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Abstract

This thesis studies various models of discrete quantum walks on graphs and
digraphs via a spectral approach.

A discrete quantum walk on a digraph X is determined by a unitary
matrix U , which acts on complex functions of the arcs of X. Generally
speaking, U is a product of two sparse unitary matrices, based on two direct-
sum decompositions of the state space. Our goal is to relate properties of
the walk to properties of X, given some of these decompositions.

We start by exploring two models that involve coin operators, one due to
Kendon, and the other due to Aharonov, Ambainis, Kempe, and Vazirani.
While U is not defined as a function in the adjacency matrix of the graph
X, we find exact spectral correspondence between U and X. This leads
to characterization of rare phenomena, such as perfect state transfer and
uniform average vertex mixing, in terms of the eigenvalues and eigenvectors
of X. We also construct infinite families of graphs and digraphs that admit
the aforementioned phenomena.

The second part of this thesis analyzes abstract quantum walks, with no
extra assumption on U . We show that knowing the spectral decomposition of
U leads to better understanding of the time-averaged limit of the probability
distribution. In particular, we derive three upper bounds on the mixing time,
and characterize different forms of uniform limiting distribution, using the
spectral information of U .

Finally, we construct a new model of discrete quantum walks from ori-
entable embeddings of graphs. We show that the behavior of this walk largely
depends on the vertex-face incidence structure. Circular embeddings of reg-
ular graphs for which U has few eigenvalues are characterized. For instance,
if U has exactly three eigenvalues, then the vertex-face incidence structure
is a symmetric 2-design, and U is the exponential of a scalar multiple of the
skew-symmetric adjacency matrix of an oriented graph. We prove that, for
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every regular embedding of a complete graph, U is the transition matrix of
a continuous quantum walk on an oriented graph.
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Chapter 1

Introduction

Quantum walks have become important tools for designing quantum algo-
rithms. Grover’s search [38] can be viewed a quantum walk on the complete
graph with loops. Ambainis’s algorithm for element distinctness [3] is equiva-
lent to a quantum walk on the Johnson graph. For many problems, quantum
walk based algorithms outperform their classical counterparts.

There are two classes of quantum walks—continuous quantum walks and
discrete quantum walks, depending on how the system evolves.

A continuous quantum walk has a simple definition: for a graph X, the
quantum states are complex functions on its vertices, and the transition
matrix is

U(t) := exp(itH),

where H is the adjacency matrix or the Laplacian matrix of X. Thus, the
behavior of a continuous quantum walk can be analyzed using the spectral
information of the graph.

For a discrete quantum walk, however, there is no simple definition that
takes place on the vertex set of the graph. The current trend is to enlarge
the state space to complex functions on the arcs. We illustrate one example,
constructed by Aharonov, Ambainis, Kemp, and Vazirani [2], on a cycle. Our
walker is endowed with two states: the position state, which indicates the
vertex she stands on, and the coin state, which tells her the direction to move
in. A step of the walk consists of a coin flip followed by a shift operation.
The coin flip maps her current direction to a superposition of both clockwise
and counterclockwise directions, and the shift operator moves her one step
towards the directions given by the coin state. In other words, U is a product
of two sparse unitary matrices U1 and U2, both indexed by the arcs of the
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1. INTRODUCTION

cycle. There are variants of this walk; for example, the shift operator can be
replaced by an arc-reversal operator, as proposed by Kendon [46]. A model
that generalizes the example in Aharonov et al [2] will be called a shunt-
decomposition model, and a model that generalizes Kendon’s example will
be called an arc-reversal model.

The purpose of this thesis is to study discrete quantum walks on general
graphs. While the definition of a discrete quantum walk is intuitive, exact
analysis could be very difficult to carry out. The shunt-decomposition walk
on the infinite path, studied by Ambainis, Bach, Nayak, and Vishwanath [4],
exhibits striking differences compared to the classical random walk, but these
properties are proved via complicated recurrences. For graphs with higher
valency, this method might not be as effective. Following techniques used in
continuous quantum walks, one can instead investigate a discrete quantum
walk from the spectral decomposition of U . However, this is also not easy.
On one hand, since U1 and U2 do not commute, their spectra have no direct
impact on the spectrum of U . On the other hand, the extra coin space makes
the connection between U and X even more obscure. Is it even possible to
analyze discrete quantum walks using graph spectra?

Our first contribution clears the above doubt. Although U is not defined
in terms of the adjacency matrix A, many properties of the above walks
turn out to solely depend on A. This leads to a characterization of rare
phenomena, such as perfect state transfer and uniform average vertex mixing,
in the language of algebraic graph theory. For instance, in an arc-reversal
walk on a regular graph, perfect state transfer occurs from vertex u to v
if and only if u and v are strongly cospectral, and their eigenvalue support
satisfies some algebraic conditions (Theorem 2.5.3). As another example, in a
shunt-decomposition walk on a certain Cayley digraph X, the eigenvalues of
U are roots of polynomials whose coefficients are eigenvalues of X (Theorem
4.3.7). We show that for every prime p, a 3-regular circulant digraph over Zp
admits uniform average vertex mixing if and only if its automorphism group
coincides with Zp (Theorem 4.4.4). Our characterization yields infinitely
many examples with valency greater than two, while previous examples were
mostly variants of cycles. This part is done in Chapter 2 and Chapter 4; it
extends the work on two current models.

The second theme of our thesis is the study of more abstract quantum
walks. Due to the choice of shift operator and coins, on the same graph,
many different discrete quantum walks can be defined. Yet, this does not
stop people from constructing new models, say Szegedy’s quantization of
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Markov chains [59], and the staggered walks due to Portugal, Santos, Fer-
nandes, and Goncalves [56]. A unifying language that describes common
properties of all quantum walks is thus needed. In Chapter 3, we investigate
an abstract quantum walk, with no extra assumption on U . We show that
knowing the spectral decomposition of U leads to a better understanding of
the limiting distribution. In particular, we obtain three new bounds on the
mixing time (Theorem 3.3.1), all tighter than the bound in [2]. We also study
when the limiting distribution is uniform over the arcs and over the vertices.
We prove that the latter is implied by the former (Theorem 3.4.5), while the
former happens if and only if U has simple eigenvalues and flat eigenpro-
jections (Theorem 3.4.4). Finally, some algebraic properties of the average
mixing matrix are derived (Theorem 3.4.6 and Theorem 3.4.7), motived by
their successful application in continuous quantum walks. The results in this
chapter are applied to specific models later.

In the last part of the thesis, we construct and study a new model, called
vertex-face walks, based on orientable embeddings. It is a variant of the arc-
reversal walk on X—at every other step, the walk takes place on the dual
graph X∗, that is, the graph with faces of X as vertices, and two vertices
are adjacent in X∗ if the corresponding faces share an edge in X. The
vertices of X∗ are the faces of X, and two vertices of X∗ are adjacent if they
correspond to faces of X that share an edge. This model may seem to violate
the locality condition, proposed by Aaronson and Ambainis [1], when viewed
as a discrete quantum walk on X. However, there are search algorithms
that effectively use the vertex-face walk for a toroidal embedding of Cn�Cn
[6, 23, 55]. On the other hand, we may interpret U as a quantum walk that
satisfies the locality criterion on a different digraph. Consider the following
process: given a graph X, construct an orientable embedding M; given the
embeddingM, build the transition matrix U of a vertex-face walk; given the
matrix U , compute a Hermitian matrix H such that U = exp(iH); and given
H, find the underlying digraph Z. A question arises: for which embeddingM
is the digraph Z sparse, with very few weights on the arcs assigned by H? If
a discrete quantum walk satisfies this condition, then we can implement it as
a continuous quantum walk on a digraph. Using the spectral decomposition
of U , we find interesting relations between the walk and the embedding,
which provide answers to the above question. For example, if the vertex-face
incidence structure is a symmetric 2-design, then U is the transition matrix
of a continuous quantum walk on an oriented graph (Theorem 5.4.3). We
then obtain infinitely many examples from regular embeddings of complete
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1. INTRODUCTION

graphs (Theorem 5.6.3).
Below we give a more detailed description of the main results in each

part.

1.1 Extending Work in Current Models

Let X be a d-regular graph on n vertices. We replace each edge {u, v} with
two arcs (u, v) and (v, u). A quantum state associated with X is a complex
function on its arcs. These states form a vector space, isomorphic to Cn⊗Cd.
Parallel vectors in Cn ⊗Cd are identified as the same state; we will pick one
with unit length as the representative.

A discrete quantum walk is determined by a unitary matrix U acting on
Cn ⊗ Cd. At step k, the system is in state

xk := Ukx0,

given initial state x0. We call U the transition matrix of the quantum walk.
In this section, we highlight our contributions to the areas of two quantum

walks, proposed by Kendon [46] and Ahaoronov et al [2]. These models
will be referred to as the arc-reversal model and the shunt-decomposition
model, respectively. In both cases, the transition matrix is a product of two
matrices—one acts on a subspace isomorphic to Cd, and the other permutes
the arcs of X.

Let R be the permutation matrix that sends arc (u, v) to arc (v, u). For
each vertex u, pick a linear order fu on the neighbors of u. Let C be a d× d
unitary matrix, called the coin. Let I be the identity matrix. An arc-reversal
C-walk on X is determined by the transition matrix

U := R(I ⊗ C),

whose rows and columns are indexed by the arcs of X in the order

f1(1), · · · , f1(d), f2(1), · · · , f2(d), · · · , fn(1), · · · , fn(d).

This model has been widely applied to quantum algorithms, especially in
spatial search. A popular choice for C in these algorithms is the Grover coin,
named after Grover’s search:

G =
2

d
J − I,

4



1.1. EXTENDING WORK IN CURRENT MODELS

where J is the all-ones matrix. Note that G commutes with every permuta-
tion, so the transition matrix can be written as

U = R(I ⊗G),

regardless of the linear orders {fu : u ∈ V (X)}. Another observation on the
arc-reversal Grover walk is that both R and I ⊗ G are involutions, so they
represent reflections about two subspaces. A quantum walk whose transition
matrix is a product of two reflections was first studied by Watrous [62].
In Section 2.3, we extend his work, and develop theory towards the spectral
decomposition of any matrix lying in the algebra generated by two reflections.
Using our characterization, we find the spectral relation between U and X.
The following is a summary of our results in Section 2.4.

1.1.1 Theorem. Let X be a d-regular graph on n vertices. Let U = R(I⊗G)
be the transition matrix of the arc-reversal Grover walk on X. Let M , Dt,
Dh, and B be the arc-edge incidence matrix, tail-arc incidence matrix, head-
arc incidence matrix, and vertex-edge incidence matrix of X, respectively.

(i) The 1-eigenspace of U is

(col(M) ∩ col(DT
t ))⊕ (ker(MT ) ∩ ker(Dt))

with dimension
nd

2
− n+ 2.

(ii) If X is bipartite, the (−1)-eigenspace of U is

M ker(B)⊕DT
t ker(BT )

with dimension
nd

2
− n+ 2.

If X is not bipartite, the (−1)-eigenspace of U is

M ker(B),

with dimension
nd

2
− n.
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1. INTRODUCTION

(iii) The multiplicities of the non-real eigenvalues of U sum to 2n − 4 if X
is bipartite, and 2n− 2 otherwise. Let y be an eigenvector for X with
eigenvalue λ ∈ (−d, d). Let θ ∈ R be such that λ = d cos(θ). Let θ ∈ R
be such that λ = d cos(θ). Then

DT
t y − eiθDT

h y

is an eigenvector for U with eigenvalue eiθ, and

DT
t y − e−iθDT

h y

is an eigenvector for U with eigenvalue e−iθ.

The above relation allows us to study properties of quantum walks using
properties of the underlying graph. Among all interesting phenomena in
quantum walks, perfect state transfer is one that can be analyzed purely in
terms of the graph spectra, as we prove in Section 2.5.

Suppose the system starts with a state that “concentrates on” u, that is,
a complex function that sends all arcs to 0 except for those leaving u. Is there
a vertex v such that the system concentrates on vertex v at some time k? A
quantum walk with this phenomenon is said to admit perfect state transfer
from u to v at time k. The physical interpretation of perfect state transfer is
that, after k steps, the walker will be found at vertex v with certainty, given
that she started at vertex u. Let eu be the characteristic vector of the vertex
U . We will consider perfect state transfer from u to v with initial state

1√
d
eu ⊗ 1,

which is a column of the coin matrix I ⊗G.
Unlike perfect state transfer in continuous quantum walks, discrete per-

fect state transfer may lose many nice properties such as symmetry, thus the
theory developed for continuous quantum walk (see for example [27]) does
not necessarily carry over. Surprisingly, in the arc-reversal walk, some of
these properties stay, and we can determine perfect state transfer by looking
at X only.

1.1.2 Theorem (2.5.3). Let X be a d-regular graph, with spectral decom-
position

A =
∑
λ

λEλ.
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1.1. EXTENDING WORK IN CURRENT MODELS

Then the arc-reversal Grover walk on X admits perfect state transfer from
u to v at time k if and only if all of the following hold.

(i) For each λ, we have Eλeu = ±Eλev.

(ii) If Eλeu = Eλev 6= 0, then there is an even integer j such that

λ = d cos(jπ/k).

(iii) If Eλeu = −Eλev 6= 0, then there is an odd integer j such that

λ = d cos(jπ/k).

A pair of vertices (u, v) satisfying condition (i) is said to be strongly
cospectral. In continuous quantum walks, strong cospectrality is also a nec-
essary condition for perfect state transfer, and has been thoroughly studied
since Coutinho’s Ph.D. thesis [17]. Conditions (ii) and (iii), however, are
more restrictive compared to the eigenvalue conditions for continuous per-
fect state transfer, since the time steps here are integers. Using tools from
algebraic graph theory, we construct an infinite family of examples with per-
fect state transfer in arc-reversal walks. This is the first infinite family of
graphs, other than cycles, that admit perfect state transfer.

1.1.3 Theorem (2.5.7). Let ` be an odd integer. For any distinct integers a
and b such that a+b = `, the arc-reversal Grover walk on the circulant graph
X(Z2`, {a, b,−a,−b}) admits perfect state transfer at time 2` from vertex 0
to vertex `.

We now move on to the second type of quantum walks. In a shunt-
decomposition walk, the walker preserves her direction when moving between
adjacent vertices. On infinite paths or grids, these directions are naturally
defined. To generalize the definition, we show that specifying directions on a
digraph is equivalent to decomposing its adjacency matrix into permutation
matrices, called shunts:

A = P1 + · · ·+ Pd.

Here, each shunt Pj maps a vertex to one of its neighbors, and represents a
direction on the graph X. If S is the permutation matrix given by

S =


P−11

P−12
. . .

P−1d

 ,

7



1. INTRODUCTION

then the transition matrix of a shunt-decomposition walk is

U := S(C ⊗ I).

Note here U acts on Cd ⊗ Cn, and the linear orders {fu : u ∈ V (X)} are
determined implicitly by the ordered shunts (P1, P2, . . . , Pd).

The main purpose of Chapter 4 is to study interesting phenomena that
happen on shunt-decomposition walks. For S with order greater than two,
we lack the machinery to deal with the algebra 〈S,C ⊗ I〉. Thus, most of
Chapter 4 is devoted to special walks where all shunts commute. In this case,
X is a Cayley graph over some abelian group Γ.

It is shown by Aharonov et al [2] that, for Cayley graphs over abelian
groups, the eigenvalues and eigenvectors of U are determined by the coin C
together with the characters of Γ. However, computing the eigenvalues of
U still remains a non-trivial task. We apply their result to walks with the
Grover coin G, and find explicit formulas for the eigenvalues and eigenvectors
of U .

1.1.4 Theorem. Let Γ be a finite abelian group. Let X be a Cayley digraph
over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition matrix
of a shunt-decomposition Grover walk on X. For each character χ of Γ, let

Λχ =


χ(g−11 )

χ(g−12 )
. . .

χ(g−1d )

 .

The eigenvalues of U consists of eigenvalues of ΛχG, where χ ranges over all
characters of Γ. Moreover, each eigenvalue α of ΛχG is either

(i) a zero of
1

αχ(g1) + 1
+ · · ·+ 1

αχ(gd) + 1
− d

2
,

with multiplicity 1, or,

(ii) −χ(g−1j ), with multiplicity one less than the number of k’s such that
χ(gk) = χ(gj).

8



1.2. ANALYZING ABSTRACT QUANTUM WALKS

We study a question concerning the limiting distribution: is there a quan-
tum walk, such that whatever state the walker starts with, in the time-
averaged limit, she will be found on any vertex with equal probability?
This phenomenon is called uniform average vertex mixing. Aharonov et
al [2] showed that uniform average vertex mixing happens if U has simple
eigenvalues. Using this criterion, they proved that every odd cycle with the
Hadamard coin admits uniform average vertex mixing.

We seek examples with higher valency. With the Grover coin, however,
U will never have distinct eigenvalues, so the above criterion does not apply.
Fortunately, uniform average vertex mixing can still happen with a slightly
weaker condition, as we show in the following theorem.

1.1.5 Theorem (4.3.3). Let Γ be a finite abelian group. Let X be a Cayley
digraph over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition
matrix of a shunt-decomposition Grover walk on X. If the only non-simple
eigenvalue of U is −1 with multiplicity d−1, then U admits uniform average
vertex mixing.

This opens up possibilities for more examples. Given our formulas for
the eigenvalues of U , we find a close connection between uniform average
vertex mixing and the algebraic properties of the digraph. Contrary to our
intuition, uniform average vertex mixing is more likely to happen on a Cayley
digraph with as few symmetries as possible. In particular, we show that for
every prime p, a 3-regular circulant digraph over Zp admits uniform average
vertex mixing if and only if its automorphism group is the smallest possible,
that is, Zp.

1.1.6 Theorem (4.4.4). Let p be a prime. Let X be a 3-regular circulant
digraph over Zp. Then the shunt-decomposition Grover walk on X admits
uniform average vertex mixing if and only if its connection set has trivial
stabilizer in Aut(Zp).

1.2 Analyzing Abstract Quantum Walks

For this part, we assume X is a digraph, and U is simply a unitary matrix
indexed by the arcs of X. In Chapter 3, we analyze the abstract walk on X,

9



1. INTRODUCTION

and characterize the limiting behavior using the spectral decomposition of
U , say

U =
∑
r

eiθrFr.

The language we use in this chapter differs a bit from the literature, in
two ways.

(i) Most results are stated in terms of a subset of the arcs. This avoids
distinguishing between the probability that the walker is on an arc and
the probability that she is on a vertex.

(ii) The evolution is phrased in the density matrix formalism. This yields
cleaner formulas for many parameters we are interested in.

A density matrix is a positive semidefinite matrix ρ with tr(ρ) = 1. It
represents a pure state if ρ = xx∗ for some unit vector x, and represents a
mixed state otherwise. For example,

ρ = eae
T
a

is the density matrix for a pure state concentrated on the arc a, and

ρS :=
1

|S|
∑
a∈S

eae
T
a

represents the uniform mixed state over the arcs in S.
Suppose the system is initialized to some state ρ0. Then, at step k, it is

in state
ρk := Ukρ0(U

k)∗.

Let 〈·, ·〉 be the usual inner product of complex vectors. If we perform a
measurement in the standard basis, then the system collapses to state eae

T
a

with probability
Pρ0,a(k) = 〈ρk, eaeTa 〉.

In general, the probability that the walker is on S at time k is

Pρ0,S(k) = |S|〈ρk, ρS〉.

We investigate the limiting behavior of the state ρk and the probability
Pρ0,S(k). Since the evolution is unitary, these two quantities do not converge
as k tends to infinity. However, their Cesàro sums exist, and can be expressed
using the spectral decomposition of U . We will call these two limits the
average state and the average probability.

10



1.2. ANALYZING ABSTRACT QUANTUM WALKS

1.2.1 Theorem (3.2.2). Let U be a unitary matrix with spectral decompo-
sition

U =
∑
r

eiθrFr.

Given initial state ρ0, the average state of the quantum walk with U as the
transition matrix is

lim
K→∞

1

K

K−1∑
k=0

ρk =
∑
r

Frρ0Fr. 53

1.2.2 Theorem (3.2.3). Let X be a digraph. Let U be a transition matrix
of a quantum walk on X, with spectral decomposition

U =
∑
r

eiθrFr.

Given initial state ρ0 and a subset S of arcs, the average probability of the
quantum walker being on S is

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k) = |S|
∑
r

〈Frρ0Fr, ρS〉.

We then study two questions about the limit |S|
∑

r〈Frρ0Fr, ρS〉: how
fast is it approached, and when does it depend only on the size of S? Both
properties play a role in quantum walk based algorithms.

The first property is quantified by the mixing time Mρ0,S(ε), that is, the
smallest time step L such that for all K > L,

1

K

K−1∑
k=0

Pρ0,S(k)

is ε-close to the limit. We prove four upper bounds on the mixing time; the
last one was first found by Aharonov et al [2]. Clearly, the more spectral
information we have about U , the tighter bound we obtain.

