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Abstract

Single photons detectors are required for applications like quantum key distribution

and testing Bell’s inequalities. Silicon avalanche photodiodes (Si APD’s) have advantages

like low dark count rate. This thesis aims to experimentally characterize Si APD’s under

conditions experienced in low earth orbit on board a satellite and also develop supporting

algorithms and simulations.

In chapter 1, I motivate the use of Si APD’s as single photon detectors on a satellite.

I also briefly explain the how these APD’s work and the related electronics.

In chapter 2,I describe the test setup used in the laboratory at the Institute for Quantum

Computing to characterize the APD’s. I then explain how one goes about measuring and/or

calculating the different characteristic parameters of the APD. These characteristics include

breakdown voltage, output pulse characteristics, recharge time, dark counts, detection

efficiency, timing jitter of APD, saturation value and afterpulsing probability. The aim

of the lab characterization is to form a baseline measurement under nominal conditions

before we introduce the APD to conditions of low Earth orbit.

In chapter 3, the APD’s are exposed to proton radiation which is expected in low

Earth orbit. Such radiation causes displacement defects in the APD’s substrate and in-

creases dark counts. Previous work [1] has shown that thermal annealing (increasing the

APD temperature for a period of time) is successful in decreasing the dark count rate

to operational range. It is anticipated that multiple annealing instance would be needed

in operation under constant bombardment of protons. The work in this thesis explores

possibility of using annealing repeatedly by alternating instances of proton irradiation and

annealing. Other parameters of the APD are also under scrutiny to see if they change over

the course of this experiment. A secondary objective explores if it is better to anneal only

when the dark count rate drops below a threshold value or anneal after fixed intervals of

time regardless of the dark count rates. A novel algorithm is also developed to analyze

the afterpulsing probability. The algorithm is applied to simulated thermal count and af-

terpulse timetags to demonstrate its effectiveness. It is also applied to the data set drawn

from the experimental tests of proton irradiation and thermal annealing to calculate the

afterpulsing probability.
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In chapter 4, the APD’s are exposed to the vacuum conditions that they would en-

counter in low Earth orbit. The bracket and radiator are set to different temperatures to

simulate thermal variations in orbit. The detectors are then characterized for the afore-

mentioned parameters to ensure they are in operable range.

In chapter 5, I distinguish between the usual notion of afterpulsing probability which

relates to the probability of trapping of charge carriers and the observed afterpulsing prob-

ability which differs from the former due to dead time and recharge time. I then use first

principles to derive the observed afterpulsing probability as a function of charge trapping

probability, charge detrapping lifetime, dead time and thermal count rate. I further go on

to lay the theoretical ground work the afterpulsing algorithm developed in section 3.3.8 by

deriving the analytical expression for the histogram between time differences of consecutive

time tags and then justifying the linearity of the thermal region of the histogram.

Finally, in chapter 6, I devise a numerical experiment where I simulated a quantum

link to implement the quantum key distribution. I model the photon statistics of a weak

coherent pulsed laser and the parameters of a Si APD (the one mentioned above). I then

model the coincidence algorithm to determine photon coincidences and model a simple

intercept and resend attack. I calculate statistical quantities of quantum bit error ratio

and sifted key generation rate.
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Chapter 1

Introduction

1.1 The need for remote key generation

When a person, say Alice, wants to communicate with another person, say Bob, they can

do so in person and ensure their conversation is secure from an eavesdropper. If the two

parties are situated in geographically distinct regions and cannot physically meet, the next

best choice is to send a message over a secure channel that they believe an eavesdropper, say

Eve, doesn’t have access to it. However, if an eavesdropper does manage to gain access to

the channel, she can listen to Alice’s message. A worse situation is where no secure channel

is available for communication. Such an unsecure channel is easily prone to an attack. In

such cases, Alice might want to modify the message such that the modified message isn’t

very meaningful even if Eve gains access to it. When Bob receives the message, he needs

to decipher the message. If Alice uses a certain mapping to convert the original message

to the modified message, Bob would need to perform the inverse mapping on the modified

message to recover the original message. In such a case, Alice and Bob both need to

agree on the mapping they use. This is fine but if multiple messages are sent through

the unsecure channel, Eve could over a period of time build up partial knowledge of the

mapping used especially if the original message has a familiar structure like the English

language. To prevent Eve from doing this, Alice and Bob could change the mapping every

time they send a message, so that Eve doesn’t get many samples of the modified message

that use the same mappings to decipher the mappings used. A neat way to do this is

for Alice and Bob to agree on a general class of mappings usually called a protocol and

change some parameter of the protocol such that Alice and Bob both know the value of

the parameter in each instance. The sequence of values of the parameter is called the key,

with Alice and Bob each having a copy of the key. A simple example would be that Alice
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wants to send Bob a series of numbers. For each number, Alice and Bob could agree on

the mapping to be the multiplication operator. Alice and Bob then agree on a ordered set

of rational numbers such that when Alice wants to send the first number, she multiplies

it with the first rational number in the set an sends the product instead. Bob then has

to divide the received number by the first rational number to decipher Alice’s original

number. There exist protocols like the RSA which uses one key to encrypt and another

key to decrypt the message. It mainly relies on the computational complexity of hard

problems like factoring a very large number into primes. However, such systems are not

guaranteed secure [2]. Given enough time, they can can be broken. This is fine for simple

conversations or even a bank transaction. However, government secrets especially in the

matters of national security, for example, need to be kept secret for decades altogether.

Also, with the advent of quantum computers certain quantum based algorithms like the

Shor’s algorithm [3] can solve these hard problems including discrete logarithm problem

and the elliptic-curve discrete logarithm problem [4] quite efficiently making the need

to guaranteed secure protocols. A protocol called the one time pad protocol [5] uses the

modular addition as the class of mappings. It adds the bits of the message to the bits of the

key to get the encrypted message. The one time pad protocol is considered unbreakable

under the assumption that the key cannot be reused. However, Alice and Bob cannot

possibly hold the same of copy of an infinitely long key. Thus, they must meet in person

again to generate another key once the first one is used up. If this is impossible and they

must risk reusing the key and sacrifice security of the protocol. It is highly desirable to

have a method where one can generate key remotely.

1.2 Quantum Key Distribution

To prevent attacks by quantum algorithms, many post quantum cryptographic (PQC)

systems have been proposed. A thesis [6] by a masters student at the Institute for Quantum

Computing briefly describes PQC systems.It was mentioned in the previous section (1.1)

that the one time pad protocol is a classical protocol that guarantees secured if key are

not re-used. Quantum key distribution (QKD) is a protocol that uses the laws of quantum

mechanics, in particular, the random nature of the collapse of a quantum state, to generate

generate exact copies of a secure key. A few different protocols have been proposed in this

domain. The first one was the BB84 protocol [7]. Here, Alice first prepares single photons

using a source like a weak coherent pulsed (WCP) laser source in specific polarization

states. These polarization states are the source of information in this protocol. Since

the quantity of polarization has quantum properties, these polarization states are called
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qubits. Alice has two basis sets, rectilinear HV and diagonal DA basis set. She randomly

chooses a basis set and then randomly one of the basis states in H, V , D or A in that basis

set. She sends the series of photons over to Bob who then measures it in one of the same

two basis sets. When Bob uses the same basis set as Alice did for a specific photon, the

state that Bob detects is exactly the same as the state that Alice encoded the photon in.

After the series of measurements, Alice and Bob publicly share their measurement basis

set choice but not the preparation / measurement state. They then retain only those bits

where the choice of same basis set was used by them. In the absence of an eavesdropper

or more general noise, Alice and Bob both have the same copy of the key. A more detailed

discussion of this protocol is presented in chapter 6. Using this key a communication

protocol like the one time pad can be used to guarantee secure communication. Similar

variants of the BB84 protocol like the BB92 [8] and E91 [9] exist.

1.3 Satellites for quantum key distribution

The photons need to be transmitted from Alice to Bob. One choice is the use of optical

fibers. However, fibers experience losses that scale exponentially with distance [10]. Cur-

rently, distances of upto 420 km have been reached [11]. Another choice is atmospheric free

space. Here too there exist some minorly contributing losses that scale exponentially with

distance. However, the leading losses like beam divergence scale quadratically [10]. This

makes free space more tractable. At least as of 2007, the maximum distance for transmit-

ting single photons through atmosphere is 144 km [12]. However, in free space, one is still

limited by the curvature of the Earth which limits the distance for communication. One

way to get over this is to build a set of intermediate nodes which are owned by trusted

entities [13]. The issue with trusted nodes is that if one in a network is compromised,

the entire network is compromised. Quantum repeaters use entanglement to extend the

distance of communication [14] but the technology is still in its infancy. Another ap-

proach to get over the line of sight issue is to build tall towers to increase the distance

covered by line of sight. However, the height of the towers is still limited by the strength

of the foundation and the building material. This insight of increasing the height above

the ground can be motivated in the use of a satellite instead of a tower. This increases

the range of communication by itself and when used in a network of satellites, it can cover

large distances [15]. Also, losses due to atmospheric turbulence are absent in the vacuum

of outer space.

There are two choices with respect to transmitter and receiver when using satellites.

One can use the transmitter on the satellite and the receiver on ground. The other is to
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use the source on the ground and the receiver on satellite. The transmitter like a laser

source can often tend to be more bulky than the receiver like a detector unit, giving an

advantage to using the receiver on the satellite [16]. Also, especially for science satellites

(which are used to test scientific hypotheses), different experiments can require very diverse

kinds of sources like weak coherent pulsed laser, entangled photon source. If one places the

source on the satellite, all sources that are used in the intended experiment have to be on

the satellite simultaneously, increasing the payload. Alternatively, with a limited payload

capacity, one must restrict the variety of experiments that one can perform. One the other

hand, most experiments like QKD or Bell’s inequality tests require more or less the same

kinds of detectors. Thus, if one places the detectors on board the satellite, it allows for

a larger variety of experiments with a smaller payload. This is true for communication

satellites if they want to utilize different communication or encryption protocols.

1.4 Silicon based avalanche photo diodes as detectors

We need the capability to detect single photons. Many detectors are commercially available

for this purpose. Among them are Silicon Avalanche Photodiodes (APD), InGaAs APD

and superconducting single photon detectors (SPD). Silicon APD’s have low dark count

rates, high detection efficiency, high saturation value (maximum detector count rate) and

do not have the requirement of cryogenic cooling [17]. These advantages make them

suitable for space applications where cryogenic cooling can technologically challenging.

Dark counts are of primary concern in Si APD detectors. Before going into this, I would

like to address the general working of an APD.

APD is generally p− n junction with a depletion layer. The depletion layer is usually

devoid of mobile charge carriers. If one applies a reverse bias to the p−n junction - applying

the positive terminal of power source to the n-type region and the negative terminal of

power source to the p-type region, there is a minimum bias voltage to be applied before the

APD can conduct and charge carriers flow across the junction. This threshold voltage is

called the breakdown voltage. If the bias voltage is larger than the breakdown voltage and

a mobile charge carrier exists in the junction, the electric filed in the junction can cause

it to knock charge carriers of out of the neighboring atoms which in turn knock off more

charge carriers. This process is called an avalanche.If the device is constructed such that

the initial mobile charge carrier is knocked off by an incident photon, the p−n junction can

be used to detect light. If the bias voltage is slightly larger than the breakdown voltage,

the field strength is minimal and the avalanche created by an incident photon eventually

dies down. The current so generated by a single photon is extremely small - off the order
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of tens to hundreds of electrons [18] - which is difficult to detect. If multiple photons are

incident, the avalanche current so generated is large enough to be detected. This current

tends to be linearly related to the incident optical intensity. So, this is a good device to

measure optical intensity . However, it cannot be used to detect single photons.

Instead if the bias voltage is much larger than the breakdown voltage (in our exper-

iments, we use 20 V), then the field strength is high enough to cause a runaway or self-

sustaining avalanche even when the avalanche is triggered by a single photon [19]. This

means that whether one or multiple photons are incident of the APD, you get pretty much

the same avalanche because it is self sustained by the mobile charge carriers knocking off

other charge carriers. So, such a device cannot be use to measure optical intensity and

we say that the APD is not photon resolving. However, it can be used in detecting single

photons. Hence in this mode (also called the Geiger mode), it is called a single photon

avalanche diode.

Since you have a runaway effect of avalanche current (which stabilizes to a maximum

value), once a avalanche is triggered, the APD cannot be used to detect any further photons.

The avalanche current must be reduced to zero before a second detection can be made.

We call such the process of killing the avalanche current as a quenching process. A circuit

external to the APD must do this. As previously noted, an avalanche can only occur when

the bias voltage is above the breakdown voltage. So, one way to stop a runaway avalanche

is to decrease the bias voltage below the breakdown voltage. If a resistor (called the ballast

resistor) placed in series with the APD, then when no avalanche current exists, the bias

voltage applied across the series combination effectively acts on the p−n junction. However,

when an avalanche is triggered and a current flows, the current through the resistor induces

a voltage drop across it. Since the resistor is in series with the p−n junction and the voltage

across the series combination doesn’t change, the effective voltage across the p−n junction

decreases [20]. If the resistance value of the ballast resistor is chosen chosen high enough,

the voltage across the p−n junction could drop below the breakdown voltage following an

avalanche. Below the breakdown voltage, the charge carriers are not aided by the internal

electric field strength to sustain the avalanche. Hence the avalanche stops. The voltage

across the p − n junction then rises to the original bias voltage on a time scale which is

determined by the product of the ballast resistance and the total capacitance (sum of the

diode capacitance and any capacitance) [21]. We use passive quenching in the APD’s in

our laboratory. There are also active quenching methods [22] which involve a dedicated

circuitry to detect the leading edge of an avalanche and decrease the bias voltage.

Dark counts are avalanches that occur when no photon is incident of the APD. They

consist of two types [23]. One is the thermal counts. These are thermally triggered
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avalanches that occur due to certain defects in the crystal - the rate of thermal counts

increases linearly with temperature. The thermal count rate also increases with over voltage

(bias voltage minus breakdown voltage) because the stronger internal field strength inside

APD increases the chances of creating the initial mobile charge carrier that triggers the

avalanche. The second is afterpulses that are avalanches correlated with a specific avalanche

that occur previously. There are defects in the APD substrate such that when an avalanche

occurs, one of the mobile charge carriers can get trapped in these deep levels. Once a charge

carrier (usually an electron for Si APD) is trapped, it gets detrapped a finite time later

which follows and exponentially decaying time distribution [24]. A detrapped electron

can then serve to trigger another avalanche which is termed as an afterpulse. The number

of afterpulses generated by any given avalanche generally depends on the number of deep

level defects in the APD as well as the number of charge carriers in an avalanche. This

means that the longer an avalanche exist for, the greater the expected number of trapped

charge carriers. Here, a fast quenching circuit is helpful to quell the avalanche before many

mobile charge carriers have a chance of getting trapped in deep levels. If the number of deep

levels are so high in the substrate that even a fast quenching circuit cannot mitigate the

likelihood of charges getting trapped, a longer duration of quenching might help. Here, the

idea is not necessarily in preventing the trapping of charge carriers but instead preventing

the detrapped charge carrier from triggering another avalanche by maintaining the bias

voltage at or below the breakdown voltage. This of course limits the maximum detector

count rate and for deep levels with significantly large expected detrapping times, it becomes

impractical to use such a technique.

1.5 The problem of radiation damage in avalanche photo diodes

Although low dark count rates in freshly manufactured Si APD’s are desirable, these

devices are prone to radiation damage caused by protons emitted by the Sun [25]. The

protons displace atoms/molecules in the APD’s substrate creating defects. Such defects

can potentially increase the dark count rate [1] - especially the rate of thermal counts. The

energy of the incident proton is related to the likelihood it will create these displacements

[26]. The slower moving protons (lower energy) will transfer more energy towards these

displacements. The energy of the proton that goes into displacements is characterized by

a quantity called the non ionizing energy loss. Decreasing the temperature of the detector

can decrease the likelihood of generating initial mobile charge carriers that trigger the

avalanche [27]. Also, increasing the temperature temporarily can fix the displacement

defects caused by incident protons [27]. However, repeatedly irradiating and annealing
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has not been researched. This will be addressed in chapter 3.

1.6 Nominal Values of detector parameters

Finally, I wanted to address some of the nominal values of the parameters of the Si APD

that we are looking for. A detailed discussion about what these parameters mean and how

they are measured will be given in section 2. The thesis [1] by Elena Anisimova describes

in detail the detector requirement for a satellite system with the detector on board the

satellite. A link analysis was performed [28] to determine how the dark count rate affected

the secure key generation rate. For QKD with a WCP source pulsing at 300 MHz with

a 100 Hz dark count rate, a secure key was generated at a rate of 3.109 MBit per month

whereas when the dark count rate was 1 kHz, 2.92 MBit per month of secure key was

generated. When the dark count rate was increased to 10 kHz, the secure key rate was

negligible. The aforementioned dark count rates are with respect to the link and hence

have contributions from each of the four detectors that are proposed for QKD operation.

With this in mind, a dark count rate of 200 Hz per detector (and hence 800 Hz overall) was

aimed for as a maximum threshold, going into our experiments.

The secure key length was also obtained for different wavelengths of the laser source

on the ground [28]. 785 nm was found to be generate the longest secure key for both WCP

source and entangled source. However, the secure key length was greater with the WCP

source. Hence, for the experiments in chapters 2, 4 and 3, we use a WCP source with

wavelength 785 nm.

Ref [29] gives further guidelines in selecting detector parameters. A request for proposal

[30] of the detector project with the Canadian Space Agency details the requirements of

the detector. A timing jitter of less than 1 ns (also stems from ref [28] which mandated

the system to have a time resoultion of about 0.5 ns), a detection efficiency of 25% and an

afterpulsing probability of the order of 1% was aimed for in each detector.
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Chapter 2

Characterization of Single Photon Detectors

2.1 Test Setup

The QKD protocol requires the ability to detect photons in the four different polarization

states - horizontal, vertical, diagonal and anti-diagonal. Correspondingly there four optical

paths with an APD at the end of each. The APD is housed inside a detector module (DM)

which keeps the APD’s physically aligned parallel to each other. The prototype DM has

four APD’s while later on, an additional APD was added just in case one of the APD’s

suffered a failure when the DM was transported to the launch site. Figure 2.1 shows the

DM as was used in the radiation tests (which will be detailed in chapter 3). The DM is a

stand-alone unit with fiber optic cables sticking out of it to transmit photons to the APD’s

and coaxial electric cables to apply a bias voltage on the APD as well as to read the output

electric signal corresponding to the APD’s avalanche. Apart from this, the DM houses the

electronics like the quenching circuit, etc. to operate the detector.

The temperature of the APD is of crucial concern because the thermal count rate which

constitutes the background noise is temperature dependent. In general, higher tempera-

tures result in greater thermal count rates, all other experimental parameters kept constant.

It is thus beneficial to lower the temperature of the detector to lower the background noise.

The signal photon rate is limited by the specifics of experimental set up. There is also a

lower bound on the signal-to-noise ratio which is in turn related to the final key rate and

the quantum bit error ratio. This imposes an upper bound on the thermal count rate.

Thus, cooling the detector helps keep the thermal count rate below this limiting value.

A temperature of −80 ◦C at the APD was aimed for. The DM houses a thermo-electric

cooler (TEC) which uses the Peltier effect maintain a temperature difference between its

ends. The cooler end thermally interfaces with the APD’s substrate. The hotter end is
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Figure 2.1: This is a photograph of the detector module which houses the avalanche pho-

todiodes. It is attached to the top plate of the cold finger. The bottom plate (not in view)

is immersed in dry ice inside a cooler to cool the radiator of the DM
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interfaced with a heat sink called the bracket. The bracket thermally interfaces with the

radiator. The radiator is modeled after a black body and is pointed to deep space(away

from the Sun). In our lab, if the bracket is exposed to room temperature, the TEC would

not be able to cool the APD to −80 ◦C. In fact the TEC only maintains a temperature

difference of around a few 10’s of degrees between its ends. This is fine in outer space

because when the DM is facing away from Sun, the bracket is able to cool down to −70 ◦C

by radiative heat dissipation in the absence of the Sun’s radiative heat input. In our lab,

we cannot thermally expose the bracket to ambient room temperature to maintain the

APD at −80 ◦C. Instead we cool the bracket down to −70 ◦C using the freezer and let the

TEC cool the APD further down to −80 ◦C. The bracket also has a TEC whose hot end

interface with the radiator (and ultimately the external environment) and the cold end

interfaces with the bracket.

A discriminator circuit is present in the time tagger. The longer the time that elapses

between two consecutive output pulses, the smaller is the amplitude of the second pulse.

We use the discriminator circuit to ignore the second pulse if its amplitude is smaller than

some fixed value. This is primarily done to prevent any fluctuations in output voltage due

to noise from being time tagged. For our device, we used a discriminator voltage threshold

of about 50 mV because we anticipate noise in the output to have smaller amplitudes than

this value.

Figure 2.2 shows a schematic diagram of the test set up that was used in the laboratory

at the Institute for Quantum Computing (IQC). The main purpose of this set up was to

characterize the detectors under nominal conditions. In outer space, the DM would have

to face away from the Sun or be in the Earth’s shadow to perform the QKD protocol.

Under such conditions, the DM gets very cold due to radiative heat dissipation. In order

to recreate such cold conditions, the DM was placed in a freezer whose temperature could

be regulated. The freezer was set to −80 ◦C.

A thermistor is connected to each APD in the DM to measure the temperature at its

detector’s substrate. The resistance on the thermistor can be read out using a multimeter.

Later on, a proprietary software was developed which was able to electronically read out

and display the APD’s temperature on a computer.

A 5-channel high voltage (HV) supply is connected via coaxial cables to the DM. This

is used to apply a bias voltage to the APD’s. The HV supply has knobs which can be used

to adjust the bias voltage. The HV supply is also connected to the computer where the

applied voltage can be read out on the software. Later on, the software was also able to

set the bias voltage from within the user interface.
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Figure 2.2: A schematic diagram of the test setup that was used in the laboratory at the

Institute for Quantum Computing. The detector was placed inside a freezer to thermally

simulate space environment. Either the mode-locked laser or the PicoQuant laser was used

as a source of single photons. The output of the detectors can be visualized on to an

oscilloscope or time stamped using a time tagger and stored in a data file which can be

post-processed.

12



The coaxial cables that connect to the DM also serve to read out the electrical output

signal. These coaxial cables can be connect to an oscilloscope that can visualize the out-

put pulse to determine output pulse characteristics and also measure the recharge time.

Alternatively, the coaxial cables can be connected to a time tagger that time stamps each

output pulse. The time stamps are then stored in a data file and saved on a computer.

From this time tag file, one can extract information about thermal count rate, detection

efficiency, detector timing jitter, saturation and afterpulsing.

Two different laser sources were used, a mode-locked laser and the PicoQuant laser.

The details of this will be explained in section 2.2.7. The fiber splitter diverts a part of

the optical beam to the optical power meter whose reading can then be used to predict the

power in the main optical path. The fiber bridge then distributes the optical per to each

the detectors.

2.2 Detector Parameters

There are many parameters of the APD to characterize. Firstly, the break down voltage

is measured (section 2.2.2). Then, a bias voltage of 20 V above the breakdown voltage is

applied to the APD. Next, the output pulse is read out on the oscilloscope to measure the

pulse amplitude and width (section 2.2.3). The oscilloscope is set to persistent mode and

the recharge time is measured (section 2.2.4). The coaxial cables are then connected to

the time tagger and the thermal count rate is measured in the absence of ambient light

(section 2.2.5). Next, the signal count rate is measured and the data is post-processed to

calculate the detection efficiency (section 2.2.6). The maximum count rate (also called the

saturation) of the APD is measured (section 2.2.8). Finally, the afterpulsing probability is

calculated from the time tag files (section 2.2.9).

2.2.1 Operating Temperature

When creating the prototype of the DM, a thermistor was used to get information about

the APD’s temperature. The thermistor has a thermally varying resistance. The resistance

is a monotonic function with respect to temperature. Thus, measuring the resistance of

the thermistor gives information about its temperature. The thermistor’s resistance was

measured using a multimeter. Simple calculations then let one arrive at the temperature

of the APD. Later on, a proprietary software was developed so as to read out the temper-

ature directly on to a computer screen. The temperature of the APD and the bracket is
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individually controlled using separate closed loop feedback circuits. The temperature set

points to be achieved on the TEC and bracket can be set using the software. In practice,

the bracket temperature is set and we wait for it to stabilize. Then the APD temperature

is set. Once the APD temperature stabilizes, one can begin the process of characterization.

2.2.2 Breakdown Voltage

As explained in section 1, the silicon APD is used in reverse bias. Bias voltage is the

potential difference between the ends of the APD. There is a value of bias voltage below

which the APD does not produce an avalanche. This value is called the breakdown voltage.

The first task is to detect the breakdown voltage by applying a low bias voltage and

increasing the bias voltage in steps of 20 V initially gradually decreasing the steps as the

breakdown voltage is reached. The coaxial cable of one of the APD’s is connected to an

oscilloscope via a SubMiniature version A (SMA) port. The bias voltage can be adjusted

either by knobs analog knobs on the HV power supply unit or digitally using the proprietary

software. It is important not to increase the bias voltage in large steps because the energy

in the avalanche increases with the over-voltage (bias voltage − breakdown voltage) and

large energies involve imply greater heat generation in the substrate. The breakdown

voltage is reached when the first signs of an output signal are noticed on the oscilloscope.

The breakdown voltage is noted. The breakdown voltage increases with temperature.

Therefore,it is essential to measure the breakdown voltage of an APD before measuring

any of its other parameters. Otherwise, it might alter the true over voltage on the APD

and alter other detector parameters like output pulse amplitude and thermal count rate.

This is repeated for each of the APD’s.

2.2.3 Output Pulse Characteristics

The bias voltage is set to 20 V above the breakdown voltage of the particular APD. By

setting an appropriate trigger on the oscilloscope, the out pulse can be visualized on its

screen. A representative picture of the output pulse is shown in figure 2.3. The output

pulse rises from zero with time reaches a maximum value and decreases back to zero.

The trailing edge is a little longer than the leading edge. The reason for this lies in

the electronics external to the APD. The rise in the output voltage is due to increase in

avalanche current after the avalanche is triggered. As part of the quenching circuit, a

large resistance called the ballast resistance is connected in series with the APD. As the

current increases through both the APD and the ballast resistance, the voltage drop across
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Figure 2.3: Sample output pulse trace of a silicon avalanche photodiode. This particular

pulse was measured at 20 V above the breakdown voltage at a detector temperature of

−80 ◦C
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the ballast increases. Because a constant voltage is applied across the series combination,

the voltage across the APD decreases and when it falls below the breakdown voltage, the

avalanche current cannot self sustain and the current decreases. However, the effective

diode capacitance and the parasitic capacitance from the wiring slow down the rate at

which the current decreases. Hence the output voltage decreases slowly.

The maximum value of the output voltage is called the amplitude of the output pulse.

The pulse amplitudes measured usually range from 550 mV to 660 mV. Two different

output pulses can have different widths even if they have the same amplitudes. This can

happen if the energy in the output avalanche changes. Thus, the pulse amplitude alone is

not enough to characterize the output pulse. The width of the pulse at half the amplitude

value must also be visually measured from the oscilloscope. This value is called the full

width at half maximum (FWHM) value of the pulse. The pulse FWHM values usually

range from 2.2 ns to 2.9 ns. Usually the energy in the avalanche depends on the over

voltage. Also, the area under the curve is representative of the energy of the avalanche.

Thus, the pulse amplitude and FWHM are negatively correlated to each other.

2.2.4 Recharge Time

The further apart two consecutive output pulses are from each other in time, the greater

is the amplitude of the second output pulse. The amplitude asymptotes to a finite value.

The curve is of the form

V = V0 (1− e−
∆t
τR ) (2.1)

� ∆t is the time elapsed since the dead time period induced by the first output pulse

ended

� V is the amplitude of the second output pulse

� V0 is the asymptotic value of the output pulse amplitude of the second pulse, i.e.

value of output pulse amplitude as ∆t→∞

� τR is called the recharge time. It is the characteristic parameter of the curve and

determines the time scale over which the second output pulse’s amplitude asymptotes.

If the data points that constitute the curve, recharge time can be calculated as follows.

Consider the data point at corresponding to ∆t = τR, i.e., elapsed time is equal to the
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Figure 2.4:

recharge time. Let’s consider the following ratio .

V

V0

∣∣∣∣
∆t=τR

= 1− e−1 = 0.6321 (2.2)

Thus the recharge time is the elapsed time when the voltage on the recharge curve in

equation 2.1 has reached 63.21% of its maximum value.

To find the recharge time experimentally, the oscilloscope is set to persistent mode and

one waits for some time for the curve to get populated with data points. Figure 2.4 shows

a screenshot of the oscilloscope screen. The envelope of the yellow region represents the

recharge curve. The x-axis is representative of ∆t and the y-axis is representative of V .

The tall vertical yellow line on the left of the screenshot in figure 2.4 is representative of

the first output pulse. Basically each pulse shows up as a vertical line on the right side.

Afterpulse that vertical line is plotted, the trigger goes back to the tall vertical left line

and the next pulse is again plotted on the right side. It takes about 1-2 minutes for the

graph to be populated with the data points. The time elapsed since the left yellow line

when then the recharge curve attains 63.2% of its maximum value is deemed the recharge

time for the APD. The values of recharge time usually range from 0.9 µs to 1.35µs.

17



2.2.5 Thermal Counts

Thermal counts are detector clicks in the absence of signal photons. Also, each thermal

count is not correlated to any other detector click. The measurement of thermal count

rate must be done in the absence of ambient light in order to prevent stray photons from

the environment reaching the APD. Also, it helps to cover all fiber optic cables that

lead into the DM with a black cloth to prevent stray photons from entering the the fiber

optic cables through its jacket. The SMA output from each detector is connected to the

time tagger. The time tagger time stamps each detector output that passes through the

discriminator circuit and sends it to the computer. A program in LabVIEW was developed

by Dr. Brendon Higgins, a post doctoral fellow at IQC to store the time stamps in a data

file. The data file can then be post-processed to get the thermal count rate. To clarify

terminology, I will use the term dark counts to comprise of thermal counts and their

associated afterpulses. When afterpulsing is negligible, the dark count rate is equal to the

thermal count rate. In general,

Dark count rate =
number of time tags in file

Time duration of measurement

=
number of time tags in file

Time stamp of last time tag - Time stamp of first time tag

(2.3)

An assumption is that the time tags in the file are sorted by increasing value of time

stamps. The thermal count rate increases with APD temperature.Also, under the assump-

tion that afterpulsing is negligible, equation 2.3 gives the thermal count rate as well.

At APD temperature of −20 ◦C, the thermal count rate is approximately 10 - 30 Hz

where as at an APD temperature of −80 ◦C, the thermal count rate is of the order of 1 Hz.

This is assuming that the APD hasn’t been exposed to radiation which can damage the

detector substrate and increase thermal count rate. Radiation damage will be addressed

in section 3.3.4. Another assumption is that the afterpulsing probability is negligible. If

the afterpulsing probability is substantial, this means that a good chunk of the detector

clicks will be avalanches due to afterpulses. If pap is the afterpulsing probability, then true

thermal count rate is given by

Thermal count rate = dark count rate (1− pap) (2.4)

Equation 2.4 can be derived as follows. In this experiments there are only thermal

counts and afterpulses. By the definition of afterpulsing probability, each thermal count
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count gives rise to pap first generation afterpulses on average. Each one of the pap first

generation afterpulses also gives rise to pap second generation afterpulses on average because

each avalanche is considered to be identical to every other. Thus each thermal count gives

rise to p2
ap second generation afterpulses on average. Similarly, each thermal count gives rise

to p3
ap second generation afterpulses on average and so on. This is illustrated in equation

1→ pap → p2
ap → p3

ap → p4
ap → ........ (2.5)

Assuming pap < 1, which it must be to prevent a runaway effect of detector clicks,

equation 2.5 is a geometric series with first element as 1 and ratio of consecutive terms as

pap. Thus the average total number of detector clicks due to one thermal pulse (including

the thermal pulse itself) is 1
1−pap . For a thermal count rate of d Hz, d thermal pulses occur

in 1 s on average.Thus due to the afterpulsing probability, a total of d
1−pap clicks occur on

average in 1 s. Thus, the total click rate, i.e., the dark count rate, is d
1−pap . Hence equation

2.4 follows. A special mention must be made that the count rates mentioned in equation

2.3 must be evaluated on time scales much larger than the average detrapping time of a

trapped charge carrier as well as the average time period of the thermal counts. Otherwise,

the calculated value of count rates will depend on where in the time tag file you took your

data set from.

2.2.6 Detection Efficiency

Not all photons that fall on the APD’s substrate are detected. For example, physical APD’s

may not have 100% detection efficiency. Even if the APD had 100% detection efficiency

(in asymptotic time), in the presence of dead time and recharge time, the APD will not

detect some of the photons falling on it. The detection efficiency corresponding to some

value of optical input power to the detector can be calculated. To do this, we first set

the laser frequency to 5 MHz. For our experiments, we aimed to have APD click rates

of about 100 kHz. This required us to maintain a certain photon rate hitting the APD.

Experimentally, this was achieved by maintaining the optical power at the input side of the

APD in the range of 100 fW. This value depends on the wavelength of the photon which

affects its energy. Please note that when one changes the optical power on the laser, its

pulse rate (5 MHz) is unaffected. Instead the average number of photons per pulse changes.

Thus, we chose to stabilize the input photon rate to the APD, let’s call it sin, by setting

the optical power to 100 fW. We can the calculate sin as follows:
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The wavelength of each photon generated by the laser was 785 nm. The energy of

photon, Ephoton is given by

Ephoton = ~ ω = h f =
h c

λ
(2.6)

� ~ is the reduced Planck constant and h is the Planck constant

� ω is the angular frequency corresponding to the photon and f is the corresponding

frequency

� c is the speed of light

� λ is the wavelength corresponding to the photon

Since the total optical power hitting the APD is 100 fW, the corresponding photon rate

is given by

Photon rate hitting the APD, sin =
100 fW

Ephoton
(2.7)

If the corresponding APD output click rate is sout, Then photon detection efficiency

ηphoton of the APD is given by

ηphoton =
sout
sin

(2.8)

Note 1: It helps to perform the measurement without ambient light. So, the lights in

the laboratory are turned off and all optical fibers are covered with a black cloth to prevent

any photons from entering the optical path between the power meter and the APD, through

the jacket of the optical fiber.

Note 2: It is assumed that thermal count rate is orders of magnitude less than 100 kHz.

Also, the afterpulsing probability is negligible. This ensures that the majority of the output

pulses are due to photon hitting the APD’s substrate.

2.2.7 Timing Jitter

The laser is set to a fixed pulse rate. During each pulse a certain number of photons are

released. These photons reach the APD and trigger avalanches in the detector’s substrate

which are eventually time tagged. Let’s assume that exactly one photon is released during

20



each laser pulse. One can then ask if the time stamps in the detector’s time tag file are

evenly spaced, i.e., periodic. IF one analyses the file, he will noticed that the time stamps

aren’t evenly spaced. T Here is some uncertainty of time stamps about the expected

periodic spacing. his uncertainty is called the timing jitter of the system. There are many

causes for this.

