
Methodologies for Evaluating User
Centric Performance of Mobile

Networked Applications

by

Mustafa Mohammed Abduljabbar Al-tekreeti

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Mustafa Mohammed Abduljabbar Al-tekreeti 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Luiz Fernando Capretz
Professor, Dept. of Electrical and Computer Engineering,
Western University

Supervisor: Kshirasagar Naik
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal Member: Fakhreddine Karray
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Ali Elkamel
Professor, Dept. of Chemical Engineering, University of Waterloo

Other Member(s): Mohamed-Yahia Dabbagh
Lecturer, Dept. of Electrical and Computer Engineering,
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Performance is an important attribute of mobile software applications, having a direct
impact on end-user’s experience. One of the obstacles that make software performance
testing difficult to pursue is the lack of performance requirements that complicates the
process of verifying the correctness of the test case output. Moreover, compared to other
platforms, mobile applications’ quality assurance is more challenging, since their function-
ality is affected by the surrounding environment. In this work, we propose methodologies
and frameworks to evaluate the impact of interaction of the quality of the wireless network
connection and application configurations on performance behaviour and performance ro-
bustness of a mobile networked application as perceived by the end user. We follow a
model-based approach.

The thesis starts by defining the system model of software applications that we target,
the network stack that the application is assumed to use to provide the service to the
end user, and the metric used to capture the quality of the provided network service.
Then, an analytical performance model that captures the application-network interactions
is developed using the Markovian framework. To model realistic interactions with the
network, the performance model is developed and solved using supplementary variable
technique (SVT). The model is intensively verified with simulation.

Furthermore, two input network models are analytically developed. In both models, the
mobile application is assumed to have a wireless network access through a WiFi access point
that implements IEEE 802.11 protocol. In the first model, data transfer is achieved using
user datagram protocol (UDP), while in the second, data transfer is accomplished using
transmission control protocol (TCP). For the TCP model, two scenarios are considered. In
the first scenario, an application data unit (APDU) is assumed to fit in one TCP packet,
while in the second scenario, an APDU is assumed to fit in multiple TCP packets. All
models are verified using the well-known NS2 network simulator.

Third, we propose a model based test generation methodology to evaluate the impact of
the interaction of the environment, the wireless network, and the application configurations
on the performance of a mobile networked application. The methodology requires four
artefacts as inputs, namely, a behaviour model of the software under test, a network
model, a test coverage criterion, and a set of desired performance levels. The methodology
consists of three steps: performance model development, test generation, and estimation of
test execution parameters. To evaluate the end-user quality of experience, test generation
is formulated as an inversion problem and solved as an optimization problem. To generate
an efficient set of test cases, two test coverage criteria are proposed: user experience (UE)

iv

and user experience and input interaction (UEII). Test execution optimizations are inferred
using a performance simulation model. To show the applicability of the methodology, two
mobile networked app examples are used: multimedia streaming and web browsing. The
effectiveness of the methodology is evaluated by comparing the time cost to design a test
suite with random testing. The obtained results are very promising.

Fourth, to minimize the incurred cost of performance model evaluations, we utilize
metamorphic testing to generate test cases. Metamorphic testing is a technique that is
proposed to alleviate the test oracle problem. By utilizing certain inherent properties
of the system under test (metamorphic relations), test cases are generated and verified
without the need to know the expected output of each individual test case in advance. By
hybridizing our proposed test generation methodology with metamorphic testing, the time
cost of generating a test suite is reduced tremendously. We first generate a limited set of
seed test cases using our test generation methodology. Then, we generate a set of follow-
up test cases by utilizing the developed network models as metamorphic relations and
without the need to invoke the performance model. Follow-up test generation is formulated
as a maximization problem. The objective is to maximize the distance between a seed
test case and follow-up test cases so that to generate a non-redundant set of test cases.
Three distance metrics are used: Euclidean, squared Euclidean, and Manhattan. The
modified methodology is used to generate test cases for a multimedia streaming application.
We empirically evaluate the modified test generation methodology using two evaluation
metrics: the incurred time cost and the percentage of redundancy in the generated test
suite. The obtained results show the advantage of the modified methodology in minimizing
the cost of test generation process.

Fifth, we propose a third methodology to evaluate the impact of the wireless network
conditions on robustness of performance of adaptive and non-adaptive mobile networked
applications. Software robustness is mainly about how the system behaves under stressful
conditions. In this work, we target performance robustness under stressful network con-
ditions. The proposed methodology consists of three steps and it requires three different
artefacts as inputs. To quantify robustness, two metrics (static and dynamic robustness)
are proposed. The main challenge in evaluating robustness is the combinatorial growth of
network-application interactions that need to be evaluated. To mitigate this issue, we pro-
pose an algorithm to limit the number of interactions, utilizing the monotonicity property
of the performance model. To evaluate the dynamic robustness metric, the ability of the
adaptive application to tolerate degraded network conditions has to be evaluated. This
problem is formulated as a minimization problem. The methodology is used to evaluate
the performance robustness of a mobile multimedia streaming application. The effective-
ness of the proposed methodology is evaluated. The obtained results show three to five

v

times reduction in total cost compared to the naive approach in which all combinations
are exhaustively evaluated.

vi

Acknowledgements

My thanks and praise first and foremost goes to Almighty God, the most merciful and
compassionate, for giving me the knowledge, opportunity, and strength during the journey
of this work and in all my life.

Along the way, several people deserve sincere recognition. I am most grateful to my
advisor, Professor Kshirasagar Naik for his incomparable guidance and patience during
the work. He had been a great mentor and friend. Over the years, he had always been
available to guide me in the right direction. His valuable advice, generous help and time,
and constant support were the secret of achieving all this work.

I would like also to thank Dr. Atef Abdrabou for his continuous guidance and helpful
discussion during the development of the network models. His knowledge and experience
in queueing theory and wireless network modelling had absolutely shortened the time and
the efforts to finish this important part of the work.

I would like also to extend my appreciation and thanks to my thesis committee members,
Professor Ali Elkamel, Professor Fakhreddine Karray, Dr. Mohamed-Yahia Dabbagh, and
Professor Luiz Fernando Capretz for sparing their time to review this research work.

I would like to acknowledge the Ministry of Higher Education and Scientific Research
of Iraq for financially supporting this research work. Thanks to this generous fund, this
thesis was made possible.

I would like to thank my family for their continuous and unconditional support for all
my endeavours. My father, Mohammed Al-tekreeti, my mother, Zuhal Abdulrazzaq, and
my brothers, Mohaimen and Maytham, have been the greatest supporters in my life. I am
grateful to them for their unconditional love, support, encouragement and the sacrifices
they made to help me.

Cordial thanks go to my beloved wife, Ghadah, for the endless understanding, sup-
port, patience and care she showed during this critical period in my career. Despite being
extremely busy, she has always been available to uplift me when I felt down and to con-
gratulate me when I achieved. I am by all means indebted to her.

Finally, I thank all my teachers, colleagues and friends who helped and supported me
in different ways throughout this work. God bless you all!

vii

Dedication

This thesis is dedicated to my dearest children: Yousif, Abdullah, Anas, Abdulrahman, and
Ibraheem,

I love you all

viii

Table of Contents

List of Tables xiii

List of Figures xiv

Abbreviations xvii

List of Symbols xix

1 Introduction 1

1.1 Motivation and Challenges . 1

1.2 The Performance Attribute of Software Systems 3

1.3 Problem Formulation . 6

1.4 Research Objectives and Contributions . 7

1.4.1 The proposed test generation methodology 8

1.4.2 The modified test generation methodology 8

1.4.3 Performance robustness evaluation 9

1.4.4 Performance model development . 10

1.4.5 Wireless network model development 10

1.5 Literature Review . 11

1.5.1 Performance testing and evaluation 11

1.5.2 Performance testing in mobile devices 12

ix

1.5.3 Combinatorial testing with constraints 13

1.5.4 Using simulation models in testing 14

1.5.5 Software robustness . 14

1.5.6 Metamorphic testing . 15

1.6 Thesis Outline . 17

2 The Performance Model 19

2.1 Functional Requirements of The Multimedia Streaming Application 20

2.2 The Considered Performance Metric . 21

2.3 Performance Model Validation . 28

2.4 Summary . 28

3 Input Network Models 30

3.1 IEEE 802.11 Protocol Standard . 30

3.2 Data Transfer Using A UDP Protocol . 32

3.3 Model Validation for The UDP Scenario 34

3.4 Data Transfer Using A TCP Protocol . 37

3.5 Model Validation for The TCP Scenario 39

3.6 The TCP Scenario With Multiple Packet APDUs 43

3.7 Validation of The TCP Model With APDUs of Multiple Packets 47

3.8 Summary . 47

4 A Test Generation Methodology for Performance Evaluation 51

4.1 Introduction . 51

4.2 Inputs to The Methodology . 53

4.2.1 The behaviour model of the SUT 53

4.2.2 The network model . 53

4.2.3 Desired performance levels . 54

x

4.2.4 Test selection strategies . 54

4.3 The Methodology Procedure . 57

4.3.1 Develop performance models . 57

4.3.2 Generate test cases . 58

4.3.3 Determine TEPs . 59

4.4 Using The Proposed Methodology . 61

4.4.1 Test generation for a multimedia streaming application 61

4.4.2 Test generation for a web browsing application 66

4.5 Evaluation of The Methodology . 69

4.6 Applicability of The Methodology . 72

4.7 Summary . 74

5 The Modified Test Generation Methodology Using Metamorphic Testing 75

5.1 Test Generation Using Metamorphic Testing 75

5.2 Metamorphic Relations for Performance Testing 77

5.3 The Modified Methodology . 77

5.4 Using the Methodology . 79

5.5 Evaluation of The Approach . 81

5.5.1 Redundancy in the test suite . 82

5.5.2 The incurred time cost . 84

5.5.3 The impact of increasing the number of seed test cases 84

5.6 Summary . 87

6 Performance Robustness of Mobile Networked Applications 88

6.1 The Methodology Inputs . 88

6.2 The Details of The Methodology . 90

6.3 Robustness Analysis of A Mobile Streaming Application 94

6.4 Evaluation of The Methodology . 98

6.5 Summary . 99

xi

7 Conclusion and Future Works 104

7.1 Conclusion . 104

7.2 Future works . 108

References 110

xii

List of Tables

3.1 IEEE 802.11g protocol parameters. 35

4.1 Test cases to satisfy UE coverage criterion. D is in Mbps. 64

4.2 The augmented set of test cases. T̂x, D, and F̂s are measured in minutes,
Mbps, and MB, respectively. 66

4.3 Test cases to satisfy UE coverage criterion. D is in Mbps. 68

4.4 The augmented set of test cases. T̂x and D are measured in seconds and
Mbps, respectively. 68

4.5 The cost of random testing for different scenarios. 73

5.1 Seed test cases used in follow-up test generation. 80

5.2 Follow-up test cases for the first region (0, 0.1023]. 80

5.3 Follow-up test cases for the second region (0.1023, 0.2044]. 81

5.4 Follow-up test cases for the third region (0.2044, 0.3069]. 81

5.5 Redundancy percentages using three distance metrics (ε = 0.001 and Nt = 5). 83

5.6 Redundancy percentages using three distance metrics (ε = 0.005 and Nt = 10). 83

5.7 Redundancy percentages using three distance metrics (ε = 0.001 and Nt = 10). 83

5.8 Redundancy percentages using Manhattan distance metric with ε = 0.001. 87

6.1 The new ACPs values for the set T F1 . The old ACPs values is (16,10,4) . . 98

xiii

List of Figures

1.1 Fault-Error-Failure model. 4

1.2 The proposed Fault-Error-LOE-Failure model. 5

1.3 Program execution state space. 5

1.4 The system model of the application under test. 6

2.1 The general work flow of the multimedia streaming application. The ab-
breviations HWM and LWM stand for high watermark and low watermark
levels, respectively. 20

2.2 The behaviour model of the multimedia streaming application. 21

2.3 The state diagram of the application. 24

2.4 The considered performance metric versus playback buffer size. 29

3.1 The empirical and analytical cumulative distribution functions for a mean
arrival rate of 60 packets/sec, end users of 20, and data rate of 54 Mbps. . 35

3.2 The empirical and analytical cumulative distribution functions for a mean
arrival rate of 80 packets/sec, end users of 10, and data rate of 54 Mbps. . 36

3.3 The empirical and analytical cumulative distribution functions for traffic
intensity of 0.99, TCP buffer size of 10 packets, end users of 5, and data
rate of 6 Mbps. 40

3.4 The empirical and analytical cumulative distribution functions for traffic
intensity of 0.999, TCP buffer size of 100 packets, end users of 5, and data
rate of 6 Mbps. 41

3.5 The empirical and analytical cumulative distribution functions for traffic
intensity of 0.99, TCP buffer size of 4 packets, end users of 15, and data
rate of 24 Mbps. 42

xiv

3.6 The inter-arrival, waiting, and service time delay of K TCP packets at the
access point, which constitute one full APDU. 45

3.7 The empirical and analytical cumulative distribution functions for TCP
buffer size of 10 packets, end users of 5, APDU size of 1000 packets, and
data rate of 6 Mbps. 48

3.8 The empirical and analytical cumulative distribution functions for TCP
buffer size of 4 packets, end users of 15, APDU size of 200 packets, and
data rate of 24 Mbps. 49

3.9 The empirical and analytical cumulative distribution functions for TCP
buffer size of 4 packets, end users of 15, APDU size of 800 packets, and
data rate of 24 Mbps. 50

4.1 The proposed model based test generation methodology. 52

4.2 The flowchart of test generation using random testing. 70

4.3 The modified flowchart of test generation using random testing. The sets S1,
S2, S3, and S4 are the sets of INTCs, IETCs, VNTCs, and VTCs, respectively. 71

5.1 The 95% confidence interval of the mean of the incurred time cost to generate
a test suite using both the proposed methodology and modified methodology.
The values for ε and Nt are 0.001 and 10, respectively. 85

5.2 The 95% confidence interval of the mean of the incurred time cost to generate
a test suite using both the proposed methodology and modified methodology
with two and three seed test cases. The values for ε and Nt are 0.001 and
10, respectively. 86

6.1 The proposed methodology. 89

6.2 The algorithm used to determine the robustness of a configuration ci against
the sorted network scenarios ŜN . The output of the algorithm is the sets of
failed and robust test cases T Fi and TRi , respectively. The symbols i f , i l,
and i m are the indices of the first, last, and middle network scenarios in the
sorted set ŜN . Perf(ci,ŜN(i)) represents the performance model evaluation
and determination of the robustness category of the configuration ci with the
values of NOPs of the network scenario ŜN(i). The mode is either ascend
or descend. 93

xv

6.3 The time cost in seconds to evaluate robustness for different numbers of
candidate configurations. The number of network scenarios is fixed on 27. . 99

6.4 The required number of performance model evaluations to evaluate robust-
ness for different numbers of candidate configurations. The number of net-
work scenarios is fixed on 27. 100

6.5 The time cost in seconds to evaluate robustness for different numbers of
network scenarios. The number of candidate configurations is fixed on 5. . 101

6.6 The required number of performance model evaluations to evaluate robust-
ness for different numbers of network scenarios. The number of candidate
configurations is fixed on 5. 102

xvi

Abbreviations

ACK MAC Acknowledgement message frame
ACPs Application Configuration Parameters
AP Access Point
APDU Application Data Unit
APIs Application Programming Interfaces

CDF Cumulative Distribution Function
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTS Clear-To-Send MAC message frame

DATA MAC DATA message frame
DCF Distributed Coordination Function
DIFS Distributed Inter-Frame Space
DTMC Discrete Time Markov Chain

ET Error Type

FEF Fault-Error-Failure
FELF Fault-Error-Low quality of experience-Failure
FT Fault Type

HWM High Watermark

IEEE Institute of Electrical and Electronics Engineers
IETCs Invalid Executable Test Configurations
INTCs Invalid Non-executable Test Configurations
IOLTS Input Output Labelled Transition Systems

xvii

LOE Low quality Of Experience
LWM Low Watermark

MAC Medium Access Control
MBT Model Based Testing

NFC Near Field Communication
NOPs Network Operating Parameters
NS2 Network Simulator 2

PASTA Poisson Arrivals See Time Averages
PCF Point Coordination Function
PDUs Protocol Data Units
Pert function that realizes the follow-up test generation to satisfy UEII metric
PHD Phase Type Distribution

QOE Quality Of Experience

REQ Request
RES Response
RTS Request-To-Send MAC message frame

SIFS Short Inter-Frame Space
SUT Software Under Test
SVT Supplementary Variable Technique

TCP Transmission Control Protocol
TEPs Test Execution Parameters
TTCN-3 Testing and Test Control Notation version 3

UDP User Datagram Protocol
UE User Experience
UEII User Experience and Input Interaction
UML Unified modelling language

VNTCs Valid but Not Useful Test Configurations
VTCs Valid and useful Test Configurations

xviii

List of Symbols

B(t) the playback buffer length at time t
Btcp the TCP buffer size at the end user
B the playback buffer size
CAPDU
s the coefficient of variation of APDU service time at the AP

CB the back-off counter
CI(Tx) the confidence interval of the statistic Tx
Cs the coefficient of variation of the service time
Cp the number of parallel TCP connections
Cr the coefficient of variation of packet response time
C the chosen coverage criterion
D the data rate
EAPDU
r the mean APDU response time at the AP

E[X] the expected value of the random variable X
Ef
r the mean of response time for the test case f

Er the mean UDP packet response time at the AP
Etcp
r the mean TCP packet response time at the AP

F̄ (v) a complementary cumulative distribution function of an arrival process

F̂s the estimated mean of the multimedia file size
G the number of subsets of SINP
HMAC the MAC layer header size
Hack
TCP the TCP ACK packet header size

HTCP the TCP packet header size
HUDP the UDP packet header size
Ia the set of constraints imposed by the application behaviour model
In the set of constraints imposed by the network model
I the set of constraints imposed by the application and the network
K the size of APDU in TCP packets

xix

L the low watermark level of the playback buffer
M the high watermark level of the playback buffer
Nt maximum number of trails to generate a non-redundant test case
N the number of mobile users connected to AP
Pack the TCP ACK packet payload size
Πn(t, v) the cumulative distribution function of πn(t, v)
Pj the probability distribution of the burst size at the AP
P the UDP/TCP packet payload size
QAPDU the mean buffer length in terms of APDU at the AP
QL the mean buffer length at the AP
Q the number of test cases per performance region
Ra region of acceptable performance
Rf region of failed performance
R number of QOE categories (performance regions)
S1 the set of INTCs
S2 the set of IETCs
S3 the set of VNTCs
S4 the set of VTCs
SACP the set of application configuration parameters
SC the set of candidate application configurations
SG the super set of the g’s subsets
SINP the set of ACPs and NOPs
SNOP the set of network operating parameters
SN the set of valid network scenarios
Sb the batch service time

ŜN the sorted set of valid network scenarios SN
Sl the set of desired performance levels
Stcp the total TCP packet service time
St the UDP packet service time
S the set of randomly generated test cases
TACK the propagation time of ACK frame
TCTS the propagation time of CTS frame
TDIFS the DIFS time interval
T Fj the set of failed test cases for cj application configuration
TPHY the time overhead of the physical layer
TRTS the propagation time of RTS frame
TRj the set of robust test cases for cj application configuration

xx

TSIFS the SIFS time interval
TS the set of seed test cases
T udp the propagation time of the UDP packet
T ack the TCP ACK packet propagation time
Tij the set of test cases generated using the si seed test case for subset gj
Tq the packet mean waiting time at the AP
Trtt the packet round trip time
T acks the TCP ACK packet transmission time
T tcps the TCP packet transmission time
Tst the total service time at the AP
T udps the UDP packet transmission time
T tcp the TCP packet propagation time

T̂x the estimated mean of test case execution time
T the test suite
Ub the number of browsing users currently connected to the AP
U the back-off time
V (t) the elapsed time from last arrival to time t
V APDU
ard the variance of APDU response time at the AP
V Pi the set of values of the ith parameter

V f
ard the variance of response time for the test case f
Vard the variance of packet response time at the AP
V tcp
ard the variance of TCP packet response time at the AP
WR the whole performance spectrum
Wb the web page size in TCP packets
W the contention window size
Y% the percentage of redundancy in the generated test cases
Z number of consecutive TCP packets at the AP (burst size) that belong

to the same end user
αn the mean service rate at the end user
α the mean packet service rate at the access point
cj a valid candidate application configuration cj ∈ SC
ε error margin to identify equivalent test cases
f(v) the probability density function of the arrival process
γ the relative error in the confidence interval
gi the ith subset of SINP
k number of exponential random variables in an Erlang random variable
λAP the total mean rate of TCP packets at AP

xxi

λ(v) the mean of arrival rate as a function of the supplementary variable v
λ the mean packet arrival rate at the AP per user
lc the performance level associated with the configuration tc
lf the performance level associated with a follow-up test case
lj a performance level of the jth test case
ls the performance level associated with a seed test case
lth the threshold performance level
µ the mean of play rate
m the number of application configuration parameters
nk a valid network scenario nk ∈ SN
n the number of network operating parameters
o(∆t) the probability of having more than one event in ∆t
ω the mean of the rate of an exponential random variable
pn(t, v) the instantaneous rate function of Πn(t, v)
πn(t, v) the joint probability density function of being in state n (having n

frames/packets) at time t and the time since last arrival is v
πn the stationary probability density function of being in state n
pi an arbitrary parameter of ACPs and NOPs
p weight of an Erlang random variable in a Hyper-Erlang random variable
ρdj the dynamic robustness of cj application configuration
ρd the overall dynamic robustness of the application
ρn the traffic intensity at the end user
ρsj the static robustness of cj application configuration
ρ the traffic intensity at the access point
ri the ith performance region that corresponds to the ith QOE category
σ the time of the slot
si the ith seed test case
std(St) the standard deviation of St
tj an arbitrary test case

vpfi the value of the parameter pi in a follow-up test case

vpji the value of the ith parameter in the jth test case
vpsi the value of the parameter pi in a seed test case
ζ the significant level

xxii

Chapter 1

Introduction

1.1 Motivation and Challenges

Performance is one of the important non-functional properties of software systems, having
a vital impact on the user’s experience. Typically, response time and throughput are
the main figures of merit used to analyse software performance. Nowadays, however,
new metrics are taken into account, such as energy and wireless bandwidth [5]. From
small scale systems, such as smartphones, to large scale systems, such as data centres and
servers, power consumption is a key performance indicator. Additionally, performance is
arguably the most important non-functional property that affects software architecture [7].
Therefore, there is a growing interest in software systems’ performance modelling, testing,
and analysis [92], [117].

One of the obstacles that make software performance testing difficult to pursue is the
lack of performance requirements [116]. Software testing, by definition, is the process of
verifying the provided software services against their specifications. This is in part due
to that the main focus in the development process being on how to make the software
run, leaving very limited time for the performance at the end of the process [131]. In
addition, performance requirements are sometimes hard to describe. They often depend
on non-deterministic factors that are mostly out of the control of the software system, such
as, workload size, user behaviour, and network condition [34], [106], [117]. Consequently,
missing the performance requirements complicates the process of verifying the correctness
of the test case output. This problem is well known in software testing as the lack of
required test oracles [15].

1

With the proliferation of hand-held devices, real-time mobile applications such as voice-
over-ip, streaming, video conferencing, and on-line gaming [121] have dominated over their
desktop counterparts, in which end-user experience is mainly affected by the quality of
the wireless connection. In addition, the main theme of hand-held devices is being context
sensitive [42, 86], imposing extra requirements on mobile software development. Being able
to communicate with many network types ranging from Near Field Communication (NFC)
to global communication using cellular networks necessitates testing whether the appli-
cation would perform as required under different environmental and contextual scenarios
[45]. Another important aspect of mobile devices is the emphasis on the user experience.
Therefore, there is a need for performance testing methodologies that take into account
both the network behaviour and the quality of end-user experience [91].

Software robustness is another important property that directly relates to the end
user experience. According to the IEEE standard, software robustness is defined as the
degree to which a system or component can function correctly in the presence of invalid
inputs or stressful environmental conditions [35]. The definition indicates two situations
in which robustness of the software has to be investigated: invalid inputs and stressful
environmental conditions. In literature, software robustness has mainly been evaluated
from the correctness point of view using invalid or erroneous inputs. Less attention has been
given to develop frameworks and methodologies to evaluate the impact of the environment
on robustness of non-functional properties, such as performance [60]. This may be due to
that the process of developing environmental models requires multidisciplinary expertise.

To address these challenges, we adopt a system level black-box model-based testing
(MBT) approach [2, 111, 104]. In few words, model-based testing is a variant of testing
that relies on explicit behaviour models that encode the intended behaviours of software
under test (SUT) and/or the behaviour of its environment. It encompasses the processes
and techniques for the automatic derivation of abstract test cases from abstract models, the
generation of concrete tests from abstract tests, and the manual or automated execution of
the resulting concrete test cases [111]. Model based testing has successfully been applied
in industry [18]. As software applications become more complex, designing test suites
from the code level after implementation is not always feasible. Abstracting the software
behaviour and/or the environment affecting this behaviour has many benefits for the whole
development cycle. It allows to focus on certain aspects of the system and neglect the less
important ones (divide and conquer) [2]. Another advantage of MBT is the automation
of test case generation. Moreover, as the developed model usually represents the required
behaviour, it helps in developing and validating the (missing) performance requirements,
and thereby creating the required test oracles [111]. In addition, model-based approach
facilitates the systematic incorporation of the environment in the testing process [104].

2

1.2 The Performance Attribute of Software Systems

In this work, we assume that the software system under test (SUT) has intensively been
tested, and it is correct from the functionality point of view. Normally, testing for software
non-functional properties, such as performance, is carried out after ensuring that the SUT is
functioning properly. This assumption is fairly practical, since evaluating the performance
of a malfunctioned system does not make any sense. To understand the implication of this
assumption, we define the relationship between software functionality and performance.
We propose an integrated model that captures both software properties.

In software testing literature, the terms fault, error, and failure are well defined [9], [8]:

• a failure occurs whenever the external behaviour of a system does not conform to
that prescribed by the system specification;

• an error is a state of the system which, in the absence of any corrective action by the
system, could lead to a failure which would not be attributed to any event subsequent
to the error; and

• a fault is the adjudged cause of an error.

A fault might be introduced in the requirements, design, and/or implementation. An error
represents an internal, non-observable state that the program may pass through when the
fault is executed. Typically, a program’s internal state is defined by the local and global
data entities, such as variables, objects, and flags that the program use. Figure 1.1 depicts
the fault, error, and failure chain, where the arrows signify a cause-effect relationship
between the corresponding concepts. In this work, we call this model the Fault-Error-
Failure (FEF) model.

In the FEF model, only software functionality is taken into account, whereas per-
formance aspects are ignored. In most software domains, problems are more related to
non-functional attributes than to software functional correctness [34]. Many cases have
been reported in which a performance degradation is perceived in the provided service
while the application continues to work without producing incorrect responses [116], or the
application takes very long time to fail [88]. These scenarios are not captured by the FEF
model.

To account for such scenarios, we propose a new model to capture both software prop-
erties: performance and functionality. Our new model is called F(Fault)-E(Error)-L(Low
Quality of Experience)-F(Failure) model, abbreviated as the FELF model. In this model,

3

✁ ✂ ✄ ☎ ✆ ✝ ✞ ✞ ✟ ✞ ✁ ✂ ✠ ☎ ✄ ✞ ✡

Figure 1.1: Fault-Error-Failure model.

triggering a fault may cause observable performance degradation before a software failure.
Hence, a fault may cause the program to enter an error state that may lead to performance
degradation that, in turn, may lead to a failure. For the end user, this performance degra-
dation can negatively impact his experience; thus, we name this state as a Low Quality of
Experience (LOE) state. Consequently, the software system can encounter three different
types of faults:

• Fault Type 1 (FT1): faults that cause failure in functionality only;

• Fault Type 2 (FT2): faults that cause failure in functionality and performance; and

• Fault Type 3 (FT3): faults that cause failure in performance only.

Figure 1.2 shows the proposed FELF model. An FT1 fault represents the situation
where the end-user does not perceive any performance degradation before the failure. FT1
faults correspond to the faults captured by the old FEF model. Thus, the FEF model is a
special case of the FELF model. An FT2 fault may lead to an error state that may cause
a performance degradation perceived by the end-user as an LOE. The LOE, in turn, may
lead to a failure. This performance degradation can be considered as an early observable
symptom of the failure. Therefore, the failure is in both software properties: functionality
and performance.

