negative
side-effect of this rapid expansion is the equally rapid rise of carbon footprint that is
generated from the power consumption of telecommunication infrastructures. Government
regulations and environmental concerns are pushing network operators to devise innovative
solutions to minimize carbon footprint. The challenge for network operators is to achieve
this without significantly increasing their operational cost. In this perspective, we propose
ESSO, an SFC orchestrator that reduces the overall carbon footprint of a telecommuni-
cation network by intelligently embedding and migrating SFCs across different locations.
In addition, ESSO consolidates recently freed resources to reduce energy consumption.
The fundamental idea of ESSO is to generate a near-optimal SFC embedding across the
infrastructure by piecing together partial embedding data collected from a small number
of NFV-PoDs. We performed extensive simulations on four ISP topologies collected from
the Rocketfuel dataset. Our results show that the proposed heuristic algorithm provides
near-optimal solutions within milliseconds for all topologies.

139

Chapter 5

Conclusion and Future Research
Directions

5.1 Conclusion

This thesis focused on resource allocation and orchestration techniques that are essential
to realize the vision of network softwarization. The primary objective of softwarization
is to overcome the current ossified state of network architecture, and evolve towards a
more open, agile, flexible, and programmable networking paradigm that will reduce both
CAPEX and OPEX, cut-down time-to-market of new services, and create new revenue
streams. The fundamental idea of network softwarization is to achieve virtualization and
programmability of network resources through the decoupling of processing logic that re-
alizes network services from the underlying physical hardware that transports bits flowing
through the network. Softwarization offers programmability, flexibility, and enhanced con-
trol over the network. To fully exploit the benefits of network softwarization, innovative
techniques and mechanisms are required for all aspects of network management and con-
trol. The resource allocation and orchestration techniques presented in this thesis utilize
the functionality provided by softwarization to reduce operational cost, improve resource
utilization, ensure scalability, dynamically scale resource pools according to demand, and
optimize energy usage from multiple sources. This thesis tackled three key resource allo-
cation and orchestration challenges in network softwarization. These challenges and the
contributions of the thesis are summarized below.

The first contribution of this thesis addressed the scalability issue of the centralized
control plane in SDN. The SDN controller is the brain of the network and controls each

140

and every traffic flowing through the network. In most cases, a single controller is not
enough to handle the processing, delay, and fault-tolerance requirements of a network. In
these cases, multiple controllers must be deployed to ensure the necessary control plane
performance requirements. One such requirement is the switch flow-setup time, and in this
work, we identified and formulated the Dynamic Controller Provisioning Problem (DCPP)
that minimizes flow-setup time by dynamically adapting the number of controllers and their
locations according to demand fluctuations in the network. We proposed a management
system for dynamically deploying multiple controllers. We also provided a mathematical
formulation of DCPP as an ILP. Since DCPP is an NP-hard problem, we provided two
heuristic algorithms (DCP-GK and DCP-SA) to solve it. Our simulation results showed
that our solution can achieve lower flow-setup times and minimal communication overhead
compared to that of the static version of the problem (using single or multiple controllers).
Our system achieved a balance between flow-setup time and messaging overhead. Evalua-
tion results also showed that DCP-SA and DCP-GK succeeded in finding the right trade-off
between these two extremes and provide near-optimal solutions. DCP-SA provides better
results than DCP-GK but takes longer to converge.

The second contribution of this thesis focused on the issue of operational cost man-
agement of virtualized network services in the area of NFV. Virtualized network functions
or VNFs provide a flexible way to deploy, operate and orchestrate network services with
much less capital and operational expenditures. Recent technological advancements in
software-based network packet processing have enabled VNFs to provide performance that
is similar to that of a hardware appliances, e.g., ClickOS, and OpenNF. Network operators
are already opting for NFV based solutions. In this contribution, we developed a model
for dynamic VNF orchestration that can be used to determine the optimal number and
location of VNFs to minimize network operational cost and reduce resource fragmentation.
We named this problem as the Virtualized Network Function Orchestration Problem or
VNF-OP. We provided a mathematical formulation of the problem and proved the problem
to be NP-hard. We also devised a heuristic that provides near-optimal solution within a
few seconds. Our trace-driven simulations on the Internet2 research network demonstrated
that network OPEX can be reduced by a factor of 4 over hardware middleboxes through
proper VNF orchestration. Specifically, we devised two solutions to the VNF orchestration
problem: CPLEX based optimal solution for small networks and a heuristic for larger ones.
We found that the heuristic produces solutions that are within 1.3 times of the optimal
solution, yet the execution-time is about 65 to 3500 times faster than that of the optimal
solution.

