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Abstract

Learning in the Neural Engineering Framework (NEF) and the Semantic Pointer

Architecture (SPA) has been recently extended beyond the supervised Pre-

scribed Error Sensitivity (PES) to include the unsupervised Vector Oja (Voja).

This thesis demonstrates how the combination of these learning rules can be

used to learn associative memories. Moreover, these techniques are used to

provide explanations of two behaving cognitive phenomena that are modeled

with spiking neurons. First, the standard progression of cognitive addition

strategies from counting to memorization, as occurs in children, is modelled

as a transfer of skills. Initially, addition by counting is performed in the slow

basal ganglia based system, before being overtaken by a rapid cortical asso-

ciative memory as a type of pre-frontal, cortical consolidation. Second, a

word-pair recognition task, where two distinct types of word-pairs are mem-

orized, is modelled. The Voja learning rule is modified to match temporal

lobe magnetoencephalography (MEG) data generated by each word-pair type

observed during the task. This empirically grounds the associative memory

model, which has not been possible using other cognitive modeling paradigms.

The distinct implementation of Voja for each area, pre-frontal and temporal,

demonstrates the different roles that the areas perform during learning.
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Chapter 1

Introduction

Two of the greatest challenges facing cognitive modelers are scalability and

adaptability. Scalability refers to the ability to keep reusing the same system,

the brain, to switch between tasks. Adaptibility refers to the ability to leverage

previous experience when performing similar tasks. Building a model able to

replicate various cognitive behaviours across multiple tasks is difficult enough,

without giving it the ability to improve over time. This undertaking becomes

even more daunting when trying to constrain the model biologically by basing

its communication on spiking neurons, as well as making sure learning only

requires information local to the neuron.

One attempt at satisfying biological constraints while scaling up is the Se-

mantic Pointer Architecture Unified Network (Spaun), which is currently the

largest behaving model of the human brain (Choo, 2018). Spaun has a range

of cognitive skills, including serial working memory, induction and reinforce-

ment learning. As input, it interprets 224x224 images with its vision system.

As output, it controls a simulated arm. Spaun uses these skill to perform a

variety of tasks, include list memorization, Raven’s Progressive Matrices and

the n-arm bandit task. In addition to these tasks, Spaun is able to follow in-

structions for combining/chaining different tasks together. However, Spaun

lacks the ability to permanently improve its performance from previously ex-

perienced cognitive tasks.

1



Chapter 1. Introduction

This cognitive skill, wherein performance improves as tasks are rehearsed

and practiced, is the focus of this thesis.

1.1 Improving with Practice

Previous attempts at improving with practice in a neural model include De-

Wolf and Eliasmith, 2013, wherein a simple motor skill (assigning a tone

heard to a specific output) is consolidated in the cortex with practice. How-

ever, it is not clear how the skill allowing this simple perceptual one-to-one

mapping could be extended for complex symbolic relations. This thesis scales

the concept of improving with practice to enable consolidation while using

complex representations, thus explaining more biological and cognitive phe-

nomena.

In this thesis, two tasks using complex representations are modelled to un-

derstand the mechanisms behind improving with practice in different areas

of the brain. First, the developmental progression of cognitive addition ap-

proaches, from a counting-based to recall-based strategy, is modeled. Second,

a word-pair associative recognition task modeled. In the addition task, the

improvement with practice is thought to originate in the pre-frontal cortex.

Whereas in the word-pair task, the improvement is thought to occur in the

temporal lobe. By contrasting these two models the mechanisms required for

improving with practice are better understood in terms of their inputs and

goals.

1.1.1 Thesis Structure

This thesis is structured as follows. The remainder of Chapter 1 describes

the Addition Strategy Progress (ASP) and Word-Pair Recognition (WPR) tasks.

Chapter 2 introduces the Neural Engineering Framework (NEF) and the Se-

mantic Pointer Architecture (SPA) and discusses how they characterize the

2



1.1. Improving with Practice

neural representation of symbols, as well as the learning of associative mem-

ories. In Chapter 3, the ASP task is modeled, replicating the developmental

behaviour and fMRI correlates of evolving addition strategies. Chapter 4 mod-

ifies the Voja learning rule used in association memory learning to match the

experimental MEG signals of the WPR task. Chapter 5 summarizes the results

and limitations of the different learning rules, as well as suggesting paths for

future research.

1.1.2 Addition Strategy Progression

Mathematical Development in Children

The developmental transition from counting to memorization strategies when

performing addition is an excellent example of improving with practice. This

transition, like the acquisition of most mathematical skills throughout develop-

ment, is not a simple linear progression (Sarnecka and Carey, 2008). Children

transition through various strategies before converging on memorization, as

shown in Table 1.1. The Counting strategy, modelled in Section 3.2, involves

taking the largest addend and counting the amount of the remaining addend.

For example, if performing 3+2, you would count from 3 twice: “3, 4, 5”. The

Recall strategy, modelled in Section 3.3, involves retrieving the addition fact

from memory nearly instantaneously. As Counting is replaced by Recall, both

the reaction times and error rates decrease, as shown in Table 1.2 and 1.3.

This decrease in reaction times and error is also modelled in Section 3.3.

Although other strategies have been identified, this thesis focuses on the

Counting and Recall strategies, since they present the most significant devel-

opmental change. Additionally, for the sake of simplicity, only sums under 10

are considered.

Addition-by-counting has already been implemented in Spaun. However

3



Chapter 1. Introduction

TABLE 1.1: Percentage of addition strategy use by grade level
(summarized from Siegler, 1987).

Grade level Counting Recall
Guess or

no response Other

Kindergarten 30 % 16 % 30 % 24 %
Grade 1 38 % 44 % 8 % 10 %
Grade 2 40 % 45 % 5 % 11 %

TABLE 1.2: Median solution times (seconds) per addition strat-
egy use by grade level (summarized from Siegler, 1987).

Grade level Counting Recall
Kindergarten 6.0 s 3.9 s
Grade 1 6.9 s 2.1 s
Grade 2 3.9 s 1.8 s

TABLE 1.3: Percentage of errors per addition strategy use by
grade level (summarized from Siegler, 1987).

Grade level Counting Recall
Kindergarten 19 % 29 %
Grade 1 4 % 17 %
Grade 2 3 % 7 %

Spaun has no means of improving in terms of accuracy or speed when pre-

sented with similar tasks (Choo, 2018). Consequently, a cortical association

mechanism is implemented in Chapter 3 to allow for memorization of previ-

ously seen addition-by-counting problems.

The transition between Counting and Recall was previously modelled using

ACT-R (Lebiere, 1999). However, the ACT-R model uses a symbolic abstrac-

tion to explain the memorization process, wherein the mapping from addend

to a set of addition facts is learned according to a probabilistic learning rule.

Thus, unlike the model in Chapter 3, the ACT-R model has no grounding in

biological neurons and thus limited neuroanatomical mapping. For example,

ACT-R can relate activation of a module to a certain brain area, but the dy-

namics of this activation are not possible. This lack of constraints limit the

4



1.1. Improving with Practice

explanatory power of the ACT-R model.

1.1.3 Word-Pair Recognition

The word-pair recognition task, described initially by Borst et al. (2013), re-

quires a subject to study word pairs such as SPARK+METAL and DOOR+CAR.

During training, the subject is prompted with one word from the pair (DOOR)

and must provide the matching word (CAR). A day later, the subject is tested

to differentiate previously seen target pairs (SPARK+METAL) from foils com-

posed of words seen during training (SPARK+CAR). Given that the foils are

composed of training words that have been re-paired into combinations not

seen during training, they are called re-paired foils (RPFoil). The practiced-

based nature of the WPR task differentiates it from previously modelled list

memorization tasks which rely on internal rehearsal (e.g. Gosmann (2018)).