In case of FT3, the fault may lead to an error state that, in turn, may lead to perfor-
mance degradation only. The end-user observes this performance degradation while the
system continues to work properly. Therefore, the failure is on performance only. We
conjecture that among the faults that may lead to this scenario is the type of faults that
occurs in the environment, such as a network service with degraded quality. Figure 1.3
depicts the three types of faults from the view point of a program’s states; the Venn dia-
gram shows the relationship between the error states due to the three types of faults in one
software system. As shown, ET2 represents the overlapped area between ET1 and ET3,
since it represents the error states that lead to a failure in functionality and performance.
Thus, the assumption of having a functionally correct system means that any performance
degradation that is perceived by the end user would be due to a fault of type FT2 or FT3.

4

✁✂✄☎✆✝✞

✟✝✝✠✝

☛☞✌✞✍

✎✟☛✍✏

✁✂✆☎✑

☛☞✌✞✍

✎✁☛✍✏

✒✓✟

✁✂✆☎✑

☛☞✌✞✔

✎✁☛✔✏

✟✝✝✠✝

☛☞✌✞✔

✎✟☛✔✏

✁✂✄☎✆✝✞

✁✂✆☎✑

☛☞✌✞✕

✎✁☛✕✏

✟✝✝✠✝

☛☞✌✞✕

✎✟☛✕✏

✒✓✟

✒✓✟✖ ✒✠✗✘

✙✆✂☎✄✑☞ ✠✚

✟✛✌✞✝✄✞✜✢✞

Figure 1.2: The proposed Fault-Error-LOE-Failure model.

✁ ✂ ✄ ☎ ✆

✞ ✟ ✂ ✟ ✠

✞ ✡ ✂ ☛ ✠

☞ ✌ ✍

☞ ✌
✎

☞ ✌ ✏

✑ ✒ ✓ ✡ ✄ ✠ ✟ ✠ ✡ ✔ ✒ ✕ ✔ ✂ ✓

✞ ✟ ✂ ✟ ✠ ✞ ✡ ✂ ☛ ✠

Figure 1.3: Program execution state space.

5

Figure 1.4: The system model of the application under test.

1.3 Problem Formulation

In this work, we focus on mobile networked applications. Figure 1.4 depicts the main
elements of the system model. The application is assumed to be configurable by a set of
parameters called application configuration parameters (ACPs). ACPs represent a set of
configuration settings that have an impact on the performance behaviour, such as the size
of the receiving buffer. Also, the quality of the network service is assumed to be captured
by a set of parameters called network operating parameters (NOPs), such as data rate.
NOPs can be identified at different layers along the network stack. They mainly depend
on the wireless communication technology. In this work, we assume that the mobile ap-
plication has network access through a WiFi access point that implements IEEE 802.11
protocol standard. Furthermore, data transfer to and from the mobile device is assumed
to be achieved using either transmission control protocol (TCP) or user datagram proto-
col (UDP). The objective is to evaluate the interaction of network operating parameters
(NOPs) and application configuration parameters (ACPs) on the end user experience.

Furthermore, we consider waiting time as a metric that captures the quality of the
provided network service. For real-time applications, it has been reported that the end
user experience is mainly affected by the amount of waiting time delay [65]. Waiting time
can be during software service consumption as in streaming, voice-over-ip, and video con-
ferencing, or before service consumption as in web browsing, file transfer applications, and
also streaming. Accordingly, we divide mobile networked applications into the following
two groups:

• Group I: this group represents applications where end user experience is mainly

6

affected by the waiting time during service consumption; and

• Group II: this group represents the applications where end user experience is af-
fected by the waiting time delay before service consumption.

For both application groups, the interaction between the application and the network is
modelled through a basic Request-Response mechanism as shown in Figure 1.4. Thus, the
network’s impact can be captured by modelling the RES inter-arrival time delay, which
is modelled as a random variable. For applications of the first group, the performance
behaviour is mainly dependent on the buffering behaviour, while the performance behaviour
of applications of the second group does not depend on buffering. Nevertheless, we believe
this model fits both types of mobile applications, as a buffer with zero size is a special case
of this model.

To achieve the objectives of this work, we mainly follow the well-established software
testing theories and paradigms. At this point, we need to introduce some notations. The
sets of NOPs and ACPs are denoted as SNOP and SACP , respectively. Thus, the input
parameter set of the SUT is SINP = SNOP ∪ SACP . The cardinality numbers of SNOP and
SACP are n and m, respectively. Therefore, we have n + m parameters p1, p2, ..., pn+m. A
test case or a test configuration tj is basically a set of values (vpj1, vpj2, ..., vpji , ..., vpjn+m,
lj) where vpji ∈ V pi, the set of permissible values of the parameter pi, 1 ≤ i ≤ n+m, and
lj is the expected performance level of the test case tj.

1.4 Research Objectives and Contributions

In this work, three model based methodologies are proposed. The first two methodologies
are proposed to generate test cases to evaluate the impact of the interaction of the wireless
network and application configurations on the performance behaviour of mobile networked
applications. The difference between the two methodologies is that the second method-
ology is proposed for applications with computationally expensive performance models.
The third methodology is proposed to evaluate the impact of the interaction of wireless
network and application configurations on performance robustness of mobile networked
applications. In all methodologies, the performance behaviour and performance robust-
ness are evaluated from the experience of end user point of view. In the remaining part
of this section, we briefly describe the research objectives and we enumerate the main
contributions of the work.

7

1.4.1 The proposed test generation methodology

In the first Methodology, a model-based test generation framework is proposed to evaluate
the impact of the interaction of ACPs and NOPs on the performance behaviour of mobile
networked applications. The methodology requires four artefacts as inputs, namely, a be-
haviour model of the software under test (SUT), a network model, a test coverage criterion,
and a set of desired performance levels. The methodology consists of three steps. First,
two performance models are developed: analytical and simulation. Second, to evaluate
the end-user quality of experience (QOE), test generation is formulated as an inversion
problem and solved as an optimization problem. An inversion problem is the problem of
inferring the inputs, given the output of the system. Third, the necessary information to
execute test cases (TEPs) is inferred using the simulation performance model.

To enhance the quality of the generated test cases, two test coverage criteria are pro-
posed: user-experience (UE) and user-experience-and-input-interaction (UEII). The ob-
jective of UE criterion is to generate test cases to fully cover the whole spectrum of the
performance behaviour, while the objective of the UEII criterion is to cover both the per-
formance behaviour and the input parameters’ interactions at the same time. Because the
network model constrains NOPs by non-linear constraints, state of art combinatorial test
generation tools are not applicable directly. To overcome this problem, we constrain the
input space first. Then, we generate test cases to satisfy UEII criterion. The generated
test cases are validated using the performance simulation model.

Using two application examples of mobile multimedia streaming (group I) and web
browsing (group II), we explain the different steps of the proposed methodology. We
evaluate the effectiveness of the methodology by comparing the estimated time cost to
generate a test suite with random testing. The obtained results acknowledge that casting
test generation as an optimization problem is more cost effective than random testing.

1.4.2 The modified test generation methodology

In model-based performance testing, the core component is the performance model. How-
ever, whether it is simulation or analytical, performance models are computationally expen-
sive especially for software applications of Group I. Therefore, in the second methodology,
we combine our first test generation methodology with metamorphic testing to minimize
the incurred cost of test generation. From now onward, we call the first methodology as
the proposed test generation methodology and the second methodology as the modified
test generation methodology.

8

Metamorphic testing is a technique that is proposed to alleviate the test oracle problem.
By utilizing certain inherent properties of the system under test and given a set of seed test
cases, follow-up test cases are generated without the need to invoke expensive performance
models. These properties are normally called metamorphic properties. In general, seed
test cases can be generated using any test generation technique. However, in this thesis,
we generate seed test cases using our proposed test generation methodology because test
seeds have special requirements.

In this methodology, test oracles are considered available but expensive due to the high
cost of performance model evaluation. We develop metamorphic relations using the less
complicated network models. We show that metamorphic properties that are developed
using network input models are of two types: productive and non-productive. We formulate
follow-up test generation as a maximization problem. We employ three different distance
metrics as a fitness function. We maximize the distance between a seed test case and a
follow-up test case to generate non-redundant test cases. The applicability of the approach
is demonstrated using a multimedia streaming application example. We propose the notion
of redundancy to measure the quality of the generated test suite. The effectiveness of the
modified methodology is evaluated in comparison with the original proposed methodology
using two evaluation metrics: the incurred time cost and the percentage of redundancy in
the generated test suite.

1.4.3 Performance robustness evaluation

The second main objective of this thesis is to design a methodology to evaluate the impact
of the interaction of ACPs and NOPs on performance robustness of mobile networked
applications. We consider two types of applications: adaptive and non-adaptive. The
objective is to enable conducting robustness analysis early in the development process.
To capture robustness, two metrics are proposed. The first metric, static robustness, is
proposed to quantify the robustness of non-adaptive mobile applications. The second
metric, dynamic robustness, is proposed to quantify the robustness of adaptive mobile
applications.

The methodology requires the availability of three models as inputs: the network model,
the behaviour model of the application, and the performance model. The methodology
consists of three main steps. First, all valid network conditions and candidate application
configurations are determined. Second, the network-application interactions are evaluated
using the performance model. Third, the corresponding robustness metric is quantified. For
adaptive applications, the evaluation of dynamic robustness metric needs the evaluation of

9

the ability of the application to adapt in case of a degraded network condition. The process
of figuring out new ACPs that can tolerate the degraded network service is formulated as
a minimization problem.

However, to evaluate the impact of the wireless network conditions on the performance
robustness, all application and network interactions have to be enumerated and evaluated,
which may leads to the well-known state explosion problem. To mitigate this issue, we pro-
pose an algorithm to limit the number of interactions, utilizing the monotonicity property
of the performance model. A mobile multimedia streaming application is used to illustrate
the proposed methodology. The effectiveness of the proposed methodology is evaluated in
comparison with the naive approach in which all the network-application interactions are
exhaustively evaluated. The obtained results are very promising.

1.4.4 Performance model development

The core component of any model based performance testing and evaluation is the per-
formance model. In software testing, performance models are necessary to provide the
required test oracles, by which the output of each test case is verified. In this work, we
divide mobile networked applications into two groups. The first group represents the type
of applications in which the end user experience is mainly affected by the time delay while
the application is running, while the second group represents the applications in which end
user experience is mainly affected by time delay before the application starts. We develop
analytical and simulation performance models for both types of applications. We show that
only applications of the first group need a performance model to be built from scratch. For
applications of the second group, the already developed model that captures the wireless
network behaviours can be reused as a performance model. For the applications of the first
group, the analytical model is developed using Markov chain. The model is solved using
the supplementary variable technique (SVT), allowing for more realistic network scenarios
to be considered in the process.

1.4.5 Wireless network model development

Another important component of this work is the network model. In this thesis, a mobile
networked application is assumed to have wireless network access through a WiFi access
point that implements IEEE 802.11 network protocol standard. We consider the two de
facto Internet transport protocols: UDP and TCP. We develop three network models. In
the first model, data transfer from the access point to the mobile device is assumed to be

10

achieved using the UDP transport protocol, while in the second and third models, data
transfer is achieved using the TCP protocol.

In the first and second models, each application data unit (ADPU) is assumed to fit
in one UDP or TCP packet, while in the third model, this assumption is relaxed; the
APDU can fit in more than one TCP packet. In each model, two analytical expressions
for the packet/APDU time delay are developed: mean and variance. Then, a probability
distribution is matched for each scenario. The matched analytical cumulative distribution
functions are validated with simulation using the NS2 network simulator.

1.5 Literature Review

1.5.1 Performance testing and evaluation

In general, software testing can be invoked at any step during the design process. It can be
performed at the unit, integration, or system level. In literature, considerable efforts have
been made on integrating performance analysis with the development life cycle. In this
approach, different software design artefacts are augmented with performance values and
then transformed into stochastic models, such as Petri nets, simulation models, or queueing
networks. A comprehensive summary can be found in [78, 11]. The main objective in this
research trend is to conduct performance analysis to evaluate design alternatives while the
software is still in the development process, whereas our objective is to generate test cases
to test the SUT after implementation. They assume that the performance requirements are
available so that they can annotate the design diagrams with performance values, whereas
in our work, performance requirements are elicited as one of the by-products of the model-
based testing process. In fact, our approach is orthogonal to theirs, but complementary to
the early-stage performance testing phase.

Frequently, performance testing is viewed as load testing. Load testing is used to test
large-scale multi-user transaction based software systems, such as web sites and database
systems. In contrast, we target software applications that are developed for mobile de-
vices, where network access is accomplished via wireless technologies. This difference in
scope leads to a core distinction between our work and the model-based load testing. The
developed models in load testing are network technology independent, while our approach
models explicitly the network technology. In addition, test input for load testing can be
generated simultaneously while the real SUT executes (on-line) or independently (off-line).
In the off-line approach, test loads are designed from the source code using static analysis

11

techniques such as data flow analysis [122] and symbolic execution [129, 130], using the
operational profile (workload characterization) [116, 10], or using design models annotated
with statistics derived from the operational profile and past data, such as UML use-case
diagrams [41, 37], Markov chains [47, 114, 93], and probabilistic time automata [1]. In the
on-line approach, there is a feedback from the real system to the test generation process
to refine the test loads. Different techniques are used to enhance the test loads, such as
machine learning [54], linear programs [127, 128], Bayesian estimation [52], hill climbing
[14, 13], and genetic algorithms [56, 44]. A comprehensive survey of load testing can be
found in [68]. Our testing methodology can share some of the concepts with load testing,
however, the approach and scope of our work are distinct. In fact, our approach is off-line,
yet casting the test generation as an inversion problem resembles the feedback in on-line
load testing.

1.5.2 Performance testing in mobile devices

In the mobile domain, because of the short development cycle compared to other software
domains, most of the performance testing activities are conducted after implementations
[72]. Another observation is that most testing frameworks follow a white-box approach due
to many reasons. First, most applications are of small to moderate sizes (tens to hundreds
of lines of code). Second, many mobile applications are developed by non-professional
software developers which increases the probability of code level mistakes. Third, black-
box testing needs special skills in order to develop different types of models. Although a
white-box approach in mobile testing has its advantages, it does not facilitate a systematic
consideration of the environment in the testing process [104].

In spite of the much research efforts going into performance testing in the mobile
software domain, test generation to evaluate the network impact on app performance has
not received much attention [86]. In this regard, we conducted a survey targeting any
published work in test generation for networked (wired or wireless) software systems. We
observed that the main focus is on testing for functional requirements. For example in
[97], a model checking approach is used to verify UDP-based software systems. Since UDP
protocol does not implement any mechanism to ensure data integrity, a tool is provided
to check for faults in the software part that is responsible for the communication. The
tool can introduce three types of errors in communication: packet duplication, packet loss,
and packet reordering. In another work [113], networked software systems are checked for
violations in functional specifications using fuzz testing and model refinement. In both,
the main focus is on functional requirements.

12

In trying to enable mobile software developers to debug their applications for communi-
cation errors, a software profiler is provided in [45]. It analyses the communication link and
generate metrics to capture different aspects, such as connectivity and power consumption.
It also allows for doing measurements correlation to pinpoint the error. This work belongs
to the efforts of conducting performance analysis early in the development process, while
our objective is designing test suites to be used after implementation.

Providing test execution beds to evaluate the performance of networked applications
is very important. In [96], an emulator based test bed is designed to evaluate the impact
of physical mobility and hands-over in 4G networks on the operation of wireless mobile
applications. It does not address how test scenarios are designed and what is the coverage
criterion to use.

In terms of the end-user quality of experience (QOE), the work reported in [25] had de-
veloped a test bench to automate end-user QOE capturing for Android applications. Thus,
it is meant to facilitate test execution, while in our work, we utilize QOE characterization
to guide test selection process to evaluate the performance from the end-user point of view
and to minimize the size of the test suites.

1.5.3 Combinatorial testing with constraints

In combinatorial testing literature, handling constraints while generating test inputs has
been tackled using two approaches [74]. In the first approach, the parameters’ combina-
tions that should not appear in the test suite are first identified [82, 125]. Then, heuristics
based algorithms are employed to generate test inputs. In the second approach, the for-
bidden tuples are first expressed as logical constraints [126, 50]. Then, the validity of the
generated test input is checked by casting the problem as a Boolean satisfiability problem.
In both approaches, the constraints and parameters are Boolean. The only work that
considered numerical constraints is the work reported in [79]. In this work, linear numer-
ical constraints are converted to binary constraints and test generation is formulated as
a binary optimization problem. We are not aware of any published work that considers
non-linear numerical constraints. In our work, we overcome the complexity of the con-
straints by constrain the input space before starting test generation. That is, we remove
the forbidden combinations from the test candidates’ pool.

13

1.5.4 Using simulation models in testing

In software engineering, simulation models have been widely used in different software
development activities. However, the emphasis is on using simulation models to evaluate
alternative design choices [75, 12], or to design test cases to verify software systems repre-
sented as simulation models [20, 89]. In our work, test execution parameters are inferred
from simulation models to concretize the generated abstract test cases using two univariate
statistical procedures, while in literature, statistical techniques, such as hypothesis testing,
are mainly used to verify the output of test cases generated from simulation models [57, 58].

1.5.5 Software robustness

In literature, software testing is the main approach used to evaluate software robustness
[103]. However, robustness is mainly tackled from the functionality correctness point of
view. The relation between robustness and other software qualities like testability and
performance have not been addressed adequately [60]. Furthermore, robustness testing
has been used to verify different types of systems, such as commercial off-the-shelf compo-
nents, communication protocols, mission-critical systems, and operating systems [102]. It
is mainly achieved by injecting the interface of the SUT with a sequence of faulty inputs
with the intention to make the SUT crash or degrade. Invalid test inputs are generated
using different techniques. In communication protocols, fault injection is realized by mu-
tating protocol data units (PDUs) [119]. To facilitate test generation and maintenance,
test cases are specified using TTCN-3 specification language [69, 118, 71, 70]. In addi-
tion, the authors in [124] have considered network protocols with time constraints. In our
work, we preserve the correctness of the protocol syntactically and disturb another protocol
property, namely, the packets timeliness to evaluate the performance robustness.

The main challenge in testing adaptive and configurable systems is the state explosion
problem [105]. This issue has been tackled mainly using combinatorial interaction testing
(CIT). For example, a trimming strategy using pair-wise interaction coverage metric is
employed to reduce the number of possible faulty PDUs needed to test the robustness
of communication protocols [112]. However, for systems with large state/configuration
space, even pair-wise combinatorial metric does not scale up as in [61], where similarity
based metrics are proposed to generate test cases. The main idea is that dissimilar test
cases are more likely to trigger inefficiencies in the system. Furthermore, CIT metrics are
computationally expensive. To mitigate this cost, similarity based heuristics are used in
a search-based approach to generate test cases that fully or partially satisfy a given CIT
metric [62]. In systems that have operational profiles, execution traces are clustered [38]

14

and benchmarks [24] are developed and used to limit the number of possible scenarios.
In our work, CIT based metrics are not applicable, since the proposed robustness metrics
require the classification of all network-app interactions. Also, similarity based metrics are
not viable because dissimilar network configurations do not necessarily lead to different
performance behaviours. In fact, due to model non-linearity, there exist network scenarios
with different configuration settings, but their performance behaviours are statistically
equivalent. In our work, we propose an algorithm to minimize the number of application-
network interactions, utilizing the monotonicity property of the performance model.

In a more formal approach, the works in [110, 95] have proposed a framework to test real-
time systems and embedded systems for robustness, respectively. In both works, the SUT
is modelled using Input-Output-Labelled-Transition-Systems (IOLTS). To generate test
inputs, hazards are inserted in SUT nominal specifications to model a hostile environment.
Because operating systems are stateful, a framework is developed in which both valid and
invalid inputs are used to evaluate the robustness of operating systems at different states
[38]. The valid inputs are used to drive the SUT to the required state and then a sequence
of invalid inputs is injected.

In addition, testing is used to verify the robustness of adaptive software systems. In
reference [24], a robustness-driven resilience evaluation framework is proposed for self-
adaptive software systems. It assumes that the SUT is designed using the Rainbow plat-
form. In this architecture based platform, the system is composed of two main modules:
the managing and managed modules. The invalid inputs are injected into the managing
module (controller) through the probes that are employed to sense the state of the system.
The framework assumes that the controller is stateful. The main focus is on functionality
correctness.

Regarding robustness quantifications, a five-category based robustness classification
scheme is proposed to judge the severity of the system failure [77]. It is proposed for large-
scale systems, such as operating systems. In another work, robustness is quantified using
a mutation score [16]. Both works evaluates robustness from the correctness stand point.

1.5.6 Metamorphic testing

Recently, two survey papers in metamorphic testing are published in two prestigious jour-
nals, showing the momentum that this technique is gaining as an effective approach to
alleviate the test oracle problem and to automate testing activities [99, 31]. The efficacy
of metamorphic testing in solving the test oracle problem was empirically demonstrated
[85]. In literature, metamorphic testing has been used in different software domains, such

15

as numerical algorithms [28], machine learning [120], network simulators [32], query based
systems [84], to name a few. However, the main focus is the functional properties of the
software system. Using metamorphic testing for performance testing is still not explored
[99, 100].

Two main points have been tremendously addressed in literature of metamorphic test-
ing: derivation of metamorphic relations and the quality assurance of the derived relations
in fulfilling the objective of the testing process. In most cases, metamorphic relations
are derived manually and the main observation of this process is that it requires domain
knowledge of the SUT. In reference [85], metamorphic relations that are derived by non-
professional software developers (university students) had been empirically shown to be
effective enough in triggering real software defects. Regarding the quality of the derived
metamorphic relations, most of the studies utilize mutation analysis to show how powerful
derived metamorphic relations in fault detection. In reference [98], metamorphic testing
had been successfully used to detect previously unknown real faults in YouTube and Spo-
tify web APIs. In efforts to automate the derivation of metamorphic relations, inference
of program invariants technique was employed for regression testing [108]. Differences in
metamorphic properties that are inferred across multiple software versions may indicate
the existence of flaws in the SUT.

To rank metamorphic relations according to their capability in detecting failures, a
dissimilarity index was proposed in reference [26]. The main idea is that follow-up test
cases that have dissimilar execution profiles compared to the execution profile of the seed
test case are more likely to detect failures. Using this index, metamorphic relations are
prioritized, enabling software developers to use the most powerful metamorphic properties.
Execution profiles are evaluated using two structural coverage metrics: statement coverage
and branch coverage. Dissimilarity index is quantified using distance metrics. In another
similar work, structural based coverage criteria are directly used to evaluate the quality of
metamorphic relations [46].

Using metamorphic testing for non-functional properties is still an open question. In one
of few attempts to utilize this technique, a framework was proposed to test software modules
to be deployed in wireless sensors for both functional correctness and power efficiency [29].
Metamorphic relations are developed utilizing the idea that adjacent wireless sensors should
behave in a similar way (program versioning). That is, cross-referencing is used among
sensors that are close in proximity to alleviate the oracle problem. In a recent work,
metamorphic testing is used successfully to test for cybersecurity [33]. It was used to
detect security related issues in software obfuscation systems. In another work, a proof of
concept is established for using metamorphic testing to test for performance [101]. Software
examples and case studies from software product lines are used to show the feasibility of

16

the technique to detect performance bugs. In this thesis, we utilize metamorphic testing to
minimize the incurred cost of performance model evaluations that are necessary to generate
the required test oracles.

1.6 Thesis Outline

The remaining part of the thesis is organized as follows:

• In Chapter 2, we develop an analytical performance model for a group I represen-
tative application example, multimedia streaming, using the Markovian framework.
First, the functional requirements of the application are defined. Then, the model is
developed and solved using the supplementary variable technique (SVT). Last, the
developed model is validated using simulations;

• In Chapter 3, three reusable input network models are analytically developed. First,
the distribution coordination function (DCF) of the IEEE 802.11 standard is intro-
duced. Second, analytical expressions for the mean and variance of packet/APDU
inter-arrival time delay are derived assuming data transfer is achieved using both
UDP and TCP protocols. Third, a probability distribution is matched for each sce-
nario using the derived mean and variance expressions. Last, the matched probability
distributions are empirically validated using the NS2 simulator tool;

• In Chapter 4, a model based test generation methodology is proposed. First, how test
generation can be formulated as an inversion problem is explained. Second, method-
ology input requirements and steps are introduced. Third, Two application examples
of multimedia streaming and web browsing are used to explain the methodology. At
the end, methodology effectiveness is evaluated in comparison with random testing;

• In Chapter 5, the proposed test generation methodology of Chapter 4 is modified us-
ing metamorphic testing. First, the employed metamorphic relations are introduced.
Then, input requirements, steps, and expected outputs of the modified methodology
are explained. Third, the modified methodology is applied on an example of multi-
media streaming application. Last, the effectiveness of the methodology is evaluated
in comparison with our original test generation methodology;

• In Chapter 6, a model based methodology to evaluate performance robustness of
adaptive and non-adaptive applications is proposed. First, two performance robust-
ness metrics are suggested. Second, the proposed methodology to evaluate both

17

robustness metrics is introduced. Third, the proposed methodology is used to eval-
uate the performance robustness of a multimedia streaming application. Last, the
effectiveness of the proposed methodology is evaluated; and

• In Chapter 7, the work is concluded and pointers for future works are provided.

18

Chapter 2

The Performance Model

As explained in Chapter 1, the performance model should capture the impact of the wait-
ing time delay on experience of the end user. Accordingly, we classify mobile networked
applications into two groups. For the first group, the performance metric under consid-
eration that correlates with end user experience has a non-trivial relationship with the
waiting time delay, while for the second group, the performance metric has a simple linear
relationship with waiting time delay. In fact, there is no need for developing a performance
model for the second group of applications as will be shown later. In Group II, the end user
experience is directly captured by the network model, whereas in Group I, the performance
behaviour depends on the buffering behaviour of the application. In other words, we can
say that the performance model for applications of the second group is a special case of
the performance model for applications of the first group.

Therefore, the main objective of this chapter is to develop an analytical performance
model for applications of Group I. Without loss of generality, we choose multimedia stream-
ing as a representative application for this group. We develop a performance model for
this application, where the performance metric under consideration is the smoothness of
streaming as seen by the end user. First, we define the behaviour model of the multime-
dia streaming application. Then, we develop an analytical performance model using the
Markovian framework. At the end, we validate the model using simulations.

19

✁✂✄☎✆✂✝✞✟✠

✡�☞☞✟✠

✌✆✝✍✟✠

✎✠✝✏✟✑ ☞✠✂✏ ✓✔✟ ✕✟✓✄✂✠✖

✗✂ ✓✔✟ ✞✟✘✙✚✟ ✂�✓✛�✓ ✛✂✠✓✑

HWM

LWM

Figure 2.1: The general work flow of the multimedia streaming application. The abbrevi-
ations HWM and LWM stand for high watermark and low watermark levels, respectively.

2.1 Functional Requirements of The Multimedia Stream-

ing Application

The dynamics of streaming applications are captured if the buffering behaviour is modelled.
In this application example, we assume that the SUT implements a progressive streaming
mechanism in which both frame downloading and decoding (playing) are interleaved [87].
The application behaviour is modelled by two main components: a downloader and a
player. Both components interact with each other through a buffer known as a playback
buffer. Figure 2.1 depicts the general work flow of the streaming application.

At the beginning, the application is in the buffering phase. In this phase, the downloader
starts fetching media frames from the network and queues them in the buffer, while the
player is still off. The application remains in this phase until the data level in the playback

20

���������� ���������	

����������

���������

���������

������

��		
�

��		
��
��

������
�
�����
���		
��
�

Figure 2.2: The behaviour model of the multimedia streaming application.

buffer reaches a certain limit usually known as a high watermark level (M). This level
determines the length of the buffering phase and thereby the length of the time period
the user has to wait before the player starts playing. Also, this level determines when the
application stops asking for new frames. The downloader resumes fetching media frames
whenever data level drops below a certain limit known as a low watermark level (L). This
level represents the minimum amount of data in the buffer to ensure smooth continuous
playback. Figure 2.2 shows the state diagram that represents the desired behaviour of the
SUT.

In multimedia streaming, many performance metrics are proposed to capture end-user
experience. In this chapter, we consider the frequency of rebuffering events as the per-
formance metric [90]. This metric positively correlates with the waiting time delay that
the end user may experience. The SUT behaviour is characterised by three configuration
parameters (ACPs): playback buffer size (B), high watermark (M), and low watermark
(L). The “state” in this diagram represents the activity in which the software is currently
running. The text on the arrow from state x to state y, represents the condition that
triggers a transition from state x to state y.