1.2.3 Theorem (3.3.1). Let X be a digraph. Let U be a transition matrix
of a quantum walk on X, with spectral decomposition

U =
∑
r

eiθrFr.

11



1. INTRODUCTION

Given initial state ρ0 and a subset S of arcs, the mixing time Mρ0,S(ε) satisfies

Mρ0,S(ε) ≤ 2|S|
ε

∑
r 6=s

|〈Frρ0Fs, ρS〉|
|eiθr − eiθs|

≤ 2

ε

∑
r 6=s

∑
a∈S

√
(Fr)aa(Fs)aa
|eiθr − eiθs|

≤ 2|S|
ε

∑
r 6=s

1

|eiθr − eiθs|

≤ 2`|S|
ε∆

,

where ` is the number of pairs of distinct eigenvalues, and

∆ := min{
∣∣eiθr − eiθs∣∣ : r 6= s}.

The second question asks for a uniform limiting distribution. Suppose X
has n vertices and m arcs. We say U admits uniform average mixing if

|S|
∑
r

〈Frρ0Fr, ρS〉 =
1

m

for every subset S of size one, and U admits uniform average vertex mixing
if

|S|
∑
r

〈Frρ0Fr, ρS〉 =
1

n

for every subset S that consists of all the outgoing arcs of some vertex. The
following results in Theorem 3.4.4 characterize uniform average mixing. We
say a matrix is flat if all its entries have the same absolute value.

1.2.4 Theorem. Let U be a transition matrix on a digraph X. Uniform
average mixing occurs if and only if U has simple eigenvalues with flat eigen-
projections.

Uniform average mixing also implies something stronger, including uni-
form average vertex mixing.

1.2.5 Theorem (3.4.5). Let X be a digraph. If a quantum walk on X admits
uniform average mixing, then for any initial state ρ0 and any arc set S,

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k) =
|S|
nd
.

12



1.3. EXPLORING WALKS FROM EMBEDDINGS

We also prove some algebraic properties of the mixing matrix

M̂ = lim
K→∞

1

K

K−1∑
k=0

Uk ◦ Uk,

which records the average probabilities from arcs to arcs. The following
results appear in Theorem 3.4.6 and Theorem 3.4.7.

1.2.6 Theorem. If the entries of U are algebraic over Q, then the entries of
M̂ are algebraic over Q. If the entries of U are rational, then the entries of
M̂ are rational.

1.3 Exploring Walks from Embeddings

The idea of alternating operators in a quantum walk is not new. Patel,
Raghunathan and Rungta [55] and Falk [23] both proposed quantum walk
based search algorithms, where different operators are applied at even and
odd steps. Ambainis, Portugal and Nahimov [6] then studied this type of
algorithm analytically, showing its performance matches other type of quan-
tum walks.

The algorithm in [6] searches a marked vertex on a 2-dimensional grid,
which can be viewed as a Cartesian square of a cycle:

X := Cn�Cn.

If we remove the oracle from the algorithm, then the two operators are reflec-
tions based on two partitions of the vertices, illustrated by the blue squares
and red squares in Figure 1.1. The transition matrix is indexed by V (X).

We notice that Figure 1.1 represents a graph self-dual embedding of
Cn�Cn on the torus. In fact, it gives rise to an embedding of another graph
Y , obtained by truncating the edges of X and joining the new vertices by
blue and red edges, as shown in Figure 1.2.

Note that Y is isomorphic to C2n�C2n, and the blue and red squares
partition V (Y ) in the same way as in Figure 1.1. Thus according to [6],
there is a transition matrix U , indexed by V (Y ), which arises from these
partitions. On the other hand, we may think of the vertices of Y as arcs of
X—the one closer to u on edge {u, v} is the arc (u, v), with tail u. Now,
the blue squares partition the arcs based on their tails, while the red squares

13



1. INTRODUCTION

Figure 1.1: Two partitions of the vertices of Cn�Cn

Figure 1.2: Two partitions of the arcs of Cn�Cn

partition the arcs based on the faces they lie in. In this sense, U is a transition
matrix of X, indexed by its arcs.

We generalize the above idea to any orientable embedding. Let X be a
graph, and M an embedding of X on some orientable surface. Consider a
consistent orientation of the faces, that is, whenever an edge is shared by
two faces f and h, the direction it receives in f is opposite to the direction
it receives in h. In such an orientation, every arc belongs to exactly one
face; let M be the associated arc-face incidence matrix. We also group arcs
based on their tails, and let N be the associated arc-tail incidence matrix.
To construct a unitary matrix, let M̂ and N̂ be the matrices obtained from

14



1.3. EXPLORING WALKS FROM EMBEDDINGS

M and N by scaling each column to a unit vector, and set

U := (2M̂M̂T − I)(2N̂N̂T − I).

Here M̂M̂T is the orthogonal projection onto the column space col(M̂), and

2M̂M̂T − I is the reflection about col(M̂). A quantum walk with U as the
transition matrix is called the vertex-face walk, relative to some consistent
orientation of M.

We study vertex-face walks in Chapter 5, mainly focused on the relation
between properties of the walk and properties of the embedding.

The first thing we notice is that, a vertex-face walk forM can be viewed
as two arc-reversal walks, one on the original graph X, and one on the dual
graph X∗. In fact, we have observed that for some graph self-dual embed-
dings, the transition matrix of the vertex-face walk is permutation similar to
the square of the transition matrix of the arc-reversal walk.

The second contribution is the spectral decomposition of U ; this is done
using techniques in Section 2.3, since U is a product of two reflections. It
turns out that the spectrum of U is determined by the spectrum of the
vertex-face incidence matrix, which contains important information of the
embedding. We summarize below the results on circular embeddings, that
is, embeddings where every face is bounded by a cycle.

1.3.1 Theorem. LetM be a circular embedding of a connected graph with
n vertices, ` edges and s faces on an orientable surface of genus g. Let U
be a transition matrix of the vertex-face walk for M. Let M̂ and N̂ be the
normalized arc-face incidence matrix and the normalized arc-tail incidence
matrix, respectively. Let Ĉ be the normalized vertex-face incidence matrix.

(i) The 1-eigenspace of U is

(col(M̂) ∩ col(N̂))⊕ (ker(M̂T ) ∩ ker(N̂T ))

with dimension `+ 2g.

(ii) The (−1)-eigenspace for U is

M̂ ker(Ĉ)⊕ N̂T ker(ĈT )

with dimension
n+ s− 2 rk(Ĉ).

15



1. INTRODUCTION

(iii) The multiplicities of the non-real eigenvalues of U sum to 2 rk(Ĉ)− 2.

Let µ ∈ (0, 1) be an eigenvalue of ĈĈT . Choose θ with cos(θ) = 2µ−1.
The map

y 7→ (cos(θ) + 1)N̂y − (eiθ + 1)M̂ĈTy

is an isomorphism from the µ-eigenspace of ĈĈT to the eiθ-eigenspace
of U , and the map

y 7→ (cos(θ) + 1)N̂y − (e−iθ + 1)M̂ĈTy

is an isomorphism from the µ-eigenspace of ĈĈT to the e−iθ-eigenspace
of U .

Based on the spectral decomposition, we characterize when U has exactly
two eigenvalues and three eigenvalues, in Section 5.4.

1.3.2 Theorem. Let M be a circular orientable embedding. Let U be the
transition matrix of a vertex-face walk for M.

(i) U has exactly two eigenvalues if and only if every face is bounded by a
Hamilton cycle.

(ii) For a circular embedding of a regular graph, U has exactly three eigen-
values if and only if the vertex-face incidence structure is a symmetric
2-design.

The third part explores possibilities of implementing vertex-face walks
as continuous quantum walks. We look for transition matrices U such that
U = exp(iH), where H is sparse and has as few different entries as possible.
The following theorems, from Section 5.6 and Section 5.8, provide infinitely
many examples.

1.3.3 Theorem (5.6.3). Let n be a prime power. Let U be the transition
matrix of the vertex-face walk for a regular embedding of Kn. Then there is
γ ∈ R such that

U = exp(γ(UT − U)).

Moreover, UT−U is a scalar multiple of the skew-symmetric adjacency matrix
of an oriented graph, which

(i) has n(n− 1) vertices,

16



1.3. EXPLORING WALKS FROM EMBEDDINGS

(ii) is (n− 2)-regular, and

(iii) has exactly three eigenvalues: 0 and ±i
√
n2 − 2n.

1.3.4 Theorem (5.8.5). Let n be a power of 2. LetM be a regular embed-
ding of Kn. Let φ be the 2-fold arc-function that sends every arc of X to
the element (1, 2) ∈ Sym(2). Let M′ be the embedding of K2 ×Kn induced
by (M ′, φ). Let U ′ be the transition matrix of the vertex-face walk for M′.
Then there is γ ∈ R such that

(U ′)2 = exp(γ((U ′)T − U ′)).

Moreover, (U ′)T − U ′ is a scalar multiple of the skew-symmetric adjacency
matrix of an oriented graph, which

(i) has 2n(n− 1) vertices,

(ii) is (n− 2)-regular, and

(iii) has exactly three eigenvalues: 0 and ±2i
√
n2 − 2n.

Finally, in Section 5.9, we show that the above infinite families of vertex-
face walks tend to “stay at home”, that is, the probability that the quantum
walker stays at the initial state tends to 1 as the size of the graph goes to
infinity.

17





Chapter 2

The Simplest Model

A quantum walker moves unitarily on the graph. Her state, as a complex
function on the arcs, gets updated by a unitary matrix at each step. Standing
on the arc (u, v), our walker decides to move in the simplest way: first, split
herself over all outgoing arcs of u, with complex weights determined by a
coin, and then, move all copies of her to the reversed arcs of where they are.
These constitute one iteration of the walk. After several steps, she might be
everywhere on the graph, or concentrated on a special subset of arcs.

In this chapter, we give a formal description of the above walk, called the
arc-reversal walk, and study its behavior via spectral analysis. The transition
matrix of our walk is a product of two non-commuting reflections, that is,

U = U1U2,

for some Hermitian U1 and U2 with U2
1 = U2 = I. For any unitary matrix

of this type, a complete characterization of its eigenvalues and eigenspaces is
given in Section 2.3. These results will be applied again to a different model
in Chapter 5.

While the transition matrix U of the arc-reversal walk is not an obvious
function in the adjacency matrix of the graph X, our analysis in Section
2.4 reveals a strong connection between the graph spectrum and the walk
spectrum. In particular, eigenvalues of X provide the real parts of eigenvalues
of U , and eigenvectors of X can be lifted to eigenvectors of U by two incidence
matrices.

This observation enables us to characterize perfect state transfer purely
in terms of graph spectra. In Section 2.5, we show that perfect state transfer
occurs between two vertices if and only if they are strongly cospectral and
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2. THE SIMPLEST MODEL

the graph eigenvalues satisfy a simple condition. Based on this characteriza-
tion, we construct an infinite family of 4-regular circulant graphs that admit
perfect state transfer. To the best of our knowledge, this is the first infinite
family of graphs, other than cycles, that are proved to admit perfect state
transfer in discrete quantum walks.

2.1 Searching as a Quantum Walk

Suppose that in an unstructured database with n datapoints, exactly one
point satisfies some desired property. To locate this point, a naive approach
is to select a candidate uniformly at random, and check if it satisfies our
criterion. On average, this finds the target in O(n) steps. It turns out
that no classical algorithm can do better than this. However, with quantum
algorithms, we can pinpoint the target in O(

√
n) steps, as demonstrated by

Grover [39].
To understand the quantum approach, we rephrase the above problem as

follows. Consider a complex inner product space Cn. Identify the n data
points with the standard basis vectors e1, e2, . . . , en, where ej corresponds to
the target point. Let 1 denote the all-ones vector and set

x0 =
1√
n

1.

Now we ask two questions.

(i) Can we find two unitary matrices V0 and Vj, where Vj depends on j
while V0 does not, such that for some integer k,∣∣〈(V0Vj)kx0, ej〉∣∣
is very close to 1?

(ii) If the above is true, what is k?

Grover’s search [39] answers both questions—take

V0 =
2

n
J − I, Vj = 2Ejj − I,

and then k is an integer closest to
√
n. Here Ejj denotes the matrix with 1

in the jj-entry and 0 elsewhere.
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2.1. SEARCHING AS A QUANTUM WALK

A Hermitian matrix that is an involution is called a reflection. In Grover’s
search, the first matrix V0 is a reflection about the initial vector x0. The
second matrix Vj, called the oracle, is given as a black box; it acts as a
reflection about the target vector ej. In other words, alternately reflecting
about ej and then about x0 a number of times maps x0 to ej.

The above process can be implemented on a quantum computer. A quan-
tum state is a one-dimensional subspace of Cn, usually represented by a unit
vector x. We assume the quantum system evolves in discrete-time, according
to a unitary matrix U , called the transition matrix. More precisely, at step
k, the system would be in state

xk := Ukx0,

were it in state x0 at time 0. A measurement is associated with an n × n
Hermitian matrix H, which has real eigenvalues {θ1, θ2, . . . , θn} and an or-
thonormal basis of eigenvectors {v1, v2, . . . , vn}. If we measure the system at
time k, the outcome is θi with probability |〈xk, vi〉|2. We usually avoid bring-
ing in H by assuming it has simple eigenvalues—in this way, an orthonormal
basis of Cn is sufficient to describe a measurement. Note that every state x
can be written as a linear combination of this basis:

x = α1v1 + · · ·+ αnvn.

The coefficients α1, α2, . . . , αn are called the amplitudes. If more than one
amplitude is non-zero, then x is said to be in a superposition; in particular,

1√
n
v1 + · · ·+ 1√

n
vn

is called the uniform superposition.
Now we are ready to describe Grover’s search algorithm.

(i) Initialize the system to a uniform superposition of {e1, e2, . . . , en}, that
is,

1√
n
e1 + · · ·+ 1√

n
en.

(ii) Apply the unitary gate V0Vj roughly
√
n times.

(iii) Measure in the standard basis.
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2. THE SIMPLEST MODEL

With high probability, the outcome is the target state ej.
This algorithm can also be seen as a quantum walk on a graph. The

following observation is due to Ambainis, Kempe and Rivosh [5]. Consider
the vector space Cn ⊗ Cn. Let R be the permutation operator that swaps
ei ⊗ ej with ej ⊗ ei for each 1 ≤ i ≤ j ≤ n. Then

R(Vj ⊗ V0)R = V0 ⊗ Vj.

It is not hard to see that for any integer k,

(R(Vj ⊗ V0))2k = (V0Vj)
k ⊗ (VjV0)

k.

Thus, the action
U := R(Vj ⊗ V0)

on Cn⊗Cn is completely determined by the actions of V0Vj and VjV0 on Cn.
To be more specific, if we start with the uniform superposition

x0 ⊗ x0 :=
1

n
1⊗ 1,

then
Uk(x0 ⊗ x0) ≈ ej ⊗

(
(VjV0)

kx0
)
.

Now measuring the first register at step k yields ej with high probability.
On the other hand, U defines a quantum walk on X, the complete graph

on n vertices with a loop at each vertex. The state space Cn⊗Cn is spanned
by the characteristic vectors eu⊗ ev of the arcs (u, v) of X. Thus, each state
can be seen as a complex-valued function on the arcs of X. As an example,
the initial state in Grover’s search is

x0 ⊗ x0 =
∑
u∼v

1

n
eu ⊗ ev,

the constant function that maps each arc to 1
n
. Since U acts linearly on

Cn ⊗ Cn, it suffices to investigate its effect on the basis

{eu ⊗ ev : u ∼ v}.

The matrix

Vj ⊗ V0 = (2Ejj − I)⊗
(

2

n
J − I

)
22



2.2. ARC-REVERSAL WALK

is usually referred to as the coin operator, for it acts as if one flips a quantum
coin to determine which arc to move to, given current position. Since

(Vj ⊗ V0)(eu ⊗ ev) =

eu ⊗
(

1√
n

∑
w∼u ew

)
, u 6= j,

eu ⊗
(
− 1√

n

∑
w∼u ew

)
, u = j,

the result of a coin flip is some superposition of outgoing arcs of current tail u.
The matrix R is called the arc-reversal operator, as it maps the characteristic
vector of (u, v) to the characteristic vector of (v, u). These describe how a
quantum walker moves on X: in each step, she flips the coin to redistribute
her amplitudes over the outgoing arcs, and then reverses all the arcs she is
on.

2.2 Arc-Reversal Walk

Let’s rewrite the unitary matrix of Grover’s search as

U = R(Vj ⊗ V0)
= R(I ⊗ V0)(Vj ⊗ I),

and define
U0 := R(I ⊗ V0), Uj := Vj ⊗ I.

The first matrix U0 defines a quantum walk on X, where the coin operator
I ⊗ V0 treats all vertices equally. The second matrix Uj makes a difference
between the marked and unmarked vertices: on outgoing arcs of j, it acts as
−I, while on other arcs it acts as the identity. We say a quantum walk is
unpertubed if the coins are identical, and perturbed if all but one coin are
identical. Thus, Grover’s search alternates between the unpertubed walk U0

and the oracle operator Uj.
The main focus of this thesis will be the unperturbed quantum walk on a

general graph. This was first studied by Watrous [62], and later formalized
by Kendon [46]. Let X be a d-regular graph on n vertices. Consider the
space Cn ⊗ Cd spanned by all complex functions on the arcs of X. To each
vertex we assign the same Grover coin

G :=
2

d
J − I.
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2. THE SIMPLEST MODEL

Thus for vertex u, the amplitude transfered between two outgoings arcs of
u is 2/d − 1 if they are equal, and 2/d otherwise. The coin matrix, acting
on Cn ⊗Cd, is then a direct sum of n Grover coins. Since G commutes with
all permutations, we can write the coin matrix as I ⊗ G under any basis of
Cn ⊗ Cd. Let R be the matrix that reverses all arcs, and set

U := R(I ⊗G).

The quantum walk with U as the transition matrix is an arc-reversal walk
on X.

It is not hard to extend this definition to a irregular graph: simply assign
the Grover coin with d = deg(u) to vertex u. Sometimes we may reconsider
the perturbed version as well: give −G to a special vertex and G to the
others. More flexibly, any deg(u) × deg(u) unitary matrix Cu could serve
as a coin for vertex u. However, at this level of generality we will have to
specify a linear order on the neighbors of u:

fu : {1, 2, · · · , deg(u)} → {v : u ∼ v},
in order to define the quantum walk. The vertex fu(j) will be referred to
as the j-th neighbor of u, and the arc (u, fu(j)) j-th arc of u. Now we can
interpret what Cu does: it sends the j-th arc of u to a superposition of all
outgoing arcs of u, in which the amplitudes come from the j-th column of
Cu:

Cuej =

deg(u)∑
k=1

(eTkCuej)ek.

Thus, given that the rows and columns are ordered according to

{fu : f ∈ V (X)},
the transition matrix of our quantum walk is

U = R


C1

C2

. . .

Cn

 .

We sometimes refer to a walk with transition matrix

U = R(I ⊗ C)

an an arc-reversal C-walk. For an example of this type, see Godsil and Zhan
[37].
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2.3. TWO REFLECTIONS

2.3 Two Reflections

There are two major differences of a quantum walk from a classical random
walk: first, the evolution is unitary rather than stochastic; second, the tran-
sition matrix U does not depend on the graph X only, but also on the coins.
In general little can be said about the relation between U and X. However,
the situation for an arc-reversal walk is a bit special, as its transition matrix
U is a product of two reflections related to the graph X.

In this section, we develop some machinery that applies to any unitary
matrix U as a product of two reflections. Most of the theory here is based on
Godsil’s unpublished notes [29]. A complete characterization of the eigenval-
ues and eigenspaces of U is given, by “lifting” those of a smaller Hermitian
matrix constructed from the two reflections. This extends Szegedy’s work
on direct quantization of Markov chains [59]. Our results on the dimensions
and structures of the eigenspaces of U will be applied to a different model in
Chapter 5.

Let P and Q be two projections acting on Cm. Define

U := (2P − I)(2Q− I).

Then U lives in the matrix algebra generated by P and Q, denoted 〈P,Q〉.
We will use the following well-known fact to diagonalize U ; a proof by Godsil
[29] is provided.

2.3.1 Lemma. Let P and Q be two projections acting on Cm. Then Cm is
a direct sum of 1- and 2-dimensional 〈P,Q〉-invariant subspaces.

Proof. Since P and Q are Hermitian, a subspace of Cm is 〈P,Q〉-invariant if
and only if its orthogonal complement is 〈P,Q〉-invariant. Hence Cm can be
decomposed into a direct sum of 〈P,Q〉-invariant subspaces. Let W be one
such subspace.