Firstly, there is a reference pulse that signals the release of the photon in the laser.

Ideally the references pulses should be evenly space in time by about 0.2 µs (corresponding

to 5 MHz). However, each pulse occurs slightly before or slightly after the time instant

is expected to occur. One can make a histogram of the position in time of the actual

electric pulse relative to its expected time instant. One will find that the resulting time

distribution is a log-normal curve whose trailing edge is longer than its leading edge.

This curve is approximated as a Gaussian for simplicity. Also, the photon is not released

exactly when the reference pulse occurs. In fact, the reference pulse triggers laser pulse

time window. The photon is released at some time instant within that window. There

is some uncertainty associated with the laser pulse time window. Both aforementioned

uncertainties contribute to the laser’s timing jitter. The jitter of the PicoQuant laser used

in our experimental set up is about 465 ps. I will explain later how this was measured.

Secondly, when the photon hits the detector, there will be a small delay before an

avalanche is generated and the electric signal (indicating an avalanche) is available at

the output of the associated circuitry. One can find out the expected value of this delay

experimentally. Then if one starts to measure the actual delay for many detector click, one

will also find that the true delay is distributed as a log normal curve which can then also

be approximated as a Gaussian. Our experiments aim to characterize the timing jitter of

the detectors.

Finally, we use time taggers to time stamp the emission of photons on the transmitting

side and detection of photons on the receiving side. When the electrical pulse that indicates

the emission or detection of a photon reaches the time tagger, the time tagger time stamps

it. One must keep in mind that the time tagger has a finite resolution - the time taggers

used in our experiments had a resolution of 78.125 ps. This means that two electric pulses

that occur closer in time than a threshold value ttag are not guaranteed to be ascribed two

distinct time stamps by the time tagger. To explain this in more detail, the time tagger

divides the time axis into blocks of width ttag. If two electric pulses occur within the same

block, the tagger outputs only one time stamp. We say that those two electric pulses are

not resolved. To be resolved, the electric pulses should arrive at the tagger in two separate

blocks. We need to calculate the timing jitter of the time tagger. The time period of our

laser is 0.2 µs. However, the timing jitter of the detector (which will be calculated shortly)
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is at least three orders of magnitude lesser. Thus photons in consecutive laser pulses should

arrive at the detector toughly spaced apart in time by 0.2 µs. The time taggers we use in

our experiments have resolution ttag = 78.125 ps which can easily resolves between them.

Thus, realistic a small and negligible fraction of the photons in consecutive pulses will not

be resolved. We can therefore ignore this effect. On the other hand, we can look at a

single electric pulse arriving at the input of the detector. Say it arrives in some time block.

The tagger ascribes it a time stamp corresponding to the time instant at the start of that

time block. Looking at the time stamp, one cannot know with a 100% certainty where

within the time block the electric pulse arrived especially because ttag <<0.2 µs. This

induces some uncertainty. Because one has no knowledge of where within the time block

the electric pulse arrived, we can model the true arrival of the electric pulse as a uniform

distribution over the time block. The standard deviation for a uniform distribution defined

over a finite range ttag =78.125 ps is given by ttag√
12

=22.553 ps. Therefore, this is the timing

jitter associated with time tagger.

We just mentioned a few different processes with associated uncertainties. But what

about the overall uncertainty? If one looks at the time stamps on the time tagger that time

stamps the APD’s out put pulses, the calculated uncertainty in the time stamps cannot

be explained by the time tagger alone. This is because along the way the detector and the

laser circuitry have each also imparted some uncertainty. In probability theory,

In our case, there are uncertainties associated with the laser circuit, detector circuit and

two time taggers (for photon emission and detection). A key theorem in probability called

the central limit theorem [31, 32] states that if you have independent random variables

and look at the sum or average of them, the result random variable approaches a Gaussian

distribution as the number of samples increases, even if the individual random variables

are not Gaussian distributed to begin with. Also, the variance of the resulting random

variable is equal to the sum of variances of the individual random variables. For two

random variables Xand Y which are independent of each other with each variable having

its own uncertainty, the joint uncertainty is calculated as follows:

V ar(X, Y ) = V ar(X) + V ar(Y )

σX,Y =
√
σ2
X + σ2

Y

(2.9)

If we calculate the time difference between the time-tagged photon detection and the

corresponding time-tagged laser reference pulse and create a histogram over a large num-

ber of instances of different photons, the resulting histogram should approach a normal
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distribution according to the central limit theorem since the laser reference pulse, time tag-

ging and photon detection events occur independently of each other. Thus the combined

uncertainty of the system σsys is given by

σsys =
√
σ2
laser + σ2

det + 2σ2
tag (2.10)

� σlaser is the uncertainty in the laser and its associated circuitry

� σdet is the uncertainty in the detector and its associated circuitry

� σtag is the uncertainty associated with the time tagger

Please note that σ represents the standard deviation of the respective distributions.

When one analyzes the time stamps in the time tagger that is connected to the detector,

they contain uncertainty from the laser, detector and time tagger because all these processes

are sequential and any uncertainty accumulated in one process carry forward. Thus, the

uncertainty in the time stamps of the time tagger connected to the detector is the overall

system’s timing jitter, σsys. To do this, one calculates the time difference between the given

stamp t1 in the detector’s time tagger and the time stamp in the laser’s time tagger that

corresponds to t1 and creates a histogram across many photons. A program to do this was

created by Dr. Brendon Higgins. I created a program in Mathematica to take as input

the histogram just mentioned and curve fit the data points using a Gaussian equation.

The analytical expression of this Gaussian is obtained and the standard deviation of the

Gaussian is found out. This standard deviation is the system’s timing jitter σsys.

One now is in a position to calculate the timing jitter of the detector as follows:

σdet =
√
σ2
sys − σ2

laser − 2σ2
tag (2.11)

We then converted this standard deviation of the Gaussian for the detector to a FWHM

value of the same Gaussian. The conversion is as follows for a Gaussian:

Full width at half maximum for a Gaussian, FWHM = 2
√

2loge(2)σ (2.12)

The typical FWHM values measured were measured to be around 650 ps

I had earlier mentioned that the laser’s timing jitter was measured to be 465 ps. Here’s

how. We used a mode-locked laser which has a very short laser pulse width (the time
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window in which the photon is released). The pulse width of the mode locked laser is

around 50 fs and hence the jitter associated with it is orders of magnitude smaller than the

jitter of the detector and hence it can be ignored. To calculate the jitter of the APD, one

needs to look at multi-photon events. For example, let’s look at two photon events where

two photons are produced in the same laser pulse. One of the photons hits detector 1 and

the other hits detector 2. Whatever the jitter of the laser, it is safe to assume that they

impinge on the detectors simultaneously. Since the two detectors are independent entities

and the output signals are processed independently, one would expect the time stamps

due to the two photons to be different. The difference between the time stamps will be

related to the detector’s inherent jitter. The greater the jitter, the greater is the expected

absolute difference. The time difference in the time stamps corresponding to those two

photons can be histogrammed for many distinct two photon events in detectors 1 and 2.

The uncertainty in the resulting distribution is calculated as σ12. Similarly, one can analyze

two photon events between detectors 2 and 3 and also between between detectors 3 and 1,

resulting in corresponding uncertainties σ23 and σ31. Let σ1, σ2 and σ3 be timing jitters of

detectors 1, 2 and 3, respectively. The aforementioned uncertainties are approximated in

terms of the detector timing jitters as follows:

σ12 =
√
σ′21 + σ′22

σ23 =
√
σ′22 + σ′23

σ31 =
√
σ′23 + σ′21

(2.13)

Now we use an arithmetic trick to find the timing jitter of detector 1 as follows:

σ2
12 + σ2

31 − σ2
23 = σ′21 + σ′22 + σ′23 + σ′21 − σ′22 − σ′23

= 2σ′21
(2.14)

Therefore,

σ′1 =

√
1

2
(σ2

12 + σ2
31 − σ2

23) (2.15)

Actually σ′1 is not the inherent timing jitter of the detector because there is some

contribution from the time tagger itself. This is because σ′1 is derived from the σ′ij’s,
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which are calculated from time stamps and hence include uncertainty contributions from

the time tagger. The inherent timing jitter of detector given by σ1 can be expressed as

σ1 =
√
σ′21 − σ2

tag (2.16)

Finding the timing jitter of the detectors in our laboratory at IQC was ideal. However,

as will be seen in chapters 4 and 3, we need to characterize the timing jitter of the APD’s at

off-site locations. This poses a problem as the mode-locked laser is not portable. Thus use

a more portable laser from PicoQuant. However, the PicoQuant has a wider pulse width

which induces which contributes towards the overall system jitter. So, the first task is to

characterize the PicoQuant’s jitter. To do this, we use the PicoQuant laser and find the

resulting system timing jitter by analyzing the time difference between the corresponding

time stamps of photon emission and detection. Then, we get can calculate the PicoQuant

laser timing jitter by the equation

σlaser =
√
σ2
sys − σ2

1 − 2σ2
tag (2.17)

It is important to characterize the PicoQuant’s jitter soon after we characterize the

detector’s jitter with the mode-locked laser in order to rule out the possibility of the

detector’s jitter varying in between - although the detector’s jitter isn’t generally expected

to vary under nominal conditions.

2.2.8 Saturation

When one changes the input signal photon rate, the output detector click changes. How-

ever, the value of the click rate and how fast it changes with respect to input photon rate

can vary. To explore this, we conduct an experiment where we increase the laser power

and observe the output detector click rate. Figure 2.5 shows the time-tagged APD click

rate as a function of reference power.

At low reference power, we find that there is almost a linear relationship between APD

click rate and reference power. This is expected because the detection efficiency is more or

less constant and greater the input photon rate, greater the output APD click rate.

As the input signal photon rate hitting the APD further increases, the output click rate

does increase. However, we must keep in mind that there is a finite recharge time. The more

temporally dense the detector’s output clicks, the lower is the detection efficiency when

any given photon impinges on the APD’s substrate. This is because according to equation
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Figure 2.5: The laser power was increased from zero till the detector count rate increased

from the dark count rate to a maximum and fell back down to zero. This maximum

value is called the saturation value of the detector. The reference power was measured

on the optical meter and the units as such are not important to calculate the saturation

value. This data set is from the prototype of the detector which had four APD’s. The

temperature of the APD’s was set to −40 ◦C. The threshold on the discriminator circuit

was set to 50 mV.
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2.1, the recharge time curve doesn’t have enough time to asymptote to the maximum

bias voltage and the detection efficiency ηrecharge due to recharge is dependent on the bias

voltage. The overall time dependence of the ηrecharge on time ∆t elapsed after the previous

avalanche is given by

ηrecharge =
1

1− e− 20
8.5

(1− e−(1−e
−∆t
τR ) 20

8.5 ) (2.18)

Equation 2.18 assumes that the detector has a maximum time asymptotic efficiency

of 100%. Thus the probability that a given photon is detected by the APD is low when

the input signal photo rate is high. As the signal photon increases, the loss of detection

efficiency catches up and the saturation curve in figure 2.5 starts to increase at a sublinear

rate and eventually starts decreasing in value.

Furthermore, there is a finite dead time. When the time period of the input signal

photons approaches the dead time, we should see the recharge time curve asymptotes to

a value equal to 1
dead time

. However, we do not see this in the experimental curve. This

is because we have in place a discriminator circuit that does not let and output APD

signal of voltage less than 50 mV to pass through to the time tagger. When the output

APD avalanche rate increases, the amplitude of the output signal of the APD decreases in

accordance with the recharge time curve. Thus, the discriminator circuit blocks some of

these low voltage APD output signals. Hence instead of the expected asymptotic behavior,

the saturation curve starts to decrease in value. Eventually at very high input signal photon

rate, the APD avalanches at a high rate and almost all its output pulses have amplitudes

lesser than the discriminator’s threshold value of 50 mV, causing the time tagger to not

register any clicks. Thus, the saturation curve eventually drops to zero.

This behavior is interesting. But from a practical point of view, we are interested in the

maximum count rate, i.e., the maximum of the saturation curve also called the saturation

value of the APD. In QKD operation, we would like to operate the APD at input powers

lower than the power corresponding to the maximum output count rate.

In our experiments, the saturation value is in the range 0.6 - 1.1 MHz.

2.2.9 Afterpulsing

During an avalanche, electrons can get trapped at trap sites in the APD’s substrate. Some

time later, the electron gets trapped and causes a second avalanche. This second avalanche

is called an afterpulse. This is undesirable because afterpulses tend to increase noise in the
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time tag file. The average number of afterpulses directly generated by a given avalanche

is called the afterpulsing probability.

There are multiple ways to calculate the afterpulsing probability. One of the ways

was elucidated by Dr. Elena Anisimova [1]. The experimental data in taken from the

dark count measurements elucidated in section 2.2.5. It involves forming a histogram of

all detector clicks following an arbitrary click (also called the start click). The bins used

increase exponentially in width - in specific the base of the exponent is 10. This means

that bins towards the left have smaller width and hence can better resolve more dynamic

behavior in this region whereas bins towards the right have larger width and tend to average

out any interesting behavior. Therefore, the histogram has a smooth tail because the bins

towards to the far right are so wide that calculating the average count rate in each bin

gives rise to more or less the same value. The bins towards the left of the graph show

that series of afterpulses. The area under the curve above the steady state value is the

afterpulsing probability. Ursin and Peev [33] had initially suggested this approach but with

linear binning (equal width bins).

I worked on another method to calculate the afterpulsing probability. This method re-

lies on the dark count experiment performed in section 2.2.5. If the afterpulsing probability

were zero, there would only be thermal counts. One could find the time difference between

consecutive clicks and create a histogram of these time differences. Thermal counts follow

a Poisson distribution and the time elapsed between consecutive clicks follows an exponen-

tially decaying distribution. Therefore, the aforementioned histogram should follow this

exponential curve. However, under non-zero afterpulsing probability, there would be af-

terpulses in the time tag file. If one creates a similar histogram of time difference between

consecutive detector clicks, one should expect a deviation from the exponentially decaying

curve. Tee greater the afterpulsing probability, the greater this deviation. By quantifying

this deviation, one can measure the afterpulsing probability. This forms the intuition for

the algorithm.

Assume zero dead time. Assume no stray photons from the environment enter the

optical fibers

A key assumption is time scale of the afterpulsing (afterpulsing time constant) is of the

same order as the average time period of the thermal counts. I chose to have exponentially

bins so that the tail of the histogram will be smooth. This is required because we would

later try to curve fit this region. Since the afterpulsing occurs on a smaller time scale than

the thermal counts, the tail of the histogram primarily consists of thermal counts only

making the tail nearly exponential (a decaying exponential) in behavior. However, the

region towards the left of the histogram consists of both thermal counts and afterpulses.
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Here we would expect a deviation the exponential curve. By curve fitting the tail to an

exponential curve, one can extrapolated curve fitted exponential towards the left of the

histogram. The extent that the histogram deviates from this curve fitted exponential

as measured by the area under the histogram but above the curve fitted exponential is

representative of the afterpulsing probability.

Since the tail of the histogram consists mostly of thermal counts, it follows the p.d.f. y

of the next thermal count

y = d e−d∆t (2.19)

� d is the thermal count rate

� ∆t is the time elapsed since the previous detector click

� y is the value of the histogram’s p.d.f.

Taking logarithm to the base e on both sides of equation 2.19 we get

log y = log d− d∆t (2.20)

Equation 2.20 is a linear equation in log y and ∆t. If you extrapolate this linear curve

towards the left of the graph, the area under the extrapolated curve is due to thermal

counts because thermal counts occur as the next click right from ∆t = 0. Then, any area

under the histogram’s envelope but above this linear curve fitted line is due to afterpulses,

assuming there are no photons from ambient light reaching the detector.

It is important to figure out the linear region towards the right of the graph when

log y is plotted with respect to ∆t during linear curve fitting. If data points in the non-

linear region are used towards curve fitting, the resulting curve fitted line will not be

representative of the thermal counts. One way to detect the linear region is for a human

to visually determine it from the graph. However, the transition from linear to non-linear

can happen gradually and every time a human tries to determine the boundary between

the two, you might get slightly different answers.

It would be ideal to automate the process of determining the linear region. One way to

do this would be to start from the right side of the graph and select, say, the 10 rightmost

data points. Then linear curve fit these data points and find out the sum of squares of

deviations of the data points from the curve fitted straight line to give a measure of the
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how much that data points deviate from the straight line. If all the selected data points are

within the linear region, this deviation should be small. Next consider the 11 rightmost

points, then 12 rightmost and so on. Eventually with enough iterations, you will start

considering points in the non-linear region as well. When this happens the deviation of

the data points from the curve fitted straight line should be larger. One can then set a

threshold for this deviation to determine the linear region. One problem with this approach

is that the threshold has to be fixed. If one knew the true afterpulsing probability of a data

set, one can play around with the threshold value and select an appropriate value to get

the correct afterpulsing probability. Then one can use this value of threshold to work with

data sets of unknown afterpulsing probability. However, it is difficult to know what an

appropriate threshold is because one doesn’t really know the true afterpulsing probability

of the data set to begin with. So, it is difficult to know what range of thresholds gives an

accurate afterpulsing probability. Also, the longer the linear region considered, the better

is the linear curve fit because there tends to be a small amount of noise even thin this

region. So, the extent of statistical noise in the tail puts a lower bound on the size of the

region to be considered as linear. The trade-off of considering larger regions is that one

runs the risk of considering points in the non-linear region. Since we are using exponential

binning, any error in selecting the linear region contributes exponentially towards errors in

the afterpulsing probability because the afterpulsing probability is related to the Riemann

integral of the histogram curve.

I decided to use another approach towards selecting the linear region. There are two

ways by which one can find the afterpulsing probability. One is as described above - select

the linear region towards the right of the graph, linear curve fit this region, extrapolate the

linear curve fitted line towards the left of the graph and find the are under the histogram

but above the linear curve fitted line to get the afterpulsing probability. Another way is to

first find the thermal count rate. This can be done because when one curve fits the linear

region, the algorithm outputs the parameters of the fitted straight line. Equation 2.20

relates the parameters of the straight line to the thermal count rate d. However, one must

keep in mind that equation 2.20 is a normalized p.d.f. But since our entire histogram itself

is normalized, the fitted straight line is not normalized because there are afterpulses as

well. The exactitude of the calculation will be detailed later. The afterpulsing probability

can be calculated as follows:

Afterpulsing proability =
afterpulse rate

overall count rate
=
o− d
o

(2.21)
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where o is the overall count rate which can be calculated from the time tag file as follows

overall count rate, o =
number of time tags in file

Time duration of measurement
(2.22)

The two methods of calculating the afterpulsing probability are completely independent

of each other. They should give the same answer, provided the linear region is selected

properly. When the non linear region is used to linear curve fit as well, the answers got

from the two methods start to deviate. One can then put a threshold on this deviation

to ensure that the linear region is selected properly. But again, we have the same issue of

selecting the correct threshold. To overcome this problem, I instead iterated through all

possible continuous regions in the graph and used these regions in each iteration towards

linear curve fitting. I then selected a threshold eap for the extent of the mismatch between

afterpulsing probabilities as calculated by the two methods. If the mismatch is smaller than

the threshold eap, I store in an array, arrayap, the average of the afterpulsing probability

values due to the two methods. Then I create a histogram H2 of the afterpulsing probability

values stored in arrayap. The intuition here is that when the linear region is selected

accurately (either the entire linear region or a part of it), the afterpulsing probability

values due to the two methods more or less match and is accurate. Since many of the

choices of linear region are considered correct, there will be multiple terms in arrayap

which have more or less the correct afterpulsing probability and hence these values are

clustered together in the histogram H2. When the linear region is selected incorrectly, the

afterpulsing probability values due to the two methods mismatch and even if the extent of

mismatch is less than the threshold, the average of the two values is more or less random.

Thus, the corresponding entries in histogram H2 are scattered. H2 should have a clear peak

which is representative of the afterpulsing probability. Changing the threshold should only

change the height of the bins in histogram H2 but the peak should still be present in

the same location. This makes the afterpulsing probability slightly independent of the

threshold value. I say ”slightly” because you couldn’t choose the threshold infinitely small

or large. There is a range of thresholds that work and this range is quite large. Also,

another benefit to this method is that the way you know a threshold doesn’t work is due

to the absence of a clear peak in H2. Similar information was not present in the previous

methods, where a bad choice of threshold or linear region just gave a wrong answer without

indicating whether the answer was reliable or not.

I will now explain the method in more detail. First, the following bit of code in MAT-

LAB reads the time tags in the data file and stores them in an array.
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1

2 selected channel = 1 ;

3 fid = fopen('C:\Users\QPL\Desktop\2017−05−04 01−37−37 ...

Timetags.dat','r');%%TRIUMF Rad 2 DM Test 16 Det#5

4 ticks = [];

5 i = 1;

6 [channel, count] = fread(fid,1,'*uint8');

7 while count == 1

8 [tick, count] = fread(fid,1,'*uint64');

9 if count == 1

10 if channel == selected channel

11 ticks(i) = tick;

12 i = i + 1;

13 end

14 [channel, count] = fread(fid,1,'*uint8');

15 end

16 end

Next I calculated the time difference between consecutive detector clicks. The following

bit of code does this.

1

2 TTres = 78.125e−12;
3 array = ticks * TTres;

4 length(array(1,:))/(array(1,end)−array(1,1))
5

6 differenceConsecutiveTTs = array(1,2:end)−array(1,1:end−1);

I then created a histogram of these time differences. To create the histogram, I used

bins of exponentially (to the base 10) increasing width. Then, I normalize the histogram

such that the sum of counts in all bins is equal to 1. Next, I compute the bin count rate

corresponding to the normalized bin count by dividing the normalized bin count in each

bin by the bin’s width. Thus the area under the normalized bin count rate histogram is 1.

The following is the corresponding code.

1

2 TTres = 78.125e−12;
3 array = ticks * TTres;

4 length(array(1,:))/(array(1,end)−array(1,1))
5

6 differenceConsecutiveTTs = array(1,2:end)−array(1,1:end−1);

32



7

8 % differenceConsecutiveTTs = (array(2:end)−array(1:end−1))';
9

10 timeTaggerRes = 78.125e−12;
11 endTime = max(differenceConsecutiveTTs)+timeTaggerRes;

12 minTime = min(differenceConsecutiveTTs)−1e−13;%Make sure the leftmost ...

bin edge be smaller than the smallest difference

13

14 % binEdges = [minTime:timeTaggerRes:endTime];%linear binning

15 binEdges = logspace(log10(minTime),log10(endTime),1000);%logarithmic ...

binning

16

17 binCount = zeros(1,numel(binEdges)−1);
18 for i = 1:length(differenceConsecutiveTTs)

19 % if rem(i,length(differenceConsecutiveTTs)/100) == 0

20 % sprintf('i=%s',i)

21 % end

22 if differenceConsecutiveTTs(i)≤binEdges(end)

23 binNum = sum((binEdges−differenceConsecutiveTTs(i))<0); ...

%Compute the index of bin where histVariable(i) belongs

24 binCount(binNum) = binCount(binNum) + 1;

25 end

26 end

27 %normalize bin Count

28 binCount = binCount/(length(differenceConsecutiveTTs));

29 binCountRate = zeros(1,length(binCount));%should matter for linear x ...

scale

30 for i = 1:length(binCount)

31 binCountRate(i) = binCount(i) / (binEdges(i+1)−binEdges(i));
32 end

Figure 2.6 shows the envelope of a histogram where the logarithm of the normalized

bin count rate is plotted against time differences between consecutive detector clicks. The

data set used in 2.6 is taken from the radiation tests that will be detailed in chapter 3.

In particular, it is from the dark count measurements done on the DM2 in test 12a for

detector #3. As we can see, the left most region of the graph (in the first 1 ms or so) is

non-linear and contains both afterpulses (which occur on a short time scale) and thermal

counts. Towards the right of this region, is a large linear region which is mostly due to

thermal counts only. Also, since we used exponentially growing bins, the normalized bin

count rate is calculated by taking more detector clicks into account making this region

relatively smooth. However, eventually beyond 8 ms or so the detector clicks become fewer

because they obey an exponentially decaying p.d.f. represented by equation 2.19. This is
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Figure 2.6: Time difference between consecutive detector clicks is calculated and then

histogrammed with exponentially increasing bin widths. The histogram is normalized so

that the sum of bin counts is unity. Then, the bin count rate is calculated for each bin by

dividing the value in each bin by the corresponding bin width such that the area under

the histogram is unity. The logarithm of the bin count rate is then plotted with respect

to time difference between consecutive clicks in the figure above. The data set is obtained

from the dark count measurement in the radiation test of DM2 in test 12a for detector #3
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an issue of lack of statistics due to finite time of measurement. Thus, the very end of the

tail of the graph becomes noisy and ideally should not be used during linear curve fitting.

By visual inspection, I selected a linear region in this graph to illustrate the process of

curve fitting. The data points in the linear region are curve fitted to a straight line using

a linear regression function in MATLAB called fitlm(). However, not all data points in

figure 2.6 are equally reliable. Once the number of normalized bin counts in a given bin

goes very low, one needs a much longer measurement time to ensure good statistics. Thus

bins with low normalized bin counts tend to behave nosily in the normalized bin count

rate histogram. The fitlm() can take in weights for each of the data points. Therefore, I

set the weight for each data point in figure 2.6 as the bin’s corresponding normalized bin

count. This noise actually also shows up if you plot the normalized bin count with respect

to time difference between consecutive detector clicks. Figure 2.7 does just this with a

logarithmic axes to visually detail the behavior of the graph better. One can see that the

when the graph drops below about 2× 10−5 counts, it starts getting noise, not only in the

right end of the graph but also in the left end which is part of the region containing both

afterpulses and thermal counts. The reason one get so few counts here is because of the

recharge time curve which is of the order of 1 µs resulting in low detection efficiency in this

region.

The following bit of code linear curve fits the data points in the deemed linear region.

1 leftBound = 6.74e−4;
2 rightBound = 7.614e−3;
3

4 % Find linear curve fit between leftBound and rightBound

5 Min = sum((binEdges−leftBound)<0) + 1;

6 Max = sum((binEdges−rightBound)<0) + 1;

7 X = binEdges(Min:Max);

8 Y = log(binCountRate(Min:Max));

9 weights = binCount(Min:Max); %Curve fit the thermal count region ...

weighted by the number of data points in each bin because that's ...

how much (relatively) reliable the value counRate value in a bin is.

10 % Delete entries

11 X(Y==Inf |Y==−Inf)=[];
12 weights(Y==Inf |Y==−Inf)=[];
13 Y(Y==Inf |Y==−Inf)=[];
14

15 linearModel = fitlm(X,Y,'Weights',weights);

Now, on to selecting the linear region. As described before, I consider all possible
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Figure 2.7: Time difference between consecutive detector clicks is calculated and then

histogrammed with exponentially increasing bin widths. The histogram is normalized so

that the sum of bin counts is unity. The bin counts are then plotted with respect to time

difference between consecutive clicks in logarithmic axes in the figure above to visually

visually detail the behavior of the graph. So, the normalized counts on the y- axis form

the probability mas function of the next click as a function of time elapsed since an arbitrary

click. The data set is obtained from the dark count measurement in the radiation test of

DM2 in test 12a for detector #3
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continuous regions in the graph containing at least two bins as the linear region. I start

with left bound of the linear region as the left most bin. Then in successive iterations, I

consider the right bound as each of the bins to wards the right of the left bound. Then

I select the left bound as the bin adjacently right of the current left bound and repeat

the process over and over again till the bin adjacently left of the rightmost bin is selected

as the left bound. This process considers all possible continuous regions of the graph. In

each iteration, the linear region is curve fitted using the fitlm() function. This function

outputs two parameters which characterize the curve fitted straight line. Given the set of

data points that constitute to histogram of normalized bin count rate and the parameters

o the curve fitted straight line, one can compute the ares under the histogram but above

the straight line as follows in MATLAB. The variable weightedSum gives the value of

afterpulsing probability

1 weightedSumArray = (binEdges(2:end) − binEdges(1:end−1)) .* ...

(binCountRate − exp(linearModel.Coefficients.Estimate(2) * ...

binEdges(1:end−1) + linearModel.Coefficients.Estimate(1)));

2 weightedSum = sum(weightedSumArray);

Next, the thermal count rate is found from the slope of the linear region. This is

because the linear region is governed by the equation ]5.42.

d = −(slope of linear region) (2.23)

The overall count rate is calculated using equation 2.22. Then the afterpulsing proba-

bility is calculated using 2.21.
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Chapter 3

Repeated Irradiation and Annealing

3.1 Introduction

The advantages of using silicon avalanche photodiodes have been explained in section 1.

We had a custom made Si APD from Excelitas Technologies Corp. A brand new detector

can have thermal count rate under 1 Hz. However, in space operation, the detectors that

are placed on the satellite have the disadvantage of being bombarded by protons primarily

from the Sun [25]. Protons incident on the detector’s substrate will dissipate some of their

energy in the substrate. This causes defects in the substrate. The thermal count rate

increases as a result of these defects. This poses a problem because there is an upper limit

to the signal photon rate. The thermal counts appear as noise when trying to determine

photon coincidences which is a part of the QKD protocol. Higher thermal count rate

decreases the signal to noise ratio, thus increasing QBER. If the QBER exceeds a certain

threshold value, the resulting key becomes unreliable in the sense that the two copies of

the key that are held by Alice and Bob tend to have more bit mismatches. We aim for the

satellite to have a two year life expectancy. During this period, the APD’s are constantly

exposed to protons and the thermal count rate is expected to keep increasing. It is desirable

to decrease the thermal count rate of the APD’s. Thermal annealing is a process of heating

the substrate of the APD to a high temperature for a period of time. It was previously

shown that thermal annealing was effective in decreasing thermal counts[1]. But this study

performed the annealing only once on a irradiated APD However, it was know if and how

effective thermal annealing would be when used repeatedly on the same ADP in separate

instances. The purpose of the following experiments was to explore this aspect.

We irradiated two DM’s with protons at the Tri-University Meson Facility (TRIUMF)

near Vancouver in incremental doses up to a cumulative dosage equivalent to two years
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in low earth orbit (LEO). Each DM had about five different APD’s and housed all the

supporting electronics. After radiation dose, we characterized the APD’s of each DM

for detector parameters much like the experiments in section 2. One of the DM’s was

thermally annealed after each radiation dose while the other DM was annealed only when

the post irradiation thermal count rate exceeded a threshold value. These two different

annealing strategies were employed to see if there was a distinct advantage on one over the

other. After each annealing phase, the DM’s were characterized again. The reason for the

characterizations was primarily to monitor dark count rates and see how the radiation and

annealing affect it because thermal counts were expected to vary. But other parameters

were also monitored just in case they changed.

3.2 Test Setup

The Si APD detectors and it’s associated circuitry are enclosed in a compact casing. The

unit is called the detector module and is expected to be deployed on-board a satellite.

Since thermal counts appear as noise during the photon coincidence matching phase of the

QKD protocol, we would like to keep the thermal count rate low. One way to do this is

to decrease the temperature which in turn decreases thermal count rate. Thermo electric

coolers (TEC) are used to keep the detector’s substrate at low temperatures. Section 2

explains how the TEC’s are used and also the role of the bracket and radiator. In outer

space, the radiator is expected to be at a temperature of about −70 ◦C. In our experiments,

we would like to recreate this thermal condition.

A cooler filled with dry ice was used to to maintain a low temperature. Dry ice has a

sublimation temperature of about −78.5 ◦C. A mechanism was needed to transfer dissipate

out the heat from the DM into the dry ice. The DM is a compact unit with small surface

area. This doesn’t allow the radiate temperature to drop down to −70 ◦C. A cooling finger

was designed and fabricated in the machine workshop at the Department of Physics and

Astronomy at the University of Waterloo. It consists of a flat rectangular plate at the

bottom and a relatively smaller flat rectangular plate at the top. Each of the plates have

a hole drilled at the center. Each end of a cylindrical rod is pressure fitted into the hole

of one the plates. To do this, cylindrical rod was machined to a radius slightly greater

than the radius of the the hole in the plate. Then, the end of the cylindrical rod was

immersed in liquid nitrogen for at least an hour. The metal of the cylindrical rod has a

positive coefficient of thermal expansion, i.e., its dimensions shrink when cooled. Thus the

radius of the rod at room temperature was such that upon cooling with liquid nitrogen,

its radius became less than the radius of the hole of the plate. Thus, the rod could be
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fitted into the hole after the cooling process. Once fitted, the rod-plate combination was

left at room temperature so that the rod heated up to room temperature. In this process,

the rod’s radius increases. Since its radius was machined to be greater the hole’s radius,

the rod exerts a large pressure on the inner surface of the hole. This achieves a thermally

conductive contact between the rod and the plate. The procedure is repeated at the other

end of the rod. Holes are drilled into smaller and the DM is mounted onto this plate by

means of screws - actually the holes are drilled prior to the pressure fitting but I thought it

was easier to explain it this way. The larger plate is kept in contact with the dry ice to cool

the cold finger and consequently the DM. The bracket TEC which interfaces the bracket

and the radiator was then able to cool the bracket down to −70 ◦C. The detector TEC

which interfaces each APD with the bracket was then able to cool the detector further

down to −80 ◦C. The TEC’s were used in closed loop control to stabilize the detector

temperature during characterization.

An initial room temperature detector characterization was performed at TRIUMF

where the external surface of the DM was maintained at room temperature. Using the

bracket TEC and detector TEC’s, the detector temperature was maintained at −20 ◦C.

Then the DM was placed in the cooler with dry ice to decrease the radiator temperature.

Then with the help of the TEC’s, the detector temperature was maintained at −80 ◦C and

a second characterization was performed. The aim of these two characterizations was to

have baseline (especially the cold temperature one) to to compare and contrast how the

detector parameters change with the upcoming radiation and annealing stages. Also, since

similar tests were carried out at the laboratory at the Institute for Quantum Computing,

it gives an indication if there was any damage during the shipping process from IQC to

TRIUMF.

Much of the remaining setup to support the characterization is very similar to the lab

characterization process at IQC as described in section 2.1. The DPCU supplies regulated

bias voltage to the 5 APD’s in each module. The DPCU also controls the bracket TEC

and detector TEC’s. A proprietary software on a computer interfaces with the DPCU

and where one can set values of bias voltages and target temperatures of the TEC’s. A

portable laser from the manufacturer PicoQuant was used to supply signal photons to the

DM via optical fibers and a fiber bridge. An optical power meter is placed at the fiber

splitter and calibrated to measure the optical power of the photons hitting the detectors.

The output electric pulse from each APD in the DM can be read out via SMA cables on an

oscilloscope or can be time tagged on a time tagger like in the IQC lab characterization. The

detector characterization is carried as explained in chapter 2. In particular, the breakdown

voltage (explained in section 2.2.2), output pulse amplitude and FWHM (explained in
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section 2.2.3), recharge time (explained in section 2.2.4), thermal counts (explained in

section 2.2.5), detection efficiency (explained in section 2.2.6), timing jitter (explained in

section 2.2.7), saturation value (explained in section 2.2.8) and afterpulsing probability

(explained in section 2.2.9) were determined. The characterization was performed after

each irradiation phase and each annealing phase. All the aforementioned parameters except

recharge time and saturation were determined during each characterization. This was

because these two measurements took time to execute and were not expected to be affected

by either proton radiation or thermal annealing. They were only performed at the lab in

IQC before leaving and after returning from the TRIUMF tests, during the baseline room

temperature and cold tests at TRIUMF and at the end of the two year LEO equivalent

cumulative radiation dosage at TRIUMF.