In the WPR, pairs are learned via prompt, whereas list memorization relies on

a single type of presentation with no quiz-like prompts.

The WPR task relies on a similar association mechanism to the memo-

rization strategy of the ASP task. They both combine a pair of inputs into a

memory. However, there is no obvious iterative procedure for determining the

correct result of a recall, thus ASP and WPR are not perfectly analogous.

In the WPR task, two different sets of word pairs with different associative

fan, FAN1 and FAN2, are studied. Associative “fan” refers to the number of

associations an item has with other items in memory. The distinction is ex-

plained with examples in Table 1.4 and reiterated in the next paragraph while

describing the training procedure. Word-pairs are studied during the task by

prompting the subject with a single word from the pair and waiting for all

relevant responses.

For example, using the words from Table 1.4, if the subject is prompted

with SPARK, they should respond with METAL. The fact that SPARK is only

5



Chapter 1. Introduction

TABLE 1.4: Stimuli types for word-pair recognition task. FAN1
and FAN2 pairs are presented during training. During testing,
FAN1 and FAN2 pairs must be distinguished from RPFoil1 and
RPFoil2 pairs. The “Half-matching pairs” column lists pairs seen
during training with a word in common with the presented pair.

Stimuli
type

Example
word-pairs Half-matching pairs

FAN1 METAL+SPARK

TREE+BRAIN

None

None

FAN2 FILE+WHEEL

DOOR+CHAIR

FILE+BIKE

BIKE+WHEEL

DOOR+CAR

CHAIR+CAR

RPFoil1 METAL+BRAIN METAL+SPARK

TREE+BRAIN

RPFoil2 FILE+CAR FILE+WHEEL

FILE+BIKE

DOOR+CAR

CHAIR+CAR

6



1.1. Improving with Practice

ever associated to METAL during training and no other word, makes SPARK+METAL

a FAN1 pair.

If the subject is prompted with a word from a FAN2 pair, instead of a

FAN1 pair as in the previous example, they must provide both paired words.

For example, still using the words from Table 1.4, if the subject is prompted

with the word FILE, they should respond with both WHEEL and BIKE. FILE

requires two responses because it is part of two word-pairs (FILE+WHEEL

and FILE+BIKE). The fact that FILE, WHEEL and BIKE each have exactly two

associated pairs, as shown in Table 1.4, makes each word-pair (FILE+WHEEL,

FILE+BIKE, BIKE+WHEEL) a FAN2 word-pair.

During recognition testing, both pairs seen during training are shown, com-

bined with RPFoils from each word-pair type. Thus, four types of stimuli are

seen at test time: FAN1 targets, FAN2 targets, FAN1 RPFoil and FAN2 RPFoil.

For the sake of brevity, these will be referred to as: FAN1, FAN2, RPFoil1 and

RPFoil2. These distinct stimuli give rise to different MEG responses, as well

as different error rates and reaction times, as discussed in Chapter 4.
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Chapter 2

Methods

This chapter introduces the NEF, SPA, and the learning rules used to imple-

mented the tasks presented in Chapter 1.

2.1 Neural Engineering Framework

At its core, the NEF is a mathematical tool for translating dynamic functions

defined over vector spaces into networks of spiking neurons and weights (Elia-

smith and Anderson, 2003). The models presented in this thesis rely specifi-

cally on the NEF concepts of encoding and decoding.

2.1.1 Encoding

Encoding defines how a vector x(t) can be represented by the spiking activ-

ity of a neuron population. Each neuron is i assigned an encoding vector ei,

which translate from N-dimensional representation space to firing rates. They

can be understood as a preferred direction in the vector space. Neurons are

also assigned a gain αi, and a background current Jbias
i . These parameters

define the translation of the input vector into input current Ji(t). This in-

put current then drives a neural nonlinearity Gi [·] which converts the input

current into spikes. In this thesis, the neural nonlinearity is a Leaky Integrate-

and-Fire (LIF) neuron model used to convert the input current into a spike

9



Chapter 2. Methods

train si(x(t)).

si(x(t)) = Gi [ Ji(x(t)) ] , Ji(x(t)) = αi ei · x(t) + Jbias
i (2.1)

The spike train can be converted into a firing rate via filtering. This filter is

modeled as convolution with a low-pass filter h(t) which is a decaying expo-

nential modelled after the postsynaptic current.

ai(t) = (si ∗ h)(t) (2.2)

In this thesis, neuron properties will often be defined in terms of the neuron’s

tuning curve x-intercept, xcept (from now on referred to as “the intercept of

the neuron” or simply “the intercept”) and max firing rate amax where:

xcept < e · x when ai(x) = 0

amax = a(x) when e · x = 1.

(2.3)

These properties, visualized in Figure 2.1, can be easily used to derive the

gain and bias of Equation 2.1, but are more useful for discussing encoder

learning rules in Sections 2.5.2 & 4.2.1. A neural population that encodes a

state-space as defined by the NEF in this thesis are referred to as an ensemble.

All non-neural components of models, such as abstracted inputs and outputs,

is referred to as “nodes”.

2.1.2 Decoding

Decoding defines how to translate the filtered spikes trains from an ensemble

into a vector via temporal decoding by using the filtered result from Equa-

tion 2.2 scaled by a decoding vector di:

x̂(t) =
∑
i

di ai(t). (2.4)

10
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FIGURE 2.1: LIF neuron tuning curve demonstrating the loca-
tions of xcept and amax. The dotted line at x = 1 represents

when e · x = 1 for Equation 2.3, since e = 1.

The decoders di are typically found using regularized least squares optimiza-

tion to minimize the error1 over the range of inputs x:

∫
∥x− x̂∥2 dx. (2.5)

To decode an arbitrary function, the decoding error can be calculated using

the desired function: ∫ ∥∥∥f(x)− f̂(x)
∥∥∥2

dx. (2.6)

Connections between ensembles are weight matrices ω defined by

ωij = αiei · dj .

Additionally, for the special case where the output is a linear function of the

input, the gain term can be put into the weight matrix directly as L. Thus,

1Many other metrics and optimization methods can be used.
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Chapter 2. Methods

given an output Lx, ωij = αidjLei. Thus, the input current J to neuron i from

neuron j is:

Ji(t) =
∑
j

ωijaj(t) + Jbias
i . (2.7)

Together, the concepts of encoding and decoding allow for the construc-

tion of spiking neural networks, composed of interconnected ensembles, to

manipulate vectors spaces using arbitrary functions.

2.2 Semantic Pointers for Representing Symbols

The NEF has been used to form the basis for a cognitive architecture called the

Semantic Pointer Architecture (SPA). The SPA includes elements for action se-

lection, working memory, and proposes a general neural representation called

a Semantic Pointer (SP). SPs are compressed, neurally implemented represen-

tations. Eliasmith (2013) suggests that such compressed representations are

generated and used in the motor, cognitive, and perceptual systems.2

This thesis focuses on using SPs as a symbol-like representations. In Chap-

ter 3, SPs are used to represent the digits to be added. In Chapter 4, SPs

represent the words to be paired and recognized.

2.3 Dynamics

Often it is desirable to operate on the state represented by the ensemble over

time. For example, in Section 4.3.2, a neural population is needed to integrate

over an input value over time. To define these dynamics and compute them

neurally, we first consider a state variable x(t) with some desired non-linear

dynamics:
dx

dt
= g(x). (2.8)

2For a more complete introduction to using SPA for large-scale cognitive modeling,
see Sharma, Aubin, and Eliasmith (2016).