If dim(W ) = 1, then W is spanned by common eigenvectors of P and Q,
and we are done. So assume dim(W ) ≥ 2. Since QPQ is also Hermitian, W
is a direct sum of eigenspaces for QPQ. Depending on how QPQ acts on W ,
we have two cases. Suppose first that QPQ is not zero on W . Then there is
z ∈ Cm and µ 6= 0 such that

QPQz = µz.

Since
µQz = Q(QPQ)z = QPQz = µz,
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2. THE SIMPLEST MODEL

the vector z must be an eigenvector for Q as well, so

Qz = z,

and
QPz = QPQz = µz.

It follows that the subspace spanned by {z, Pz} is 〈P,Q〉-invariant. Now
suppose QPQ is zero on W . If Q is also zero on W , then PQ commutes with
QP on W , and so W is spanned by common eigenvectors of P and Q. If Q is
not zero on W , then it has an eigenvector z ∈ W with non-zero eigenvalue,
that is,

Qz = z.

Since
QPz = QPQz = 0,

the subspace spanned by {z, Pz} is 〈P,Q〉-invariant.

Therefore, to find the spectral decomposition of U , we may first decom-
pose Cm into a direct sum of 1- and 2-dimensional 〈P,Q〉-invariant subspaces,
and then diagonalize U restricted to each of them. The 1-dimensional 〈P,Q〉-
invariant subspaces are precisely common eigenvectors of P and Q. In fact,
they span the eigenspaces for U with real eigenvalues, that is, 1 and −1.

2.3.2 Lemma. Let P and Q be two projections on Cm. Let

U = (2P − I)(2Q− I).

The 1-eigenspace for U is the direct sum

(col(P ) ∩ col(Q))⊕ (ker(P ) ∩ ker(Q)),

and the (−1)-eigenspace for U is the direct sum

(col(P ) ∩ ker(Q))⊕ (ker(P ) ∩ col(Q)).

Proof. We prove the first statement. The second statement follows by re-
placing Q with I −Q.

If z is in col(P ) ∩ col(Q), then Pz = z and Qz = z, so

Uy = (2P − I)(2Q− I)y = y.
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If z is in ker(P ) ∩ ker(Q), then Pz = 0 and Qz = 0, so

Uz = (2P − I)(2Q− I)y = −(−y) = y.

By linearity, every vector in

(col(P ) ∩ col(Q))⊕ (ker(P ) ∩ ker(Q))

is an eigenvector for U with eigenvalue 1. Now suppose Uz = z for some
z ∈ Cm. Then

(2Q− I)z = (2P − I)z.

Thus Pz = Qz and (I − P )z = (I −Q)z. From the decomposition

z = Pz + (I − P )z,

we see that z lies in

(col(P ) ∩ col(Q))⊕ (ker(P ) ∩ ker(Q)).

It remains to construct eigenvectors for U with non-real eigenvalues. As
indicated in the proof of Lemma 2.3.1, the eigenspaces of PQP play a crucial
rule in providing the 2-dimensional U -invariant subspaces. In practice, we
will work with the eigenspaces of a smaller Hermitian matrix that is related
to PQP , as we describe now.

Being positive-semidefinite, Q has Cholesky decomposition

Q = LL∗

for some rectangular matrix L with orthonormal columns. Note that

QPQz = µz

if and only if
L∗PL(L∗z) = µ(L∗z).

Consequently, for any µ 6= 0, the map z 7→ L∗z is an isomorphism from the
µ-eigenspace of QPQ to the µ-eigenspace of L∗PL, with inverse given by
y 7→ Ly. We claim that the eigenspaces for L∗PL with non-zero eigenvalues
provide all eigenvectors for U with non-real eigenvalues. Our proof uses the
following standard result on eigenvalue interlacing; for a reference, see Horn
and Johnson [41, Ch 4].

2.3.3 Theorem. Let A be a Hermitian matrix. Let L be a matrix with
L∗L = I. Let B = L∗AL. Then the eigenvalues of B interlace those of A.
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2.3.4 Lemma. Let P and Q be projections on Cm. Let

U = (2P − I)(2Q− I).

Suppose Q has Cholesky decomposition Q = LL∗ for some matrix L with
orthonormal columns. The eigenvalues of L∗PL lie in [0, 1]. Let y be an
eigenvector for L∗PL. Let z = Ly. We have the following correspondence
between eigenvectors for L∗PL and eigenvectors for U .

(i) If y is an eigenvector for L∗PL with eigenvalue 1, then

z ∈ col(P ) ∩ col(Q).

(ii) If y is an eigenvector for L∗PL with eigenvalue 0, then

z ∈ ker(P ) ∩ col(Q).

(iii) If y is an eigenvector for L∗PL with eigenvalue µ ∈ (0, 1), and θ ∈ R
satisfies that 2µ− 1 = cos(θ), then

(cos(θ) + 1)z − (eiθ + 1)Pz

is an eigenvector for U with eigenvalue eiθ, and

(cos(θ) + 1)z − (eiθ + 1)Pz

is an eigenvector for U with eigenvalue e−iθ.

Proof. Since the columns of L are orthonormal, the eigenvalues of L∗PL
interlace those of P , which are 0 and 1. If

L∗PLy = y,

then
yL∗(I − P )Ly = 0,

and it follows from the positive-definiteness of I − P that Ly ∈ col(P ).
Similarly, if

L∗PLy = 0,

then Ly ∈ ker(P ).
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Finally, suppose
L∗PLy = µy

for some µ ∈ (0, 1). Then the subspace spanned by {z, Pz} is U -invariant:

U
(
z Pz

)
=
(
z Pz

)(−1 −2µ
2 4µ− 1

)
.

To find linear combinations of z and Pz that are eigenvectors of U , we
diagonalize the matrix (

−1 −2µ
2 4µ− 1

)
.

It has two eigenvalues: eiθ with eigenvector(
− cos(θ)− 1
eiθ + 1

)
,

and e−iθ with eigenvector (
− cos(θ)− 1
e−iθ + 1

)
.

Since 0 < µ < 1, these two eigenvalues are distinct, and

cos(θ) + 1

e±iθ + 1
I − P

is invertible, so
(cos(θ) + 1)z − (e±iθ + 1)Pz

is indeed an eigenvector for U with eigenvalue e±iθ.

The above construction preserves orthogonality—eigenvectors for U ob-
tained from orthogonal eigenvectors for L∗PL are also orthogonal. In the
rest of this section, we summarize information on all eigenspaces for U we
have seen so far, including their multiplicities. As a consequence, their direct
sum is precisely Cm. These results can be found in Zhan [66, 67].

Let
P = KK∗

for some matrix K with orthonormal columns. Define

S := L∗K.

This matrix largely determines the spectrum of U .
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2.3.5 Lemma. Let P and Q be projections on Cm. Let

U = (2P − I)(2Q− I).

The 1-eigenspace of U is the direct sum

(col(P ) ∩ col(Q))⊕ (ker(P ) ∩ ker(Q)),

which has dimension

m− rk(P )− rk(Q) + 2 dim(col(P ) ∩ col(Q)).

Moreover, if
P = KK∗, Q = LL∗

are the Cholesky decompositions of P and Q, and

S = L∗K,

then the map y 7→ Ly is an isomorphism from the 1-eigenspace of SS∗ to
col(P ) ∩ col(Q).

Proof. For the multiplicity, note that

dim(ker(P ) ∩ ker(Q)) = dim

(
ker

(
P
Q

))
= m− rk

(
P Q

)
= m− dim(col

(
P Q

)
)

= m− dim(col(P ) + col(Q))

= m− (rk(P ) + rk(Q)− dim(col(P ) ∩ col(Q))).

The isomorphism follows from Lemma 2.3.4 and the previous discussion.

2.3.6 Lemma. Let P and Q be projections on Cm, with Cholesky decom-
positions

P = KK∗, Q = LL∗.

Let
S = L∗K.

Let
U = (2P − I)(2Q− I).
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The (−1)-eigenspace of U is the direct sum

(col(P ) ∩ ker(Q))⊕ (ker(P ) ∩ col(Q)),

which has dimension

rk(P ) + rk(Q)− 2 rk(S).

Moreover, the map y 7→ Ky is an isomorphism from ker(S) to col(P )∩ker(Q),
and the map y 7→ L∗y is an isomorphism from ker(S∗) to ker(P ) ∩ col(Q).

Proof. We prove the last part of the statement, from which the dimension
follows. If

Sy = 0,

then

QKy = LSy = 0.

Hence

Ky ∈ col(P ) ∩ ker(Q).

Further, since K has full column rank, this map is injective. On the other
hand, for any z ∈ col(P ) ∩ ker(Q), there is some y such that

z = Ky

and

0 = Qz = LSy = L∗LSy = Sy,

which implies that

y ∈ ker(S).

The argument for the second linear map is similar.

2.3.7 Lemma. Let P and Q be projections on Cm, with Cholesky decom-
positions

P = KK∗, Q = LL∗.

Let

S = L∗K.

Let

U = (2P − I)(2Q− I).
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The dimensions of the eigenspaces for U with non-real eigenvalues sum to

2 rk(S)− 2 dim(col(P ) ∩ col(Q)).

Let µ ∈ (0, 1) be an eigenvalue of SS∗. Let θ be such that cos(θ) = 2µ− 1.
The map

y 7→ ((cos(θ) + 1)I − (eiθ + 1)P )Ly

is an isomorphism from the µ-eigenspace of SS∗ to the eiθ-eigenspace of U ,
and the map

y 7→ ((cos(θ) + 1)I − (e−iθ + 1)P )Ly

is an isomorphism from the µ-eigenspace of SS∗ to the e−iθ-eigenspace of U .

Proof. By Lemma 2.3.4 and Lemma 2.3.5, the eigenspaces for SS∗ with
eigenvalues in (0, 1) provide

2(rk(SS∗)− dim(col(P ) ∩ col(Q)))

orthogonal eigenvectors for U . Combining this with Lemma 2.3.6, we see
that they span the orthogonal complement of the (±1)-eigenspaces. The
isomophisms now follow from Lemma 2.3.4.

For normalization purpose, note that∥∥((cos(θ) + 1)− (e±iθ + 1)P )Ly
∥∥2 = sin2(θ)(cos(θ) + 1)‖y‖2.

This will become useful when we compute the orthogonal projection onto the
e±iθ-eigenspace.

With the theory developed in this section, we can derive the spectral
decomposition of any matrix in the algebra generated by P and Q. By com-
parison, Szegedy [59] computed the eigenvalues and eigenvectors specifically
for the matrix (2P − I)(2Q− I).

2.4 Graph Spectra vs Walk Spectra

Let X be a connected d-regular graph on n vertices, and U the transition
matrix of the arc-reversal walk on X. In this section, we show that the
spectrum of X determines the spectrum of U . More specifically, eigenvalues
of X provide the real parts of eigenvalues of U , and eigenvectors of X can
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be lifted to eigenvectors of U by two incidence matrices. Most of the results
below can be found in Zhan [66].

Recall that

U = R(I ⊗G),

where R is the arc-reversal matrix, and G the d× d Grover coin. Since

R2 = (I ⊗G)2 = I,

all observations in the previous section apply. To see what R and I ⊗ G
reflect about, we introduce four incidence matrices: the tail-arc incidence
matrix Dt, the head-arc incidence matrix Dh, the arc-edge incidence matrix
M , and the vertex-edge incidence matrix B.

The tail-arc incidence matrix Dt, and the head-arc incidence matrix Dh,
are two matrices with rows indexed by the vertices, and columns by the arcs.
If u is a vertex and a is an arc, then (Dt)u,a = 1 if u is the initial vertex of
a, and (Dh)u,a = 1 if a ends on u, and 0 otherwise.

The arc-edge incidence matrix M is a matrix with rows indexed by the
arcs and columns by the edges. If a is an arc and e is an edge, then Ma,e = 1
if a is one direction of e, and 0 otherwise.

The vertex-edge incidence matrix B is a matrix with rows indexed by the
vertices and columns by the edges. If u is a vertex and e is an edge, then
Bu,e = 1 if u is one endpoints of e, and 0 otherwise.

As an example, the following are the four incidence matrices associated
with K3 with vertices {0, 1, 2}.

Dt =

(0, 1) (0, 2) (1, 0) (1, 2) (2, 0) (2, 1)( )0 1 1 0 0 0 0
1 0 0 1 1 0 0
2 0 0 0 0 1 1

Dh =

(0, 1) (0, 2) (1, 0) (1, 2) (2, 0) (2, 1)( )0 0 0 1 0 1 0
1 1 0 0 0 0 1
2 0 1 0 1 0 0
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M =

{0, 1} {0, 2} {1, 2}


(0, 1) 1 0 0
(0, 2) 0 1 0
(1, 0) 1 0 0
(1, 2) 0 0 1
(2, 0) 0 1 0
(2, 1) 0 0 1

B =

{0, 1} {0, 2} {1, 2}( )0 1 1 0
1 1 0 1
2 0 1 1

Next, we list some useful identities about these incidence matrices.

2.4.1 Lemma. Let X be a d-regular graph. Let A be the adjacency matrix
of X. Let Dt and Dh be the tail-arc incidence matrix and the head-arc
incidence matrix, respectively. Let M be the arc-edge incidence matrix. Let
B be the vertex-edge incidence matrix. Let G be the d× d Grover coin. The
following identities hold.

(i) DT
t Dt = DT

hDh = dI.

(ii) MTM = 2I.

(iii) DtD
T
h = DhD

T
t = A.

(iv) BBT = A+ dI.

(v) DtM = DhM = B.

(vi) DtR = Dh.

(vii) R = MMT − I.

(viii) I ⊗G = 2
d
DT
t Dt − I ⊗ I.

Proof. We give a proof for (iii). Let u and v be two vertices of X. We have

(DtD
T
h )uv = 〈DT

t eu, D
T
h ev〉

= |{(a, b) : {a, b} ∈ E(X), a = u, b = v}|
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=

{
1, {u, v} ∈ E(X)

0, {u, v} /∈ E(X).

Therefore DtD
T
h = A. Since A is symmetric, we also have DhD

T
t = A. The

remaining identities can be verified in a similar manner.

As a consequence, R is a reflection about col(M), while I ⊗G is a reflec-
tion about col(DT

t ). We now prove the spectral relation between U and A.
The following theorem shows that all eigenspaces of U with non-real eigen-
values are completely determined by the eigenspaces of X with eigenvalues
in (−d, d). It also gives a concrete description on how to “lift” eigenvalues
and eigenvectors of X to those of U .

2.4.2 Theorem. Let X be a d-regular graph. Let Dt and Dh be the tail-arc
incidence matrix and the head-arc incidence matrix, respectively. Let U be
the transition matrix of the arc-reversal Grover walk on X. The multiplicities
of the non-real eigenvalues of U sum to 2n− 4 if X is bipartite, and 2n− 2
otherwise. Let y be an eigenvector for X with eigenvalue λ ∈ (−d, d). Let
θ ∈ R be such that λ = d cos(θ). Then

DT
t y − eiθDT

h y

is an eigenvector for U with eigenvalue eiθ, and

DT
t y − e−iθDT

h y

is an eigenvector for U with eigenvalue e−iθ.

Proof. Let

K :=
1√
2
M, L :=

1√
d
DT
t , S := L∗K.

Let B be the vertex-edge incidence matrix of X. According to Lemma 2.3.7,
the eigenspaces for U with non-real eigenvalues are determined by eigenspaces
for

SS∗ =
1

2d
BBT =

1

2d
(A+ dI).

Let

µ :=
λ+ d

2d
.

Then 0 < µ < 1 and 2µ− 1 = cos(θ). Moreover,

Ay = λy
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if and only if
SS∗y = µy.

Thus, using identities in Lemma 2.4.1, we obtain two eigenvectors for U as
stated.

After normalization, we obtain the eigenprojections for non-real eigenval-
ues of U .

2.4.3 Corollary. Let X be a d-regular graph. Let Dt and Dh be the tail-
arc incidence matrix and the head-arc incidence matrix, respectively. Let U
be the transition matrix of the arc-reversal Grover walk on X. Let λ be an
eigenvalue of X that is neither d nor −d. Let Eλ be the orthogonal projection
onto the λ-eigenspace of X. Suppose λ = d cos(θ) for some θ ∈ R. Then the
eiθ-eigenprojection of U is

1

2d sin2(θ)
(Dt − eiθDh)

TEλ(Dt − e−iθDh),

and the e−iθ-eigenprojection of U is

1

2d sin2(θ)
(Dt − e−iθDh)

TEλ(Dt − eiθDh).

We also characterize the (±1)-eigenspaces of U . In particular, their mul-
tiplicities depend on parameters of X.

2.4.4 Lemma. Let X be a d-regular graph. Let Dt be the tail-arc incidence
matrix. Let M be the arc-edge incidence matrix. Let U be the transition
matrix of the arc-reversal Grover walk on X. The 1-eigenspace of U is

(col(M) ∩ col(DT
t ))⊕ (ker(MT ) ∩ ker(Dt))

with dimension
nd

2
− n+ 2.

Moreover, the projection onto col(M) ∩ col(DT
t ) is given by

1

d
DT
t EdDt =

1

nd
J,

where Ed is the projection onto the d-eigenspace of X.
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Proof. By Lemma 2.3.5, the 1-eigenspace is the direct sum:

(col(M) ∩ col(DT
t ))⊕ (ker(MT ) ∩ ker(Dt)),

where
col(M) ∩ col(DT

t ) = Dt col(Ed).

Note that col(DT
t ) consists of vectors that are constant over the outgoing

arcs of each vertex, and col(M) consists of vectors that are constant over
each pair of opposite arcs. Since X is connected,

col(M) ∩ col(DT
t ) = span{1}.

The multiplicity follows from the fact that rk(M) = nd/2 and rk(Dt) = n.

2.4.5 Lemma. Let X be a d-regular graph. Let Dt be the tail-arc incidence
matrix. Let M be the arc-edge incidence matrix. Let B be the vertex-edge
incidence matrix. Let U be the transition matrix of the arc-reversal Grover
walk on X. If X is bipartite, the (−1)-eigenspace of U is

M ker(B)⊕DT
t ker(BT )

with dimension
nd

2
− n+ 2.

Moreover, the projection onto DT
t ker(BT ) is given by

1

d
DT
t E−dDt,

where E−d is the projection onto the (−d)-eigenspace of X. If X is not
bipartite, the (−1)-eigenspace of U is

M ker(B),

with dimension
nd

2
− n.

Proof. By Lemma 2.3.6, the (−1)-eigenspace of U is

M ker(B)⊕DT
t ker(BT ),

where
ker(BT ) = col(E−d).

Note that rk(B) = n− 1 if X is bipartite, and rk(B) = n otherwise.
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The spectra of variants of U are also of interest for producing graph iso-
morphism algorithms. In [21, 22], Emms, Severini, Wilson and Hancock pro-
posed a scheme to distinguish non-isomorphic graphs, based on the spectrum
of the positive support of U3. Godsil and Guo [31] then studied the relation
between the spectra of positive supports of U , U2 and U3 in greater detail.
Later in [32], Godsil, Guo and Myklebust found two non-isomorphic strongly
regular graphs whose positive supports of U3 have the same spectrum.

2.5 Perfect State Transfer

Both continuous and discrete quantum walks were shown to be universal for
quantum computation [16, 52, 60]. An important ingredient, in implementing
the universal quantum gates using quantum walks, is perfect state transfer.
Loosely speaking, a graph admits perfect state transfer from vertex u to
vertex v if for some real number t, measuring the system at step t yields
vertex v with certainty, given that the system “concentrated” on vertex u at
the beginning. For discrete quantum walks, this is equivalent to requiring the
initial state to be a superposition over the outgoing arcs of u, and the final
state to be a superposition over the outgoing arcs of v. Sometimes there
are more restrictions on the initial and final states; we will give a formal
definition later.

While there have been numerous results on perfect state transfer in con-
tinuous quantum walks [7, 8, 9, 14, 18, 19, 20, 42, 43, 47], less is known on
the discrete side, as the extra coins make it harder to analyze the transition
operator. Most of the examples in discrete quantum walks were sporadic, and
there was no infinite family of k-regular graphs with perfect state transfer,
for any k ≥ 3. Kurzynski and Wojcik [49] showed that perfect state transfer
on cycles can be achieved in discrete quantum walks. In their paper, they
also discussed how to convert the position dependence of couplings into the
position dependence of coins. Barr, Proctor, Allen, and Kendon[11] investi-
gated discrete quantum walks on variants of cycles, and found some families
that admit perfect state transfer with appropriately chosen coins and initial
states. In [64], Yalcnkaya and Gedik proposed a scheme to achieve perfect
state transfer on paths and cycles using a recovery operator. With various
setting of coin flippings, Xiang Zhan et al [68] also showed that an arbitrary
unknown two-qubit state can be perfectly transfered in one-dimensional or
two-dimensional lattices. Recently, Stefanak and Skoupy analyzed perfect
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state transfer in perturbed quantum walks on stars [57] and complete bi-
partite graphs [58] between marked vertices: in Kn,n, perfect state transfer
occurs between any two marked vertices, while in Km,n with m 6= n, perfect
state transfer only occurs between two marked vertices on the same side.