2.2 The Considered Performance Metric

The performance metric under consideration has a direct relationship with how often the
application is visiting the ”Empty Buffer” state in Figure 2.2. Thus, the performance
metric correlates with the fraction of time of being in the Empty Buffer state out of the
total time of streaming. This behaviour is well modelled using the Markovian stochastic
process. To make use of this approach, certain requirements should be fulfilled. We model
the data level in the playback buffer as a stochastic process. The stationary distribution of
the process corresponds to the steady-state distribution of the playback buffer length. We

21

are only interested in the probability of having zero frames in the playback buffer. Since
the performance metric under consideration is a steady state metric, the buffering phase
is not included in the performance model.

In general, to utilize the Markovian framework, the time delay between frame arrivals
and the service (play) time of each frame should be exponentially distributed. In this work,
applications are assumed to have network access via a wireless connection. Therefore, the
time delay between arrivals cannot be assumed to be exponentially distributed. Further-
more, the frame play (service) time is not exponentially distributed in reality. In literature,
both frame rate and frame size are assumed to be deterministic (constant) in order to sim-
plify the analysis [83]. According to MPEG encoding scheme, frame size depends on the
frame type which can be I, B, or P [49]. In addition, many techniques have been proposed
to absorb network uncertainties by tuning the frame encoding rate [43]. Therefore, in this
work, we assume the frame decoding (playing) rate is exponentially distributed. Never-
theless, the stochastic process that models the buffer length is still not Markovian, as the
frame arrivals are not exponentially distributed.

When either arrival or service process is not Markovian, there are four choices to con-
sider. The first and easiest one is to develop a discrete time Markov chain (DTMC) to
approximate the stochastic process. Sometimes, DTMC does model very well the behaviour
especially when the operating region is limited. Since our objective in developing the model
is to design test suites that capture the whole behaviour spectrum, DTMC model did not
give us a good approximation as compared to the simulated behaviour. The remaining
choices are Markov chains with Phase-Type Distributions (PHD) [22], Semi-Markov pro-
cesses [80], and Markov chains with Supplementary Variable Technique (SVT) [39], [40].
The main concept of PHD is to represent the non-exponential distribution by mixing cer-
tain number of exponential distributions. The main drawback of using this technique is
the state explosion problem especially when the size of the Markov chain is large. In our
case, the size of the Markov chain depends on the playback buffer size and the video frame
size which can result in a chain with thousands of states. Also, fitting an empirical distri-
bution using a PHD distribution is not always possible. This makes PHD approach is not
practical for our application.

Mathematical modelling using Semi-Markov process is sometimes not straight forward.
The main idea of this approach is to observe the stochastic process (playback buffer length)
at certain time instants where the process has the memoryless property. Then, a DTMC is
embedded at those prescribed time instants. If the arrival process is not Markovian, as in
our case, we have to embed the DTMC at the time instants directly after frame departure
events. If the service process is the non-Markovian one, a DTMC should be embedded at
frame arrivals.

22

The next step is easier if the arrival process is Markovian not the service process which is
the opposite of our case. If the arrival is Markovian, the PASTA (Poisson arrivals see time
averages) principle is applied (the Poisson arrival sees the same buffer length distribution
as a random observer [107]) which facilitates the derivation of the state probability. If the
arrival process is not Markovian, there is a trick to obtain the probability of the state at
any time by developing a duality relationship with another system of known parameter
distributions as reported in [64], [73]. In fact, duality relationships are only available for
special cases, and sometimes they are difficult to establish. In this work, we are trying to
use a general framework to develop performance models that can be easily extrapolated
to other scenarios. Hence, we choose the forth approach, performance modelling using
the supplementary variable technique. In theory, this technique can be applied even when
arrival and service processes are both non-Markovian [6].

Basically, in order to use Markovian modelling approach, the memoryless property
should be preserved. That is, in Markov chain words, given the current state, the proba-
bility of the next state is independent from the history. This means, in order to determine
the next process state all the needed information should be available in the current state,
and how the process has reached the current state does not matter. In our model, the
distribution of the frame inter-arrival time delay is not exponential. Thus, in order to
determine the next state (buffer length), the elapsed time since the previous frame arrival
(or the remaining time for the next frame arrival [63]) should be known, i.e., the evolution
of the process does depend on the history.

To overcome this problem, the state of the Markov chain should be redefined so that all
the needed information to determine the next state is available in the current state. This
can be done if the stochastic process is defined as follows:

{B(t), V (t), t ≥ 0} (2.1)

Where B(t) is a discrete random variable that represents the playback buffer length at
time t and V (t) is a continuous random variable that represents the elapsed time from
the last frame arrival till time t. Thus, the stochastic process underlying the performance
behaviour of the software system is discrete-continuous in state space and continuous in
time. Figure 2.3 shows the Markov chain of the application software. All states that are
expected to receive frames are augmented with the supplementary variable v to account
for the elapsed time since the last arrival.

Now, our objective is to find the steady state probability distribution of the playback
buffer length. The derivation depends on examining the short-term behaviour of the chain.
Generally, in any continuous-time Markov chain, the probability of having one event in a

23

Figure 2.3: The state diagram of the application.

short time interval ∆t is q∆t, where q represents the rate of events. The probability of not
having an event in ∆t is 1 − q∆t. The probability of having more than one event in ∆t
is o(∆t), where o(∆t) tends to 0 when ∆t approaches 0. Now, to get the dynamics of the
stochastic process, a differential (or a partial differential) equation is derived for each state
in Figure 2.3. The equation is formed following the very basic law of total probability of
two mutually exclusive events. For state 0, the difference equation is:

π0(t+ ∆t, v + ∆t) = π0(t, v)(1− λ(v)∆t) + π1(t, v)µ∆t+ o(∆t) (2.2)

The physical meaning of Equation (2.2) is as follows: The probability of being in state
0 after ∆t of time, π0(t + ∆t, v + ∆t), is equal to the probability of being originally in
state 0 at time t and no arrival happens in the interval ∆t, plus the probability of being
originally in state 1 at time t and 1 frame is played in the interval ∆t, where λ(v) and µ
are the arrival and service rates, respectively. Using the same concept, the states 1, 2, ...,
and M − 2 have the same difference equation that is given by:

πn(t+ ∆t, v + ∆t) =πn(t, v)(1− λ(v)∆t− µ∆t)+

πn+1(t, v)µ∆t+ o(∆t), 1 ≤ n ≤M − 2
(2.3)

For the states M − 1 and M , the difference equations are:

πM−1(t+ ∆t, v + ∆t) = πM−1(t, v)(1− λ(v)∆t− µ∆t) + o(∆t) (2.4)

πM(t+ ∆t) = πM(t)(1− µ∆t) +

∫ ∞
0

πM−1(t, v)λ(v)∆tdv + o(∆t) (2.5)

24

For the last M −L− 1 states, the difference equations are also the same and it is given by:

πn(t+ ∆t) = πn(t)(1− µ∆t) + πn−1(t)µ∆t+ o(∆t), M + 1 ≤ n ≤ 2M − L− 1 (2.6)

To get the state differential equations, few algebraic manipulations are needed. For state
0, starting from Equation (2.2):

π0(t+ ∆t, v + ∆t)− π0(t, v) = −π0(t, v)λ(v)∆t+ π1(t, v)µ∆t+ o(∆t)

Add and subtract π0(t, v + ∆t), divide both sides by ∆t, and take the limit as ∆t→ 0:

⇒ lim
∆t→0

π0(t+ ∆t, v + ∆t)− π0(t, v + ∆t)

∆t
+ lim

∆t→0

π0(t, v + ∆t)− π0(t, v)

∆t
= −π0(t, v)λ(v)

+ π1(t, v)µ+ lim
∆t→0

o(∆t)

∆t

As the last term evaluates to 0, the above equation settles down to the following partial
differential equation (pde):

∂π0(t, v)

∂t
+
∂π0(t, v)

∂v
= −π0(t, v)λ(v) + π1(t, v)µ. (2.7)

Using the same procedure, the differential and partial differential equations of the remaining
states are obtained and they are listed below:

∂πn(t, v)

∂t
+
∂πn(t, v)

∂v
= −πn(t, v)(λ(v) + µ) + πn+1(t, v)µ, 1 ≤ n ≤M − 2 (2.8)

∂πM−1(t, v)

∂t
+
∂πM−1(t, v)

∂v
= −πM−1(t, v)(λ(v) + µ) (2.9)

dπM(t)

dt
= −πM(t)µ+

∫ ∞
0

πM−1(t, v)λ(v)dv (2.10)

dπn(t)

dt
= −πn(t)µ+ πn−1(t)µ, M + 1 ≤ n ≤ 2M − L− 1 (2.11)

Subject to the following boundary conditions:

π0(t, 0) = 0,

πn(t, 0) =

∫ ∞
0

πn−1(t, v)λ(v)dv, 1 ≤ n ≤M − 1\{L},

πL(t, 0) =

∫ ∞
0

πL−1(t, v)λ(v)dv + π2M−L−1(t)µ.

(2.12)

25

Because our objective is the steady-state analysis (not the transient), there is no need
to specify the initial conditions, since stationary distribution is independent of the initial
condition. To simplify the procedure of solving the above equations, there is a strategy to
remove λ(v) from the equations reported in [39].

Let Pr[B(t) = n, V (t) ≤ v + ∆v|V (t) > v] be the conditional probability of having n
frames in the buffer and the elapsed time for the next frame to arrive is less than or equal
to v + ∆v, given that the elapsed time to arrive is greater than v. Applying the definition
of the conditional probability, yields:

Pr[B(t) = n, V (t) ≤ v + ∆v|V (t) > v] =
Pr[B(t) = n, v < V (t) ≤ v + ∆v]

Pr[V (t) > v]

Dividing the above equation by ∆v and taking the limit as ∆v → 0, yields:

lim
∆v→0

Pr[B(t) = n, v < V (t) ≤ v + ∆v]

Pr[V (t) > v]∆v
=
πn(t, v)

F̄ (v)

4
= pn(t, v)

Where F̄ (v) is the complementary cumulative distribution function of the frame inter-
arrival time delay. The last result represents the instantaneous rate function of Πn(t, v),
the corresponding cumulative distribution of πn(t, v), and we abbreviate it as pn(t, v):

∴ πn(t, v) = pn(t, v)F̄ (v), 0 ≤ n ≤M − 1 (2.13)

Differentiate Equation (2.13) two times, one with respect to t and the other with respect
to v and add the result:

⇒ ∂πn(t, v)

∂t
=
∂pn(t, v)

∂t
F̄ (v) and

∂πn(t, v)

∂v
=
∂pn(t, v)

∂v
F̄ (v)− pn(t, v)f(v)

⇒ ∂πn(t, v)

∂t
+
∂πn(t, v)

∂v
=
∂pn(t, v)

∂t
F̄ (v) +

∂pn(t, v)

∂v
F̄ (v)− pn(t, v)f(v) (2.14)

In Equation (2.14), we used the relation λ(v) = f(v)

F̄ (v)
, where f(v) is the probability density

function of the inter-arrival time delay. Then, substitute Equations (2.13) and (2.14) in
Equations (2.7, 2.8, 2.9, 2.10, and 2.12) to get the final time-dependent state equations:

∂p0(t, v)

∂t
+
∂p0(t, v)

∂v
= p1(t, v)µ (2.15)

∂pn(t, v)

∂t
+
∂pn(t, v)

∂v
= −pn(t, v)µ+ pn+1(t, v)µ, 1 ≤ n ≤M − 2 (2.16)

26

∂pM−1(t, v)

∂t
+
∂pM−1(t, v)

∂v
= −pM−1(t, v)µ (2.17)

dπM(t)

dt
= −πM(t)µ+

∫ ∞
0

pM−1(t, v)f(v)dv (2.18)

dπn(t)

dt
= −πn(t)µ+ πn−1(t)µ, M + 1 ≤ n ≤ 2M − L− 1 (2.19)

Subject to the following boundary conditions:

p0(t, 0) = 0,

pn(t, 0) =

∫ ∞
0

pn−1(t, v)f(v)dv, 1 ≤ n ≤M − 1\{L},

pL(t, 0) =

∫ ∞
0

pL−1(t, v)f(v)dv + π2M−L−1(t)µ.

(2.20)

As t→∞, the system reaches steady-state and the behaviour does not depend any more
on the time. Hence, the state equations become as follows:

dp0(v)

dv
= p1(v)µ,

dpn(v)

dv
= −pn(v)µ+ pn+1(v)µ, 1 ≤ n ≤M − 2,

dpM−1(v)

dv
= −pM−1(v)µ,

0 = −πMµ+

∫ ∞
0

pM−1(v)f(v)dv,

0 = −πnµ+ πn−1µ, M + 1 ≤ n ≤ 2M − L− 1.

(2.21)

Subject to the following boundary conditions:

p0(0) = 0,

pn(0) =

∫ ∞
0

pn−1(v)f(v)dv, 1 ≤ n ≤M − 1\{L},

pL(0) =

∫ ∞
0

pL−1(v)f(v)dv + π2M−L−1µ.

(2.22)

Now, the set of Equations (2.21) and (2.22) describes the dynamics of the playback buffer
length. The probability distribution of the states can be evaluated using the following
equation:

πn =

∫ ∞
0

pn(v)F̄ (v)dv, 0 ≤ n ≤M − 1 (2.23)

27

To obtain the stationary distribution of the stochastic process underlying the playback
buffer length, we need to solve the system of equations (2.21, 2.22, and 2.23) with the
normalization equation that is given by:

2M−L−1∑
n=0

πn = 1. (2.24)

Unfortunately, the solution of the problem does not give the performance metric under
consideration (π0) in a closed form expression.

The number of equations that should be solved depends on M and L which depends
on the playback buffer size. Thus, it is not easy to solve them manually in order to get
the probability of empty buffer state. Therefore, it is more convenient to formulate the
equations in a matrix form and solve them by the computer. For this purpose, we can follow
the same notation that is developed in [51]. The solution gives the stationary probability
distribution of the Markov chain (π0, π1, ..., π2M−L−1). We are only interested in π0.

2.3 Performance Model Validation

To verify the performance modelling process, we develop a simulation performance model.
Figure 2.4 shows the probability of empty playback buffer state (π0) with different buffer
sizes for both simulation and analytical performance models, where µ represents the mean
rate of frame decoding and f is a tunable parameter that is used to control the relation
between the frame arrival rate and the decoding rate. In the simulation model, we simulate
a streaming session of 30 minutes. Each simulation experiment is repeated 50 times. Thus,
the reported probability of empty buffer state is the mean of 50 experiments.

An important point to mention, as playback buffer size increases, the time overhead
of evaluating the analytical model (Equations (2.21-2.24)) becomes comparable with the
time overhead of evaluating the simulation model. In fact, this issue is already observed
in Markov modelling when the chain size is large and the underlying process is not fully
Markovian [51].

2.4 Summary

In this chapter, both analytical and simulation performance models are developed for
mobile networked applications of group I, where waiting time delay that affects end user

28

Figure 2.4: The considered performance metric versus playback buffer size.

experience occurs during service consumption. We developed the models for a multimedia
streaming application as a representative application example for this group. We developed
the analytical model using a Markov chain. Because the stochastic process underlying the
playback buffer length is not Markovian, the Markov chain is developed and solved using the
supplementary variable technique. This technique enables for frame arrivals to be modelled
using any probability distribution, allowing for more realistic wireless network behaviours
to be considered in the process. The main observation of this modelling process is the
computationally high cost of the analytical performance model for group I applications.

In the next chapter, input network models are developed for mobile networked appli-
cations that have a wireless network access via a WiFi access point.

29

Chapter 3

Input Network Models

Basically, a network model relates analytically the metric that captures the quality of the
network service, which is the waiting time delay, with the identified network operating pa-
rameters (NOPs). Waiting time delay is verily a random variable and we need to evaluate
its probability distribution. We utilize distribution fitting using the first two moments:
mean and variance. Therefore, two analytical expressions are derived for the mean and
variance of waiting time delay. The mobile device is assumed to have a wireless network
connection via a WiFi access point (AP) that implements the Distribution Coordination
Function mode of operation of the IEEE 802.11 protocol standard. We consider two sce-
narios. In the first scenario, data transfer is achieved using the UDP transport protocol,
while in the second scenario, data transfer is achieved using the TCP transport protocol.
In both scenarios, we assume there are N mobile users that are connected to the Internet
through the same WiFi access point. The direction of data traffic is majorly from the
Internet to the mobile devices via the WiFi access point. We first assume that the size of
the transport layer packet (UDP or TCP), MAC frame, and application data unit (APDU)
are equal. Later on, we relax this assumption to make the model more suitable for a wide
range of applications.

3.1 IEEE 802.11 Protocol Standard

As explained in the system model, the application interacts with the network through a
basic request-response (REQ-RES) mechanism and the network’s impact can be captured
by modelling the RES inter-arrival time delay. The objective of this analysis is to develop

30

two analytical expressions for the mean and variance of RES (packet/APDU) inter-arrival
time delay.

Nowadays, IEEE 802.11 becomes the de facto protocol for the wireless local area net-
works (WLANs). It can operate in one of two modes of operation: a contention based
medium access known as a Distributed Coordination Function (DCF) and a contention
free medium access known as a Point Coordination Function (PCF) [17]. In this work, we
only consider the DCF scheme. This scheme employs a Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) mechanism to manage the access to the shared medium
among multiple users. In this mode of operation, a station (mobile device or AP) can only
send a MAC frame, if and only if, the channel is sensed idle for a Distributed Inter-Frame
Space interval of time (DIFS). If the channel is sensed busy from the beginning or while
waiting for the DIFS interval to elapse, the station has to wait for an extra random amount
of time after a complete DIFS interval of being sensed idle. This random amount of time
is called the back-off interval. It is uniformly distributed in the interval [0, W], where
W represents the Contention Window size. Through this random interval, the Collision
Avoidance mechanism is implemented.

In practice, the back-off interval is an integer number of equally spaced time slots of
length σ. After a DIFS interval of the channel being idle, a number is picked randomly
from the interval [0, W] and loaded into the back-off counter. At the beginning of each
time slot, the channel is sensed. If it is idle, the counter is decremented by 1; otherwise,
the counter is frozen. The counter resumes decrementing whenever the channel is sensed
again idle for a DIFS interval. The station sends the MAC frame when the back-off counter
reaches zero.

In the DCF mode, stations can exchange data using two different schemes. In the
first scheme, usually known as DATA/ACK scheme, the sender station sends the DATA
(MAC frame) directly after the back-off counter hits the zero. If it is received correctly,
the receiver station waits for a Short Inter-Frame Space (SIFS) interval of time and then
sends back an ACK frame. If the DATA or ACK frame collides, the sender station has
to reschedule the transmission event again. In the second scheme, the sender firstly sends
a “request-to-send” (RTS) message to the receiver. Upon receiving RTS message, the
receiver station waits for a SIFS interval of time and then responds back with a “clear-to-
send” (CTS) message. When the sender receives the CTS message, he waits for a SIFS
time interval and then sends the DATA frame. If the DATA frame is received correctly, the
receiver station waits again for a SIFS time interval and then responds back with an ACK
frame. This four-way handshaking mechanism has two advantages. It handles the hidden
station problem and it reduces the collision time especially when long DATA messages are
exchanged.

31

3.2 Data Transfer Using A UDP Protocol

In this section, we analyse the interaction of the UDP protocol with IEEE 802.11 standard.
User Datagram Protocol, abbreviated as UDP, is an unreliable and connectionless transport
protocol. It does not implement any flow or congestion control mechanisms [59]. It is
suitable for short message transfers as in network management activities and it is also used
for delay sensitive applications such as multimedia streaming.

Assuming a UDP packet, MAC frame, and APDU are of equal size, the packet trans-
mission time T udps , time needed to successfully transfer a frame from the AP to the end
user, is given by:

T udps = TRTS + TCTS + 3× TSIFS + TDIFS + TACK + T udp (3.1)

Where TRTS, TCTS, and TACK are propagation time of a ready-to-send frame, clear-to-send
frame, and ACK frame, respectively; TSIFS and TDIFS are the short inter-frame space and
distributed inter-frame space time intervals, respectively. The packet propagation time
T udp depends on the packet size and on the data rate D of the wireless connection:

T udp = TPHY +
HUDP +HMAC + 8 · P

D
(3.2)

Where TPHY , HUDP , HMAC , and P represent the physical layer overhead in seconds, UDP
packet header size in bits, MAC header size in bits, and UDP packet payload size in bytes,
respectively. We assume that the WiFi access point has an infinite buffer size, so the
probability of packet loss due to AP buffer overflow is negligible. When a packet reaches
the head of the AP buffer, the time duration seen by this packet from this instant to the
instant at which it is successfully delivered to the end user is corresponding to the service
time of the packet. Packet service time St is given by:

St = T udps + σ × CB (3.3)

Where CB is the back-off counter value. Thus, the mean packet service time E[St] is given
by:

E[St] = T udps + σ × E[CB] (3.4)

In this analysis, we assume the contention window size is fixed on W . Thus, the mean of
the back-off counter is basically the mean of a uniform random variable. Hence, Equation
(3.4) becomes:

E[St] = T udps + σ × W

2
(3.5)

32

We assume that packet arrivals to the AP follow a Poisson process. For wired networks,
it is a quite reasonable assumption. Since the data traffic is assumed to be unidirectional
from the AP to mobile end users, the collision time is negligible. Moreover, since the
contention window size is assumed to be fixed, the variance in packet response time is
mainly due to the variance in the AP queue waiting time. As a result, packet service time
can be assumed to be deterministic as mathematically proven below:

Cs =
std(St)

E[St]
=

√
E[S2

t]− E[St]2

E[St]
=

√
E[S2

t]

E[St]2
− 1

=

√√√√T udps
2

+ σT udps W + 1
3
σ2W 2

T udps
2

+ σT udps W + 1
4
σ2W 2

− 1 ≈ 0

(3.6)

Where std(St) and Cs are the standard deviation and the coefficient of variation of the
service time St, respectively. Therefore, assuming the AP as an M/D/1 queueing system,
the mean of the packet inter-arrival time delay at the end user is basically the mean
packet response time at the AP. The sum of the queueing time delay and the service time
represents the packet response time and it is given by [67]:

Er =
(2− ρ)

2 · α · (1− ρ)
(3.7)

Where α is the mean packet service rate (= 1/E[St]) at the AP. The traffic intensity at
the access point ρ is given by:

ρ =
N · λ
α

(3.8)

Where λ is the mean rate of packet arrival into the AP per mobile user, and N is the
number of mobile users that are connected to the AP.

The next step is to figure out the variance in the packet inter-arrival time delay Vard.
For M/D/1 queue, it is given by [67]:

Vard =
ρ · (4− ρ)

12 · α2 · (1− ρ)2
(3.9)

Using the mean and variance (Er and Vard), we fit a distribution for the packet inter-arrival
time delay. If the coefficient of variation of the packet inter-arrival time delay Cr is less
than 1, a Hyper-Erlang distribution is often used in the matching process. A Hyper-Erlang
distribution is a weighted mixture of a number of independent Erlang distributions. An

33

Erlang random variable is a random variable that has a distribution with two parameters k
and ω. It is the sum of k independent exponential random variables with mean 1/ω each. In
this work, we assume the arrival process is a Hyper-Erlang of two Erlang distributions of the
same parameter ω. This type of a distribution is useful if only the first two moments (mean
and variance) are used in the matching process [4]. Respectively, the probability density
function and the cumulative distribution function for a Hyper-Erlang random variable of
two Erlang variables are given below:

f(v) = pω
(ωv)k−2

(k − 2)!
e−ωv + (1− p)ω (ωv)k−1

(k − 1)!
e−ωv, v > 0

F (v) = 1−
k−1∑
j=0

(ωv)j

j!
e−ωv + p

(ωv)k−1

(k − 1)!
e−ωv.

(3.10)

Hyper-Erlang distribution has three parameters k, p, and ω. k should be an integer and p
is a probability between 0 and 1. They can be determined as follows:

1

k
≤ Cr

2 ≤ 1

k − 1
(3.11)

p =
1

1 + Cr
2 [k · Cr2 −

√
k · (1 + Cr

2)− k2 · Cr2] (3.12)

ω =
k − p
Er

(3.13)

where

Cr
2 =

Vard

Er
2 (3.14)

3.3 Model Validation for The UDP Scenario

To validate that the matched Hyper-Erlang cumulative distribution function (CDF) has
captured the dynamics of packet inter-arrival time delay, we conduct simulation experi-
ments using the Network Simulator tool NS2. We simulate a wireless local area network
that has one access point and a group of users. The simulated scenario is a file download,
where a number of users are downloading a big file through the AP simultaneously. Figures
3.1 and 3.2 show both the empirical CDF that is generated from the simulation and the
analytical matched CDF. We consider IEEE 802.11 g protocol with parameter values as
given in Table 3.1. The packet payload size P is 1500 Bytes.

34

✵ ✵✳✵✵✷ ✵✳✵✵✹ ✵✳✵✵✻ ✵✳✵✵✽ ✵✳✵✶
✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵✳✼

✵✳✽

✵✳✾

✶

P❛❝❦❡t ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡ ❞❡❧❛② ✭s❡❝✮

�
✁
♦
❜
✂
❜
✄☎
✄✆
✝

❉ ❂ ✺✹ ▼✞♣s✱ ◆ ❂ ✷✵ ✉s❡rs✱ ❂ ✻✵ ♣❛❝❦❡ts✴s❡❝

❆♥❛❧②t✐❝❛❧ ❈❉❋

❊♠♣✐r✐❝❛❧ ❈❉❋

Figure 3.1: The empirical and analytical cumulative distribution functions for a mean
arrival rate of 60 packets/sec, end users of 20, and data rate of 54 Mbps.

Table 3.1: IEEE 802.11g protocol parameters.

System Parameter Value

HMAC 246 bits
HUDP 160 bits
TPHY 20 µs
TRTS 47 µs
TCTS 39 µs
TACK 39 µs
TSIFS 16 µs
TDIFS 34 µs
W 32
σ 9 µs

35

✵ ✵✳✵✵✷ ✵✳✵✵✹ ✵✳✵✵✻ ✵✳✵✵✽ ✵✳✵✶
✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵✳✼

✵✳✽

✵✳✾

✶

P❛❝❦❡t ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡ ❞❡❧❛② ✭s❡❝✮

�
✁
♦
❜
✂
❜
✄☎
✄✆
✝

❉ ❂ ✺✹ ▼✞♣s✱ ◆ ❂ ✶✵ ✉s❡rs✱ ❂ ✽✵ ♣❛❝❦❡ts✴s❡❝

❆♥❛❧②t✐❝❛❧ ❈❉❋

❊♠♣✐r✐❝❛❧ ❈❉❋

Figure 3.2: The empirical and analytical cumulative distribution functions for a mean
arrival rate of 80 packets/sec, end users of 10, and data rate of 54 Mbps.

36

3.4 Data Transfer Using A TCP Protocol

In this section, we analyse the interaction of TCP protocol with IEEE 802.11 standard.
Compared to UDP protocol, TCP protocol is a reliable transport protocol that implements
both flow and congestion control mechanisms. Congestion control is a mechanism that is
employed to protect network routers from being overwhelmed with packets, while control
flow is a mechanism that is used in order not to overflow end-point receivers with packets
more than the capacity of their TCP buffers. In TCP protocol, each packet should be
acknowledged by the receiver. Thus, we have two types of traffic. In this work, we assume
TCP packets flow from the wired network part (Internet) to the mobile users via the AP,
and TCP ACKs flow back from the mobile users to the AP. All these mechanisms make
TCP protocol more reliable, but at the same time, they make packet delay analysis more
complicated compared to UDP scenario.

As in UDP scenario, we assume that the AP has an infinite buffer space. Thus, the
system throughput is limited by the TCP buffer size in mobile devices. Congestion window
size at the AP is assumed to grow until it reaches the receiver TCP buffer size of mobile
devices. The time needed to successfully deliver a TCP packet T tcps is the same as in the
UDP scenario which is given by Equation (3.1). The TCP packet propagation time T tcp

is also the same as in Equation (3.2) except HUDP is replaced by HTCP , the header size
of the TCP packet. Similarly, the time needed to successfully deliver a TCP acknowledge
(ACK) packet T acks from the mobile user to the AP is given by:

T acks = TRTS + TCTS + 3 · TSIFS + TDIFS + TACK + T ack (3.15)

where T ack is the TCP ACK propagation time and it is given by:

T ack = TPHY +
Hack
TCP +HMAC + 8 · Pack

D
(3.16)

where Hack
TCP and Pack represent TCP layer header size in bits and payload size in bytes for

a TCP ACK packet, respectively.