The third and final contribution of the thesis presented ESSO: An Energy Smart SFC
Orchestrator that orchestrates service function chains across multiple deployment loca-

141

tions (NFV-PoDs) with the objective to reduce the carbon footprint of the network while
considering both brown and renewable energy sources. In recent years telecommunication
networks have experienced a monumental rate of expansion, and this rate is going to accel-
erate at an even higher pace in the future. A negative side-effect of this expansion is the rise
of carbon footprint that is generated from the power consumption of telecommunication
infrastructures. Government regulations and environmental concerns are pushing network
operators to devise innovative solutions to minimize carbon footprint without significantly
increasing their operational cost. In this respect, we introduced ESSO that reduces the
overall carbon footprint of a telecommunication network by intelligently embedding and
migrating SFCs across different locations. In addition, ESSO consolidates recently freed
resources to reduce energy consumption. To achieve these objectives, we identified the
Multi-Location SFC Orchestration (MLSO) problem and presented an ILP formulation for
it. The MLSO problem is NP-hard; therefore, we devised a heuristic algorithm for ESSO.
The fundamental idea of the heuristic is to generate a near-optimal SFC embedding across
the infrastructure by piecing together partial embedding data collected from a small num-
ber of NFV-PoDs. We performed extensive simulations on four ISP topologies collected
from the Rocketfuel dataset. Our results showed that the proposed heuristic algorithm
provides near-optimal solutions within milliseconds for all topologies.

In this dissertation, we have addressed three key research challenges in network soft-
warization and proposed efficient solutions to solve them. We have also demonstrated the
superiority of our proposed solutions through extensive simulations using realistic scenar-
ios. However, there are issues that need further research. The next section presents these
future research directions.

5.2 Future Research Directions

Dynamic Controller Provisioning

The two heuristics for dynamic controller provisioning presented in this thesis demonstrate
different performance characteristics. The DCP-GK heuristic is faster than DCP-SA, but
DCP-SA provides better solutions with lower flow-setup time. It would be interesting to
combine the two heuristics where DCP-GK generates initial solutions that are improved
by DCP-SA. Moreover, a spike in control traffic is not handled properly in the current
approach. The controller management system could reserve a certain amount of CPU
capacity at each controller to handle traffic spikes. This mechanism can reduce the number
of unnecessary switch-to-controller reassignment after a traffic spike. Furthermore, each

142

switch can be assigned one master and one or more slave controller(s) to guarantee fault-
tolerance of the control plane. Another potential research direction is to use predictive
analysis of the packet in messages at different controllers to predict future controller load
and adapt the active controller pool accordingly.

Orchestrating Virtual Network Functions

The work on VNF orchestration can be extended in a number of ways. First, the VNF
orchestration model can be extended to support both hardware and software middleboxes
for embedding different functions from the same service chain. For example, network
functions that require a large number of cryptographic operations might gain by running
on top of custom hardware middleboxes. The extended model will be able to support such
use cases. Moreover, failure-resilient chain embedding by deploying backup VNFs can be
investigated. In this case, each service chain will be embedded with a primary path and
backup path(s) that will be utilized when a VNF on the primary path fails. Furthermore,
the backup paths can be shared between multiple service chains to reduce the amount of
underutilized resources in the network. Another interesting research direction is to use a
testbed to measure the actual power consumption by the different components of a service
chain to gain a deeper understanding about the interaction between different types of VNFs
and network traffic.

Energy Smart Service Function Chain Orchestration (ESSO)

In ESSO, service chain migration decisions are taken based on the migration threshold,
which can be extended by modeling the impact of migration. Service downtime can be
used as a potential parameter for the extended model. In addition, the accumulated down-
time experienced by a service in its lifetime should be considered while making migration
decisions. The accumulated downtime must not exceed the maximum allowed downtime
agreed in the SLA. Moreover, alternate cost models that consider factors other than carbon
footprint can be investigated. Another interesting avenue of research will be to explore a
pricing model for each service chain. In this case, the operator will profit from embedding
a service chain but pay for electricity and penalties for carbon emission and SLA viola-
tions. Furthermore, the current model for estimating renewable energy can be extended to
consider other green energy sources, e.g., a network operator might purchase Renewable
Energy Certificates (RECs) from green energy vendors while still consuming energy from
a conventional brown energy grid. In this case, the problem becomes more interesting as
REC prices vary based on location.

143

References

[1] K. G. Coffman and A. M. Odlyzko, “Growth of the Internet,” Optical Fiber Telecom-
munications IV B: Systems and Impairments, IP Kaminow and T. Li, eds, pp. 17–56,
2002.

[2] “Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 - Cisco,”
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html.

[3] J. Donovan and K. Prabhu, Building the Network of the Future: Getting Smarter,
Faster, and More Flexible with a Software Centric Approach. CRC Press, 2017.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610001568

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software de-
fined wan,” in ACM SIGCOMM Computer Communication Review (CCR), vol. 43,
no. 4. ACM, 2013, pp. 3–14.

[6] F. De Turck, J.-M. Kang, H. Choo, M.-S. Kim, B.-Y. Choi, R. Badonnel, and J. W.-
K. Hong, “Softwarization of networks, clouds, and internet of things,” International
Journal of Network Management, vol. 27, no. 2, 2017.

[7] “OpenStack Open Source Cloud Computing Software,” http://openstack.org/.

[8] “OpenDaylight (ODL) Platform,” https://www.opendaylight.org/.

[9] “Open Platform for NFV (OPNFV),” https://www.opnfv.org/.

144

http://www.sciencedirect.com/science/article/pii/S1389128610001568

[10] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[11] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,
“Network Function Virtualization: State-of-the-Art and Research Challenges,” IEEE
Communications Surveys and Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 38, no. 2, pp. 69–74,
2008.

[13] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The Middlebox Manifesto:
Enabling Innovation in Middlebox Deployment,” in ACM SIGCOMM Workshop on
Hot Topics in Networks (HotNets), 2011, pp. 1–6.