In this section, we derive necessary and sufficient conditions for per-
fect state transfer to occur. The techniques we use are very similar to
those employed in continuous quantum walks. For a thorough treatment
of continuous-time perfect state transfer, see Coutinho’s Ph.D. thesis [17].
Although the transition matrix U is not an obvious function of the adja-
cency matrix A of the graph, we show that perfect state transfer can be
characterized purely in terms of A. Using our characterization, we provide
the first infinite family of graphs, other than variants of cycles, that admit an-
tipodal perfect state transfer in unperturbed discrete quantum walks. These
are circulant graphs whose connection sets satisfy a simple condition.

Let X be a d-regular graph on n vertices. An arc-reversal quantum walk
takes place in Cn⊗Cd. Suppose we start with a state that “concentrates on”
u. In theory, this could be eu ⊗ x for any unit vector x. However, it is more
practical to prepare a uniform superposition over the outgoing arcs of u:

1√
d
eu ⊗ 1.

Formally, if there is a unit vector x ∈ Cd such that

Uk

(
1√
d
eu ⊗ 1

)
= ev ⊗ x,

then we say X admits perfect state transfer from u to v if u 6= v, and X is
periodic at u if u = v. While this definition does not impose further condition
on the final state, in the arc-reversal walk, the only possible choice of x is

1√
d
1,

as we show now.

2.5.1 Lemma. Let X be a regular graph. Let U be the transition matrix of
the arc-reversal Grover walk on X. If X admits perfect state transfer from
u to v at time k, then

Uk

(
1√
d
eu ⊗ 1

)
=

1√
d
ev ⊗ 1.
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Proof. Suppose

Uk

(
1√
d
eu ⊗ 1

)
= ev ⊗ x.

Since U has real entries, all entries in x are also real. Moreover, as 1⊗ 1 is
an eigenvector for U with eigenvalue 1,〈

1⊗ 1,
1√
d
eu ⊗ 1

〉
=

〈
1⊗ 1, Uk

(
1√
d
eu ⊗ 1

)〉
= 〈1⊗ 1, ev ⊗ x〉.

If X is d-regular, then it follows that

〈1, x〉 =
√
d.

On the other hand, by Cauchy-Schwarz,

|〈1, x〉| ≤ ‖1‖‖x‖ =
√
d,

with equality held if and only if x is a scalar multiple of 1. Therefore x must
be equal to 1.

Notice that both the initial state and the final state lie in col(DT
t ), so an

equivalent definition for perfect state transfer from u to v at time k is

UkDT
t eu = DT

t ev.

Our characterization of perfect state transfer relies heavily on this observa-
tion.

2.5.2 Lemma. Let X be a d-regular graph. Let U be the transition matrix
of the arc-reversal Grover walk on X. Let λ = d cos(θ) be an eigenvalue of
X that is neither d nor −d. Let Eλ be the projection onto the λ-eigenspace
of X, and let F± be the projection onto the e±iθ-eigenspace of U . Then

DtF±D
T
t =

d

2
Eλ.

Proof. By Lemma 2.4.3,

2d sin2(θ)DtF±D
T
t = Dt(Dt − e±iθ)TEλ(Dt − e∓iθDh)

= (dI − e±iθA)Eλ(dI − e∓iθA)

= d2
∣∣1− eiθ cos(θ)

∣∣2Eλ
= d2 sin2(θ)Eλ.
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2.5.3 Theorem. Let X be a d-regular graph, with spectral decomposition

A =
∑
λ

λEλ.

Then the arc-reversal Grover walk on X admits perfect state transfer from
u to v at time k if and only if all of the following hold.

(i) For each λ, we have Eλeu = ±Eλev.

(ii) If Eλeu = Eλev 6= 0, then there is an even integer j such that

λ = d cos(jπ/k).

(iii) If Eλeu = −Eλev 6= 0, then there is an odd integer j such that

λ = d cos(jπ/k).

Proof. Let U be the transition matrix of the arc-reversal Grover walk on X.
Consider the spectral decomposition of U :

U =
∑
r

eiθrFr.

There is perfect state transfer from u to v at time k if and only if∑
r

eikθrFrD
T
t eu = DT

t ev,

or equivalently, for each r,

eikθrFrD
T
t eu = FrD

T
t ev. (2.5.1)

We prove that Equation (2.5.1) holds if and only if (i), (ii) and (iii) hold.
Depending on r, there are three cases.

Suppose eiθr = 1. Equation (2.5.1) says that

FrD
T
t eu = FrD

T
t ev.

By Lemma 2.4.4, this holds if and only if

1

nd
Jeu = DT

t Edeu = DT
t Edev =

1

nd
Jev 6= 0,
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if and only if
Edeu = Edev 6= 0.

Clearly d = d cos(0), which satisfies (ii).
Suppose eiθr = −1. By Lemma 2.4.5,

FrD
T
t =

1

d
DT
t E−dDtD

T
t = DT

t Ed.

Thus Equation (2.5.1) holds if and only if

(−1)kFrD
T
t eu = FrD

T
t ev,

that is,
(−1)kDT

t E−deu = DT
t E−dev.

If X is not bipartite, then E−d = 0 and

FrD
T
t eu = FrD

T
t ev = 0.

Otherwise,
E−deu = E−dev 6= 0

if u and v are in the same color class, and

E−deu = −E−dev 6= 0

if they are in different color classes. Clearly

−d = d cos

(
kπ

k

)
,

which satisfies (i) and (ii).
Finally suppose eiθr 6= ±1. Equation (2.5.1) says that

eikθrFrD
T
t eu = FrD

T
t ev.

By Lemma 2.5.2,

DtFrD
T
t =

d

2
Eλ,

so

deikθr

2
(Eλ)uu = eikθr

〈
FrD

T
t eu, D

T
t eu
〉

=
〈
FrD

T
t ev, D

T
t eu
〉

=
d

2
(Eλ)uv ∈ R.

Therefore Equation (2.5.1) holds if and only if one of the following occurs:
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(a) Eλeu = Eλev = 0;

(b) Eλeu = Eλev 6= 0, and eikθr = 1;

(c) Eλeu = −Eλev 6= 0, and eikθr = −1.

The three conditions in Theorem 2.5.3 are symmetric in u and v. As a
consequence, perfect state transfer is symmetric in the initial and final state,
and it implies periodicity at both vertices.

2.5.4 Corollary. Let X be a regular graph. Consider the arc-reversal Grover
walk on X. If there is perfect state transfer from u to v at time k, then there
is perfect state transfer from v to u at time k, and X is periodic at both u
and v at time 2k.

Let X be a graph with spectral decomposition

A =
∑
λ

λEλ.

The eigenvalue support of a vertex u, defined by Godsil [26], is the set

{λ : Eλeu 6= 0}.

Let φ(t) be the characteristic polynomial of X, and φu(t) the characteristic
polynomial of the vertex-deleted subgraph X\u. It is shown by Godsil and
Royle [34] that the eigenvalue support of u consists of roots of the following
polynomial:

ψu(t) :=
φ(t)

gcd(φ(t), φu(t))
.

Thus, Theorem 2.5.3 gives necessary and sufficient conditions on ψu(t) for X
to be periodic at u.

2.5.5 Theorem. Suppose ψu(t) has degree `. Then vertex u is periodic at
time k if and only if the polynomial

z`ψu

(
d

2

(
z +

1

z

))
is a factor of zk − 1.
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Proof. Setting u = v in Theorem 2.5.3, we see that u is periodic at time k if
and only if each eigenvalue λ in the eigenvalue support of u is of the form

λ =
d

2
(ejπi/k + e−jπi/k),

for some even integer j, or equivalently,

z`ψu

(
d

2

(
z +

1

z

))
divides zk − 1.

Two vertices u and v in X are cospectral if the the vertex-deleted sub-
graphs X\u and X\v have the same characteristic polynomial, that is,

φu(t) = φv(t).

We say two vertices u and v are strongly cospectral if

Eλeu = ±Eλev

for each eigenvalue λ of X. Strongly cospectrality has been thoroughly stud-
ied by Godsil and Smith [35]; we cite a useful characterization below.

2.5.6 Theorem. Let X be a graph with spectral decomposition

A =
∑
λ

λEλ.

Two vertices u and v in X are strongly cospectral if and only if both

(i) u and v are cospectral; and

(ii) for every eigenvalue λ of X, the vectors Eλeu and Eλev are parallel.

Conditions (ii) and (iii) in Theorem 2.5.3 lead us to consider regular
graphs whose eigenvalues are given by real parts of 2k-th roots of unity. A
circulant graph X = X(Zn, {g1, g2, . . . , gd}) is a Cayley graph over Zn with
inverse-closed connection set

{g1, g2, . . . , gd} ⊆ Zn.
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If ψ is a character of Zn, then ψ is also an eigenvector for X with eigenvalue

ψ(g1) + · · ·+ ψ(gd).

Note that this is a sum of real parts of n-th roots of unity. We show that cir-
culant graphs whose connection sets satisfy a simple condition admit perfect
state transfer. The following can be found in Zhan [66].

2.5.7 Theorem. Let ` be an odd integer. For any distinct integers a and
b such that a + b = `, the arc-reversal Grover walk on the circulant graph
X(Z2`, {a, b,−a,−b}) admits perfect state transfer at time 2` from vertex 0
to vertex `.

Proof. The eigenvalues of X are

λj = eajπ/` + e−ajπ/` + ebjπ/` + e−bjπ/`

= 2 cos

(
ajπ

`

)
+ 2 cos

(
bjπ

`

)
,

for j = 0, 1, · · · , 2n− 1. Since ` is odd and a+ b = `, when j is odd,

λj = 0 = 4 cos

(
`π

2`

)
,

and when j is even,

λj = 4 cos

(
2ajπ

2`

)
.

It suffices to check the parity condition in Theorem 2.5.3 for each eigenvector
of X. Since a+ b = `, vertex u and u+ ` have the same neighbors, so

A(eu − eu+`) = 0.

We see from the multiplicity of 0 that for u = 0, 1, · · · , ` − 1, the vectors
eu − eu+` form an orthogonal basis for ker(A). Thus yu = −yv if y is an
eigenvector for X with eigenvalue 0, and yu = yv if y is any other eigenvector
for X.
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2.6 Open Problems

We end this chapter with some open problems on arc-reversal walks.
One obvious direction is to find more examples of perfect state transfer.

Since perfect state transfer at step k implies periodicity at step 2k, the first
question we could ask is the following.

(i) Which regular graphs have periodic vertices?

Theorem 2.5.5 gives a characterization for periodic vertices. Although this
is a local condition on the eigenvalue support of a vertex, it is satisfied when
the entire graph is periodic, that is, when all eigenvalues of the graph are d
times the real parts of some k-th roots of unity. Hence, it is useful to study
graphs for which

znφ

(
d

2

(
z +

1

z

))
is a factor of zk − 1. In [65], Yoshie investigated periodic arc-reversal Grover
walks on distance regular graphs, and found all Hamming graphs and Johnson
graphs that are periodic.

Looking back at our definition of perfect state transfer, we see that it is
because the initial state lives in col(DT

t ) that perfect state transfer can be
characterized using graph spectra. In theory, for any unit vector x,

eu ⊗ x

could serve as the initial state that concentrates on u. Thus, the second
question is to understand what happens if we relax the assumption on the
initial state.

(ii) Is there an example of perfect state transfer, where the initial state does
not lie in col(DT

t )? If so, can we characterize such perfect state transfer
purely in terms of the spectral decomposition of X?

Finally, while most of our theory was devoted to arc-reversal Grover
walks, there are other coins that have been studied in the literature, such as
the Fourier coin:

F :=
1√
d

(e2jkπi/d)jk.

Note that F 4 = I, so the techniques in Section 2.3 do not apply. However,
for graphs with special structures, one can still study the arc-reversal Fourier
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walk analytically. In [48], Krovi and Brun computed the hitting time of an
arc-reversal walk on the hypercube Qd, and showed that for some initial state,
the hitting time relative to

U = R(I ⊗ F )

could be infinite. This is in sharp contrast to the polynomial hitting time
relative to

U = R(I ⊗G),

as proved by Kempe [45]. Below we give another example showing how coins
may affect the behavior of a quantum walk.

2.6.1 Theorem. Let X = Km,n. For each vertex u, let fu be a linear order
on its neighbors. Suppose fu = fv whenever u and v are in the same color
class. Let Cn be an m × m unitary coin of order k, and attach it to each
vertex of degree n. Let Cm an n × n unitary coin of order `, and attach it
to each vertex of degree m. If U is the transition matrix of the arc-reversal
walk on X with coins Cm and Cn, then

U2lcm(k,`) = I.

Proof. Up to permuting the row and the columns, the transition matrix can
be written as

U = R



Cn
. . .

Cn
Cm

. . .

Cm


,

where

R = E12 ⊗

(
m∑
i=1

n∑
j=1

Eji ⊗ Eij

)
+ E21 ⊗

(
m∑
i=1

n∑
j=1

Eij ⊗ Eji

)
.

Thus,

U = R(E11 ⊗ Im ⊗ Cn + E22 ⊗ In ⊗ Cm)
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= E12 ⊗

(
m∑
i=1

n∑
j=1

Eji ⊗ EijCm

)
+ E21 ⊗

(
m∑
i=1

n∑
j=1

Eij ⊗ EjiCn

)
.

Therefore,

U2 = E11 ⊗

(
n∑
j=1

m∑
t=1

Ejt(Cm)jt

)
⊗ Cn + E22 ⊗

(
m∑
i=1

n∑
s=1

Eis(Cn)is

)
⊗ Cm

=

(
Cm ⊗ Cn 0

0 Cn ⊗ Cm

)
.

It follows that the order of U2 divides the order of Cm⊗Cn, that is, lcm(k,m).

We pose a question about optimizing certain parameter over arc-reversal
walks with arbitrary coins, but keep in mind that this may be fairly difficult
to solve, so even partial progress will be useful. One interesting parameter
of a quantum walk is the mixing time; we will discuss this in Chapter 3.

(iii) Given an important parameter of discrete quantum walks, and an arc-
reversal walk with transition matrix

U = R(I ⊗ C),

can we optimize the parameter over all possible coins C?
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Chapter 3

General Quantum Walks

In the last chapter, our quantum walker discovered a simple rule to move on
a d-regular graph: at each step, she pushes her part on arc (u, v) towards
arc (v, w), with “relocation amplitude” 2/d−1 if w and v are equal, and 2/d
otherwise. After exploring for a while, she starts to modify the rule. First,
the arc that receives relocation amplitude 2/d − 1 does not have to be the
inverse of the previous one—she could pick the special arc in her own way.
Second, these amplitudes do not have to be real—she could toss any complex
coin as long as it stays unitary. Finally, the underlying graph does not have to
be regular or undirected—she could assign different coins to different vertices
based on their outdegrees. However, as time goes, she notices some common
phenomena of these quantum walks, due to the nature of unitarity.

The aim of this chapter is to study the limiting behavior of a quantum
walk while assuming as little as possible. To allow this level of generality,
we suppose the underlying graph X is directed, and U is simply a unitary
matrix indexed by the arcs of X. We will consider the applications to specific
quantum walks in later chapters.

We start by describing the evolution of a quantum walk in the density
matrix formalism, as it cleans up the discussion on various forms of prob-
abilities. Following this, we show that while the instantaneous probability
distribution of a quantum walk does not converge, its Cesàro sum does exist,
and can be expressed using the spectral idempotents of U . We then explore
how fast the time-averaged probability distribution converges to this limit.
In particular, four upper bounds on the mixing time are given, with tightness
determined by our knowledge of the quantum walk. For the limiting distri-
bution itself, we study a matrix that encodes the limiting probabilities over
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3. GENERAL QUANTUM WALKS

the arcs, called the average mixing matrix. We prove that it is flat, that is,
all entries are of constant modulus, if and only if U has simple eigenvalues
with flat eigenprojections; this is a useful characterization as flat average
mixing matrix guarantees uniform limiting distribution over the vertices, re-
gardless of the initial state. Finally, we extend some results on the average
mixing matrix in continuous quantum walks to discrete quantum walks. The
majority of this chapter comes from Godsil and Zhan [36].

3.1 Density Matrices

LetX be a digraph withm arcs. A discrete quantum walk onX is determined
by some unitary transition matrix U acting on Cm. Given initial state x0, at
step k, the system is in state

xk := Ukx0.

If we perform a measurement in the standard basis, then the quantum walker
is found on arc a with probability

Px0,a(k) :=
∣∣〈ea, Ukx0〉

∣∣2.
We may express the right hand side using the trace inner product, that is,∣∣〈ea, Ukx0〉

∣∣2 = eTa (Uk)∗x0x
∗
0U

kea = 〈(Uk)∗x0x
∗
0U

k, eae
T
a 〉.

Note that both (Uk)∗x0x
∗
0U

k and eae
T
a are positive semidefinite matrices with

trace one. This motivates us to describe quantum walks in a different way,
using density matrices.

A density matrix is a positive semidefinite matrix ρ with tr(ρ) = 1. All
m×m density matrices form a convex set, with extreme points being the rank
one projections, that is, ρ = xx∗ for some unit vector x ∈ Cm. Thus, there is
a one-to-one correspondence between the extreme points and the quantum
states we have seen; these states are called pure states. The remaining density
matrices represent probabilistic ensembles of pure states, also called mixed
states. For example, if one is uncertain about the system state in C2, but
knows that it is e1 with probability 50%, and e2 with probability 50%, then
the density matrix is

1

2

(
1 0
0 1

)
=

1

2
e1e

T
1 +

1

2
e2e

T
2 .
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3.1. DENSITY MATRICES

However, we also have

1

2

(
1 0
0 1

)
=

1

2

(
1√
2
1√
2

)(
1√
2

1√
2

)
+

1

2

(
1√
2

− 1√
2

)(
1√
2
− 1√

2

)
,

so a density matrix does not necessarily determine the probabilistic ensemble
of pure states. For more discussion on pure states and mixed states, see
[12, 44, 54].

Now let’s revisit the quantum walk on X. Suppose we start with a pure
state, say ρ0 = x0x

∗
0. At step k, the system is in state

ρk := Ukρ0(U
k)∗.

If we perform a measurement in the standard basis, then the system collapses
to state eae

T
a with probability

Pρ0,a(k) = 〈ρk, eaeTa 〉,

that is, the inner product of the pre-measurement state and post-measurement
state.

As a special case, when ρ0 = ebe
T
b for some arc eb, the probability Pρ0,a(k)

is simply the ab-entry of the following Schur product:

Uk ◦ Uk;

we will refer to this matrix as the mixing matrix at step k.
What about the probability that the walker is on a vertex u? This is

defined to be the sum of Pρ0,a(k) over all outgoing arcs a of u. More generally,
for any subset S of the arcs of X, the probability that the walker is on S at
time k is

Pρ0,S(k) :=
∑
a∈S

Pρ0,a(k).

If ρS is the uniform mixed state over S, that is,

ρS :=
1

|S|
∑
a∈S

eae
T
a ,

then
Px0,S(k) = |S|〈ρk, ρS〉. (3.1.1)

This will be the main formula we use when dealing with the limiting distri-
bution.

51



3. GENERAL QUANTUM WALKS

3.2 Average States and Average Probabili-

ties

A well-known fact about classical random walks is that the probability dis-
tribution converges to a stationary distribution, under only mild conditions.
Thus it is natural to ask whether the state or the probability distribution
converges in a quantum walk. Unfortunately, since U preserves the difference
between states at two consecutive steps, neither ρk nor Pρ0,S(k) converges,
unless ρ1 = ρ0. (For a detailed explanation, see Aharonov et al [2].)

Nonetheless, the Cesàro sums of both {ρk} and {Pρ0,S(k)} exist. The first
Cesàro sum,

lim
K→∞

1

K

K−1∑
k=0

ρk,

is called the average state; it was proposed by von Neumann as a first step
towards thermalization [61]. We will give a formula for the average state
using the spectral idempotents of U , and apply it to find the second Cesàro
sum, the average probability :

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k).

3.2.1 Lemma. Let U be a unitary matrix with spectral decomposition

U =
∑
r

eiθrFr.

We have

1

K
(Uk)ρ0(U

k)∗ =
∑
r

Frρ0Fr +
1

K

∑
r 6=s

(
1− eiK(θr−θs)

1− ei(θr−θs)

)
Frρ0Fs.

Proof. By the spectral decomposition of Uk,

(Uk)ρ0(U
k)∗ =

∑
r,s

eik(θr−θs)Frρ0Fs

=
∑
r

Frρ0Fr +
∑
r 6=s

eik(θr−θs)Frρ0Fs.
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3.2. AVERAGE STATES AND AVERAGE PROBABILITIES

Hence

1

K

K−1∑
k=0

Ukρ0(U
k)∗ =

∑
r

Frρ0Fr +
1

K

∑
r 6=s

(
K−1∑
k=0

eik(θr−θs)

)
Frρ0Fs

=
∑
r

Frρ0Fr +
1

K

∑
r 6=s

(
1− eiK(θr−θs)

1− ei(θr−θs)

)
Frρ0Fs.