To derive an expression for the mean response time Etcp
r at the AP, we use the same

assumption that TCP packet arrivals at the AP follow a Poisson process. The mean rate
of TCP packets arrival λAP is given by:

λAP =
N ·Btcp

Trtt
(3.17)

37

Where Btcp is the TCP buffer size at the end user. The round trip time of the TCP packet
Trtt is dominated by the delay of the wireless network part and can be approximated by:

Trtt =
1

αn
+ Etcp

r (3.18)

Where αn is the mean service rate of TCP ACK packets at the mobile end user. By
ignoring packets collision time, back-off delays, and utilizing the fairness property of the
DCF operation mode of the IEEE 802.11 protocol, the mean service rate α at the AP is
given by [3, 23]:

α =
1

ρn ·N · T acks + T tcps

(3.19)

Where ρn is the traffic intensity at the mobile end user and on long-run, it can be approx-
imated by:

ρn =
1

N
(3.20)

Thus, mean service rate at the AP is approximately given by:

α =
1

T tcps + T acks

=
1

Tst
(3.21)

Where Tst is the total transmission time of TCP and ACK packets. Assuming the AP as
an M/D/1 queueing system, the mean response time at the AP is given by Equation (3.7)
with α now is as given by Equation (3.21) and ρ as given by the following equation:

ρ =
N ·Btcp

Trtt · α
(3.22)

Now, we find an expression for the TCP buffer size Btcp at the end user. Using the same
rationale, the mean service rate for TCP ACKs at the mobile end user is given by:

αn =
1

ρ · T tcps + ρn · (N − 1) · T acks + T acks

(3.23)

Substituting Equation (3.23) in Equation (3.18) and the result in Equation (3.17) yield
the following expression for the TCP buffer size:

Btcp =
ρ

N
× [

ρ · T tcps + ρn · (N − 1) · T acks + T acks

Tst
+

(2− ρ)

2 · (1− ρ)
] (3.24)

Finding out an expression for the variance of response time in TCP scenario is more
challenging than the UDP case. Assuming heavy traffic analysis, the traffic intensity at

38

the AP is very close to one. By observing the simulation, the buffer length at the AP is
almost constant at a level that is very close to the mean buffer length given by an M/D/1
queueing system [67]:

QL =
ρ2

2 · (1− ρ)
+ ρ (3.25)

Using Little theorem, both mean total service time and response time at the AP are related
by the following:

λAP × Er = QL ⇒ Er ≈
QL

α
⇒ Er ≈ QL × Tst (3.26)

With negligible buffer length variance, the variance in response time is mainly due to the
variance in service time, which is mainly due to the variance in the back-off process (collision
time is neglected). The variance in back-off time delay is basically the variance of a uniform
random variable. Therefore, the variance in response time V tcp

ard can be approximated by:

V tcp
ard = 2 ·QL ·

W 2 − 1

12
· σ2 (3.27)

Where the factor 2 in the last equation is to account for waiting of both TCP and its ACK
packets.

Using the mean and variance, we fit the packet inter-arrival time delay with a Gamma
distribution. This distribution has two parameters: shape and rate. They are related to
the mean and variance by the following relationships:

shape =
(Etcp

r)2

V tcp
ard

rate =
Etcp
r

V tcp
ard

(3.28)

3.5 Model Validation for The TCP Scenario

The fitted distribution is validated with simulation using NS2 tool. Figures 3.3, 3.4, and
3.5 show both the matched and the empirical cumulative distribution functions for three
different scenarios.

39

0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet inter-arrival delay (sec)

P
ro

b
a
b

il
it

y

D = 6 Mbps, N = 5 users, = 0.99, B
tcp

 10 packets

Analytical CDF

Empirical CDF

Figure 3.3: The empirical and analytical cumulative distribution functions for traffic in-
tensity of 0.99, TCP buffer size of 10 packets, end users of 5, and data rate of 6 Mbps.

40

1.4 1.42 1.44 1.46 1.48 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet inter-arrival time delay (sec)

P
ro

b
a

b
il

it
y

D = 6 Mbps, N = 5 users, ρ = 0.999, B
tcp

 ≈ 100 packets

Empirical CDF

Analytical CDF

Figure 3.4: The empirical and analytical cumulative distribution functions for traffic in-
tensity of 0.999, TCP buffer size of 100 packets, end users of 5, and data rate of 6 Mbps.

41

✵✳✵✹ ✵✳✵✹✺ ✵✳✵✺ ✵✳✵✺✺ ✵✳✵✻ ✵✳✵✻✺ ✵✳✵✼
✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵✳✼

✵✳✽

✵✳✾

✶

P❛❝❦❡t ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡ ❞❡❧❛② ✭s❡❝✮

�
✁
♦
❜
✂
❜
✄☎
✄✆
✝

❉ ❂ ✷✹ ▼✞♣s✱ ◆ ❂ ✶✺ ✉s❡rs✱ ❂ ✵✳✾✾✱ ❇
✟✠✡

✹ ♣❛❝❦❡ts

❊♠♣✐r✐❝❛❧ ❈❉❋

❆♥❛❧②t✐❝❛❧ ❈❉❋

Figure 3.5: The empirical and analytical cumulative distribution functions for traffic in-
tensity of 0.99, TCP buffer size of 4 packets, end users of 15, and data rate of 24 Mbps.

42

3.6 The TCP Scenario With Multiple Packet APDUs

In the previous section, we assume that a TCP packet, MAC frame, and APDU are all of
the same size. In this section, we relax this assumption and develop a network model for
applications with data units that fit into multiple TCP packets and MAC frames. The size
of TCP packets and MAC frames are still assumed to be equal, which is practically accept-
able. We assume for an arbitrary application that one APDU on average is partitioned and
transferred using K TCP packets (or MAC frames). Thus, the previous network model is
a special case where K is equal to one.

When K > 1, the mean inter-arrival time delay of an APDU at the end user is deter-
mined by the mean of three delay components at the AP: TCP packets inter-arrival time
delay, TCP packets waiting time delay, and TCP packets service time. What makes time
delay analysis more complicated than the previous scenario is the overlap of the mentioned
three time delay components for packets that belong to the same APDU. Therefore, to eval-
uate the overlap, we need first to anticipate the mean of each delay component compared
to the other two. Let 1/λ be the mean TCP packet inter-arrival time delay per end user at
the AP, 1/α be the mean TCP packet service time, and Tq be the mean waiting time for
TCP packets at the AP. Now, we figure out analytically the magnitude of each component
in relative to the other two delay components and determine as well the conditions under
which such relationships are valid. In reality, no model can stay valid anywhere all the
time; every model comes with its assumptions and limitations.

We start by inferring the relationship between 1/λ and 1/α. They are related by the
traffic intensity relationship:

ρ =
N · λ
α
⇒ λ

α
=

ρ

N
∵ ρ < 1 and N > 1

∴
λ

α
< 1⇒ λ < α⇒ 1

λ
>

1

α

(3.29)

Therefore, the inter-arrival packet delay on average is greater than packet service time.
This relation is valid if there are two or more mobile users connected to the AP and the
traffic intensity is less than 1.

The relation between 1/α and Tq is deduced as follows. For an M/D/1 queueing system,

43

the mean queueing time in the AP buffer is given by:

Tq =
ρ

2 · α · (1− ρ)

⇒ Tq
1/α

=
ρ

2 · (1− ρ)

⇒ Tq
1/α

> 1⇒ Tq >
1

α

(3.30)

Thus, the queueing delay on average is greater than the packet service time. The last result
depends on our previous assumption of heavy traffic analysis, where ρ is very to 1.

The last relationship that we want to deduce is between Tq and 1/λ. Using the same
relationship of mean queueing delay in an M/D/1 queue, the relationship is derived as
follows:

Tq
1/λ

=
λ · ρ

2 · α · (1− ρ)

⇒ Tq
1/λ

=
ρ2

2 ·N · (1− ρ)

⇒ Tq
1/λ

> 1⇒ Tq >
1

λ

(3.31)

Assuming heavy traffic analysis, this result is valid if the number of users N are less than
49, which is beyond our requirements. Therefore, compared to each other, the three delay
components are related by the following inequality:

1

α
<

1

λ
< Tq (3.32)

Using this inequality, the overlap among the three components is depicted in Figure 3.6.
Therefore, the end to end mean inter-arrival time delay for an APDU of K TCP packets
can be approximated by:

EAPDU
r =

K − 1

λ
+

1

α
+ Tq (3.33)

Where the mean service time of TCP packets 1/α in the last equation is the sum of the

value reported in Equation (3.21) and the mean delay due to the back-off process ((W−1)·σ
2

).

Developing a closed form expression for the variance of the inter-arrival APDU time
delay is quite challenging. We obtain an expression with a good approximation by mod-
elling the AP as a batch service queueing system M/D[a,b]/1 with a greedy policy, where b

44

1/λ 1/λ 1/λ 1/λ 1/λ

T
q

T
q

T
q

T
q

T
q

1/α

1/α

1/α

1/α

1/α

123456K

Figure 3.6: The inter-arrival, waiting, and service time delay of K TCP packets at the
access point, which constitute one full APDU.

is the maximum number of TCP packets to be served at the same time (batch size), and
a is the minimum number of TCP packets in the AP buffer to start the service process.
In our scenario, b is the size of the APDU, which is K TCP packets, and a is equal to 1.
The main point in using this queueing system is to obtain an expression for the AP mean
queue length in terms of APDUs. Then, we reuse Equation 3.27 for the variance of APDU
response time. The mean queue size in terms of APDUs is given by [19]:

QAPDU =
ρ2

1− ρ
· C

2
a + CAPDU

s
2

2
· e
− 2(1−ρ)(1−C2

a)

3ρ(C2
a+C

APDU
s

2
) (3.34)

Where Ca is the coefficient of variation for the APDU inter-arrival time. With Poisson
TCP packets arrival, C2

a is basically 1/K. The coefficient of variation of APDU service
time CAPDU

s is more complicated. For an APDU of K TCP packets, the probability
distribution of the burst size Z (the number of consecutive TCP packets in the AP buffer
for the same end user) is given by:

Pj = Pr[z = j] =
N − 1

N j
1 ≤ j ≤ ∞ , N ≥ 2 (3.35)

Therefore, for a batch system with a batch size equals to K, the batch service time as a
random variable is given by:

Sb = Z · Stcp = Z · [T tcps + T acks + U] (3.36)

45

Where U is the back-off time delay random variable. Assuming Z and U are independent
random variables, the mean batch service time is given by:

E[Sb] = E[Z · Stcp] = E[Z] · E[Stcp] (3.37)

The mean packet service time is given by:

E[Stcp] = T tcps + T acks + E[U]

= T tcps + T acks +
(W − 1) · σ

2

(3.38)

The mean of the burst size can be evaluated using the definition of expectation of a discrete
random variable as follows:

E[Z] =
∑
j

j · Pj =
K−1∑
j=1

j · Pj +
∞∑
j=K

K · Pj

=
NK − 1

NK −NK−1

(3.39)

Therefore, the mean service time of the APDU is obtained by substituting Equations (3.38
and 3.39) into Equation (3.37).

Utilizing the same independence property, the variance of the batch service time is
given by:

V ar(Sb) = E[Z2] · E[S2
tcp]− E[Z]2 · E[Stcp]

2 (3.40)

Where E[Z2] and E[S2
tcp] are evaluated by:

E[Z2] =
∑
j

j2 · Pj =
K−1∑
j=1

j2 · Pj +
∞∑
j=K

K2 · Pj

=
NK+1 +NK −N − 2 ·K ·N + 2 ·K − 1

NK+1 − 2 ·NK +NK−1

(3.41)

and

E[S2
tcp] = E[(T tcps + T acks + U)2]

= (T tcps + T acks)2 + (T tcps + T acks) · (W − 1) · σ +
(W − 1) · (2 ·W − 1) · σ2

6

(3.42)

Therefore, the variance of batch service time is obtained by substituting Equations (3.38,
3.39, 3.41, and 3.42) in Equation (3.40). Consequently, the coefficient of variation of APDU

46

service time CAPDU
s is evaluated (= V ar(Sb)

1/2

E[Sb]
). Given the mean AP buffer size QAPDU , the

variance of the APDU inter-arrival time delay at the end user can be approximated by:

V APDU
ard = 2 · (QAPDU)2 · W

2 − 1

12
· σ2 ·K (3.43)

3.7 Validation of The TCP Model With APDUs of

Multiple Packets

We match with Gamma distribution as well. Figures 3.7, 3.8, and 3.9 show cumulative
distribution functions that are obtained analytically and using simulation. The traffic
intensity ρ is assumed to be fixed on 0.99 (heavy traffic analysis). The error is around 5%.

3.8 Summary

In this chapter, input network models are derived analytically for a mobile networked
application with a wireless network connection via a WiFi access point. Data transfer are
assumed to be achieved using both TCP and UDP protocols. In each model, two analytical
expressions are developed for the mean and variance of an APDU inter-arrival time delay.
Then, a probability distribution is matched using the mean and variance expressions. For
the UDP scenario, the waiting time delay is matched with a Hyper-Erlang distribution,
while for the TCP scenario, it is matched with a Gamma distribution.

In the next chapter, a test generation methodology is proposed for performance eval-
uation. We will show how the developed network and performance models are used to
generate a set of test cases to evaluate the impact of the interaction of ACPs and NOPs
on the experience of the end user.

47

✶✹ ✶✹✳✷ ✶✹✳✹ ✶✹✳✻ ✶✹✳✽ ✶✺
✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵✳✼

✵✳✽

✵✳✾

✶

❆P❉❯ ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡ ❞❡❧❛② ✭s❡❝✮

�
✁
♦
❜
✂
❜
✄☎
✄✆
✝

❉ ❂ ✻ ▼✞♣s✱ ◆ ❂ ✺ ✉s❡rs✱ ❑ ❂ ✶✵✵✵ ♣❛❝❦❡ts✴❆P❉❯✱ ❇
✟✠✡

✶✵ ♣❛❝❦❡ts

❆♥❛❧②t✐❝❛❧ ❈❉❋

❊♠♣✐r✐❝❛❧ ❈❉❋

Figure 3.7: The empirical and analytical cumulative distribution functions for TCP buffer
size of 10 packets, end users of 5, APDU size of 1000 packets, and data rate of 6 Mbps.

48

✸✳✺ ✸✳✻ ✸✳✼ ✸✳✽ ✸✳✾ ✹
✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵✳✼

✵✳✽

✵✳✾

✶

❆P❉❯ ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡ ❞❡❧❛② ✭s❡❝✮

�
✁
♦
❜
✂
❜
✄☎
✄✆
✝

❉ ❂ ✷✹ ▼✞♣s✱ ◆ ❂ ✶✺ ✉s❡rs✱ ❑ ❂ ✷✵✵ ♣❛❝❦❡ts✴❆P❉❯✱ ❇
✟✠✡

✹ ♣❛❝❦❡ts

❊♠♣✐r✐❝❛❧ ❈❉❋

❆♥❛❧②t✐❝❛❧ ❈❉❋

Figure 3.8: The empirical and analytical cumulative distribution functions for TCP buffer
size of 4 packets, end users of 15, APDU size of 200 packets, and data rate of 24 Mbps.

49

✶✹✳✺ ✶✺ ✶✺✳✺
✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵✳✼

✵✳✽

✵✳✾

✶

❆❉P❯ ✐♥t❡r✲❛rr✐✈❛❧ t✐♠❡ ❞❡❧❛② ✭s❡❝✮

�
✁
♦
❜
✂
❜
✄☎
✄✆
✝

❉ ❂ ✷✹ ▼✞♣s✱ ◆ ❂ ✶✺ ✉s❡rs✱ ❑ ❂ ✽✵✵ ♣❛❝❦❡ts✴❆P❉❯✱ ❇
✟✠✡

✹ ♣❛❝❦❡ts

❊♠♣✐r✐❝❛❧ ❈❉❋

❆♥❛❧②t✐❝❛❧ ❈❉❋

Figure 3.9: The empirical and analytical cumulative distribution functions for TCP buffer
size of 4 packets, end users of 15, APDU size of 800 packets, and data rate of 24 Mbps.

50

Chapter 4

A Test Generation Methodology for
Performance Evaluation

In this chapter, a model-based test generation methodology is proposed to evaluate the
impact of the interaction of application configuration parameters (ACPs) and network oper-
ating parameters (NOPs) on the performance behaviour of mobile networked applications.
Figure 4.1 shows the main steps, the inputs, and the expected output of the methodology.
At the beginning, we explain how test generation can be formulated as an inversion prob-
lem. Then, we discuss the methodology requirements. At the end, the methodology is used
to generate test cases to evaluate the performance of two mobile application examples. The
first example is a multimedia streaming application that represents the applications of the
first group where end user experience is affected by the time delay during service consump-
tion. The second example is a web browsing application that represents the second group
of applications where end user experience is affected by the time delay before the service
starts. We show that testing the performance of applications of the second group is much
easier than applications of the first group. We evaluate the effectiveness of the proposed
methodology by comparing the time cost to generate a test suite with random testing.

4.1 Introduction

The core objective of this work is to evaluate the performance of mobile networked ap-
plications as perceived by the end user. Therefore, test generation is formulated as an
inversion problem, which is solved as an optimization problem. Inversion problem is the

51

�����������	��
��
��
�����

��������������
����

��������	

���

���������	

��������

����

���������

������	����

���������
�����

��������

��������

���	��
��
��

������

������ !����

�"��

"���#����������$�
#���������
�����

���

���������	

����������

Figure 4.1: The proposed model based test generation methodology.

52

problem of inferring the causes by observing the effects. It is quite similar to solving
program predicates in white-box approach to determine the test input that leads to the
execution of certain program paths. This problem is solved in three main steps: system
parametrization, forward modelling, and inverse modelling [109]. In this methodology, sys-
tem parametrization corresponds to identifying both ACPs and NOPs. Forward modelling
corresponds to the performance model development. Inverse modelling is the optimization
problem formulation that when solved test input is generated. The inversion problem is
casted as an optimization problem because for most models, inverse relationships are not
available in closed forms.

4.2 Inputs to The Methodology

To generate test cases, the proposed methodology requires four different artefacts as inputs.
In this section, we describe them briefly:

4.2.1 The behaviour model of the SUT

This model describes in terms of ACPs how the application-network interactions impact the
performance metric under consideration. For applications of the first group, application-
network interactions are clearly observed in the buffering behaviour. Thus, the behaviour
model of the SUT for this group should explicitly feature the buffer dynamics. In litera-
ture, different diagrams are used to model software dynamics. For example, using UML
diagrams, the de facto software modelling language, software behaviours are commonly
described using state diagrams, activity diagrams, and/or collaboration diagrams. In this
work, we use activity diagrams to describe this model. The outcomes of this task are the
behaviour model of the SUT and a set of constraints in terms of ACPs that encode the
operational semantics of the application. In Chapter 2, we developed a behaviour model
for a mobile streaming application as shown in Figure 2.2. In this chapter, we complete
the model by defining the set of constraints that encode the behaviour of the streaming
application, and we develop another behaviour model for a web browsing application.

4.2.2 The network model

This model should capture how the wireless network affects the considered performance
metric. In general, network model development is mainly determined by the technology

53

(WiFi or cellular) and the transport protocol (TCP or UDP). According to the system
model in Figure 1.4, the application interacts with the network through a basic request-
response (REQ-RES) mechanism. Thus, the network’s impact can be captured by mod-
elling the RES inter-arrival time delay, which is modelled as a random variable. The
expected outcomes of network modelling are the probability distribution of this random
variable, the network operating parameters (NOPs), and any assumptions and/or condi-
tions that are made during model development. Those conditions and assumptions are
required in the second step of the methodology. To obtain the distribution, we employ
distribution fitting using the first two moments: the mean and variance [4]. In Chapter 3,
we have developed network models for both UDP and TCP protocols. In all these models,
the application is assumed to have a wireless network access through a WiFi access point
that implements the IEEE 802.11 protocol standard.

4.2.3 Desired performance levels

The methodology requires a set of levels of the performance metric under consideration.
Generally, performance metrics are evaluated using statistical measures such as mean, per-
centage, and probability. In this work, we are interested in application level performance
metrics that directly relate to the end user quality of experience (QOE) [48]. For example,
the user experience of file transfer applications is assessed using two metrics: goodput and
transfer time performance [66]. Both are ratio metrics on a scale from 0 to 1, where 1
represents the best performance. Therefore, desired performance levels are merely numer-
ical values sampled from the interval [0,1]. How many levels are needed and how they are
chosen are addressed in test selection strategies.

4.2.4 Test selection strategies

In general, a test selection strategy encodes the main objectives of the testing process.
In black-box testing, all testing activities are carried out in terms of software (or soft-
ware model) inputs and outputs. Because the input space of software systems is often
unbounded, test selection strategies are needed to design a finite effective set of test cases.
In this methodology, we propose two coverage criteria: user experience (UE) coverage crite-
rion and user experience and input interaction (UEII) coverage criterion. Now, we explain
how to generate test cases using the two proposed coverage criteria:

54

i) User experience (UE) coverage criterion

Herein, the objective is to generate test cases to cover the whole spectrum of the considered
performance metric. However, since the performance spectrum is most likely to be contin-
uous, an infinite number of test cases are needed. To generate a minimal set of test cases,
partition testing [55] is applied. This technique is mainly used to generate test cases from
input space models for functional testing. The idea is to partition the parameter space into
multiple regions where all the points of the same region are equivalent from the testing
point of view. In this work, we apply partition testing to performance metrics, utilizing
the fact that the end-user’s perception of the performance behaviour is intermittent and
it can be characterized by a limited number of categories. These categories are normally
called Quality of Experience (QOE) categories.

Given R quality of experience categories, we divide the performance spectrum WR

into R non-overlapped regions r1, r2, ..., rR such that WR =
⋃R
i ri. The number of QOE

categories is application type dependent. It also depends on the available resources for the
testing process, because test suite size directly relates to R. Then, a performance level li
is selected for each region such that li ∈ ri, 1 ≤ i ≤ R. Thereafter, the corresponding
test input vpi1, vpi2, ..., vpin+m for li is determined by solving the inversion problem. As
an example, we can divide the interval [0,1] of the goodput metric according to the end-
user QOE into (say) three regions: if goodput is between 0.9 and 1 (r1 = [1, 0.9]), the
quality is excellent ; between 0.9 and 0.7 (r2 = (0.9, 0.7]), the quality is good ; and less than
0.7 (r3 = (0.7, 0]), the quality is poor. Then, three performance levels are picked, e.g.,
l1 = 0.95, l2 = 0.85, and l3 = 0.5, to represent the identified categories. The following
procedure summarizes the steps needed to generate test cases that satisfy this criterion:

• Procedure 1: Test selection strategy to achieve the UE coverage criterion

• Inputs: The number of QOE categories R

• Outputs: A test suite T of R test cases

S1: Partition the performance metric spectrum WR into R regions r1, r2, ..., rR;

S2: Select a set of performance levels Sl={lj: lj ∈ rj, 1 ≤ j ≤ R};
S3: Generate the test input vpj1, vp

j
2, ..., vp

j
n+m for each desired performance level

lj ∈ Sl.

Step 3 of this procedure is further explained in the next section. This criterion is achieved
if at least one desired performance level from each QOE category is within the generated
test cases.

55

ii) User experience and input interaction (UEII) coverage criterion

It may be noted that the UE coverage criterion is an output based criterion. However,
satisfying this criterion is not enough to assure the quality of the application, because the
designed test suite does not adequately cover the input space of the SUT. In combinatorial
testing, it is emphasized that the effectiveness of the generated test cases increases as the
coverage of the interactions of the input parameters increases [123]. Therefore, in the
second criterion, we are interested in generating test cases that satisfy both aspects of the
SUT: the input space and the performance behaviour. For this purpose, we extend the
procedure of the UE coverage criterion.

First, we generate a set of R seed test cases TS using “Procedure 1”. This set does
cover the whole performance spectrum. Then, to enhance input space coverage, we use the
seed test cases to generate follow-up test cases so that a combinatorial metric is satisfied.
The combinatorial metric is applied on subsets g1, g2, ..., gG of the SINP set, where G ≥ 1.
These subsets are constructed such that the parameters in which their interactions are
important to cover are grouped into a subset. For example, one may partition the SINP
set into two subsets (G = 2): g1 = SACP and g2 = SNOP . A set of follow-up test cases Tij is
generated for every subset gj and seed test si. The parameters’ values vp1, vp2, ..., vpn+m

of the follow-up test cases are determined as follows. The values of the parameters of the gj
subset are determined using a combinatorial coverage metric. The remaining parameters
{p : p ∈ SINP − gj} are assigned the same values of the parameters of the seed test case si.

The input space is constrained by conditions imposed by the network, the SUT, and
by the condition that the expected performance levels for the follow-up test cases should
remain within the same region of the performance of the seed test case. That is, given
the sets TS, SG = {g1, g2, ..., gG}, I (the set of constraints), and a combinatorial metric
b, Tij = Pert(gj, si, I, b), 1 ≤ j ≤ G, 1 ≤ i ≤ R, where Pert realizes the follow-up test
generation using the combinatorial coverage metric b. Therefore, test generation to satisfy
this criterion is basically a combinatorial test generation with constrained parameters. The
generated test suite T is the union of the follow-up test sets Tij and the seed test cases TS.
The main steps to satisfy this criterion are summarized in the following procedure:

• Procedure 2: Test selection strategy to achieve the UEII coverage criterion

• Inputs: R, G, I, and b

• Outputs: A test suite T

S1: Generate the set TS of R seed test cases using “Procedure 1”;

56

S2: Create the set SG={gj: gj ⊂ SINP , 1 ≤ j ≤ G};
S3: ∀ j, i, and given the set I and the metric b, Tij = Pert(gj, si, I, b). The designed

test suite is T =
⋃
i,j Tij

⋃
TS.

The UEII criterion subsumes the UE criterion. Using the two application examples, we
show later how to generate test cases to satisfy both test coverage criteria.

4.3 The Methodology Procedure

The methodology consists of three main steps as shown in Figure 4.1. In this section, we
illustrate how to execute each step. In the next section, we show that by means of two
application examples.

4.3.1 Develop performance models

As mentioned previously, performance models are developed from scratch for applications of
the first group only. For applications of the second group, performance models are directly
elicited from the network model. Generally, a performance model is any mathematical
representation that quantitatively captures the impact of the interaction of the network
operating parameters (NOPs) and the application configuration parameters (ACPs) on
the performance of the SUT. In literature, many stochastic notations have been used
to develop software performance models, such as simulation models, stochastic Petri nets,
and queueing networks [36]. Furthermore, different model transformation frameworks have
been proposed to guide performance model generation from UML based software design
models [21]. In this work, we employ the Markovian modelling framework to develop the
performance models. This framework is appropriate especially when the system state is
defined by the buffering behaviour of the SUT. We use supplementary variable technique
(SVT) [39], [40] to solve the model. This technique is used if the stochastic process that
models the behaviour is not Markovian, allowing for more practical interactions between
the SUT and the network to be considered.

In this methodology, two performance models are developed: analytical and simulation.
The simulation model is used to verify the analytical model and in the test generation
process as well. In Chapter 2, we have developed analytical and simulation performance
models for a multimedia streaming application. We use the analytical model in the second
step of the methodology, while the simulation model is used in the third step. This task
requires the network model and the behaviour model of the SUT.

57

4.3.2 Generate test cases

Each test case is basically a set of ACPs, NOPs, TEPs and the expected performance level.
If the SUT is executed with the determined parameters in the three sets (ACPs, NOPs,
and TEPs), then the observed performance level is statistically equivalent to the expected
performance level if and only if the SUT is correctly implemented from the performance
point of view. In this step, network and SUT configuration parameters are determined by
solving the inversion problem. To determine the input that leads to a certain output, an
inverse relationship should be derived. For most mathematical models, deducing a closed
form for the inverse relationship may not be feasible. Furthermore, the structure of some
mathematical models is unknown as in simulation models. Therefore, we cast the inversion
problem as a root finding problem. Given the desired performance level li ∈ Sl, the test
inputs are basically the root that satisfies the following relationship:

Perf model(p1 , p2 , ..., pn+m)− li = 0 (4.1)

Where Perf model(...) represents the performance model. The roots (NOPs and ACPs
values) can be found by reformulating the previous equation as a minimization problem as
follows:

Minimize |Perf model(p1 , p2 , ..., pn+m)− li | (4.2)

Where |.| is the absolute value operator. We minimize the absolute of the difference to
force the solver that the required minimum is zero. In this chapter, we use the analytical
performance model as the objective function, although the simulation model can also be
used. The minimization problem is constrained by the conditions imposed by the network
model and the semantics of the SUT behaviour. The constraints should be formulated in
terms of the chosen input parameters. Beside the performance model, this task requires the
network model and the desired performance levels. The following procedure summarizes
the steps needed to determine ACPs and NOPs:

• Procedure 3: Determination of NOPs and ACPs values

• Inputs: The performance model, the network model, and the set of desired perfor-
mance levels Sl

• Outputs: Test input values vpj1, vp
j
2, ..., vp

j
n+m and the set of constraints I

S1: Define the constraints in terms of input parameters p1, p2, ..., pn+m;

S2: ∀ li ∈ Sl, solve the minimization problem of Equation 4.2.