12



2.4. Matching MEG data

These dynamics can be mapped onto recurrent decoders. Specifically, to sat-

isfy Equation 2.8 given the filter h(t) from before, the recurrent decoders can

be solved for as f(x) = τsg(x)+x. This dynamic state representation is used in

the SPA model working memory in Section 3.2, as well as the WPR evidence

accumulator in Section 4.3.2.

2.4 Matching MEG data

In this thesis, it is assumed an MEG signal is analogous to summing the post-

synaptic potentials of the neural population from which the MEG signal is

thought to originate (Ahlfors and Wreh, 2015). Additionally, it is assumed the

dendrites from which the post-synaptic potential originates are roughly paral-

lel and thus their individual contributions are purely constructive. The precise

mapping from NEF neuron responses to the MEG signal is outside the scope of

this thesis. Instead, the relative positioning of responses given different inputs

is emphasized over their exact estimated current values. Specifically, as will

be discussed further in Section 4.2, the WPR task creates a greater response

for FAN1 inputs compared to FAN2 inputs. Thus, the goal of Section 4.2 will

not be to match the exact current amount in a neural ensemble, but instead to

create a neural ensemble whose sum of firing rates is greater for FAN1 inputs

than FAN2 inputs.

2.5 Associative Memories

2.5.1 Designing Associative Memories

The NEF concepts of encoding and decoding can be used to create heteroasso-

ciative memories, such that a set of input vectors are mapped to a different set

of output vectors by a neural ensemble (Stewart, Tang, and Eliasmith, 2011;

13



Chapter 2. Methods

Gosmann, Voelker, and Eliasmith, 2017). This is achieved by creating an array

of ensembles, such that:

1. Encoders for each ensemble only respond to a single input vector

2. Mutual inhibition between each ensemble of neurons computing a Winner-

Take-All (WTA) function

3. Decoders are chosen to map the winning ensemble onto the desired out-

put vector

An example network implementing these features is shown in Figure 2.2.

However, this associative memory design requires knowing the input space

g
1

g
2

g
3

x
1

x
in

x
2

x
in

x
3

x
in

x
in

y
out

FIGURE 2.2: An example Winner-Take-All heteroassociative
memory. Each group of neurons g represents a specific input
x. The groups inhibit each other proportional to their activa-
tion, as shown by the dashed connections, so only the highest

activated group outputs a value to yout.

and output space ahead of time.
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2.5. Associative Memories

2.5.2 Learning Associative Memories

Instead of “hard-coding” these memories, it is possible to learn them from

experience for better biological and psychological plausibility. A variety of

different learning approaches have been proposed over the last 40 years for

associative memories Willshaw, Buneman, and Longuet-Higgins, 1969; Wu

and Pados, 2000, however none meet the needs for learning an associative

memory in the NEF in a biologically plausible manner in the NEF. Specifically,

none are biologically plausible (learned online in continuous time with infor-

mation local to the neuron) while allowing for neurons representing multiple

dimensions.

By combining the supervised decoder Prescribed Error Sensitivity (PES; Mac-

Neil and Eliasmith, 2011) learning rule with an unsupervised encoder learn-

ing rule, Knight et al. (2016) have shown it is possible to learn such a discon-

tinuous high-dimensional function in a spiking neural network in a scalable

and efficient manner.

PES defines how decoders (di from Equation 2.4) are modified given the

filtered spike train ai resulting from x described in Equation 2.1, as well as an

error signal E and a learning rate κ:

∆di = κEai. (2.9)

For a discontinuous, high-dimensional function, such as a heteroassociative

memory mapping a set of inputs to a distinct set of outputs, PES alone is in-

sufficient. As explained below, this is due to the difficulty of mapping distinct

errors onto a decoder.

In heteroassociative memories, each input generates a distinct error vector

E, despite activating similar neurons. Thus, given that the change of decoder

∆di for neuron i is proportional to the firing rate ai in Equation 2.9, firing for

multiple inputs with distinct errors E causes the decoder change to overwrite
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Chapter 2. Methods

the previously learned change. This overwriting causes “catastrophic forget-

ting”. This phenomena is shown explicitly later in Figure 3.6. This forgetting

could be overcome if each neuron fired selectively for a single input, since

there would only be a single E associated to ai.

Instead of choosing encoders for better neuron input selectivity, encoders

can be learned from the presented inputs using Vector Oja (Voja; Voelker,

Crawford, and Eliasmith, 2014). Given neuron j and its firing rate aj in re-

sponse to an input x described in Equation 2.1, a learning rate η and an input

x, the encoder ej is adjusted according to Voja as follows:

∆ej = ηaj(x− ej). (2.10)

Voja can also be defined as a variant of its namesake, Oja’s rule (Oja, 1989),

which is a normalized version of Hebbian learning. Oja operates on the con-

nections between two populations of neurons. Substituting ei with the row

weights ωi, x for the pre-synaptic activity b and letting s = 1
ai

gives

∆ωi = κai(b− saiωi) ,

which is the single-row Oja update rule.

Voja Convergence

To guarantee convergence, the x-intercepts of the neurons in the population

are chosen to be more than the maximum similarity of all inputs. Otherwise,

in Equation 2.10 aj would respond to multiple inputs and ej could be pulled

between those two inputs. Without setting xcept properly, ai will cause the

decoders to adapt to multiple distinct errors E and “catastrophic forgetting”

will occur.
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2.5. Associative Memories

The conditions for convergence are shown explicitly in Figure 2.3 where

two neurons, n1, n2
3, with the respective intercepts xcept

1 = cos π
3

and xcept
2 =

cos π
6

are moved using Voja given two stimuli x1,x2 where x1 · x2 = π
5
. The

plots in Figure 2.3 explain why n2 with intercept cos π
6
> cos π

5
will converge,

while n1 with intercept cos π
3
< cos π

5
does not. Before any stimuli is pre-
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Intercept Value
cos 3
cos 6

Intercept Effect on Convergence

FIGURE 2.3: Contrasting Voja convergence behaviour between
two neurons with different intercepts with their receptive fields
delineated by dashed lines. Coloured circles represent the neu-
ron firing rate at the given point via opacity, where translucence
indicates less firing. Stimuli are represented by a black x, while
the encoder of both neurons is represented by diamonds of the
respective colours with slightly displaced so they do not overlap.

See text for further details.

sented, as shown in Figure 2.3 in the plot titled “Initially”, the encoders of

both neurons are e1 = e2 = [1, 0] and are thus equidistant from possible input,

since e1 · x1 = e2 · x2 =
π
10

.

When x1 is presented, both encoders converge to it, as shown in the plot

titled “After training on x1”. The encoders converge such that e′1,2 → x1 to

minimize (x − e) in Equation 2.10. Note, that if x2 were presented first, e1,2
3Sometimes written as n1,2.

17



Chapter 2. Methods

would have converged to it instead. Recall from Figure 2.3, that a neuron will

fire for given xcept < e · x, which given xcept
1 < xcept

2 < e1,2 · x2 causes a1,2 > 0.

This is shown visually in the Figure, as a coloured “receptive field” for each

neuron, where x1,2 are both inside the coloured area. The non-convergence

only becomes evident after the setup of this initial adaptation.