3.2.2 Theorem. Let U be a unitary matrix with spectral decomposition

U =
∑
r

eiθrFr.

Given initial state ρ0, the average state of the quantum walk with U as the
transition matrix is

lim
K→∞

1

K

K−1∑
k=0

ρk =
∑
r

Frρ0Fr.

Proof. By Lemma 3.2.1, it suffices to prove that each entry in the residual

1

K

K−1∑
k=0

Ukρ0(U
k)∗ −

∑
r

Frρ0Fr

is bounded by some constant independent of K. Indeed, for any K and any
r 6= s, ∣∣∣∣1− eiK(θr−θs)

1− ei(θr−θs)

∣∣∣∣ ≤ 2

|1− ei(θr−θs)|
,

which only depends on r and s.

The map

ρ0 7→
∑
r

Frρ0Fr

is knowns as the conditional expectation onto the commutant of U . We give
another interpretation of this map from a channel viewpoint. For backgound
on quantum channels, see [12, 44, 54]. Since the eigenprojections satisfy∑

r

F ∗r Fr = I,
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3. GENERAL QUANTUM WALKS

the mapping on density matrices given by

ρ0 7→
∑
r

Frρ0F
∗
r

is a quantum channel. Therefore, the time-averaged state is effectively the
image of the initial state passing through this channel.

The formula for the average probability now follows from Equation (3.1.1).

3.2.3 Theorem. Let X be a digraph. Let U be a transition matrix of a
quantum walk on X, with spectral decomposition

U =
∑
r

eiθrFr.

Given initial state ρ0 and a subset S of arcs, the average probability of the
quantum walker being on S is

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k) = |S|
∑
r

〈Frρ0Fr, ρS〉.

Two questions about the average probability are of our interest: how fast
does the partial sum

1

K

K−1∑
k=0

Pρ0,S(k)

converge, and when is the average probability distribution uniform? We will
investigate these in the next two sections, respectively.

3.3 Mixing Times

Given ε > 0, the mixing time Mρ0,S(ε) with respect to initial state ρ0 and
target arcs S is the smallest L such that for all K > L,∣∣∣∣∣ 1

K

K−1∑
k=0

Pρ0,S(k)− |S|
∑
r

〈Frρ0Fr, ρS〉

∣∣∣∣∣ ≤ ε.

There are several variants of this definition. For instance, we may consider
the mixing time conditioned on the initial state being any standard basis
vector:

MS(ε) := sup{Mρ0,S(ε) : ρ0 = eae
T
a for some arc a},
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For a more global purpose, we could look at the smallest L such that for all
K > L, the average probability distribution over vertices is ε-close to the
limiting distribution over vertices. In [2], Aharonov et al studied the mixing
time of the last type, and obtained an upper bound for a general graph.
They further showed that the mixing time of a quantum walk on an n-cycle
with the Hadamard coin is bounded above by O(n log n), giving a quadratic
speedup over the classical random walk. We now extend some of their results
on mixing times of the form Mρ0,S(ε).

3.3.1 Theorem. Let X be a digraph. Let U be a transition matrix of a
quantum walk on X, with spectral decomposition

U =
∑
r

eiθrFr.

Given initial state ρ0 and a subset S of arcs, the mixing time Mρ0,S(ε) satisfies

Mρ0,S(ε) ≤ 2|S|
ε

∑
r 6=s

|〈Frρ0Fs, ρS〉|
|eiθr − eiθs|

(3.3.1)

≤ 2

ε

∑
r 6=s

∑
a∈S

√
(Fr)aa(Fs)aa
|eiθr − eiθs|

(3.3.2)

≤ 2|S|
ε

∑
r 6=s

1

|eiθr − eiθs|
(3.3.3)

≤ 2`|S|
ε∆

, (3.3.4)

where ` is the number of pairs of distinct eigenvalues, and

∆ := min{
∣∣eiθr − eiθs∣∣ : r 6= s}.

Proof. From Lemma 3.2.1 we see that∣∣∣∣∣ 1

K
Pρ0,S(k)− |S|

∑
r

〈Frρ0Fr, ρS〉

∣∣∣∣∣ =
|S|
K

∣∣∣∣∣∑
r 6=s

1− eiK(θr−θs)

1− ei(θr−θs)
〈Frρ0Fs, ρS〉

∣∣∣∣∣
≤ |S|

K

∑
r 6=s

∣∣∣∣1− eiK(θr−θs)

1− ei(θr−θs)

∣∣∣∣|〈Frρ0Fs, ρS〉|
≤ 2|S|

K

∑
r 6=s

|〈Frρ0Fs, ρS〉|
|eiθr − eiθs|

(3.3.5)
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=
2|S|
K

∑
r 6=s

|〈ρ0, FrρSFr〉|
|eiθr − eiθs|

≤ 2|S|
K

∑
r 6=s

‖FrρSFs‖
|eiθr − eiθs |

≤ 2

K

∑
r 6=s

∑
a∈S

√
(Fr)aa(Fs)aa
|eiθr − eiθs|

(3.3.6)

≤ 2|S|
K

∑
r 6=s

1

|eiθr − eiθs |
(3.3.7)

≤ 2`|S|
K∆

. (3.3.8)

Thus, for all K such that

K >
2|S|
ε

∑
r 6=s

|〈Frρ0Fs, ρS〉|
|eiθr − eiθs|

,

the right hand side of Inequality (3.3.5) is no more than ε. Similarly, the
other three bounds follow from Inequalities (3.3.6), (3.3.7) and (3.3.8).

The last bound in Theorem 3.3.1 is equivalent to Lemma 4.3 in Aharonov
et al [2]. The other three bounds are stronger, but require more knowledge
of the quantum walk besides the eigenvalues of U .

Below we present some data on the four upper bounds for two models on
the circulant graph X = X(Zn, {1,−1, 2,−2}). Choose an initial state that
concentrate on vertex 0, that is,

ρ0 =
1

4
E00 ⊗ J.

Let Sv denote the set of outgoing arcs of vertex v. For each upper bound
βρ0,S in (3.3.1) , 3.3.2), (3.3.3), and (3.3.4), we compute

ε

2

∑
v∈Zn

βρ0,Sv ,

and store them in Table 3.1.
The models we consider are the arc-reversal Grover walk, which we intro-

duced in Chapter 2, and the shunt-decomposition Grover walk, which we will
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3.4. AVERAGE MIXING MATRIX

introduce in Chapter 4. Let Uar be the transition matrix of the arc-reversal
Grover walk on X, and Usd the transition matrix of the shunt-decomposition
Grover walk on X. One can verify that if the spectral decomposition of Uar
is

Uar =
∑
r

αrFr,

then the spectral decomposition of Usd is

Usd =
∑
r

−αrF ′r,

where for any r, the eigenprojections Fr and F ′r have the same diagonal.
Thus, the upper bounds 3.3.2), (3.3.3) and (3.3.4) are identical for both
models. However, the last two columns in Table 3.1 indicates a difference
between these two models—the shunt-decomposition Grover walk may have
a lower mixing time than the arc-reversal Grover walk.

3.4 Average Mixing Matrix

Let X be a digraph. Let U be a transition matrix of a quantum walk on X,
with spectral decomposition

U =
∑
r

eiθrFr.

In this section, we pay special attention to the average probability of the
quantum walk from one arc a to another arc b, that is,∑

r

〈FreaeTaFr, ebeTb 〉.

Note that this is precisely the ab-entry of
∑

r Fr ◦ Fr. Following Godsil’s
notion for continuous quantum walks [28], we let

M̂ :=
∑
r

Fr ◦ Fr,

and call M̂ the average mixing matrix. Theorem 3.2.3 implies that

M̂ = lim
K→∞

1

K

K−1∑
k=0

Uk ◦ Uk.
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n (3.3.4) ar/sd (3.3.3) ar/sd (3.3.2) ar/sd (3.3.1) ar (3.3.1) sd

6 1390.93 598.05 85.19 1.69 0.91
7 4620.05 1516.4 148.57 2.61 1.91
8 17771.88 3408.35 240.94 4.29 2.36
9 24838.95 3991.5 287.33 4.82 1.73
10 14285.23 3687.22 269.22 4.49 2.12
11 95452.33 9092.93 508.32 6.7 2.97
12 23505.04 4678.44 348.8 4.25 2.45
13 79048.14 13277.27 640.52 8.06 3.09
14 148284.47 19895.81 803.94 10.1 3.97
15 225507.28 16355.5 764.76 9.33 2.46
16 371901.16 34910.54 1211.24 13.57 4.96
17 2591443.27 65759.41 2127.89 24.26 5.54
18 330012.11 36141.49 1284.51 13.45 4.39
19 4854951.51 94822.86 2743.75 33.37 6.24
20 518641.81 51235.99 1562.68 15.33 5.37
21 848915.39 70921.92 1994.95 17.94 5.04
22 4443833.25 129338.06 3143.36 28.53 7.97
23 1651611.78 101994.04 2577.25 21.63 6.41
24 887647.03 76568.55 2185.39 18.05 6.69
25 1715366.87 103250.55 2603.42 20.88 5.9

Table 3.1: Upper bounds for the mixing time on X(Zn, {1, 2,−1,−2})

In [28], Godsil established several properties of the continuous average mix-
ing. We extend some of his results to discrete quantum walks.

The first observation is that M̂ is doubly-stochastic. Moreover, since
each Fr is Hermitian, M̂ is symmetric although Uk ◦Uk is not. Thus we can
view either the a-th row or the a-th column of M̂ as the average probability
distribution given initial state eae

T
a .

For a continuous quantum walk, the average mixing matrix is proved to
be positive semidefinite with eigenvalues no greater than one [28]. We show
that the same statement holds for the discrete average mixing matrix.

3.4.1 Lemma. The average mixing matrix M̂ of a quantum walk is positive
semidefinite, and its eigenvalues lie in [0, 1].

Proof. Since Fr is positive semidefinite, its complex conjugate Fr is positive

58
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semidefinite as well. Hence Fr ⊗ Fr is positive semidefinite. As a princi-
pal submatrix of Fr ⊗ Fr, the Schur product Fr ◦ Fs must also be positive
semidefinite. Therefore, the eigenvalues of M̂ are non-negative. It follows
from

I = I ◦ I =

(∑
r

Fr

)
◦

(∑
s

Fs

)
= M̂ +

∑
r 6=s

Fr ◦ Fs

and the positive-semidefiniteness of Fr ◦ Fs that the eigenvalues of M̂ are at
most 1. On the other hand, since M̂ is doubly stochastic, 1 is an eigenvector
for M̂ with eigenvalue 1.

To measure the flatness of M̂ea, we define its entropy to be the negative
expectation of the logarithm of its entries, that is,

−
∑
b

M̂ab log(M̂ab).

This quantity reaches maximum if and only if the probability distribution
M̂ea is uniform. Likewise, the total entropy of M̂ is

−
∑
a,b

M̂ab log(M̂ab);

it is maximized when the entire average mixing matrix is flat. In [10], Bai,
Rossi, Cui, and Hancock proposed a graph signature based on the total en-
tropy of continuous quantum walks. According to their experimental results,
this entropic measure provides significant information on the properties of
graphs.

A quantum walk with flat M̂ is said to admit uniform average mixing .
According to the definition of M̂ , uniform average mixing means that, in the
limit, the walker has equal chance of being on any arc, no matter which arc
she started with. In fact, as we will see later, something stronger is true
when M̂ is flat—the average probability distribution is uniform over all the
arcs, regardless of the initial state.

While M̂ contains complete information on the average probabilities from
arcs to arcs, one may be interested in average probabilities on the vertices as
well. We say a quantum walk admits uniform average vertex mixing if the
walker has equal chance of being on any vertex in the limit, regardless of the
initial state.

Our next goal is to establish necessary and sufficient conditions for uni-
form average mixing to occur.
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3.4.2 Lemma. Let U be an m×m unitary matrix with spectral decompo-
sition

U =
∑
r

eiθrFr.

If `r is the multiplicity of the r-th eigenvalue of U , then

tr(M̂) ≥ 1

m

∑
r

`2r.

Further, equality holds if and only if each idempotent Fr has constant diag-
onal.

Proof. Since Fr is positive semidefinite, its diagonal entries are non-negative
and

tr(Fr) = `r.

By Cauchy-Schwarz,

tr(Fr ◦ Fr) ≥
1

m
tr(Fr)

2 =
1

m
`2r.

Hence

tr(M̂) ≥ 1

m

∑
r

`2r.

Equality holds if and only if each Fr has constant diagonal `r/m.

3.4.3 Corollary. Let U be a unitary matrix, and M̂ the associated average
mixing matrix.Then tr(M̂) ≥ 1, with equality held if and only if U has simple
eigenvalues with flat eigenprojections.

Proof. Note that ∑
r

`r = m.

By Lemma 3.4.2 and Cauchy-Schwarz,

tr(M̂) ≥ 1

m

∑
r

`2r ≥ 1.

Equality holds if and only if for all r, the idempotent Fr is a rank-one pro-
jection with constant diagonal, that is, each eigenvalue is simple with flat
eigenprojections.
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With all tools established, we are ready to characterize uniform average
mixing in discrete quantum walks.

3.4.4 Theorem. Let U be a transition matrix of a quantum walk, and M̂ the
associated average mixing matrix. The following statements are equivalent.

(i) The quantum walk admits uniform average mixing.

(ii) tr(M̂) = 1.

(iii) U has simple eigenvalues with flat eigenprojections.

Proof. If uniform average mixing occurs, then all entries of M̂ are equal to
1/m, so tr(M̂) = 1. Hence (i) implies (ii). It follows from Corollary 3.4.3 that
(ii) implies (iii). Now suppose (iii) holds. Then the spectral decomposition
of U is

U =
m∑
r=1

eiθrFr,

where for each r, all entries in Fr have the same absolute value. Hence

M̂ab =
m∑
r=1

(Fr ◦ Fr)ab =
m∑
r=1

|(Fr)ab|2,

which does not depend on a and b. Therefore (iii) implies (i).

What about average probabilities on vertices, or subsets of arcs? The
following result shows that if M̂ is flat, then the average probability that the
walker is on some subset S of arcs depends only on the size |S|. In particular,
uniform average mixing implies uniform average vertex mixing.

3.4.5 Theorem. Let X be a digraph. If a quantum walk on X admits
uniform average mixing, then for any initial state ρ0 and any arc set S,

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k) =
|S|
nd
.

Proof. Suppose uniform average mixing occurs. By Theorem 3.4.4, we can
write the spectral decomposition of U as

U =
m∑
r=1

eiθrFr,
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where each Fr is a rank-one flat matrix. By Theorem 3.2.3,

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k) = |S|
m∑
r=1

〈Frρ0Fr, ρS〉

= |S|
m∑
r=1

〈ρ0, FrρSFr〉

=
|S|
nd

m∑
r=1

〈ρ0, Fr〉

=
|S|
nd
〈ρ0, I〉

=
|S|
nd

The converse of Theorem 3.4.5 is not true. In fact, neither simple eigen-
values nor flat eigenvectors are necessary for uniform average vertex mixing.
Later in Chapter 4, we will construct an infinite family of quantum walks
that admit uniform average vertex mixing, where the transition matrices do
not have simple eigenvalues; these are quantum walks on circulant digraphs.

To end this section, we prove some algebraic properties of M̂ . They rely
on the well-known fact that a commutative semisimple matrix algebra with
identity has a basis of orthogonal idempotents. In continuous quantum walks,
similar results turn out to be quite useful in determining uniform mixing; see
for example [33]. We hope the analogy in discrete quantum walks will be of
use too.

3.4.6 Theorem. Let U be the transition matrix of a quantum walk, and M̂
the associated average mixing matrix. If the entries of U are algebraic over
Q, then the entries of M̂ are algebraic over Q.

Proof. Suppose U has algebraic entries. Then its eigenvalues are all algebraic.
Let F be the smallest field containing the eigenvalues of U . Let B be the
matrix algebra generated by U over F. To show that B is semisimple, pick
N ∈ B with N2 = 0. Since U is unitary, the algebra B is closed under
conjugate transpose and contains the identity. It follows from (N∗)2 = 0
that

0 = tr((N∗)2N2)
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= tr(N∗NN∗N)

= tr((N∗N)∗(N∗N)).

Thus N∗N = 0. Applying the trace again to N∗N , we see that N = 0. There-
fore, the spectral idempotents Fr of U are polynomials in U with algebraic
coefficients. Hence the entries in

M̂ =
∑
r

Fr ◦ Fr

are algebraic over Q.

In continuous quantum walks, the entries of the average mixing matrix
are all rational [28]. We show that the discrete average mixing matrix enjoys
the same property, given that all entries of U are rational.

3.4.7 Theorem. Let U be the transition matrix of a quantum walk, and M̂
the associated average mixing matrix. If the entries of U are rational, then
the entries of M̂ are rational.

Proof. Let the spectral decomposition of U be

U =
∑
r

αrFr.

Let F be the smallest field containing the eigenvalues of U . Let σ be an
automorphism of F. Since U is rational, we have

U = Uσ =
∑
r

ασrF
σ
r .

Moreover, since ασr is also an eigenvalue of U , the set of idempotents {Fr} is
closed under field automorphisms. Thus

M̂ =
∑
r

Fr ◦ F T
r

is fixed by all automorphisms of F and must be rational.
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Chapter 4

Specifying Directions

In Chapter 2, our quantum walker jumps from an arc to its inverse after each
coin flip. However, this is not the only way she could move. If the graph is a
cycle, each arc points either clockwise or counterclockwise, so she may jump
between consecutive arcs with the same direction. Similarly, if the graph is
a grid on the torus, she may move one step up, down, left, or right according
to where the current arc points.

In this chapter, we study quantum walks on digraphs where such “direc-
tions” can be specified. We show that specifying d directions on a digraph X
is equivalent to expressing its adjacency matrix as a sum of d permutation
matrices, called shunts. Consequently, X must be d-regular, that is, every
vertex has d out-neighbors and d in-neighbors.

While the transition matrix U still lies in a dihedral group, its spectrum
is in general harder to obtain, so we focus on the case where all the shunts
commute, that is, when X is a Cayley digraph over an abelian group Γ. Given
that every vertex receives the same coin, the spectral decomposition of U is
determined by the coin and the characters of Γ; this was originally observed
by Aharonov et al [2]. We apply their results to shunt-decomposition Grover
walks, and obtain explicit formulas for the eigenvalues and eigenvectors.

As pointed out in [2], a shunt-decomposition walk admits uniform average
vertex mixing if U has distinct eigenvalues. With Grover coins, however, U
will always have −1 as a non-simple eigenvalue unless d = 2. Therefore, pre-
vious studies on uniform average vertex mixing concentrated on cycles with
more complicated coins. We show that for a shunt-decomposition Grover
walk, the simple-eigenvalue condition is unnecessary, thus opening up pos-
sibilities for more examples with higher degrees. Using tools from algebraic
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number theory, we prove that for any prime p, a 3-regular circulant digraph
over Zp admits uniform average vertex mixing if and only if its connection
set has trivial stabilizer in Aut(Zp). This provides the first infinite family of
digraphs, other than cycles, that admit uniform average mixing. We believe
a similar characterization works when the degree is greater than 3.

Finally, we give an overview of a different approach to shunt-decomposition
walks on infinite graphs, due to Ambainis et al [4]. This was the first paper
on shunt-decomposition models where exact analysis was carried out.

4.1 Shunt-Decomposition Walks

Assume X is a d-out-regular digraph, so that we can assign d “directions”
to each vertex. In this section, we discuss what other conditions X must
satisfy, to allow a quantum walk that respects these directions. This type of
quantum walk was first introduced by Aharonov et al [2].

Note that any assignment of d directions partitions the arcs into d groups,
each of which induces a digraph with out-valency one. Let A1, A2, . . . , Ad be
the adjacency matrices of these digraphs. If S is the matrix sending arc (u, v)
to arc (v, w) in the same group, then it can be written as

S =


A−11

A−12
. . .

A−1d

 .

We would like to modify an arc-reversal walk in the following way: keep
the coin matrix, and replace the arc-reversal operator R with the directional
shift operator S. Note that the transition matrix is unitary if and only if S
is unitary, and S is unitary if and only if each Aj defines a permutation on
V (X).

A permutation on V (X) that maps each vertex to a neighbor is called a
shunt. Given d shunts P1, P2, . . . , Pd, the decomposition

A(X) = P1 + · · ·+ Pd,

is called a shunt-decomposition of X. Any digraph that admits a shunt-
decomposition must be both d-in-regular and d-out-regular, or d-regular for
short. We show that the converse is also true.
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4.1.1 Lemma. Let X be a d-regular digraph. Then X admits a shunt-
decomposition.