58

4.3.3 Determine TEPs

Both analytical and simulation performance models can be used in estimating test execu-
tion parameters. In this methodology, we opt to use the simulation model. We determine
the parameters in two stages. First, we estimate the mean test execution time using a
univariate sequential procedure called Law and Carson (abbreviated as L&C) [81]. This
procedure is proposed to estimate the number of observations needed to get a point esti-
mator with a pre-specified confidence interval. We estimate the mean run length for the
simulation model to reach steady-state and use this value as an estimate for the mean
test case execution time. We build a point estimator and a confidence interval so that the
estimated value for the considered performance metric is within a pre-specified error from
the true value. This procedure relies on batch means evaluations. In sequential procedures,
the length of the simulation run is incrementally increased and new observations are added
to the sample until an acceptable confidence interval is obtained.

In general, the main issue in simulation output analysis is how to insure the inde-
pendence of the observations that are used in the estimation and in confidence interval
construction. From the statistical point of view, any reliable statistical inference should
depend on independent and identically distributed random variables, which is mostly not
the case in simulation experiments. If this issue is not handled properly, the sample vari-
ance is biased (underestimated) and the resultant confidence interval is not accurate. To
test observations independence, L&C procedure relies on estimating the lag-1 correlation
of the batch means. If it is less than a certain pre-specified value, it is assumed that the
observations are uncorrelated (independent). Then, using those observations, a point esti-
mator and a confidence interval are obtained. If the constructed interval is within a certain
pre-specified length, it is accepted and accordingly the length of the simulation run is de-
termined. The precision of estimation is controlled by introducing a tunable parameter γ,
called the relative error in estimation.

According to the central limit theorem, given a sequence of nr independent and identi-
cally distributed random variables, X1, ..., Xnr of an arbitrary distribution with mean β
and variance σ2, the sample mean X̄(nr) is normally distributed with mean β and variance
σ2/nr as nr goes to ∞ (practically nr > 30). If nr is relatively small, the sample mean is
t distributed. We construct the confidence interval using the t distribution as the normal
distribution is a special case of the t distribution. Thus, the confidence interval for the

59

population mean is given by:

X̄(nr)± δ ,

where X̄(nr) =
1

nr

nr∑
i=1

Xi ,

δ = tnr−1,1−ζ/2

√
var(X)

nr
,

and var(X) =
1

nr − 1

nr∑
i=1

[Xi − X̄(nr)]
2 .

(4.3)

The parameter δ is known as the half length confidence interval, tnr−1,1−ζ/2 is the upper
point for the t distribution with nr−1 degrees of freedom, and ζ is the significant level. The
physical meaning of the confidence interval is as follows: with (1− ζ) ·100% confidence, the
interval [X̄(nr)−δ, X̄(nr)+δ] does cover the true mean β of the population for (1−ζ)·100%
of the time. Thus:

β ∈ [X̄(nr)− δ, X̄(nr) + δ] (4.4)

Since X̄(nr) lies at the middle of the confidence interval, hence:

1− ζ = Prob{|X̄(nr)− β| ≤ δ}

⇒ 1− ζ = Prob{|X̄(nr)− β|
|β|

≤ δ

|β|
}

(4.5)

Where |X̄(nr)−β|/|β| represents the relative error γ in the constructed confidence interval.
The meaning of the last equation is: given nr samples X1,, Xnr and the true mean of
the population distribution β, we are (1 − ζ) · 100% confident that the relative error in
sample mean estimation at most is equal to the ratio of the half length confidence interval
to the true mean of the distribution.

In the second stage, the rest of TEPs are inferred simultaneously by utilizing the Bon-
ferroni inequality [30]. This inequality provides a lower bound for the overall confidence
level (1− ζ) given that the overall significant level ζ is equal to the sum of the individual
significant levels (ζ1, ζ2, ..., ζh) for the remaining h TEPs. We construct individual confi-
dence intervals using the Independent Replication Sequential procedure [81]. In few words,
a point estimator and a confidence interval are obtained using a pre-specified number of
independent simulation run replications. Then, if the relative error γ is below a certain

60

pre-defined value, it is done; otherwise, an extra simulation run replication is achieved and
a new point estimator and confidence interval are made using the updated sample. The
procedure continues until the condition for the relative error is satisfied. The following
procedure summarizes the steps needed to estimate TEPs:

• Procedure 4: Determine TEPs using the performance simulation model

• Inputs: The test case (vpj1, vpj2, ..., vpjn+m, lj), γ, ζ, and the number of replications

• Outputs: The corresponding TEPs values

S1: Invoke the L&C procedure to obtain the estimated mean of the test case exe-
cution time T̂x and the confidence interval CI(T̂x);

S2: Choose the values for ζ1, ζ2, ..., ζh so that
∑h

i=1 ζi = ζ;

S3: Invoke the Independent Replication Sequential procedure to obtain the esti-
mated mean and the confidence interval for the remaining TEPs.

4.4 Using The Proposed Methodology

In this section, we apply the proposed methodology on two representative mobile appli-
cation examples: a multimedia streaming application and a web browsing. In both appli-
cations, we assume the last hop to the end user is through a wireless connection using a
WiFi hotspot that implements the IEEE 802.11 protocol.

4.4.1 Test generation for a multimedia streaming application

In this application example, multimedia frames are assumed to be transferred using UDP
protocol, where each frame fits in a single UDP packet. The considered performance
quality is the smoothness of the streaming as seen by the end user. We start this section
by defining the behaviour model of the SUT and the network model. Then, we apply the
proposed methodology to generate test cases using both test selection strategies.

Behaviour model of the SUT

The behaviour model of the application is defined in Figure 2.2 in Chapter 2. The ACPs
(B, M , and L) are defined as an integer number of multimedia frames. The semantics of

61

the SUT introduce the following two constraints (Procedure 3.S2):

M ≤ B,

L ≤M − 1.
(4.6)

The high watermark cannot be higher than the buffer size, and the low watermark cannot
be equal or higher than the high watermark.

Wireless network model

The end-user is streaming via a WiFi hotspot. The network model is developed in Chapter
3. We assume all the fluctuations in the wireless channel and the queueing effects of the
different routers along the path from the server to the client device manifest as a time
delay. That is, packet loss is negligible. The probability distribution of the frame inter-
arrival time delay is matched with a Hyper-Erlang distribution. The network impact is
captured by three operating parameters (NOPs): data rate (D), the mean rate of frame
arrival into the access point (λ) per user, and the number of end users (N) connected to
the AP. The data rate according to the IEEE 802.11 a/g standard can be in one of the
following values: 6, 9, 12, 18, 24, 32, 48, or 54 Mbps. It mainly relates to the quality of
the wireless connection between the AP and the end user. Regarding the number of users
N , the network model is validated with the number of mobile devices that ranges from 4
to 30. The parameter λ is the only continuous. Using the upper and lower bounds of N
and D and the constraints imposed by the network model, we bound λ between 10 and
416 packet/sec.

Performance models

Analytical and simulation performance models are developed in Chapter 2.

Given the network model, the behaviour model of the SUT, and the performance mod-
els, we can start applying the methodology procedure. We apply Procedure 3 to determine
the test input. In Procedure 3.S1, to determine the objective function, the set of desired
performance levels Sl should be specified. This task is part of the test selection criteria
and we discuss it when Procedure 3.S3 is applied.

In multimedia streaming, the mean encoding rate at the server is set according to the
end-user device characteristics. Consequently, it is assumed that the mean arrival rate to
the end user 1/Er (Equation 3.7) is equal to the mean decoding rate (µ) [83]. That is:

µ =
1

Er
(4.7)

62

Including this constraint does exclude the scenarios where the bottleneck is in the com-
puting capability of the mobile device. We are only interested in scenarios where degraded
end user experience is mainly due to degraded network quality. Solving Equation (4.7) in
terms of NOPs (λ, N , and D), a non-linear equality constraint is obtained. Since most
optimization solvers do not easily accommodate non-linear equality constraints, we assume
that the mean of the packet inter-arrival time delay falls in a closed interval around 1/µ.
Thus:

k1

µ
≤ Er ≤

k2

µ
(4.8)

where k1 and k2 are parameters introduced to control the width of the closed interval
around 1/µ. By doing so, we relax the non-linear equality constraint into two non-linear
inequalities that are easier to deal with (if k1 and k2 are both set to 1, the equality
constraint (4.7) is reproduced). Another constraint that should be taken into consideration
is that the traffic intensity ρ at the AP should be less than 1. Otherwise, the buffer at the
AP will build up infinitely:

ρ < 1 (4.9)

Therefore, the optimization problem has five constraints given by Equations (4.6), (4.8),
and (4.9). Now, we show how test cases are generated using the two proposed coverage
criteria:

i) Test input generation using the UE coverage criterion

In Procedure 1.S1, the performance spectrum is partitioned according to the end-user
QOE categories. In multimedia streaming and using the probability of empty buffer state
as a performance metric, three different end-user experiences are reported (R = 3) [90]. If
the probability of empty buffer state is less than 2%, the video quality is high; between 2%
and 15%, the quality is medium; and for more than 15%, the quality is considered poor.
Therefore, we divide the performance behaviour according to the reported three regions.
Then, we select a desired level for each region {l1 = 0.01, l2 = 0.05, l3 = 0.2}. Solving the
minimization problem for each performance level (Procedure 3.S3), the corresponding
network and SUT parameters’ values are determined as shown in Table 4.1. The buffer
size B is bounded between 10 and 40 frames, the mean of the decoding rate µ is 30 fps,
and the parameters k1 and k2 are assigned as 0.75 and 1.25, respectively.

63

Table 4.1: Test cases to satisfy UE coverage criterion. D is in Mbps.

li B M L D λ N

0.01 34 34 4 18 131.965 7
0.05 38 31 7 32 162.8702 8
0.2 24 7 2 6 98.9693 4

ii) Test input generation using the UEII coverage criterion

We consider the three generated test cases that are listed in Table 4.1 as test seeds TS
(Procedure 2.S1). We utilize the combinatorial coverage metric each-choice [55] to en-
hance the input space coverage. We represent the only continuous parameter λ by the
following 42 discrete values [10,20,30,...,410,416]. For Procedure 2.S2, we choose to cover
the interaction of SACP and SNOP independently (i.e., G=2 and g1=SACP , g2=SNOP). For
g1 subset, we apply each-choice coverage for high watermark (M) and low watermark (L)
only, since the playback buffer size (B) does not directly affect the system output. That
is, the parameters B, D, λ, and N are kept fixed on seed parameters’ values. The same
procedure is applied for g2 subset.

To automate the process, we can benefit from the available combinatorial test generation
tools. Unfortunately, we cannot use anyone of them directly, because the type of constraints
in our case is more complex than what is supported in the available tools. To mitigate
this issue, we first find out the permissible parameter values that satisfy the constraints
and then we apply the combinatorial testing criterion. This approach enables us to use
the available tools without any modifications, but sometimes, it might be expensive. The
combinatorial tool ACTS v3 [27] is used in this process.

Applying the procedure for the g1 subset, we get 9 (T11), 40 (T12), and 33 (T13) test
cases for the performance regions (0.15, 1], (0.02, 0.15], and [0, 0.02], respectively:

T11 = {(10, 5), (11, 1), (12, 1), (13, 1), (8, 7), (6, 4), (5, 3), (9, 6), (7, 2)}

T12 = {(6, 5), (7, 6), (8, 6), (9, 4), (38, 37), (38, 36), (38, 35), (37, 34), (38, 33),

(33, 32), (34, 31), (38, 30), (30, 29), (29, 28), (28, 27), (27, 26), (26, 25),

(25, 24), (24, 23), (23, 22), (22, 21), (21, 20), (20, 19), (19, 18), (18, 17),

(17, 16), (16, 15), (15, 14), (14, 13), (13, 12), (12, 11), (11, 10), (10, 9),

(38, 8), (37, 6), (36, 5), (35, 4), (35, 4), (34, 3), (33, 2), (32, 1), (31, 7)}

64

T13 = {(10, 9), (11, 10), (12, 11), (13, 12), (14, 13), (15, 14), (16, 15), (17, 16),

(18, 17), (19, 18), (20, 19), (21, 20), (22, 21), (23, 22), (24, 23), (25, 24),

(26, 25), (27, 26), (32, 27), (33, 28), (30, 29), (33, 30), (34, 31), (33, 32),

(34, 33), (33, 8), (32, 7), (31, 6), (30, 5), (29, 3), (28, 2), (34, 1), (34, 4)}

The first element of each tuple is M and the second is L. The remaining parameters’
values are fixed on test seed values. For the g2 subset, using the same procedure and test
seeds, we get 5 (T21), 3 (T22), and 3 (T23) test cases for the regions [0, 0.02], (0.02, 0.15],
and (0.15, 1], respectively:

T21 = {(6M, 30, 13), (32M, 50, 26), (32M, 100, 13), (32M, 130, 10), (32M, 260, 5)}

T22 = {(54M, 110, 15), (54M, 150, 11), (54M, 330, 5)}
T23 = {(54M, 110, 15), (54M, 150, 11), (54M, 330, 5)}

The first element of each tuple is D, the second is λ, and the third is N . The remaining
parameters’ (B, M , and L) values are fixed on test seed values. Some redundancy is ob-
served in the generated follow-up test cases. Therefore, the designed test suite T according
to the UEII criterion is the union of the sets T11, T12, T13, T21, T22, T23, and the set of seed
test cases TS.

Determining TEPs

In the third step, test case execution parameters (TEPs) are determined. For the running
example, each test case is a streaming session with certain configuration parameters. To
efficiently execute each test case, the length of the streaming session and the size of the
multimedia file should be determined. We cannot conclude the file size from the streaming
session time length, since the player rate is not deterministic. Since we have two TEPs
parameters only, we do the estimations without the need to use Bonferroni inequality
(Procedure 4.S2). The used values for γ, ζ, and the number of replications are 0.075, 0.1,
and 10, respectively. We build a point estimator and a confidence interval independently
for the mean test case execution time T̂x (Procedure 4.S1) and the mean file size F̂s
(Procedure 4.S3) so that the estimated probability of the empty playback buffer state
(l̂) is within a pre-specified error from the true value. We estimate T̂x and F̂s for the
three test cases listed in Table 4.1. The augmented test cases are shown in Table 4.2. As
shown, the confidence interval for the test execution time CI(T̂x) is somewhat wide. It
can be narrowed by increasing the number of replications. We gauge the adequacy of the
estimated simulation time by controlling the width of the confidence interval CI(l̂) through

65

Table 4.2: The augmented set of test cases. T̂x, D, and F̂s are measured in minutes, Mbps,
and MB, respectively.

li B M L D λ N T̂x CI(T̂x) F̂s CI(F̂s)

0.01 34 34 4 18 131.965 7 159.288 [145.385,173.2] 425.8 [425.32,426.28]
0.05 38 31 7 32 162.8702 8 109.226 [74.161,144.291] 280.2018 [279.77,280.63]
0.2 24 7 2 6 98.9693 4 6.4 [4.651,8.148] 13.8505 [13.780,13.921]

the parameter γ. As expected, test case execution time is test case dependent. Moreover,
as l increases, the required time to reach steady-state decreases.

4.4.2 Test generation for a web browsing application

Web browsers are normally using TCP as a transport protocol. Each web page consists of
a main object and a set of embedded objects of different sizes. In this work, we assume
the total web page size is basically an integer number of TCP packets. The considered
performance metric is the mean waiting time to download a web page. As for multi-
streaming application, we start by defining the behaviour model and the network model,
then, we apply the proposed methodology to generate test cases.

Behaviour model of the SUT

In this application example, we assume that the end user is in a browsing session in which
the mean size of a web page is Wb. In most modern browsers, a web page can be downloaded
using multiple parallel TCP connections. We model multiple TCP connections that each
browsing user has as a multiple mobile nodes that are connected to the WiFi access point.
That is, given Ub browsing users that can utilize up to Cp parallel TCP connections each,
we have at most Ub×Cp mobile nodes. This requirement introduces the following equality
constraint that links NOPs to ACPs:

Ub × Cp = N (4.10)

where N is one of the NOPs that represents the number of mobile nodes connected to
the WiFi AP. Thus, each browsing user is equivalent to Cp mobile nodes. Because of the
long-term fairness property of the IEEE 802.11 protocol, we assume that each connection
equally likely downloads Wb

Cp
packets. Thus, the mean waiting time to browse a web page of

66

size Wb TCP packets using Cp parallel TCP connections is equivalent to the mean waiting
time to browse a web page of size Wb

Cp
TCP packets using one TCP connection, which

corresponds to the value given by Equation 3.33 in Chapter 3. Therefore, the following
constraint should be satisfied:

K =
Wb

Cp
(4.11)

where K is another network operating parameter that corresponds to the size of APDU in
TCP packets. Thus, we have three ACPs: the number of browsing users Ub, the web page
size Wb, and the number of parallel TCP connections Cp.

Wireless network model

The network model is developed in Chapter 3 with four NOPs: the data rate D, the
number of mobile nodes N , the TCP buffer size Btcp, and the size of application data unit
K in TCP packets per mobile node. The model is developed with the assumption of heavy
traffic analysis in which the traffic intensity is assumed to be fixed on 0.99. Therefore, the
network model does not introduce any explicit constraints.

Performance models

Since the considered performance metric is the mean waiting time to download a web page,
we can reuse the analytical expression of Equation 3.33 as a performance model.

To solve the optimization problem, we need to define the bounds for the ACPs and
NOPs (Procedure 3.S1). The parameters N and D are as defined in multimedia stream-
ing example. The size of APDU (K) is bounded between 10 and 1000 TCP packets. The
size of the TCP buffer (Btcp) is left unbounded since it is an output parameter that depends
on other NOPs. For the ACPs, each browsing user can browse using up to 5 parallel TCP
connections. We can have up to 30 browsing users (Ub) at the same time. The web page
size (Wb) is bounded between 10 and 1000 TCP packets as K. Therefore, the optimization
problem is constrained by the two equality constraints of Equations (4.10 and 4.11).

i) Test generation using UE coverage criterion

Regarding the end user experience of web browsing, we divide the spectrum of the per-
formance metric under consideration into 3 regions (Procedure 1.S1). If the mean wait-
ing time to download a web page is less than 3 seconds, the experience is excellent. If

67

Table 4.3: Test cases to satisfy UE coverage criterion. D is in Mbps.

li Wb Ub Cp D N K Btcp

1.5 300 5 2 48 10 150 5
5 384 9 2 18 18 192 3
15 528 13 2 9 26 264 2

Table 4.4: The augmented set of test cases. T̂x and D are measured in seconds and Mbps,
respectively.

li Wb Ub Cp D N K Btcp T̂x CI(T̂x)

1.5 300 5 2 48 10 150 5 2615 [1.9944× 103, 3.2356× 103]
5 384 9 2 18 18 192 3 4729 [3.9302× 103, 5.5278× 103]
15 528 13 2 9 26 264 2 14810 [1.0446× 104, 1.9175× 104]

it is between 3 and 10 seconds, it is good. If it is greater than 10 seconds, the ex-
perience is considered bad. Then, we select the following 3 desired performance levels
{l1 = 1.5, l2 = 5, l3 = 15}. Solving the inversion problem for each performance level, the
corresponding values for ACPs and NOPs are listed in Table 4.3 (Procedure 3.S3).

ii) Test generation using UEII coverage criterion

Test case generation to satisfy UEII criterion is exactly the same as explained in the
previous multimedia streaming example. Therefore, the details are not included.

Determining TEPs

All the necessary information to execute the designed test cases is available except the time
length of the browsing session. Given the expected mean waiting time li to browse a web
page, we can build a point estimator T̂x and a confidence interval CI(T̂x) of the browsing
session time length using L&C procedure (Procedure 4.S1). The values for γ and ζ are
as defined in the previous example. Table 4.4 shows both the mean and the confidence
interval of the browsing session length for each test case listed in Table 4.3. The number
of replications is 10.

68

4.5 Evaluation of The Methodology

We use random testing as a baseline to evaluate the effectiveness of the proposed test
generation methodology. Figure 4.2 shows how random testing is normally used to generate
a test suite of size R×Q, where R is the number of performance regions, Q is the number
of required test cases per region, and C is the coverage criterion. The set S holds the
generated test cases. In this section, we use the phrases test configurations and test
cases interchangeably. The test configuration tc is basically a set of values of ACPs and
NOPs. Because the implementation of the SUT is not available, the shown procedure is
not directly applicable. Therefore, we modify the procedure as shown in Figure 4.3. We
use the developed performance model instead of the SUT’s implementation to evaluate the
performance behaviour lc of the configuration tc. To anticipate the incurred cost of random
test generation, we keep track of the following types of test configurations:

• Invalid executable test configurations (IETCs),

• Invalid non-executable test configurations (INTCs),

• Valid-and-useful test configurations (VTCs),

• Valid-but-not-useful test configurations (VNTCs).

The test configuration tc is invalid if the chosen parameters’ values do not satisfy the
constraints imposed by the network model, SUT, or both. If tc does not satisfy the network
requirements only (invalid NOPs), the SUT can still execute, while if tc does not satisfy
the constraints imposed by the SUT (invalid ACPs) or both the network and SUT (invalid
NOPs and ACPs), the configuration is not executable. We assume the SUT implements
the necessary logic to catch out inconsistent ACPs. Therefore, we have two types of invalid
test configurations: executable (IETCs) and non-executable (INTCs). It is important to
differentiate between them because IETCs are more expensive than INTCs from the time
cost point of view. If tc satisfies all the imposed constraints, it is a valid configuration.
Moreover, if this valid configuration increases the coverage of the designed test suite so far,
it is considered as a valid-and-useful configuration. Otherwise, it is considered a valid-but-
not-useful test configuration.

To estimate the incurred cost of generating a test suite of size R × Q using random
testing, we design an experiment with R and Q that can take values from one to three.
Thus, we have in total nine test generation scenarios. We repeat the experiment for each
scenario 10 times. The obtained results for UE criterion are shown in Table 4.5. The

69

start

Randomly choose t
c

Inputs: R, Q, C

Run the SUT and observe the performance l
c

Coverage criterion C ?
NO

S = S U {t
c

}

YES

|S| = R×Q ?

end

YES

NO

Define S = {φ}

Output: S

Figure 4.2: The flowchart of test generation using random testing.

70

start

Randomly choose t
c

Inputs: R, Q, C

SUT constraints ?

Network constraints ?
S
1

= S
1

U {t
c

}

NO
YES

S
2

= S
2

U {t
c

}

NO

Evaluate l
c

using the performance model

YES

Coverage criterion C ?

S
3

= S
3

U {t
c

}

NO

S
4

= S
4

U {t
c

}

YES

|S
4

| = R×Q ?

end

YES

NO

Define S
1

={φ}, S
2

={φ}, S
3

={φ}, and S
4

={φ}

Outputs: S
1

, S
2

, S
3

, and S
4

Figure 4.3: The modified flowchart of test generation using random testing. The sets S1,
S2, S3, and S4 are the sets of INTCs, IETCs, VNTCs, and VTCs, respectively.

71

multimedia streaming application is used in this evaluation. The results are basically the
median of 10 repetitions. For example, to randomly generate a test suite with one test case
(R = 1, Q = 1), the incurred time cost is approximately the sum of the time cost of running
566 IETCs and one VTCs, while in our framework, we need to execute the SUT with one
VTC only. Since performance metrics are mostly statistical, the time needed to observe
the performance behaviour lc of the real system is not trivial. As we employ a heuristics
based optimization formulation which solely depends on function (performance model)
evaluations to find the optimal point (test case), random testing can be better than ours if
the performance model evaluation is more expensive than running the real SUT and/or if
the employed optimizer needs more model evaluations than random testing. For the first
condition, even if the performance is modelled using a simulation model, many techniques
has been proposed to speed up simulation executions, while real system executions cannot
be accelerated. For the second condition, many heuristics based optimization formulations
are available in literature that can perform better than the employed optimizer (genetic
algorithm). Indeed, within the same optimizer, many strategies can be used to fine tune
the performance of the optimizer. In summary, there is still much room to enhance the
performance of our framework compared to random testing.

In addition, as R increases, the incurred time cost increases and reaches astronomical
limits as in the case with R = 3 and Q = 3. In this scenario, the time cost is approximately
the sum of the time cost of running 1.0785 × 105 IETCs, 178.5 VNTCs, and 9 VTCs as
shown in Table 4.5. In theory, as the number of performance regions (R) increases, the
width of each region decreases and thereby the probability of getting a valid test case using
random testing decreases. In contrast, the time cost of generating a test case by solving
the inversion problem does not depend on the width of the region. Compared to random
search, our test generation framework (optimization based approach) employs a guided
search to figure out the valid test configuration. The results also apply for UEII coverage
criterion since UEII builds on (subsumes) UE criterion.

4.6 Applicability of The Methodology

In general, performance degradation can be due to an error in the SUT or an error in the
environment (network). As the SUT is assumed to be functionally correct, a performance
degradation may happen due to lacking the necessary resources, such as CPU and memory,
for a given network quality. Therefore, this methodology is proposed to generate test cases
to evaluate the impact of the interaction of network and application configurations on
the performance behaviour of mobile networked applications. A networked application is

72

Table 4.5: The cost of random testing for different scenarios.

R Q Suite size IETCs INTCs VNTCs VTCs

1 1 1 566 1795.5 0 1
1 2 2 1471 5016 0 2
1 3 3 1849.5 6149 0 3
2 1 2 3193 10317 3 2
2 2 4 4817 15966 6.5 4
2 3 6 11472 38262 14.5 6
3 1 3 18290 60399 29.5 3
3 2 6 40018 1.3266× 105 66.5 6
3 3 9 1.0785× 105 3.5653× 105 178.5 9

an application in which user perceived performance is sensitive to the network condition.
Because of the semantic gap between software design models and stochastic notations,
proposing a unified framework to test different application categories is unattainable.

The main observation for the first group of applications is the high cost of the ana-
lytical performance model evaluations compared to the simulation model when the buffer
size increases beyond certain limits. To mitigate this issue, we can offload model expensive
evaluations to the cloud, or we can employ the simulation model in solving the inversion
problem. In literature, there is an increasing interest in using simulation models in opti-
mization problems [53],[94]. For real complex systems, it may not be possible to develop
any type of analytical models. For such cases, simulation based approach is the only way
to do the analysis

In this regard, it is worthy to indicate that using simulation models to predict perfor-
mance measures is not seamless. In the two application examples, we use the simulation
model to infer about test execution parameters. We notice that as the performance metric
under consideration became very small, the required simulation run length became very
long that in some cases led to out of memory errors. In brief, most statistical procedures
depend on covariance evaluations of the performance metric to determine whether the sim-
ulation observations are independent or not. If the performance level is close to zero, the
covariance value is not defined. Therefore, it is not recommended to assign performance
levels that are close to zero.

To enhance the quality of the generated test cases, we propose a UEII coverage criterion
to cover the performance spectrum and the input space at the same time. Indeed, network
side imposes more complicated constraints than what state of art combinatorial testing

73

tools can support. To overcome this issue, we exhaustively check all combinations for
the imposed constraints. Then, we apply the combinatorial criterion on the combinations
that satisfy the constraints. However, this approach may be very expensive in terms of
execution time, especially for systems with a large number of parameters and/or parameter
values which indicates the need for more powerful mechanisms to address such scenarios.
In addition, a redundancy has been noticed when test cases are generated using the UEII
test selection criterion. Therefore, effective strategies are needed to minimize redundancy
in designed test suites.

4.7 Summary

In this chapter, a model based test generation methodology to evaluate the impact of the
interaction of wireless network conditions and application configurations on the perfor-
mance behaviour of mobile networked applications and thereby on the experience of the
end user. The methodology requires four artefacts as inputs and it consists of three main
steps. Test generation is formulated as an inversion problem and solved as an optimization
problem. To generate an effective set of test cases, two test selection criteria are pro-
posed (UE and UEII). The proposed methodology is used to generate test cases for two
representative applications: multimedia streaming and web browsing. The effectiveness
of the methodology is evaluated by comparing the incurred time cost to generate a test
suite of a specific size with random testing. The results show that our guided search based
(optimization based) test generation is noticeably better than random search based test
generation.

The main observation is the computationally high cost of performance models for the
first group of applications. Moreover, test generation to satisfy UEII coverage criterion may
lead to redundant test cases. Therefore, in the next chapter, we combine the proposed test
generation methodology with metamorphic testing to minimize the cost of performance
models. Furthermore, we propose a metric to evaluate redundancy and adopt a strategy
to identify and minimize redundant test cases.