[14] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Mak-
ing middleboxes someone else’s problem: network processing as a cloud service,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 42, no. 4, pp. 13–
24, 2012.

[15] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,”
in ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN), 2012, pp. 7–12. [Online]. Available: http://doi.acm.org/10.1145/
2342441.2342444

[16] A. Voellmy and J. Wang, “Scalable software defined network controllers,” in ACM
SIGCOMM. ACM, 2012, pp. 289–290.

[17] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based networking
with DIFANE,” in ACM SIGCOMM, 2012, pp. 351–362.

[18] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Baner-
jee, “DevoFlow: scaling flow management for high-performance networks,” in ACM
SIGCOMM, 2011, pp. 254–265.

[19] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically central-
ized?: state distribution trade-offs in software defined networks,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN), 2012, pp. 1–6.

145

http://doi.acm.org/10.1145/2342441.2342444
http://doi.acm.org/10.1145/2342441.2342444

[20] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar, “Flowvisor: A network virtualization layer,” OpenFlow Switch Consor-
tium, Tech. Rep., 2009.

[21] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed control
platform for large-scale production networks,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), vol. 10. USENIX, 2010, pp. 1–6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.1924968

[22] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and scalable
offloading of control applications,” in ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networks (HotSDN). ACM, 2012, pp. 19–24.

[23] A. M. Carlos, C. E. Rothenberg, and F. M. Mauŕıcio, “In-packet Bloom filter based
data center networking with distributed OpenFlow controllers,” in IEEE GLOBE-
COM Workshops (GC Wkshps). IEEE, 2010, pp. 584–588.

[24] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control plane for Open-
Flow,” in Internet Network Management Conference on Research on Enterprise Net-
working (INM/WREN), 2010, pp. 3–3.

[25] A. S.-W. Tam, K. Xi, and H. J. Chao, “Use of devolved controllers in data center net-
works,” in IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2011, pp. 596–601.

[26] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers: A comparative
study,” in Mediterranean Electrotechnical Conference (MELECON). IEEE, 2016,
pp. 1–6.

[27] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance Evaluation
of OpenFlow-based Software-defined Networks Based on Queueing Model,”
Computer Networks, vol. 102, no. C, pp. 172–185, Jun. 2016. [Online]. Available:
https://doi.org/10.1016/j.comnet.2016.03.005

[28] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On
Controller Performance in Software-defined Networks,” in USENIX Conference
on Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services (Hot-ICE), ser. Hot-ICE’12. USENIX, 2012, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=2228283.2228297

146

http://dl.acm.org/citation.cfm?id=1924943.1924968
https://doi.org/10.1016/j.comnet.2016.03.005
http://dl.acm.org/citation.cfm?id=2228283.2228297

[29] D. Pariag and T. Brecht, “Application Bandwidth and Flow Rates from 3 Trillion
Flows Across 45 Carrier Networks,” in International Conference on Passive and
Active Network Measurement (PAM). Springer, 2017, pp. 129–141.

[30] H. Wang, F. Xu, Y. Li, P. Zhang, and D. Jin, “Understanding mobile traffic patterns
of large scale cellular towers in urban environment,” in ACM SIGCOMM Internet
Measurement Conference (IMC). ACM, 2015, pp. 225–238.

[31] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of
data center traffic: measurements & analysis,” in ACM SIGCOMM Internet Mea-
surement Conference (IMC). ACM, 2009, pp. 202–208.

[32] S. Huang, F. Cuadrado, and S. Uhlig, “Middleboxes in the Internet: A HTTP per-
spective,” in Network Traffic Measurement and Analysis Conference (TMA), June
2017, pp. 1–9.

[33] D. A. Joseph, A. Tavakoli, and I. Stoica, “A Policy-aware Switching Layer for Data
Centers,” in ACM SIGCOMM, 2008, pp. 51–62.

[34] J. Sherry and S. Ratnasamy, “A Survey of Enterprise Middlebox Deployments,”
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2012-
24, Feb 2012.

[35] C. Dixon, A. Krishnamurthy, and T. Anderson, “An end to the middle,” in Workshop
on Hot Topics in Operating Systems (HotOS). USENIX Association, 2009, pp. 2–2.

[36] R. Mijumbi, J. Serrat, J. l. Gorricho, S. Latre, M. Charalambides, and D. Lopez,
“Management and orchestration challenges in network functions virtualization,”
IEEE Communications Magazine, vol. 54, no. 1, pp. 98–105, January 2016.

[37] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying
middlebox policy enforcement using SDN,” in ACM SIGCOMM, 2013, pp. 27–38.

[38] P. Quinn and T. Nadeau, “Service Function Chaining Problem Statement,” draft-
quinn-sfc-problem-statement-10 (work in progress), 2014.

[39] C. Xie, Q. Sun, W. Meng, C. Wang, and B. Khasnabish, “Service Function Chaining
Use Cases in Broadband,” draft-meng-sfc-broadband-usecases-03 (work in progress),
2015.

147

[40] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro, “Service Function
Chaining Use Cases in Mobile Networks,” draft-ietf-sfc-use-case-mobility-08 (work in
progress), 2018.

[41] S. Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service Function
Chaining Use Cases in Data Centers,” draft-ietf-sfc-dc-case-06 (work in progress),
2017.