The two year equivalent cumulative proton fluence in LEO is estimated to be around

4× 109 p/cm2. This was initially based on a detailed modeling and simulation done by

a partner company COM DEV (now acquired by Honeywell). More recently, Jin in his

thesis [6] derived this again. With a total spherical aluminum shielding of 30mm, he

calculates the total displacement damage dose (DDD) after 2 years due to radiation to

be 1.27× 106 MeVg−1. Elena Anisimova also does a similar calculation in her PhD thesis

[1] and arrives at the result that the two year equivalent dosage in LEO for 100 MeV

protons is 4× 109 p/cm2. At TRIUMF, a beam of protons was aimed at the DM which

was placed inside the cooler. Some of the protons from the beam incident on the cooler

were expected to be absorbed by the cooler itself. The remaining were incident on the DM.

So, we have some extra shielding in our experiments that are not expected to be present

during operation in a space environment on board a satellite. Two masters students at

IQC did some calculations regarding the extra shielding factors. One of them, Jin Gyu

Lim, has detailed this in his master’s thesis [6]. The primary outcome was that we needed

to increase the exposure of the DM plus cooler assembly to a proton fluence slightly larger

than 4× 109 p/cm2 as measured outside the cooler, so that the APD’s physically experience

a cumulative fluence of 4× 109 p/cm2. In specific, the shielding ratio was calculated to be

around 1.052. This means that the DM plus cooler assembly had to be exposed to 1.052 ×
4× 109 = 4.208× 109 p/cm2 in order for the APD’s to experience 4× 109 p/cm2 of proton

fluence. Henceforth all the mentioned proton fluences will be with respect to what the

APD’s physically experience. If one wants to calculate the proton fluence outside the

cooler, one should multiply the mentioned value by 1.052.

One of the DM’s, labeled DM1, was irradiated with protons in incremental doses of

fluence 6.6× 108 p/cm2 (corresponding to 4 month equivalent fluence in LEO) up to a

cumulative proton fluence of 4.03× 109 p/cm2 (2 year equivalent fluence in LEO). DM1 was
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annealed after each incremental dose of proton radiation. Another DM, labeled DM2, was

irradiated with protons in incremental doses of 3.3× 108 p/cm2 (2 month equivalent fluence

in LEO) or 6.6× 108 p/cm2(4 month equivalent fluence in LEO) up to a cumulative proton

fluence of 4.03× 109 p/cm2 (2 year equivalent fluence in LEO). However, DM2 was further

irradiated beyond for cumulative radiation doses beyond the 2 year expected lifetime of

the satellite to see the effects of irradiation and annealing on longer operation lifetimes. In

particular, DM2 was further irradiated to a cumulative proton fluence of 2× 1010 p/cm2

(10 year equivalent fluence in LEO). Beyond the 2 year lifetime, larger incremental doses

were used - between 2× 109 p/cm2 (1 year equivalent fluence in LEO) and 6× 109 p/cm2

(3 year equivalent fluence in LEO). DM2 was however only annealed when the dark count

rate exceeded a predetermined threshold of 2 kHz. This threshold was mostly fixed by link

analysis calculations [10]. The reason for using the smaller dose of 3.3× 108 p/cm2 for DM2

was to give us better resolution when the dark count rate approached the 2 kHz threshold,

so that we don’t overshoot it by a large amount. This was done because it reflects space

operation where the proton radiation occur on a longer time scale than provided by the

proton beam at TRIUMF; so in space one would be able to more or less detect exactly

when the dark count rate threshold is exceeded. A third DM was used as a control and

did not get irradiated or annealed. However, it underwent the same handling and storage

processes as DM1 and DM2 to account for factors extraneous to the experimental setup

affecting detector characteristics. Each annealing phase comprised of heating the APD’s

(using the TEC’s) to 80 ◦C for a period of 1 hour. The DM’s were characterized after

each radiation and annealing phase. During characterization, the APD’s were set to a

temperature of −80 ◦C.

3.3 Results and Discussions

Breakdown voltage, output pulse amplitude, output pulse FWHM, recharge time, detection

effciency, detector timing jitter and saturation values were largely unaffected by either

radiation or annealing. The dark counts did change usually increasing with irradiation and

decreasing with annealing. The afterpulsing probability tended to increase with irradiation

but annealing had no effect on it.

3.3.1 Breakdown Voltage

The breakdown voltage was measured during each characterization because it is temper-

ature dependent. This ensured that a known over-voltage is applied since other detector
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parameters are significantly affected by the over-voltage - if the same bias voltage was

used for each characterization instance and the breakdown voltage changed, this would

effectively change the over-voltage without our notice.

Figures 3.1 and 3.2 show the measured breakdown voltages after a radiation exposure

(before annealing), marked by an x, and after annealing, marked by an o. The 4 marker

at zero cumulative radiation fluence shows the breakdown voltage measured during the

baseline test before the experiments began. All characterizations were performed with

detector temperature set at −80 ◦C. The breakdown voltage shows no correlation with

respect to cumulative proton radiation fluence. However, in the vast majority of instances,

breakdown voltage measured after annealing is higher than the corresponding value before

annealing. But in a few cases like test 5a Detector 3 on DM1 and test 15a on Detector 1

on DM2, the post-annealed value was lower than the pre-annealed value. The amount by

which the post annealed breakdown voltage on average was higher compared to its pre-

annealed value is more or less within the bounds of statistical uncertainty. However, for

a purely statistical case, on average, one would expect that half the instances would show

that the pre-annealed value was higher (or lower) than the post-annealed value. Since, the

majority of cases have the post-annealed breakdown voltage as the higher one, it might be

some indication that annealing may have increased the breakdown voltage, although more

tests would be needed to ascertain this. The breakdown voltage has a positive correlation

with temperature. Although the measured ADP temperatures do not explain the effect of

higher post annealed breakdown voltages, it may be possible that the physical substrate of

the APD may be at a slightly higher temperature because of the high temperature annealing

phase that just preceded these measurements. One observation to support this might be

that if a detector in a given test showed a higher post annealed breakdown voltage, the

probability that the other detectors in the same test also showed a higher post annealed

breakdown voltage was greater than if that first detector showed a lower post annealed

breakdown voltage. Since the main parameter that changes the breakdown voltage is the

APD substrate’s temperature, it is possible that the annealing may have slightly increased

this temperature. Nonetheless, more tests are need to ascertain this.

3.3.2 Output Pulse Shape

The over-voltage on each APD was set to 20 V above its respective breakdown voltage. The

output pulse was displayed on an oscilloscope. The pulse amplitude was visually measured

off the oscilloscope screen. Figure 3.3 shows the output pulse amplitudes for each of the

5 detectors in DM1 for the entirety of the radiation experiments. Figure 3.4 shows the
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Figure 3.1: The breakdown voltage is plotted with respect to cumulative proton radiation

fluence for DM1. The breakdown voltage at the baseline test before any irradiation began

is plotted with t 4. After every incremental radiation exposure, the breakdown voltage

was measured and this is plotted with an × marker. Also, after every annealing phase,

the breakdown voltage was measured and this is plotted with an ◦ marker. Detector

temperature of −80 ◦C was used for all tests. The post annealed breakdown voltage was

generally slightly higher for all tests except test 5a
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Figure 3.2: The breakdown voltage is plotted with respect to cumulative proton radiation

fluence for DM2. The breakdown voltage at the baseline test before any irradiation began

is plotted with t 4. After every incremental radiation exposure, the breakdown voltage

was measured and this is plotted with an × marker. Also, after every annealing phase,

the breakdown voltage was measured and this is plotted with an ◦ marker. Detector

temperature of −80 ◦C was used for all tests. The post annealed breakdown voltage was

generally slightly higher for all tests except test 15a

46



Figure 3.3: Output pulse amplitude of the 5 detectors in DM1 are plotted against cumu-

lative proton radiation fluence for all characterization tests. The pulse amplitude at the

baseline test before any irradiation began is plotted with a 4. After every incremental ra-

diation exposure, the pulse amplitude was measured and this is plotted with an × marker.

Also, after every annealing phase, the pulse amplitude was measured and this is plotted

with an ◦ marker. All characterization tests were performed at a APD temperature of

−80 ◦C

corresponding values for DM2. Most detectors on both DM’s have output pulse amplitudes

in the range from 550 mV to 650 mV except for detector 1 on DM2 which has output pulse

amplitudes in the range 700 mV to 750 mV. All characterization tests in these two figures

were performed at a APD temperature of −80 ◦C.

There was no observed correlation between the output pulse amplitudes of the APD’s

and the cumulative radiation exposure. Also, annealing did not seem to have any definitive

effect on the pulse amplitudes. The maximum variation in the measured pulse amplitude

on a given detector was 70 mV. This variation is attributed to measurement uncertainty

due to statistical uncertainties arising from the nature of the experimental setup as well

as the act of visually reading off the amplitude from the oscilloscope.
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Figure 3.4: Output pulse amplitude of the 5 detectors in DM2 are plotted against cumu-

lative proton radiation fluence for all characterization tests. The pulse amplitude at the

baseline test before any irradiation began is plotted with a 4. After every incremental ra-

diation exposure, the pulse amplitude was measured and this is plotted with an × marker.

Also, after every annealing phase, the pulse amplitude was measured and this is plotted

with an ◦ marker. All characterization tests were performed at a APD temperature of

−80 ◦C
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Figure 3.5: Output pulse FWHM of the 5 detectors in DM1 are plotted against cumulative

proton radiation fluence for all characterization tests. The pulse FWHM at the baseline

test before any irradiation began is plotted with a 4. After every incremental radiation

exposure, the pulse FWHM was measured and this is plotted with an × marker. Also,

after every annealing phase, the pulse FWHM was measured and this is plotted with an ◦
marker. All characterization tests were performed at a APD temperature of −80 ◦C

The width of the output pulse at a voltage half the amplitude of that pulse is read

out visually from the oscilloscope. The oscilloscope has a couple of horizontal and vertical

crosshairs to help with the measurement. Figures 3.5 shows the FWHM values of the

output pulses of the 5 detectors in DM1 for all characterization tests. Figure 3.6 shows the

corresponding values for DM2. Most FWHM values are in the range 2.2 ns to 2.8 ns with

a few outliers.

No correlation was found between output pulse FWHM values and the cumulative

radiation fluence. Also, annealing did not affect the pulse FWHM. The maximum variation

in the measured pulse amplitude on a given detector was under 0.4 ns for most of the

detectors except for detectors #2 and #3 on DM2 which had a variation of 0.7 ns and 0.6 ns

respectively. This variation can also attributed to measurement uncertainty especially

because the measurement of the FWHM value accumulates uncertainty from the amplitude
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Figure 3.6: Output pulse FWHM of the 5 detectors in DM2 are plotted against cumulative

proton radiation fluence for all characterization tests. The pulse FWHM at the baseline

test before any irradiation began is plotted with a 4. After every incremental radiation

exposure, the pulse FWHM was measured and this is plotted with an × marker. Also,

after every annealing phase, the pulse FWHM was measured and this is plotted with an ◦
marker. All characterization tests were performed at a APD temperature of −80 ◦C

50



measurement as well in addition to visually reading off the width.

3.3.3 Recharge Time

The recharge time was measured for both DM’s at the lab in IQC (test #00), at TRIUMF

(at room temperature and cold - tests #01 and #02) before irradiating the DM’s, at the end

of the two year LEO equivalent cumulative radiation dose (tests #08 and #08a for DM1

and test #10a for DM2) and finally back at IQC after returning from TRIUMF (test#13

for DM1 and test #17 for DM2). The primary reason the remaining characterization tests

did not include recharge time measurements was because that it took substantial time (2

- 3 minutes) to populate the recharge curve with output pulses. Since time was limited at

TRIUMF and recharge time as such was not expected to change either with irradiation or

annealing, this measurement was only performed during the aforementioned tests.

Figures 3.7 and 3.8 show the recharge time constants as measured from the oscilloscope

for DM1 and DM 2 respectively and how they vary with respect to cumulative radiation

fluence. Since the recharge time isn’t expected to vary with temperature, I used all data

points from the aforementioned tests with all the tests having a detector temperature of

−80 ◦C except one of the baseline characterization tests (test #01) at TRIUMF which had

the detector temperature set at −20 ◦C. The recharge time does not seem to be correlated

to cumulative radiation fluence. The maximum variation of recharge times measured on

a given detector was within 200 ns for most detectors except for detectors #1 and #3

which had a variation of 300 ns and 250 ns respectively. This uncertainty in measurement

is accountable due to the fact the the recharge times were visually determined from the

oscilloscope screen. Hence, it was concluded that there was no dependence of recharge

time on cumulative radiation fluence. As far as the effect of annealing goes, only DM1

was characterized for recharge time at the end of the two year LEO equivalent cumulative

radiation fluence before and after the corresponding annealing phase - tests #08 and #08a.

Three of the detectors did not show any change in recharge time whereas two of the

detectors showed an increase/decrease of 50 ns after the annealing phase. Although this

was only one instance of annealing, from the outcome of the characterization tests, there

is no reason to believe annealing might have any effect on recharge time.

3.3.4 Dark Counts

Dark counts are defined as detector clicks which occur when no photon is incident on the

APD. This includes thermal counts which are random detector click due ti imperfections in
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Figure 3.7: Recharge time was visually measured off the oscilloscope and this is a plot of

recharge times for DM1 against cumulative radiation fluence. The recharge time of each

APD detector was measured at the lab in IQC before going to TRIUMF (test #00), at

TRIUMF (test #01 and test #02) before irradiating the DM’s, at the end of the two year

LEO equivalent cumulative radiation dose (tests #08 and #08) and finally back at IQC

after returning from TRIUMF (test#13). All tests were conducted at an APD temperature

of −80 ◦C except test #01 which was conducted at an APD temperature of −20 ◦C. The

different sizes of concentric circles are merely to illustrate the frequency of occurrence of

a given value of recharge time - different sizes of circles at the same point are not be

differentiated between, except that they belong to different tests. There was no observed

correlation of recharge time with respect to cumulative radiation fluence or annealing.
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Figure 3.8: Recharge time was visually measured off the oscilloscope and this is a plot

of recharge times for DM2 against cumulative radiation fluence. The recharge time was

measured at the lab in IQC before going to TRIUMF (test #00), at TRIUMF (tests #01

and #02) before irradiating the DM’s, at the end of the two year LEO equivalent cumulative

radiation dose (test #10a) and finally back at IQC after returning from TRIUMF (test

#17). All tests were conducted at an APD temperature of −80 ◦C except test #01 which

was conducted at an APD temperature of −20 ◦C. The different sizes of concentric circles

are merely to illustrate the frequency of occurrence of a given value of recharge time -

different sizes of circles at the same point are not be differentiated between, except that

they belong to different tests. There was no observed correlation of recharge time with

respect to cumulative radiation fluence or annealing.
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the substrate of the APD. Dark counts also include the afterpulses of thermal counts. The

results mentioned in this subsection are inferences about dark counts and do not isolate

the thermal counts from their chain of afterpulses. In the absence of ambient light (laser

off and covering the optical fibers with a black cloth), the output detector clicks were

time tagged after each incremental radiation dose and each annealing phase. DM1 was

annealed after every exposure to radiation whereas DM2 was annealed only when the post

irradiation dark count rate exceed 2 kHz.

Figure 3.9 shows how the dark count rate varies with cumulative radiation fluence as

well as annealing, with detector temperatures at −80 ◦C. It is seen that in general every

incremental dose of radiation increases the dark count rate. After the first incremental

proton radiation dose of 6.72× 108 p/cm2, seven of the ten APD’s registered a dark count

rate exceeding 500 Hz, with three of the detectors exceeding 1 kHz. This surpassed the

expected increase in dark count rate which was projected to be well under 200 Hz. Only

three of the ten detectors did the first proton irradiation cause the highest increase in dark

count rate per unit increase in cumulative radiation fluence. There were however anomalies

where post radiation dark count rates were lower than the corresponding pre-radiation dark

count rates. This happened only on DM2 for Detector #1 on test #04, detectors #2, #3

and #4 on test #06, detectors #1 and #3 on test #7, detectors #1 and #2 on test #08

and finally on detector #1 on test #10. The anomaly could possibly be due to statistical

uncertainty. However, since the dark counts were time tagged and measured over a course

of 600 s, one must still question if there is an underlying cause for the anomaly. The cause,

if any, is unknown at the moment.

Figures 3.11 and 3.12 show the change in dark count rate (DCR) per unit proton

fluence for DM1 and DM2 respectively. This is calculated by looking at how much the

dark count rate changes before and after an instance of incremental proton irradiation and

then dividing this change by the value of incremental proton fluence. As such there is no

correlation between the DCR change per unit fluence. However, one must note that there

is a tighter grouping of DCR change per unit fluence at higher cumulative fluence for DM2.

My opinion is that this is due to the fact that large incremental radiation doses were used

in these tests and that the grouping as such isn’t related to the cumulative fluence itself.

This might suggest that the tighter grouping is a result of better averaging over larger

incremental fluences in turn suggesting that the scattering of the points towards the left of

the graph are due to statistical uncertainty which get averaged out when large incremental

fluences are evaluated. This might also have implications for the aforementioned anomaly

of decrease of dark count rates with proton fluence being of statistical nature.

Annealing decreased the dark count rate in general. Figures 3.13 and 3.14 show the dark
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Figure 3.9: The dark count rate characterized after each radiation dose and annealing phase

is plotted against the cumulative radiation fluence for DM1. All tests were conducted at

an APD temperature of −80 ◦C. A general trend is that radiation increases dark count

rate and annealing decreases dark count rate. There are some anomalies however.
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Figure 3.10: The dark count rate characterized after each radiation dose and annealing

phase is plotted against the cumulative radiation fluence for DM2. All tests were conducted

at an APD temperature of −80 ◦C. A general trend is that radiation increases dark count

rate and annealing decreases dark count rate. There are some anomalies however.
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Figure 3.11: The rate of change of dark count rate with respect to incremental proton flu-

ence is plotted against the cumulative proton fluence. For any given instance of incremental

irradiation phase, we calculate the ratio of the change in dark count rate from before to

after irradiation, to the quantity of incremental radiation experienced by the APD. This

ratio is plotted against the cumulative radiation value at the end of a given incremental

radiation phase. This gives an idea of the contribution of proton radiation towards increase

in dark count rate. All tests were conducted at an APD temperature of −80 ◦C.
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Figure 3.12: The rate of change of dark count rate with respect to incremental proton flu-

ence is plotted against the cumulative proton fluence. For any given instance of incremental

irradiation phase, we calculate the ratio of the change in dark count rate from before to

after irradiation, to the quantity of incremental radiation experienced by the APD. This

ratio is plotted against the cumulative radiation value at the end of a given incremental

radiation phase. This gives an idea of the contribution of proton radiation towards increase

in dark count rate. All tests were conducted at an APD temperature of −80 ◦C.
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count rate measured after each annealing process. This is important from an operational

point of view because we would like to keep the dark count rate low to lower the signal to

noise ratio and annealing is a proposed method to lower dark count rate and mitigate the

adverse effects of proton radiation. Annealing manages to keep the dark count rate below

500 Hz up to 6× 109 p/cm2 cumulative radiation fluence (3 year LEO equivalent). This is

under the threshold dark count rate suggested by the link analysis [28]. The only exception

here is detector #3 on DM2 which registered a post-annealed dark count rate of 1577 Hz at

the 3.35 p/cm2 cumulative radiation fluence mark. It is important to note that the post-

annealed dark count rate tends to increase slightly as the cumulative radiation fluence

increases. This shows annealing is increasingly unable to mitigate the effects of proton

radiation. This will be a factor in limiting the lifetime of a QKD satellite. Although

annealing generally decreased dark count rates, detectors #3 and #5 on DM1 in test #7a

at 3.35 p/cm2 mark registered higher dark count rates annealing the DM. Since there were

only two instances over the entire course of the experiments, it is difficult to predict why

this anomaly occurred.

When the dark count rate after radiation is high, annealing can lower it. One way

to quantify the effectiveness of annealing is the look at the difference between the pre-

annealed and post-annealed dark count rates. However, dark counts occur due to the

presence of impurities in the APD substrate and have a positive correlation with the

density of impurities. Annealing ”fixes” these impurities, hence decreasing dark count

rates. It does this by increasing the temperature of the APD substrate. In doing so, each

site of impurity is maintained at a higher temperature. Assuming that each impurity is

identical to every other and whether or not an impurity gets fixed is independent of what

happens to any other impurity, the ratio of the the dark count rate before annealing to that

after annealing is a better measure for the effectiveness of annealing. To gain better insight

into the effectiveness of annealing using this reduction factor of annealing as a function of

the cumulative radiation fluence is plotted against cumulative radiation fluence. Figures

3.15 and 3.16 plots this data for DM1 and DM2 respectively. For eight out of the ten

detectors, annealing reduction factor was the highest the first time it was used. This shows

that annealing was the effective the first time around. However, in subsequent instances

of annealing, we do not see any correlation in the annealing reduction factor with respect

to cumulative radiation fluence.

Since annealing ”fixes” impurities in the APD substrate and dark count rate is strongly

related to the density of these impurities, it might be more beneficial to see how the anneal-

ing reduction factor changes when the dark count rate before annealing varies. Figures 3.17

and 3.18 plot the annealing dark reduction factor with respect to the dark count rate mea-
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Figure 3.13: The dark count rate measured after annealing is plotted against cumulative

radiation fluence for DM1. The curve doesn’t start at zero radiation because DM1 was not

annealed at baseline zero radiation. All tests were conducted at an APD temperature of

−80 ◦C.
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Figure 3.14: The dark count rate measured after annealing is plotted against cumulative

radiation fluence for DM2. The curve doesn’t start at zero radiation because DM2 was not

annealed at baseline zero radiation. All tests were conducted at an APD temperature of

−80 ◦C.
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Figure 3.15: The annealing reduction factor is plotted against cumulative radiation fluence

for DM1. The curve doesn’t start at zero radiation because DM1 was not annealed at

baseline zero radiation. All tests were conducted at an APD temperature of −80 ◦C.
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Figure 3.16: The annealing reduction factor is plotted against cumulative radiation fluence

for DM2. The curve doesn’t start at zero radiation because DM2 was not annealed at

baseline zero radiation. All tests were conducted at an APD temperature of −80 ◦C.
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Figure 3.17: The annealing reduction factor is plotted against dark count rate before

annealing for DM1. All tests were conducted at an APD temperature of −80 ◦C.

sured before the annealing phase. There doesn’t seem to be a strong correlation between

the annealing reduction factor and the pre-annealed dark count rates. This may reinforce

the assumption that whether or not an impurity gets fixed by annealing is independent of

what happens to any other impurity during the annealing process, making the annealing

reduction factor independent of the density of impurities and hence the dark count rate.

Since the annealing reduction factor (ARF) is independent of the pre-annealed dark

count rate as well as the cumulative radiation fluence, one can think about how tightly

grouped are the ARF values. To do this, it might be instructive to create a histogram of

the ARF values. Figures 3.19 and 3.20 show the histograms of the annealing reduction

factors for DM1 and DM2 respectively. Most annealing reduction factors assumes values

between 2 and 5.

As explained earlier, two annealing strategies were adopted. DM1 was annealed after

every incremental radiation exposure (about 6.67× 108 p/cm2 - 4 month LEO equivalent).

DM2 was annealed only when the post irradiation dark count rate exceeded 2 kHz. If

you look at figures 3.19 and 3.20, you can see that DM2 has slightly higher ARF values

64



Figure 3.18: The annealing reduction factor is plotted against dark count rate before

annealing for DM1. All tests were conducted at an APD temperature of −80 ◦C.
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Figure 3.19: Histogram of the annealing reduction factor for DM1. All tests were conducted

at an APD temperature of −80 ◦C. Values cluster between 0 to 4
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Figure 3.20: Histogram of the annealing reduction factor for DM2. All tests were conducted

at an APD temperature of −80 ◦C. Values cluster between 1 to 5
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suggesting that the on-demand annealing strategy (only when dark count rate exceeds

threshold) may have a slight advantage. This can be further seen in figure 3.21 which plots

the dark count rates after annealing for both DM1 and DM2 up to a cumulative radiation

fluence of 4.03× 109 p/cm2 (2 year LEO equivalent). Although the dark count rate is not

believed to be correlated to the cumulative radiation dose, it might still be informative

because, the absolute value of dark count rate is a key factor in satisfying the signal-to-

noise ratio threshold. There are only two instances where annealing was performed on both

DM’s at the same cumulative radiation fluence mark. This was tests #07a and #08a for

DM1, and tests #08a and #10a for DM2. DM2 achieves lower dark count rates on most

detectors - Detector #2 was the only detector that registered higher dark count rates on

DM2 for both tests. The ratio of the average dark count rate for DM1 on all five detectors

and both tests to the same value for DM2 is about 2.5 . This might suggest that the

on-demand strategy of annealing has a slight advantage over the time- periodic strategy

(annealing after every irradiation dose). However, keeping in mind that there were only

two tests in which the annealing strategies could be directly compared, more tests would

be needed to ascertain if this advantage is outside the bounds of statistical uncertainty.

A one hour annealing time was used for most instances of the annealing process. How-

ever, we also employed annealing times of 20 min and 40 min. Figure 3.22 shows how the

dark count rate on the five detectors of DM2 vary with time of annealing. It starts out

with the data of test #11 (6.02× 109 p/cm mark). DM2 is annealed for 20 min and the

dark count rates on the detectors were measured. Then DM2 was annealed for a further

40 min before another dark count rate measurement was performed. The decrease in dark

count rate is more significant during the first 20 min than it was for the next 40 min. This

agrees with previous measurements done on such devices. The decrease in dark counts

tends to be more significant earlier in the annealing phase rather than later. Eventually,

increasing the annealing time will not decrease the dark count rate substantially.

Annealing changes the structure of the detector substrate to decrease the dark count

rate. Another method of decreasing dark count rate without making changes to the APD

substrate is to decrease the operating temperature of the APD. −80 ◦C was the lowest

temperature was achievable with operating the detector TEC in closed loop control. After

the two year LEO equivalent cumulative radiation fluence of 4.03× 109 p/cm2, the dark

count rate was measured at −80 ◦C - test#08a. Cooler detector temperatures could be

achieved but this involved running the detector TEC in open loop. This means that a

definite value of voltage can be applied to the TEC. However, there is no information

about the value of the temperature that the detectors operated at and hence to feedback

to stabilize the temperature a a specific value. Nonetheless, it is plausible that when a
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Figure 3.21: The dark count rate measured after annealing is plotted against cumulative

radiation fluence for both DM’s. The dark count rates were measured at an APD tempera-

ture of −80 ◦C. DM2 shows slightly lower post annealing dark count rates suggesting that

annealing only when the post annealed dark count rate exceeds a fixed threshold might be

more advantageous than annealing after fixed instants of time regardless of the dark count

rate.
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Figure 3.22: Dark count rate measured as a function fo annealing time. During annealing

periods the APD temperature was held at 80 ◦C. In between annealing periods, the APD’s

were cooled to −80 ◦C and the dark count rates were measured. The rate of decrease of

dark count rate itself decreases over time
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specific voltage is applied to the TEC in open loop, a more or less definite value of detector

temperature is achieved. For test #09, a maximum possible voltage of 4.43 V was applied

to the detector TEC in open loop - test#09. The temperature reading displayed on the

proprietary software stalled at −91.5 ◦C. This was not the true detector temperature as

the thermistor was incapable of measuring lower temperatures than −91.5 ◦C - the true

detector temperature would have been lesser than −91.5 ◦C. Nonetheless, this was the

coldest temperature the detectors could be operated at with the current test setup. After

a dark count measurement, the voltage to the detector TEC was changed to 1.92 V -test

#10. This technically should achieve a higher temperature than test #09. The thermistor

reading still capped of at −91.5 ◦C, meaning that the true detector temperature was still

less than −91.5 ◦C. After another dark count measurement, the detector temperature was

set to −70 ◦C (test #11) and then to −60 ◦C (test #12), both tests using using closed loop

control to stabilize the detector temperature. The results of the dark count rates over the

course of the aforementioned tests in plotted in figure

3.3.5 Detection Efficiency

The detection efficiency is calculated by first estimating the number of photons impinging

the detector using a calibrated optical power meter just before the DM along the optical

path from the laser to the DM. The ratio of the detector click rate to the impinging

photon rate is called the detection efficiency. The details of this calculation are elucidated

in section 2.2.6. Figure 3.23 shows the calculated detection efficiency of each of the 5

APD’s in DM1 over the course of all the characterization tests. Figure 3.24 shows the

corresponding detection efficiency values for DM2. No correlation is apparent between

detection efficiency and cumulative radiation fluence.

Most of the detectors had a maximum detection efficiency of under 50% except for

detectors #2, #4 and #5 on DM1. The maximum variation of detection efficiency on a

given detector over the course of the tests was about 20% with the exception of Detector

#2 on DM1 because it registered a abnormally high detection efficiency of 85% on test#05.

However, there was no particular trend in the detection efficiency as the cumulative ra-

diation fluence increased; hence the two were deemed more or less independent of each

other. Since the maximum detection efficiency as specified by the manufacturer is 61%,

it is unlikely that the value of 85% of Detector #2 on DM1 is real. There is a possibility

that the afterpulsing probability could have increased the overall detector click rate which

could increase the observed detection efficiency. However, afterpulsing calculations did not

show any aberrations in test #05 on detector #2. Another possibility : there is still some
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Figure 3.23: Detection efficiency of APD’s is plotted against cumulative radiation fluence

for DM1. All tests were conducted at an APD temperature of −80 ◦C.

optical path between the power meter and the DM. The ratio of the optical power input

to output of this path was determined before each characterization test began. However,

if this ratio changed only for the specific path leading to detector #2 (say, the black cloth

had displaced a little bit, letting stray photons to enter the path through the optical fiber’s

jacket), the actual rate of photons impinging the detector could have increased thus in-

creasing the detector output click rate. This would eventually lead the apparent detection

efficiency to increase. The results were not reproducible and we cannot ascertain the cause

of this anomaly.

3.3.6 Timing Jitter

The portable PicoQuant laser was used to generate photons which were then transmitted

to the DM via a fiber bridge and optical fibers. The timing jitter was calculated for each

detector by first histogramming the time delay of the photon detections with respect to

the laser clock. Figure 3.26 shows the timing jitter histogram performed for test #04 again

with the five detectors at −80 ◦C.
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Figure 3.24: Detection efficiency of APD’s is plotted against cumulative radiation fluence

for DM2. All tests were conducted at an APD temperature of −80 ◦C.
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Figure 3.25: The time delay between a photon detection time tag and the corresponding

PicoQuant laser clock pulse is histogrammed in the figure above. The uncertainty in the

envelope of the histogram (shown as the curves) is a measure of the timing jitter of the

system.This particular data was taken from DM1 on characterization test #07 at TRIUMF

with a detector temperature of −80 ◦C
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Figure 3.26: The time delay between a photon detection time tag and the corresponding

PicoQuant laser clock pulse is histogrammed in the figure above. The uncertainty in

the envelope of the histogram (shown as the curves) is a measure of the timing jitter of

the system. This particular data was taken from DM2 on characterization test #04 at

TRIUMF with a detector temperature of −80 ◦C
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Figure 3.27: Timing jitter of APD’s are plotted against cumulative radiation fluence for

DM1. All tests were conducted at an APD temperature of −80 ◦C.

The resulting curves in figures 3.25 and 3.26 are approximated as Gaussians. The

width of these Gaussians are the timing jitters of the system with respect to each detector.

The detector’s timing jitter is then calculated by accounting for the laser’s timing jitter

(measured at 465 ps) and the time taggers’ timing jitter (measured at 78.125 ps) which

contribute towards the overall system jitter. The details of this calculation are listed in

section 2.2.7. Figures 3.27 and 3.28 show the timing jitter values for DM1 over the course

of the radiation experiments. A special mention must be made that some of the tests on

DM2 failed to time-tag the clock pulse due to which timing jitter information was not

available. The cold baseline test at TRIUMF wa one of these. Thus, I included the cold

test performed at IQC before DM2 was shipped to TRIUMF.

The timing jitter values for both DM’s were independent of cumulative radiation flu-

ence. Also, annealing didn’t have an effect on the timing jitter. The timing jitter of the

detectors was in the range 650 ps to 850 ps at TRIUMF. The maximum variation of timing

jitter on a given detector was around 150 ps with only detector #3 on DM2 varying by

nearly 150 ps. A special mention must be made that the test at IQC, both before leav-

ing to and after returning from TRIUMF, yielded consistently lower timing jitter values
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Figure 3.28: Timing jitter of APD’s are plotted against cumulative radiation fluence for

DM2. All tests were conducted at an APD temperature of −80 ◦C.
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compared to the TRIUMF results. The tests at IQC before leaving TRIUMF yielded tim-

ing jitter values in the range 525 ps to 665 ps whereas the IQC tests after returning from

TRIUMF yield jitter values in the range 330 ps to 610 ps. Since the lower values were

observed both before and after the TRIUMF tests but not at TRIUMF, it is believed that

the difference is due to the experimental set up rather than arising from any changes in the

APD’s. However, one cannot draw a conclusion if the values observed at IQC or TRIUMF

are more accurate. Nonetheless, the independence of timing jitter on radiation fluence and

annealing can be ascertained due to the non-observance of any particular trend during the

TRIUMF tests.

3.3.7 Saturation

When laser power is increased from zero, the output detector click rate increases reaches

a maximum value and decreases to zero. From this point if the laser power is decreased,

the aforementioned output trend reverses. The maximum possible detector click rate is

called the saturation value. The saturation measurements were performed only during the

pre-radiation cold test at IQC (tests #00), the baseline tests at TRIUMF (test #01 and

#02), at the two-year LEO equivalent cumulative radiation fluence mark (tests #08 and

#08a for DM1 and test #10a for DM2) and the post radiation cold test at IQC (test #13

for DM1 and test #17 for DM2). The reason that the other tests at TRIUMF did not

include saturation measurement was that it takes a few minutes to do the measurement

(and time was key at TRIUMF) and saturation level wasn’t expected to be affected by

radiation of annealing.

The saturation value for each detector was rerecorded on each test. Figures 3.29 and

3.30 plot the saturation values for DM1 and DM2, respectively, over the course of the

different tests. The maximum count rate of a given detector is not correlated to cumulative

radiation fluence. Although, there was only one instance where the pre-annealed saturation

value was compared with the post-annealed saturation value, it is projected that saturation

value is not affected by annealing either. The saturation values were in the range 166 kHz

to 960 kHz. The reason for this large range is that different detectors had very widely

spaced saturation values even in the same characterization test. The reason for this has

not been determined. However, it is important to note that the maximum variation of

saturation values on a given detector across all tests was 250 kHz.
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Figure 3.29: The saturation curve for each detector on each test is plotted for DM1. The

the maximum value (i.e., the maximum count rate) of each curve is then tabulated and

plotted in the figure above. All tests were conducted at an APD temperature of −80 ◦C.

The saturation values are not dependent on cumulative radiation fluence nor on annealing
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Figure 3.30: The saturation curve for each detector on each test is plotted for DM1. The

the maximum value (i.e., the maximum count rate) of each curve is then tabulated and

plotted in the figure above. All tests were conducted at an APD temperature of −80 ◦C.