74

Chapter 5

The Modified Test Generation
Methodology Using Metamorphic
Testing

In Chapter 4, we proposed a model based test generation methodology to evaluate the
impact of wireless network-application interactions on end user experience of mobile net-
worked applications. However, to model realistic software systems, the developed perfor-
mance models are often computationally expensive. Therefore, in this chapter, we modify
the proposed test generation methodology to minimize this cost, utilizing a well-known
testing technique called metamorphic testing [99, 31]. First, we give a brief introduction
to metamorphic testing. Second, we introduce the modified methodology. Third, we use
it to generate a set of test cases for an application example. At the end, we evaluate the
effectiveness of the modified methodology in comparison with the methodology proposed
in Chapter 4 using two evaluation metrics: time cost and redundancy.

5.1 Test Generation Using Metamorphic Testing

In model based testing, different types of models are developed and used to generate test
cases and to infer the required test oracles. In performance testing, analytical and/or
simulation models are often used to infer the performance behaviour of each test scenario.
However, for some software systems, performance models might be computationally expen-
sive. Therefore in this chapter, we utilize metamorphic testing to minimize the incurred

75

cost by reducing the number of performance model evaluations that are needed in the test
generation process.

Metamorphic testing is a technique that is proposed to alleviate the test oracle problem
[99, 31]. By utilizing certain inherent properties of the system under test (SUT), test cases
are generated and verified without the need to know in advance their individual expected
outputs. These properties are normally called metamorphic relations. To explain the idea,
assume we want to test a software code that implements the sine trigonometric function
[115]. We know from college level mathematics that sin(θ) = sin(π − θ). Therefore,
without the need to know the exact value of sin(θ) (test oracle), we can utilize this rule
(metamorphic relation) to test the code.

Test generation using metamorphic testing presumes the availability of one or more
test cases that are commonly called seed test cases. The expected output of seed test cases
may not be known. Seed test cases are generated using any test generation technique,
such as random testing. In this work, seed test cases are generated using the methodology
proposed in Chapter 4. Then, using generated seed test cases, follow-up test cases are
generated and verified using the specified metamorphic relations.

In general, a defect in the SUT is detected using metamorphic testing if the observed
output of the seed and corresponding follow-up test cases do not confirm with the meta-
morphic property that is used in follow-up test generation. That is, there is no need to have
the expected output in advance for each individual test case (test oracle). In this work,
test oracles are assumed to be available but expensive due to the high cost of performance
model evaluation. In this elaboration, we name the approach when metamorphic testing
is used with our proposed test generation methodology as the modified test generation
methodology.

In the proposed methodology, we develop a performance model to capture the perfor-
mance behaviour from the end user point of view, and we develop a network model to
capture the variation in the wireless network quality. The main observation is the com-
putationally high cost of the performance model (simulation or analytical) especially for
the first group of applications, compared to the network model. The input network model
is far less complicated than the performance model and it is also independent from the
SUT, making it as a good candidate to be utilized in deriving the necessary metamorphic
relations.

In the network modelling process, we match the probability distribution of the random
variable that models the waiting time delay using the two analytically developed mean and
variance expressions. Therefore, given a set of seed test cases that are generated using our
model based test generation methodology, we utilize the mean and the variance expressions

76

as metamorphic relations to generate follow-up test cases.

5.2 Metamorphic Relations for Performance Testing

In literature different types of metamorphic relations are used to generate test cases. In
general, metamorphic relations with isotropic conditions (conditions with equality con-
straint) are considered more effective in detecting problems than metamorphic relations
with inequality constraints [120]. Relations with equality constraints are tighter and more
likely to be violated. However, metamorphic relations with equality constraints that are
derived using input network models are not productive. Even though the NOPs of the
follow-up test cases may seem to be different from the NOPs of the seed test case, the
execution profile of the follow-up test cases that are generated using equality metamorphic
relations is totally equivalent to that of the seed test case. Thus, metamorphic relations
with equality constraints are only applicable if they are derived from the SUT. Therefore
in this work, we use metamorphic testing in a way to guarantee generating follow-up test
cases that have a diversified performance behaviour compared to the seed test cases.

Therefore, metamorphic relations with inequality constraints are the only available
choice in our case. Another feature that makes inequality metamorphic relations in per-
formance testing more applicable is that the end user perceives the performance behaviour
of the application intermittently. Since the main objective of this work is to evaluate the
performance from the end user point of view, we partition the spectrum of the perfor-
mance behaviour according to the categories of the end user experience. Consequently, if
the category of the performance behaviour of a test case is known, no need to evaluate the
performance model to determine the required test oracle.

5.3 The Modified Methodology

Test generation using metamorphic testing consists of two general steps: seed test genera-
tion and follow-up test generation. In this work, seed test cases have special requirements
that make seed test generation using other test generation techniques, such as random
testing, very expensive. The first requirement is that the performance levels of the seed
test cases are chosen to fall on the boundaries of the R performance regions. The second
requirement is elaborated as follows: given ls2 > ls1, then, vps2i ≥ vps1i if the parameter
pi ∈ SNOP ∪ SACP increases (does not decrease) with increasing the performance metric
under consideration and vps2j ≤ vps1j if the parameter pj ∈ SNOP ∪ SACP decreases (does

77

not increase) with increasing the performance metric, where ls1 (ls2), vps1i (vps2i), and vps1j
(vps2j) are the expected performance level of the first (second) seed test case, the assigned
value for pi in the first (second) seed test case, and the assigned value for pj in the first
(second) seed test case, 1 ≤ i, j ≤ n+m, i 6= j, respectively. If ls2 < ls1, then, vps2i ≤ vps1i
if the parameter pi ∈ SNOP ∪ SACP decreases (does not increase) with decreasing the per-
formance metric and vps2j ≥ vps1j if the parameter pj ∈ SNOP ∪ SACP increases (does not
decrease) with decreasing the performance metric. In other words, the second requirement
of seed test cases necessitates a monotonic performance model. The two requirements are
necessary to ensure that the performance behaviour of the follow-up test cases falls within
the targeted region.

The modified methodology is realized by four distinct steps. First of all, the spectrum
of the performance behaviour is partitioned into R non-overlapped regions according to
the categories of end user experience. Second, the behaviour of each parameter with
respect to the performance metric under consideration is determined (directly or inversely
proportional). Third, R− 1 seed test cases are generated. Fourth, follow-up test cases are
generated.

For efficient and effective testing process, it is recommended to generate a set of diverse
non-redundant test cases. We utilize distance metrics to capture diversity. The objective is
to maximize the distance between the seed test case and the follow-up test cases, given that
the performance behaviour of the follow-up test cases falls within the required performance
region. Thus, follow-up test generation is formulated as a maximization problem:

Maximize d(vps1 − p1, vp
s
2 − p2, ..., vp

s
n − pn) (5.1)

where d(...) is the fitness function that captures the employed distance metric, and vps1,
vps2, ..., and vpsn are the NOPs’ values of the seed test case. Since each performance region
is bounded by two seeds (except the first and last regions), either one can be used in the
objective function formulation. The optimization problem is subject to the condition that
the follow-up test cases should remain within the targeted region. We utilize the mean
and variance expressions of the network model to formulate the constraints to assure this
requirement. Thus, the optimization problem is subject to the following two conditions:
The mean and variance of the packet inter-arrival time delay of the follow-up test cases
should respectively be less than the mean and variance of the upper seed test case and
larger than the mean and variance of the lower seed test case. In addition, the optimization
problem is further subject to the constraints imposed by the network model. In summary,
the required steps to generate test cases using the modified methodology are listed in the
following procedure:

78

• Procedure: Test generation using the modified methodology

• Inputs: Network model (metamorphic relations), performance model, number of
performance regions R, number of follow-up test cases per region Q, and the employed
distance metric.

• Outputs: a set of R×Q test cases.

S1: Partition the spectrum of the performance behaviour into R regions ri, r2, ...,
rR;

S2: ∀ pi ∈ SNOP ∪ SACP , 1 ≤ i ≤ n + m, determine ∂l
∂pi

whether it is positive or
negative;

S3: Generate R− 1 seed test cases using the proposed methodology;

S4: ∀ ri, 1 ≤ i ≤ R, solve the maximization problem of Equation (5.1) Q times.

In the last step of the procedure, we repeat solving the optimization problem with the
same objective function (using the same seed) to generate Q follow-up test cases for each
region. We randomly initialize the optimization solver, relying on that the problem has
multiple local optima. Otherwise, we have to generate additional seeds and use them to
generate the remaining test cases.

5.4 Using the Methodology

In this section, we use the modified methodology to generate test cases to evaluate the end
user experience of a mobile multimedia streaming application. The performance behaviour
of the application under test is assumed to be mainly affected by three configuration
parameters (ACPs): the size of the playback buffer (B), the high watermark level (M),
and the low watermark level (L). The network quality is modelled using three NOPs: the
data rate of the wireless connection (D), the mean packet arrival rate at the access point
per mobile user (λ), and the number of mobile users connected to the access point (N).
That is, each test case is a set of seven values, the values assigned to B, M , L, D, λ, N ,
and the value of the expected performance level.

The considered performance metric that models the end user experience is the frequency
of having re-buffering events. The objective is to evaluate the impact of the interaction
of the NOPs and ACPs on the performance behaviour of the application. Tables 5.1, 5.2,
5.3, and 5.4 show the seed and follow-up test cases for R = 3 and Q = 5, respectively.

79

Table 5.1: Seed test cases used in follow-up test generation.

π0 B M L D λ N

0.1023 30 18 13 9M 69.6786 6
0.2044 30 18 13 9M 27.9667 20

Table 5.2: Follow-up test cases for the first region (0, 0.1023].

B M L D λ N

30 18 13 32M 46.3473 30
30 18 13 24M 44.2485 25
30 18 13 24M 111.1991 10
30 18 13 48M 224.6139 7
30 18 13 6M 12.9677 30

The distance metric used in the optimization formulation (Equation (5.1)) is the Manhat-
tan distance metric. The maximization problem is constrained by the two conditions of
Equations (4.8 and 4.9) and by the following four inequality metamorphic relations:

Ef
r ≤ Es2

r ,

V f
ard ≤ V s2

ard,

Ef
r ≥ Es1

r , and

V f
ard ≥ V s1

ard,

(5.2)

where Ef
r , Es1

r , Es2
r , V f

ard, V
s1
ard, and V s2

ard are the mean packet inter-arrival delay for the
follow-up test case, mean packet inter-arrival delay for the first seed test case, mean packet
inter-arrival delay for the second seed test case, variance of packet inter-arrival delay for
the follow-up test case, variance of packet inter-arrival delay for the first seed test case,
and variance of packet inter-arrival delay for the second seed test case, respectively. For
the UDP scenario, the mean and variance of the packet inter-arrival time delay are given
by Equations (3.7 and 3.9). For this example, the performance level of the second seed
test case is higher than the performance level of the first seed test case. The application
configuration parameters B, M , and L are all inversely proportional with respect to the
performance metric, as the network operating parameters λ and D, whereas N is directly
proportional with the performance metric.

80

Table 5.3: Follow-up test cases for the second region (0.1023, 0.2044].

B M L D λ N

30 18 13 6M 56.561 7
30 18 13 6M 30.5908 13
30 18 13 9M 93.2225 6
30 18 13 18M 51.6197 18
30 18 13 32M 48.3161 27

Table 5.4: Follow-up test cases for the third region (0.2044, 0.3069].

B M L D λ N

30 18 13 9M 34.9584 16
30 18 13 9M 139.8372 4
30 18 13 9M 24.3189 23
30 18 13 18M 133.0048 7
30 18 13 18M 66.5024 14

5.5 Evaluation of The Approach

The effectiveness of the modified methodology is compared with the proposed methodology
using two evaluation metrics: the incurred time cost to generate a test suite and the re-
dundancy percentage in the generated test suite. Redundant test cases are test cases when
executed do not carry any additional information to what is already available about the
system under test. In other words, the expected performance behaviour of the redundant
test case is equivalent to one of the test cases in the designed test suite. Mathematically,
to measure the quality of the designed test suite, we define the percentage of redundancy
(Y%) in a test suite as follows:

Y% =
No. of redundant test cases

size of the designed test suite
× 100% (5.3)

We have two types of redundancy in test suites: explicit and implicit redundancy. A test
case is explicitly redundant if it can be identified without the need to know the expected
performance behaviour. In this case, the set of parameters’ values of the redundant test
case is syntactically equivalent to the parameters of one test case in the designed test suite.
Sometimes, it is not straight forward to identify equivalent test cases, especially when some

81

of the parameters are continuous due to rounding errors. A test case is implicitly redundant
if it is difficult to identify it without knowing the expected performance behaviour. In this
case, the set of parameters’ values of the redundant test case is syntactically different but
semantically equivalent to one of the test cases in the designed test suite. Although the
set of parameters of the implicitly equivalent test cases are not all the same, the expected
performance behaviours are equivalent. In this case, the equivalent test cases are presumed
to satisfy some non-productive metamorphic properties.

To evaluate the percentage of redundancy in the designed test suite, two additional
parameters are introduced: error margin (ε) and maximum number of trails (Nt). We also
need to identify the non-productive metamorphic relationship. We need an error margin
because of the rounding error that we may have when some of the ACPs and NOPs are
real continuous. The new generated test case is considered redundant if it does satisfy the
non-productive metamorphic relationship within the given error margin (ε) with respect
to one of the already generated test cases. To generate follow-up test cases using the same
seed test case, we repeatedly solve the maximization problem starting from a random initial
point, hoping to have a new solution. We stop if solving the optimization problem for the
specified maximum number of trails (Nt) does not lead to a new non-redundant test case.

Both metrics (ε and Nt) have impact on the incurred time cost to design a test suite
and on the percentage of redundancy. Technically, the error margin (ε) has impact on
false positives (reported non-redundant but it is a redundant test case) and false negatives
(considered redundant but it is a non-redundant test case). Therefore, we design an ex-
periment for this purpose. We assume the spectrum of the performance behaviour of the
application under test is partitioned into three regions. The experiment has three factors:
ε, Nt, and the required number of test cases per region (Q). We consider five scenarios for
Q: 1, 2, 3, 4, and 5 tests/region. Three different distance metrics are used in formulation
of the optimization problem: Euclidean, squared Euclidean, and Manhattan.

5.5.1 Redundancy in the test suite

Tables 5.5, 5.6, and 5.7 show the percentage redundancy in the designed test suite as the
number of test cases per region increases from one to five using three different distance
metrics as a fitness function and using different values for ε and Nt. The reported values
are the mean of five experiments. The results with ε = 0.001 and Nt = 10 are the best,
and Manhattan metric shows a slightly less redundancy than the other two metrics. As
shown, redundancy increases as the number of test cases per region increases using same
seed test cases.

82

Table 5.5: Redundancy percentages using three distance metrics (ε = 0.001 and Nt = 5).

The number of tests per region (Q)

Fitness function Q = 1 Q = 2 Q = 3 Q = 4 Q = 5

Euclidean 0% 10% 13.33% 26.67% 32%
Squared Euclidean 0% 0% 13.33% 26.67% 29.33%
Manhattan 0% 3.33% 13.33% 26.67% 29.33%

Table 5.6: Redundancy percentages using three distance metrics (ε = 0.005 and Nt = 10).

The number of tests per region (Q)

Fitness function Q = 1 Q = 2 Q = 3 Q = 4 Q = 5

Euclidean 0% 26.67% 42.22% 56.67% 65.33%
Squared Euclidean 0% 33.33% 40% 56.67% 60%
Manhattan 0% 26.67% 46.67% 55% 62.67%

Table 5.7: Redundancy percentages using three distance metrics (ε = 0.001 and Nt = 10).

The number of tests per region (Q)

Fitness function Q = 1 Q = 2 Q = 3 Q = 4 Q = 5

Euclidean 0% 3.33% 8.89% 25% 26.67%
Squared Euclidean 0% 10% 8.89% 20% 29.33%
Manhattan 0% 0% 8.89% 23.33% 25.33%

83

5.5.2 The incurred time cost

We evaluate the incurred time cost of generating a test suite of a specific size using both
the modified and proposed methodologies. Each scenario is repeated five times and we
evaluate the 95% confidence interval for the mean time cost to generate the test suite. The
results show no significant differences in the incurred time cost among the three distance
metrics. Therefore, we compare the time cost for Manhattan metric only with the proposed
methodology. Figure 5.1 shows the obtained results. In each scenario, we need two seed test
cases to generate the follow-up test cases. As shown, the time cost to generate follow-up
test cases is negligible compared to the time cost to generate the two seed test cases. This
makes the time cost across the five scenarios almost constant for the modified methodology.

5.5.3 The impact of increasing the number of seed test cases

In all previous experiments, two seed test cases are used to generate follow-up test cases,
since the spectrum of the performance region is partitioned into three regions (R = 3).
This is the minimum requirement for R = 3. However, to eliminate the redundancy in
the generated test suite, we conjecture that increasing the number of seed test cases would
achieve this goal. Nevertheless, the side effect of increasing the number of seed test cases
would be the increase in the incurred time cost. Therefore, we design an experiment to
evaluate the trade-off between the reduction in redundancy and the increase in time cost
when the number of seed test cases is increased. We consider only four scenarios for the
number of tests per region (2, 3, 4, and 5), since the test suite generated with two seeds
for Q = 1 does not show any redundancy.

Table 5.8 shows the percentage of redundancy in the test suite where three seed test
cases are used in the follow-up test generation. The error margin is kept fixed on 0.001
while the maximum number of trails takes three different values: 5, 10, and 15. The used
distance metric is Manhattan. The results are the mean of nine experiments. As shown,
the percentage of redundancy has tremendously reduced by using one extra seed test case.
Figure 5.2 shows the mean incurred time cost and the 95% confidence interval for the
proposed methodology and modified methodology with two and three seed test cases. The
error margin is 0.001 and the maximum number of trails is 10. As the number of tests
per region increases, the modified methodology becomes more cost effective compared to
the proposed methodology. Although the number of experiments is not comprehensive,
the obtained results show that a compromise can be achieved to get a cost effective non-
redundant set of test cases.

84

✶ ✷ ✸ ✹ ✺
✵

✶

✷

✸

✹

✺

✻
① ✶✵

�

◆✉♠❜❡r ♦❢ t❡sts ♣❡r r❡❣✐♦♥ ✭◗✮

❚
✁✂
✄
❝
☎
✆
✝
✞✆
✄
❝
✟

Pr♦♣♦s❡❞ ♠❡t❤♦❞♦❧♦❣②

▼♦❞✐❢✐❡❞ ♠❡t❤♦❞♦❧♦❣② ✭▼❛♥❤❛tt❛♥✮

Figure 5.1: The 95% confidence interval of the mean of the incurred time cost to generate
a test suite using both the proposed methodology and modified methodology. The values
for ε and Nt are 0.001 and 10, respectively.

85

✷ ✸ ✹ ✺
✵

✶

✷

✸

✹

✺

✻
① ✶✵

�

◆✉♠❜❡r ♦❢ t❡sts ♣❡r r❡❣✐♦♥ ✭◗✮

❚
✁✂
✄
❝
☎
✆
✝
✞✆
✄
❝
✟

Pr♦♣♦s❡❞ ♠❡t❤♦❞♦❧♦❣②

▼♦❞✐❢✐❡❞ ♠❡t❤♦❞♦❧♦❣② ✭t❤r❡❡ s❡❡❞s✮

▼♦❞✐❢✐❡❞ ♠❡t❤♦❞♦❧♦❣② ✭t✇♦ s❡❡❞s✮

Figure 5.2: The 95% confidence interval of the mean of the incurred time cost to generate
a test suite using both the proposed methodology and modified methodology with two and
three seed test cases. The values for ε and Nt are 0.001 and 10, respectively.

86

Table 5.8: Redundancy percentages using Manhattan distance metric with ε = 0.001.

No. of tests per region (Q)

Nt Q = 2 Q = 3 Q = 4 Q = 5

5 0% 1.85% 4.94% 11.36%
10 0% 0% 3.7% 11.11%
15 0% 3.7% 3.7% 5.56%

5.6 Summary

In this chapter, we show the possibility of using metamorphic testing to minimize the
cost of generating a test suite for performance evaluation. We generate seed test cases
using our proposed test generation methodology. Then, a set of follow-up test cases are
generated without the need to invoke the computationally expensive performance model.
We show that equality metamorphic relations derived from input models are not produc-
tive. Therefore, we use the two expressions of mean and variance of packet inter-arrival
time delay as inequality metamorphic relations. We formulate follow-up test generation
as a maximization problem. We use three different distance metrics as a fitness function:
Euclidean, squared Euclidean, and Manhattan. The obtained results do not show any
noticeable preference for one of the metrics over the others. The methodology is used to
generate test cases for the multimedia streaming application. The modified methodology
is compared with the proposed methodology using two evaluation metrics: incurred time
cost and redundancy. The obtained results do prove the advantage of combining our pro-
posed methodology with metamorphic testing to mitigate the computationally high cost
of performance models.

In the next chapter, a model based methodology is proposed to evaluate the impact of
ACPs and NOPs interactions on another important property, performance robustness, of
mobile adaptive and non-adaptive applications.

87

Chapter 6

Performance Robustness of Mobile
Networked Applications

In this chapter, we propose a model based methodology to evaluate the impact of wireless
network quality and application configurations on performance robustness of adaptive and
non-adaptive mobile networked applications. Non-adaptive applications are applications
in which ACPs are configured during the design or before operation phase. In contrast,
adaptive applications are applications that have the ability to reconfigure ACPs on the fly
to mitigate a degraded network service. Two robustness metrics are proposed (static and
dynamic) to evaluate the robustness of the two types of applications. Both proposed metrics
require all network-application interactions to be evaluated that may lead to the well known
state explosion problem. We propose a strategy to avoid the exhaustive evaluation of the
interactions utilizing the monotonicity property of the performance model. Figure 6.1
depicts the proposed methodology. First, we explain the inputs, main steps, and the
expected output of the methodology. Then, we apply the methodology to evaluate the
performance robustness of a mobile multimedia streaming application. Last, we evaluate
the effectiveness of the methodology in comparison with the naive approach where the
network-application interactions are exhaustively evaluated.

6.1 The Methodology Inputs

The proposed methodology requires three inputs: the behaviour model of the application,
the network model, and the performance model. The specifications of these models are

88

Enumerate all the possible interactions

of the network and the app

Evaluate the performance behaviors

of the interactions

Network

model

App behavior

model

Performance

model

Robustness

evaluation

Quantify the robustness metric

Figure 6.1: The proposed methodology.

89

explained in Chapter 4. The quality of network service is captured using time delay and
the application is assumed to have a wireless network connection through a WiFi access
point.

6.2 The Details of The Methodology

The expected output of the methodology is a quantification measure of the performance
robustness of the application. To elaborate on that, we need to introduce some notations.
According to the perception of the end user, the performance behaviour is characterized by
a set of multiple categories. In this chapter, we partition the spectrum of the application
performance behaviour into two non-overlapped regions: acceptable region (Ra) and failure
region (Rf). If the performance level lj of the test case tj falls within the acceptable
region (i.e., lj ∈ Ra), the associated application configuration settings vpj1, vpj2,..., vpjm
for pi ∈ SACP , are considered robust for the given network condition vpj1, vpj2,..., vpjn,
pi ∈ SNOP ; otherwise (i.e., if lj ∈ Rf), it is considered a failed or non-robust test case.

To achieve the first step of the methodology, we need to identify the set of all valid
network scenarios SN and the set of valid candidate application configurations SC . Valid
combinations are combinations that do not violate the assumptions and conditions made
during the development of the network and application behaviour models. The set SC
in the case of non-adaptive applications basically represents the configurations in which
their robustness are required to be investigated to identify, for example, the most robust
configuration. In the case of adaptive applications, the set SC can be any subset of ACPs,
since the application can dynamically move from one configuration setting to another.
Given the set SC , we evaluate the robustness of the application’s configuration cj ∈ SC by
investigating the performance behaviour of this configuration under all possible network
scenarios. Consequently, we can determine the sets of robust and failed test cases for this
configuration. The static robustness of the application configuration cj is determined as
follows:

ρsj =
|TRj |

|TRj |+ |T Fj |
(6.1)

where |TRj | and |T Fj | are the cardinality numbers of the sets of robust and failed test cases
for configuration cj, respectively. The robustness metric ρs is bounded between 0 (not
robust) and 1 (totally robust). However, this step might be expensive if the performance
model evaluation is an intensive operation as in simulation models and/or if the set of
configuration-network’s interactions is big. To mitigate this cost, we propose an algorithm
to limit the number of application-network interactions that need to be evaluated.

90

Basically, this algorithm utilizes the monotonicity property of the performance model.
This property enables sorting the valid network scenarios and thereby reducing the number
of performance model evaluations as in the binary search algorithm [76]. The algorithm
works as follows. Given the sets SN and SC , instead of exhaustively evaluating all the
individual interactions of SN and SC , we first pick a configuration ci ∈ SC and evaluate
the impact of all network scenarios SN on the performance of ci. Then, we sort the set of
network scenarios SN according to the results of the first configuration ci. For the remaining
configurations SC − {ci}, we are not interested in knowing the exact performance level of
each configuration-network interaction. We are only interested in classifying them into
robust or failed interactions.

Using the sorted network scenarios ŜN , the interactions of each one of the remaining
configurations with network scenarios has one of two possibilities. The first possibility is
that the configuration is robust (failed) for all network scenarios. The second possibility
is that the configuration is robust for some scenarios and failed for others. For the first
possibility, there is an opportunity to tremendously reduce the number of model evaluations
to two or even to one regardless of the size of ŜN if the first and last network scenarios
have the same impact on the performance behaviour (both robust or failed). In this case,
there is no need to evaluate the other in between scenarios. If the first and last scenarios
have an opposite impact on the performance (the second possibility), we next evaluate the
scenario in the middle. If the impact of this scenario is similar to the impact of the first
(last) scenario, we do not need to evaluate the impact of the scenarios falling between the
first (last) and the middle. Then, the middle scenario becomes the first (last) scenario. We
keep evaluating the middle and halving the set ŜN until the impact of all network scenarios
is determined. The steps are summarized by the following procedure:

• Procedure 1: Static robustness evaluation

• Inputs: The performance model, the constraints imposed by the application be-
haviour Ia and network models In, and the threshold performance level lth

• Outputs: The static robustness ρsj , 1 ≤ j ≤ |SC |

S1: Determine the set of candidate configurations SC = {
⋃
i≥1〈vpi1, vpi2, ..., vpik,

..., vpim〉, pk ∈ SACP , 1 ≤ k ≤ m} that satisfy Ia;

S2: Determine the set of valid network scenarios SN = {
⋃
i≥1〈vpi1, vpi2, ..., vpik, ..., vpin〉,

pk ∈ SNOP , 1 ≤ k ≤ n} that satisfy In;

S3: Pick a configuration cj ∈ SC and evaluate its robustness against all network
scenarios SN ;

91

S4: Determine the sets TRj and T Fj :
TRj = {

⋃
〈cj, ni〉 : ni ∈ SN , lj ∈ Ra}, T Fj = {

⋃
〈cj, nk〉 : nk ∈ SN , lj ∈ Rf};

S5: Sort the set SN in ascending or descending order using the results of the previous
step and get ŜN ;

S6: For each of the remaining configurations, execute the algorithm in Figure 6.2
and determine the sets TRi and T Fi , 1 ≤ i ≤ |SC | − 1 as in S4;

S7: Evaluate the static robustness of the application configuration j (ρsj), 1 ≤ j ≤
|SC |, using Equation (6.1).

By evaluating the robustness score of each candidate configuration, we can identify the
most robust configuration.