[42] J. Quittek, P. Bauskar, T. BenMeriem, A. Bennett, M. Besson, and A. Et, “Network
Functions Virtualisation (NFV) - Management and Orchestration,” ETSI NFV ISG,
White Paper, 2014.

[43] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte, “Orches-
trating Virtualized Network Functions,” IEEE Transactions on Network and Service
Management, vol. 13, no. 4, pp. 725–739, Dec 2016.

[44] ETSI, “Network Functions Virtualisation (NFV): Architectural Framework,” ETSI
GS NFV, Tech. Rep., 2013.

[45] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici,
“ClickOS and the art of network function virtualization,” in USENIX Symposium
on Networked Systems Design and Implementation (NSDI). USENIX, 2014, pp.
459–473.

[46] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High performance and
flexible networking using virtualization on commodity platforms,” in USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI). USENIX, 2014,
pp. 445–458.

[47] Sandvine, “Breaking the Terabit Barrier: A One Terabit per Second
Policy Control Virtual Network Function,” Technology Showcase, Sand-
vine, 2015. [Online]. Available: https://www.sandvine.com/downloads/general/
sandvine-technology-showcases/breaking-the-terabit-barrier.pdf

[48] “G.W.A.T.T. – Global ”What if“ Analyzer of neTwork energy consumpTion,”
http://gwatt.net/.

[49] T. Joyce, T. A. Okrasinski, and W. Schaeffer, “Estimating the carbon footprint of
telecommunications products: A heuristic approach,” Journal of Mechanical Design,
vol. 132, no. 9, pp. 094 502–094 502–4, 2010.

148

https://www.sandvine.com/downloads/general/sandvine-technology-showcases/breaking-the-terabit-barrier.pdf
https://www.sandvine.com/downloads/general/sandvine-technology-showcases/breaking-the-terabit-barrier.pdf

[50] H. S. Dunn, “The carbon footprint of ICTs,” Global Information Society Watch,
2010.

[51] “Federal Renewable Energy Projects And Technologies,”
http://energy.gov/eere/femp/federal-renewable-energy-projects-and-technologies.

[52] P. Natsu, “53% Of Consumers Prefer To Buy From Company With Green
Rep,” http://www.environmentalleader.com/2007/10/02/53-of-consumers-prefer-to-
buy-from-companies-with-green-rep/, 2007.

[53] “Carbon Tax Center,” http://www.carbontax.org/.

[54] KPMG, “Carbon footprint stomps on firm value,” https://goo.gl/r0B9fj.

[55] H. Ikebe, N. Yamashita, and R. Nishii, “Green energy for telecommunications,” in
IEEE International Telecommunications Energy Conference (INTELEC). IEEE,
2007, pp. 750–755.

[56] D. Kumar and S. Shekhar, “Renewable Energy Potential for Green Networks,” Re-
search Journal of Science and Technology, vol. 7, no. 2, p. 125, 2015.

[57] R. Bolla, R. Bruschi, A. Carrega, F. Davoli, D. Suino, C. Vassilakis, and
A. Zafeiropoulos, “Cutting the energy bills of Internet Service Providers and tele-
coms through power management: An impact analysis,” Computer Networks, vol. 56,
no. 10, pp. 2320–2342, 2012.

[58] T. Vu, V. Luc, N. Quan, T. Thanh, N. Thanh, and P. Nam, “Sleep Mode and Wakeup
Method for OpenFlow Switches,” Journal of Low Power Electronics, vol. 10, no. 3,
pp. 347–353, 2014.

[59] S. Fang, H. Li, C. H. Foh, Y. Wen, and K. M. M. Aung, “Energy optimizations for
data center network: Formulation and its solution,” in IEEE Global Communications
Conference (GLOBECOM). IEEE, 2012, pp. 3256–3261.

[60] “USCRN/USRCRN Quality Controlled Datasets,”
https://www.ncdc.noaa.gov/crn/qcdatasets.html.

[61] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella, “OpenNF: Enabling innovation in network function control,” in ACM
SIGCOMM. ACM, 2014, pp. 163–174.

149

[62] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow migration for
NFV,” in IEEE International Conference on Network Protocols (ICNP), Nov 2016,
pp. 1–10.

[63] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/merge: System
support for elastic execution in virtual middleboxes.” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013, pp. 227–240.

[64] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker,
“E2: a framework for NFV applications,” in ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2015, pp. 121–136.

[65] “Open Networking Foundation (ONF),” https://www.opennetworking.org/.

[66] “Internet2 Research Network Topology and Traffic Matrix,”
http://www.cs.utexas.edu/˜yzhang/research/AbileneTM/.

[67] “NOX,” https://github.com/noxrepo/nox.

[68] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek, and
R. Morris, “Flexible, Wide-area Storage for Distributed Systems with WheelFS,” in
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
ser. NSDI’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 43–58. [Online].
Available: http://dl.acm.org/citation.cfm?id=1558977.1558981

[69] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and
R. Boutaba, “Dynamic Controller Provisioning in Software Defined Networks,” in
International Conference on Network and Service Management (CNSM), Oct 2013,
pp. 18–25.