The saturation values are not dependent on cumulative radiation fluence nor on annealing
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3.3.8 Afterpusling

When an avalanche occurs in the APD’s substrate, there is some chance that an electron

can get trapped in one of the trap sites. This electron when detrapped triggers a second

avalanche called an afterpulse. The probability with which a detector click gives rise to an

avalanche is called the afterpulsing probability.

Elena Anisimova, a former doctoral student at the Institute for Quantum Computing

developed a program in Python to calculate the afterpulsing probability of the APD’s using

the measurement data from the dark count experiments. Details of this calculation are

given in section 2.2.9. Figure 3.31 shows the histogram output of the Python program.

The program requires the user to specify a point on the histogram which separates the

afterpulsing region to its left from the steady state region to its right. It then calculates

the area under the histogram but above the y value of the selected point in the afterpulsing

region only (region to the left of the selected point). The user visually determines this point

on the histogram. There will be some error on his part. The program uses exponentially

increasing bin size and the afterpulsing probability which is the area under the curve picks

up greater and greater areas as you go towards the right (for same bin heights). Due to

this, any error on the visual location of the point separating the afterpulsing region from

the steady state region contributes exponentially towards errors in afterpulsing probability.

This makes the algorithm sensitive to user error. This effect is magnified in tests where

the transition from afterpulsing to steady state region is gradual.

In order to make the output of the algorithm less sensitive to user choices, I automated

the process of the the region demarking point. Moving from the rightmost bin of the

histogram, I checked if the bin to its left deviated from the bin value of the rightmost bin

by more than a certain percentage threshold fixed in the algorithm. If it didn’t, I averaged

bin values of the two bins by weighting them by their true bin size. Then I checked the

value of the third bin from the right to see if it deviates by more than the same percentage

threshold from the aforementioned calculated weighted average. If it didn’t, I calculated

the weighted average of all three bins. The idea is that the weighted average represents

the steady state value towards the right of the histogram. Upon repeated iterations, when

the bin value deviates by more than the percentage threshold of the weighted average, the

algorithm deems this points as the region demarking point. This modification didn’t require

any input from the user and hence the program outputted the same value of afterpulsing

probability during every instance of program execution.

However, this then shifted the burden of choice from the user to the programmer who

selects the aforementioned percentage threshold. Changing this threshold changes the
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Figure 3.31: Output of Elena Anisimova’s Python algorithm [1]. The histogram plots the

time difference of all time tags following the start time tag. Data is from DM 1 test 04

Detector 1 with a detector temperature of −80 ◦C
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afterpulsing probability. The redeeming factor though is that a data set with a higher true

afterpulsing probability will yield a higher output value from the Python algorithm than

that from a dataset with a lower true afterpulsing probability. So, it is possible to compare

two data sets and ascertain which one has the higher probability.

But what about the accuracy of the absolute value of the calculated afterpulsing prob-

ability? Using the QKD simulation described in chapter 6, I was able to generate thermal

counts and their chain of afterpulses (see sections 6.4.1 and 6.4.2 for details). Using this, I

am able to play around with data sets of known afterpulsing probabilities. The program-

mer can then fine tune the value of the percentage threshold using these data sets so as

to get a output value for afterpulsing probability within a required percentage of the true

afterpulsing probability. This then solves the issue of accuracy to some extent.

There is a problem even with automating the selection of the region demarking point.

There is some statistical noise during the region transition. This introduces some noise in

the location of the region demarking point as determined by the algorithm as mentioned

above. Since this noise occurs at the rightmost end of the afterpulsing region and since

the rightmost bins have wide time intervals, the error in selecting the region demarking

point results in large errors in the calculated value of afterpulsing probability because it

uses the Riemann integral. So, although for a particular experimentally generated data

set, the output of the program does not change with multiple executions, if one experimen-

tally generates multiple data sets using the APD in similar conditions (same cumulative

radiation,detector temperature, etc.), one will find that the statistical noise in the region

transition cause the program to output different values of afterpulsing probability for each

of these data sets.

One way to get around this problem is to curve fit the envelope of the histogram to

smooth out the noise and to use the aforementioned methods on the curve fitted histogram.

I didn’t proceed with this primarily because I wanted to know the analytical solution of the

histogram envelope to see what effect the process of curve fitting might have. Also, I am

not sure how to recreate this noise in my simulate data especially because the afterpulsing

peak contains all afterpulses in the chain of afterpulse generated by the start time tag

(on avalanche gives rise to an afterpulse which in turn gives rise to another afterpulse,

etc.) This is possibly an avenue for future research. However, even without an analytical

solution, it should be possible to curve fit the histogram to arrive at a stable output

relatively insensitive to the noise.

Figures 3.32 and 3.33 show the afterpulsing probability as calculated by the modified

python algorithm. The percentage threshold to determine the region demarking point was

set to 4%. The afterpulsing probability towards the later tests tend to be higher than
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the initial few ones. However, the impact of irradiation and annealing is hard to deci-

pher with different detectors showing different trends. For example the majority of tests

on detect #5 in DM1 irradiation increases afterpulsing probability while annealing de-

creases afterpulsing probability. On the other hand, the majority of tests on detector #2

in DM2 show that irradiation decreases afterpulsing probability while annealing increases

afterpulsing probability. I would say that one cannot draw any conclusive correlation be-

tween afterpulsing probability and irradiation / annealing, except for the fact that most

detectors ended up with higher afterpulsing probabilities at the end of the series of ex-

periments. Since this happens for most of the detectors, there is some reason to believe

that afterpulsing probability increases with irradiation or annealing or a combination of

both. Finally, if you notice, some of the afterpulsing probabilities are greater than 100%.

By our assumption that each avalanche cannot on average give rise to more than one first

generation afterpulse (which is a good assumption considering we don’t have a runaway

effect of detector click rate), the afterpulsing probability cannot theoretically be greater

than 100%. My contention is that all the successive generations of afterpulses of the start

time tag occur in the afterpulsing peak. The nth generation afterpulse is connected to the

(n + 1)th generation afterpulse through an exponential decaying function in time. Due to

these correlations between consecutive generations of afterpulses, they accumulate in the

peak of the histogram. Given this, the program is outputting the average of total number

of afterpulses (all generations) produced by an arbitrary time tag. This value can indeed

be greater than 1 (100%). The conversion between the afterpulsing probability p according

to our definition and the value outputted by the algorithm p′ is given by

p′ =
p

1− p
(3.1)

The details of how equation 3.1 is partially derived is given in section 2.2.5.

Altogether another approach was suggested by Jean-Philippe Bourgoin and Brendon

Higgins, both Post-doctoral fellows at IQC and members of Prof. Thomas Jennewein’s

group. The efficiency measurements with the laser on, were used for this calculation. The

idea is that laser photons generate detector clicks. It is possible to know with a high

probability which detector click is caused by a laser photon by having access to the time-

tagged laser clock pulse and knowing the approximate value of the optical path time -

the time taken by the photon to travel from the laser to the detector. The photon clicks

generate afterpulses. After accounting for the thermal counts and their afterpulses, one

can calculate the afterpulsing probability. Details of these calculations are given in section

2.2.9. This approach has the advantage that it does not require the user or programmer
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Figure 3.32: Afterpulsing probability is plotted against cumulative radiation fluence for

DM1 using dark count measurement data in Elena’s python program [1]. All tests were

conducted at an APD temperature of −80 ◦C.
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Figure 3.33: Afterpulsing probability is plotted against cumulative radiation fluence for

DM2 using dark count measurement data in Elena’s python program [1]. All tests were

conducted at an APD temperature of −80 ◦C.
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to personally choose the value of a program variable, thus making it immune to human

discretion.

My contribution here was to implement this algorithm in Microsoft Excel and calculate

the afterpulsing probability from the efficiency measurement data for all the tests conducted

at TRIUMF. Figures 3.34 and 3.35 show the afterpulsing probability plotted as a function

of cumulative radiation fluence. Here too, one notices that the afterpulsing probability

somewhat tends to increase towards the later tests compared to the initial few ones. Again,

there isn’t a definitive trend with respect to irradiation or annealing increasing or decreasing

the afterpulsing probability. However, a key difference from the Python algorithm is that

the afterpulsing values are smaller especially for the later tests. For example, the maximum

afterpulsing probability. For example, the maximum afterpulsing probability outputted

by the method that uses efficiency measurement data is 26% where as the afterpulsing

probability p calculated by converting the output of the Python algorithm has a maximum

value of 71.2% which occurred in test 15 on detector #5 on DM2. It is likely that this

method is more accurate than the Python algorithm because an afterpulsing probability

of 71.2% would have surely altered the efficiency value of this particular detector in that

particular test. However, the detection efficiency of detector #5 on DM2 in test 15 was

42.9% which was lower than the detection efficiency of detector #1 on DM2 in test 02

registering a value of 47.6% efficiency. However, afterpulsing probability p of detector #1

on DM2 in test 02 as determined (and converted) by the Python algorithm was 0.2%. If the

Python algorithm was accurate, the detection efficiency of detector #1 on DM2 in test 02

should have been significantly higher than that of detector #5 on DM2 in test 15 because

the generations of afterpulses due to a photon click would have increased, and the detection

efficiency calculations did not subtract out the afterpulses due to photons. Although the

method of afterpulsing probability calculation that used the efficiency measurement data

also ascribed detector #5 on DM2 in test 15 an afterpulsing probability of 14.9% compared

to 0.5% for detector #1 on DM2 in test 02, this difference is smaller and may be more

representative of the true afterpulsing probability.

The main disadvantage with the two methods of calculating afterpulsing probability is

that one doesn’t quite know if the outputted value of the method is ultimately correct or

not.

I spent some time working on a third method which first plots a histogram of the

time difference between consecutive detector clicks. Ursin and Peev [33] have a similar

concept but I have made many changes and slightly different assumptions. The idea here

is that thermal counts obey a Poisson distribution in time. Accordingly the time difference

between two thermal clicks follows an exponentially decaying distribution. If no afterpulses
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Figure 3.34: Afterpulsing probability is plotted against cumulative radiation fluence for

DM1 using efficiency measurement data. All tests were conducted at an APD temperature

of −80 ◦C.
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Figure 3.35: Afterpulsing probability is plotted against cumulative radiation fluence for

DM2 using efficiency measurement data. All tests were conducted at an APD temperature

of −80 ◦C.
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are present, this is the distribution of time difference between time tags. However, due to

the presence of afterpulses, the distribution of time difference between time tags deviates

from the exponentially decaying one. The extent of deviation helps to quantify the relative

number of afterpulses and correspondingly the afterpulsing probability. If the average time

period of the thermal counts is orders of magnitude greater than the average detrapping

time of a trapped electron, i.e., the inverse of the afterpulsing time constant, the region to

the right of the histogram of time differences between consecutive detector clicks should

comprise primarily of thermal counts and should be approximately exponentially decaying

with time constant equal to the average frequency of thermal counts. By taking the

logarithm of y-axis of the histogram, the rightmost region becomes a straight line. One

can then use curve fitting algorithms to get the slope of the line which is related to the

thermal count rate. Knowing the thermal count rate and the overall detector click rate, one

can find the afterpulsing rate and eventually the afterpulsing probability. Alternatively,

the straight line region to the right of the histogram can be extrapolated towards the

left side and the area under the histogram but above the extrapolated straight line gives

the afterpulsing probability as well. Different region demarking points are selecting and a

histogram of the average of the values of afterpulsing probabilities calculated by the two

aforementioned approaches is histogrammed. Details of this entire method are given in

section 2.2.9. The key assumption here is that the frequency of thermal counts is orders of

magnitude lesser than the afterpulsing time constant. Given this assumption is satisfied

in experimental dark count measurement data, this method has a huge advantage in that

its output is a histogram of possible afterpulsing values. The histogram should have a

distinctive peak which represents the afterpulsing probability of the APD. The sharpness

of the peak is a measure of how reliable the method is for that particular data set- the

sharper the peak, the more reliable the output. This is somewhat of an advantage because,

the previous two methods (the Python and Excel programs) don’t give an indication about

the reliability of their output. And since all three methods give different answers, this is

important.

A note about the scalability of the program. As the size of the time tag file increases, it

takes more time to read the time tags as this is done in a for loop. Once the time tag file is

read and the time tags are stored in a MATLAB array, plotting the histogram is fast since,

getting the values of time difference between consecutive time tags is easily implemented

by the following code

1 timeDifferences = timeTagArray(2:end) − timeTagArray(1:end−1)
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Getting the set of time difference values is quick. Similarly, creating the histogram

is rather quick as well and scales more slowly with the size of the time tag file than the

reading of file. Once the histogram of time differences is created, the computation time for

remainder of the calculations is not affected by the size of the time tag file because the size

of the time tag file only affects the height of the bins of the histogram and not the number

of bins. So, say, compared to Python algorithm, this method scales much more nicely with

the size of time tag file.

To test this algorithm, I simulated thermal counts and afterpulses in MATLAB. Dead

time and recharge time were also incorporated in the simulated dataset. I was also able

to keep a track of the thermal counts and afterpulses in my simulation and calculate the

observed afterpulsing probability as the ratio of afterpulses to total number of time tags. I

used a dark count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%,

afterpulsing time constant 1× 106 s−1 and dead time 1× 10−7 s. I was able to keep track of

the time tags by labeling them as thermal counts or afterpulses. Because of the dead time

and recharge time, the observed afterpulsing should decrease. The observed afterpulsing is

defined as the ratio of the number of afterpulses to the total number of detector clicks. A

more detailed treatise on why the afterpulsing probability decreases is given in section 5.2.

For this particular choice of detector parameters, the observed afterpulsing probability was

15.29%. I then stored these time tags in a data file and used the afterpulsing algorithm I

developed here to analyze the afterpulsing probability. Figures 3.36 shows the PMF of time

difference between consecutive detector clicks. Exponential (to the base 10) increasing bin

widths were used and the time difference values in each bin was counted. The bins values

were then normalized to unity (sum of bin values = 1). The hump on the left contains

both thermal counts and afterpulses where as the hump to the right contains only thermal

counts. Figure 3.37 shows the corresponding PDF got by dividing the value of each bin

by the bin width. An important point to note here is that although the PMF shape of

the PMF depends on the type of binning used (linear or exponential), the PDF does not

(with enough samples). If you notice, there is an initial rise in the PDF. This is due to

the recharge time where the detection efficiency is increasing with time elapsed since the

start time tag. The thermal region to the right of the histogram here is not linear because

the x-axis was logarithmic (to view the details of the curve). In linear x-axis, the thermal

region is linear. As described, I calculated the afterpulsing probability two ways and set a

threshold such if the ratio the smaller value to the large value of afterpulsing probability

is higher than a threshold value (which is less than unity), I consider the average of the

two afterpulsing probability values. I then histogram all these averages. Figure 3.38 shows

the histogram of the average of the two afterpulsing probability values when the threshold
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ratio ratio is set to 0.99. I used linear binning of bin width 0.5% There are two peaks, a

larger one centered around 15.25% and a smaller one at 10.25%. When the threshold ratio

is decreased to 0.95 in figure 3.39, a clear peak emerges at 15.25%. Further decreasing the

ratio down to 0.75 in steps of 0.05 in figures 3.40, 3.41, 3.42 and 3.43 shows that neither

the peaks position or the height changes. In fact, if the threshold ratio ratio is driven down

all the way to 0, effectively not setting a threshold, as in figure 3.44, one sees that sees

the same peak in position and height. I hadn’t initially expected this because, even if the

two afterpulsing probability values differ by orders of magnitude, they are still plotted in

the histogram. I think this result is because the cases where the two values differ a lot

are cases where the values are not really emerging from any underlying structure in the

data set. They can be seen as nearly random and are dispersed throughout the histogram,

hence not being able to form a peak. The values that do emerge from the structure of the

afterpulsing characteristics of the data set are the values that cluster together forming a

peak. Experimental data sets tend to have a lot of noise and I found that the histogram

which does not use any threshold often leads to more reliable results than using a non-zero

threshold value.

I then proceeded to calculate the afterpulsing probability for the test conducted as part

of the radiation experiments. Figures 3.45 and 3.46 show the P.M.F and P.D.F. of the time

distribution for the next click for Radiation DM1 test#06 detector #03. Using the P.D.F.,

i followed the procedure of the afterpulsing algorithm to create histograms of potential

afterpulsing probability values with different thresholds on the ratio of the values obtained

from the two methods of calculating the afterpulsing probability. Figures 3.47, 3.48 3.49,

3.50, 3.51 and 3.52 show the histograms with threshold values 0.99, 0.95, 0.90, 0.85, 0.80 and

0.75, respectively. Finally, I also created a histogram of potential afterpulsing probability

values without any threshold which is shown in figure 3.53. I also similar results for

Radiation DM2 test #14a detector #3. Figures 3.54 and 3.55 show the P.M.F and P.D.F.

of the time distribution for the next click for Radiation DM1 test#06 detector #03. Figures

3.56, 3.57, 3.58, 3.59, 3.60and 3.61 show the histograms with threshold values 0.99, 0.95,

0.90, 0.85, 0.80 and 0.75, respectively. Finally, I also created a histogram of potential

afterpulsing probability values without any threshold which is shown in figure 3.62. One

notices that when we compare the two tests for the histogram of potential afterpulsing

probabilities at the same threshold value, the ”width” the peak for Radiation DM2 test

#14a detector #3 is greater. If the width is very large, it becomes difficult to find the

exact location of the peak, making the program unreliable. Therefore, the width of the

peak can be used as a measure of the reliability of the final value of afterpulsing probability

outputted by the algorithm. This measure of reliability wasn’t there in previous analysis
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Figure 3.36: Probability mass function of time difference between consecutive time tags us-

ing simulated dark count measurement data. The time tag file was simulated in MATLAB.

A dark count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, af-

terpulsing time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the

time tag file. Due to dead time and recharge time, the observed (effective) afterpulsing

probability was calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.37: Probability density function of time difference between consecutive time tags

using dark count measurement data. The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.38: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set to a threshold value of 0.99. The

average of the two values is plotted.The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.39: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set to a threshold value of 0.95. The

average of the two values is plotted.The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.40: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set to a threshold value of 0.90. The

average of the two values is plotted.The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.41: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set to a threshold value of 0.85. The

average of the two values is plotted.The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.42: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set to a threshold value of 0.80. The

average of the two values is plotted.The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.43: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set to a threshold value of 0.75. The

average of the two values is plotted.The time tag file was simulated in MATLAB. A dark

count rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing

time constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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Figure 3.44: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches not set to a threshold value. The average

of the two values is plotted.The time tag file was simulated in MATLAB. A dark count

rate of 200 Hz, recharge time of 1× 10−6 s, afterpulsing probability 25%, afterpulsing time

constant 1× 106 s−1 and dead time 1× 10−7 s were used to generate the time tag file.

Due to dead time and recharge time, the observed (effective) afterpulsing probability was

calculated by the simulation algorithm itself to be 15.29%.
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algorithms for afterpulsing probability. This was important because each one of them

gave slightly different results (greater than any statistical uncertainty). To quantify this

measure of reliability, I would suggest calculating the standard deviation of the peak at a

fixed threshold and comparing these standard deviations values for different data sets. The

smaller the standard deviation, the more reliable the final value of afterpulsing probability.

I haven’t implemented this yet in my algorithm but this is an area for future work.

Another observation in the results of the experimental tests tests is that the P.D.F. of

next click seems to qualitatively have a different form from the one generated by simulation

data. This could possibly be due to a simplistic afterpulsing model employed by the

simulation data. One aspect is probably the assumption of at most one charge carrier

being trapped in deep levels during an avalanche. The other aspect might be that there

are multiple types of deep levels each with their own afterpulsing time constants and

hence with different average detrapping life times. Nonetheless, these two aspects may

not necessarily undermine the validity of the algorithm because I haven’t assumed any

particular afterpulsing model for the algorithm. Instead the only assumption was that the

time scale for afterpulsing be orders of magnitude smaller than the time scale of thermal

counts. This seems to be true in the experimental data as can be seen in figures 3.45 and

3.54. The location of the peaks along the time axis are roughly the time scales of the

afterpulsing and thermal counts. So, I think the algorithm is still applicable.

Yet another observation is the the histogram of potential afterpulsing probabilities with

no threshold seems to have a peak on the negative x-axis as well. This would correspond to

negative afterpulsing probabilities which are not physical. Hence, I don’t think this arises

from any structure in the data. However, figuring out why this peak occurs might tell us

something about how the algorithm interacts with the data. Also, one notices that the bin

height at zero afterpulsing probability is negligible and the peak in the negative region is

almost mirrored off the y-axis from the peak in the positive region. All these factors can

be further studied to help improve the algorithm.

Figures 3.63 and 3.64 show the afterpulsing probability plotted against cumulative radi-

ation fluence. DM1 which was irradiated up to 4× 109 p/cm2 doesn’t show any correlation

with respect cumulative radiation fluence. Also, there is no discernible trend with respect

to annealing or incremental irradiation. However, DM2 shows an increase in afterpulsing

probability with respect to cumulative radiation fluence which is evident when it is radiated

well beyond the two year LEO cumulative proton fluence mark - it was irradiated up to

2× 1010 p/cm2. Also, an interesting observation is that although afterpulsing probability

showed a decrease in other cases, the decrease was very small and could be explained by

statistical uncertainty in the data or calculation errors by the algorithm. However, all
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Figure 3.45: Probability mass function of time difference between consecutive time tags for

Radiation DM1 test #06 detector #3. This test was conducted at the 2.68× 109 p/cm2

cumulative proton fluence mark at a detector temperature of −80 ◦C. The measured dark

count rate (thermal count rate plus afterpulse count rate) was 892.6 Hz.

cases where afterpulsing probability strongly changed with annealing were increases. It is

possible that annealing does increase the afterpulsing probability.
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Figure 3.46: Probability density function of time difference between consecutive time tags

for Radiation DM1 test #06 detector #3. This test was conducted at the 2.68× 109 p/cm2

cumulative proton fluence mark at a detector temperature of −80 ◦C. The measured dark

count rate (thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.47: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.99. The average

of the two values is plotted. This test was conducted at the 2.68× 109 p/cm2 cumulative

proton fluence mark at a detector temperature of −80 ◦C. The measured dark count rate

(thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.48: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.95. The average

of the two values is plotted. This test was conducted at the 2.68× 109 p/cm2 cumulative

proton fluence mark at a detector temperature of −80 ◦C. The measured dark count rate

(thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.49: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.90. The average

of the two values is plotted. This test was conducted at the 2.68× 109 p/cm2 cumulative

proton fluence mark at a detector temperature of −80 ◦C. The measured dark count rate

(thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.50: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.85. The average

of the two values is plotted. This test was conducted at the 2.68× 109 p/cm2 cumulative

proton fluence mark at a detector temperature of −80 ◦C. The measured dark count rate

(thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.51: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.80. The average

of the two values is plotted. This test was conducted at the 2.68× 109 p/cm2 cumulative

proton fluence mark at a detector temperature of −80 ◦C. The measured dark count rate

(thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.52: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.75. The average

of the two values is plotted. This test was conducted at the 2.68× 109 p/cm2 cumulative

proton fluence mark at a detector temperature of −80 ◦C. The measured dark count rate

(thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.53: Histogram of potential values of afterpulsing probability with the ratio of

the values derived from two different approaches set with no imposed threshold value

on the ratio. The average of the two values is plotted. This test was conducted at the

2.68× 109 p/cm2 cumulative proton fluence mark at a detector temperature of −80 ◦C. The

measured dark count rate (thermal count rate plus afterpulse count rate) was 892.6 Hz.
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Figure 3.54: Probability mass function of time difference between consecutive time tags for

Radiation DM2 test #14a detector #3. This test was conducted at the 1.4× 1010 p/cm2

cumulative proton fluence mark at a detector temperature of −80 ◦C. The measured dark

count rate (thermal count rate plus afterpulse count rate) was 1275.3 Hz.
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Figure 3.55: Probability density function of time difference between consecutive time tags

for Radiation DM2 test #14a detector #3. This test was conducted at the 1.4× 1010 p/cm2

cumulative proton fluence mark at a detector temperature of −80 ◦C. The measured dark

count rate (thermal count rate plus afterpulse count rate) was 1275.3 Hz.
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Figure 3.56: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.99 for Radiation

DM2 test 14a detector 3. The average of the two values is plotted. This test was con-

ducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector temperature

of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse count rate)

was 1275.3 Hz.
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Figure 3.57: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.95 for Radiation

DM2 test 14a detector 3. The average of the two values is plotted. This test was con-

ducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector temperature

of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse count rate)

was 1275.3 Hz.
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Figure 3.58: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.90 for Radiation

DM2 test 14a detector 3. The average of the two values is plotted. This test was con-

ducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector temperature

of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse count rate)

was 1275.3 Hz.
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Figure 3.59: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.85 for Radiation

DM2 test 14a detector 3. The average of the two values is plotted. This test was con-

ducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector temperature

of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse count rate)

was 1275.3 Hz.
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Figure 3.60: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.80 for Radiation

DM2 test 14a detector 3. The average of the two values is plotted. This test was con-

ducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector temperature

of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse count rate)

was 1275.3 Hz.
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Figure 3.61: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches set to a threshold value of 0.75 for Radiation

DM2 test 14a detector 3. The average of the two values is plotted. This test was con-

ducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector temperature

of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse count rate)

was 1275.3 Hz.

119



Figure 3.62: Histogram of potential values of afterpulsing probability with the ratio of the

values derived from two different approaches with no threshold value imposed on the ratio,

for Radiation DM2 test 14a detector 3. The average of the two values is plotted. This

test was conducted at the 1.4× 1010 p/cm2 cumulative proton fluence mark at a detector

temperature of −80 ◦C. The measured dark count rate (thermal count rate plus afterpulse

count rate) was 1275.3 Hz.
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Figure 3.63: Afterpulsing probability is plotted against cumulative radiation fluence. Time

difference between consecutive time tags is histogrammed using dark count measurement

data for DM 1. An algorithm calculates afterpulsing probability. All tests were conducted

at an APD temperature of −80 ◦C.
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Figure 3.64: Afterpulsing probability is plotted against cumulative radiation fluence. Time

difference between consecutive time tags is histogrammed using dark count measurement

data for DM 2. An algorithm calculates afterpulsing probability. All tests were conducted

at an APD temperature of −80 ◦C.
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3.4 Conclusion

The effects of repeated application of proton radiation and annealing on Silicon avalanche

photodiodes was studied. Each of the five detectors in the DM was characterized for differ-

ent parameters. Of these, the output pulse characteristics (i.e., the amplitude and FWHM),

recharge time, detection efficiency, timing jitter and saturation value were not affected by

annealing or proton radiation. The breakdown voltage was found to have a positive linear

correlation with respect to detector temperature. Three different afterpulsing algorithms

were discussed. In general, the afterpulsing probability increased with respect cumulative

radiation fluence. However, it was difficult to ascertain if the radiation for annealing itself

caused this increase. The algorithm that used the time difference between consecutive time

tags especially shows that annealing might have a tendency to increase afterpulsing proba-

bility. The algorithm that used the efficiency measurement data also seems to corroborate

this, though to a slighter lesser extent.

The dark count rates increased with proton radiation with a few instances of exception

to this rule. The increase in dark count rate per unit fluence of proton radiation was

shown to be independent of the cumulative radiation fluence mark - the quantity remained

more or less the same over the course of the tests. Dark count rates in general decreased

with thermal annealing, again with a few exceptions to this rule. Annealing was successful

in lowering the dark count rates below 500 Hz on most detectors up to the 3 year LEO

equivalent cumulative radiation fluence (6× 109 p/cm2), well beyond the projected two year

lifetime of the satellite. However, the post-annealing dark count rates steadily increase with

cumulative proton radiation, showing that annealing was not able to completely mitigate

the effects of radiation. The annealing reduction factor (ARF) was used as a measure to

gauge the effectiveness of annealing. The ARF value was the highest the first time annealing

was used on a given detector. Subsequent instances had ARF values uncorrelated with

cumulative proton fluence as well as pre-annealed dark count rates. Typical ARF values

of 2-5 were observed. Finally, lower temperatures (as low as −110 ◦C) were successfully

explored as a means to decrease dark count rates to below 100 Hz at the 1× 1010 p/cm2

mark. The current temperature feedback device however will need to be modified in order

to operate at such low temperatures in closed loop control.

Two approaches towards annealing were considered - one where the DM was annealed

after every incremental exposure to proton radiation and the other where the DM was

annealed only if the post-radiation dark count rate increased beyond a threshold value of

2 kHz. The approach of annealing when the dark count rate exceeded the threshold values

showed slightly lower post-annealing dark count rates as well as slightly higher ARF values
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suggesting that frequent annealing might not be beneficial. Since this advantage was small

(less than an order of magnitude) and could only be compared on two tests, more tests

would be needed to make a strong inference. Dark count rates seemed to decrease the

fastest during the earlier in the annealing phase rather than later.

The detector parameters seem to be in operating range for the entirety of the ex-

periments. The main conclusion was that although the dark count rates increased with

temperature, annealing was effective in mitigate this, and so was lower operating detector

temperatures. Some anomalies were detected, the effect of detector circuit temperature on

the detector parameters must be explored in detail.
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Chapter 4

Characterization of Avalanche Photo Diode in

Thermal Vacuum

4.1 Motivation

The APD’s are expected to operate in outer space as part of a QKD satellite. The satellite

is proposed be in a low Earth orbit (LEO). This means that the DM will be exposed to

vacuum. One needs to consider how the DM as a whole would behave in vacuum. AS

such the APD’s parameters aren’t expected to change in vacuum. However, it is still

important to ensure that these parameters don’t drift under in vacuum and that any

inferences drawn from the parameters measured at our laboratory at IQC in section 2

or during the radiation experiments mentioned in section 3 are valid in vacuum as well.

Towards this end, a thermal vacuum (TVAC) experiment was devised to test the effects of

vacuum on the DM’s operation. The word thermal denotes that in vacuum, we have the

capability of controlling the temperature of the radiator or exterior of the DM to simulate

the thermal conditions when the DM on the satellite is facing away from the Sun or is in the

shadow of the Earth. Some aspects of the setup which could potentially behave differently

is the absence of convective cooling. In the gaseous medium of the Earth’s atmosphere,

convection aids to cool the DM - the APD’s and their associated circuitry. However, in

vacuum convective cooling is absent. Depending on the rate of radiative heat dissipation

and internal heat generation, this could potentially be a concern. Also, there DM has

high voltage circuit - we apply a bias voltage to the APD of the order of 300 V. Under

such circumstances, there is a small likelihood to have arcing. Primarily arcing requires a

gaseous medium - although vacuum arcing does exist, but this would be common to both

atmospheric conditions and vacuum conditions. In the absence of a gaseous medium, the
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chances for arcing are lesser. This is beneficial but it would still be nice to experimentally

see the effects of vacuum.

4.2 Experimental Setup and test sequence

The thermal vacuum tests were conducted at the David Florida Laboratory (DFL) in

Kanata near Ottawa. A vacuum chamber was used to create the conditions of vacuum.

Pressures of the order of 1× 10−8Torr, about 10 billion times lesser than atmospheric

pressure, were achieved inside the chamber. The experimental set up is nearly the same

as the one used at IQC laboratory described by the schematic diagram in figure 2.2. A

key difference is that the TVAC DM has five detectors unlike the prototype that was used

in section 2. Also, the freezer was not used to change the radiator’s temperature because

the TVAC chamber had a plate inside the chamber whose temperature can be controlled.

Also, only the PicoQuant laser was used because it was portable - the mode locked laser

could not be transported offsite. The rest of the set up is nearly identical to the one used

in the IQC laboratory.

A few room temperature tests at ambient pressure were performed first at a partner

company Neptec (test #00) and then at DFL (test #01). Then the DM was sealed in the

vacuum chamber and vacuum pressure was achieved. Here, another room temperature test

was performed - test 02. For these tests, a detector temperature of −20 ◦C was used. The

purpose of these room temperature tests was mainly to make sure the the DM is functional

and there isn’t any problem with the associated electronics along the way. Dark counts

tend to increase with APD temperature. Hence, cooling the detectors with TEC’s is one

way to decrease dark counts. So the detectors were then cooled to −80 ◦C. From here

on different combination of temperatures for the bracket and radiator were tried under

vacuum conditions while maintaining the APD temperatures at −80 ◦C. Finally, the DM

was brought back to ambient pressure and a room temperature test with the detectors

at −20 ◦C was performed. For all tests,a bias voltage of 20 V was applied to APD. The

discriminator voltage was set to 50 mV. This means that the discriminator circuit on only

allows output pulses with a voltage amplitude greater than 20 V to reach the time tagger

/ oscilloscope.

Note: The DM used in the TVAC tests had not been irradiated with protons.
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Figure 4.1: Breakdown voltage of APD is plotted as a function of temperature. A linear

dependence is found.

4.3 Results and Discussions

The APD’s were characterized during each test for breakdown voltage, output pulse charac-

teristics, recharge time, dark counts, detection efficiency, saturation value and afterpulsing

probability. The details of how each of these parameters were measured or calculated is

given in section 2.

4.3.1 Breakdown Voltage

The breakdown voltage was measured during each test. Results are shown in figure 4.1. The

breakdown voltage shows a nearly positive linear correlation wit APD temperature. This

temperature dependence again emphasizes the importance of determining the breakdown

voltage before every test even if all the conditions of the experimental set up remain the

same - small variations in the breakdown voltage can effectively change the over-voltage

on the detectors.

127



-2 -1 0 1 2 3 4 5 6 7 8

Time [s] 10-9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
m

pl
itu

de
 [V

]

Detector 1
Detector 2
Detector 3
Detector 4
Detector 5

Figure 4.2: Output pulse shape for test #05 for all five detectors. The detector temperature

was −80 ◦C.

4.3.2 Output Pulse Shape

The output from the APD’s were connected to an oscilloscope. The output pulse was

visualized on the screen. A sample of the output pulse for all five detectors on test #05

is shown in figure 4.2. The amplitude and full width at half maximum (FWHM) of the

pulse was visually determined. The amplitude of the output pulse showed a tendency to

increase while the FWHM value showed a tendency to decrease. Upon further investigation,

the area under the curve calculated by the Riemann integral does not show a tendency

for increase/decreases. The area under the curve is directly related to the energy of the

output pulse which is expected to be constant because of the constant input voltage. The

constancy of the area under the pulse curve shows that the energy of the output pulse is

more or less constant. However, the reason for the changes in amplitude and FWHM is

unknown. Such changes were not observed in the laboratory at IQC.
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Figure 4.3: Screenshot of oscilloscope while calculating recharge time in TVAC experi-

ments. The oscilloscope was set to persistent mode and about 2-3 minutes were needed

for the graph to get populated with data points. The amplitude of the next output pulse

following any given output pulse increases (and asymptotes) as the time difference between

the two pulses increases.