When x2 is presented, only n1 with intercept xcept
1 < e′1 · x2 causing a1 > 0

and will move again. While n2 with intercept e′2 · x2 > xcept
1 will remain

converged on the first input, since a2 = 0. This result is shown in Figure 2.3

in the plot titled “After training on x2”. The only way for both neurons to

converge to either x1 without ever firing for x2 is if the similarity between

stimuli vectors was less than the minimum intercept, such that xcept
1,2 < cos π

3
<

x1 · x2.

As shown by Knight et al. (2016), this similarity constraint can be opti-

mally satisfied when mapping one set of vectors to another by leveraging a

solution to the kissing problem. Specifically, the Leech lattice allows for the

selection of 196560 24 dimensional vectors each separated by an angle θ ≤ π
3
.

However, both the ASP and WPR task require mapping combination of vec-

tors to another set of vectors: ASP requires mapping two addend vectors to

the sum, and WPR requires mapping two word components to a word pair.

Once vectors are combined, there is no predictable limit to their similarity

and this optimal solution cannot be used.

The following chapter shows how these methods for building symbol-like

representations and implementing learning rules can be combined to give a

model capturing typical childhood addition strategy progression from those

reliant on counting to those reliant on a faster memorization of sums.
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Chapter 3

Learning Addition via

Memorization

3.1 Introduction

This chapter applies the concepts presented in Chapter 2 to model the transi-

tion between counting-based and recall-based addition strategies described as

the ASP task in Chapter 1. First, a model of the counting strategy is presented.

This is followed by an extension to the counting model, inspired by psycho-

logical evidence, which allows the system to memorize the counting strategy

results. This memorization allows for quick recall-based answers. Finally, the

anatomical mapping of these circuits and their implications for dyscalculia, a

disorder causing calculation difficulties, are discussed.

3.2 Modeling the Counting Strategy

As mentioned in Chapter 1, Spaun is able to perform addition using the count-

ing strategy. However, using the full version of Spaun, which has 6.6 mil-

lion neurons (Choo, 2018), to study only this one task would be impracti-

cal. Spaun is computationally expensive to run, given that it also performs 11

other tasks not being studied. As a result, the network has been re-implemented

with the following abstractions:
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Chapter 3. Learning Addition via Memorization

• The Visual system is abstracted into an output node outputting two ad-

dend digit SPs directly instead of translating them from images

• The Motor system is abstracted into an input node accepting digit SPs

instead of a simulated arm

Each SP representing a digit is chosen randomly from a 10 dimensional or-

thonormal basis. This was chosen to give a defined bound on the similarity

between concatenated pairs of pointers, which are used as the input to the

memory in Section 3.3 when the recall strategy is introduced, given the limi-

tations of the Voja learning rule described in Section 2.5.2. However, the digit

SP representations are still chosen randomly from this basis to limit implied

prior knowledge. As in development, the only knowledge the system has is

how to count, which is a skill contained in the Incrementing Memory. The

Incrementing Memory is a designed associative memory, as described in Sec-

tion 2.5.1, where the input is a digit SP and the output is the incremented

version of the input SP.

A network, named Slow-Net due to it operating at the speed of sub-vocal

rehearsal, is constructed to carry out addition-by-counting strategy. Slow-Net

iteratively follows steps controlled by the default basal ganglia and thalamus

action selection system in the SPA (Stewart, Choo, and Eliasmith, 2010). The

first step of this process is to load the addends from the vision node into work-

ing memory. The largest addend is loaded into the “Count result” memory

module, while the smaller addend is loaded into “Total counts to take”. Once

these memories are initialized with the addition problem, the steps are enu-

merated below and illustrated in Figure 3.1, with each step corresponding to

arrows annotated with the corresponding digit, are followed:

1. Route digits from memory to the Incrementing Memory

2. Transform the digit using the Incrementing Memory
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3.3. Memorization via Practice

3. Overwrite the old digit in working memory with the transformed digit

4. If “Counts finished” equal “Total counts to take”, then output “Count

result” to the motor output as the final answer

TWO

THREE

ZERO

ONE

THREE

Incrementing 
Memory

Incrementing 
Memory

Working Memory
Total counts to takeCount result Counts finished

Basal Ganglia 
and Thalamus

?

FIGURE 3.1: Overview of a single step of the addition-by-
counting procedure computing 2+3 performed by Slow-Net.
Each number, colored in blue, pertains to a step enumerated

in the text.

The goal of Fast-Net, presented in the next section, is to memorize a similar

function, such that the inputs are the same addends presented to Slow-Net

and the output is the sum.

3.3 Memorization via Practice

To model the recall strategy of addition, a memory is learned to replace the

Slow-Net process. As described in Section 2.5.2, heteroassociative memories

can be learned by applying Voja learning rule to adjust encoders and the PES

learning rule to adjust decoders. Thus, to implement the recall strategy, a

heteroassociative memory named Fast-Net is learned.
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Chapter 3. Learning Addition via Memorization

As shown in Figure 3.2, Fast-Net is placed in parallel with Slow-Net, thus

inputs are presented to both networks simultaneously. The error signal re-

quired by PES is provided by calculating the difference between Fast-Net and

Slow-Net outputs. The error is only propagated once Slow-Net outputs an

answer. This internal control of the dopaminergic error signal can be thought

of as a type of metalearning (Doya, 2002) or controlling how to learn. Such

feedback could also come from the environment (e.g., in the form of a teacher

correcting the student who is drilling addition facts), but this extension is out-

side the scope of this thesis.

Basal 
Ganglia 

and 
Thalamus

Question
Input

Answer
Output

Working 
Memory

Fast-Net

Slow-Net

Modulatory 
Error 

Signal

Learned
Associative 

MemoryVoja PES

FIGURE 3.2: High-level model architecture, featuring the par-
allel Slow-Net and Fast-Net. The input is provided to both net-
works simultaneously. The Fast-Net is an associative memory
learned using the Voja and PES learning rules which memorizes
a mapping from addends to a sum. The Slow-Net iteratively cal-
culates a sum via working memory manipulation. The Fast-Net
learns its responses via a modulatory error signal projected from

the output of the Slow-Net.

When the similarity of the output of Fast-Net and the set of possible nu-

merical outputs surpasses an arbitrarily set similarity threshold τnum, Fast-Net
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3.4. Results

outputs an answer to the motor system and interrupts Slow-Net via inhibition.

This decision is carried out by a separate basal-ganglia loop, as shown in Fig-

ure 3.3. In this way, Fast-Net learns from the output of Slow-Net until it can

take over the function computed.

Basal 
Ganglia 

and 
Thalamus

Compare Motor

Fast-Net 
Output

Counts 
Finished

Total Counts 
to Take

Count 
Result

Fast-Net 
Numerical 

Check

FIGURE 3.3: Answer Output network from Figure 3.2 ex-
panded to show routing accomplished by Basal Ganglia and
Thamalus. Routing connections, which enable normal neural
connections, are shown as box-headed arrows. (Counts to Take ·
Counts Finished) is fed into the Basal Ganglia to detect if the
Slow Net has output an answer. Fast-Net Numerical Check =
Fast-Net Output · (ONE + TWO + ...+ NINE)− τnum is also con-
sidered and can override the Slow-Net process. Depending on
which case is satisfied first, the Thalamus routes the Fast-Net

Output or Count-Result to the Motor output.

3.4 Results

The model was built and simulated using Nengo 2.1 (Bekolay et al., 2014),

while the results were plotted using Seaborn 0.7.1 (Waskom et al., 2016).

Code for the simulations and plots are available at github.com/Seanny123/

counting_to_addition.