Proof. Let A be the adjacency matrix of X. Define

B :=

(
0 A
AT 0

)
.

Then B is the adjacency matrix of a d-regular bipartite graph. It is a well-
known fact that every regular bipartite graph has a 1-factorization, whence

B =

(
0 P1

P T
1 0

)
+ · · ·+

(
0 Pd
P T
d 0

)
,

where P1, P2, . . . , Pd are permutation matrices. Therefore,

A(X) = P1 + · · ·+ Pd.

In the rest of this chapter, assume X is a d-regular digraph. Let C be
a d × d unitary coin. As with the arc-reversal C-walk (see Section 2.2), for
each vertex u, we need to specify a linear order on the neighbors of u:

fu : {1, 2, · · · , deg(u)} → {v : u ∼ v},

in order to construct the coin matrix. One way to do this is to choose the
linear order fu according to a shunt-decomposition of X:

A(X) = P1 + · · ·+ Pd;

that is, for j = 1, 2, · · · , d, set fu(j) = ev where v is the unique vertex such
that

P−1j eu = ev.

Given linear orders
{fu : u ∈ V (X)},

the coin C sends (u, fu(j)) to a superposition of all outgoing arcs of u, in
which the amplitudes come from the j-th column of C:

Cej =
d∑

k=1

(eTkCej)ek.
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Now let
A(X) = P1 + · · ·+ Pd

be a shunt-decomposition of X, and let

S =


P−11

P−12
. . .

P−1d

 .

The ordering of the rows and columns of S defines a set of linear orders
{fu : u ∈ V (X)}. Choose a d × d unitary coin C, and assign it to each
vertex u according to fu. Then the coin matrix can be written as C⊗ I. The
unitary matrix

U = S(C ⊗ I)

is the transition matrix of a shunt-decomposition C-walk on X.
Note that S has finite order n. In general, S and C ⊗ I do not commute,

and the spectral decomposition of U could be very hard to derive. However,
if P1, P2, . . . , Pd have a common eigenvector χ, then we can use χ to construct
an eigenvector for U . This observation is due to Aharonov et al [2].

4.1.2 Lemma. Let X be a digraph with shunt-decomposition

A(X) = P1 + · · ·+ Pd.

Let U be the transition matrix of a shunt-decomposition C-walk on X. Let
χ be a common eigenvector for the shunts P1, P2, . . . , Pd with eigenvalues
λ1, λ2, . . . , λd, respectively. Then y⊗χ is an eigenvector for U with eigenvalue
α if and only if y is an eigenvector for

λ−11

λ−12
. . .

λ−1d

C

with eigenvalue α.

Proof. We have

U(y ⊗ χ) =


P−11

P−12
. . .

P−1d

 (Cy ⊗ χ)

68



4.2. COMMUTING SHUNTS AND GROVER COINS

=
d∑
j=1

(EjjCy)⊗ (P−1j χ)

=

((
d∑
j=1

λ−1j Ejj

)
Cy

)
⊗ χ

=



λ−11

λ−12
. . .

λ−1d

Cy

⊗ χ.
Thus

U(y ⊗ χ) = α(y ⊗ χ)

if and only if 
λ−11

λ−12
. . .

λ−1d

Cy = αy.

4.2 Commuting Shunts and Grover coins

In this section, we study the spectrum of a shunt-decomposition walk where
all the shunts commute. A complete characterization follows from Lemma
4.1.2. We then look into the case where each vertex receives the Grover coin,
and obtain more explicit formulas for the eigenvalues and eigenvectors of U .

Suppose X has shunt-decomposition

A(X) = P1 + · · ·+ Pd,

where PjPk = PkPj for all j and k. Then P1, P2, . . . , Pd generate an abelian
group Γ, which acts regularly on the vertices of X. Thus, X is isomorphic
to a Cayley digraph over Γ with connection set {P1, P2, . . . , Pd}. Since the
characters of Γ are eigenvectors for the regular representation of Γ, and dis-
tinct characters are orthogonal, by Lemma 4.1.2, they give rise to a basis of
eigenvectors for U .

From now on, let Γ be a finite abelian group, and let X be a Cayley
digraph over Γ with connection set {g1, g2, . . . , gd}, denoted

X(Γ, {g1, g2, . . . , gd}).
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Since Γ is abelian, the images of the connection set under the regular repre-
sentation of Γ are the shunts P1, P2, . . . , Pd in a shunt-decomposition of X.
If χ is an character of Γ, then

Pjχ = χ(gj)χ.

Define

Λχ :=


χ(g−11 )

χ(g−12 )
. . .

χ(g−1d )

 .

The following result, as a consequence of Lemma 4.1.2, is again due to
Aharonov et al [2].

4.2.1 Theorem. Let Γ be a finite abelian group. Let X be a Cayley digraph
over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition matrix
of a shunt-decomposition C-walk on X. The eigenvalues of U consists of
eigenvalues of ΛχC, where χ ranges over all characters of Γ.

Note that when χ is the trivial character, we have ΛχC = C. Hence the
eigenvalues of the coin are always eigenvalues of U .

Let G be the d× d Grover coin. Consider a shunt-decomposition Grover
walk. We derive explicit formulas for the eigenvalues of U , in terms of the
characters. While the following theorem only states what the eigenvalues of
U are, the proof also provides a construction for all the eigenvectors.

4.2.2 Theorem. Let Γ be a finite abelian group. Let X be a Cayley digraph
over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition matrix of
a shunt-decomposition Grover walk on X. Let χ be a non-trivial character
of Γ. Each eigenvalue α of ΛχG is either

(i) a zero of
1

αχ(g1) + 1
+ · · ·+ 1

αχ(gd) + 1
− d

2
,

with multiplicity 1, or,

(ii) −χ(g−1j ), with multiplicity one less than the number of k’s such that
χ(gk) = χ(gj).
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Proof. Let y be an eigenvector for ΛχG with eigenvalue α. Since

G =
2

d
J − I,

we need to solve
2

d
Jy = (αΛ−1χ + I)y,

that is,

2

d
〈1, y〉1 =

(αχ(g1) + 1)y1
...

(αχ(gd) + 1)yd

 . (4.2.1)

Consider two cases.

(i) Suppose 〈1, y〉 6= 0. Then the right hand side in Equation (4.2.1) is a
vector with no zero entry. Without loss of generality we may assume
〈1, y〉 = 1. Thus,

1

αχ(g1) + 1
+ · · ·+ 1

αχ(gd) + 1
=
d

2
, (4.2.2)

and each solution α to the above uniquely determines an eigenvector
y with 〈1, y〉 = 1. Therefore the distinct zeros of Equation (4.2.2) are
eigenvalues of ΛχG. Further, if any of them has multiplicity greater
than one, then it must have an eigenvector y such that 〈y,1〉 = 0,
which implies one of

α(χ(g1) + 1), · · · , α(χ(gd) + 1)

is equal to zero, a contradiction.

(ii) Suppose 〈1, y〉 = 0. Since y 6= 0, there must exists some j such that

αχ(gj) + 1 = 0,

that is, α = −χ(g−1j ). Then for any k such that χ(gj) 6= χ(gk), we have
yk = 0. Hence y is orthogonal to 1 if and only if∑

k:χ(gk)=χ(gj)

yj = 0,

from which the multiplicity of α follows.
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4.3 Uniform Average Vertex Mixing

One topic in the limiting behavior of quantum walks is uniform average vertex
mixing. We saw in Section 3.4 that this is guaranteed whenever the average
mixing matrix M̂ is flat, or equivalently, when U has simple eigenvalues and
flat eigenvectors. However, uniform average vertex mixing does not imply
uniform average mixing. The following two results are due to Aharonov et
al [2].

4.3.1 Theorem. Let Γ be a finite abelian group. Let X be a Cayley digraph
over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition matrix
of a shunt-decomposition C-walk on X, with spectral decomposition

U =
∑
r

eiθrFr.

If U has simple eigenvalues, and for each r, 〈Fr, ρS〉 = 1 whenever S is is
the set of outgoing arcs of a vertex, then U admits uniform average vertex
mixing.

4.3.2 Corollary. Let Γ be a finite abelian group. Let X be a Cayley digraph
over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition matrix of
a shunt-decomposition C-walk on X. If U has simple eigenvalues, then the
quantum walk admits uniform average vertex mixing.

Proof. This follows immediately from the structure of eigenvectors for U , as
described in Lemma 4.1.2.

Using these results, Aharonov et al [2] showed that on every odd cycle,
the shunt-decomposition Hadamard walk admits uniform average mixing.
We wish to construct more examples with Grover coins.

Let X be a d-regular Cayley digraph over an abelian group Γ, and let U
be the transition matrix of a shunt-decomposition Grover walk on X. The
first difficulty we face is that when d > 2, the coin G itself contributes −1 to
the spectrum of U at least twice. Hence the above corollary no longer applies.
Fortunately, simple eigenvalues are not necessary for uniform average vertex
mixing to occur; a slightly weaker condition also works.

4.3.3 Theorem. Let Γ be a finite abelian group. Let X be a Cayley digraph
over Γ with connection set {g1, g2, . . . , gd}. Let U be the transition matrix of
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a shunt-decomposition Grover walk on X. If the only non-simple eigenvalue
of U is −1 with multiplicity d − 1, then U admits uniform average vertex
mixing.

Proof. Suppose X has n vertices. Since −1 is an eigenvalue of U with
multiplicity d − 1, by Lemma 4.1.2 and Theorem 4.2.2, the eigenprojection
of −1 must be

F−1 =

(
I − 1

d
J

)
⊗ 1

n
J.

Let u be any vertex of X, and S the set of outgoing arcs of X. Then

F−1ρSF−1 =
1

d

((
I − 1

d
J

)
⊗ 1

n
J

)
(I ⊗ Euu)

((
I − 1

d
J

)
⊗ 1

n
J

)
=

1

n2d

(
I − 1

d
J

)
⊗ (JEuuJ)

=
1

nd
F−1.

On the other hand, since the remaining eigenvalues are all simple, we have

FrρSFr =
1

nd
Fr

for all r 6= −1. Thus by Theorem 3.2.3,

lim
K→∞

1

K

K−1∑
k=0

Pρ0,S(k) = d
m∑
r=1

〈Frρ0Fr, ρS〉

= d
∑
r

〈ρ0, FrρSFr〉

=
1

n

∑
r

〈ρ0, Fr〉

=
1

n
.

Combining this with Theorem 4.2.2, we need a Cayley digraph where

χ(g1), χ(g2), · · · , χ(gd)

are pairwise distinct, for every non-trivial character χ. This is satisfied when
Γ is a cyclic group of prime order.
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In the rest of this section, let us assume X = X(Zp, {g1, g2, . . . , gd}) for
some prime p. Let

ζ := e2πi/p.

We wish to characterize circulant digraphs over Zp that admit uniform aver-
age vertex mixing. To begin, we prove the following easier direction.

4.3.4 Lemma. Let p be a prime. Let X be a circulant digraph over Zp with
connection set {g1, g2, . . . , gd}. Let U be the transition matrix of a shunt-
decomposition Grover walk on X. If the connection set of X is fixed by some
non-trivial automorphism of Zp, then there is an initial state for which the
average probability distribution is not uniform over the vertices.

Proof. Suppose the connection set is invariant under multiplication by k, for
some k ∈ {2, 3, · · · , p − 1}. Let χ be the character of Zp that sends vertex
u to ζu, and let φ be the character that sends u to ζku. Then there is a
permutation P such that

PΛχP
T = Λφ.

If y is an eigenvector for ΛχG with eigenvalue α, then Py is an eigenvector
for ΛφG with eigenvalue α. By Lemma 4.1.2, both y ⊗ χ and Py ⊗ φ are
eigenvectors for U with eigenvalue α. Choose y such that

(y ⊗ χ+ Py ⊗ φ)(y ⊗ χ+ Py ⊗ φ)∗

has trace one; denote this state by ρ0.
Now let S be the set of outgoing arcs of some vertex u. By Theorem

3.2.3, the average probability on S, given initial state ρ0, is

d
∑
r

〈Frρ0Fr, ρS〉 = d〈ρ0, ρS〉

= (y ⊗ χ+ Py ⊗ φ)∗(I ⊗ Euu)(y ⊗ χ+ Py ⊗ φ)

= 2|y|2 + 2Re
(
〈y, Py〉e2πi(k−1)u/p

)
Since p is a prime, the last line cannot be the same for all vertices u.

What about the converse? While we are not able to answer this question
in general, we do have the characterization for d = 2 and d = 3. Some of our
techniques may be generalized to circulant digraphs with larger valency.

For k = 1, 2, · · · p− 1, define

fk(x) :=
1

x− ζkg1
+ · · ·+ 1

x− ζkgd
− d

2x
.
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4.3.5 Theorem. Let p be a prime. Let X be a circulant digraph over Zp
with connection set {g1, g2, . . . , gd}. Let U be the transition matrix of a
shunt-decomposition Grover walk on X. The eigenvalues of U are 1, −1, and
the set of α such that fk(−α−1) = 0 for some k = 1, 2, · · · , p− 1.

Proof. We apply Theorem 4.2.2 to find the eigenvalues of U . Fix a non-
trivial character χ of Zp. Then χ(gj) = ζkgj for some k = 1, 2, · · · , p − 1.
Since p is a prime, χ(gj) is distinct over the connection set, so all eigenvalues
of ΛχG are of the first type in Theorem 4.2.2. The relation between these
eigenvalues and the roots of fk(x) follows from a simple transformation.

4.3.6 Corollary. Let p be a prime. Let X be a circulant digraph over Zp
with connection set {g1, g2, . . . , gd}. Let U be the transition matrix of a
shunt-decomposition Grover walk on X. For k = 1, 2, · · · , p−1, the function
fk(x) has d distinct roots.

By manipulating fk(x), we find an algebraic relation between the eigen-
values of U and those of X. That is, each eigenvalue of U , other than ±1,
satisfies a polynomial whose coefficients are the eigenvalues of X.

4.3.7 Theorem. Let p be a prime. Let X be a circulant digraph over Zp with
connection set {g1, g2, . . . , gd}. Let U be the transition matrix of a shunt-
decomposition Grover walk on X. Let θ0, θ1, . . . , θp−1 be the eigenvalues of
X. The eigenvalues of U are 1, −1, and the set of α such that

d

2
=
θσk0 + θσk1 (−α) + · · ·+ θσkp−1(−α)p−1

1− (−α)p
,

for some σk in the Galois group Aut(Q(ζ)/Q).

Proof. Let α /∈ {−1, 1} be an eigenvalue of U . Let β = −α. By Theorem
4.3.5, we have fk(β) = 0 for some k = 1, 2, · · · , p− 1. Thus,

d

2
=

d∑
j=1

1

1− ζkgjβ

=
d∑
j=1

(1 + (ζkgjβ) + (ζkgjβ)2 + · · · )

75



4. SPECIFYING DIRECTIONS

=
d∑
j=1

1 + ζkgjβ + · · ·+ (ζkgjβ)p−1

1− βp

=
1

1− βp

(
p− 1 +

(
d∑
j=1

ζgj

)σk

β + · · ·+

(
d∑
j=1

ζ(p−1)gj

)σk

βp−1

)
.

Note that for ` = 0, 1, 2 · · · , p− 1,

d∑
j=1

ζ`gj

is precisely the `-th eigenvalue θ` of X.

Both Theorem 4.3.5 and Theorem 4.3.7 give formulas for the eigenvalues
of U . Our next goal is to derive a sufficient condition, based on Theorem
4.3.5, for uniform average vertex mixing to happen. Define

qk(x) := (x− ζkg1) · · · (x− ζkgd).

Note that x is a root of fk(x) if and only if it is a root of

hk(x) := dqk(x)− 2xq′k(x).

The following is a sufficient condition for uniform average vertex mixing to
occur.

4.3.8 Lemma. Let p be a prime. Let X be a circulant digraph over Zp
with connection set {g1, g2, . . . , gd}. Let U be the transition matrix of a
shunt-decomposition Grover walk on X. If for any k = 2, 3, · · · , p − 1, the
polynomials h1(x)and hk(x) are coprime over C[x], then U admits uniform
average vertex mixing.

Proof. Recall from Corollary 4.3.6 that each of h1(x), · · · , hp−1(x) has d
distinct roots. Thus, if h1(x), · · · , hp−1(x) are pairwise coprime over C[x],
then the only non-simple eigenvalue of U is −1 with multiplicity d− 1, and
so uniform average vertex mixing occurs. Since the set

{h1(x), · · · , hp−1(x)}

is closed under the action of the Galois group Aut(Q(ζ)/Q), it suffices to
assume that h1(x) and hk(x) are coprime over C[x], for k = 2, 3, · · · , d.
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We apply the above criterion to X with d = 2. This is not the most
exciting quantum walk, as the 2 × 2 Grover coin is simply a permutation
matrix. However, the result gives some hint on the condition we should
impose on the connection set.

4.3.9 Theorem. Let p be a prime and X a 2-regular circulant digraph over
Zp. Let U be the transition matrix of a shunt-decomposition Grover walk on
X.Then U admits uniform average vertex mixing if and only if the connection
set is not inverse closed, that is, X is not a graph.

Proof. Let X = X(Zp, {g1, g2}). Note that

2qk(x)− 2xq′k(x) = 0

if and only if
x2 = ζk(g1+g2).

Hence f1(x) = fk(x) if and only if g1 + g2 = p.

4.4 3-Regular Circulants

We generalize our last theorem to 3-regular circulant digraphs on p vertices,
for any prime p ≥ 5. The analysis becomes much more complicated now. To
start, we need the following result on cyclotomic integers.

4.4.1 Lemma. Letm ∈ Z and let p ≥ 5 be a prime. Ifm divides a cyclotomic
integer

p−1∑
j=0

ajζ
j,

then
a0 ≡ a1 ≡ · · · ≡ ap−1 (mod m).

Proof. The expression
p−1∑
j=0

ajζ
j

of an element in Z[ζ] is unique up to summing integer multiples of

1 + ζ + · · ·+ ζp−1.
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Next, note that when d = 3,

h1(x) = 3x3 − s1x2 − s2x+ 3s3,

where s1, s2, and s3 are elementary symmetric functions in ζg1 , ζg2 and ζg3 :

s1 =
3∑
j=1

ζgj , s2 =
∑

1≤j<`≤3

ζgj+g` , s3 = ζg1+g2+g3 .

Similarly, fixing some k ∈ {2, 3, · · · , p− 1}, we can write

hk(x) = 3x3 − t1x2 − t2x+ 3t3,

where t1, t2, and t3 are elementary symmetric functions in ζkg1 , ζkg2 and ζkg3 .
The resultant of two polynomials is the determinant of their Sylvester

matrix. Given two polynomials over an integral domain, their resultant is
zero if and only if they have a common root.

4.4.2 Lemma. Let p ≥ 5 be a prime. Let g1, g2 and g3 be three distinct
elements in Zp. Let s1, s2 and s3 be the elementary symmetric functions
in ζg1 , ζg2 and ζg3 . For any k ∈ {2, 3, · · · , p − 1}, let t1, t2 and t3 be the
elementary symmetric functions in ζkg1 , ζkg2 and ζkg3 . Let

h1(x) = 3x3 − s1x2 − s2x+ 3s3,

and
hk(x) = 3x3 − t1x2 − t2x+ 3t3.

If h1(x) and hk(x) share a root, then we have the equality

s1t2 = s2t1

in Z3[ζ].

Proof. The resultant of h1(x) and hk(x) is an integer multiple of

s3t3(s1 − t1)(s1 − t1)(s1t2 − s2t1) + 3γ

for some γ ∈ Z[ζ]. If h1(x) and hk(x) share a root, then their resultant is
zero and so 3 divides

(s1 − t1)(s1 − t1)(s1t2 − s2t1)
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in Z[ζ]. By Lemma 4.4.1, the expression (s1 − t1)(s1 − t1)(s1t2 − s2t1) is a
polynomial in ζ whose coefficients are congruent to each other modulo 3.
Suppose

s1t2 − s2t1 =

p−1∑
j=0

ajζ
j.

Let a be the vector of the coefficients, that is,

a =


a0
a1
...

ap−1

 .

We derive conditions a needs to satisfy.
Let P be the p× p circulant permutation matrix

P :=


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0

 .

Define

Q = P g1 + P g2 + P g3 − P kg1 − P kg2 − P kg3 .

Then

(s1 − t1)(s1 − t1)(s1t2 − s2t1)

is a polynomial in ζ with entries of QTQa as coefficients. Thus QTQa is a
constant vector over Z3. On the other hand, both the rows and the columns
of Q generate the same cyclic code over Z3 with dimension p− 1, whose dual
code is generated by 1. Therefore,

QTQa ≡ 0 (mod 3).