4.3.3 Recharge Time

The oscilloscope is set to persistent mode and the recharge curve is populated with dark

counts. The laser can be turned on if the dark count rate is low and one wants to speed

up the process of populating the recharge curve. A screen shot of the oscilloscope screen is

given in figure 4.3. Details of the process of measuring the recharge time is given in section

2.2.4. The recharge time values are plotted with respect to APD temperatures in figure

4.4. The recharge time showed a slight positive correlation with temperature. However,

one must also account for the fact that the recharge time was visually measured off the

oscilloscope screen and the precision was about 50 ns. So, the correlation might be less

stringent than what appears directly in figure 4.4.
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Figure 4.4: Recharge time is plotted as a function of detector temperature. The recharge

time is calculated as the time taken for the recharge time curve in figure 4.3 to reach 63%

of it’s maximum height.
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Figure 4.5: Dark count rate is plotted as a function of detector temperature. The dark

count rate tends to increase linearly with detector temperature.

4.3.4 Dark Counts

The dark count rate was measured in the absence of ambient light - black cloth was used to

cover the optical fibers. The laser was turned off for this experiment. The detector clicks

were time tagged. The dark counts are plotted in figure 4.5 with respect to APD tempera-

ture. Dark count rate shows a nearly positive linear correlation to APD temperature. It is

important to note that these dark counts included both thermal counts which are Poisson

distributed in time as well as their generations of afterpulses.

4.3.5 Detection Efficiency

With the laser turned on, the optical power meter placed just before the DM in the optical

path lets us calculate the rate of photons hitting the detectors. Comparing this to the

detector click rate and ignoring the possibility of afterpulses in the APD’s, one can calculate
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the detection efficiency. Details of this calculation are explained in section 2.2.6. The

detection efficiency at the room temperature tests at DFL were in the range 23% to 35%.

The efficiency on test #00 was a bit higher than the aforementioned range. It was found

out to be in the range 34 - 45%. This test was conducted at Neptec and changes in optical

shielding - specific optical fibers and their lengths, the specific arrangement of the black

light shielding cloth, etc. can easily account for this change. The manufacturer specified

efficiency of the detector itself is about 60%. This does not account for optical efficiency

of the optical path from laser to APD. The optical efficiency can be in the range of 50 -

70%. This satisfactorily explains the observed values of detection efficiency.

The efficiency at cold temperatures (below −70 ◦C) drastically dropped. The vast

majority of the cold temperature tests had observed detection efficiency in the range 3 - 16%

with only three instances where the detection efficiency of a detector in the range 16 - 33%.

This was not expected. Moreover, the decrease in efficiency was strongly correlated to the

radiator temperature. Since the bracket and detector TEC’s were functioning and stabilized

to attain a specific bracket and detector temperature, there was some contention that the

drop in efficiency was caused by something outside the DM. A series of troubleshooting

tests were conducted. One included the DM being connected directly to the laser (and

not using any mating sleeves) to find that the efficiency returned back to normal. Also,

heating the radiator to room temperature cause the efficiency to return back to normal.

It was finally determined that the mating sleeve which connects optical fibers along the

optical path was not rated for use at cold temperature - it was only rated for vacuum.

The mating sleeves were resting on the radiator and their temperature varied with the

radiator’s temperature. This was the source of loss of detection efficiency.

4.3.6 Timing Jitter

Th PicoQuant laser is used to determine the timing jitter of the detectors. The system

timing jitter was first calculated by calculating the time difference between the laser clock

pulse and the corresponding detector click caused by the photon hitting the detector.

The time difference has a distribution shown in figure 4.6. The standard deviation of

distribution gives the overall system’s timing jitter. Then one can calculate the timing

jitter of the detector by accounting for the time tagger’s and laser source’s timing jitter.

Details of this calculation are given in section 2.2.7 (look for the calculations regarding

the PicoQuant laser, not the mode locked laser). The calculated FWHM value (instead

of standard deviation for the approximated Gaussian) of timing jitter values are plotted

against APD temperature in figure 4.7. The timing jitters of the detectors were calculated
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Figure 4.6: Histogram of photon coincidences for test #05 at a detector temperature of

−80 ◦C. The timing jitter is then calculated as the width of this curve. Each curve is

curve fitted using a Gaussian equation. The width (or standard deviation) of the resulting

Gaussian is a measure of the timing jitter of that detector.

to be in the range 525 - 900ps. This is slightly higher than was expected because the tests

with the prototype had given rise to jitter value sin the range 400 - 800 ps.

Test 00 gave rise to somewhat higher jitter values that the rest of the tests. This test

was conducted at Neptec and high dark counts two orders of magnitude higher than the

room temperature tests at DFL. My guess is that this increase in dark counts may have

affected the algorithm that determined the coincidences between laser pulses and photon

induced detector clicks. and caused a horizontal spread in the histogram in figure 4.6. Also,

detector #1 on the DM showed a consistently higher jitter than the rest of the detectors.

Th cause of this is unknown.
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Figure 4.7: Timing jitter of detectors as a function of detector temperature in TVAC

experiment
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4.3.7 Saturation

The maximum count rate , or saturation value, was determined by varying the input laser

power. The details of this procedure are given in section 2.2.8. The saturation values were

in the range 325 - 780 kHz. One notices that the saturation values are higher at lower

APD temperatures. For example, the room temperature tests had saturation value sin the

range 325 - 590 kHz whereas the cold temperature tests had saturation values in the range

470 - 780 kHz. My contention is that the decreased efficiency could potentially require a

larger laser power to saturate the detectors and since the optical power meter was earlier

in the optical path than the mating sleeve which caused the loss of efficiency, it is possible

that the optical power meter would have recorded a large power but the APD’s receive a

fraction of the photons.

4.4 Conclusion

The DM was characterized for a combination of different APD temperatures, bracket

temperatures and radiator temperatures in the conditions of vacuum of the order of

1× 10−8Torr. The parameters measured were breakdown voltage, output pulse amplitude

and FWHM, recharge time, dark counts, detection efficiency, timing jitter and saturation.

Some of the values, especially the timing jitter were higher than expected. The reason for

this has not been ascertained and future tests can look into the cause to this deviation. The

output pulse amplitudes and FWHM also changed over the course of the tests. This could

also be the motivation for further study. Finally, the drop in efficiency at cold temperatures

was determined to be due to the mating sleeves that were not rated for cold temperatures.

Most other parameters behaved as expected. The minor anomalies , for example,the in-

creased timing jitter of detector #1 can also be explored. Of central importance, the DM

survived the vacuum state in operating condition.
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Chapter 5

Theoretical Analysis of Afterpulsing

5.1 Motivation

Afterpulses are output avalanches in an APD that are correlated with a previous avalanche.

During any given avalanche, there is a finite probability that an electron can get trapped

in a trap site in the APD and released at a later time. This probability is called the af-

terpulsing probability. It is generally thought that the afterpulsing probability is constant

for a given spatial density of trap sites in the APD substrate and fixed operational con-

ditions (over-voltage, etc.). Even if the probability with which an electron gets trapped

remains fixed, it is conceivable that the experimentally observed afterpulsing probability

may change with parameters such as thermal counts rate, signal photon rate and dead

time. To give a brief intuition, the dead time plays a key role here. If a trapped electron

gets detrapped during a dead time period (i.e., when the detector is inactive), it does not

cause an avalanche. Hence, you do not get an afterpulse. I want to distinguish between two

terms used in this chapter: Afterpulsing probability is the probability with which one elec-

tron gets trapped in a trap site during an avalanche. The observed afterpulsing probability

is the probability with which an avalanche successfully gives rise to a second avalanche

when the trapped electron gets detrapped.

Note: I assume that during an avalanche exactly zero or one electron gets trapped.

Multiple electrons in an avalanche can’t get trapped.

A high value of dead time can decrease the observed afterpulsing probability because the

detector is unable to avalanche for a longer period of time, thereby increasing the chances

that a trapped electron can get detrapped when APD is inactive. High thermal count rate

and signal photon rate can both also decrease the observed afterpulsing probability because
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the time tag file becomes increasingly cluttered with dead regions, each following every

detector click. This also increases the chances that the trapped electron will get detrapped

when the APD is inactive. In the following subsections, I quantitatively derive expressions

for observed afterpulsing probabilities from first principles using as few assumptions as

possible. In section 5.2, I derive an expression for the observed afterpulsing probability as

a function of thermal count rate.

5.2 Observed afterpulsing probability as a function of thermal counts

Let the afterpulsing probability of the APD detector be denoted by pap. The detrapping

time of a trapped electron is given by modeled by a random variable which follows an

exponentially decaying time distribution given by

p.d.f. of detrapping time of a trapped electron = λap e
−λap t (5.1)

� λap is the detrapping time constant, also called the afterpulsing time constant because

the process of trapping of electron and the process of the detrapped electron causing

an avalanche are assumed to occur on negligible time scales.

� t is the time elapsed since the electron got trapped.

Equation 5.1 is actually a conditional probability where the condition is the trapping

of the electron. The area under the curve from t = 0 to t = ∞ is unity, representing the

fact that a trapped electron gets detrapped with 100% probability.

∫ ∞
t=0

λap e
−λap tdt = 1 (5.2)

If one wants to find the probability density function (p.d.f.) of the time distribution

for an afterpulse to occur following any arbitrary avalanche, equation 5.1 is not directly

applicable because not every avalanche results in a trapped electron. Instead the proba-

bility of trapping an electron is given by pap. Thus, if one renormalizes equation 5.1 such

that the area under it’s curve is pap instead of unity, one gets the required p.d.f. of the

time distribution for an afterpulse to occur following an arbitrary avalanche

p.d.f. of time for afterpulse to occur = pap λap e
−λap t (5.3)
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Figure 5.1: Probability density function of the time required for an afterpulse to occur

following any arbitrary avalanche. The equation of the curve is of the form pap λap e
−λap t

where pap is the afterpulsing probability and λap is the afterpulsing time constant. The

area under the curve is pap because an arbitrary avalanche gives rise to an afterpulse not

with 100% probability but with the afterpulsing probability pap

where t is the time elapsed after an arbitrary avalanche

One must however be careful to only deduce statistical results from this p.d.f. and not

inferences about a particular avalanche because the probability pap in equation 5.3 denotes

that it is applied to arbitrary avalanches which may or may not result in an afterpulse.

The area under the curve is pap.

∫ ∞
t=0

pap λap e
−λap t dt = pap (5.4)

The curve in equation 5.3 is sketched in figure 5.1

Equation 5.3 assumes zero dead time. With no dead time, every detrapped electron

would produce an avalanche. Thus, the observed afterpulsing probability would be equal to

pap. However, as explained earlier, the presence of finite dead time decreases the observed
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afterpulsing probability because in the range t = [ 0, ∞ ), there could be dead time

regions induced either by avalanches that occur at some time in the finite future or by

the avalanche whose afterpulsing distribution we are trying to calculate itself. One would

thus need to modify the p.d.f. in equation 5.3 to consider dead time. The area under this

modified curve would then be the observed afterpulsing probability. One can divide the

time axis into three regions:

� t = [ 0, τd )

� t = [ τd, 2τd )

� t = [ 2τd, ∞ )

where τd is the dead time

5.2.1 Region t = [ 0, τd )

The avalanche in question itself induces a dead time period which by definition runs from

t = 0 to t = τd. Since in this region, an afterpulse cannot occur even if the possibly trapped

electron gets detrapped, the p.d.f. for the time distribution of afterpulse in equation 5.3

assumes a value of 0.

p.d.f. of time for afterpulse to occur = 0 , t = [ 0, τd ) (5.5)

5.2.2 Region t = [ 2τd, ∞ )

Let’s assume that the electron gets detrapped at some time instant t = t0. In order for

this detrapped electron to trigger an avalanche, the detector must be active. This means

that no detector click can occur in a time window of width τd to the left of t = t0. If

such a detector click did occur, it would induce a dead time period and the time instant

t = t0 would fall within this period, thus the detector won’t be able to avalanche when

the electron gets detrapped. It is worthwhile to note that I am assuming a 100% detector

efficiency, i.e., every potential avalanche physically occurs. In the absence of signal photons,

two kinds of detector clicks can occur - thermal counts and afterpulses (not the afterpulse

in question). I will only consider thermal counts in this discussion. WE would like to

find the probability that no thermal counts occur in a time window of width τd to the

left of t = t0. Thermal counts occur randomly follow a Poisson distribution in time. The
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probability of detecting k thermal counts is a time interval of some fixed length is given

by P (k) as follows:

P (k) = e−λ
λk

k!
(5.6)

where λ is the average number thermal counts in the time interval.

One must note that since the thermal counts occur randomly in time, the probability

P (k) depends only on the width of the time interval and is independent of the position of

the time interval in the time tag file. Thus for a time window of width τd and an average

thermal count rate of d counts/second, the average number of thermal count in the time

window is given by

λ = d τd (5.7)

The probability of having no thermal counts in this time window can be derived from

equations 5.6 and 5.7 by substituting k = 0 to get

P (k = 0) = e−λ = e−dτd , t = [ 2τd, ∞ ) (5.8)

Any point on the p.d.f. in equation 5.3 in the region [ 2τd, ∞ ) should be multiplied

by the factor e−dτd because given knowledge that an electron has been detrapped at time

t = t0, it triggers an avalanche not with probability 1 but with probability e−dτd , the

probability that no thermal counts occur in the aforementioned time window. Thus the

modified p.d.f. in this region becomes

p.d.f. of time for afterpulse to occur = pap λap e
−λap t e−dτd , t = [ 2τd, ∞ ) (5.9)

5.2.3 Region t = [ τd, 2τd )

In the region t = [ τd, 2τd ), the same argument as in subsection 5.2.2 applies. However,

the width of the time window to consider is no longer τd. This is because if one tries to

consider a time window of width τd to the left of some time instant t = t0 in the region

t = [ τd, 2τd ), one impinges into the region t = [ 0, τd ) which was already addressed in

subsection 5.2.1. Instead the left edge of the time window should be at t = τd. Since the

right edge of the time window is at t = t0, the width of the time window is t0 − τd. Let’s
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change the notation here a bit. Since we are looking for a modified p.d.f. of equation 5.3

which is already a function of the time variable t, the time window to consider to the left

of an arbitrary time instant t in the region t = [ τd, 2τd ) should be of width t − τd. The

average number of thermal counts occurring in this window is given by

λ = d (t− τd) , t = [ τd, 2τd ) (5.10)

According to equation 5.6, the probability of having zero thermal counts is given by

P (k = 0) = e−λ = e−d(t−τd) , t = [ τd, 2τd ) (5.11)

Thus the p.d.f. in equation 5.3 should be multiplied by the factor e−d(t−τd) because this

is the probability with which a detrapped electron in this region can trigger an avalanche.

The modified p.d.f. in region t = [ τd, 2τd ) is given by

p.d.f. of time for afterpulse to occur = pap λap e
−λap t e−d(t−τd) , t = [ τd, 2τd ) (5.12)

5.2.4 Deriving the observed afterpulsing probability from the modified after-

pulsing time distribution

The modified p.d.f. of time distribution for an afterpulse to occur over the entire range

t = [ 0, ∞ ) is now given by

p.d.f. of time for afterpulse to occur =

0 , t = [ 0, τd )

pap λap e
−λap t e−d(t−τd) , t = [ τd, 2τd )

pap λap e
−λap t e−dτd , t = [ 2τd, ∞ )

(5.13)

The observed afterpulsing probability is got by simply integrating the modified p.d.f.

of afterpulsing time distribution given in equation 5.13 over the time interval t = [ 0, ∞ ).

Let’s integrate over each of the three regions separately and then add the probabilities.

Let the area under the modified p.d.f. in the region t = [ 0, τd ) be PI .

PI = 0 (5.14)
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Let the area under the modified p.d.f. in the region t = [ τd, 2τd ) be PII .

PII =

∫ 2τd

t=τd

pap λap e
−λap t e−d(t−τd) dt

= pap λap e
dτd

∫ 2τd

t=τd

e−(λap+d)t dt

= pap
λap

λap + d
edτd (e−(λap+d)τd − e−2(λap+d)τd)

= pap
λap

λap + d
e−λapτd (1− e−(λap+d)τd)

(5.15)

Let the area under the modified p.d.f. in the region t = [ 2τd, ∞ ) be PIII .

PIII =

∫ ∞
t=2τd

pap λap e
−λap t e−dτd dt

= pap λap e
−dτd

∫ ∞
t=2τd

e−λap t dt

= pap λap e
−dτd e

−2λapτd

λap

= pap e
−λapτd e−(λap+d)τd

(5.16)

Thus, the observed afterpulsing probability, pobs is given by

Observed afterpulsing probability, pobs = PI + PII + PIII

= 0 + pap
λap

λap + d
e−λapτd (1− e−(λap+d)τd)

+ pap e
−λapτd e−(λap+d)τd

=
pap e

−λapτd

λap + d
(λap + d e−(λap+d)τd)

(5.17)

Thus, every avalanche produces an afterpulse with probability pobs. Figure 5.2 plots

the observed afterpulsing probability pobs as a function of thermal count rate d according

to the equation 5.17. The afterpulsing probability pap (the probability of a charge carrier

getting trapped) is fixed at 25%. The afterpulsing time constant λap is fixed at 5× 103 s−1.

Finally, the dead time τd was assumed to be 1× 10−5 s and the recharge time τR was

assumed negligible.
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Figure 5.2: The observed afterpulsing probability is plotted against thermal count rate

in accordance with equation 5.17. The afterpulsing probability pap (i.e., probability of a

charge carrier getting trapped) is assuumed to be 25% with afteprulsing time constant λap

= 5× 103 s−1 and the dead time τd = 1× 10−5 s
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The observed afterpulsing probability decreases as the thermal count rate increases.

This is in keeping with the notion that the increasing number of thermal counts induce

more dead time regions in the time tag file. A charge carrier that is trapped then has

an increasing likelihood of being released when the detector is in a dead time region,

thus failing to trigger a second avalanche, the afterpulse. This decreases the observed

afterpulsing probability. One notices that the observed afterpulsing probability at zero

thermal count rate isn’t 25% (the value that was ascribed to pap). This is due to the

presence of dead time region induced by the start time tag itself. IF the trapped charge

carrier is detrapped during this dead time, it can’t trigger an afterpulse, hence reducing

the observed afterpulsing probability to slightly below 25%. The graph shows that this

value is 23.76%. Of course one can set d = 0 in equation 5.17 to get this value. But in

order to get more insight, let’s try to theoretically derive this value from first principles.

The area under the time distribution of detrapping of a charge carrier given by equation

5.3 is papλap. The dead time occurs in the interval t = [ 0, τd ). To evaluate the observed

afterpulsing probability when no thermal counts are present, one must integrate the p.d.f.

of detrapping of charge carrier between the limits t = τd and t = ∞ because it is only in

this region that a detrapped charge carrier can trigger an afterpulse. Therefore,

Observed afterpulsing probability, pobs

∣∣∣
d=0

=

∫ ∞
t=τd

pap λap e
−λap t dt

= −pap
[
e−λapt

]t=∞
t=τd

= pape
−λapτd

= 0.25× e−(5×103)×(1×10−5)

= 0.2378 = 23.78%

(5.18)

I would like to point out that a thermal count rate of zero doesn’t make sense in this

scenario because this would mean that there are no counts in the time tag files (not even

afterpulses which require thermal counts to occur). But equation 5.18 requires us to assume

a start time tag. Hence this result can only make sense in the limit d→ 0.
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Figure 5.3: Following an arbitrary detector click (also called the start time tag), we consider

a time interval of width ∆t after time t has elapsed since the start time tag.

5.3 Afterpulsing probability calculation from time tag file of APD

5.3.1 Theoretical derivation of probability density function of the next detector

click

Here, I will derive an analytical expression for the p.d.f. of the time difference between

consecutive detector clicks as a function of that time differencet. Another way to think

about this graph is that it is the p.d.f. of when the next detector click occurs as a function

of time elapsed t since any given detector click.

Let’s consider an arbitrary detector click and call it the ”start time tag”. The next

detector click occurs at some finite time t after the start time tag. Figure 5.3 illustrates

this. Let’s start by aiming to find the probability that the next click will occur in a small

tie interval of width ∆t whose left edge coincides with the time instant t as shown in the

figure 5.3. I assume there are no signal photons of stray photons from ambient light hitting

the APD. The detector clicks are due to thermal counts and afterpulses. Therefore the

next detector click can either be a thermal count of an afterpulse of the start time tag. I am

currently not considering afterpulses of detector clicks that are not the start time tag. The

following are the requirements for the next detector click to occur in the aforementioned

time interval ∆t.

1. No thermal count occurs in the time interval [ 0 , t )
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2. No afterpulse occurs in the time interval [ 0 , t )

3. Either a thermal count or afterpulse occurs in the time interval [ t , t+ ∆t ]

Thermal counts obey Poisson statistics. The probability of having k thermal counts in

a given time interval is given by equation 5.6. If d is the thermal count rate, the average

number of thermal counts λ occurring in any time interval of width t∗ is given by d× t∗.
The position of the time interval is not important since thermal counts occur randomly.

Only the width is important.

The probability P 0→t
NT that no thermal counts occur in the time interval [ 0 , t ) is

calculated by setting k = 0 and λ = d× t in equation 5.6.

P 0→t
NT = P (k = 0) = e−λ = e−dt (5.19)

The p.d.f. of the time required for the afterpulse of the start time to occur is given by

equation 5.3. The probability P 0→t
A that an afterpulse of the start time tag occurs in the

interval [ 0 , t ) is given by

P 0→t
A =

∫ t

0

papλape
−λapt′dt′

= pap(1− e−λapt)
(5.20)

Therefore, the probability P 0→t
NA of not having an afterpulse of the start time tag in the

interval [ 0 , t ) is given by

P 0→t
NA = 1− P 0→t

A

= 1− pap(1− e−λapt)
(5.21)

The probability P t→t+∆t
TorA of having either a thermal count or an afterpulse in the interval

[t, t+ ∆t] is given

P t→t+∆t
TorA = 1− probability of having neither thermal count nor afterpulse in interval[t, t+ ∆t]

= 1− P t→t+∆t
NT × P t→t+∆t

NA

(5.22)
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� P t→t+∆t
NT is the probability of not having a thermal count in the interval [t, t+ ∆t]

� P t→t+∆t
NA is the probability of not having an afterpulse of the start time tag in the

interval [t, t+ ∆t]

Now,

P t→t+∆t
NT = P (k = 0) = e−λ = e−d∆t (5.23)

since d∆t is the average number of thermal counts in the time interval [t, t+ ∆t]. Also,

the probability P t→t+∆t
A of having an afterpulse in the interval [t, t+ ∆t] is given by

P t→t+∆t
A =

∫ t+∆t

t

papλape
−λapt′dt′

= pape
−λapt(1− e−λap∆t)

(5.24)

Therefore

P t→t+∆t
NA = 1− P t→t+∆t

A

= 1− pape−λapt(1− e−λap∆t)
(5.25)

Putting equations 5.23 and 5.25 into equation 5.22, we get

P t→t+∆t
TorA = 1− e−d∆t(1− pape−λapt(1− e−λap∆t)) (5.26)

Now, to find the probability P t→t+∆t
next click that the next detector click occurs in the time

interval [t, t + ∆t], Ursin and Peev [33] suggests that the probability of finding the next

click in the nth bin involved the event of detecting a click in the nth bin and the events of

not detecting clicks in each of the first n− 1 bins. Furthermore, they suggest multiplying

the corresponding probabilities. For this problem, equation 5.27 would be the suggested

expression for P t→t+∆t
next click.

P t→t+∆t
next click = P 0→t

NT × P 0→t
NA × P t→t+∆t

TorA (5.27)

Putting equations 5.19, 5.21 and 5.26 into equation 5.27, we get

P t→t+∆t
next click = e−dt × (1− pap(1− e−λapt))× (1− e−d∆t(1− pape−λapt(1− e−λap∆t))) (5.28)
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I then simulated thermal counts and afterpulse timetags in MATLAB and generated

the histogram of time difference between consecutive detector clicks and compared it with

equation 5.28 because I had access to the true values of dark count rate, afterpulsing

probability and afterpulsing time constant. It was a close match but there was a tiny but

noticeable deviation. After thinking about the problem at hand, when the probabilities

were multiplied in equation 5.28, the underlying assumption was that they correspond to

independent events. Since the dark counts were viewed as a Poisson process, this is true

for the way the corresponding probabilities were formulated. However, when considering

the afterpulsing probability, if the afterpulse of the start time tag is the very next click and

say it occurs in the nth bin, then the event that the afterpulse of the start time tag doesn’t

occur in the first n− 1 bins is automatically manifested. The occurrence of the afterpulse

in the nth bin and the non-occurrence of the afterpulse in the first n − 1 bins are not

independent events. Hence, one cannot possibly multiply them. It only suffices to consider

the probability that the afterpulse occurs in the nth bin. The conditional probability of the

non-occurrence of the afterpulse in the first n − 1 bins given that the afterpulse occurred

in the first n− 1 bins is unity.

In fact, this caveat is not peculiar to the afterpulsing itself. It does exist in the thermal

counts scenario in a subtle way. Let’s consider the case of no afterpulses and only thermal

counts. Then when a start time tag is a thermal count, the probability of the next click (a

thermal count) being in the the time interval [t, t+∆t] can be calculated by two approaches.

The first involves the method we have been using - calculate the probability of occurrence

of at least one thermal count in the in the interval [t, t + ∆t] (given by 1 − ed−∆t) and

the probability of non-occurrence of the thermal counts in the interval [0, t] (given by

e−dt). Although, we have considered a start time tag, we can also zoom out and look at

the whole time tag file. Then it is evident that the occurrence / non-occurrence of at

at least one thermal count in any time interval is independent of the occurrence / non-

occurrence of at at least one thermal count in any other time interval. Thus to find the

probability P t→t+∆t
next click of the next click being in the interval [t, t+ ∆t], one can multiply the

aforementioned probabilities as follows

P t→t+∆t
next click = P 0→t

NT × P t→t+∆t
T

= e−dt(1− ed−∆t)
(5.29)

The second approach would be to consider the probability density function of the

occurrence of the next click as a function of time elapsed since the previous on for a

Poisson process. This is an exponentially decaying distribution given in our case by de−dt.
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So, if the start time tag is a thermal count, the probability P t→t+∆t
next click of the next click

occurring in the interval [t, t+ ∆t] is given by integrating the p.d.f. between the limits of

the interval

P t→t+∆t
next click =

∫ t+∆t

t

de−dtdt

= −e−d(t+∆t) + e−dt

= e−dt(1− e−d∆t)

(5.30)

We don’t have to consider the probability of the non-occurrence of thermal counts in

the [0, t] bins because the occurrence of the thermal counts in the interval [t, t+∆t] implies

this, and were not ”zoomed out” but have our reference as the start time tag. This is a

sanity check that when using the p.d.f of next click of a sub process like thermal count (or

afterpulse). Thus, equation 5.22 is wrong when considering the case that the next click is

an afterpulse of the start time tag.

To accommodate for this, I considered three separate cases. Case 1, where only thermal

counts occur in the interval [t, t+ ∆t]. Case 2, where only the afterpulse of the start time

tag occurs in the interval [t, t+ ∆t]. Case 3, where both thermal counts and the afterpulse

of the start time tag occur in the interval [t, t + ∆t]. In all three cases, no detector clicks

occur in the interval [0, t]

Case 1: The probability P1 where at least one thermal count occurs in the interval

[t, t+ ∆t] is given by

P1 = P t→t+∆t
T P 0→t

NT P 0→t+∆t
NA

= (1− e−d∆t) e−dt
[
1− pap

(
1− e−λap(t+∆t)

)] (5.31)

Case 2: The probability P2 where the afterpulse of the start time tag occurs in the

interval [t, t+ ∆t] is given by

P2 = P t→t+∆t
A P 0→t+∆t

NT

= pap
(
e−λapt − e−λap(t+∆t)

)
e−d(t+∆t)

(5.32)

Case 3: The probability P3 where both the afterpulse of the start time tag and at least

one thermal count (they are independent events) occur in the interval [t, t + ∆t] is given
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by

P3 = P t→t+∆t
A P t→t+∆t

T P 0→t
NT

= pap
(
e−λapt − e−λap(t+∆t)

)
(1− e−d∆t) e−dt

(5.33)

The three cases correspond to to mutually exclusive events and hence the probabilities

Pi add up. There the probability of the next click being in interval [t, t+ ∆t] is

P t→t+∆t
next click = P1 + P2 + P3

= (1− e−d∆t) e−dt
[
1− pap

(
1− e−λap(t+∆t)

)]
+ pap

(
e−λapt − e−λap(t+∆t)

)
e−d(t+∆t)

+ pap
(
e−λapt − e−λap(t+∆t)

)
(1− e−d∆t) e−dt

= pap e
−(λap+d)t

(
1− e−λap∆t

)
+
(
1− e−d∆t

)
e−dt

[
1− pap

(
1− e−λap(t+∆t)

)]
(5.34)

The p.d.f. of the next detector click as a function of time t elapsed since the start time

tag is given by

p.d.f.next click(t) = lim
∆t→0

P t→t+∆t
next click

∆t

= pap e
−(λap+d)t lim

∆t→0

1− e−λap∆t

∆t

+ e−dt lim
∆t→0

(
1− e−d∆t

) [
1− pap

(
1− e−λap(t+∆t)

)]
∆t

= pap e
−(λap+d)t lim

∆t→0

1− e−λap∆t

∆t

+ e−dt
[
(1− p) lim

∆t→0

1− e−d∆t

∆t
+ lim

∆t→0

pap e
−λapt(e−λap∆t − e−(d+λap)∆t)

∆t

]
(5.35)
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Let’s compute the two limits, naming them I1, I2 and I3.

I1 = lim
∆t→0

1− e−d∆t

∆t

= lim
∆t→0

1−
(

1 + (−d)(∆t) + (−d)2(∆t)2

2!
+ ...

)
∆t

= lim
∆t→0

(
d− d2∆t

2
+O

(
(∆t)2

))
= d

(5.36)

Similarly,

I2 = lim
∆t→0

1− e−λap∆t

∆t

= λap

(5.37)

I3 = lim
∆t→0

pap e
−λapt(e−λap∆t − e−(d+λap)∆t)

∆t

= pape
−λapt lim

∆t→0

(
1 + (−λap)(∆t) + (−λap)2(∆t)2

2!
+ ...

)
−
(

1 + (−(d+ λap)) (∆t) + (−(d+λap))2(∆t)2

2!
+ ...

)
∆t

= pap e
−λapt lim

∆t→0

[(
−λap +

λ2
ap∆t

2!
+O

(
(∆t)2))−(− (d+ λap) +

(d+ λap)
2 ∆t

2!
+O

(
(∆t)2))]

= pap e
−λapt [−λap − (−(d+ λap)))]

= pap d e
−λapt

(5.38)

Putting equations 5.36, 5.37 and eqn.third integral into equation 5.35, we have

p.d.f.next click(t) = pap(λap + d)e−(λap+d)t + (1− pap)de−dt (5.39)

I simulated thermal counts and afterpulses in MATLAB with dark count rate d =

200 Hz, afterpulsing probability pap = 25% and afterpulsing time constant λap =1× 106 s−1.

Dead time and recharge time were set to zero. Figure 5.4 shows the histogram of the time

difference between consecutive pulses. The graph is plotted in log-log axes in order to

take advantage of the fact that exponential binning was used (which was in turn used

to smooth out the tail and magnify the details of the region to the left of the graph
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Figure 5.4: A time tag file was simulated using a dark count rate of 200 Hz, afterpulsing

probability 25% and afterpulsing time constant 1× 106 s−1 was simulated. The probability

mass function of the next click following an arbitrary click is plotted in blue. Correspond-

ingly, the parameters are used to plot the analytical equation for the same P.M.F. described

by equation 5.34
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Figure 5.5: A time tag file was simulated using a dark count rate of 200 Hz, afterpulsing

probability 25% and afterpulsing time constant 1× 106 s−1 was simulated. The probability

density function of the next click following an arbitrary click is plotted in blue. Corre-

spondingly, the parameters are used to plot the analytical equation for the same P.D.F.

described by equation 5.39
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where the afterpulses occur). The sum of the counts of all the bins is normalized to

unity because there is exactly one ”next click” for every start time tag. The curve in

blue is the derived from the simulated data set. The hump on the left is the afterpulsing

region (containing both afterpulses and thermal counts). The hump on the right comprises

primarily of thermal counts. The curve in red is plotted using the analytical equation

of the probability of the next click being in the time interval delimited by the edges of

each bin as given by equation 5.34. Basically, P t→t+∆t
next click is evaluated for each bin in the

histogram with t representing the left edge of the bin and t+∆t representing the right edge

of the bin. There is a close match between the two curves indicating that the analytical

expression approximates the histogram curve very closely. I say approximates because we

haven’t considered the possibility of afterpulses of time tags other than the start time tag

as being the next click after the start time tag. This is justifiable because λap >> d.

One can use the expression λape
−λapt to show that the average time for detrapping of a

trapped charge carrier is 1
λap

. Therefore in this case the time scale of afterpulsing is much

smaller than the average time period of the thermal counts. This ensures that chances all

successive generation of afterpulses created by any given thermal count occur before the

thermal count occurs is very high. Thus, even by not considering afterpulses of time tags

other than the start time tag, one can derive a good analytical approximation to the true

histogram.

Figure 5.5 shows the p.d.f. counterpart of the next click distribution. From the his-

togram derived from simulated data, we divide the counts in each bin by the width of that

bin. This is the curve in blue. The curve is normalized automatically such that the area

under the curve is unity. The curve in red is plotted using the analytical equation of the

p.d.f of next click given by equation 5.39. Here too, one sees a close match between the

curves.

In our experimental data (derived from physical experiments with APD’s), it is often

the case that λap and d are separated by order of magnitude apart, thus making this

derivation suitable for analyzing the afterpulsing probability for experimental data. In

particular, for λap >> d, we can drive the sum λap + d→ λap and show that equation 5.39

condenses to a sum of exponential given below.

p.d.f.next click(t)
∣∣∣
λap>>d

= papλape
−λapt + (1− pap)de−dt (5.40)

Since e−λapt decays faster than e−dt, the right most region of the histogram is dominated
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by the e−dt exponential. Thus,

p.d.f.next click(t)
∣∣∣
λap>>d;t>>0

= (1− pap)de−dt (5.41)

Taking the logarithm on both sides of equation 5.41, we get

log(p.d.f.next click(t)) = −d× t+ log [(1− pap)d] (5.42)

This is a straight line with slope as −d and y-intercept as log [(1− pap)d]. Thus, linear

curve fitting the right most region of the the log(normalized bin count rate) in the histogram

derived from experimental data, one can find the thermal count rate. This fact is made

use of in the afterpulsing algorithm I had worked on described in section 2.2.9.

Equation 5.42 represents a straight line with slope as−d and y-intercept as log [(1− pap)d]

Since the analytical expression agrees with the simulated data very closely towards the

right of the graph which is dominated by thermal counts, one can reliably curve fit this

region and compare it to equation 5.42 to calculate afterpulsing probabilities using both

methods previously described.

5.4 Summary and Outlook

In section 5.2 the observed afterpulsing probability was shown to vary with detector pa-

rameters. In specific, an analytical expression was derived to show the explicit dependence

of the afterpulsing probability on the APD’s thermal count rate, dead time and the af-

terpulsing probability value without dead time. Furthermore, the observed afterpulsing

probability was shown to decrease with the thermal count rate, al other parameters held

constant.