3.4.1 Slow-Net Counting Performance

The results of the Slow-Net, which implement the counting strategy, are shown

in Figure 3.4.
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FIGURE 3.4: The Slow-Net (counting network) answering 2 + 2
and 2 + 3. Line plots show similarity between neural activity
in the area and the ideal spiking pattern for a Semantic Pointer
digit over time. As shown in “Count Result”, the model iterates

through intermediate digits before reaching the answer.
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In the Figure, Slow-Net solves two sums, 2 + 2 (occurring between 2.2s

and 2.8s) and 2 + 3 (occurring between 3s and 3.6s). To compute 2 + 2, as

described in Section 3.2, the first step is to load the values for this computation

into memory. “Times to Count” is assigned 2. The “Count Result” is assigned

the incremented value of 2 → 3, since values are incremented before being

loaded into memory to save an iteration step. “Times Counted” is assigned

1, since “Count Result” has already been incremented once. Although not

shown explicitly in the figure, the contents of “Times Counted” and “Time to

Count” are compared before proceeding to the next increment. After both

“Count Result” and “Time Counted” are incremented, “Times Counted” and

“Time Counted” are equal. Thus, the final “Count Result” of 4 is output as the

answer, the process stops and the memories are cleared. The same steps occur

for 2 + 3, but with different initial memory values.

3.4.2 Fast-Net Memorization Performance

The learning rate of Fast-Net can be tuned according to developmental speed.

At a high rate, sums are memorized after a single presentation. To ensure

Fast-Net would learn the transform of two concatenated addends at all, and to

demonstrate the necessity of Voja, it was first trained in isolation with a high

learning rate, as shown in Figures 3.5 and 3.6. The latter figure was created

by selecting the 100 decoder weights from each ensemble with the largest ab-

solute derivative during the learning period and shows how encoders learned

using Voja allow for decoders weights to converge.

3.4.3 Full Network Performance

Given the function of Fast-Net was confirmed in isolation in Figure 3.5 & 3.6,

the next goal is to match the decrease in errors and reaction time with practice,

as discuss Section 1.1.2.
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FIGURE 3.5: Fast-Net output error magnitude while being sim-
ulated separately from Slow-Net and learning the sum transfor-
mation given inputs of two addends concatenated. A new set of

addends is shown every 300ms.

For simulation in the full network, a lower learning rate was chosen to

emulate the gradual learning seen in human behaviour, but fast enough for the

learning to converge after a short amount of simulation time. A training epoch

consisted of 20 addition questions shown in a random order. As expected,

the error decreased significantly after each example and there is a uniform

decrease after each epoch, as shown in Figure 3.7.

Once the error magnitude decreases past the arbitrary threshold of 0.5

mentioned in Section 3.3, the reaction times plateau to the minimum time it

takes to recall the correct answer from Fast-Net. In the case of the simulation

in Figure 3.8, this is approximately 7 repeats of the 20 addition problems. The

reaction times decreasing matches the psychological data trend of decreasing

reaction times in Table 1.2.
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FIGURE 3.6: Fast-Net decoder weights changing over time while
being simulated separately from Slow-Net and learning the sum
transformation given inputs of two addends concatenated. En-
semble decoders learned using only the PES rule never converge.
However, if learned using Voja with PES, ensemble decoders

quickly settle to a stable value.

In over 100 trials, the Slow-Net only failed three times to produce a cor-

rect answer and instead over-counted. These three failures are omitted from

Figure 3.8, as they are considered as outliers. Although this failure rate is not

unreasonable for children, these failures could either be corrected by tweak-

ing the model further or by implementing an introspective error monitoring

mechanism, such as the one being investigated by Thorgeirsson, Stewart, and

Eliasmith (2018).
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FIGURE 3.7: Error magnitude in the Fast-Net decreasing with
training received from the Slow-Net feedback of each trial.

3.5 Neuroanatomical Mappings and Dyscalculia

Spaun’s mapping of counting (Eliasmith et al., 2012) associates parietal ar-

eas with stable, learned transformations, while prefrontal areas are more for

transient, working-memory manipulations. Given this mapping and the transi-

tion from Fast-Net to Slow-Net seen in the model, activation in humans while

performing addition should transition from prefrontal to parietal areas with

practice. This is supported by changes in activation during mental calculation

differing with age.

Specifically, Rivera et al. (2005) have shown age is positively correlated

with parietal fMRI activation and inversely correlated with prefrontal and hip-

pocampal brain areas, as well as the use of the dorsal basal ganglia area. Us-

ing the model, this can be framed as older children abandoning the Slow-Net

(requiring loading of instructions into the hippocampus, control of prefrontal

work-memory resources by the basal ganglia), in favour of the memorized
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FIGURE 3.8: Reaction times decreasing with rehearsal as the
Fast-Net takes over for the Slow-Net for increasingly more ad-
ditions. Note that these reaction times do not take into account
motor planning for communicating the result and are thus much

faster than those seen in humans.

parietal transforms similar to the Fast-Net. Additionally, this transition from

pre-frontal to parietal is not exclusive to large developmental timescales. In Is-

chebeck et al. (2007), subjects were shown complex multiplication problems

while being imaged with fMRI. Even with only 24 training exposures, previ-

ously seen multiplications activated parietal areas, whereas novel multiplica-

tion problems activated prefrontal areas.

Section 1.1.2 discusses typical development of children, however there are

individuals who are diagnosed with the learning disability dyscalculia. Dyscal-

culia manifests itself as a difficulty acquiring arithmetic skills. Neurologically,

individuals with dyscalculia show greater activation of the prefrontal cortex,

compared to parietal areas (Kucian and Aster, 2015). Although this model

makes no claims about the origins of dyscalculia, given its lack of a direct

cause and frequent comorbidities (Rubinsten and Henik, 2009), it does offer
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an explanation as to why this compensation occurs. Given a malfunctioning

parietal learning system, the transition from working memory resources in

the prefrontal cortex never occurs. This malfunction could be due to a vari-

ety of reasons, such as an incorrectly modulated error signal, noisy input or

inaccurate feedback. Regardless of the cause, the result of a progression from

iterative processes to recall would not be seen in a malfunctioning network.
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Chapter 4

Matching Associative Memory

MEG Signals

On the surface, memorizing addition results is similar to recognizing previ-

ously studied word-pairs. In both cases, a pair of stimuli is consciously mem-

orized via repeated trials. However, as discussed in Chapter 3, memorizing

addition occurs in the prefrontal cortex, while according to Borst, Ghuman,

and Anderson (2016) word-pair memorization occurs in the temporal cortex.

It follows that separate brain areas may learn associations differently. Conse-

quently, this chapter uses the MEG data from the recall memory component of

a WPR task (Borst, Ghuman, and Anderson, 2016) to guide the modification

of the associative memory model presented in the context of the ASP task in

Section 3.3. This modified model gives insight into the different function of

these two brain areas.

4.1 Modeling Word-Pair Recognition

The WPR SPA model is shown in Figure 4.1. The task words are represented

as random 32-dimensional SPs. Similar to the counting network of Chapter 3,

the visual system and motor system are abstracted away into two word SP

inputs and a single word SP output. According to EEG (Borst and Ander-

son, 2015) and MEG (Borst, Ghuman, and Anderson, 2016) data analysis,

31



Chapter 4. Matching Associative Memory MEG Signals

the recognition of a word-pair happens in three stages between initial visual

encoding of the words and motor actuation outputting the word-pair classifi-

cation:

1. Familiarity: determine if either component of the pair has not been

studied before

2. Recall: access the learned memory

3. Representation and Decision: make a decision based on the output of

the learned memory

Voja+PES 
Memory

RecallVision Compare

Voja+PES
Memory

Decision

A

B

A

B

A+B ~(A+B)

A+B

Familiarity
Memory

Output 
range:
[0,1]

Motor

FIGURE 4.1: High-level model architecture. Bold connection
labels show information flow for “word” pair A+B. See text for

details.