[70] G. Yao, J. Bi, Y. Li, and L. Guo, “On the Capacitated Controller Placement Problem
in Software Defined Networks,” IEEE Communications Letters, vol. 18, no. 8, pp.
1339–1342, Aug 2014.

[71] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia, “Pareto-
optimal resilient controller placement in SDN-based core networks,” in International
Teletraffic Congress (ITC), Sept 2013, pp. 1–9.

[72] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “POCO-framework
for Pareto-optimal resilient controller placement in SDN-based core networks,” in
IEEE Network Operations and Management Symposium (NOMS), May 2014, pp.
1–2.

150

http://dl.acm.org/citation.cfm?id=1558977.1558981

[73] M. Obadia, M. Bouet, J. L. Rougier, and L. Iannone, “A greedy approach for mini-
mizing SDN control overhead,” in IEEE Conference on Network Softwarization (Net-
Soft), April 2015, pp. 1–5.

[74] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-optimized con-
troller placement for Software-Defined Networks,” China Communications, vol. 11,
no. 2, pp. 38–54, Feb 2014.

[75] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-aware controller
placement for Software-Defined Networks,” in IFIP/IEEE International Symposium
on Integrated Network Management (IM), May 2013, pp. 672–675.

[76] F. J. Ros and P. M. Ruiz, “Five Nines of Southbound Reliability in Software-defined
Networks,” in ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN). New York, NY, USA: ACM, 2014, pp. 31–36. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620752

[77] Y. Jiménez, C. Cervelló-Pastor, and A. J. Garćıa, “On the controller placement for
designing a distributed SDN control layer,” in IFIP Networking Conference, June
2014, pp. 1–9.

[78] D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle, “A resilient distributed
controller for software defined networking,” in IEEE International Conference on
Communications (ICC), May 2016, pp. 1–6.

[79] P. Patil, A. Gokhale, and A. Hakiri, “Bootstrapping Software Defined Network for
flexible and dynamic control plane management,” in IEEE Conference on Network
Softwarization (NetSoft). IEEE, 2015, pp. 1–5.

[80] A. Raza, A. Gohar, and S. Lee, “MPTCP based in-band controlling for the software
defined networks,” in International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 2017, pp. 163–167.

[81] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, “A self-organizing
distributed and in-band SDN control plane,” in IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2656–2657.

[82] M. Cello, Y. Xu, A. Walid, G. Wilfong, H. J. Chao, and M. Marchese, “BalCon: A
Distributed Elastic SDN Control via Efficient Switch Migration,” in IEEE Interna-
tional Conference on Cloud Engineering (IC2E). IEEE, 2017, pp. 40–50.

151

http://doi.acm.org/10.1145/2620728.2620752

[83] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella, “ElastiCon; an
elastic distributed SDN controller,” in ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS). IEEE, 2014, pp. 17–27.

[84] A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a dynamic SDN virtu-
alization layer: Control path migration protocol,” in IEEE International Conference
on Network and Service Management (CNSM). IEEE, 2015, pp. 354–359.

[85] O. N. Foundation, “OpenFlow switch specification 1.5.1,” Open Networking Foun-
dation, Tech. Rep., Mar. 2015.

[86] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards an open, distributed
SDN OS,” in ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working (HotSDN). ACM, 2014, pp. 1–6.

[87] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A
Message Exchange Protocol for Software Defined Networks (SDNS) across Multiple
Domains,” Internet Draft, Internet Engineering Task Force, June 2012. [Online].
Available: http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt

[88] P. Lin, J. Bi, and Y. Wang, “East-west bridge for sdn network peering,” in Frontiers
in Internet Technologies. Springer, 2013, pp. 170–181.

[89] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A System for Scalable OpenFlow
Control,” Rice University, Tech. Rep., 2011.

[90] S. G. Kolliopoulos and C. Stein, “Improved approximation algorithms for
unsplittable flow problems,” in FOCS, 1997, pp. 426–436. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795663.796365

[91] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with rocket-
fuel,” in ACM SIGCOMM, 2002, pp. 133–145.

[92] S. Gebert, R. Pries, D. Schlosser, and K. Heck, “Internet Access Traffic Measurement
and Analysis,” in Traffic Monitoring and Analysis, ser. LNCS, 2012, vol. 7189, pp.
29–42.

[93] “Enhanced Network Survivability Performance,” Ansi t1.tr.68-2001, 2011.

152

http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://dl.acm.org/citation.cfm?id=795663.796365

[94] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Q. Fu, Q. Sun, C. Pham,
C. Huang, J. Zhu, and P. He, “Service Function Chaining (SFC) General Use Cases,”
draft-liu-sfc-use-cases-08 (work in progress), 2014.

[95] S. Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service Function
Chaining Use Cases in Data Centers,” draft-ietf-sfc-dc-case-06 (work in progress),
2017.

[96] M. F. Bari, R. Boutaba, R. P. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani,
Q. Zhang, and M. F. Zhani, “Data Center Network Virtualization: A Survey,” IEEE
Communications Surveys and Tutorials, vol. 15, no. 2, pp. 909–928, 2013.

[97] P. L. D. Puglia and G. Francesca, “A Survey of Resource Constrained Shortest Path
Problems: Exact Solution Approaches,” Networks, vol. 62, no. 3, pp. 183–200, 2013.