If one looks at equation 5.17, one sees that there is no restriction on how big the

thermal count rate can get. However, if thermal counts themselves induce dead time

regions (preventing other thermal counts from occurring), the number of dead time regions

in a time tag file of fixed finite size cannot be more than Time duration of time tag file
dead time

. This also

means the number of thermal counts cannot be more than this value. Thus the thermal

count rate cannot be more than
Time duration of time tag file

dead time

Time duration of time tag file
= 1

dead time
.

So the thermal counts in section 5.2 are actually potential thermal counts and are

associated with charge carriers being produced by thermal activation in defects in the

APD substrate. Such events are in fact Poisson distributed in time. However, not all
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these events give rise to output pulses because some of them will occur in dead time

regions. Hence, there is also this notion of observed thermal counts which are not Poisson

distributed in time. This affects the derivation of the analytical expression of the observed

afterpulsing probability in key place - during the calculation of the probability of having

no thermal counts in a time interval which was obtained from the Poisson distribution.

Since the detector clicks due to thermal counts are not Poisson distributed in time, one

would need to work out the corresponding probabilities.

Another source of improvement would be to incorporate the effect of afterpulses of

time tags other than the start time tag in the derivation for observed afterpulsing proba-

bilities. These afterpulses will also induce dead time regions following the start time tag

and decrease the observed afterpulsing probability.

In section 5.3.1, we derived an analytical expression for the p.m.f. and p.d.f. of the time

distribution of the next detector click following any arbitrary click from first principles. The

resulting analytical expressions were validated against simulated data with negligible dead

time and recharge time. The primary aim of the derivation was to theoretically demonstrate

that the rightmost region of the graph consisted of thermal counts under the assumption

that the time scale for afterpulsing was much smaller than that for thermal counts. The

rightmost part of the p.d.f. curve was shown to be a simple decaying exponential which

can be curve fitted. This was central to the working of the afterpulsing algorithm.

The derivation for the p.d.f. of the next click did not account for afterpulses of time

tags other than the start time tag. This isn’t problematic as long as the time scale for

afterpulsing is much shorter than time scale for thermal counts because all successive

generations of thermal counts will in all likelihood occur long before the next thermal count

occurs. So, when considering an arbitrary click (thermal or afterpulse) as the start time

tag, the chances that (first generation) afterpulses of clicks other than the start time tag

will be the next click is very small. More importantly, this assumption allows the rightmost

region to be free of afterpulsing, thus allowing for a simple exponential consisting of only

thermal counts in this region. However, if the time scales of afterpulsing and thermal

counts are comparable to each other, the chances that the afterpulses of time tags other

than the start time tag being the next click are not negligible. One would then have to

address the probabilities associated with this. More importantly, there would n’t be a

distinct thermal region and hence curve fitting and extrapolation is not an option. The

afterpulsing algorithm itself must be altered to accommodate for this. In such a case,

a successful theoretical derivation incorporating afterpulses of time tags other than start

time tag might be able to provide insight on how to tackle the problem.

Recharge time and detection efficiency can also be incorporated into the derivation.
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They affect the probabilities of occurrence or non-occurrence of detection events in each

bin. Furthermore, the implementation of a dead time is fairly easy. The only change is to

drive the p.d.f. curve to zero in the range t = [ 0, τd )

I have assumed a simple model of afterpulsing in this section. It contains only one

exponential. I would like to review some of the afterpulsing models that have been proposed

in literature. Ref [33] uses a similar assumption of a single exponential. Ref [34] suggests

that there might be deep level traps of different detrapping time constants. Thus, the

average detrapping time might be a result of a sum of exponentials, each having a unique

characteristic time constant corresponding to the different types of deep level traps. The

same paper [34] also suggests that a power law dependence on time (with a negative integer

as the power) might be a good model as well. For future work, it might be worth considering

the sum of exponentials as the effective time distribution for detrapping of the trapped

charge carrier. The coefficients associated with the exponentials will be related to the

spatial density of the each type of deep level trap in the APD’s substrate. In particular in

section 5.3.1, it would be interesting to see if the analytical equation of the PMF and PDF

of the next click is of the same form as that for the experimental data. If the afterpulsing

detrapping time distribution of a physical detector is indeed a sum of exponentials, one

should be able to curve fit the experimental PMF and PDF with the resulting analytical

equations.
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Chapter 6

Quantum Key Distribution Simulation

6.1 Introduction and Motivation

When I was working on an algorithm to calculate the afterpulsing probability, I wanted

to ascertain its accuracy. I had time-tag files taken from dark count measurement exper-

iments on the DM. However, I could never really know the true afterpulsing probability

of the APD’s and didn’t have a way to test my algorithm as I was developing it. The

time tag files of dark count measurements consisted of time tags due to thermal counts

and afterpulses. Both were probabilistic events drawn from certain time dependent distri-

butions. For example, the thermal counts are a Poisson process which follow the Poisson

distribution. Also, each avalanche on average produced an afterpulse with an probability

called the afterpulsing probability and the detrapping time of the charge carrier followed

an exponentially decaying distribution. Such distributions could be simulated in algorithm

thus generating a time tag file of known parameters. I was able to do exactly this to

ascertain the accuracy of my algorithm. I had initially conceived this idea and the initial

part of the simulation was worked on jointly by me and Dr. Jean Philippe Bourgoin.

In the Winter term of 2018, as part of a final project of the course QIC 750 at the

University of Waterloo, I decided to take this a step further and simulate a quantum

link for the QKD protocol. The QKD setup consists of a laser source and single photon

detectors. APD’s are a good choice for the detectors for reasons as mentioned in section

1. APD’s have a host of detector parameters like thermal counts, afterpulsing probability,

recharge time, timing jitter, etc. Although the impact of these parameters on quantities

like the Quantum bit error ratio (QBER) and key generation rate is known to some extent,

in order to study the simultaneous effect of the source and detector parameters on the

aforementioned quantities, physical experiments have to be conducted. Such experiments
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are a crucial step in demonstrating the commercial realization of QKD. However, fine tuning

the different parameters can be a laborious and time consuming task, involving redesigning

the experimental set up, physical components or supporting software. A simulation of the

QKD protocol can help optimize the different parameters of the experimental set up. This

then helps to design physical components with these optimized parameters.

Currently, there have been attempts in literature towards simulation of QKD distri-

bution. However, all of them are based on analytical equations theoretically deriving the

secret key rate for different QKD scenarios. For example, ref [35] mentions analytical equa-

tions for secret key rate as a function of transmission of the quantum channel for discrete

and continuous variable QKD protocols with and without decoy states. Ref [36] shows

similar graphs for QKD protocols using entangled photon sources, again using analytical

equations. However, these equations do not seem to consider many detector parameters

like dead time, recharge time and afterpulsing characteristics. Even if these quantities are

negligible under nominal conditions, it would still be insightful to see how the key rates

may change if these values were substantial. The simulation presented in this section does

not depend on analytical equations directly. Instead, it tries to simulate the individual

physical processes like photon emission, afterpulsing, dead time, recharge time, etc. in

code. The protocol of QKD itself is simulated and a key is generated. The key rate and

QBER are then inferred from this key. With this approach, one can vary any of the mod-

eled parameters and see its effect on the sifted key rate and QBER. Moreover, one can

potentially explore the modeled parameter space to optimize QBER and sifted key rate

with this simulation.

In this chapter, I have simulated a laser source (section 6.3), single photon detectors

(section 6.4) and the QKD protocol (section 6.5). A brief discussion of these topics is in

section 6.2 before going into details in the successive sections. An intercept and resend

attack is also simulated in section 6.5.4. The QKD quantum link is simulated and the

effects of the different parameters of the system on the sifted key generation rate and

QBER are explored.

6.2 Methodology

I have modeled an implementation of the QKD protocol in MATLAB. I have assumed the

BB84 protocol here. The sender, nicknamed Alice, prepares a photon in a certain polar-

ization state and sends it to the receiver, nicknamed Bob, who measures the photon in a

basis of his choice. The choice of polarization state by Alice and the choice of measure-
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ment basis by Bob are implemented using pseudo-random numbers. Also, the process of

measurement is simulated using pseudo-random numbers. The laser source used by Alice

to generate single photons is modeled as a weak coherent pulsed laser. The single pho-

ton detectors used by Bob to measure the polarization state of the photon are modeled

as avalanche photodiodes (APD). I have modeled the APD’s thermal counts, afterpulses,

dead time, detection probability and timing jitter. These quantities have been explained

in chapter 2. I have also implemented a coincidence algorithm that matches the time tags

corresponding to a photon being produced and measured. Using this, I generate a raw

key and a sifted key. I also calculate the quantum bit error ratio (QBER) and the sifted

key rate. I then vary the parameters of the laser source, detectors and the coincidence

algorithm to see how the QBER and sifted key rate change in response. Finally, I simulate

the presence of a attacker, nicknamed Eve, who uses an intercept and resend attack. I also

see how the QBER and sifted key rate change with the probability of Eve’s interception

of the photon. The QBER in particular is important because this allows Alice and Bob to

predict the presence of an eavesdropper. I have refrained from using MATLAB’s quantum

optics toolboxes because I wanted to code from scratch and also wanted to understand the

details of how each component is modeled.

A note about the validity of such a simulation. I am attempting to simulate the QKD

protocol on a classical computer. I want to delineate on what grounds this simulation is

valid. The process of measurement in the QKD protocol is a quantum mechanical one.

Bell’s theorem says that the laws of quantum mechanics cannot be reproduced by using

local hidden variables. However, in my simulation, I generate pseudo-random numbers in

MATLAB and use this to simulate the process of measurement. Pseudo-random numbers

are generated by deterministic processes and the algorithm has to keep track of the under-

lying variables. Hence, the simulation of measurement is not an accurate one. This means

that one cannot draw conclusions about a single photon that was measured or a single bit

in the final key. However, one must note that the wave function in quantum mechanics is

a deterministic function. From it, the probability space over the measured outcomes can

be derived in a deterministic way. This probability space is a classical object and can be

modeled using pseudo-random numbers. This means that if one has a specific quantum

sate, the measurement outcomes of the quantum state, on the one hand, using a quantum

mechanical process of measurement, and on the other hand, using pseudo-random number

generator in MATLAB, are statistically indistinguishable from each other. In this simula-

tion, I refrained from making conclusions about single bits but only made conclusions on

aggregate properties like QBER and sifted key rate because statistical properties of the key

remain unchanged whether one use quantum mechanical measurement or pseudo-random
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numbers. Similar arguments hold for the choice of measurement basis which is usually

accomplished by a 50-50 beam splitter in experiment which uses a quantum mechanical

process. However, one can still ask if a certain value of a modeled detector parameter is

better than some other value. This is because the definition of the parameter does not

require a quantum process. This is not true however when asking questions about a single

bit in the final sifted key.

6.3 Laser Source

The laser source generates photons. It was modeled as a weak coherent pulsed laser. The

laser triggers at a constant rate. For my simulation, I chose a rate of 5 MHz. Each laser

trigger is one iteration in a giant for loop. During any laser trigger, the laser produces

k number of photons, where k is a natural number. The probability distribution P over

the number of photons produced during a single laser trigger is given by the Poisson

distribution [37].

P (k) = e−µ
µk

k!
(6.1)

where

� k is the number of photons produced during a given single laser trigger

� µ is the average number of photons produced during a single laser trigger

Figure 6.1 shows a Poisson distribution with µ = 5

One must note that the photons produced during a given laser trigger are produced at

the same time with no delay in between them. However, they are not necessarily produced

exactly when one expects the laser to trigger. There is some uncertainty which shows up

in the timing jitter - this will be addressed in section 6.4.5.

In practice, one needs to carefully select the average number µ of photons during a

laser trigger. If one selects very small value of µ, it results in low key generation rate.

At first sight, it seems like a higher values of µ are beneficial. However, high values of

µ make the protocol more prone to attacks. This is because high values of µ results in

a greater proportion of multi-photon events compared to single photon event. When a

multiple photons are transmitted to Bob at the same time over a quantum channel, they

have the same polarization state. If an eavesdropper, Eve, can detect a multi-photon state
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Figure 6.1: Probability distribution of generating k photons during a laser trigger is a

Poisson distribution. This figure shows a Poisson distribution where the average number

of photons during a laser trigger is µ = 5
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in the channel and seize only one of the photons, she now has access to the same quantum

state that Bob will receive. Under the assumption that photons in a multi-photon event

are not entangled, Eve’s measurement of her seized photon doesn’t affect the outcome of

Bob’s measurement. However, there is a caveat here in that the number of photons in

a multi-photon state affects the detection probability (addressed in section 6.4.4) of the

multi-photon at Bob’s side. If Bob is able to detect such changes in his detection of Alice’s

photons, he might be able to still detect Eve’s presence. In any case, Alice would want

to maximize the generation of single-photon events. To see how µ affect the generation of

multi-photon events, consider the following ratio

Probability of 1-photon event

Probability of 2-photon event
=
e−µ µ

1!

e−µ µ
2

2!

=
2

µ
(6.2)

Thus increasing µ increases the proportion of single-photon event compared to a 2-

photon event. Similar ratios can be found for n-photon events, where n > 2 and the same

conclusion holds true.

Thus one needs to find an optimal value for µ. For my simulation, I chose µ = 0.5.

Please note that I haven’t tried to explicitly optimize µ to arrive at this value.

So, I created one huge for loop to cycle through the laser triggers. During each trigger,

I sampled from the Poisson distribution with mean value µ = 0.5 to decide on the number

of photons in each iteration of the loop. To do this I used the poissrnd() function in

MATLAB to sample from the Poisson distribution.

6.4 Single Photon Detector

Bob needs a detector to detect individual photons that Alice sends him. There are many

choices of single photon detectors. Avalanche photodiodes have distinct advantages - low

dark count rates, high detection efficiency and do not require cryogenic cooling. I have

attempted to model and simulate different characteristics of the avalanche photo diode.

6.4.1 Thermal Counts

APD’s tend to produce output avalanches even when no photons are incident on the de-

tector substrate. This results in background noise. These output clicks are called thermal
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counts. Thermal counts occur randomly and are Poisson distributed in time. A charac-

teristic of Poisson distributed events is that the time difference between two consecutive

events follows an exponentially decaying probability distribution.

It would be interesting to discuss a little bit about the connection between a random

process and the Poisson distribution. For a generic probability time distribution of the

occurrence of the next click, if at a randomly chosen time instant, you were told when

the previous click occurred and were also asked to generate a time distribution of the

next click as a function of time elapsed since this time instant, the resulting distribution

would be dependent on when the previous click occurred and in general would not be the

same as the original distribution. This cannot be representative of a random process like

thermal counts. Instead, if you started off with the exponentially decaying distribution

and repeated the same experiment just described, the resulting time distribution would be

exactly the same exponentially decaying distribution. This means that the occurrence of a

given thermal count doesn’t depend on when any other thermal count occurred. Consider

the normalized probability time distribution P of the next thermal count

P (next thermal count) = de−dt (6.3)

where

� d is the thermal count rate with respect to time

� t is the time elapsed since the previous thermal count

Say, at some time instant you were told that the previous thermal count occurred a

time t0 before the the current moment. To get the time distribution of the next click as a

function of time elapsed from the current moment, first translate the origin of time axis to

the previous click. Then you would have to consider the curve from time t = t0 onwards

and renormalize the area under the curve from t = t0 to t =∞ because the next click will

occur at some point in the future with 100% probability.

Area under the curve from t = t0 onwards is given by∫ ∞
t0

de−dtdt = e−dt0 (6.4)

To ensure you are measuring elapsed time from the present moment, translate curve in

equation 6.3 towards the left by amount t0 so that the present moment is at the origin of
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the time axis. The resulting curve is de−d(t+t0). Now, to renormalize this curve, divide it

by the area calculated in equation 6.4 to get

1

e−dt0
de−d(t+t0) = de−dt (6.5)

where t is the time elapsed since the current moment.

This is exactly the distribution we started out with. Thus, the occurrence of the next

thermal count doesn’t depend on how long ago the previous click occurred. Thermal

counts occur randomly and independent of each other in this sense. We have established

that the exponentially decaying distribution embodies this randomness. There is then a

standard derivation that assumes the exponential distribution for the next click and shows

that the resulting events are Poisson distributed. This is the basis for the postulate that

thermal counts are Poisson distributed under the assumption that they occur randomly

and independent of each other.

Since thermal counts occur randomly, I used the rand() function in MATLAB to ran-

domly populate the time tag file with thermal counts. To do this, first specify the thermal

count rate, say d. Then, if the length of the time tag file is t′, dt′ is the number of thermal

counts one would expect to find in the timetag file on average. However, if one repeats

this experiment multiple times, one would expect the number of counts in the time tag

file to vary a tiny bit. The number of thermal counts in the time tag file will be Poisson

distributed with mean value of the distribution equal to dt′. Thus the following command

in MATLAB populates a time tag file of length t′ with thermal count rate d

1 timeTage = t'*rand(1, poissrnd(d*t'));

The code above gives the unordered set of time tags corresponding to thermal counts.

These time tags are pseudo-random in nature due to the way the rand() function works.

But as mentioned in section 6.2, this is valid as long as we don’t make conclusions on

individual thermal counts but on aggregate properties like the thermal count rate. Also

an interesting sanity check is using MATLAB to calculate the distribution of the time

difference between consecutive clicks of such simulated thermal counts to arrive at the

exponentially decaying distribution.
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6.4.2 Afterpulsing

APD’s generate output through avalanching. Basically one of the electrons in the substrate

moves to the conduction band and physically knocks out some electrons which in turn

each knock out a few more electrons. Eventually, one has an avalanche of electrons in

the substrate. Sometimes, one gets a second avalanche that is correlated with a previous

avalanche. This process is divided into three sub-processes:

1. The detector substrate contains deep level imperfections which can trap a moving

electron. A mobile electron during an avalanche can get trapped in such an imper-

fection / trap-site. The expected number of electrons getting trapped in deep levels

during an arbitrary avalanche is called the afterpulsing probability pap. In this sim-

ulation, I assume that at most one electron gets trapped during an avalanche. In

such a scenario, the afterpulsing probability can also be defined as the probability of

having a trapped electron during an avalanche.

2. An electron that gets trapped eventually gets detrapped if you wait long enough. The

time distribution for detrapping as a function of time elapsed since it got trapped is

given by the normalized exponentially decaying distribution

λape
−λapt (6.6)

where

� t is the time elapsed since the electron got trapped

� λap is the afterpulsing time constant

A special mention must be made here that the exponentially decaying nature of the

time distribution for detrapping makes the detrapping process of the electron random

in the sense that the distribution of the time elapsed from the present moment for

detrapping a trapped electron does not depend on how long ago that electron got

trapped. This stems from a similar argument as the one used in section 6.4.1.

3. The detrapped electron triggers a second avalanche because it knocks neighboring

electrons as it gets detrapped. This second avalanche is called an afterpulse. The

time scale of a detrapped electron causing an avalanche is assumed to be negligible.

A few assumptions:
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1. Less than one electron gets trapped during an avalanche on average. This is a good

assumption from an operational point of view because if on average more than one

electron got trapped at a trap-site, then one detector click on average will produce

more than one detector click, leading to a runaway effect with the count rate even-

tually approaching to ∞. In my simulation, during any given avalanche, there can

be exactly one or no electrons getting trapped.

2. Avalanches are indistinguishable in nature from each other. One cannot look at an

avalanche and determine what caused it. A photon, thermal count and even an

afterpulse can generate avalanches that look the same. Hence, any afterpulse can

potentially generate a further afterpulse through the process described above with

the same afterpulsing probability and time constant.

To simulate the afterpulse of any given detector click in MATLAB, I sampled the time

distribution in equation 6.6 to get a value, say t1. I then placed a time tag a time t1

seconds after the the detector click in question. This simulates the afterpulse. If I perform

this process for every time tag, I will have simulated a 100% afterpulsing probability. To

simulate an afterpulsing probability of pap, I only perform this process with probability pap

- not all detector clicks give rise to an afterpulse. This condition is got by the following

statement in MATLAB

1 if rand < p ap

All thermal counts, signal photon detections and previously generated afterpulses are

candidates for generating an afterpulse. I also labeled each thermal count and signal

photon with a unique identifier. Afterpulses inherited the label of the parent thermal

count or signal photon. This way I could keep track of which click generated any given

afterpulse. However, I did not use these labels to perform any computation that Alice or

Bob do since they do not have access to these labels.

Note: MATLAB doesn’t have an inbuilt function to sample from the exponential func-

tion. One can perform this sampling by first computing the cumulative distribution func-

tion (C.D.F.) of the probability distribution function (P.D.F) that one wants to sample.

Let’s call this C.D.F. as function U . One then inverts U to express t as a function of

U . Then if one samples for values of U from the uniform distribution (rand function in

MATLAB) and calculates the corresponding values of t, they will assume a distribution

corresponding to the initial P.D.F. you started out with.
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For example, say you want to sample from the exponentially decaying distribution

λape
−λapt. The corresponding C.D.F. is

U(t) =

∫ t

0

λape
−λapt′dt′ = 1− e−λapt (6.7)

Then invert U to express t as a function of U

t = −1

λ
log(1− U) (6.8)

t ranges from 0 to ∞. Correspondingly from equation 6.7, one can see that U ranges

from 0 to 1. If you then sample for values of U from the uniform distribution in the closed

interval [0, 1], and for each sampled value of U calculate the value of t using equation 6.8,

the values of of t are distributed according to the original P.D.F. λape
−λapt. The following

code was used in MATLAB to sample from the exponential distribution.

1 − log(rand)/lambdaAfterpulse

Please note that I used rand instead of 1− rand because for a uniform distribution, U,

over the closed interval [0, 1], U and 1− U statistically give the same samples.

Every generated detector click, be it thermal count, signal photon or an afterpulse itself,

is a candidate for generating an afterpulse. I cycle through all detector clicks in the time

tag file and generate chains of afterpulses conditional to the afterpulsing probability. The

following code shows this. BDet1 is the time tag file of Bob’s first detector. Its first row

stores the time tags. Its second row stores the identifier corresponding to the time tag.

1 n = length(BDet1(1,:)); %Length of dark count + signal photonarray

2 for i = 1:n

3 apulses=BDet1(1:2,i);

4 j=1;

5 while (1)

6 if rand<p ap

7 apulses(:,j+1)=[apulses(1,j) − ...

log(rand)/lambdaAfterpulse; BDet1(2,i)];

8 j=j+1;

9 else

10 break

11 end

12 end
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13 m = length(BDet1(1,:));

14 if length(apulses(1,:))>1

15 BDet1(:,m+1:m+length(apulses(1,:))−1)=[apulses(:,2:end); ...

−2*ones(1,numel(apulses(1,2:end)))];%append all afterulses ...

of 'i'th thermal count to 'array' but do not append the ...

thermal count itself that produce the afterpulses

16 end

17 end

18 BDet1=sortrows(BDet1',1)';

6.4.3 Dead Time

After an avalanche occurs, the APD is inactive for a period of time. This duration of time

is called the dead time, τd.

Time difference between two detector clicks cannot be smaller than τd. This means

that if a particular click is scheduled to occur within time τd following a detector click, it

cannot physically occur. I term such clicks as illegal clicks. Also, by scheduled, I mean

either a thermal click was supposed to occur or a photon was incident on the detector or

a trapped electron got detrapped.

The simulation can simulate detector clicks in chronological order. Although it makes

sense to implement it this way, I take advantage of the fact that the thermal counts can be

generated in one line of code because the rand() function can generate an array of random

numbers as this is computationally very efficient. However, in doing so, one must remember

that some of these thermal counts may be illegal. One has to simulate photon clicks and

afterpulses in the vicinity of a thermal click to determine whether or not it is illegal. So, I

first generate each type of click in the time tag file in a batch before moving on to simulate

the next type of click. Then I iterate through each click and determine whether it is illegal

by checking to see if a click has occurred a value τd before that particular click. If it is

illegal, I delete the click. I also delete all it’s successive afterpulses (which have already

been generated in code) since none of them should have occurred in the first place. The

code that implements this is presented in section 6.4.4.

6.4.4 Detection Probability

Following the dead time period, the APD doesn’t detect a scheduled detector click with

100% efficiency. Instead, the probability of detection rises and asymptotes to a maximum
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value as elapsed time since the first click approaches ∞. To explain this in more detail,

during the dead time period the over-voltage on the APD drops to zero. Over time,

it increases and asymptotes to the set over-voltage. The variation of over-voltage with

respect to time is given by the following equation

V = V0(1− e−
∆t
τR ) (6.9)

where

� ∆t is the time elapsed since the first click

� V is the over-voltage corresponding to elapsed time ∆t

� V0 is the set over-voltage

� τR is the recharge time which sets the time scale for the rise of over-voltage

Here, an assumption is that no other click occurs after the dead time period has passed

and the scheduled click has occurred.

The efficiency of detection of a scheduled click at any given time depends on the over-

voltage applied to the APD at that instant in time. The variation of detection efficiency

with respect to over-voltage is given by the following equation

ηrecharge = 1− e−
V
V0 (6.10)

where ηrecharge is the probability of detection of a somewhat ideal detector whose de-

tection probability asymptotes to 100% over time.

Putting equations 6.9 and 6.10 together, we have the probability of detection as a

function of time elapsed

ηrecharge =
1

1− e− 20
8.5

(1− e−(1−e
−∆t
τR ) 20

8.5 ) (6.11)

However, for physical detectors the detection efficiency doesn’t asymptote to 100%.

The APD’s that I used for the experiments had about 60% maximum efficiency. Therefore,

equation 6.11 has to be rescaled.
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The net probability of detection depends on the type of click. For thermal counts and

afterpulses, the detection probability ηthermal/afterpulse is the rescaled recharge efficiency

given by

ηthermal/afterpulse = ηrecharge ∗ ηDetMax (6.12)

where ηDetMax is the detection efficiency of a thermal count or afterpulses after an

infinite time has passed.

The detection probability for a signal photon has an additional factor of optical effi-

ciency of the path it travels from the laser to the detector. Realistically, there will be some

loss of photons in the optical path and one must account for this. For a single photon, the

probability of detection ηsingle photon state is given by

ηsingle photon state = ηoptical ∗ ηrecharge ∗ ηDetMax (6.13)

where ηoptical is the optical efficiency of the path of the photon en route from the laser

to the detector

Note that only ηrecharge varies over the time tag file as it depends on the time elapsed

since the previous click. The other factors are constant for a given experimental setup.

But what happens when the laser produces multiple photon in a given laser trigger.

Corresponding to any k-photon state, the detector can only avalanche once because all

photons are assumed to arrive at the detector simultaneously. Since each photon has

some probability of detection given by equation 6.13, the probability of detection of a

multi-photon state is higher than that of a single photon state because at least one of the

photons must be detected to get an avalanche output. The paper [37] suggests that the

detection probability ηk−photon state of a k-photon state emitted by a WCP laser source is

given by

ηk−photon state = 1− (1− η)k (6.14)

where k is the number of photons emitted by the WCP source in a given laser trigger

To simulate the detection probability, I use the same approach as that for the dead

time. I first generate all types of detector clicks in the time tag file. I then iterate through

all clicks in chronological order. To determine whether a given detector click is illegal or

not, I check the time difference between that click and the previous click. This gives the
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∆t factor in equation 6.11. I then calculate the probability of detection η of the second

click (depending on the type of second click). Then I delete the click in consideration with

a probability 1− η which is the probability of not detecting the second click. If I delete a

click, I also delete all its successive afterpulses.

The following block of code in MATLAB is used to delete clicks based on both the dead

time criterion and the detection probability criterion:

1 %Delete illegal avalanches for BDet1

2 j=numel(BDet1(1,:));

3 i=2;

4 t0=BDet1(1,1);

5 flag = 0;

6 while i≤j

7 if BDet1(1,i) 6=−5 %Ian: Do not evaluate if the afterpulse has not ...

actually occured due to a non−occurence of a previous ...

generation avalanche

8 if BDet1(1,i)−t0<deadTime
9 BDet1(1,[false(1,i−1),BDet1(2,i:end)==BDet1(2,i)])=−5;%Ian: ...

Deletes i'th avalanche and all its successive afterpulses

10 flag = 1;

11 else

12 etaRecharge = ...

(1−exp(−(1−exp(−(BDet1(1,i)−t0)/rechargeTime))...
13 *20/8.5))/(1−exp(−20/8.5)); % has max ...

value of 1(fully recharged)

14 etaPhoton = etaRecharge * etBdetectorMax * ...

etaOpticalTransmission;

15 if BDet1(3,i)> 0

16 if rand > 1 − (1 − etaPhoton)ˆBdet1(3,i) %rand> ...

because probability of not detcting

17 Bdet1(1,[false(1,i−1),Bdet1(2,i:end)==Bdet1(2,i)])=−5;...
18 %Ian: Deletes i'th avalanche and all its ...

successive afterpulses

19 flag = 1;

20 end

21 else %Thermal pulse or any afterpulse

22 if rand > etaRecharge * etBdetectorMax %rand> ...

because probability of not detcting

23 Bdet1(1,[false(1,i−1),Bdet1(2,i:end)==Bdet1(2,i)])=−5;
24 %Ian: Deletes i'th avalanche and all its ...

successive afterpulses

25 flag = 1;
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26 end

27 end

28 end

29

30 if flag == 0

31 t0=Bdet1(1,i);

32 end

33 flag = 0;

34 end

35 i=i+1;

36 end

37 Bdet1=sortrows(Bdet1',1)';

38 numIllegalAvalanches = sum(Bdet1(1,:)==−5);
39 Bdet1=Bdet1(:,numIllegalAvalanches+1 : end);

Please note that the third row in Bdet1 array stores a −1 to identify a thermal count, a

−2 to identify an after pulse or a unique natural number ascribed to each photon emitted

by the WCP source (thus identifying a photon click).

6.4.5 Timing Jitter

The emitted photon is time tagged by Alice. However, Alice’s time tags may not be

periodically spaced as one might be lead to believe from the previous sections. The laser

is triggered periodically and the photon is released during a small time window following

each trigger. However, there is some uncertainty in position along the window that the

photon is released though a release closer to the center of the window is more probable

than towards the ends of the window. Furthermore, an electric pulse is generated at the

start of the window to notify that the laser has been triggered. However, there is some

uncertainty associated with the exact time the electric pulse is generate relative to the start

of the window. The uncertainties due to the electric pulse and photon emission is together

assumed to be Gaussian by the central limit theorem. Finally, the time tagger has a finite

time resolution, i.e., it cannot distinguish between events that are separated in time by a

value smaller than a some fixed value, ttagResA. When a time tag t0 has been registered,

the event takes place in the interval [t0, t0 + ttagResA]. Since no knowledge can be obtained

about when in that interval the event actually took place, one can assume a normalized

uniform time distribution over the interval [t0, t0 + ttagResA]. The central limit theorem says

that the combined distribution of time tags will be Gaussian for large number of samples

and the combined variance is the sum of variances of variances of the individual process
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mentioned above. Thus, the combined uncertainty σAlice as

σAlice =

√√√√ 3∑
i=1

σi (6.15)

where different values of i corresponds to the different sources of uncertainty on Alice’s

side.

The expected time position of the electric trigger of Alice’s source is periodic. The ex-

pected time for the photon to be released following the start of the time window is assumed

to be known. The time tag is registered after an expected value of ttagResA/2 following the

electric reference pulse of the laser. Given these assumptions, the expected positions of the

time tags that Alice registers are periodic. However, due to the uncertainties mentioned

before, the actual positions of the registered time tags are spread out about the expected

positions of the time tags according to a Gaussian distribution of standard deviation σAlice.

Similarly, Bob time tags his received photon. When the photon is incident on the

detector, the avalanche may not occur instantaneously. Instead, there will be a small delay

which can be modeled as a Gaussian with non-zero mean (the expected delay tavalanche).

Also as described before, the time tagger has a finite resolution ttagResB. On average, the

time tag will be registered
ttagResB

2
following a photon detection. Again one assumes a

uniform time distribution over the time tagger’s window. The combined distribtuion of

timetags on Bob’s side will be Gaussian distributed about the expected value again due to

the central limit theorem.

The combined certainty in time tags experienced by each Alice and Bob are called

timing jitters. In general, Alice and Bob experience different values of timing jitter. How-

ever, for my code, I assumed them to be equal to each other. This doesn’t critically alter

the nature of graphs in my results but only changes their absolute values. The timing

jitter values can be easily changed. In simulation, during each laser trigger, I sampled the

Gaussian distribution using the randn() function in MATLAB.

Note 1: The overall jitter experienced by Bob’s time tags relative to Alice’s time tags

ultimately incorporates Alice’s jitter as well.

Note 2: The optical path time for the photon is known to both Alice and Bob, and is

constant throughout the QKD protocol. In fact in my simulation, I have subsumed the

expected values of the aforementioned delays (e.g., delay in time tagging, delay in source

emitting a photon following an electric trigger, etc.) into the optical path time variable

in the code. One could keep them separate but they would eventually add up. Figure 6.2
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Figure 6.2: A schematic of the model of the timing jitter. The Gaussian on the left

represents the net uncertainty in Alice’s time tags. The Gaussian on the right represents the

net uncertainty associated with Bob’s time tags. The expected value of the two Gaussians

are separated in time by the optical path time that the photon takes to travel from Alice’s

source to Bob’s detector. All expected values of delay are subsumed into the optical path

time

shows a schematic of the timing jitters on Alice and Bob’s side, separated by an optical

path time.

I have assumed that the time taken for the photon to travel from Alice’s source to Bob’s

detector is accurately known.

The following code implements timing jitter. The expected value of the start of the

laser time window in the WCP source is periodic and is represented by the sourceT ime

variable. The number of photons in a laser trigger is decided according to the Poisson

distribution. Then, Alice and Bob’s time tags are computed using the Gaussian to account

for the timing jitter.

1 for sourceTime = startTime : 1/sourceFreq : endTime

2 numPhotons = poissrnd(mu); % number of photons in a given laser ...

pulse. poisson ditribution with mean 'mu'

3 if numPhotons > 0 %if at least 1 photon is produced in the laser ...

pulse

4

5 alicePhotonTT = sourceTime + jitter*randn; %Time Alice ...

PREPARES photon

6 bobPhotonTT = sourceTime + opticalPathTime + jitter*randn; ...

%Time Bob receives photon

7 end
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6.5 QKD Protocol

Alice has a laboratory where she houses her WCP source. She is able to produce photons in

a particular polarization state . All photons in a k-photon state are in the same polarization

state. She employs two orthogonal basis sets. One basis set is the Horizontal-Vertical (HV )

or rectilinear basis set whose basis states are photons whose polarization vectors point along

the spatially horizontal |H〉 and vertical |V 〉 directions. The other basis set she uses is the

Diagonal-AntiDiagonal (DA) or diagonal basis set whose basis states are photons whose

polarization vectors point along the spatially diagonal |D〉 and anti-diagonal |A〉 directions.

Each basis set spans the same 2 dimensional Hilbert space and hence can be viewed as

a change of coordinates in the Hilbert space. The following set of equations state the

relationship between the normalized basis states of each basis set.

|D〉 =
1√
2

(|H〉+ |V 〉) (6.16)

|A〉 =
1√
2

(|H〉 − |V 〉) (6.17)

However, when one says that Alice prepares a photon in the HV basis, it means she

prepares a photon in one of its two basis states, i.e., a photon with horizontal or vertical

polarization. Figure 6.3 shows a schematic of the two orthogonal basis sets (reprinted from

[38]).

When Alice wants to send a photon, she first chooses one of the two basis sets randomly.