To evaluate the robustness of adaptive mobile applications, we extend Procedure 1.
We assume that the application can dynamically adapt by reconfiguring ACPs when the
network quality degrades. Thus, dynamic robustness accounts for the test cases with
degraded performance that can be alleviated by reconfiguring ACPs. Therefore, we need
to explore the configuration space of each failed test case to figure out new ACPs’ values
that can tolerate the degraded network condition. This step is achieved for every set of
failed test cases T Fj , 1 ≤ j ≤ |SC |. Then, using the updated sets T̂ Fj and T̂Rj , the dynamic
robustness ρdj is evaluated using Equation (6.1). The overall robustness of the system ρd

is the mean of the robustness of the set SC :

ρd =
1

|SC |

|SC |∑
j=1

ρdj (6.2)

We formulate the problem of figuring out the configuration that mitigates degraded network
quality as an optimization problem. ACPs are mostly related to the allocated resources.
Therefore, the main objective in this formulation is to find out a configuration that makes
the application performance behaviour acceptable for the given network condition with
minimal allocated resources. Mathematically, the problem is formulated as follows:

Minimize Resources(p1 , p2 , ..., pm) (6.3)

subject to the condition:

Perf model(p1 , p2 , ..., pm) ≥ lth (6.4)

where Resources(...) is the utility function that quantifies the amount of allocated re-
sources, pi ∈ SACP , 1 ≤ i ≤ m, and Perf model(...) is the performance model. This

92

✁✂✄☎✂

✆✝✞✟✂✁✠ �
N

✡ ☛
th

✡ ☞
i

✡ ✌✍✎✏

✞ ✑✑ ✒✓✄✔✕✖✗✘ ✙✙ ✚✛✗✖ ✑✑ ✒✄✁✜✖✝✗✘

✢✢

✞ ✑✑ ✒☎✛✣✟✁✂✘ ✙✙ ✚✛✗✖ ✑✑ ✒✗✖✁✜✖✝✗✘

✤

✥✦✧

★✩

✖✝✗

✔✪✓ ✑ ✫

✔✪✕ ✑ ✕✖✝✬✂✭ ✛✓ �
N

✮✖☎✓✯☞
i

✰�
N

✯✔✪✓✱✱ ✑✑ ✮✖☎✓✯☞
i

✰�
N

✯✔✪✕✱✱

✤

✔✪✓ ✑✑ ✔✪✕

✤

✔✪✚ ✑ ✯✔✪✕ ✲ ✔✪✓✱✳✴

✮✖☎✓✯☞
i

✰�
N

✯✔✪✚✱✱ ✑✑ ✮✖☎✓✯☞
i

✰�
N

✯✔✪✓✱✱

✤

✔✪✓ ✑ ✔✪✚ ✔✪✕ ✑ ✔✪✚

✞ ✑ ✮✖☎✓✯☞
i

✰�
N

✯✔✪✓✱✱

★✩

✥✦✧ ★✩

★✩

✥✦✧

✥✦✧

✵✶✷✸✶✷✹✺ ✻
i

F

✡ ✻
i

R

Figure 6.2: The algorithm used to determine the robustness of a configuration ci against the
sorted network scenarios ŜN . The output of the algorithm is the sets of failed and robust
test cases T Fi and TRi , respectively. The symbols i f , i l, and i m are the indices of the
first, last, and middle network scenarios in the sorted set ŜN . Perf(ci,ŜN(i)) represents
the performance model evaluation and determination of the robustness category of the
configuration ci with the values of NOPs of the network scenario ŜN(i). The mode is
either ascend or descend.

93

formulation assumes that the performance behaviour is better for higher values. The min-
imization problem may further be constrained by conditions imposed by the application’s
semantics. If a solution exists, the values of p1, p2,..., pm constitute, along with the given
NOPs’ values, a robust test case. If a solution is not possible, this means the degraded
performance behaviour due to this network condition cannot be resolved by reconfiguring
the application’s ACPs. Therefore, to evaluate ρd, the following procedure is applied:

• Procedure 2: Dynamic robustness evaluation

• Inputs: The performance model, Ia, In, and lth

• Outputs: The dynamic robustness ρd

S1: Determine the sets of robust and failed test cases TRj and T Fj , 1 ≤ j ≤ |SC |,
using Procedure 1;

S2: ∀i, j, 1 ≤ i ≤ |T Fj |, 1 ≤ j ≤ |SC |, solve the optimization problem given by Equa-
tions (6.3) and (6.4) to identify alternative ACPs’ values. If such a configuration
setting exists, we delete the test case ti from the set T Fj and add the updated
version of ti (with the new ACPs’ values) to the set TRj . Then, using the up-

dated sets T̂ Fj and T̂Rj , the dynamic robustness ρdj is evaluated using Equation
(6.1). The overall robustness of the system ρd is evaluated using Equation (6.2).

6.3 Robustness Analysis of A Mobile Streaming Ap-

plication

In this section, we show how to use the two developed procedures to evaluate the per-
formance robustness of a mobile multimedia streaming application. We characterize the
behaviour model of this application, as shown in Chapter 2, by three ACPs: the size of
the playback buffer (B), the high watermark (M), and the low watermark (L). The ap-
plication behaviour introduces two constraints (i.e., |Ia| = 2) that are given by Equation
(4.6). We assume the streaming is done through a WiFi access point. The network quality
is modelled using three NOPs: the data rate of the wireless link (D), the mean rate of
frame arrivals at the access point per mobile user (λ), and the number of mobile users
connected to the access point (N). The network model also imposes two constraints (i.e.,
|In| = 2) that are given by Equations (4.7 and 4.9). The first constraint encodes the re-
quirement that the mean rate of frame arrival to the end user is equal to the mean rate

94

of frame decoding. The second one encodes the assumption that the traffic intensity at
the access point should remain less than 1. The performance metric under consideration
is the probability of having zero frames in the playback buffer (l). Using this metric, three
different end user experiences are reported [90]. If l is less than 2%, the video quality is
high; between 2% and 15%, the quality is medium; and above 15%, the quality is poor.

To evaluate the static robustness using Procedure 1, we partition the performance
spectrum into two regions: acceptable region (0 ≤ l < 0.15) and failed region (0.15 ≤ l),
i.e., lth = 0.15. We consider the following three candidate configurations: c1 = 〈16, 10,
4〉, c2 = 〈38, 31, 7〉, and c3 = 〈34, 34, 4〉, where the first, second, and third element of
each tuple are the values of B, M, and L, respectively (Procedure 1.S1). In Procedure
1.S2, we figure out all the possible network scenarios. The data rate D and the number of
mobile users N are both discrete, while λ is continuous. The data rate can be any one of
the following rates: 6, 9, 12, 18, 24, 32, 48, and 54 Mbps. The number of users is bounded
between 4 and 30. Using In and the boundary values of N and D, the parameter λ is
bounded between 10 and 416 packets/sec. We discretize λ into the following 82 integer
values: 10, 15, 20,..., 410, and 415 packets/sec. To determine all the possible network
conditions, we exhaustively evaluate all the possible NOPs to determine the combinations
that satisfy In. Out of the 17712 combinations, only the following 27 are valid:

SN = {(6M, 15, 26), (6M, 30, 13), (32M, 50, 26), (6M, 65, 6), (48M, 75, 21), (48M, 105, 15),

(32M, 45, 29), (18M, 155, 6), (48M, 175, 9), (18M, 185, 5), (24M, 185, 6), (48M, 225, 7),

(32M, 65, 20), (48M, 315, 5), (54M, 330, 5), (32M, 100, 13), (32M, 130, 10), (32M, 145, 9),

(32M, 260, 5), (32M, 325, 4), (54M, 55, 30), (54M, 75, 22), (54M, 110, 15), (54M, 150, 11),

(54M, 165, 10), (54M, 235, 7), (54M, 275, 6)}

where the first, second, and third element of each tuple is D, λ, and N , respectively. In
Procedure 1.S3, we pick c1 and evaluate the performance behaviour of c1 using the set
SN . In Procedure 1.S4, the sets of robust and failed test cases for c1 are determined
(|TR1 | = 19 and |T F1 | = 8):

TR1 = {(16, 10, 4, 6M, 15, 26), (16, 10, 4, 6M, 30, 13), (16, 10, 4, 32M, 50, 26),

(16, 10, 4, 6M, 65, 6), (16, 10, 4, 18M, 185, 5), (16, 10, 4, 24M, 185, 6),

(16, 10, 4, 32M, 65, 20), (16, 10, 4, 54M, 330, 5), (16, 10, 4, 32M, 100, 13),

(16, 10, 4, 32M, 130, 10), (16, 10, 4, 32M, 260, 5), (16, 10, 4, 32M, 325, 4),

(16, 10, 4, 54M, 55, 30), (16, 10, 4, 54M, 75, 22), (16, 10, 4, 54M, 110, 15),

(16, 10, 4, 54M, 150, 11), (16, 10, 4, 54M, 165, 10), (16, 10, 4, 54M, 235, 7),

(16, 10, 4, 54M, 275, 6)},

95

T F1 = {(16, 10, 4, 48M, 75, 21), (16, 10, 4, 48M, 105, 15), (16, 10, 4, 32M, 45, 29),

(16, 10, 4, 18M, 155, 6), (16, 10, 4, 48M, 175, 9), (16, 10, 4, 48M, 225, 7),

(16, 10, 4, 48M, 315, 5), (16, 10, 4, 32M, 145, 9)},

In Procedure 1.S5, we sort SN in ascending order using the results of c1 to get ŜN . In
Procedure 1.S6, we use ŜN and the algorithm of Figure 6.2 to determine the robustness
of c2 and c3. The robust and failed test case sets are determined as follows (|TR2 | = 27,
|T F2 | = 0, |TR3 | = 27, and |T F3 | = 0):

TR2 = {(38, 31, 7, 6M, 15, 26), (38, 31, 7, 6M, 30, 13), (38, 31, 7, 32M, 50, 26),

(38, 31, 7, 6M, 65, 6), (38, 31, 7, 48M, 75, 21), (38, 31, 7, 48M, 105, 15),

(38, 31, 7, 32M, 45, 29), (38, 31, 7, 18M, 155, 6), (38, 31, 7, 48M, 175, 9),

(38, 31, 7, 18M, 185, 5), (38, 31, 7, 24M, 185, 6), (38, 31, 7, 48M, 225, 7),

(38, 31, 7, 32M, 65, 20), (38, 31, 7, 48M, 315, 5), (38, 31, 7, 54M, 330, 5),

(38, 31, 7, 32M, 100, 13), (38, 31, 7, 32M, 130, 10), (38, 31, 7, 32M, 145, 9),

(38, 31, 7, 32M, 260, 5), (38, 31, 7, 32M, 325, 4), (38, 31, 7, 54M, 55, 30),

(38, 31, 7, 54M, 75, 22), (38, 31, 7, 54M, 110, 15), (38, 31, 7, 54M, 150, 11),

(38, 31, 7, 54M, 165, 10), (38, 31, 7, 54M, 235, 7), (38, 31, 7, 54M, 275, 6)},

T F2 = {φ},

TR3 = {(34, 34, 4, 6M, 15, 26), (34, 34, 4, 6M, 30, 13), (34, 34, 4, 32M, 50, 26),

(34, 34, 4, 6M, 65, 6), (34, 34, 4, 48M, 75, 21), (34, 34, 4, 48M, 105, 15),

(34, 34, 4, 32M, 45, 29), (34, 34, 4, 18M, 155, 6), (34, 34, 4, 48M, 175, 9),

(34, 34, 4, 18M, 185, 5), (34, 34, 4, 24M, 185, 6), (34, 34, 4, 48M, 225, 7),

(34, 34, 4, 32M, 65, 20), (34, 34, 4, 48M, 315, 5), (34, 34, 4, 54M, 330, 5),

(34, 34, 4, 32M, 100, 13), (34, 34, 4, 32M, 130, 10), (34, 34, 4, 32M, 145, 9),

(34, 34, 4, 32M, 260, 5), (34, 34, 4, 32M, 325, 4), (34, 34, 4, 54M, 55, 30),

(34, 34, 4, 54M, 75, 22), (34, 34, 4, 54M, 110, 15), (34, 34, 4, 54M, 150, 11),

(34, 34, 4, 54M, 165, 10), (34, 34, 4, 54M, 235, 7), (34, 34, 4, 54M, 275, 6)},

T F3 = {φ}.

96

Only the configuration c1 has failed test cases, while all the test cases generated by c2 and
c3 are robust. Using Equation (6.1), the static robustness ρs1, ρs2, and ρs3 of c1, c2, and c3

are 0.703, 1, and 1, respectively (Procedure 1.S7). If the application is configured using
c1’s ACPs values for example, the application exhibits robust performance behaviour for
70.37% of the time, assuming that the network conditions are equally likely.

If the application can reconfigure on the fly to overcome poor network conditions, the
dynamic robustness metric is used to evaluate the robustness of the application’s perfor-
mance. To evaluate ρd, we apply Procedure 2.S2 using the determined failed and robust
test cases. For the configuration c1, we have eight failed test cases (i.e., |T F1 | = 8). To
figure out alternate ACPs values for each failed configuration, the minimization problem
is formulated as follows:

Minimize B (6.5)

subject to the conditions:

Perf model(B ,M ,L) < 0 .15

M ≤ B , L ≤ M − 1
(6.6)

For the application example, the ACPs are related to the memory space allocated for the
playback buffer. Therefore, the objective is to determine an application configuration that
mitigates the given degraded network condition and moves the performance behaviour to
the acceptable region with as minimal buffer size as possible. Thus, the buffer size B
represents the utility (Resources(...)) that needs to be minimized. The first constraint
does ensure that the new ACPs’ values (B, M , and L) do make the performance behaviour
acceptable. The other two constraints are imposed by the operational semantics of the
application (Ia). Using this formulation, we find new ACPs’ values for each of the eight
failed test cases of T F1 as shown in Table 6.1. Hence, the updated failed and robust test
cases become as follows (|T̂R1 | = 27 and |T̂ F1 | = 0):

T̂R1 = {(16, 10, 4, 6M, 15, 26), (16, 10, 4, 6M, 30, 13), (16, 10, 4, 32M, 50, 26),

(16, 10, 4, 6M, 65, 6), (10, 10, 8, 48M, 75, 21), (10, 10, 8, 48M, 105, 15),

(16, 16, 14, 32M, 45, 29), (14, 14, 13, 18M, 155, 6), (10, 10, 8, 48M, 175, 9),

(16, 10, 4, 18M, 185, 5), (16, 10, 4, 24M, 185, 6), (10, 10, 8, 48M, 225, 7),

(16, 10, 4, 32M, 65, 20), (10, 10, 8, 48M, 315, 5), (16, 10, 4, 54M, 330, 5),

(16, 10, 4, 32M, 100, 13), (16, 10, 4, 32M, 130, 10), (16, 16, 14, 32M, 145, 9),

(16, 10, 4, 32M, 260, 5), (16, 10, 4, 32M, 325, 4), (16, 10, 4, 54M, 55, 30),

(16, 10, 4, 54M, 75, 22), (16, 10, 4, 54M, 110, 15), (16, 10, 4, 54M, 150, 11),

(16, 10, 4, 54M, 165, 10), (16, 10, 4, 54M, 235, 7), (16, 10, 4, 54M, 275, 6)},

97

Table 6.1: The new ACPs values for the set T F1 . The old ACPs values is (16,10,4)

degraded NOPs new ACPs

(48M, 75, 21) (10, 10, 8)
(48M, 105, 15) (10, 10, 8)
(18M, 155, 6) (14, 14, 13)
(48M, 175, 9) (10, 10, 8)
(48M, 225, 7) (10, 10, 8)
(48M, 315, 5) (10, 10, 8)
(32M, 145, 9) (16, 16, 14)
(32M, 45, 29) (16, 16, 14)

T̂ F1 = {φ}

Therefore, there is a configuration for each failed test case that overcomes the degraded
network condition and moves the performance behaviour to the acceptable robust region.
Hence, the dynamic robustness for c1 is 1, and because ρd2 and ρd3 are both 1, the overall
dynamic robustness ρd is 1.

6.4 Evaluation of The Methodology

To evaluate the effectiveness of the proposed methodology, we compare the cost of eval-
uating robustness using our methodology with the cost of exhaustively evaluating all
application-network interactions. We call the latter as the naive approach. We use two
metrics to quantify the incurred cost: the number of actual model evaluations and time
cost. We design an experiment with two controlling factors: the number of candidate con-
figurations and the number of network scenarios. We repeat the experiment 10 times for
the proposed approach only, since the naive approach is deterministic. For the proposed
approach, we evaluate the 95% confidence interval of the mean for the number of model
evaluations and for the time cost.

Figure 6.3 and 6.4 show the time cost and the required number of performance model
evaluations, respectively, to evaluate static robustness for different number of candidate
configurations. The number of network scenarios is fixed on 27. As shown, the gain in
performance is about 3 to 5 times and it increases as the number of candidate configura-
tions increases. Because the time cost of performance model evaluation is configuration

98

3 5 7 10 15 20
0

1

2

3
x 10

4

Number of candidate configurations

T
im

e
 c

o
s

t

Methodology
Naive
Confidence interval

Figure 6.3: The time cost in seconds to evaluate robustness for different numbers of can-
didate configurations. The number of network scenarios is fixed on 27.

dependent, the time cost to evaluate robustness for 10 configurations is coincidentally less
than the time cost for 7 configurations. Since the sorting overhead is also configuration
dependent, we pick the first configuration and the mode of sorting (ascend or descend)
randomly.

Figure 6.5 and 6.6 show the same metrics, but now the number of candidate configura-
tions is fixed on 5 and the number of network scenarios is changing. The same observations
still apply. Although the number of experiments is not comprehensive, we can conclude
that the proposed approach overtakes the performance of the naive approach.

6.5 Summary

In this chapter, we propose a model based methodology to evaluate the impact of the
interaction of ACPs and NOPs on performance robustness of two types of mobile net-
worked applications: adaptive and non-adaptive. We propose two robustness metrics to
quantify performance robustness of both types of applications. To evaluate performance

99

3 5 7 10 15 20
0

200

400

600

Number of candidate configurations

N
u

m
b

e
r

o
f

m
o

d
e

l
e

v
a

lu
a

ti
o

n
s

Methodology
Naive
Confidence interval

Figure 6.4: The required number of performance model evaluations to evaluate robustness
for different numbers of candidate configurations. The number of network scenarios is fixed
on 27.

100

8 27 38 47 57 145
0

2

4

6
x 10

4

Number of network scenarios

T
im

e
 c

o
s

t

Methodology
Naive
Confidence interval

Figure 6.5: The time cost in seconds to evaluate robustness for different numbers of network
scenarios. The number of candidate configurations is fixed on 5.

101

8 27 38 47 57 145
0

200

400

600

800

Number of network scenarios

N
u

m
b

e
r
 o

f
m

o
d

e
l
e

v
a

lu
a

ti
o

n
s

Methodology
Naive
Confidence interval

Figure 6.6: The required number of performance model evaluations to evaluate robustness
for different numbers of network scenarios. The number of candidate configurations is fixed
on 5.

102

robustness, all network-application interactions have to be evaluated that may lead to the
state explosion problem. To overcome this problem, we propose an algorithm utilizing
the monotonicity property of the performance model. The methodology is demonstrated
using a multimedia streaming application example. For adaptive applications, evaluating
the robustness metric needs the evaluation of the ability of the application to reconfigure
ACPs in case of degraded NOPs. This problem is formulated as a minimization prob-
lem. The effectiveness of the proposed methodology is evaluated using two metrics: the
number of performance model evaluations and the time cost. The obtained results show
3-5 times reductions in the incurred cost compared to the naive approach in which all
network-application interactions are evaluated.

103

Chapter 7

Conclusion and Future Works

7.1 Conclusion

Mobile devices nowadays are pervasive because they provide to end users a wide range
of services and also a convenient way to stay on-line. Among the factors that affect the
quality of provided services is the quality of the wireless network connection. Therefore,
in this thesis, we developed methodologies and frameworks to enable software developers
to investigate the impact of the interaction of network quality and mobile application
configurations on the quality of experience of end users. We focused on an important non-
functional property of mobile networked applications that directly relates to the end user
experience, which is performance.

First of all, in Chapter 1, we developed an integrated model to understand how faults
can lead to a failure in functionality, performance, or both. This model is very important
to understand the implication of our first assumption that the software application under
investigation is correct from the functionality point of view. We used waiting time delay
as a metric to model the quality of the wireless network service. Accordingly, we classified
mobile networked applications into two groups: group I and group II. Software applications
in which end user experience is mainly affected by the waiting time delay during service
consumption was classified under group I, whereas, software applications in which end
user experience is mainly affected by the waiting time delay before service consumption
was classified under group II.

The core component of any performance evaluation framework is the performance model
of the SUT. Therefore, in Chapter 2, an analytical performance model was developed for

104

mobile networked applications of group I. For group II, we have showed that mobile appli-
cations did not need a performance model to be developed from scratch. The developed
network model that analytically captured waiting time delay could be reused as a perfor-
mance model. The performance model for group I applications was developed using Markov
chain. To model more realistic network behaviours, the performance model was developed
and solved using the supplementary variable technique (SVT). The analytical performance
model was validated with simulations. The main observation was the computational high
cost of the performance analytical model for applications of group I.

In Chapter 3, input network models were developed. The interaction between a mobile
networked application and the network was modelled using a basic request-response mecha-
nism. Therefore, network quality was captured by modelling “response” waiting time delay,
which was assumed to be a random variable. A distribution fitting was used to obtain the
cumulative distribution function of the waiting time delay using the first two moments:
mean and variance. Analytical expressions for the mean and variance of the waiting time
delay were developed for applications in which an APDU can fit in a single or multiple
packets. The application was assumed to access the network through a WiFi access point
that implements IEEE 802.11 g protocol standard. Both TCP and UDP transport pro-
tocols were considered. The developed models were validated with simulations using the
network simulator NS2.

Software testing is the most used approach to assure the quality of software applica-
tions. Therefore, in Chapter 4, a model based test generation methodology was proposed
to evaluate the impact of interactions of wireless network quality and application config-
urations on performance behaviour of a mobile networked application. The methodology
requires four different artefacts as inputs: a behaviour model of the SUT, a network model,
a test selection criterion, and a set of desired performance levels. The desired performance
level is a quantitative measure of the performance metric under consideration. Because
performance metrics are mainly continuous, infinite number of performance levels and test
cases are anticipated. Therefore, test selection strategies are needed to generate an effective
set of performance test cases. Two test coverage criteria are proposed for this purpose.
The first criterion is user experience (UE) and the second is user experience and input
interaction (UEII). In UE criterion, test cases are generated to fully cover the identified
categories of end-user experience. In UEII criterion, test cases are generated to cover the
categories of end-user experience and the interaction of the input parameters (ACPs and
NOPs) simultaneously. Input parameters interactions are explored using combinatorial
criteria.

The methodology is realized by a procedure of three main steps. In the first step, two
performance models (analytical and simulation) to capture the interactions between the

105

SUT and the network are developed. In the second step, test inputs (ACPs and NOPs)
are generated. Test generation was formulated as an inversion problem and solved as an
optimization problem. In the third step, test execution parameters (TEPs) are inferred
using the performance simulation model. TEPs are the necessary information to concretize
the abstract generated test cases and make them executable. Since performance metrics are
statistical measures, the execution of each test case is an experiment from the statistical
point of view. Therefore, we need to know how many times the experiment should be
repeated, or for how long it should be executed, so that the output is statistically reliable.

Because the network model constrains NOPs by non-linear constraints, state of art
combinatorial test generation tools are not applicable directly. To overcome this problem,
we constrain the input space first. Then, we apply the combinatorial testing criterion to
generate test cases. The generated test cases are validated using the performance simu-
lation model. Two mobile application examples were used to demonstrate the proposed
methodology: multimedia streaming (group I) and web browsing (group II).

The effectiveness of the methodology was evaluated by comparing its time cost to gener-
ate a test suite of a specific size with random testing. The obtained results have shown the
advantage of our test generation approach over random test generation. In random testing,
the incurred time cost to generate a test case is inversely proportional with the width of
the targeted performance region, while in our optimization based approach, the incurred
time cost is independent from the width of the performance region. Furthermore, both
test generation and execution in random testing are achieved at the same time using the
real implementation of the system, whereas in our model based approach, test generation
is achieved first using the developed models. Then, the generated test suite is executed
on the real implementation of the system. In general, test execution on the real system
is more costly than test execution on system models especially for performance testing.
Even with simulation models, test execution can be accelerated, while test execution on
real systems cannot be accelerated.

In general, performance models are developed to provide the required test oracles.
However, for some software applications (such as group I), performance models, whether
analytical or simulation, are computationally expensive. Therefore, in Chapter 5, we mod-
ified the test generation methodology that was proposed in Chapter 4 by utilizing a well
known testing technique called metamorphic testing. Metamorphic testing is a technique
proposed to mitigate the test oracle problem. In this thesis, test oracles are available but
expensive due to the high cost of the performance model. Thus, the main idea of the
modified test generation methodology was to minimize the number of performance model
evaluations by generating a limited number of seed test cases. Then, a set of follow-up
test cases are generated using the seed test cases and certain metamorphic relations. We

106

reused the two light analytical expressions for the mean and variance of waiting time delay
as inequality metamorphic relations. We showed that equality metamorphic relations that
are derived from input network models are not productive.

We formulated follow-up test generation as an optimization problem. We used three
different distance metrics as a fitness function: Euclidean, squared Euclidean, and Man-
hattan. The objective is to maximize the distance between seed test cases and follow-up
test cases to design a non-redundant set of test cases. The obtained results did not show
any advantage of one of the distance metrics over the other two. We used the modified
methodology to generate a set of test cases for the multimedia streaming example. The
effectiveness of the modified methodology was evaluated in comparison with the proposed
test generation methodology of Chapter 4 using two evaluation metrics: the incurred time
cost to generate a test suite and the percentage of redundancy in the generated test suite.
Although the number of conducted experiments was not comprehensive, the obtained re-
sults were very promising. The incurred time cost of the modified methodology is far less
than the time cost of the proposed methodology but with some redundancy in the de-
signed test suite. The percentage of redundancy increases with the size of the test suite.
We showed that the percentage of redundancy can tremendously be decreased by increas-
ing the number of seed test cases that, in turn, may increase the time cost. We showed an
effective compromise could be established between time cost and redundancy.

Lastly, in Chapter 6, we proposed a model based methodology to evaluate the impact of
interactions of wireless network conditions and application configurations on performance
robustness of adaptive and non-adaptive mobile networked applications. The main chal-
lenge in evaluating the robustness of configurable software applications is that the number
of configurations that need to be evaluated can rapidly increase to unmanageable limits.
We utilized the monotonicity property of the performance model to trim the number of
application-network interactions. The methodology required three artefacts as inputs: the
network model, the application behaviour model, and the performance model. The method-
ology was realized by three steps. To quantify robustness, two metrics were proposed. The
first metric, static robustness, was proposed to quantify the performance robustness of
non-adaptive mobile applications, while the second, dynamic robustness, was proposed
for adaptive mobile applications. To evaluate the dynamic robustness metric, the ability
of the adaptive application to tolerate degraded network conditions has to be evaluated.
This problem was formulated as a minimization problem. The proposed methodology was
used to evaluate the performance robustness of a mobile multimedia streaming application
against wireless network fluctuations. The application example showed the applicability
of the proposed methodology and highlighted the challenges/opportunities for further en-
hancements. The effectiveness of the proposed methodology was evaluated. The obtained

107

results showed three to five times reduction in total cost compared to the naive approach
in which all combinations are exhaustively evaluated.

7.2 Future works

The main objective of the work was to show how performance of mobile networked appli-
cations can be evaluated from the end user point of view. We have used a model based
software testing approach to achieve this goal. Nevertheless, there is always room for im-
provement. In the remaining part of this section, we list some of the directions for future
works:

• In Chapter 2, we have developed an analytical performance model for group I appli-
cations. We have assumed that the arrival time was generally distributed, while the
service (play) time was exponentially distributed to make the model tractable within
the available resources. Nevertheless, the utilized technique to develop and solve the
model, supplementary variable technique, can be used even if both arrival and service
times are assumed to be generally distributed. Instead of solving a set of differential
equations with one supplementary variable, the performance model is now described
by a set of partial differential equations with two supplementary variables.

• In chapter 3, we have developed network models for applications that access network
via a WiFi AP that implements IEEE 802.11 g standard and using both TCP and
UDP transport protocols. The assumption was that the direction of data transfer is
mainly from the Internet to the mobile devices via a WiFi AP. However, to consider
mobile applications that send and receive data in both directions, such as voice-over-
ip and on-line gaming, the developed network models should be extended to support
such applications. Another interesting direction is to develop network models for
other types of wireless technology such as cellular networks and Bluetooth.

• In Chapter 4, we compared our proposed test generation methodology with random
testing to show the effectiveness of the proposed methodology. The main overhead in
random testing is being both test generation and execution are done simultaneously
using the real implementation of the SUT. Performance metrics are normally statis-
tical measures in which the time cost of their evaluation is not trivial especially when
evaluated using the real implementation. Therefore, model based random testing can
be a promising approach to minimize the time cost of using classical random testing
in performance evaluation.