[98] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “HARMONY: Dynamic
Heterogeneity-Aware Resource Provisioning in the Cloud,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), July 2013, pp. 510–519.

[99] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic Service
Placement in Geographically Distributed Clouds,” IEEE Journal on Selected Areas
in Communications, vol. 31, no. 12, pp. 762–772, December 2013.

[100] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing
Together the NFV Provisioning Puzzle: Efficient Placement and Chaining of Virtual
Network Functions,” in IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), May 2015, pp. 98–106.

[101] ETSI, “Network Functions Virtualisation – Introductory White Paper,”
https://portal.etsi.org/NFV/NFV White Paper.pdf, 2012.

[102] “Comparison of enterprise class power enclosure,”
http://www.dell.com/downloads/global/products/pedge/en/bladepower-
studywhitepaper 08112010 final.pdf.

[103] “Internet Transit Pricing,” http://drpeering.net/white-papers/Internet-Transit-
Pricing-Historical-And-Projected.php.

[104] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Com-
puter Networks, vol. 54, no. 5, pp. 862–876, 2010.

153

[105] L. T. Kou and G. Markowsky, “Multidimensional bin packing algorithms,” IBM
Journal of Research and Development, vol. 21, no. 5, pp. 443–448, 1977.

[106] R. Sridharan, “A lagrangian heuristic for the capacitated plant location problem with
single source constraints,” European Journal of Operational Research, vol. 66, no. 3,
pp. 305–312, 1993.

[107] G. D. Forney Jr, “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, no. 3,
pp. 268–278, 1973.

[108] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data
centers in the wild,” in ACM SIGCOMM Internet Measurement Conference (IMC),
2010, pp. 267–280.

[109] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rock-
etfuel,” ACM SIGCOMM Computer Communication Review (CCR), vol. 32, no. 4,
pp. 133–145, 2002.

[110] L. Saino, C. Cocora, and G. Pavlou, “A Toolchain for Simplifying Network Simulation
Setup,” in EAI International Conference on Simulation Tools and Techniques, 2013.

[111] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically generating ip
traffic matrices: initial recommendations,” ACM SIGCOMM Computer Communi-
cation Review (CCR), vol. 35, no. 3, pp. 19–32, 2005.

[112] “https://datatracker.ietf.org/doc/draft-ietf-sfc-dc-use-cases/.”

[113] “pfSense Hardware Sizing Guide,” https://www.pfsense.org/hardware/#sizing.

[114] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communication
Review (CCR), vol. 38, no. 4, pp. 63–74, Aug 2008. [Online]. Available:
http://doi.acm.org/10.1145/1402946.1402967

[115] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network functionality,” in ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN),
2012, pp. 73–78.

[116] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A network-aware orchestration layer
for middleboxes in the cloud,” CoRR, vol. abs/1305.0209, 2013. [Online]. Available:
http://arxiv.org/abs/1305.0209

154

http://doi.acm.org/10.1145/1402946.1402967
http://arxiv.org/abs/1305.0209

[117] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox actions
using flowtags,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI). USENIX, 2014, pp. 533–546. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616497

[118] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and Placing Chains of Vir-
tual Network Functions,” in IEEE International Conference on Cloud Networking
(CloudNet), Oct 2014, pp. 7–13.

[119] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal placement of virtual
network functions,” in IEEE International Conference on Computer Communication
(INFOCOM), 2015, pp. 1346–1354.

[120] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making network
function virtualization a cloud computing service,” in IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), May 2015, pp. 89–97.

[121] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The dynamic
placement of virtual network functions,” in IFIP/IEEE Network Operations and
Management Symposium (NOMS), 2014, pp. 1–9.

[122] M. Mechtri, C. Ghribi, and D. Zeghlache, “A Scalable Algorithm for the Placement of
Service Function Chains,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 533–546, Sept 2016.

[123] X. Li and C. Qian, “The virtual network function placement problem,” in IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), April
2015, pp. 69–70.

[124] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal Network Function
Virtualization Realizing End-to-End Requests,” in IEEE Global Communications
Conference (GLOBECOM), Dec 2015, pp. 1–6.

[125] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions placement
and routing optimization,” in IEEE International Conference on Cloud Networking
(CloudNet), Oct 2015, pp. 171–177.

[126] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware and Energy-
efficient vNF Placement for Service Chaining: Joint Sampling and Matching Ap-
proach,” IEEE Transactions on Services Computing, pp. 1–1, 2017.

155

http://dl.acm.org/citation.cfm?id=2616448.2616497

[127] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware placement of
interdependent NFV middleboxes,” in IEEE International Conference on Computer
Communications (INFOCOM), May 2017, pp. 1–9.

[128] “Intel DPDK,” http://dpdk.org/.

[129] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O.” in USENIX Annual
Technical Conference (ATC), 2012, pp. 101–112.

[130] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and Imple-
mentation of a Consolidated Middlebox Architecture.” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2012, pp. 323–336.

[131] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xOMB: Ex-
tensible open middleboxes with commodity servers,” in ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS), 2012, pp. 49–
60.

[132] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart,
G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE
Communications Magazine, vol. 54, no. 10, pp. 96–101, 2016.

[133] “100% renewable is just the beginning,” https://environment.google/projects/
announcement-100/.