She then chooses at random one of the basis states in the chosen basis set. Alice then

prepares k-photon state in the chosen polarization state. Because of the random choices,

the photons can be either in the H, V , D or A polarization state each with probability

0.25 . She then sends this k-photon state to Bob. I simulate these random choices using

the rand() function in MATLAB.

When Bob receives the photon, he chooses one of the two basis sets to measure the

received photon state in. He can implement this choice passively by using a 50-50 polar-

ization independent beam splitter. He then measures the polarization state in the chosen

basis set. He can implement this using a polarization dependent beam splitter. The photon

then collapses to one of the polarization basis states of the chosen basis set. The basic laws

of quantum mechanics corresponding to measurement and collapse of quantum state apply.

For example, if Alice sends a photon in the |H〉 polarization state and Bob measures it in

the HV basis set, the photon collapses to |H〉 state with 100 % probability. However, if
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Figure 6.3: [38]A schematic of the two basis sets in the QKD protocol. The rectilinear

basis set consist of basis states corresponding to photons in the horizontal and vertical

polarization states. The diagonal basis set consists of basis states corresponding to photons

in the diagonal and anti-diagonal polarization states

Alice sends a photon in the |D〉 polarization state and Bob measures it in the HV basis

set, the photon collapses to |H〉 state with 50 % probability and to |V 〉 state with 50 %

probability. In general, if Alice and Bob use the same basis set to prepare and measure

the photon respectively, Bob’s measurement outcome will be the same polarization state

as the one Alice prepared the photon in. However, if their choice of basis set is different,

Bob’s measurement outcome has a 50% chance of being along either of the basis states

of his chosen basis set. I implement the random choice of basis set and the process of

measurement by Bob using the rand() function in MATLAB.

A critical assumption here is that when Alice prepares or Bob measures a photon in a

particular polarization state, there is no error or offset in the direction of polarization in

the 2-D Hilbert space.

An assumption I made here is that Bob has four detectors to detect the |H〉, |V 〉, |D〉
and |A〉 states. In particular, this makes sense for Bob because the two beam splitters

he uses creates four physically separate optical paths at the output. Hence, he needs four

separate detectors to detect photons along each path. Another motivation for having four

detectors is that the time tag files contain no information about the polarization state of

an incident photon. So, having a different detector for each polarization state lets you

identify the polarization of the photon by identifying the detector in which photon’s time

tag occurred.
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The following block of code stores time tags corresponding to photon emission from the

WCP source for Alice.

1 numPhotons = poissrnd(mu); % number of photons in a given ...

laser pulse. poisson ditribution with mean mu

2

3 alicePhotonTT = sourceTime + jitter*randn; %Time Alice PREPARES ...

photon

4 aliceTimeTags(:,i) = [alicePhotonTT; indentifier; numPhotons];

5 indentifier = indentifier + 1;

6

7

8 num = ceil(4*rand); % Generate random number for Alice to decide ...

which basis and what polirazation within the basis Alice ...

prepares her photon in

9 if num == 1

10 alicePreparesOutcome = 'H';

11 alicePreparesOutcomes(i) = 'H';

12 alicePolarDirection(i) = 1;

13 i = i + 1;

14 elseif num == 2

15 alicePreparesOutcome = 'V';

16 alicePreparesOutcomes(i) = 'V';

17 alicePolarDirection(i) = 2;

18 i = i + 1;

19 elseif num == 3

20 alicePreparesOutcome = 'D';

21 alicePreparesOutcomes(i) = 'D';

22 alicePolarDirection(i) = 3;

23 i = i + 1;

24 elseif num == 4

25 alicePreparesOutcome = 'A';

26 alicePreparesOutcomes(i) = 'A';

27 alicePolarDirection(i) = 4;

28 i = i + 1;

29 end

The following block of code simulates time tags corresponding to photons incident on

Bob’s four detector. The code checks to see the true polarization state of the photon that

Alice sent it in and simulates the quantum mechanical measurement process.

1 %Bob measures photon
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2

3 num2 = ceil(2*rand); %Random number for passive 50−50 beam ...

splitter to decide which basis Bob measures in

4 if num2 == 1 %Bob measures in HV basis

5 if alicePreparesOutcome == 'H' %Alice prepared phton as 'H'

6 BDet1 = [BDet1, [bobPhotonTT; indentifier; numPhotons]];

7 indentifier = indentifier + 1;

8 bobMeasuresOutcomes = 'H';

9 bobMeasuresBasis = 'HV';

10 elseif alicePreparesOutcome == 'V' %Alice prepared phton ...

as 'V'

11 BDet2 = [BDet2, [bobPhotonTT; indentifier; numPhotons]];

12 indentifier = indentifier + 1;

13 bobMeasuresOutcomes = 'V';

14 bobMeasuresBasis = 'HV';

15 else %Alice prepared in DA basis instead

16 num3 = ceil(2*rand);% Random number to decide if ...

photon prepared as eiter D or A is measured by Bob ...

− collapses to H or V

17 if num3 == 1

18 BDet1 = [BDet1, [bobPhotonTT; indentifier; ...

numPhotons]];

19 indentifier = indentifier + 1;

20 bobMeasuresOutcome = 'H';

21 bobPreparesBasis = 'HV';

22 else %num3 = 2

23 BDet2 = [BDet2, [bobPhotonTT; indentifier; ...

numPhotons]];

24 indentifier = indentifier + 1;

25 bobMeasuresOutcome = 'V';

26 bobPreparesBasis = 'HV';

27 end

28 end

29 else %num2 = 2 −−− Bob measures in DA basis

30 if alicePreparesOutcome == 'D' %Alice prepared phton as 'D'

31 BDet3 = [BDet3, [bobPhotonTT; indentifier; numPhotons]];

32 indentifier = indentifier + 1;

33 bobMeasuresOutcomes = 'D';

34 bobMeasuresBasis = 'DA';

35 elseif alicePreparesOutcome == 'A' %Alice prepared phton ...

as 'A'

36 BDet4 = [BDet4, [bobPhotonTT; indentifier; numPhotons]];

37 indentifier = indentifier + 1;

38 bobMeasuresOutcomes = 'A';
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39 bobMeasuresBasis = 'DA';

40 else %Alice prepared in HV basis instead

41 num10 = ceil(2*rand);% Random number to decide if ...

photon prepared as eiter H or V is measured by Bob ...

− collapses to D or A

42 if num10 == 1

43 BDet3 = [BDet3, [bobPhotonTT; indentifier; ...

numPhotons]];

44 indentifier = indentifier + 1;

45 bobMeasuresOutcome = 'D';

46 bobPreparesBasis = 'DA';

47 else %num10 = 2

48 BDet4 = [BDet4, [bobPhotonTT; indentifier; ...

numPhotons]];

49 indentifier = indentifier + 1;

50 bobMeasuresOutcome = 'D';

51 bobPreparesBasis = 'DA';

52 end

53 end

54 end

6.5.1 Photon Preparation and Measurement

6.5.2 Coincidence Algorithm

As will be explained in section 6.5.3, in order to generate the sifted key, one needs to

find out those preparation / measurement instances of photons where Alice and Bob both

used the same choice of basis set. This means that they should first be able to match the

time tag corresponding to the emission of a photon in Alice’s time tag file to the time tag

corresponding to the detection of the same photon in Bob’s time tag file. However, both

time tag files are littered with time tags from thermal counts and afterpulses in addition

to other signal photon emissions/detections. It is the job of the coincidence algorithm to

determine such signal photon coincidences.

Since Alice and Bob are separated in space, there is a finite time ttrans needed for the

signal photons to travel from the WCP source to the APD detector. Thus, ideally, time

tags corresponding to the same preparation / measurement instance of photons should be

separated in time by an amount ttrans. However, one must keep in mind timing jitter in

Alice’s and Bob’s time tags. This jitter creates some uncertainty in the value of ttrans for

each instance.
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Figure 6.4: Illustration of one-to-one mapping by coincidence algorithm

If one wants to find a photon time tag in Bob’s file that corresponds to a given photon

time tag in Alice’s file. The coincidence algorithm checks for one-to-one mappings between

time tags in Alice’s and Bob’s files that separated by value ttrans in time up to tcoinc, where

tcoinc is the called the coincidence threshold. To simplify the description of the coincidence

algorithm, let’s assume that ttrans = 0 for now. The simulation of course assigns it a

positive value. The coincidence threshold is the maximum absolute time difference a time

tag in Bob’s file can have from Alice’s given photon time tag to be considered as a potential

match (or coincidence). Say, for example, one wants to find out the photon coincidence in

Bob’s file corresponding to a particular time tag, say a12, in Alice’s file. Here 12 represents

the 12th time tag in the Alice’s sorted time tag file. If the algorithm finds multiple time

tags in Bob’s file within a time window of width tcoinc around a12, it deems that there

exists no (unique) coincidence of a12. But let’s say that we find exactly one such time

tag, say b49, in Bob’s file. This does not yet satisfy the one-to-one mapping condition. So,

the algorithm then checks the reverse way to see how many time tags exist in Alice’s file

that are within a time window of width tcoinc around b49. By tautology, a12 should satisfy

this condition. However, if the algorithm finds multiple such time tags that satisfy the

condition, it deems that a12 has no (unique) photon coincidences in Bob’s file. But if only

a12 satisfied the condition, it deems a12 and b49 to be photon coincidences - a12 and b49

correspond to photon emission and detection, respectively.

The following block of code shows the implementation of the coincidence algorithm in

MATLAB.

1

2 aliceTTOutcomesArray = sortrows([aliceTimeTags(1,:)...

3 ;alicePolarDirection...

4 ;aliceTimeTags(3,:)]',1)';

5 bobTTOutcomesArray = sortrows([BDet1(1,:), BDet2(1,:), BDet3(1,:), ...

BDet4(1,:)...
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6 ;1*ones(1,numel(BDet1(1,:))), 2*ones(1,numel(BDet2(1,:)))...

7 ,3*ones(1,numel(BDet3(1,:))),4*ones(1,numel(BDet4(1,:)))

8 ;BDet1(3,:), BDet2(3,:), BDet3(3,:), BDet4(3,:)]',1)';

9

10 aliceTTarray = aliceTTOutcomesArray(1,:); % adjusting for the finite ...

time for transmission of phton from Alice to Bob

11 bobTTarray = bobTTOutcomesArray(1,:);

12

13 for i = 1:numel(aliceTTarray)

14 A = abs(bobTTarray − (aliceTTarray(i) + opticalPathTime)) < ...

coincidenceThreshold;

15 if sum(A)== 1

16 B = abs((aliceTTarray + opticalPathTime) − bobTTarray(A)) < ...

coincidenceThreshold;

17 if sum(B)== 1

18 coincidenceTT = [coincidenceTT, ...

[aliceTTarray(B);bobTTarray(A)]];

19 end

20 end

21 end

The coincidence threshold must be finely tuned. A small coincidence threshold might

increase accuracy slightly. This because majority of the area under the Gaussian (which

is used to model the jitter) is around the expected value. This increases the chances that

the closer one looks around the expected value of the Gaussian, one is more likely to find

signal photons when compared to thermal counts (which are more uniformly distributed in

Bob’s file with respect to Alice’s given signal photon time tag) and afterpulsing. However,

the penalty for making the window too small is that the coincidence algorithm misses

photon coincidence because the jitter introduces some uncertainty around the expected

value, hence reducing key rate. On the other hand, if one makes the coincidence threshold

large, a one-to-one mapping of counts in Alice’s and Bob’s files may be more difficult to

achieve.

6.5.3 Key Generation

The key is a string of zeros and ones that is used to encode a message string before

transmission and is also used to decode the encoded message on the receiver end. Thus

Alice and Bob need to have the copies of the same key. The temporally ordered set of

photon coincidences form the what is known as the raw key. Say, for example, in the HV

basis, one attributes the state |H〉 to bit 0 and the state |V 〉 to bit 1. Similarly, in the DA
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basis, one attributes the state |D〉 to bit 0 and the state |A〉 to bit 1. After the coincidence

algorithm, if one looks at the temporally ordered set of photon coincidences as a string of

zeros and ones, one set held by Alice and the other by Bob, one can in the ideal case expect

a 25% error (mismatch) in bit value in the same index position in the two bit strings. This

was partly explained in section 6.5 and is due to the orthogonality of the rectilinear and

diagonal basis set.

One must then note that in the ideal case, the errors are only occur when the choice of

preparation / measurement basis sets by Alice and Bob are not the same. Thus, one can

eliminate this error by choosing only those photon coincidences where Alice and Bob made

the same choice of preparation / measurement basis sets. This, on average, reduces the

key size to half of that of the raw key. The sifted key is defined as the temporally ordered

subset of the raw key containing only bits where Alice and Bob’s choice of preparation /

measurement basis sets matched.

Realistically, there are many sources of errors in the sifted key.

� The coincidence algorithm doesn’t perfectly match photons time tags. Timetags

corresponding to thermal counts and afterpulsing may also deemed as photon co-

incidences. This is because all sources of time tags are probabilistic events. Since

thermal counts and afterpulsing are not correlated to the choice of basis sets, they

can seep into the sifted key,introducing errors.

� The polarization encoding apparatus by Alice and the measurement apparatus by

Bob are assumed to be accurately aligned relative to each other. Because the polar-

ization vectors have spatial components, any mismatch of such alignment causes the

expected outcomes of Bob’s measurements to change. For example, if both Alice and

Bob use the same basis set and Alice encodes her photon with vertical polarization

|V 〉 but Bob’s measurement apparatus corresponding to the HV basis set is slightly

offset compared to Alice’s preparation apparatus, there is a non-zero probability that

the measured outcome by Bob will have a polarization |H〉. The magnitude of this

probability will depend on the extent of the offset. This will introduce errors in the

sifted key.

� An eavesdropper, Eve, could intercept a photon sent by Alice and measure it in

a basis set of her choice. If she uses a basis set different from the one chosen by

Alice, she can introduce errors in the sifted key because her choice of basis set in

independent of Alice and Bob’s choices of basis sets. This will be addressed in detail

in section 6.5.4.
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Such errors can compromise ones ability to securely use the sifted key to encode/decode

a message string. One needs to quantify the magnitude of the mismatch between Alice and

Bob’s copies of the sifted key to judge whether the key can be used securely. The quantum

bit error ratio (QBER) is the expected error per bit in the sifted key. More elaborately,

QBER =
Number of mismatched bits between sifted keys

Total number of bits in each sifted key
(6.18)

In order to estimate the QBER, Alice and Bob need to find out the number of bit

mismatches in the sifted key. One way to do this is for Alice to transmit her copy of the

key over to Bob and then Bob can calculate the number of mismatches. Since the sifted

key is a classical bit string, it must be sent over the classical channel which is prone to

attacks. Also, it doesn’t make sense to encode this classical sifted key before sending it

because you need a secure key to do this and this whole protocol is itself trying to generate

one. Thus, Alice can send a small subset of her key, say, the first 5% of her copy of the

key. Bob can then compare this to the first 5% of his copy of the key. Thus Bob can

determine the QBER. The compared portions of the keys (the first 5%)is discarded by

both. As the number of bits in the compared portion of the key increases the estimated

QBER approaches the true QBER of the two copies of the key. The estimated QBER is

calculated by the aforementioned procedure and the true QBER is the QBER calculated

by considering the entire sifted key. If the calculated QBER is greater than a pre-decided

threshold, the QKD protocol must be restarted.

Another quantity one wants to keep track of is at what rate can the sifted key be

generated. The key generation rate is defined as the ratio of the number of bits in the

sifted key to the number of laser trigger pulses required to generate that key. Since the

laser is triggered at almost a constant rate, the key generation rate is closely linked to the

number of key bits generated per unit time.

The following block of code generates the raw key and sifted key. It also calculates the

true QBER and the estimated QBER.

1 if ¬isempty(coincidenceTT)
2 %Generate raw key

3 aliceCoincidenceIndex = ismember(aliceTTarray, coincidenceTT(1,:));

4 aliceRawKey = aliceTTOutcomesArray(2, aliceCoincidenceIndex);

5 bobCoincidenceIndex = ismember(bobTTarray, coincidenceTT(2,:));

6 bobRawKey = bobTTOutcomesArray(2, bobCoincidenceIndex);

7 fprintf('error in raw key = %d\n',sum(aliceRawKey 6= ...

bobRawKey)/numel(aliceRawKey)*100);
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8

9 % Generate sifted key

10 sameBasis = ceil(aliceRawKey/2) == ceil(bobRawKey/2); %Figures ...

out indices in alice and Bob's raw key where they ...

prepared/measured in the same basis

11 aliceSiftedKey = aliceRawKey(sameBasis);

12 bobSiftedKey = bobRawKey(sameBasis);

13 QBER = sum(aliceSiftedKey 6= ...

bobSiftedKey)/numel(aliceSiftedKey)*100; %This is the true QBER

14 if isequal(aliceSiftedKey, bobSiftedKey) == 1

15 fprintf('Alice and Bob have same sifted keys\n')
16 else

17 fprintf('Alice and Bob have different sifted keys. True QBER ...

is %d %%\n', QBER)

18 end

19 %NOTE: The second row in aliceTTBasisArray is the outcome value, ...

isn't the basis choice

20

21 % Estimattion of QBER by Alice and Bob: Take 5% of the key and ...

compare

22 numEstKey = ceil(numel(aliceSiftedKey)*0.05);%number of bit froom ...

the left to devote for estimating QBER

23 aliceEstimationKey = aliceSiftedKey(1:numEstKey);%Part of alice's ...

key devoted to estimation

24 bobEstimationKey = bobSiftedKey(1:numEstKey);%Part of bob's key ...

devoted to estimation

25 if isequal(aliceEstimationKey, bobEstimationKey) == 1

26 fprintf('Alice and Bob estimate that they have same sifted ...

keys \n')
27 else

28 estimatedQBER = sum(aliceEstimationKey 6= ...

bobEstimationKey)/numel(aliceEstimationKey)*100;

29 fprintf('Alice and Bob estimate that they have different ...

sifted keys. Estimated QBER is %d %%\n', estimatedQBER)

30 end

31

32 fprintf('Size of final key = ...

%d\n',numel(aliceSiftedKey)−numel(aliceEstimationKey))
33

34 else

35 break

36 end

In my simulation I calculated the true QBER except for the case of Eve’s attack, where
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I calculated the estimated QBER. The primary reason for calculating the true QBER in

simulation was that a large key size was required to get an accurate value of the estimated

QBER. But sometimes when key rate drops as I change certain experimental parameters,

I am required to run the simulation for longer periods of time but MATLAB has an upper

bound on the size of arrays. However, since the estimated QBER approaches the true

QBER as the number of bits in the transmitted key increases, the results of the simulation

are still valid.

6.5.4 Attack

Alice sends her polarization encoded photons over a quantum channel. Under the assump-

tion that this channel is unsecure (open), an eavesdropper, Eve, could gain access to the

transmitted photons. A host of attacks could be performed by Eve to gain polarization

information of the photons without being detected.

One of the simplest attacks is an intercept and resend attack. Eve is assumed to have

a laboratory of her own which is located physically close to Bob’s. Eve intercepts the

photons that Alice sends to Bob. Eve then measures the polarization state of the photons

using a detection apparatus which has 100% detection efficiency. Eve randomly choose a

basis set between the HV or DA basis and proceeds to measure the polarization state of

Alice’s photon. Eve also has an ideal photon source which can generate photons in the

same polarization state as she measured Alice’s photon to be in. Eve also can detect the

number of photons in Alice’s multi-photon state accurately. Eve then can use her source

to simultaneously generate the same number of photon she detected in Alice’s k-photon

state, all photons being in the same polarization state as she measured Alice’s photon in.

If Eve happens to choose the same basis set as Alice does during a given laser pulse,

Eve’s presence is undetectable. This is because Eve’s measurement doesn’t change the

polarization of the photon. On the other hand if Eve chooses a basis set different from

Alice in a given laser pulse, there is a 50% chance of changing the polarization state of the

basis set and hence changes Bob’s statistical outcome. This eventually introduces errors in

the sifted key. The lecture [39] states and briefly explains that the QBER introduced by the

presence of Eve if she intercepts every photon is 25%. Here I attempt to describe why this

is so. To probe this in a bit more detail, let’s only look at cases where Alice and Bob use the

same choice of basis set because these are the only instances which the sifted key retains.

First let’s start by looking at the case when Eve is absent. Let’s assume in the ideal case,

the QBER is zero. This is illustrated in figure 6.5 and is straightforward. In the presence

of Eve, let’s assume she intercepts every k-photon state that Alice sends. Let’s look at the
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case where both Alice and Bob both use the HV basis. Say, Alice generates her photon

in the |H〉 state. If Eve chooses to measure in the HV basis set, she doesn’t change the

state. Hence, Bob also measures the polarization state of the photon as |H〉. The expected

error is zero corresponding to this series of outcomes. This is illustrated in figure 6.5 in

the left-most branch. The letters H, V , D and A within the circle are polarization states

prepared in or measured. The number along each straight line is a conditional probability

which is the probability that the next person measured the photon in the state denoted

by the letter at the bottom of the line given the fact that the previous person measured /

prepared the photon in the state denoted by the letter at the top of the line. On the other

hand if Eve uses the DA basis to measure Alice’s photon, half the time Eve measures it

in the |D〉 state, the other half in the |A〉 state. When Eve measures in the |D〉, Bob has

a 50-50% chance of measuring the photon in the |H〉 or |V 〉. It is the measurement of the

photon state as |V 〉 by Bob that induces an error in the sifted key because Bob’s bit in

his copy of the sifted key now flips with respect to Alice’s copy. The expected error due

to this is 1
8

as illustrated in middle leg of figure 6.5. Finally a similar calculation shows

that if Eve had measured the photon as |A〉, the expected error due to this would also be
1
8
. The net error and hence QBER due to Eve’s presence is 1

8
+ 1

8
= 25%. Thus, Alice and

Bob can estimate their QBER by using a small fraction (for the simulation, I used 5%)

of their sifted keys. If the QBER exceeds a threshold, they can determine the presence of

Eve - under the assumption that experimental setup itself induces negligible errors.

Eve also has a choice of intercepting a k-photon state sent by Alice with a probability

pint ≤ 1. Looking at the explanation in the previous paragraph, corresponding to pint = 0,

QBER = 0 and corresponding to pint = 1, QBER = 0.25. Since QBER is the expected

error per bit in the sifted key, one predicts 0 < QBER < 0.25 corresponding to 0 < pint < 1.

Note: Eve doesn’t induce a time delay in the system. This is because her lab is assumed

physically close to Bob’s. The distance traveled by the photon from Alice to Bob doesn’t

change in Eve’s presence. This means that the optical path time of the photon doesn’t

change. It is also assumed that Eve’s detection of Alice’s k−photon state and her own

generation of the same k- photon state is instantaneous. All this means that Bob cannot

detect Eve’s presence by a shift in the expected time to receive Alice’s photon. Instead,

Bob must rely on QBER estimation to detect Eve’s presence.

The following code in MATLAB implements Eve’s intercept and resend attack with

probability pint

1 % Eve attacks

2 if eveAttacks == 1
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Figure 6.5: The left part shows the QBER when no eavesdropper is present. When an

eaves

3 if rand < eveAttackProbability

4 num5 = ceil(2*rand); %Random number for passive 50−50 beam ...

splitter to decide which basis Bob measures in

5 if num5 == 1 %Eve measures in HV basis

6 if alicePreparesOutcomes(end) == 'H' %Alice prepared ...

phton as 'H'

7 EDet1 = [EDet1, evePhotonTT];

8 alicePreparesOutcome = 'H'; %Eve's sends this state ...

to Bob hoping he weill think it's from Alice

9 elseif alicePreparesOutcomes(end) == 'V' %Alice prepared ...

phton as 'V'

10 EDet2 = [EDet2, evePhotonTT];

11 alicePreparesOutcome = 'V'; %Eve's sends this state ...

to Bob hoping he weill think it's from Alice

12 else %Alice prepared in DA basis instead

13 num7 = ceil(2*rand);% Random number to decide if ...

photon prepared as eiter D or A is measured by Bob ...

− collapses to H or V

14 if num7 == 1

15 EDet1 = [EDet1, evePhotonTT];

16 alicePreparesOutcome = 'H'; %Eve's sends this ...

state to Bob hoping he weill think it's from Alice

17 else %num7 = 2

18 EDet2 = [EDet2, evePhotonTT];

19 alicePreparesOutcome = 'V'; %Eve's sends this ...
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state to Bob hoping he weill think it's from Alice

20 end

21 end

22 else %num5 = 2 −−− Eve measures in DA basis

23 if alicePreparesOutcomes(end) == 'D' %Alice prepared ...

phton as 'D'

24 EDet3 = [EDet3, evePhotonTT];

25 alicePreparesOutcome = 'D'; %Eve's sends this state ...

to Bob hoping he weill think it's from Alice

26 elseif alicePreparesOutcomes(end) == 'A' %Alice prepared ...

phton as 'A'

27 EDet4 = [EDet4, evePhotonTT];

28 alicePreparesOutcome = 'A'; %Eve's sends this state ...

to Bob hoping he weill think it's from Alice

29 else %Alice prepared in HV basis instead

30 num8 = ceil(2*rand);% Random number to decide if ...

photon prepared as eiter H or V is measured by Bob ...

− collapses to D or A

31 if num8 == 1

32 EDet3 = [EDet3, evePhotonTT];

33 alicePreparesOutcome = 'D'; %Eve's sends this ...

state to Bob hoping he weill think it's from Alice

34 else %num8 = 2

35 EDet4 = [EDet4, evePhotonTT];

36 alicePreparesOutcome = 'A'; %Eve's sends this ...

state to Bob hoping he weill think it's from Alice

37 end

38 end

39 end

40 end

41 end

6.6 Results and Discussions

A simulation of the QKD protocol with the source and detector was implemented in MAT-

LAB. In this section, I will cover the results of the simulation and discuss them a bit. One

of the goals of the simulation was to see how different parameters of the experimental setup

affects the QBER and the sifted key generation rate. This information can in turn be used

to fine tune these parameters to decrease QBER and increase key generation rate. The

ideal way to go about this is to first decide on a range of acceptable QBER values for secure

key generation. Then one can fine tune the experimental parameters to maximize the key
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generation rate under the constraint of maintaining the QBER in operational range. The

next few subsections look at how each of the individual experimental parameters affects

the QBER and key generation rate.

Although the details of simulating each experimental component was covered in sections

6.3, 6.4 and 6.5, I will briefly outline the main steps of the simulation. The laser trigger

frequency was set to 5 MHz. The entire algorithm lives inside a giant for loop with each

iteration corresponding to a single laser trigger. The average number of photons emitted

during a given laser trigger was set to 0.5 . The number of photons emitted during a given

laser trigger was calculated by sampling a Poisson distribution with mean value 0.5 . The

net timing jitter experienced by Alice in her time tags was set to 300 ps. The time stamp

in Alice’s file corresponding to the emission of a k-photon state is calculated by sampling

a Gaussian distribution with mean value centered around the expected instant of the laser

trigger and uncertainty equal to 300 ps. Eve may attack with a certain probability pint.

If during a laser pulse, she does intercept a photon, she measures it. The simulation of

measurement has been described in section 6.5. Then Bob measures it in the same manner.

The expected time taken by photons from Alice to Bob, i.e. optical path time, was set to

300 ns. Then thermal counts are generated in all detectors. I assumed a thermal count rate

of 100 Hz in each detector. Then the afterpulsing on signal photons and thermal counts is

generated in all detectors. I used an afterpulsing probability of 10%. The afterpulsing time

constant λap was set to 1× 106 s−1. Then the illegal detector clicks were deleted according

to dead time and detection probability criteria. The dead time was set to 500 ns. The

recharge time was set to 1 µs. The detector’s maximum possible detection efficiency was

set to 60%. The optical efficiency of the optical path that the photons take from Alice to

Bob was set to 70%. The coincidence algorithm then finds the photon coincidences. The

coincidence threshold was set to 10 ns. Finally, the sifted key is generated and the QBER

and key rate are calculated. The QBER was calculated as the true QBER evaluated using

the entire sifted key. The only exception is in section 6.6.8 which deals with the attack

scenario, where the QBER is calculated as the estimated QBER.

In each of the following sections, I selected one experimental parameter and varied it

over a range of values. For each value, I ran the simulation 5 separate times each time

running the simulation for 10 ms. I averaged the QBER and key rate I calculated during

each of the 5 runs and mapped it to a specific value of the varied experimental parameter.

I chose to use 5 instances of 10 ms simulations instead of 50 ms of a certain simulation

because MATLAB has an upper bound on the memory allocated to an array variable.

This limits the number of elements in the time tag file array and eventually limits the

simulation time for a single run when some of the parameters like thermal count rate take
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extremely high values. I then plot a graph each showing how the QBER and key rate vary

when that particular parameter is varied. The exact values of QBER and key rate aren’t

pivotal in the graphs because these depend on the values of the parameters that are kept

constant. However, the form of the curve in the graph is important because it should be

preserved even if the fixed parameters take a different value within a reasonable range.

Note 1: The parameters were set to the values mentioned above unless explicitly men-

tioned otherwise in the following sections

Note 2: One must note that when the key rate is very low, the QBER value is unreliable.

This is because the QBER is a statistically aggregate value over the bits in the sifted key.

If there are very few bits in the key, the QBER value can vary drastically every time the

simulation is run.

Before going into the results of the simulation, table 6.1 shows a table that summarizes

how each parameter was modeled as well as which ones were varied during simulation. I

have also listed out the nominal values that I used for the purposes of simulation. Please

note that some of these values are not realistic for satellite QKD. Changing these values to

realistic ones is simple and one needs to only change the values declared in the MATLAB

code before the QKD protocol is simulated. Also, in some simulations even though a

certain parameter was varied continuously, I did change the value from the nominal one

a little bit mostly for the sake of computational complexity or to emphasize interesting

points in the resulting graphs.

6.6.1 Thermal Counts

The thermal count rate was varied from 1 Hz to 10 MHz. The QBER and key rate were

calculated for each value of thermal count rate. Figure 6.6 shows how the true QBER and

sifted key generation rate change as the thermal count rate in the APD detectors is varied.

For this simulation, I used a coincidence threshold of 100 ns

At low thermal count rate, the QBER is low. This indicates that the coincidence

algorithm does a good job of correctly identifying photon coincidences. This corresponds

to a certain key rate being relatively constant in this region of the graph. As the thermal

count rate increases beyond 10 kHz, we start to see a rise in the QBER. The increase in the

temporal density of thermal counts in the time tag file firstly decreases the number of one-

to-one mappings of the actual photon time tags. Also, the increasing thermal counts induce

dead time regions in the time tag file which may prevent the detector from avalanche when

a photon is incident and hence not record the photon in the first place. Thus, the number
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Parameter Model Nominal Value Assumptions

Laser Source

Weak coherent pulsed laser with 

Poisson photon statistics

poissrnd()  function in MATLAB

Pulse frequency = 

5 MHz

average photon 

number per pulse 

Photons in a multi-photon 

event are produced 

simultaneously

Thermal counts*

Poisson distributed in time. Use 

rand()  function to randomly 

populate time tag file

Thermal count 

rate = 100 HZ

P.D.F. of next thermal count is 

an exponentially decaying 

distribution (d e
-dt

)

Afterpulsing 

probability*

Sample from an exponentially 

decaying distribution but do so only 

with probability equal to the 

afterpulsing probability. pap = 10%

1) pap is the average number of 

charge carriers getting trapped 

during an avalanche.

2)  pap < 1

3) At most one charge carrier 

gets trapped during an 

avalanche

4) A detrapped charge carrier 

triggers an avalanche subject to 

dead time and recharge time 

conditions

5) Avalanches are 

indistinguishable from each 

other

Afterpulsing time 

constant*

Sample from an exponentially 

decaying distribution of 

characteristic time constant as the 

afterpulsing time constant λap = 106 s-1

1) P.D.F. of detrapping time of 

charge carrier is an 

exponentially decaying 

distribution ( λe
-λt

)

2) No time delay between the 

detrapping and initiation of an 

afterpulse.

Dead time*

Generate thermal counts, photon 

clicks and afterpulses first.

If two clicks occur less than the 

dead time value τd , delete the 

second click as well as all 

generation of afterpulses arising 

from the second click. τd = 0.5 μs
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Recharge time*

Modeled as a (1-e
-t/τR

) type curve

Detection efficiency  due to 

recharge time is

ηrecharge = 

τR = 1 μs

Efficiency due to recharge is the 

only efficiency that varies with 

time

Optical efficiency ηoptical = 70%

Maximum 

Detector efficiency  ηDetMax = 60%

Detection 

efficiency of 

thermal count or 

afterpulse

ηthermal  /afterpulse  = ηrecharge X  ηDetMax 

For two consecutive detector clicks 

with the second click being a 

thermal count or afterpulse, delete 

the second click with probability (1 - 

ηthermal  /afterpulse) . Also, delete all 

successive generations of 

afterpulses arising from the second 

click
Varies with time only due to 

ηrecharge 

Detection 

efficiency of single 

photon state

ηsingle photon = ηoptical X ηrecharge X  

ηDetMax

Varies with time only due to 

ηrecharge 

Detection 

efficiency of k -

photon state

ηk-photon = 1 - (1 -ηsingle photon)k

For two consecutive detector clicks 

with the second click being due to 

detection of a k -photon state, 

delete the second click with 

probability (1 - ηk-photon) . Also, 

delete all successive generations of 

afterpulses arising from the second 

click

1) Varies with time only due to 

ηrecharge 

2) Detector is not photon 

resolving

1

1 − 𝑒−
20
8.5

(1 − 𝑒−(1−𝑒
−
∆𝑡
𝜏𝑅)

20
8.5)
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Timing jitter of 

laser and 

detector*

Modeled as Gaussian. Time tag is 

sampled from the Gaussian 

distribution centered around the 

expected time instant of a potential 

photon emission/detection event 300 ps

1) Laser side timing jitter 

consists of the laser jitter and 

jitter associated with laser side 

time tagger.

2) Detector side timing jitter 

consists of the detector's jitter 

and jitter associated with 

detector side time tagger.

3) Laser side timing jitter = 

detector side timing jitter

Optical path time 0.3 μs

Time taken for photon to travel 

from Alice's to Bob's laboratory 

is fixed and known to both Alice 

and Bob

Production and 

measurement of 

quantum states

Used rand()  in MATLAB 

The measurement is done using 

a polarization dependent beam 

splitter

Choice of basis set

Used rand()  in MATLAB 

The choice of basis set is done 

using a 50-50 non-polarizing 

beam splitter

Coincidence 

window

A time window of fixed width tcoinc. 

Coincidence matching is successful 

when a count in Alice's file is within 

a time interval of tcoinc from a 

count in Bob's file. A one-to-one 

mapping is required to successful 

matching. tcoinc = 10 ns
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Intercept and 

Resend attack 

(pint*)

Eve intercepts a k-photon with 

probability pint, measures it and 

sends the measured state to Bob pint = 0%

1) Eve has 100% detection 

efficiency on her detector

2) Eve induces zero time delay 

in the system, when photon 

travels from Alice to Bob.

3) Eve can detect the

number of photons in Alice's 

multi-photon state accurately 

and generate a multi-photon 

state with the same number of 

photons.