It follows that Qa ≡ 0 (mod 3), and so a must be a constant vector over Z3.
Note that there are no more than 18 non-zero entries in a, so for p ≥ 19, we
must have a ≡ 0 (mod 3). The cases where p < 19 can be easily verified by
computation.
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4.4.3 Lemma. Let p ≥ 5 be a prime. Let g1, g2 and g3 be three distinct
elements in Zp. Let s1, s2 and s3 be the elementary symmetric functions
in ζg1 , ζg2 and ζg3 . For any k ∈ {2, 3, · · · , p − 1}, let t1, t2 and t3 be the
elementary symmetric functions in ζkg1 , ζkg2 and ζkg3 . Let

h1(x) = 3x3 − s1x2 − s2x+ 3s3,

and
hk(x) = 3x3 − t1x2 − t2x+ 3t3.

If h1(x) and h2(x) share a root, then the set {g1, g2, g3} is fixed by some
non-trivial automorphism of Zp.

Proof. The case where p = 5 can be easily verified. Let p ≥ 7. Suppose
h1(x) and h2(x) share a root. By Lemma 4.4.2,

s1t2 − s2t1

is a polynomial ψ(ζ) in ζ whose coefficients are all divisible by 3. For nota-
tional ease, let

zj := ζgj .

We expand s1t2 and s2t1:

s1t2 =z1z
k
2z

k
3 + zk1z2z

k
3 + zk1z

k
2z3 (4.4.1)

+ zk+1
1 zk2 + zk+1

2 zk3 + zk1z
k+1
3 (4.4.2)

+ zk+1
1 zk3 + zk1z

k+1
2 + zk2z

k+1
3 . (4.4.3)

s2t1 =z1z2z
k
3 + z1z

k
2z3 + zk1z2z3 (4.4.4)

+ zk+1
1 z2 + zk+1

2 z3 + z1z
k+1
3 (4.4.5)

+ zk+1
1 z3 + z1z

k+1
2 + z2z

k+1
3 . (4.4.6)

Consider two cases.

(i) All coefficients in ψ(ζ) are zero. Then there is a bijection between the
nine terms in Lines (4.4.1), (4.4.2), (4.4.3) and the nine terms in Lines
(4.4.4), (4.4.5), (4.4.6). In particular, both sets of terms have the same
product. Thus,

s3k+6
3 = s6k+3

3 ,
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and so k = p − 1. Combining this with s1t2 = s2t1, we have s21 = s22.
Clearly, s1 6= −s2 for p ≥ 7. If s1 = s2, playing the same product trick
shows that s3 = 1. Now ,

s1 = s2s3 = s1,

which is impossible.

(ii) Some coefficient in ψ(ζ) is at least 3. Then at least three of the nine
terms in Lines (4.4.1), (4.4.2), (4.4.3) are equal to some value β.

(a) One of the three terms in Line (4.4.1), say z1z
k
2z

k
3 , is equal to β.

Clearly,

β /∈ {zk1z2zk3 , zk1zk2z3, zk+1
1 zk2 , z

k+1
2 zk3 , z

k+1
1 zk3 , z

k
2z

k+1
3 }.

Hence we must have

β = z1z
k
2z

k
3 = zk1z

k+1
2 = zk1z

k+1
3 . (4.4.7)

The last equality implies k = p − 1, while the second equality
implies z31 = s3. Now

s1t2 = 3z1 + z1z2z3 + z1z2z3 + 2z2 + 2z3.

It is not hard to verify that

z1z2z3, z1z2z3, z2, z3

are pairwise distinct. Thus the last four terms on the right hand
side of Equation 4.4.7 cannot survive in s1t2 − s2t1, and from the
expansion of s2t1, we must have

z1z2z3 + z1z2z3 + 2z2 + 2z3 = z1z2z3 + z1z2z3 + 2z2 + 2z3.

Since p ≥ 7 is a prime, this can only happen when

{z1z2z3, z1z2z3, z2, z3} = {z1z2z3, z1z2z3, z2, z3}.

As a result, both sets have the same product, and so z1 = s3,
which contradicts z31 = s3.
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(b) No term in Line (4.4.1) is equal to β. Suppose without loss of
generality that β = zk+1

1 zk2 . Clearly,

β /∈ {zk+1
1 zk3 , z

k
1z

k+1
2 }.

Also, since

zk2z
k+1
3 /∈ {zk+1

2 zk3 , z
k
1z

k+1
3 },

for β to appear at least three times in Line (4.4.2) and Line (4.4.3),
it must be that

β = zk+1
1 zk2 = zk+1

2 zk3 = zk1z
k+1
3 . (4.4.8)

It is not hard to verify that the remaining six terms in Line (4.4.1)
and Line (4.4.3) are pairwise distinct, given Equation 4.4.8. Thus
they have to vanish in s1t2 − s2t1. Meanwhile,

s2t1 =zk1z2z3 + z1z
k
2z3 + z1z2z

k
3

+ zk+1
1 z2 + zk+1

2 z3 + z1z
k+1
3

+ 3zk+1
1 z3.

Thus,

z1z
k
2z

k
3 + zk1z2z

k
3 + zk1z

k
2z3 + zk+1

1 zk2 + zk+1
2 zk3 + zk1z

k+1
3

=zk1z2z3 + z1z
k
2z + z1z2z

k
3 + zk+1

1 z2 + zk+1
2 z3 + z1z

k+1
3 .

Again, since p ≥ 7 is a prime, this implies that the products of
terms on both sides are equal. Therefore s3 = 1. It follows from
Equation (4.4.8) that

zk+2
1 = zk−13 , zk+2

2 = zk−13 , zk+2
3 = zk−12 . (4.4.9)

Since k − 1 is coprime to p, there exists an integer ` such that

(k − 1)` ≡ 1 (mod p).

Therefore Equation 4.4.9 shows that the connection set is invariant
under multiplication by ` in Zp.
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We are now ready to characterize 3-regular circulant digraphs on a prime
number of vertices that admit uniform average vertex mixing.

4.4.4 Theorem. Let p be a prime. Let X be a 3-regular circulant digraph
over Zp. Then the shunt-decomposition Grover walk on X admits uniform
average vertex mixing if and only if its connection set has trivial stabilizer
in Aut(Zp).

Proof. Let X be a 3-regular circulant digraph on p vertices. Let U be
the transition matrix of the shunt-decomposition Grover walk on X. If the
connection set is not fixed by any non-trivial automorphism of Zp, then by
Lemma 4.4.3,

gcd(h1(x), hk(x)) = 1

for all k = 2, 3, · · · , p− 1. On the other hand, since

{h1(x), · · · , hp−1(x)}

is closed under the action of Aut(Q[ζ]/Q), any rational root x0 of one polyno-
mial must be a common root of the remaining p− 2 polynomials. Therefore
none of h1(x), · · · , hp−1(x) has 1 or −1 as a root. The result then follows
from Theorem 4.3.3.

4.5 Non-Commuting Shunts

Our analysis of shunt-decomposition walks on Cayley digraphs over abelian
groups makes a big assumption, that is, all the shunts are induced by the
connection set. Consequently, these shunts commute, and so Theorem 4.2.1
applies. However, there are many more shunt-decompositions of a digraph
X, possibly non-commuting, that are in one-to-one correspondence to the
1-factorizations of K2 ×X. Do we have machinery to deal with walks based
on these shunt-decompositions?

Let us first review what we need to analyze a shunt-decomposition walk
with commuting shunts: we want a basis of Cnd, under which the coin matrix
can be written as C⊗I, while the shift matrix can be written as a block matrix
where all the n× n blocks commute. Now, suppose there is another basis of
Cnd, under which the shift matrix can be written as P ⊗ I, while the coin
matrix can be written as a block matrix where all the d×d blocks commute.
The common eigenvectors of these blocks will determine the eigenvectors of
U .
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4.5.1 Theorem. Let X be a d-regular digraph on n vertices. Consider a
shunt-decomposition ofX, where all the shunts have the same cycle structure.
Suppose there is some basis of Cnd, under which the shift matrix S can be
written as

S = P ⊗ I,
and the coin matrix T can be written as

T =
n∑
j=1

n∑
k=1

Ejk ⊗ Ajk

where Ajk’s pairwise commute. Let U = ST be the transition matrix. Let χ
be a common eigenvector for Ajk’s with

Ajkχ = λjkχ,

and set

Λ :=

λ11 · · · λ1n
· · · · · · · · ·
λn1 · · · λnn

 .

Then y ⊗ χ is an eigenvector for U with eigenvalue α if and only if y is an
eigenvector for PΛ with eigenvalue α.

Proof. We have

U(y ⊗ χ) = (P ⊗ I)

(∑
j,k

Ejk ⊗ Ajk

)
(y ⊗ χ)

=

(∑
j,k

λjkPEjky

)
⊗ χ

= (PΛy)⊗ χ

Thus U(y ⊗ χ) = α(y ⊗ χ) if and only if PΛy = αy.

From now on, let X be a d-regular digraph on n vertices with a shunt-
decomposition:

A = P1 + · · ·+ Pd.

Suppose there are permutation matrices Q1, Q2, . . . , Qd such that for s =
1, 2, · · · , d,

QT
s PsQs = P1.
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It is not hard to see that under some basis of Cnd, we can write U as

U = (P−11 ⊗ I)

(∑
s,t

QT
sQt ⊗ CstEst

)
.

We may further express the coin matrix in block form.

4.5.2 Lemma. Let X be a digraph with shunt-decomposition

A = P1 + · · ·+ Pd.

Suppose there are permutation matricesQ1, · · · , Qd such that for s = 1, 2, · · · , d,

QT
s PsQs = P1.

For j, k = 1, 2, · · · , n, let

Ajk :=
∑
s,t

(QT
sQt)jkCstEst.

Then the shunt-decomposition C-walk on X has transition matrix

U = (P−11 ⊗ I)

(∑
j,k

Ejk ⊗ Ajk

)
.

The formula for Ajk can be simplified when C is the Grover coin.

4.5.3 Lemma. Let X be a digraph with shunt-decomposition

A = P1 + · · ·+ Pd.

Suppose there are permutation matricesQ1, · · · , Qd such that for s = 1, 2, · · · , d,

QT
s PsQs = P1.

For j, k = 1, 2, · · · , n, let

Ajk = δjk

(
2

d
− 1

)
I +

2

d

(∑
s 6=t

(QT
sQt)jkEst

)
.

Then the shunt-decomposition Grover walk on X has transition matrix

U = (P−11 ⊗ I)

(∑
j,k

Ejk ⊗ Ajk

)
.
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We have found shunt-decompositions for which Ajk’s commute, with re-
spect to the Grover coin. An example of K3,3 is given in Figure 4.1, where
arcs with the same color form a shunt. From the figure, it is easy to check
that these shunts do not commute; for instance, if the red shunt commutes
with the blue shunt, then for any uv-walk that consists of a red arc followed
by a blue arc, there is a uv-walk that consists of a blue arc followed by a red
arc. The associated shunt-decomposition Grover walk exhibits an interesting
property—there is perfect state transfer from one arc to another at step 4;
in fact, U4 is a permutation matrix.

Figure 4.2 gives another shunt-decomposition with non-commuting shunts,
for which U4 is also a permutation matrix.

Figure 4.1: A shunt-decomposition of K3,3

4.6 Infinite Paths

At the end of this chapter, we briefly discuss another approach to shunt-
decomposition walks on infinite graphs, based on the paper by Ambainis,
Bach, Nayak, Vishwanath, and Watrous [4].
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Figure 4.2: A shunt-decomposition of K4,4

While a lot has been done since Aharonov et al [2] introduced the shunt-
decomposition model, most work focused on presenting numerical results.
The first paper with exact analysis was due to Ambainis et al [4], who studied
the limiting behavior of a shunt-decomposition Hadamard walk on the infinite
path P∞.

As usual, the quantum walker moves on the arcs of P∞. The state space
can be identified as CZ ⊗ C2 (more formally, `2(CZ)⊗ C2). Let

H :=
1√
2

(
1 1
1 −1

)
be the Hadamard coin. Let S be the linear operator such that

S(eu ⊗ e1) = eu+1 ⊗ e1

and
S(eu ⊗ e2) = eu−1 ⊗ e2.

Then the transition operator is

U = S(H ⊗ I).
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Given initial state e0 ⊗ e1, let Ψ(u, k) be the coin state on vertex u at
time k. Ambainis et al [4] derived a recurrence relation for Ψ(u, k):

Ψ(u, k + 1) =
1√
2

(
0 0
1 1

)
Ψ(u− 1, k) +

1√
2

(
−1 1
0 0

)
Ψ(u+ 1, k),

with initial conditions

Ψ(0, 0) =

(
0
1

)
and

Ψ(u, 0) =

(
0
0

)
,

for all u 6= 0. Using this recurrence, they proved several properties of the
probability distribution, all strikingly different from the classical random
walk on P∞. For example, after k steps, the probability distribution of
this Hadamard walk is nearly uniform over the vertices between −k/

√
2 and

k/
√

2, while a classical random walker tends to stay at distance O(
√
k) from

the origin with high probability. In the presence of absorbing boundaries, the
exit probabilities are also in sharp contrast to those of the classical random
walk. With one absorbing boundary at vertex 0, the probability that the
walker exits to the left is 2/π, and with an additional absorbing boundary
at vertex u, this probability increases, and approaches 1/

√
2 as u goes to

infinity. Both probabilities in the classical random walk are 1.

4.7 Open Problems

We list some open problems regarding shunt-decomposition walks.
An immediate task is to solve the generalization of Theorem 4.4.4. Nu-

merical experiments suggest that the same characterization may hold for
circulant digraphs over Zp with higher valency. We leave this problem as a
conjecture.

(i) Conjecture. Let p be a prime. A circulant digraph on p vertices
admits uniform average vertex mixing if and only if its connection set
has trivial stabilizer in Aut(Zp).

Note that this characterization does not hold if we replace Zp by Zn, where n
is a composite. Even if the digraph has distinct eigenvalues, there might be
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an initial state for which the average probability distribution is not uniform
over V (X); an example is given by X(Z10, {1, 2, 3}).

Another direction is to extend the work on non-commuting shunts. For
instance, according to Lemma 4.5.3, one may translate the property that
Ajk’s pairwise commute, with respect to the Grover coin, into properties
of Q1, Q2, . . . , Qd, and thus properties of the shunts. It is also possible to
characterize shunt-decompositions that “interact nicely” with other popular
coins, such as the Fourier coin. In general, we would like to understand the
following.

(ii) Given a coin C and a shunt-decomposition with non-commuting shunts,
how much spectral information can we obtain about U?

Finally, we wish to compare walks on the same digraph with differ-
ent shunt-decompositions. Note that this may include comparing shunt-
decomposition walks to arc-reversal walks—for a d-regular graph with edge
chromatic number d, the arc-reversal operator R is indeed a shift opera-
tor, obtained from a d-edge-coloring. In fact, such a comparison between
two models has been done for designing better algorithms. Ambainis et al [5]
studied two quantum search algorithms on the 2-dimensional grid with n ver-
tices, one based on the arc-reversal walk, and one on the shunt-decomposition
walk. It turns out that the arc-reversal search succeeds inO(

√
n log(n)) steps,

while the shunt-decomposition search takes time Ω(n). On the other hand,
our numerical results in Table 3.1 show that on the same circulant graph, the
shunt-decomposition walk may mix faster than the arc-reversal walk. In gen-
eral, we would like to know what makes a shunt-decomposition walk perform
better than the other.

(iii) Given a regular digraph X, can we optimize a parameter, such as the
mixing time, of quantum walks onX over all possible shunt-decompositions?
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Chapter 5

Walking on Embeddings

With various transition operators implemented, our quantum walker learns
that unitarity is the physics law she cannot violate, while sparseness is the
extra property she desires for efficiency. To travel across the entire graph,
an ideal transition operator would alternate between two block-diagonal uni-
tary matrices, each partitioning the arcs in some way. Edges, tails, heads,
shunts...; all of these have been considered when it comes to dividing the
arcs, and familiar models such as arc-reversal walks and shunt-decomposition
walks arise from these partitions. Now, what if we group the arcs based on
an embedding? The curious walker wonders.

In this chapter, we construct a new quantum walk, called the vertex-face
walk, from an orientable embedding of a graph. Once a consistent orientation
of the faces is chosen, there is a natural partition of the arcs into facial walks;
let M be the associated arc-face incidence matrix. Let N = DT

t be the arc-
tail incidence matrix. The transition matrix of the vertex-face walk is then
given by the two reflections about col(M) and col(N):

U = (2M̂M̂T − I)(2N̂N̂T − I).

Although the vertex-face model has never been studied before, it is closely
related to the arc-reversal model. Given an embeddingM of a graph X, the
dual graph, denoted X∗, is the graph with faces in M as vertices, and two
vertices are adjacent in X∗ if the corresponding faces share an edge in X. It
turns out that each step of the new walk is equivalent to two steps of the
arc-reversal walk, one on the original graph, and one on the dual graph. For
another connection to the literature, we remark that the vertex-face walk on
Cn�Cn with a toroidal embedding is equivalent to the quantum walk used
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in [6], for the spacial search on a 2-dimensional lattice, as we explained in
Section 1.3.

We motivate our study on the new walk by asking two questions, which
have no satisfactory answers in the existing literature. First, while there
is no exact relation between the continuous quantum walk and the discrete
quantum walk on the same graph, mathematically one can write any unitary
matrix U as

U = exp(iH),

for some Hermitian matrix H. From this perspective, every discrete quantum
walk is a continuous quantum walk on some weighted digraph, with time
discretized. What we are interested in is the following problem.

• For which U is H a sparse Hermitian adjacency matrix of a digraph?

The second question concerns the limiting behavior of a class of quantum
walks. Unlike classical random walks, quantum walks may be sedentary—the
probability that the system stays at the initial state goes to 1 as the size of
the graph grows. For continuous quantum walks, Godsil [30] studied large
families of strongly regular graphs that tend to “stay at home”. We seek
discrete analogues.

• Is there a sedentary family of discrete quantum walks?

Once again, these questions can be investigated through spectral analysis
of the transition matrix. However, they quickly become intractable when
U has too many eigenvalues. In the arc-reversal model, every graph eigen-
value contributes to two eigenvalues of U ; in the shunt-decomposition model
the situation is worse—for each character, there is a modified coin whose
spectrum is contained in the spectrum of U .

In contrast, the vertex-face model offers some examples with few eigen-
values. In fact, we have the following characterization in terms of the em-
beddings. It is perhaps surprising that symmetric designs come into play.

(i) The transition matrix has exactly two eigenvalues if and only if every
face is bounded by a Hamilton cycle.

(ii) For a circular embedding of a regular graph, the transition matrix has
exactly three eigenvalues if and only if the vertex-face incidence struc-
ture is a symmetric 2-design. Moreover, any such walk is a discretization
of a continuous quantum walk on an oriented graph.
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Following these observations, we find two infinite families of embeddings
that manifest properties raised by both questions. These families are con-
structed from regular embeddings, as we define in Section 5.6.

(i) Let n be a prime power. Let U be the transition matrix of the vertex-
face walk for a regular embedding of Kn. Then there is γ ∈ R such
that

U = exp(γ(UT − U)).

Moreover, UT −U is a scalar multiple of the skew-symmetric adjacency
matrix of an oriented graph Zn, which

(a) has n(n− 1) vertices,

(b) is (n− 2)-regular, and

(c) has exactly three eigenvalues: 0 and ±i
√
n2 − 2n.

The vertex-face walks for these embeddings form a sedentary family of
quantum walks.

(ii) Let n be a power of 2. Let Mn be a regular embedding of Kn. Let ψ
be the covering map from K2 ×Kn to Kn. Let M′

n be the embedding
of K2 ×Kn whose facial walks are the preimages of the facial walks of
Mn. Let U be the transition matrix of the vertex-face walk for M′

n.
Then U has exactly four eigenvalues. Moreover, there is γ ∈ R such
that

U2 = exp(γ(UT − U)),

and UT−U is a scalar multiple of the skew-symmetric adjacency matrix
of the double graph of Zn. The vertex-face walks for these embeddings
form a sedentary family of quantum walks.

Most results in this chapter can be found in Zhan [67].

5.1 Vertex-Face Walk

We introduce the vertex-face walk through an example. Consider the planar
embeddingM of K4. As shown in Figure 5.1, since the surface is orientable,
we can choose a consistent orientation of the face boundaries. This parti-
tions the arcs of K4 into four groups {f0, f1, f2, f3}, called the facial walks.
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5. WALKING ON EMBEDDINGS

Meanwhile, the arcs can be partitioned into another four groups, each having
the same tail. We represent these two partitions by the incidence matrices
M and N , called the arc-face incidence matrix and the arc-tail incidence
matrix, respectively, in Equation (5.1.1).