Each stage is represented by different neuron populations in the SPA model.

Although this chapter briefly discusses the familiarity and decision network,

the focus of this chapter is the recall population and how its output influences

the final decision. Specifically, the recall population is designed to match its

MEG response to the available experimental data given different input types.

Additionally, the recall population’s influence on the reaction time and error

rate, as shown in Figures 4.2, 4.11 and 4.10 respectively, is discussed.
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4.2. Modeling the Familiarity and Recall Stages

The training task, where the pairs are learned initially, is not the focus of

this thesis and is thus not explicitly modeled1. Instead, the training task is

only used to inform what training data (targets only) is given to the model.

All models in this chapter were built and simulated using Nengo 2.7 (Beko-

lay et al., 2014), while the results were plotted using Seaborn 0.9.0 (Waskom

et al., 2016). Code for the simulations and plots are available at github.com/

Seanny123/nengo_learn_assoc_mem. Nengolib 0.4.2 (Voelker, 2018) was used

for encoder initialization, as described in Section 4.3.1. The data in the fol-

lowing subsections is taken from the test phase which consisted of 14 blocks

with 64 randomly ordered trials (16 FAN1 targets + 16 FAN2 targets + 16

RPFoil1 + 16 RPFoil2) each administered to 18 subjects.

4.2 Modeling the Familiarity and Recall Stages

As shown in Figure 4.1, the first stage after decoding words from visual input

is the familiarity stage. This stage ensures only targets and RPFoils reach the

recall stage. It is motivated by the significantly lower reaction times for novel

foils (foils composed of words not seen during training) compared to RPFoils

in Borst and Anderson (2015). Although not explicitly modelled in this the-

sis, this filtering behaviour is accomplished by two auto-associative memories

(mapping previously seen inputs to themselves and mapping unseen inputs to

noise), trained using Voja and PES to recognize the words seen during train-

ing. The outputs of these memories are fed into a separate decision network

that triggers a response for novel foils by taking the dot product between the

input and the memory output. A similar method is used and explicitly mod-

elled when making a decision based off the recall memory output.

1Although modeling the task should only require an associative memory using the Voja
and PES learning rules
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The inputs into the recall memory come from the familiarity module’s two

parallel memories whose output vectors are added together and normalized.

Vector addition was chosen as the word pair encoding, given that the operator

had to be order invariant (unlike the concatenation used in Chapter 3), as well

as lossless (unlike circular convolution which is the operator used in SPA for

compression (Eliasmith, 2013)) for ease of understanding and learning 2.

To translate recall into a decision, the recall memory output is compared

with the vision input by calculating the dot product between the two vectors.

This is represented by the Compare network in Figure 4.1. The returned mag-

nitude of this operation acts as a proxy for recall confidence. A strongly re-

called memory with a large dot-product is considered a target, while a weakly

recalled memory with a smaller dot-product is considered a foil.

As described in Section 2.4, it is assumed that an MEG signal is analogous

to summing the firing rates of a neural population. The experimental MEG

data used for comparison to neural models in Figure 4.2 is taken from Borst,

Ghuman, and Anderson (2016). The MEG signal is generated by averaging

over the processed MEG responses of 18 subjects. Additionally, each subject

MEG response was averaged over 14 test blocks. Further information on the

experimental testing procedure can be found in Borst, Ghuman, and Anderson

(2016).

All model MEG signals (Figures 4.3, 4.4, 4.6 & 4.8) in this Chapter are

produced in a similar manner, but with only a single test block. 64 randomly

ordered trials composed of 16 FAN1 targets + 16 FAN2 targets + 16 RPFoil1

+ 16 RPFoil2 are input into an ensemble with all learning disabled. The MEG

signal for each of these trials is acquired by summing over the spikes from an

ensemble during the 300ms per-trial presentation period. The MEG signals

are then averaged per trial type over the 300ms presentation window before

being plotted.

2Lossy compression would make inputs more similar, making associations harder to learn
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4.2. Modeling the Familiarity and Recall Stages

The MEG signals to match, shown in Figure 4.2, are thought to originate

from the temporal lobe where both the familiarity and recall steps of the task

occur. Matching the general MEG signal pattern (FAN1 and RPFoil1 higher

than FAN2 and RPFoil2) is emphasized over matching the exact electric cur-

rent values.
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FIGURE 4.2: The experimental MEG response of the recall (be-
fore 300ms) and familiarity (after 300ms) steps of the word-pair
recognition task. Shaded areas represent 95% boot-strapped

confidence intervals.

The first “bump”, as labeled in the Figure 4.2, originates from the famil-

iarity process. It is matched by the previously mentioned pair of memories

trained with Voja and PES, as shown in Figure 4.3. The second “bump” after

the dotted line cannot be matched in the same way, as shown in Figure 4.4

and explained below.

The “Recall” memory’s role in Figure 4.1 is essentially that of an associa-

tive memory that associates an input word-pair to itself. However training

a memory with Voja and PES, as performed in Chapter 3 does not give the
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FIGURE 4.3: The MEG response of the WPR task familiarity
stage using an associative memory trained with Voja. All input
types overlap similar to the experimental data. Shaded areas

represent 95% boot-strapped confidence intervals.

desired MEG response. Specifically, a population trained with Voja (intercepts

set to 0.3 and with 5 repetitions of the FAN1 and FAN2 target vectors during

training) will respond more to FAN2 than FAN1 pairs, as shown in Figure 4.4.

This is the opposite of the response observed experimentally.

The greater MEG response for FAN2 vs. FAN1 vectors, seen in Figure 4.4,

occurs because encoders learned using Voja are drawn to the more “clustered”

FAN2 pairs. Where “clustering”, given a set of M-dimensional vectors V =

{v1,v2 . . .vn}, is defined as:

clust (V ) =
1

n

∑
V

V · V

V =

∥∥∥∥∥ 1n
n∑

i=1

Vn

∥∥∥∥∥ .
(4.1)

Intuitively, FAN2 pairs are more clustered than FAN1 pairs, by virtue of FAN2

pairs reusing words, causing the pairs to be more similar to each-other. This is

shown more explicitly by plotting the clustering 16 FAN1 and 16 FAN2 pairs
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FIGURE 4.4: The MEG response of the WPR task recall stage us-
ing an associative memory trained with Voja failing to match the
experimental data. Shaded areas represent 95% boot-strapped

confidence intervals.

of increasing dimensions in Figure 4.5. Regardless of the dimensionality used,

FAN2 is significantly more clustered than FAN1.

To summarize, Voja moves encoders towards more frequently activated sec-

tions of the representation space. This results in encoders responding more to

clustered FAN2 vectors, whereas the experimental data shows more response

for the spread out FAN1 vectors.