4) Eve has an ideal photon 

source which can generate 

photons in the

same polarization state as she 

measured Alice's photon to be 

in

* indicates that this parameter was varied at some point to find out how the QBER and sifted key rate

Table 6.1: Table listing out each modeled parameters in the quantum key distribution

simulation. The second column lists how each parameter was modeled in the simulation.

The third column lists out the nominal value used for that parameter. This is the default

value that a parameter assumes when it is not being varied. The fourth column states

assumptions relating the modeled parameter. A ∗ symbol against a parameter in the first

column denotes that it was varied at some point in the simulation to correlate how the

QBER and sifted key rate changed with respect to the parameter. During this process the

other parameters were held fixed.
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of bits in the sifted key corresponding to actual photons decreases. Also, at low thermal

count rate it is improbable that thermal counts are classified as photon coincidences by

the coincidence algorithm.But as the temporal density of thermal counts increases in the

time tag file, it is plausible that some of these thermal counts will be classified as photon

coincidences. These thermal counts will eventually seep into the sifted key since they are

not correlated with Alice and Bob’s choice of preparation / measurement basis sets, and

on average half of these thermal counts in the sifted key will contribute to mismatched

bits - this is because in a 2-bit system where each bit is chosen randomly, the probability

of mismatch is 0.5 . The combination of decreased number of photons and the increased

thermal counts in the sifted key increases the QBER. Also, in this region the key rate

increases. If you notice the key rate doesn’t increases exactly when the QBER increases.

This is because as the QBER starts to increases, the decrease in the number of actual

photons in the sifted key is nearly the same as the increase in the thermal counts in the

key. Thus the key rate still remains the same. However, with further increase in thermal

count rate, the increase in the thermal counts seeping into the key dominates the decrease

in the photons in the key. This causes the key rate to increase. Hence the increase in key

rate lags the increase in QBER as the thermal count rate is increased. In my simulation,

I kept track of which bits in the final key were due to signal photons, thermal counts and

afterpulses. This helped me explain the variations in QBER and key rate.

I was unable to simulate for thermal counts beyond 10 MHz because of the limitation

of size of arrays in MATLAB . As the thermal count rate exceeds the dead time, many

of the thermal counts won’t actually manifest because the average time period of thermal

counts will be of the order of magnitude of the dead time (during which the detector cannot

avalanche). Hence, one predicts the rate of increase of QBER and key rate to drop around

this region. The dead time used was 0.5 µs. This corresponds to a frequency of 2 MHz.

Looking at the graph, it does seem that the rate of increase of QBER and key rate starts

to drop around 2 MHz. With further increase in thermal count rate variable, the observed

thermal count rate is expected to asymptote due to the time tag file being filled with dead

time regions. Consequently, the key rate should asymptote as well. My guess is that the

QBER will drop to zero because the photon detection will be extremely difficult due to the

time tag file being filled with dead time regions. Nonetheless, one must stay away from this

region during the QKD protocol in practice. However, as the thermal count rate exceeds

the coincidence threshold of 100 ns (corresponding to a thermal count rate of 10 MHz), one

would see a drastic drop in the key rate because the coincidence algorithm will find it more

difficult to achieve one-to-one mappings for photon coincidences.

Note: I want to distinguish between thermal count rate and observed thermal count rate.
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Figure 6.6: This figure shows how the QBER and sifted key generation rate vary as the

thermal count rate in the APD detectors changes.

Thermal count rate is the rate at which thermal clicks are supposed to occur under the as-

sumption of zero dead time. This corresponds to the rate at which the initial mobile charge

carriers that will initiate the avalanche associated with thermal counts are produced. How-

ever, in the presence of dead time, the increase in the thermal counts causes the time tag

file to be cluttered with dead time regions which increasingly prevent some of the thermal

counts from manifesting as avalanches in the detector. The observed thermal count rate is

defined as the rate at which avalanches which are triggered by the aforementioned initial

mobile charge carriers occur. Hence, observed thermal count rate ≤ thermal count rate.

The time tags in the file correspond to the observed thermal count rate. The graph in

figure 6.6 shows the thermal count rate on the x-axis and not its observed counterpart.

There should be a nice relation between thermal count rate and the observed thermal count

rate and this might be a case for future work.
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Figure 6.7: This figure shows how the QBER and sifted key generation rate vary as the

afterpulsing probability in Bob’s APD detector changes.

6.6.2 Afterpulsing Probability

For this simulation, I varied the afterpulsing probability, pap from 0 - 99%. I didn’t simulate

pap ≥ 100% because this would mean every avalanche would on average give rise to at least

one afterpulse. This would lead to a runaway effect with the count rate approaching ∞
far to the right of the time the file - actually due to non-zero dead time, the detector click

rate would asymptote to a finite value under the assumption that every avalanche is time

tagged regardless of its pulse amplitude.

Figure 6.7 shows how the QBER and sifted key generation rate vary when the after-

pulsing probability in Bob’s detector changes. A larger afterpulsing probability means

that the temporal density of afterpulses in the time tag file is greater. As the afterpulses

start to clutter Bob’s time tag file, the chance of a one-to-one mapping by the coincidence

algorithm to determine photon coincidences decreases. Thus, the number of bits in the

sifted key corresponding to actual photons decreases. Simultaneously, it is plausible that

the chances that an afterpulse is deemed as a photon coincidence increases . Since, the

occurrence of an afterpulse time tag has no correlation with Alice and Bob’s preparation
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/ measurement basis sets, on average half of these afterpulse time tags that are deemed as

photon coincidences seep into the sifted key. Also, since such afterpulse time tags could

occur in any of Bob’s detectors, about half of such time tags in the sifted key will result

in a bit mismatch between Alice and Bob’s copies of the key. Due to both the decrease

of photons and the increase of afterpulses in the sifted key, the QBER increases when the

afterpulsing probability is increased. The increase in QBER is greater than linear with

respect to afterpulsing probability. This is likely because the QBER responds to the num-

ber of afterpulses in the time tag file and the number of afterpulses increases greater than

linearly with respect to the afterpulsing probability.

The key generation rate increases with afterpulsing probability. This may be because

the increase in the number of afterpulses seeping into the sifted key may outweigh the

decrease in the number of photons in the sifted key, thus increasing key rate. I haven’t

simulated beyond 99% afterpulsing probability primarily due to space complexity but would

like to make some predictions. As the afterpulsing probability approaches 100%, the sifted

key rate would drop because the coincidence algorithm would find it difficult to achieve

one-to-one mappings.

6.6.3 Afterpulsing Time Constant

For this simulation, I varied the afterpulsing time constant λap from 1 s−1 to 1× 1012 s−1.

Figure 6.8 shows how the QBER and sifted key rate change with afterpulsing time constant.

The average time to de-trap a trapped electron can be shown to be equal to 1
λap

. The p.d.f.

of detrapping time with a smaller λap is more spread out meaning that afterpulses generated

by this p.d.f. tend to be more spaced out. At first, this might seem like a smaller λap is

associated with lesser temporal density of afterpulses in the time tag file. However, one

must note that in an infinitely long file, the smaller λap implies that at any point in time

you have afterpulsing contributions from time tags much further towards the left than if

you had a larger λap. This should imply that the smaller λap itself does not decrease the

temporal density of afterpulses and hence cannot affect the QBER. This effect is seen in the

intermediate region between λap = 1× 102 s−1 to 1× 106 s−1. When λap <1× 102 s−1, the

average detrapping time becomes greater that 10 ms, which is the size of the time tag file

during the simulation. Thus, the assumption of infinite sized file no longer applies. In this

case most of the afterpulses occur beyond the size of the file and I didn’t explicitly delete

these afterpulses. Beyond the 10 ms mark, the temporal density of afterpulses drops as you

go towards the right in the time tag file. This improves the accuracy of the coincidence

algorithm as some of the afterpulses are now not being deemed as photon coincidence.
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Figure 6.8: This figure shows how the QBER and sifted key generation rate vary as the

afterpulsing time constant in Bob’s APD detector changes.
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Figure 6.9: This figure shows how the QBER and sifted key generation rate vary as the

dead time in Bob’s APD detector changes.

Thus the QBER drops for small λap values. When the λap value increases beyond the dead

time frequency equivalent of 2 MHz (corresponding to 0.5 µs), the trapped charge carrier

is now detrapped when the detector is still in a dead time region induced by the avalanche

that trapped the charge carrier in the first place. Thus the afterpulses increasingly cease

to occur and cannot seep into the sifted key by mistake. Hence the QBER drops for large

λap values. The key rate doesn’t itself change much with λap.

6.6.4 Dead Time

I varied the dead time of Bob’s APD detector from 1 ps to 1 s and simulated how the

QBER and sifted key rate change. In figure 6.9. At low dead time values, both the key

rate and QBER are largely uncorrelated with dead time. This means that the dead time

isn’t impeding the photon detection. As the dead time increases, it makes the detector

increasingly unavailable for detection because the time tag file becomes cluttered with dead

time regions. This decreases the key rate. In particular, when the dead time exceeds the

time period of the laser trigger (200 ns), the key rate starts to drop. This is because any
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Figure 6.10: This figure shows how the QBER and sifted key generation rate vary as the

recharge time in Bob’s APD detector changes.

type of detector click (thermal, photon, or afterpulse) in Bob’s APD induces a dead time

period that is long enough that when the next photon arrives at Bob’s laboratory, his APD

is inactive and unable to detect the photon. Thus, one expects few photon coincidences

during the 10 ms simulation and this decreases the key rate. It does seem that as the key

rate drops, so does the QBER.

6.6.5 Recharge Time

I varied the recharge time from 1 ps to 1 s and simulated how the QBER and sifted key rate

change. At low recharge time, the detector is at maximum efficiency when most ”potential

clicks” are supposed to occur. This keeps the sifted key rate more or less constant. However,

when the recharge time exceeds the source clock’s time period of 200 ns, the key rate starts

to drop. This is because the recharge time τR decides the time scale for the recharge

efficiency ηreacharge to reach unity. As the recharge time exceeds the source’s time period,

the APD has a low detection probability due to which an increasing number of photons

will go undetected. Hence, fewer photons end up in the key, leading to lower key rates.

205



Also, the afterpulses tend to occur on a time scale of 1µs. This also means that when the

recharge timeexceeds 1 µs, fewer detrapped charge carriers produce and avlanche (fewer

afterpulses) which leads to smaller key rates.

At low recharge time values, the QBER is uncorrelated with recharge time because the

detector detects most ”potential clicks”. As the recharge time exceeds the source clock time

period, the QBER starts to increase. This likely because the photon detection is adversely

affected as explained earlier. However, since the thermal counts occur on a larger time

scale of 10 ms, they are less affected when the recharge time is around the source clock’s

time period. Thus as the recharge time increases, the decrease in the number of photons

in the final key is greater than the corresponding decrease for thermal counts. Although

the afterpulses in the sifted key also drop around 1µs recharge time (which should decre),

I have used a small afteprulsing probability (10%). Thus, the drop

6.6.6 Timing Jitter

For my simulation, Alice’s jitter (due to her laser electronics and time tagger) and Bob’s

jitter (due to his detector and time tagger) are assumed to be equal to each other. The

code can however be easily modified to make these jitters different. Please note that Bob’s

jitter is only the jitter imparted due to his experimental setup. The net jitter in his time

tags will as contain Alice’s jitter as explained in section 6.4.5. I then varied this value of

jitter from 1 fs to 1 s and simulated how the QBER and sifted key rates changed. Figure

6.11 shows how the QBER and key rate change as the jitter is varied.

At low jitter, the QBER is very low. This is because the jitter is smaller than the co-

incidence threshold and hence the coincidence window can successfully catch true photon

coincidences. However, when the jitter exceeds the coincidence threshold of 10 ns, we see

that the QBER increases. This is because there occurs an increasingly larger number of

instances where many true photon coincidences are not matched by the coincidence algo-

rithm because the corresponding photon time tags in Alice’s and Bob’s files are separated

by a value greater than the coincidence threshold (after accounting for the optical path

time). This decreases the number of photons in the final sifted key. One must note that the

increase in QBER occurs gradually around the coincidence threshold because the Gaussian

distribution is a smooth function. Also, I didn’t simulate any jitter for the thermal counts

and the afterpulses. Hence, the number of thermal counts and afterpulses in the final key

shouldn’t be affected by changing the value of jitter. Thus, the QBER increases.

The key rate starts decreasing around the coincidence threshold because although the

thermal counts and afterpulse in key remain more or less constant in the final sifted key,
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Figure 6.11: This figure shows how the QBER and sifted key generation rate vary as the

jitter in in Alice’s and Bob’s equipment changes. Here Alice’s jitter comprises of her laser

electronics and time tagger whereas Bob’s jitter comprises of his
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Figure 6.12: This figure shows how the QBER and sifted key generation rate vary as

the coincidence threshold (width of the coincidence window) in the coincidence algorithm

changes.

the photons in the key start decreasing. This decreases the overall size of the key for a

fixed simulation time, hence decreasing the key rate.

A special note must be made that the calculated values of QBER at jitter ≥ 0.1 s are

unreliable. This is because since the key rate is extremely small at these jitter values, it is

difficult to get a statistically accurate value of QBER for a simulation run time of 10 ms.

One would need to increase the simulation run time to get a reliable value of QBER.

6.6.7 Coincidence Threshold

I varied the width of the coincidence window, i.e., coincidence threshold, in the coincidence

algorithm from 1 fs to 1 s and simulated how the QBER and sifted key rates changed. Figure

6.12 shows the results.

At low coincidence threshold, the key rate is nearly zero. This is because the coincidence

threshold is significantly smaller than the jitter of 300 ps. Therefore, the time tags in
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Alice’s and Bob’s files corresponding to photon production and detection, respectively, are

too spread out compared to the coincidence threshold and hence the coincidence algorithm

cannot find photon coincidences. As the coincidence threshold surpasses the jitter, we

notice an increase in the key rate. The increasing coincidence threshold starts detecting

more and more photon coincidences, increasing the key rate. One must note that this

increase in key rate is gradual as the coincidence threshold exceeds the jitter because the

jitter is modeled by a Gaussian function which is a smooth function.

As the coincidence threshold exceeded the time period of the laser (0.2 µs), we see a

drop in the key rate. This is because, the coincidence window is so wide it can now pick up

photons produced during consecutive laser triggers. Thus, a one-to-one mapping is more

difficult to achieve in the coincidence algorithm, leading to fewer photons ending up in the

final key, decreasing the key rate eventually to zero.

The QBER is nearly zero for the most part because thermal counts and afterpulses

are not deemed by the coincidence threshold as photon coincidences. However, the QBER

shoots up a tiny bit when the coincidence threshold exceeds 10 ns because a few thermal

counts in Bob’s file become deemed as photon coincidences, increasing the QBER slightly.

Thus, the coincidence has a narrow region in which it is effective. The exact value of

this region depends on experimental parameters, in particular, the jitter and the source

frequency.

6.6.8 Attack

An intercept and resend attack by an eavesdropper, Eve, was simulated. The probability

of interception, pint, of a k-photon state was varied from 0 - 100% and the corresponding

QBER and sifted key rate was calculated from the simulation of the QKD protocol for

each value of pint. Figure 6.13 shows the results.

The QBER increases linearly with the probability pint that Eve intercepts Alice’s k-

photon state. The QBER reaches its maximum value of 25% when pint = 100%. This is the

expected theoretical prediction as explained in section 6.5.4. Furthermore, it is simple to see

why the curve is linear. Let’s assume the coincidence algorithm does a perfect job at match-

ing true photon coincidences. Then, if you only look at the photons that Eve intercepts, all

these intercepted (and resent) photons will end up in the raw key. But by the explanation

in section 6.5.4, a quarter (25%) of the bits corresponding to these intercepted photons

in Alice’s and Bob’s sifted keys will be mismatches. If Eve intercepts pint% of Alice’s k-

photon states (k > 0), then the number of mismatched bits in the sifted keys is equal to
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Figure 6.13: This figure shows how the QBER and sifted key generation rate change as

one varies the interception probability of Alice’s k-photon state in an intercept and resend

attack performed by an eavesdropper.
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25%×pint×number of k -photons states sent = 0.25 pint×number of k -photons states sent.

This is under the assumption that unintercepted photons produce no bit mismatches in

the sifted key. Since the QBER is the number of bit mismatches per bit in the sifted keys,

QBER = 0.25 pint, which is the equation of the QBER curve in figure 6.5.4. The greater

the value of pint, the more information that Alice has about the sifted key. Alice and Bob

can thus put an upper bound on their estimated QBER to limit Eve’s information of their

keys. If the estimated QBER exceeds this threshold, Alice and Bob discard their keys and

restart the protocol.

The key rate is uncorrelated to pint. This is because Eve does not induce any delay in

Bob’s detection of Alice’s k-photon state. So, it doesn’t affect the coincidence algorithm

and hence doesn’t affect generated key size. Also, Bob’s choice of measurement basis set

is independent of Eve’s photon interception probability. Since the sifted key is determined

by those instances in which Alice’s and Bob’s choice of basis sets match, the intercepted

photons still end up in the sifted key, thus the key size doesn’t change. However, these

intercepted photons in the sifted key contribute towards bit mismatches. Thus, Alice and

Bob cannot detect Eve’s presence by the generated key rate but only through the key’s

estimated QBER.

6.7 Summary and Outlook

A QKD quantum link was simulated and the dependence of sifted key generation rate and

QBER on different system parameters was found. The parameters of the laser source were

fixed. However, the detector parameters were varied and for each value of the detector pa-

rameter, the simulation was run for 10 ms five separate times and the sifted key generation

rate and QBER values were averaged out.

Here’s a brief summary of the results. As the thermal count rate is increased the

QBER and sifted key rate are initially constant but both increase after a certain point (the

exact point value of thermal count rate at which they increase is not extremely important to

mention her because this depends on other system parameters as well). The thermal counts

start being wrongly ascribed by the coincidence algorithm as being photon coincidences,

causing them to seep into the sifted key, increasing the key generation rate on one hand

and increasing QBER. Similarly, both the key generation rate and QBER increase with

afterpulsing probability for the same reason that more afterpulses start being wrongly

deemed as photon coincidences. The value of afterpulsing time constant has no effect

on the key generation rate as the temporal density of afterpulses doesn’t change. Also,
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the QBER is not significantly affected with a maximum variation of 0.2%. At low dead

times, the QBER and key rate are unaffected by changes in dead time. When the the

dead time exceeds the time period of the laser trigger, the key rate drop because with each

detector click inducing a dead time region as large as the time period of the laser, there

is a chance that a photon arrives in this time dead time interval is huge. The QBER also

simultaneously decreases.

As the recharge time is varied and increases beyond the laser clock’s time period,

the photon detection probability starts to drop. This decreases key rate and increases

QBER because the thermal counts which occur on larger time scale sin this simulation

are less affected by recharge time and their presence in the final key in unchanged till

the recharge time increases to the average time period of the thermal counts. The timing

jitter and the coincidence threshold are closely linked. When the jitter is larger than

the coincidence threshold, the number of true photon coincidences drops, increasing the

QBER and decreasing the key rate. The coincidence threshold has an additional feature

that increasing its value beyond the time period of the laser clock decreases the chance one-

to-one mapping of the of the true photon detections, hence decreasing key rate drastically

to nearly zero. Finally an intercept and resend attack was simulated. The key rate was

uncorrelated to the probability of photon interception whereas the QBER linearly increased

from 0% to the theoretical maximum of 25% as the the probability of photon interception

increased from 0 - 100%.

I have modeled the jitter as a Gaussian distribution function centered at zero over the

real line. However, one must be careful here because while sampling the Gaussian that is

used to model Bob’s jitter, there is a finite probability that one obtains a value of Bob’s

time tag far to the left on the time axis, even before the experiment started. Although

this probability is small, it is still impossible that in a physical experiment Bob’s time tag

of a certain photon is earlier than Alice’s time tag of the same photon, the only possibility

when this may occur is if the optical path time is negligible compared to time tagger’s

resolution - this not representative of long distance communication. Though the number

of such instances are small when realistic experimental parameters are used, they may

became significant at large jitter values. It would be nice to explore the possibility of

putting a lower bound on the range over which Bob’s jitter Gaussian is defined. An upper

bound on the range of Alice’s Gaussian might also be needed.

In this simulation, the time tagger jitter was modeled as a Gaussian. Instead one can

explore modeling the jitter of the time tagger as a uniform distribution (a step function

which takes value 1 over a range whose width is equal to the resolution of the time tagger).

I would also like to propose a new model for afterpulsing. The afterpulsing model
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in this simulation assumes that every time an avalanche occurs, either no electron gets

trapped in trap site in the detector’s substrate or exactly one electron gets trapped in a

trap site. The former event happens with probability 1 − pap and the latter occurs with

probability pap, where pap is the afterpulsing probability of the APD. However, this may not

exactly be true. If one assumes that there are M electron produced during an avalanche

and there are N trap sites in the substrate, then each of these trap sites has a non-zero

probability of trapping an electron. IT is completely possible that more than one of these

trap sites trap an electron each. To make this idea more concrete, let’s assume that the

M electrons that are produced during an avalanche are uniformly (spatially) distributed

in the volume of the detector’s substrate. Let’s also assume that the N trap sites in the

substrate are far apart from each other and M >> N . This ensures that if an electron

does get trapped in a particular trap site, the trapping event doesn’t affect the probability

with which a neighboring trap site might trap an electron. This means that each trap site

has the same probability of trapping an electron (let’s call this probability p0) and the

event that a particular trap site traps an electron is independent of whether any other trap

site does a electron trapping. In such a case, one expects that during an given avalanche,

anywhere between 0 and N electrons can get trapped. Let the number of electron trapped

during a given avalanche be k. The probability that one gets k trapped electrons during

a given avalanche is given by the binomial distribution BN, p0. To see this, let’s try to

estimate the probability of getting k trapped electrons in a given avalanche. First label

and order the trap sites. The probability of the first k trap sites each trapping an electron

is pk0 because the trapping events are independent of each other, hence the probabilities

multiply. The probability of the last N − k trap sites do not trap an electron is given

by (1 − p0)N−k. Thus, the overall probability that the first k sites trap an electron is

given by pk0 (1 − p0)N−k. However, corresponding to any unordered combination of k out

of the N sites each trapping an electron, one can go through a similar argument to show

that the probability of such an event is also pk0 (1 − pN−k0 . Since there are
(
N
k

)
ways of

selecting unordered combinations of k out of N sites and each of the corresponding events

are mutually exclusive, the total probability that exactly k sites each trap an electron is

given by P (k) as follows

P (k) =

(
N

k

)
pk0 (1− p0)N−k (6.19)

This is nothing but the probability mass function of the binomial distribution. Thus

in simulation, one can fix values for N and p0. When a detector click occurs, one can

sample from the binomial distribution to decide on how many electrons get trapped during

the avalanche corresponding to this detector click. If k electrons get trapped, then that
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detector click will produce k afterpulses. To simulate the detrapping of each of these

trapped electrons, the exponentially decaying distribution given by equation 6.6 must be

sampled in k separate instances giving rise to k different detector clicks.

There is a caveat here. There is a constraint of the values of N and p0. One must note

that in operation, on average, one detector click cannot give rise to more than detector

clicks; otherwise there will be a runaway effect with detector click rate approaching ∞ far

to the right in the time tag file (in the absence of dead time). This renders the detector

nonoperational. Thus, although in particular instances of avalanches, one can have more

than one afterpulse according to the binomial mass function, on average, the number of

afterpulses must be less than one. The expected value E(k) of a binomial distribution is

given by

E(k) = N p0 (6.20)

where k is the number of sites that each trap an electron during a given avalanche.

Thus the constraint must be that E(k) < 1, i.e,

N p0 < 1 (6.21)

Another aspect for improvement would be to incorporate jitter due to the time tag-

ger. First, on Bob’s side when time tagging incident signal photons, thermal counts and

afterpulses. Second, on Alice side when time tagging the laser reference pulse.

Eve has other attack strategies than the intercept-resend attack mentioned in section

6.5.4. One method is called the photon number splitting attack. In this, Eve detects a

multi-photon states sent by Alice. Eve keeps one photon for herself and the remaining

photons on their way to Bob. Since all photons in a multi-photon state have the same

polarization, Eve has an exact copy of the quantum state that Bob receives without having

to clone quantum states - which is prohibited by the no cloning theorem [40]. She does

this for all multi-photon states that Alice sends. Eve does not measure the photons till

Alice and Bob publicly reveal their measurement bases. Since Eve knows that during the

sifting process of QKD, Alice and Bob will only retain the bits where their measurement

bases agreed, she can be assured that measuring the corresponding photons will give her

exact information about those bits in the key. Moreover, if Eve blocks all single photon

states from reaching Bob, Eve will know the vast majority of the sifted key. This kind of

attack can easily be implemented in simulation. In Eve’s code, one would need to declare

an array which stores states |H〉, |V 〉,|D〉 or |A〉, when Alice sends a k-photon state with
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k > 1. However, when Eve sends on the remaining photons, the code will have to modify

the k-photon state to a k− 1-photon state. As such Alice and Bob’s code will not have to

be modified for this attack.

However, practically Alice and Bob can defend themselves from a photon number split-

ting attack by the use of dummy quantum states called decoy states [37, 41]. In section 6.3,

it was explained that the photon number statistics across the pulses of a WCP laser (also

called the signal source) was modeled as a Poisson distributed with some average photon

number µ. Alice can use another source with the same spectral properties (wavelength,

etc.) as that of the signal source. But this source can have Poisson photon statistics with

a different average photon number. This source is called the decoy source. Alice randomly

switches between source and decoy states and transmit photons to Bob. Due to different

average photon number, signal and decoy states have different ratios of single photon states

to multi-photon states. If Eve starts blocking out single photon states selectively, Bob will

experience different losses in the signal and decoy pulses. When Alice makes her choice of

signal/decoy sequence public, Bob will be able to calculate detect these statistically differ-

ent losses between signal and decoy, and hence detect Eve’s presence. In the simulation,

the modification will have to be done to the post-processing section in the QKD protocol

after the generation of sifted key. Once the details of the calculation of channel loss with

respect to signal and decoy are worked out, it should be straightforward to implement it

in code.

Other parameters can also be modeled into the simulation. For example, I haven’t

yet considered the effect that over-voltage has on thermal count rate, detection efficiency

and afterpulsing rates. In our lab, we use an over voltage of 20 V. It would be nice to

determine the optimum voltage in order to minimize QBER or maximize the sifter key rate.

Figure 3 in ref [19] shows that the dark count rate increases with over voltage. Here, dark

count rate includes both the thermal count rate and their associated afterpulses. In my

simulation, I have modeled thermal counts and the afterpulsing characteristics separately.

It would be preferable to first find out the explicit dependence of thermal count rate on over

voltage and of afterpulsing probability on over voltage. Qualitatively, the thermal count

rate increases with over-voltage due to an increased likelihood generation of initial charge

carrier at generation centers but also due to the increased chance of that charge carrier

triggering an avalanche. On the other hand, the afterpulsing time constant of a deep level

does not depend on over-voltage. But the afterpulsing probability will increase with over-

voltage because there will be more charge carriers in the avalanche which would increase

the expected number of charge carriers getting trapped during an avalanche, which is

exactly the afterpulsing probability. Then instead of specifying a value for the afterpulsing
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probability or thermal count rate in the code, one specifies the over-voltage instead. This

is also realistic because experimentally one can alter the over voltage directly but not the

thermal count rate or afterpulsing characteristics. Also, figure 1 of ref [19] shows that the

photon detection efficiency increases with over voltage. When the photon is incident on the

APD substrate, it generate a single charge carrier. Although this process is not affected

by over-voltage, a higher over-voltage increases the chances that this initial charge carrier

will trigger an avalanche, hence overall increasing the photon detection efficiency. Now,

an increased over-voltage increases dark count rate which increases QBER; simultaneously

it increases photon detection efficiency which should likely decrease QBER (because you

have more signal photons which would increase the signal to noise ratio in the sifted key).

So, there could possibly be a trade-off here and one should be able to use the simulation

to find a value of over-voltage that minimizes the QBER.

Also, this simulation uses a continuous mode of detector operation. Gated operation

[42] can also be modeled in the future.

For simulating afterpulsing, I have assumed a single exponentially decaying p.d.f. for

the detrapping of a charge carrier. In reality, there could be multiple types of deep level

traps, each one with a different average detrapping life time. One could model this in

two parts. Firstly, each type of deep level could have different spatial density of traps in

the APD substrate. The spatial densities of each type of deep level will determine the

probability with which charge carriers get trapped in a given type of deep level. Assume

again just one charge carrier gets trapped during an avalanche. For every avalanche, one

would have to use the rand() function to determine if the charge carrier would get trapped

or not according to the overall afterpulsing probability and then decide which kind of deep

level trap the charge carrier would get trapped in according to the relative spatial densities

of the different types of deep levels. This simulates the afterpulsing probability. The second

part of the code would have to sample the exponentially decaying distribution with the

average detrapping lifetime for the particular type of deep level that the charge carrier got

trapped in the first part of the code. This simulates the afterpulsing time constant. The

next step would be to allow for multiple charge carriers to get trapped in deep levels in any

given avalanche. The total number of charge carriers getting trapped in a given avalanche

would obey the binomial distribution as previously stated. Then the above procedure of

afterpulsing simulation with different types of deep levels is applied to each of the charge

carriers getting trapped.

A promising direction for future work is to optimize the various modeled parameters.

From each graph in section 6.6, one can see that by varying a given parameter, the QBER

and sifted key rate change. However, these graphs assumed that when one parameter is
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varied the others are kept fixed. One can define possible ranges of all modeled parameters

and discretize these ranges. One can can then select every possible ordered set of choices

of parameter values, run the simulation for each ordered set and map the resulting QBER

and sifted key rates to the ordered sets of parameter values. One can then optimize

the parameter space by selecting the ordered set of parameter values which minimize the

QBER or maximize the sifted key rate. This is a brute force way of optimization. Current

multi-variable optimization techniques can also be explored to speed up computational

time.

A final note I’d like to make is that this kind of simulation is conducive to incorporating

new effects of mechanisms like hold off times, etc. One would have to model the new

mechanism separately and then integrate it appropriately into the the code. The remaining

modeled mechanisms like the dead time recharge time, etc. would not have to be changed.

This is an advantage compared to the existing analytical approaches of simulation, wherein

incorporating new effects would mandate a new derivation which inevitably must consider

all previously modeled parameters and evaluate their effect on the QBER and key rates in

light of the new mechanism that is being modeled. This is a relatively cumbersome task

every time new effects need to be modeled.

Moreover, apart from the QKD protocol, one might want to see how some quantity

that depends on some of the modeled parameters varies as a function of the modeled

parameters. For example, in section 5.2, I derived an approximate analytical expression

for the dependence of observed afterpulsing probability on thermal count rate. However,

I was not able to model the fact that thermal counts induce dead time regions in between

themselves. Also, afterpulses of time tags other than the start time tag were not considered.

To find the observed afterpulsing probability in the simulation presented in this chapter is

straightforward. One would need to switch off the QKD protocol, attack and laser source

in the code. The code can incorporate thermal counts, afterpulses, dead time and even

recharge time into the time tag file. The observed afterpulsing probability can then be

easily calculated because I keep track of the afterpulses in the time tag file. If you run the

simulation for different values of thermal count rate, you would get a more accurate curve

for observed afterpulsing probability than in fig 5.2.
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Chapter 7

Conclusion

In chapter 2, a scalable prototype was designed and fabricated using Si APD as the detector.

The prototype included all representative electronics. The detectors were characterized at

−80 ◦C to show that all parameters were with the predetermined requirements. A cold

finger was developed to help cool the detector module at off site locations and was tested

to demonstrate its efficacy with dry ice.

Previous research had shown that dark count rate increases with proton irradiation and

that thermal annealing was an effective way to decrease dark count rate. In chapter 3, we

demonstrate that multiple applications of thermal annealing with proton irradiation phases

in between is effective in decreasing dark counts to within the operable range suggested by

previous link analysis studies. However, it must be noted that the first instance of annealing

on a given detector achieved the greatest dark count rate reduction factor. This makes

thermal annealing a viable option in satellite orbit say as opposed to laser annealing which

requires an larger additional experimental setup and hence would increase the payload of

the satellite. Colder temperatures were also explored to mitigate the increase of dark count

rate induced by radiation. The coldest temperature our set up could go to in closed loop

control was −80 ◦C which showed. However, we were able to go to temperatures as low as

−110 ◦C albeit in open loop. A new thermal sensor would need to be developed that can

help decrease the temperature the detectors can operate in closed feedback control, thereby

decreasing dark count rate. Two approaches to annealing were explored. It was found that

annealing only when the dark count rate exceeded a threshold value achieved slightly

lower post-irradiation dark counts when compared to annealing after a fixed interval of

time. Future studies could look into a low intensity beam of proton impinging on detectors

which have been set to anneal at the same time. Further tests would need to be done in

comparing the two approaches towards annealing using more data points when both DM’s
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are at the same cumulative radiation fluence mark when annealing takes place. Overall it

was demonstrated that cold temperature and thermal annealing are effective methods to

decrease dark count rate over the proposed life time of two i low Earth orbit.

In chapter 4, it was demonstrated that the DM can survive the conditions of vacuum

which it will experience in low Earth orbit. Also, almost all detector parameters were within

operable range. Detection efficiency was the only parameter which showed a significant

change but it did so in response to temperature because some of the mating sleeves were

not rated for cold temperatures. This is an easy fix. No secondary effects of vacuum like

the overheating of electronic components due to lack of convective cooling was found. This

shows the readiness of the DM for satellite applications.

In chapter 5, an important distinction between the usual notion of afterpulsing prob-

ability which relates to the likelihood of the trapping of charge carriers and the observed

value of afterpulsing probability was made. For specifying the afterpulsing probability of

an APD, it is not enough to calculate it from experimental. I would propose two ways to

specify the afterpulsing probability: one approaches where the experimentally calculated

value must be stated in conjunction with charge trapping probability, charge detrapping

lifetime, dead time and thermal count rate. This is because the experimentally calculated

value of afterpulsing probability will not be reproducible if any of the other mentioned

parameters change. Of these, the thermal count rate is most prone to changing over time

and hence at a minimum, the thermal count rate must be mentioned. Alternatively, one

could specify the charge trapping probability in the APD during an avalanche. This value

should not change as long as the APD substrate doesn’t change in form (like additional

defects introduced). With this information and the knowledge of the other parameters,

the observed afterpulsing probability can be predicted for any experimental setup.

Furthermore in chapter 5, the theoretical groundwork for the afterpulsing algorithm

I developed in chapter 3 was laid out. Under the assumption of the afterpulsing time

constant being orders of magnitude higher than the thermal count rate, this provides an

almost exact analytical expression which boils down to the intuitive sum of two different

exponentials. Not only does it give an output value of the afterpulsing probability but it

also gives an indication as to how reliable that value is, which is advantageous because all

three algorithms presenting in section 3.3.8 give slightly different outputs.

Finally, a simulation of the quantum key distribution protocol on a classical computer

was performed to extract statistical values like quantum bit error ratio and sifted key gen-

eration rate. This can be used to optimize a lot of the parameters of the experimental setup

before a physical experiment is made. This helps to save time and monetary resources be-

cause certain parameters like the saturation value of the APD cannot be changed. Instead
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a new detector might have to be developed. Such iteration of parameter values can be run

in such a simulation before proceeding to a physical demonstration.
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