108

• In interaction combinatorial testing, input parameters should have finite number of
values. Otherwise, partition testing is used to limit the number of values. The
main idea is to partition the parameter space into multiple regions where all the
points of the same region are equivalent from the testing point of view. However,
figuring out regions of equivalent points is not always obvious. For example, one
of the parameters of the UDP network model is continuous, which is λ, the mean
arrival rate of packets to the WiFi AP per mobile user. It is not obvious what
are the regions of equivalent points for λ. In Chapter 4, we have sampled λ space
irrespectively. Since test generation was formulated as an optimization problem, an
interesting point to pursue is to investigate the possibility of using sensitivity analysis
to guide the sampling process of the parameter space. The idea is to consider the
range in a parameter’s value that does not affect the quality of the optimal solution
as the region of equivalent points.

109

References

[1] Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres. Model-based
performance testing in the cloud using the mbpet tool. In Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering, pages 423–424.
ACM, 2013.

[2] Fredrik Abbors and Dragoş Truş Can. Approaching performance testing from a
model-based testing perspective. In Advances in System Testing and Validation Life-
cycle (VALID), Second International Conference on, pages 125–128. IEEE, 2010.

[3] A. Abdrabou and W. Zhuang. Stochastic delay guarantees and statistical call ad-
mission control for ieee 802.11 single-hop ad hoc networks. IEEE Transactions on
Wireless Communications, 7(10):3972–3981, 2008.

[4] Ivo Adan and Jacques Resing. Queueing Theory: Ivo Adan and Jacques Resing.
Eindhoven University of Technology. Department of Mathematics and Computing
Science, 2001.

[5] Abdurhman Albasir, Kshirasagar Naik, Bernard Plourde, and Nishith Goel. Experi-
mental study of energy and bandwidth costs of web advertisements on smartphones.
In Mobile Computing, Applications and Services (MobiCASE), 2014 6th Interna-
tional Conference on, pages 90–97. IEEE, 2014.

[6] Attahiru Sule Alfa and TSS Rao. Supplementary variable technique in stochastic
models. Probability in the Engineering and Informational Sciences, 14(02):203–218,
2000.

[7] David Ameller, Claudia Ayala, Jordi Cabot, and Xavier Franch. How do software
architects consider non-functional requirements: An exploratory study. In Require-
ments Engineering Conference (RE), 2012 20th IEEE International, pages 41–50.
IEEE, 2012.

110

[8] Thomas Anderson and John C. Knight. A framework for software fault tolerance in
real-time systems. IEEE Trans. on Soft. Eng., SE-9(3):355–364, 1983.

[9] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. on Dependable
and Secure Computing, 1(1):11–33, 2004.

[10] Alberto Avritzer, Joe Kondek, Danielle Liu, and Elaine J Weyuker. Software perfor-
mance testing based on workload characterization. In Proceedings of the 3rd inter-
national workshop on Software and performance, pages 17–24. ACM, 2002.

[11] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
Model-based performance prediction in software development: A survey. Software
Engineering, IEEE Transactions on, 30(5):295–310, 2004.

[12] Simonetta Balsamo and Moreno Marzolla. A simulation-based approach to software
performance modeling. SIGSOFT Softw. Eng. Notes, 28(5):363–366, September 2003.

[13] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Autonomic load-testing frame-
work. In Proceedings of the 8th ACM international conference on Autonomic com-
puting, pages 91–100. ACM, 2011.

[14] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Model-based performance test-
ing (nier track). In Proceedings of the 33rd International Conference on Software
Engineering, pages 872–875. ACM, 2011.

[15] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The
oracle problem in software testing: A survey. IEEE transactions on software engi-
neering, 41(5):507–525, 2015.

[16] Benoit Baudry, Yves Le Traon, and J-M Jézéquel. Robustness and diagnosability of
oo systems designed by contracts. In Proc. of the 7th Int. Software Metrics Symp.,
pages 272–284. IEEE, 2001.

[17] Giuseppe Bianchia, Sunghyun Choib, and I Tinnirello. Performance study of ieee
802.11 dcf and ieee 802.11 e edca. In Benny Bing, editor, Emerging technologies in
wireless LANs: theory, design, and deployment, chapter 4, pages 63–103. Cambridge
University Press, New York, USA, 2008.

[18] Robert V Binder, Bruno Legeard, and Anne Kramer. Model-based testing: where
does it stand? Communications of the ACM, 58(2), 2015.

111

[19] Gunter Bolch, Stefan Greiner, Hermann De Meer, and Kishor S Trivedi. Queueing
networks and Markov chains: modeling and performance evaluation with computer
science applications. John Wiley & Sons, 2006.

[20] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli. Testing
the untestable: model testing of complex software-intensive systems. In Proceedings
of the 38th International Conference on Software Engineering Companion, pages
789–792. ACM, 2016.

[21] Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko Koziolek, and
Samuel Kounev. Quantitative evaluation of model-driven performance analysis and
simulation of component-based architectures. Software Engineering, IEEE Transac-
tions on, 41(2):157–175, 2015.

[22] Peter Buchholz. Input Modeling with Phase-Type Distributions and Markov Models:
Theory and Applications. Springer, 2014.

[23] L. X. Cai, Xuemin Shen, J. W. Mark, L. Cai, and Yang Xiao. Voice capacity anal-
ysis of wlan with unbalanced traffic. IEEE Transactions on Vehicular Technology,
55(3):752–761, 2006.

[24] Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Robustness-driven resilience evaluation of self-adaptive software systems.
IEEE Transactions on Dependable and Secure Computing, 14(1):50–64, 2017.

[25] Gerardo Canfora, Francesco Mercaldo, Corrado Aaron Visaggio, Mauro D’Angelo,
Antonio Furno, and Carminantonio Manganelli. A case study of automating user
experience-oriented performance testing on smartphones. In Software Testing, Veri-
fication and Validation (ICST), 2013 IEEE Sixth International Conference on, pages
66–69. IEEE, 2013.

[26] Yuxiang Cao, Zhi Quan Zhou, and Tsong Yueh Chen. On the correlation between
the effectiveness of metamorphic relations and dissimilarities of test case executions.
In Quality Software (QSIC), 2013 13th International Conference on, pages 153–162.
IEEE, 2013.

[27] Computer Security Resource Center. Advanced combinatorial testing system (acts).
http://csrc.nist.gov/groups/SNS/acts/, 2016.

112

[28] FT Chan, TY Chen, Shing Chi Cheung, MF Lau, and SM Yiu. Application of meta-
morphic testing in numerical analysis. In Proceedings of the IASTED International
Conference on Software Engineering (SE’98), 1998.

[29] WK Chan, Tsong Y Chen, Shing Chi Cheung, TH Tse, and Zhenyu Zhang. Towards
the testing of power-aware software applications for wireless sensor networks. In Int.
Conference on Reliable Software Technologies, pages 84–99. Springer, 2007.

[30] John M Charnes. Analyzing multivariate output. In Proceedings of the 27th confer-
ence on Winter simulation, pages 201–208. IEEE Computer Society, 1995.

[31] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,
and Zhi Quan Zhou. Metamorphic testing: A review of challenges and opportunities.
ACM Computing Surveys (CSUR), 51(1):4, 2018.

[32] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and Shengqiong Wang. Conformance
testing of network simulators based on metamorphic testing technique. In Formal
Techniques for Distributed Systems, pages 243–248. Springer, 2009.

[33] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Jef-
frey Voas, and Zhi Quan Zhou. Metamorphic testing for cybersecurity. Computer,
49(6):48–55, 2016.

[34] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-functional re-
quirements in software engineering. In Conceptual modeling: Foundations and appli-
cations, pages 363–379. Springer, 2009.

[35] IEEE Standards Coordinating Committee et al. Ieee standard glossary of software
engineering terminology. IEEE Std 610.12-1990, pages 1–84, 1990.

[36] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. Model-based software
performance analysis. Springer Science & Business Media, 2011.

[37] Leandro T Costa, Ricardo M Czekster, Flávio M de Oliveira, Elder de M Rodrigues,
Maicon B da Silveira, and Avelino F Zorzo. Generating performance test scripts and
scenarios based on abstract intermediate models. In SEKE, pages 112–117, 2012.

[38] Domenico Cotroneo, Domenico Di Leo, Francesco Fucci, and Roberto Natella.
Sabrine: State-based robustness testing of operating systems. In Proc. of the 28th
IEEE/ACM Int. Conf. on Automated Soft. Eng., pages 125–135. IEEE, 2013.

113

[39] D. R. Cox. The analysis of non-markovian stochastic processes by the inclusion of
supplementary variables. Mathematical Proceedings of the Cambridge Philosophical
Society, 51(3):433–441, 1955.

[40] David Roxbee Cox and Hilton David Miller. The theory of stochastic processes,
volume 134. CRC Press, 1977.

[41] Maicon B Da Silveira, Elder de M Rodrigues, Avelino F Zorzo, Leandro T Costa,
Hugo V Vieira, and Flávio M De Oliveira. Generation of scripts for performance
testing based on uml models. In SEKE, pages 258–263, 2011.

[42] Valeria Lelli Leitao Dantas, Fabiana Gomes Marinho, Aline Luiza da Costa, and
Rossana MC Andrade. Testing requirements for mobile applications. In Com-
puter and Information Sciences, 2009. ISCIS 2009. 24th International Symposium
on, pages 555–560. IEEE, 2009.

[43] Luca De Cicco and Saverio Mascolo. An adaptive video streaming control system:
Modeling, validation, and performance evaluation. Networking, IEEE/ACM Trans-
actions on, 22(2):526–539, 2014.

[44] Massimiliano Di Penta, Gerardo Canfora, Gianpiero Esposito, Valentina Mazza, and
Marcello Bruno. Search-based testing of service level agreements. In Proceedings
of the 9th annual conference on Genetic and evolutionary computation, pages 1090–
1097. ACM, 2007.

[45] Almudena Diaz, Pedro Merino, and F Javier Rivas. Mobile application profiling for
connected mobile devices. IEEE Pervasive Computing, 9(1):54–61, 2010.

[46] Junhua Ding, Tong Wu, Jun Q Lu, and Xin-Hua Hu. Self-checked metamorphic
testing of an image processing program. In Secure Software Integration and Reliabil-
ity Improvement (SSIRI), 2010 Fourth International Conference on, pages 190–197.
IEEE, 2010.

[47] Karl Doerner and Walter J Gutjahr. Extracting test sequences from a markov soft-
ware usage model by aco. In Genetic and Evolutionary Computation—GECCO 2003,
pages 2465–2476. Springer, 2003.

[48] Markus Fiedler, Tobias Hossfeld, and Phuoc Tran-Gia. A generic quantitative re-
lationship between quality of experience and quality of service. Network, IEEE,
24(2):36–41, 2010.

114

[49] Borko Furht. Encyclopedia of multimedia. Springer Science & Business Media, 2008.

[50] Shiwei Gao, Binglei Du, Yaruo Jiang, Jianghua Lv, and Shilong Ma. An efficient
algorithm for pairwise test case generation in presence of constraints. In Systems and
Informatics (ICSAI), 2nd International Conference on, pages 406–410. IEEE, 2014.

[51] Reinhard German. Performance analysis of communication systems with non-
Markovian stochastic Petri nets. John Wiley & Sons, Inc., 2000.

[52] Alim Ul Gias and Kazi Sakib. An adaptive bayesian approach for url selection to
test performance of large scale web-based systems. In Companion Proceedings of the
36th International Conference on Software Engineering, pages 608–609. ACM, 2014.

[53] Abhijit Gosavi. Simulation-based optimization: parametric optimization techniques
and reinforcement learning, volume 55. Springer, 2014.

[54] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance prob-
lems with feedback-directed learning software testing. In 2012 34th International
Conference on Software Engineering (ICSE), pages 156–166. IEEE, 2012.

[55] Mats Grindal, Jeff Offutt, and Sten F Andler. Combination testing strategies: a
survey. Software Testing, Verification and Reliability, 15(3):167–199, 2005.

[56] Yuanyan Gu and Yujia Ge. Search-based performance testing of applications with
composite services. In Web Information Systems and Mining, 2009. WISM 2009.
International Conference on, pages 320–324. IEEE, 2009.

[57] Ralph Guderlei and Johannes Mayer. Statistical metamorphic testing: testing pro-
grams with random output by means of statistical hypothesis tests and metamorphic
testing. In 7th Int. Conf. on Quality Software (QSIC), pages 404–409. IEEE, 2007.

[58] Ralph Guderlei, Johannes Mayer, Christoph Schneckenburger, and Frank Fleischer.
Testing randomized software by means of statistical hypothesis tests. In Fourth
international workshop on Software quality assurance: in conjunction with the 6th
ESEC/FSE joint meeting, pages 46–54. ACM, 2007.

[59] Mahbub Hassan and Raj Jain. High performance TCP/IP networking. Prentice Hall
Upper Saddle River, NJ, 2003.

[60] Mohammad Mahdi Hassan, Wasif Afzal, Martin Blom, Birgitta Lindström, Sten F
Andler, and Sigrid Eldh. Testability and software robustness: A systematic literature

115

review. In Software Engineering and Advanced Applications (SEAA), 41st Euromicro
Conference on, pages 341–348. IEEE, 2015.

[61] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achieving scalable model-based
testing through test case diversity. ACM Transactions on Software Engineering and
Methodology (TOSEM), 22(1):6, 2013.

[62] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Hey-
mans, and Yves Le Traon. Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product lines. IEEE
Trans. on Soft. Eng., 40(7):650–670, 2014.

[63] W Henderson. Alternative approaches to the analysis of the m/g/1 and g/m/1
queues. J. Oper. Res. Soc. Japan, 15:92–101, 1972.

[64] M Hlynka and T Wang. Comments on duality of queues with finite buffer size.
Operations research letters, 14(1):29–33, 1993.

[65] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. Initial
delay vs. interruptions: Between the devil and the deep blue sea. In 2012 Fourth
International Workshop on Quality of Multimedia Experience, pages 1–6, 2012.

[66] Mihai Ivanovici and Razvan Beuran. Correlating quality of experience and quality
of service for network applications. In Sasan Adibi, editor, Quality of service archi-
tectures for wireless networks: performance metrics and management, chapter 15,
pages 326–351. IGI Global, Pennsylvania, USA, 2010.

[67] Raj Jain. The art of computer systems performance analysis: techniques for experi-
mental design, measurement, simulation, and modeling. John Wiley & Sons, 1990.

[68] Z.M. Jiang and A.E. Hassan. A survey on load testing of large-scale software systems.
Software Engineering, IEEE Transactions on, 41(11):1091–1118, Nov 2015.

[69] Chuanming Jing, Zhiliang Wang, Xingang Shi, Xia Yin, and Jianping Wu. Mutation
testing of protocol messages based on extended ttcn-3. In Advanced Information
Networking and Applications, 2008. AINA 2008. 22nd International Conference on,
pages 667–674. IEEE, 2008.

[70] Chuanming Jing, Zhiliang Wang, Xia Yin, and Jianping Wu. A formal approach to
robustness testing of network protocol. In IFIP International Conference on Network
and Parallel Computing, pages 24–37. Springer, 2008.

116

[71] William Johansson, Martin Svensson, Ulf E Larson, Magnus Almgren, and Vincenzo
Gulisano. T-fuzz: Model-based fuzzing for robustness testing of telecommunication
protocols. In Software Testing, Verification and Validation (ICST), 2014 IEEE Sev-
enth International Conference on, pages 323–332. IEEE, 2014.

[72] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real challenges in
mobile app development. In Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on, pages 15–24. IEEE, 2013.

[73] Fikri Karaesmen and Surendra M Gupta. Duality relations for queues with arrival
and service control. Computers & operations research, 24(6):529–538, 1997.

[74] Sunint Kaur Khalsa and Yvan Labiche. An orchestrated survey of available algo-
rithms and tools for combinatorial testing. In 2014 IEEE 25th International Sympo-
sium on Software Reliability Engineering, pages 323–334. IEEE, 2014.

[75] Youngjoo Kim, Okjoo Choi, Moonzoo Kim, Jongmoon Baik, and Tai-Hyo Kim. Val-
idating software reliability early through statistical model checking. IEEE software,
30(3):35–41, 2013.

[76] Donald Ervin Knuth. The art of computer programming: sorting and searching,
volume 3. Pearson Education, 1998.

[77] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and Ted Marz.
Comparing operating systems using robustness benchmarks. In Proc. of Reliable
Distributed Systems, The 16th Symp. on, pages 72–79. IEEE, 1997.

[78] Heiko Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634–658, 2010.

[79] Peter M Kruse, Jurgen Bauer, and Joachim Wegener. Numerical constraints for
combinatorial interaction testing. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pages 758–763. IEEE, 2012.

[80] Vidyadhar G Kulkarni. Introduction to modeling and analysis of stochastic systems.
Springer New York, 2011.

[81] Averill M Law. Simulation modeling and analysis. McGraw-Hill New York, fifth
edition, 2015.

117

[82] Longshu Li, Yingxia Cui, and Yun Yang. Combinatorial test cases with constraints
in software systems. In Computer Supported Cooperative Work in Design (CSCWD),
2012 IEEE 16th International Conference on, pages 195–199. IEEE, 2012.

[83] Mingzhe Li, Mark Claypool, and Robert Kinicki. Playout buffer and rate opti-
mization for streaming over ieee 802.11 wireless networks. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), 5(3):26, 2009.

[84] Mikael Lindvall, Dharmalingam Ganesan, Ragnar Árdal, and Robert E Wiegand.
Metamorphic model-based testing applied on nasa dat–an experience report. In
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, volume 2, pages 129–138. IEEE, 2015.

[85] H. Liu, F. C. Kuo, D. Towey, and T. Y. Chen. How effectively does metamorphic
testing alleviate the oracle problem? IEEE Transactions on Software Engineering,
40(1):4–22, 2014.

[86] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Diagnosing energy efficiency and
performance for mobile internetware applications. Software, IEEE, 32(1):67–75, 2015.

[87] Kevin J Ma, Radim Bartos, Swapnil Bhatia, and Raj Nair. Mobile video delivery
with http. Communications Magazine, IEEE, 49(4):166–175, 2011.

[88] Rivalino Matias, Kishor S Trivedi, and Paulo Romero Martins Maciel. Using accel-
erated life tests to estimate time to software aging failure. In 21st IEEE Int. Symp.
on Soft. Reliab. Eng., pages 211–219, 2010.

[89] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. Auto-
mated test suite generation for time-continuous simulink models. In proceedings of
the 38th International Conference on Software Engineering, pages 595–606. ACM,
2016.

[90] Ricky KP Mok, Edmond WW Chan, and Rocky KC Chang. Measuring the quality of
experience of http video streaming. In 12th IFIP/IEEE Int. Symp. on Integ. Network
Management and Workshops, pages 485–492. IEEE, 2011.

[91] Fatih Nayebi, Jean-Marc Desharnais, and Alain Abran. The state of the art of mobile
application usability evaluation. In CCECE, pages 1–4, 2012.

[92] Alessandro Orso and Gregg Rothermel. Software testing: a research travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering, pages 117–132.
ACM, 2014.

118

[93] Stacy J Prowell. Using markov chain usage models to test complex systems. In Sys-
tem Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii International
Conference on, pages 318c–318c. IEEE, 2005.

[94] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review
of algorithms and comparison of software implementations. Journal of Global Opti-
mization, 56(3):1247–1293, 2013.

[95] Antoine Rollet and Fares Saad-Khorchef. A formal approach to test the robustness
of embedded systems using behaviour analysis. In Software Engineering Research,
Management & Applications, 2007. SERA 2007. 5th ACIS International Conference
on, pages 667–674. IEEE, 2007.

[96] Ichiro Satoh. Software testing for wireless mobile computing. IEEE Wireless Com-
munications, 11(5):58–64, 2004.

[97] Nazim Sebih, Franz Weitl, Cyrille Artho, Masami Hagiya, Yoshinori Tanabe, and
Mitsuharu Yamamoto. Software model checking of udp-based distributed applica-
tions. In 2014 Second International Symposium on Computing and Networking, pages
96–105. IEEE, 2014.

[98] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés. Metamorphic testing of restful
web apis. IEEE Transactions on Software Engineering, 0(0):1–1, 2017.

[99] Sergio Segura et al. A survey on metamorphic testing. IEEE Transactions on software
engineering, 42(9):805–824, 2016.

[100] Sergio Segura, Javier Troya, Amador Durán, and Antonio Ruiz-Cortés. Performance
metamorphic testing: motivation and challenges. In Software Engineering: New Ideas
and Emerging Technologies Results Track (ICSE-NIER), 2017 IEEE/ACM 39th In-
ternational Conference on, pages 7–10. IEEE, 2017.

[101] Sergio Segura, Javier Troya, Amador Durán, and Antonio Ruiz-Cortés. Performance
metamorphic testing: A proof of concept. Information and Software Technology,
98:1–4, 2018.

[102] Syed Muhammad Ali Shah, Daniel Sundmark, Birgitta Lindström, and Sten F An-
dler. Robustness testing of embedded software systems: An industrial interview
study. IEEE Access, 4:1859–1871, 2016.

119

[103] Ali Shahrokni and Robert Feldt. A systematic review of software robustness. Infor-
mation and Software Technology, 55(1):1–17, 2013.

[104] Faezeh Siavashi and Dragos Truscan. Environment modeling in model-based test-
ing: concepts, prospects and research challenges: a systematic literature review. In
Proceedings of the 19th International Conference on Evaluation and Assessment in
Software Engineering, page 30. ACM, 2015.

[105] Bento Rafael Siqueira, Fabiano Cutigi Ferrari, Marcel Akira Serikawa, Ricardo
Menotti, and Valter Vieira de Camargo. Characterisation of challenges for testing of
adaptive systems. In Proceedings of the 1st Brazilian Symposium on Systematic and
Automated Software Testing, page 11. ACM, 2016.

[106] Connie U Smith. Introduction to software performance engineering: Origins and
outstanding problems. In Formal Methods for Performance Evaluation, pages 395–
428. Springer, 2007.

[107] William J Stewart. Probability, Markov chains, queues, and simulation: the mathe-
matical basis of performance modeling. Princeton University Press, 2009.

[108] Fang-Hsiang Su, Jonathan Bell, Christian Murphy, and Gail Kaiser. Dynamic infer-
ence of likely metamorphic properties to support differential testing. In Automation
of Software Test (AST), 2015 IEEE/ACM 10th International Workshop on, pages
55–59. IEEE, 2015.

[109] Albert Tarantola. Inverse problem theory and methods for model parameter estima-
tion. siam, 2005.

[110] Abbas Tarhini, Antoine Rollet, and Hacène Fouchal. A pragmatic approach for
testing robustness on real-time component based systems. In Computer Systems
and Applications, 2005. The 3rd ACS/IEEE International Conference on, page 143.
IEEE, 2005.

[111] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5):297–312,
2012.

[112] Arunchandar Vasan and Atif M Memon. Aspire: Automated systematic protocol im-
plementation robustness evaluation. In Software Engineering Conference, Australian
Proceedings, pages 241–250. IEEE, 2004.

120

[113] Robert J Walls, Yuriy Brun, Marc Liberatore, and Brian Neil Levine. Discovering
specification violations in networked software systems. In Software Reliability En-
gineering (ISSRE), 2015 IEEE 26th International Symposium on, pages 496–506.
IEEE, 2015.

[114] Gwendolyn H Walton and Jesse H. Poore. Generating transition probabilities to sup-
port model-based software testing. Software: practice and experience, 30(10):1095–
1106, 2000.

[115] Elaine J Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[116] Elaine J Weyuker and Filippos I Vokolos. Experience with performance testing of
software systems: issues, an approach, and case study. IEEE transactions on software
engineering, 26(12):1147–1156, 2000.

[117] Murray Woodside, Greg Franks, and Dorina C Petriu. The future of software per-
formance engineering. In Future of Software Engineering, 2007. FOSE’07, pages
171–187. IEEE, 2007.

[118] Yang Xiang, Zhiliang Wang, and Xia Yin. Sip robustness testing based on ttcn-3. In
Advanced Information Networking and Applications Workshops, 2009. WAINA’09.
International Conference on, pages 122–128. IEEE, 2009.

[119] Shu Xiao, Sheng Li, Xiangrong Wang, and Lijun Deng. Fault-oriented software ro-
bustness assessment for multicast protocols. In Network Computing and Applications,
2nd IEEE Int. Symp. on, pages 223–230. IEEE, 2003.

[120] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. Testing and validating machine learning classifiers by metamor-
phic testing. Journal of Systems and Software, 84(4):544–558, 2011.

[121] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. Proteus: network perfor-
mance forecast for real-time, interactive mobile applications. In Proceeding of the
11th annual international conference on Mobile systems, applications, and services,
pages 347–360. ACM, 2013.

[122] Cheer-Sun D. Yang and Lori L. Pollock. Towards a structural load testing tool.
SIGSOFT Softw. Eng. Notes, 21(3):201–208, 1996.

121

[123] Cemal Yılmaz, Sandro Fouche, Myra B Cohen, Adam Porter, Gülşen Demiröz,
and Uğur Koç. Moving forward with combinatorial interaction testing. Computer,
47(2):37–45, 2014.

[124] Xia Yin, Zhiliang Wang, Chuanming Jing, and Jianping Wu. A formal approach to
robustness testing of network protocol with time constraints. Security and Commu-
nication Networks, 4(6):622–632, 2011.

[125] Linbin Yu, Feng Duan, Yu Lei, Raghu N Kacker, and D Richard Kuhn. Constraint
handling in combinatorial test generation using forbidden tuples. In Software Testing,
Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on, pages 1–9. IEEE, 2015.

[126] Linbin Yu, Yu Lei, Mehra Nourozborazjany, Raghu N Kacker, and D Richard Kuhn.
An efficient algorithm for constraint handling in combinatorial test generation. In
2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation, pages 242–251. IEEE, 2013.

[127] Jian Zhang and Shing Chi Cheung. Automated test case generation for the stress
testing of multimedia systems. Software: Practice and Experience, 32(15):1411–1435,
2002.

[128] Jian Zhang, Shing-Chi Cheung, and Samuel T Chanson. Stress testing of distributed
multimedia software systems. In Proc. of the IFIP TC6 WG6.1 Joint Int. Conf. on
Formal Description Techniques for Distributed Systems and Communication Proto-
cols and Protocol Specification, Testing and Verification, pages 119–133. Kluwer, BV,
1999.

[129] Pingyu Zhang, Sebastian Elbaum, and Matthew B Dwyer. Automatic generation of
load tests. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 43–52. IEEE Computer Society, 2011.

[130] Pingyu Zhang, Sebastian Elbaum, and Matthew B Dwyer. Compositional load test
generation for software pipelines. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis, pages 89–99. ACM, 2012.

[131] Junzan Zhou, Bo Zhou, and Shanping Li. Automated model-based performance
testing for paas cloud services. In Computer Software and Applications Conference
Workshops (COMPSACW), 2014 IEEE 38th International, pages 644–649. IEEE,
2014.

122

	List of Tables
	List of Figures
	Abbreviations
	List of Symbols
	Introduction
	Motivation and Challenges
	The Performance Attribute of Software Systems
	Problem Formulation
	Research Objectives and Contributions
	The proposed test generation methodology
	The modified test generation methodology
	Performance robustness evaluation
	Performance model development
	Wireless network model development

	Literature Review
	Performance testing and evaluation
	Performance testing in mobile devices
	Combinatorial testing with constraints
	Using simulation models in testing
	Software robustness
	Metamorphic testing

	Thesis Outline

	The Performance Model
	Functional Requirements of The Multimedia Streaming Application
	The Considered Performance Metric
	Performance Model Validation
	Summary

	Input Network Models
	IEEE 802.11 Protocol Standard
	Data Transfer Using A UDP Protocol
	Model Validation for The UDP Scenario
	Data Transfer Using A TCP Protocol
	Model Validation for The TCP Scenario
	The TCP Scenario With Multiple Packet APDUs
	Validation of The TCP Model With APDUs of Multiple Packets
	Summary

	A Test Generation Methodology for Performance Evaluation
	Introduction
	Inputs to The Methodology
	The behaviour model of the SUT
	The network model
	Desired performance levels
	Test selection strategies

	The Methodology Procedure
	Develop performance models
	Generate test cases
	Determine TEPs

	Using The Proposed Methodology
	Test generation for a multimedia streaming application
	Test generation for a web browsing application

	Evaluation of The Methodology
	Applicability of The Methodology
	Summary

	The Modified Test Generation Methodology Using Metamorphic Testing
	Test Generation Using Metamorphic Testing
	Metamorphic Relations for Performance Testing
	The Modified Methodology
	Using the Methodology
	Evaluation of The Approach
	Redundancy in the test suite
	The incurred time cost
	The impact of increasing the number of seed test cases

	Summary

	Performance Robustness of Mobile Networked Applications
	The Methodology Inputs
	The Details of The Methodology
	Robustness Analysis of A Mobile Streaming Application
	Evaluation of The Methodology
	Summary

	Conclusion and Future Works
	Conclusion
	Future works

	References