[134] “Virtual Central Office – OPNFV,” https://www.opnfv.org/wp-
content/uploads/sites/12/2017/09/OPNFV VCO Oct17.pdf.

[135] J. Halpern and C. Pignataro, “Service function chaining (sfc) architecture,” Internet
Engineering Task Force (IETF), Tech. Rep., 2015.

[136] H. Freeman and R. Boutaba, “Networking ind ustry transf ormation through soft-
warization [the president’s page],” IEEE Communications Magazine, vol. 54, no. 8,
pp. 4–6, August 2016.

[137] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the
IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[138] “How to calculate power output of wind,” http://www.windpowerengineering.com/
construction/calculate-wind-power-output/.

156

[139] “Energy Management,” http://about.att.com/content/csr/home/ issue-brief-
builder/environment/energy-management.html.

[140] “AT&T 2025 Goals,” http://www.about.att.com/csr/goals.

[141] “State Electricity Profiles,” https://www.eia.gov/electricity/state/.

[142] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “ElasticTree: Saving Energy in Data Center Networks,” in USENIX
Conference on Networked Systems Design and Implementation (NSDI), vol. 10, 2010,
pp. 249–264.

[143] “PowerConnect 8024F Switch,” http://www.dell.com/us/ business/p/powerconnect-
8024f/pd.

[144] T. H. Vu, T. Thanh, V. Q. Trong, P. N. Nam, and N. H. Thanh, “NetFPGA Based
OpenFlow Switch Extension for Energy Saving in Data Centers,” Journal on Elec-
tronics and Communications, vol. 3, no. 1–2, 2013.

[145] “CORD: Reinventing Central Offices For Efficiency & Agility,” http://opencord.org/.

[146] A. Al-Shabibi and L. Peterson, “CORD: Central Office Re-architected as a Datacen-
ter,” Open Stack Summit, Tech. Rep., 2015.

[147] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless Network Functions:
Breaking the Tight Coupling of State and Processing,” in USENIX Conference
on Networked Systems Design and Implementation (NSDI), ser. NSDI’17.
Berkeley, CA, USA: USENIX Association, 2017, pp. 97–112. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3154630.3154639

[148] “AT&T Domain 2.0 Vision White Paper,” https://www.att.com/Common/about us/
pdf/AT&T Domain 2.0 Vision White Paper.pdf.

[149] Y. Xie, Z. Liu, S. Wang, and Y. Wang, “Service Function Chaining Resource
Allocation: A Survey,” eprint arXiv:1608.00095, 2016. [Online]. Available:
http://arxiv.org/abs/1608.00095

[150] J. A. Aroca, A. Chatzipapas, A. F. Anta, and V. Mancuso, “A Measurement-Based
Characterization of the Energy Consumption in Data Center Servers,” IEEE Journal
on Selected Areas in Communications (JSAC), vol. 33, no. 12, pp. 2863–2877, Dec
2015.

157

http://dl.acm.org/citation.cfm?id=3154630.3154639
http://arxiv.org/abs/1608.00095

[151] “Bin Packing Problem,” https://en.wikipedia.org/wiki/ Bin packing problem.

[152] R. E. Korf, “A New Algorithm for Optimal Bin Packing,” in Eighteenth
National Conference on Artificial Intelligence. American Association for Artificial
Intelligence, 2002, pp. 731–736. [Online]. Available: http://dl.acm.org/citation.cfm?
id=777092.777205

[153] X. Li and C. Qian, “An nfv orchestration framework for interference-free policy
enforcement,” in IEEE International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2016, pp. 649–658.

[154] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint optimization
of chain placement and request scheduling for network function virtualization,” in
IEEE International Conference on Distributed Computing Systems (ICDCS). IEEE,
2017, pp. 731–741.

[155] S. Ayoubi, S. R. Chowdhury, and R. Boutaba, “Breaking service function chains with
khaleesi,” in IFIP Networking Conference, 2018.

[156] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service function chaining
use cases in data centers,” IETF SFC WG, 2015.

[157] A. Nucci, A. Sridharan, and N. Taft, “The Problem of Synthetically Generating
IP Traffic Matrices: Initial Recommendations,” ACM SIGCOMM Computer
Communication Review (CCR), vol. 35, no. 3, pp. 19–32, Jul. 2005. [Online].
Available: http://doi.acm.org/10.1145/1070873.1070876

[158] D. Meisner and T. F. Wenisch, “Peak power modeling for data center servers
with switched-mode power supplies,” ACM/IEEE International Symposium on Low-
Power Electronics and Design (ISLPED), pp. 319–324, 2010.

[159] “CPLEX Optimizer,” https://www.ibm.com/analytics/cplex-optimizer.

[160] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An Approach for Service Func-
tion Chain Routing and Virtual Function Network Instance Migration in Network
Function Virtualization Architectures,” IEEE/ACM Transactions on Networking,
vol. 25, no. 4, pp. 2008–2025, Aug 2017.