4.2.1 Prioritizing Novelty with Mixed Voja

Given Voja’s dysfunction, a new encoder learning rule prioritizing novel, un-

familiar, previously unseen vectors is required. This is essentially the opposite

of Voja, thus the learning rule Neg Voja is proposed. As implied by the name,

Neg Voja is the Voja learning rule, but with a negative learning rate. In addi-

tion, it includes a normalization term. Without this normalization, a negative

learning rate would move all encoders outside of the stimuli radius, ensuring

37



Chapter 4. Matching Associative Memory MEG Signals

FAN1 FAN2
FAN Pair Type

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Cl

us
te

rin
g 

M
et

ric

FAN Effect on Vector Clustering

Vector
Dimensions

32
64
128

FIGURE 4.5: Comparison of FAN1 vs. FAN2 word-pair set clus-
tering averaged across 20 distinct random seeds. Error bars rep-
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neurons would never fire for any possible stimulus. To keep the encoders in-

side the stimuli radius, the encoders are normalized to radius length r after

being updated. In the case of representing semantic pointers, which are of

unit length, r = 1. To accomplish this normalization, Equation 2.10 is modi-

fied as follows:

∆ej = r · ⟨ej + ηaj(x− ej)⟩ , (4.2)

where ⟨x⟩ = x
∥x∥ .

Given a high enough learning rate and long enough training time, the

learning rule describe in Equation 4.2 causes encoders to diverge until no

encoders fire for any previously seen input. This is a problematic scenario.

Instead, encoders should be distributed between converging to and diverging

from inputs. To satisfy this need, an alternative Mixed Voja is proposed in

Equation 4.3. It modifies both the the rate aj and the stimuli distance (x− ej)
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factors of the original formulation of Neg Voja in Equation 4.2:

δ =


0, if ∥x− ej∥ > δmax,

(x− ej), otherwise.

amax
j = aj(r)

∆ej = η

(
aj
amax
j

− τ

)
δ.

(4.3)

To compensate for the heterogenous maximum firing rates of neurons, Mixed

Voja uses the ratio of the neuron firing rate with its maximum firing rate aj
amax
j

.

This ratio is thresholded by a scalar constant 0 < τ < 1. The expression

(
aj
amax
j

− τ) means neurons firing close to their maximum rate converge to the

stimuli x, while neurons not firing as much diverge.

This modification to the rate term of Voja aj necessitates modifications to

the distance expression (x − ej) as well. In Voja, when aj → 0, ∆ej → 0,

which means only firing neurons are affected. This is no longer the case in

Equation 4.3. Instead, as aj → 0, ∆ej → −τ . This means all neurons firing

such that aj
amax
j

< τ would diverge to maximize (x− ej). Consequently, to limit

the effect area of x, the stimuli distance is thresholded by the scalar constant

δmax such that ∥x− ej∥ > δmax. This causes deviating encoders to converge

upon x± δmax.

Both the firing ratio τ and the scalar distance threshold δmax are chosen to

match the MEG data, as discussed in Section 4.3.1.

Biological Plausibility

Compared to Voja, Mixed Voja could also be seen as equally biologically plau-

sible, given that it only relies on information local to the neuron. However,

whether these computations, specifically the normalization of ∆ej, the firing

ratio calculation aj
amax
j

and the thresholding via δmax, are able to be performed
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in a single neuron is a topic for further investigation. Additionally, whether

an analogue to this learning rule exists in neuroscience is unclear.

4.3 Results of Voja Alternatives

4.3.1 MEG response

Two models are simulated to contrast Neg Voja and Mixed Voja. Each model

consists of a “memory” consisting of a neural ensemble of 500 neurons with

one of the learning rules applied to the encoders. The model is trained by

showing each word pair of a target word set (16 FAN1 targets + 16 FAN2

targets) a single time to the memory. The MEG response is determined as

described in Section 4.1.

As shown in Figure 4.6, both Neg Voja and Mixed Voja are able to match

the MEG response seen during the task using hand-tuned parameters shown

in Table 4.1.
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FIGURE 4.6: The MEG responses of Neg Voja and Mixed Voja
hand-tuned recall models given a single word-set. Although ex-
act responses differ, the overlap of foil and targets for each FAN
are maintained. Shaded areas represent 95% boot-strapped con-

fidence intervals.
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TABLE 4.1: Parameter settings for Neg Voja and Mixed Voja dis-
tinguishing which parameters were set statically and which were
tuned to create Figure 4.6. U(x1, x2) signifies randomly sampled

from the uniform distribution ranging from x1 to x2.

Learning
Rule

Parameter
Setting

Tuned or
Static

Neg Voja η = 5e−6

xcept = U(0, 1.5)

Tuned

Static

Mixed Voja η = −100

xcept = 0.2

τ = 0.1

δmax = 1

Static

Static

Tuned

Tuned

All other ensemble parameters use the Nengo and Nengolib defaults. Specif-

ically, LIF neuron model parameters, as well as the distribution of the maxi-

mum firing rates, use the Nengo defaults. All neural ensembles are initialized

with number-theoretic uniformly distributed encoders provided by Nengolib.

These encoders, which are less clustered than uniformly sampled encoders,

are shown in Figure 4.7. Encoder clumping would cause MEG results to vary

more per learning instance as clumps migrated together, requiring more in-

stances to confirm the same result.

Only Mixed Voja generalizes from a single word-set to multiple word sets

when matching the MEG signal and using the previously hand-tuned parame-

ters. As shown in Figure 4.8, the same Mixed Voja parameters match the MEG

signal generated from multiple word-sets, while Neg Voja fails completely.

4.3.2 Behavioural responses

To match the WPR behavioural the learned encoders from Section 4.3.1 are

used for the Recall memory in Figure 4.1, while the decoders of the Recall

memory were trained during a single presentation of all target pairs using

PES. The output of the trained Recall memory is then used as input to the
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Compare network as described in Section 4.2. As shown in Figure 4.9, the

scalar output of the Compare network is then used to classify whether the

original input from vision was a target or a RPFoil.

The final decision is accomplished by integrating over time, comparing two

conditions and choosing whichever is satisfied first:

c− p > τfoil indicates RPFoil

1− c > τtarg indicates Target,

where c is the output of the Compare network, while p = 0.3 is used to bias

the model toward RPFoil or Target decision. The integral is performed by a

neural integrator, where g(x) = x(t) in Equation 2.8. Although the thresh-

old constants τx could be learned during training using PES, for the sake of

simplicity they are set heuristically in proportion to the mean target decision

outcome ζ. Given the Compare network output call(t) = {c(t)1, c(t)2, . . . c(t)n},
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we can define the total foil and target integrator output for input c(t)n as:

cfoil
n =

∫ tsim

0

c(t)n − p dt

ctarg
n =

∫ tsim

0

1− c(t)n dt.
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Thus, the mean of these total integrated outputs is:

ζfoil =
1

n

n∑
i=1

cfoil
i

ζtarg =
1

n

n∑
i=1

ctarg
i .

Allowing for the threshold constants to be set as:

τfoil = 1.6 ∗ ζfoil

τtarg = 0.65 ∗ ζtarg.

where tsim is the simulation time for each target comparison. The τx scaling

constant and simulation time were set arbitrarily.

Whichever condition is satisfied first causes the decision to be made. Typi-

cally, this decision would be translated into a motor action by the basal ganglia

and thalamus performing a WTA operation on the two conditions. However,

this operation, along with the possibility of neither condition being satisfied,

is left out of the model.

Although data on the training accuracy during rehearsal is available, only

test data was considered. This is due to the MEG signal only being collected

for the testing phase. Thus, there is insufficient supporting evidence to deter-

mine how the encoders changed during training and how this would effect

error rates during training. Additionally, as discussed briefly in Section 4.1,

the behavioural performance during training is hypothesized to come from a

different network trained in parallel that is not modeled in this thesis.

The Mixed Voja memory are not able to match the experimental error rate

and reaction time data, as shown in Figures 4.10 & 4.11.