[161] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating virtual
network functions,” in International Conference on Network and Service Management
(CNSM), ser. CNSM ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 50–56. [Online]. Available: http://dx.doi.org/10.1109/CNSM.2015.7367338

158

http://dl.acm.org/citation.cfm?id=777092.777205
http://dl.acm.org/citation.cfm?id=777092.777205
http://doi.acm.org/10.1145/1070873.1070876
http://dx.doi.org/10.1109/CNSM.2015.7367338

[162] C. Ghribi, M. Mechtri, and D. Zeghlache, “A Dynamic Programming Algorithm
for Joint VNF Placement and Chaining,” in ACM Workshop on Cloud-Assisted
Networking (CAN), ser. CAN ’16. New York, NY, USA: ACM, 2016, pp. 19–24.
[Online]. Available: http://doi.acm.org/10.1145/3010079.3010083

[163] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On Orchestrating
Virtual Network Functions in NFV,” Computing Research Repository (CoRR), vol.
abs/1503.06377, 2015. [Online]. Available: http://arxiv.org/abs/1503.06377

[164] X. Guan, B.-Y. Choi, and S. Song, “Energy Efficient Virtual Network Embedding
for Green Data Centers Using Data Center Topology and Future Migration,”
Computer Communications, vol. 69, no. C, pp. 50–59, Sep. 2015. [Online]. Available:
https://doi.org/10.1016/j.comcom.2015.05.003

[165] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being green,” in
ACM SIGCOMM. ACM, 2012, pp. 211–222.

[166] A. Amokrane, R. Langar, M. Zhani, R. Boutaba, and G. Pujolle, “Greenslater: On
Satisfying Green SLAs in Distributed Clouds,” IEEE Transactions on Network and
Service Management (TNSM), vol. 12, no. 3, pp. 363–376, Sept 2015.

[167] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle, “Greenhead: Vir-
tual data center embedding across distributed infrastructures,” IEEE Transactions
on Cloud Computing (TCC), vol. 1, no. 1, pp. 36–49, 2013.

[168] A. Amokrane, M. F. Zhani, Q. Zhang, R. Langar, R. Boutaba, and G. Pujolle, “On
Satisfying Green SLAs in Distributed Clouds,” in IEEE/ACM/IFIP International
Conference on Network and Service Management (CNSM), Rio de Janeiro, Brazil,
November 2014, pp. 64–72.

159

http://doi.acm.org/10.1145/3010079.3010083
http://arxiv.org/abs/1503.06377
https://doi.org/10.1016/j.comcom.2015.05.003

	Committee
	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Enabling Technologies for Softwarization
	Challenges in Softwarized Networks
	Multiple Controllers in SDN
	Service Function Chain (SFC) Orchestration

	Research Contributions
	Dynamic Controller Provisioning
	Orchestrating Virtual Network Functions
	Energy Smart Service Function Chain Orchestration

	Thesis Organization

	Dynamic Controller Provisioning
	Software-Defined Networking (SDN)
	Traditional vs. Software-Defined Network
	SDN Architecture
	OpenFlow Switch
	Switch – Controller Interaction

	Related Work
	Control Plane Scalability
	Multi-Controller Provisioning

	Control Plane Assumptions
	Logically Centralized – Physically Distributed
	In-Band vs. Out-of-Band Signaling
	Control Channel Bootstrapping
	Switch Reassignment
	Inter-Controller Communication & State Synchronization

	System Description
	Control Plane Management System
	Path Setup Process

	Mathematical Formulation
	Problem Definition
	Problem Formulation

	Proposed Heuristics
	Dynamic Controller Provisioning with Greedy Knapsack (DCP-GK)
	Dynamic Controller Provisioning with Simulated Annealing (DCP-SA)

	Evaluation
	Simulation Setup
	Results

	Conclusion

	Orchestrating Virtual Network Functions
	Introduction
	Network Function Virtualization
	Mathematical Model and Problem Definition
	Physical Network
	Virtualized Network Functions (VNFs)
	Traffic Request
	VNF Orchestration Problem (VNF-OP)

	Problem Formulation and Complexity Analysis
	Physical Network Transformation
	ILP Formulation

	Heuristic Solution
	Modeling with Multi-Stage Graph
	Heuristic Algorithm
	Finding a Near-Optimal Solution
	Heuristic in Action

	Performance Evaluation
	Simulation Setup
	Performance Metrics
	VNFs vs. Hardware Middleboxes
	Performance Comparison Between CPLEX and Heuristic
	Performance Comparison with Previous Work
	Scalability of Heuristic
	Effect of High Traffic Volume

	Related Work
	Management and Orchestration of Network Functions
	VNF and VNF Chain Placement
	Enabling Technologies for NFV

	Conclusion

	Energy Smart Service Function Chain Orchestration
	Introduction
	Background
	Fluctuation in Availability of Renewable Energy
	Variation in Different Electricity Grids' Carbon Footprint
	Energy Consumption States of Networking Equipment
	Central Office Re-architected as Data Center (CORD)
	SFC Migration and Virtualization Technology

	System Architecture
	Assumptions
	ESSO Architecture

	Problem Formulation
	Multi-Location SFC Orchestration (MLSO) Problem
	Input Representation
	Physical Infrastructure Representation
	Decision Variables
	ILP Formulation
	Objective Function

	Heuristics for Orchestration
	SFC Embedding
	SFC Migration
	SFC Consolidation

	Performance Evaluation
	Datasets
	Performance Metrics
	Migration and Reduction in Carbon Footprint
	Simulation Setup
	Results

	Related Work
	Conclusion

	Conclusion and Future Research Directions
	Conclusion
	Future Research Directions

	References