In the experimental data, FAN2 targets and foils had higher reaction times

and error rates. This is expected, FAN2 targets and foils have more half-

matching pairs causing confusion than FAN1 targets and foils, as shown in
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Table 1.4. This half-matching pair confusion also hints at the clustering seen

in Section 4.2. However, in the model, the reaction times were identical across

stimuli types. Additionally, the model’s error-rate was not able to match the

experimental error-rate between FAN2 targets and RPFoils.

The most likely cause for these mismatches is the intercept selection and

lack of recurrent connections.

The error-rate of each population was heavily dependent on the intercepts.

If intercepts were set lower, the decoders learned would decode targets and

RPFoils with the same confidence. Setting the intercept too high causes neu-

rons to be so selective that they do not respond to any inputs. This can be

overcome by adding more neurons, however the number required quickly

becomes computationally unfeasible using traditional hardware. Finding an

ideal distribution of intercepts or learning intercepts over time is beyond the

scope of this thesis.

The error-rate and reaction-time are both related to the output confidence

of the memory. However, the reaction-time is also connected to the output
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dynamics of the memory. Typically, “hard-coded” heteroassociative memories

have recurrent connections enabling advance computations, such as Winner-

Take-All (Gosmann, Voelker, and Eliasmith, 2017), which create non-linear

outputs. These non-linear outputs may be what is required to match the

reaction-time data.

Further model enhancement and exploration to take these changes into

account to better match the behavioural data are covered in the next chapter.
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Discussion and Future Work

5.1 Discussion

In this thesis, the ASP and WPR results were modeled using spiking neural

networks. These models suggest that associative memories are used differ-

ently in different parts of the brain allowing for cognitive systems to improve

with practice. In the prefrontal lobe, where the recall addition strategy is

thought to take place, convergence for quick transform memorization is prior-

itized. Whereas in the temporal lobe, where word-pair recognition occurred,

novelty is prioritized over convergence. In both cases, encoder modification

in response to stimuli is critical, but required modifications to match specific

neural phenomena. It also seems unlikely that single encoder learning rule

would satisfy both these specialized cases.

In the ASP case Voja is adequate, because the space of the inputs is limited.

Specifically, it is limited to a concatenation of two digit SPs sampled from an

orthonormal basis, despite the digits themselves and their combinations not

being known ahead of time. It is assumed as prior knowledge that no sym-

bol containing three concatenated digit symbols or a novel, non-orthonormal,

digit input (such as a fraction or a decimal) will be presented. Thus, Voja

and a specific setting of intercepts are sufficient to learn the mapping from

two concatenated digit SPs to another digit SP. If Mixed Voja were applied, it
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would move encoders to prepare for novel, unseen, inputs which would never

come and may disrupt correctly converged encoders.

In contrast to ASP, the WPR task benefits from Mixed Voja, because there is

no finite set of words. Additionally, there is no finite number of combinations.

For example, FAN3 or FAN4 word-pairs could be input. The implicit assump-

tion of Mixed Voja, that future inputs will be dissimilar from those already

learned, is more likely to be beneficial in WPR than in ASP.

This contrast between modeling approaches implicitly claims the brain is

able to manage memory based on the category of expected inputs (finite set of

digits vs. infinite set of words) and the task (recall vs. recognition). Potential

ways of validating this claim and other avenues for further investigation are

covered in the next section.

5.2 Future Work

5.2.1 Different Vector Representations

In both the addition strategy transition task and the word-pair task, a tension

exists between representational choices and neural network design.

In the counting strategies task, concatenation is chosen, but does not cap-

ture the subtleties of numerical representation. For instance, there is evidence

that for numerical size comparisons, neurons are tuned to a log-scale and are

sensitive to task saliency (Nieder and Dehaene, 2009).

In the word-pair recognition task, addition is chosen and the memory per-

forms recall. Other functions could be computed by the associative mem-

ory and a variety of other vector combination operations could represent

various memorization strategies. However, the many possible permutations
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of function and encodings were not systematically explored. Creating high-

dimensional vector spaces optimized for various representations is an open

problem with no clear systematic approach.

Given the representational choices made, this thesis makes the strong

claim of associative memory learning relying on different mechanisms de-

pending on the nature of the association. Specifically, when the mapping of a

limited set of two inputs to a novel output is memorized, Voja is used. When

an unknown set of inputs are combined and recognized, Mixed Voja is used.

This is supported by the WPR MEG results, however there is no MEG signal

for the ASP task to justify the use of Voja. This data could be collected via an

experiment of similar design to Borst et al. (2013), but altered to contrast the

two types of learning.

For instance, instead of learning word-pairs, subjects could learn arith-

metic facts using either, a different number base (binary, ternary), or a novel

operation symbol (x ◦ y representing 2x+ y). One day after the subjects have

practiced, the subjects would be tested with both previously studied facts and

novel facts. If a stronger MEG signal is read from the parietal area for repeated

facts than novel facts, then Voja is validated. Otherwise, if the recall occurs

in a different brain area or a different MEG signal is seen, a new encoder

learning rule should be investigated.

5.2.2 Improving Word-Pair Recognition Behavioural Responses

Although the WPR model was able to match the MEG signal by using the

Mixed Voja learning rule, it did not to replicate the behavioural error-rates

and reaction times. There are multiple avenues of investigation that might

lead to the improvements necessary to address these behavioural constraints

as well. Instead of assigning neuron encoders based on their firing rates, it

would make more sense for the neuron’s encoders to converge to or diverge
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from a stimulus depending on the decoding error of the given input. This error

signal could also be used to modify the intercepts in addition to the encoders.

For example, intercepts could be adjusted proportional to the decoding

error, allowing the memory to remain flexible and able to learn new inputs.

Given that intercepts greatly affect the accuracy of decoding, the different

clustering and learning results of FAN1 and FAN2 may then be sufficient to

create the difference in target reaction times and error-rates desired. However,

the current dataset is limited given that it only provides MEG data during the

test phase. This exploration of learning methods would be greatly helped by

characterizing the changes to MEG responses during learning. For example,

if changes in MEG response were correlated with recognition error, the error-

driven approach to encoder learning would be validated.

As mentioned in Section 4.3.2, the memory designs in this thesis are single-

layer feed-forward. However, “hard-coded” heteroassociative memories in

the SPA typically use recurrent connections and multiple layers (Gosmann,

Voelker, and Eliasmith, 2017). Multiple attempts at leveraging recurrent con-

nections were made while writing this thesis.

For example, a learning rule which implemented a variant of the Bienen-

stock, Cooper, Munro (BCM) learning rule (Bienenstock, Cooper, and Munro,

1982) on all-to-all recurrent weights was proposed. In the implementation,

recurrent connections were strengthened between neurons firing together for

a certain input, while weakening connections where neuron firing was not

correlated. However, none of the recurrent learning rules, including this re-

current BCM rule, offered any significant improvement in terms of robustness

to noise or output confidence. This is possibly due to the fact that neural firing

rates, instead of firing rate ratios from Mixed Voja, were used. Alternatively,

maybe neuron firing should be considered in the context of the decoding error.

Finally, instead of recurrence, it may be worth investigating a multi-layer

network where errors are propagated using a spiking version of Feedback
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Alignment (Hunsberger and Eliasmith, 2017). Hypotheses aside, the chal-

lenge of identifying neurons tuned to each input and learning recurrent con-

nections to compute functions, such as WTA, remains unsolved.

Regardless of representational and associative memory architectural as-

sumptions made, this thesis has shown that the use of memories leveraging

the Voja learning rule and their modification is a promising direction for learn-

ing critical components of cognitive models allowing them to improve with

practice.
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