0

1

23

��

�

�

Facial walks:

f0 = {(0, 1), (1, 2), (2, 0)}
f1 = {(1, 3), (3, 2), (2, 1)}
f2 = {(0, 2), (2, 3), (3, 0)}
f3 = {(0, 3), (3, 1), (1, 0)}

Figure 5.1: A planar embedding of K4

M =

f0 f1 f2 f3



(0, 1) 1 0 0 0
(0, 2) 0 0 1 0
(0, 3) 0 0 0 1
(1, 0) 0 0 0 1
(1, 2) 1 0 0 0
(1, 3) 0 1 0 0
(2, 0) 1 0 0 0
(2, 1) 0 1 0 0
(2, 3) 0 0 1 0
(3, 0) 0 0 1 0
(3, 1) 0 0 0 1
(3, 2) 0 1 0 0

N =

0 1 2 3



(0, 1) 1 0 0 0
(0, 2) 1 0 0 0
(0, 3) 1 0 0 0
(1, 0) 0 1 0 0
(1, 2) 0 1 0 0
(1, 3) 0 1 0 0
(2, 0) 0 0 1 0
(2, 1) 0 0 1 0
(2, 3) 0 0 1 0
(3, 0) 0 0 0 1
(3, 1) 0 0 0 1
(3, 2) 0 0 0 1

(5.1.1)

Let M̂ and N̂ be the matrices obtained from M and N by scaling each
column to a unit vector; they will be referred to as the normalized arc-
face incidence matrix and the normalized arc-tail incidence matrix. Then
2M̂M̂T − I and 2N̂N̂T − I are two reflections, and

U := (2M̂M̂T − I)(2N̂N̂T − I).

94



5.1. VERTEX-FACE WALK

is a unitary matrix. The quantum walk with U as the transition matrix is
called the vertex-face walk relative to the chosen orientation of M.

This construction can be easily generalized to any orientable embedding
M of a graph X. Although U depends on the consistent orientation, there are
only two choices—reversing all the arcs in the facial walks of one orientation
produces the other. Therefore, if

(2M̂M̂T − I)(2N̂N̂T − I)

is the transition matrix relative to the “clockwise” orientation, then

R(2M̂M̂T − I)R(2N̂N̂T − I)

is the transition matrix relative to the “counterclockwise” orientation. Here,
R(2N̂N̂T − I) determines the arc-reversal walk on X. On the other hand,
each orientation defines a bijection between the arcs of X and the arcs of its
dual graph X∗. Under this bijection,

R(2M̂M̂T − I)

acts as the transition matrix of the arc-reversal walk on the dual graph.
Hence, the vertex-face walk can be viewed as a variation of the arc-reversal
walk—every other step of the arc-reversal walk on X is replaced by a step
on X∗.

In this chapter, most of our results are independent of the consistent
orientation, so we will simply refer to U as the transition matrix of a vertex-
face walk for an embedding, if it is clear from the context.

Naturally, M gives rise to an embedding of X∗ on the same surface,
denoted M∗. The following observation on duality is immediate.

5.1.1 Lemma. If U is the transition matrix of a vertex-face walk for the
orientable embeddingM, then UT is the transition matrix of the vertex-face
walk for M∗.

Unless otherwise specified, we will assume that M is a circular embed-
ding , that is, an embedding where every face of M is bounded by a cycle.

Now we move on to discuss some properties of U . For ease of notation,
let

P := M̂M̂T
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and

Q := N̂N̂T .

Note that P is the projection onto vectors constant on each facial walk, and
Q is the projection onto vectors constant on arcs leaving each vertex. It is
not hard to verify the following.

5.1.2 Lemma. Let M be a circular embedding of a graph X. Let M̂ and
N̂ be the associated normalized arc-face incidence matrix and normalized
arc-tail incidence matrix, respectively. Let

P = M̂M̂T , Q = N̂N̂T .

Let U be the transition matrix of the vertex-face walk for M, that is,

U = (2P − I)(2Q− I).

For any arc (u, v) of X, let fuv denote the facial walk using (u, v).

(i) The projections P and Q are doubly stochastic, and so

U1 = UT1 = 1.

(ii) For two arcs (a, b) and (u, v),

P(a,b),(u,v) =


1

deg(fuv)
, if fab = fuv.

0, otherwise.
,

and

Q(a,b),(u,v) =


1

deg(u)
, if a = u.

0, otherwise.

(iii) For two arcs (a, b) and (u, v),

(PQ)(a,b),(u,v) = (QP )(u,v),(a,b) =


1

deg(u) deg(fab)
, if u ∈ fab.

0, otherwise.
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(iv) For two faces f and h,

(M̂TQM̂)f,h =
1√

deg(f) deg(h)

∑
u∈f∩h

1

deg(u)
.

For two vertices u and v,

(N̂TPN̂)u,v =
1√

deg(u) deg(v)

∑
f :u,v∈f

1

deg(f)
.

The above lemma allows us to write out the entries of U explicitly. More-
over, if either X or X∗ is regular, we have a simple expression for tr(U).

5.1.3 Lemma. Let M be an orientable embedding of X with n vertices, `
edges and s faces. Let U be the transition matrix of the vertex-face walk for
M. If either X or X∗ is regular, then

tr(U) = 2
(ns
`
− (n+ s− `)

)
.

Proof. Let M̂ and N̂ be the normalized arc-face incidence matrix and nor-
malized arc-tail incidence matrix for M, respectively. Let

P = M̂M̂T , Q = N̂N̂T .

We have
U = (2P − I)(2Q− I).

From (iii) in Lemma 5.1.2 we see that

tr(PQ) =
∑
(u,v)

1

deg(u)

1

deg(fuv)

=
∑
f

1

deg(f)

∑
u∈f

1

deg(u)
.

If X is d-regular, then

tr(PQ) =
s

d
=
ns

2`
.

Hence

tr(U) = 4 tr(PQ)− 2 tr(P )− 2 tr(Q)− tr(I)

= 2
ns

`
− 2(rk(P ) + rk(Q)− 2`)

= 2
(ns
`
− (n+ s− `)

)
.

The case where X∗ is regular follows from duality.
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A quantum walk is reducible if U is permutation similar to some block-
diagonal matrix. In this case, the walk can be decomposed as two or more
independent walks in subsystems. A bit of thought reveals that a vertex-face
walk is irreducible if and only if the join of the arc-face partition and the arc-
tail partition is the trivial partition, that is, the partition with only one class.
Using this, we prove that whenever X is connected, any vertex-face walk
on X is irreducible. In fact, something stronger about the aforementioned
partitions is true.

5.1.4 Lemma. LetM be an orientable embedding of a connected graph X.
Let π1 and π2 be the arc-face partition and the arc-tail partition ofM. Then
the meet π1 ∧ π2 is the discrete partition, and the join π1 ∨ π2 is the trivial
partition.

Proof. First of all, since every face is bounded by a cycle, no two arcs sharing
the tail are contained in the same facial walk, so each class in π1∧π2 contains
only one element. Therefore, π1 ∧ π2 is the discrete partition. Next, due to
the connectedness of X, between any two vertices v0 and vk there is a path,
say

v0, v1, . . . , vk.

Consider the first two arcs (v0, v1) and (v1, v2). If they belong to the same
facial walk, then they are in the same class of π1∨π2. Otherwise, there is an
arc (v1, w1) that is in the same facial walk as (v0, v1). Thus, all outgoing arcs
of v1, including (v1, v2), are in the same class of π1∨π2 as (v0, v1). Proceeding
in this fashion, we see that all arcs in the path belong to the same class of
π1 ∨ π2.

5.1.5 Corollary. Any vertex-face walk on a connected graph is irreducible.

In the rest of this chapter, unless otherwise specified, we will assume X
is connected, in addition to that M is circular.

5.2 Spectral Decomposition

Similar to the arc-reversal walk, the vertex-face walk arises from two reflec-
tions, so all the results in Section 2.3 apply. In particular, the spectrum of
U depends largely on an incidence matrix, which relates the vertices and the
faces of an embedding.
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Consider a circular embeddingM with n vertices, ` edges and s faces on
an orientable surface of genus g. A vertex is incident to a face if it is incident
to an edge that is contained in the face. Let B, C and D be the vertex-
edge incidence matrix, the vertex-face incidence matrix, and the face-edge
incidence matrix, respectively. Since every face is bounded by a cycle, we
have the following two expressions for C.

5.2.1 Lemma. LetM be a circular embedding of a connected graph X. Let
B, C and D be the vertex-edge incidence matrix, the vertex-face incidence
matrix, and the face-edge incidence matrix, respectively. Then

C = BDT = NTM.

We also define
Ĉ := N̂TM̂,

and call it the normalized vertex-face incidence matrix. By Lemma 2.3.4, the
eigenvalues of ĈĈT lie in [0, 1]. Further, those that are strictly between 0 and
1 contribute fully to the non-real eigenvalues of U , while 0 and 1 contribute
partially to the real eigenvalues of U .

5.2.2 Theorem. Let X be a connected graph with ` edges. Let M be a
circular embedding of X onto an orientable surface of genus g. Let M̂ and
N̂ be the associated normalized arc-face incidence matrix and normalized
arc-tail incidence matrix, respectively. Let U be the transition matrix of the
vertex-face walk for M, that is,

U = (2M̂M̂T − I)(2N̂N̂T − I).

The 1-eigenspace of U is

(col(M̂) ∩ col(N̂))⊕ (ker(M̂T ) ∩ ker(N̂T ))

with dimension `+ 2g. Moreover, the first subspace is 1-dimensional.

Proof. Note that any vector lying in col(M)∩ col(N) must be constant over
the arcs leaving each vertex, as well as constant on the arcs used by each
face. Since X is connected, this vector is constant everywhere. Now the
structure and multiplicity of the 1-eigenspace follow from Lemma 2.3.5 and
Euler’s formula

n− `+ s = 2− 2g.
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5.2.3 Theorem. Let M be a circular embedding of a connected graph X
with n vertices and s faces. Let M̂ and N̂ be the associated normalized arc-
face incidence matrix and normalized arc-tail incidence matrix, respectively.
Let U be the transition matrix of the vertex-face walk for M, that is,

U = (2M̂M̂T − I)(2N̂N̂T − I).

Let Ĉ be the normalized vertex-face incidence matrix. The (−1)-eigenspace
for U is

M̂ ker(Ĉ)⊕ N̂T ker(ĈT )

with dimension
n+ s− 2 rk(Ĉ).

Proof. This follows from Lemma 2.3.6.

5.2.4 Theorem. Let M be a circular embedding of a connected graph X.
Let M̂ and N̂ be the associated normalized arc-face incidence matrix and
normalized arc-tail incidence matrix, respectively. Let U be the transition
matrix of the vertex-face walk for M, that is,

U = (2M̂M̂T − I)(2N̂N̂T − I).

Let Ĉ be the normalized vertex-face incidence matrix. The multiplicities
of the non-real eigenvalues of U sum to 2 rk(Ĉ) − 2. Let µ ∈ (0, 1) be an

eigenvalue of ĈĈT . Choose θ with cos(θ) = 2µ− 1. The map

y 7→ (cos(θ) + 1)N̂y − (eiθ + 1)M̂ĈTy

is an isomorphism from the µ-eigenspace of ĈĈT to the eiθ-eigenspace of U ,
and the map

y 7→ (cos(θ) + 1)N̂y − (e−iθ + 1)M̂ĈTy

is an isomorphism from the µ-eigenspace of ĈĈT to the e−iθ-eigenspace of
U .

Proof. This follows from Lemma 2.3.7 and that

dim(col(M) ∩ col(N)) = 1.

After normalization, we obtain an explicit formula for the eigenprojection
of each non-real eigenvalue of U .
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5.2.5 Corollary. Let M be a circular embedding of a connected graph X.
Let M̂ and N̂ be the associated normalized arc-face incidence matrix and
normalized arc-tail incidence matrix, respectively. Let

P = M̂M̂T , Q = N̂N̂T .

Let U be the transition matrix of the vertex-face walk for M, that is,

U = (2P − I)(2Q− I).

Let Ĉ be the normalized vertex-face incidence matrix. Let µ ∈ (0, 1) be an

eigenvalue of ĈĈT . Choose θ such that cos(θ) = 2µ − 1. Let Eµ be the

orthogonal projection onto the µ-eigenspace of ĈĈT . Set

W := N̂EµN̂
T .

Then the eiθ-eigenprojection of U is

1

sin2(θ)

(
(cos(θ) + 1)W − (eiθ + 1)PW − (e−iθ + 1)WP + 2PWP

)
,

and the e−iθ-eigenprojection of U is

1

sin2(θ)

(
(cos(θ) + 1)W − (e−iθ + 1)PW − (eiθ + 1)WP + 2PWP

)
.

5.3 Hamiltonian

We digress a bit to talk about continuous quantum walks, which evolve quite
differently from their discrete counterparts. Given a digraph Z with a Her-
mitian adjacency matrix H, a continuous quantum walk on Z is determined
by the transition matrix

U(t) := exp(itH).

Physicists refer to H as the Hamiltonian of the quantum walk. If Z is undi-
rected, two common choices for the Hamiltonian are the adjacency matrix
and the Laplacian matrix of Z. If Z = (V,A) is an oriented graph with
adjacency matrix A, then we can take H = i(A − AT ); in this case, U(t) is
actually the continuous quantum walk on the weighted digraph

(V,A ∪ {(u, v) : (v, u) ∈ A}),
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whose arc (u, v) receives weight i if (u, v) ∈ A, and −i otherwise.
For years people have spent efforts on understanding the connection be-

tween continuous and discrete quantum walks. However, since they do not
have the same state space to start with, the correspondence, if any, is not as
direct as that between continuous and discrete random walks. While exact
relation is not feasible, Childs [15] showed that, up to desired precision, the
Hamiltonian of a continuous quantum walk can be simulated using a series
of discrete quantum walks, based on Szegedy’s model [59].

We study the connection from a different angle. Every unitary matrix U
can be expressed as

U = exp(iH)

for some Hermitian matrix H. Although the choice of H is not unique, we
can pick one in a canonical way: if U has spectral decomposition

U =
∑
r

αrFr,

then we define the Hamiltonian of U to be

H := −i
∑
r

log(αr)Fr,

where −π < −i log(αr) ≤ π for all αr. Thus, a discrete quantum walk on
a digraph with m arcs is equivalent to a continuous quantum walk on a
weighted digraph on m vertices, with integer time steps.

If U is a unitary matrix with Hamiltonian H, then the H-weighted di-
graph is the underlying digraph Z of H, together with the weight Hu,v on
the arc (u, v). Most likely, the H-weighted digraph is nearly complete with
many weights. A question then arises: for which U , is H sparse with few
distinct entries?

The answer clearly depends on the interplay of eigenvalues and eigenpro-
jections of U . We seek examples in the vertex-face model. Since U is real, its
spectrum is closed under complex conjugation, so an alternative expression
for the Hamiltonian is

H = πF−1 −
∑

r:0<−i log(αr)<π

i log(αr)(Fr − F T
r ).

Using Corollary 5.2.5, we can write out the second term purely in terms of
the spectral decomposition of ĈĈT .
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5.3.1 Lemma. Let M be a circular embedding of a connected graph X.
Let M̂ and N̂ be the associated normalized arc-face incidence matrix and
normalized arc-tail incidence matrix, respectively. Let

P = M̂M̂T , Q = N̂N̂T .

Let U be the transition matrix of the vertex-face walk for M, that is,

U = (2P − I)(2Q− I).

Let Ĉ be the normalized vertex-face incidence matrix. For each eigenvalue
µ ∈ (0, 1) of ĈĈT with eigenprojection Eµ, let θ ∈ (0, π) be such that
cos(θ) = 2µ− 1. Then the Hamiltonian of U is

H = πF−1 + i
∑
µ∈(0,1)

2θ

sin(θ)
(N̂EµN̂

TP − PN̂EµN̂T ),

where the sum is taken over all eigenvalues µ of ĈĈT in (0, 1).

5.4 Few Eigenvalues

Regular graphs with few eigenvalues, such as complete graphs and strongly
regular graphs, were studied at the early age of continuous quantum walks
since their spectral decompositions are manageable. For the same reason, we
would like to start our study on Hamiltonians with transition matrices that
have few eigenvalues.

For the rest of this section, assumeM is a circular orientable embedding
of some d-regular graph X with n vertices, ` edges and s faces. In this
case, the normalized vertex-face incidence matrix Ĉ is simply a multiple of
C. Let U be the transition matrix of the vertex-face walk relative to some
consistent orientation of M. We characterize M for which U has two or
three eigenvalues.

5.4.1 Theorem. Let U be the transition matrix of a vertex-face walk for a
circular embedding of a connected graph. Then U has exactly two eigenvalues
if and only if each face boundary is a Hamilton cycle.
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Proof. Suppose U has exactly two eigenvalues. Then they must be 1 and
−1. Since there is no non-real eigenvalue, Theorem 5.2.4 tells us that

rk(C) = 1.

Thus each facial cycle must visit all vertices. For the converse, simply note
that if rk(C) = 1, then

n+ s− 2 rk(C) ≥ 1,

so −1 must be an eigenvalue.

The toroidal embedding of K3,3 in Figure 5.2 is an example of circular
embeddings where every face visits every vertex. While this type of embed-
dings are interesting on their own, the quantum walks they generate are less
exciting, since they all have period two.

Figure 5.2: K3,3 embedded on the torus

The next case is when U has exactly three eigenvalues—one real and two
complex.

5.4.2 Theorem. Let X be a connected d-regular graph on n vertices. Let U
be the transition matrix of a vertex-face walk for a circular embedding of X.
Then U has exactly three eigenvalues if and only if the vertex-face incidence
structure form a symmetric 2-design with parameters(

n, d,
(d− 1)d

n− 1

)
.

Moreover, if U has exactly three eigenvalues, then
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(i) the eigenvalues are 1 and e±iθ, where

cos(θ) =
2(n− d)

d(n− 1)
− 1;

(ii) neither X nor X∗ is bipartite.

Proof. We prove one direction of the first statement. Suppose U has exactly
three eigenvalues. Then −1 cannot be one of them. By Theorem 5.2.3, we
need

2 rk(C) = n+ s.

On the other hand,

rk(C) ≤ min{rk(N), rk(M)} = min{n, s}.

Thus
rk(C) = n = s.

It follows that C is invertible,M has the same number of vertices and faces,
and every face is incident to d vertices. Moreover, Theorem 5.2.4 shows that
for U to have precisely two non-real eigenvalues, CCT must have precisely
two eigenvalues, one of which is d2. Using Lemma 5.1.2 and the fact that

tr(CCT ) = d2 tr(PQ) = nd,

we find the other eigenvalue:

(n− d)d

n− 1
.

Therefore,

CCT =
(n− d)d

n− 1
I +

(d− 1)d

n− 1
J.

This determines the eigenvalues e±iθ, as described in (i). For (ii), note that

C = BDT ,

so the rank of C cannot exceed the rank of B or the rank of D. In particular,
if either X or X∗ is bipartite, then rk(B) < n or rk(C) < n, so B cannot be
invertible.
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For instance, the planar embedding M of K4 has 4 vertices and 4 faces,
where each vertex is incident to 3 faces, each face is incident to 3 vertices,
and every two faces have 2 vertices in common. Thus the vertex-face walk
relative to either orietation of M has exactly three eigenvalues.

Our initial goal is to find transition matrices whose H-weighted digraphs
have as few weights as possible. Are there any among those with three
eigenvalues? The answer is positive. In fact, all of them can be implemented
as continuous quantum walks on oriented graphs.

5.4.3 Theorem. Let X be a connected d-regular graph on n vertices. Let
U be the transition matrix of a vertex-face walk for a circular embedding of
X. If U has exactly three eigenvalues, then there is γ ∈ R such that

U = exp(γ(UT − U)).

Moreover, UT − U is a scalar munltiple of the skew-symmetric adjacency
matrix of an oriented graph, which has

(i) n(n− 1) vertices,

(ii) valency
d(n− d)(d− 1)

n− 1
,

and

(iii) eigenvalues

0, ± arccos

(
2(n− d)

d(n− 1)
− 1

)
.

Proof. By Theorem 5.4.2, the eigenprojections of CCT are

Ed2 =
1

n
J, Eµ = I − 1

n
J.

It follows from Lemma 5.3.1 that the Hamiltonian is an imaginary multiple
of

N̂EµN̂
TP − PN̂EµN̂ = N̂N̂P − PN̂N̂

= QP − PQ

=
1

4
(UT − U).
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Moreover, since both X and X∗ are d-regular, Property (iii) of Lemma 5.1.2
shows that

(QP − PQ)(a,b),(u,v) =


1

d2
, if a ∈ fuv and u /∈ fab,

− 1

d2
, if a /∈ fuv and u ∈ fab

0, otherwise.

We compute the valency of the underlying digraph. Fix an arc (u, v). For
every positive entry of (QP −PQ)euv, we need an arc (a, b) such that a ∈ fuv
and u /∈ fab. Due to the bijection between outgoing arcs of a and faces using
a, effectively we are counting pairs (a, h) of vertex a and face h, where a is
on fuv, and h is on a but not on u. Note that such a pair must have a 6= u.
On the other hand, for each a 6= u on fuv, there are d faces on a, of which

(d− 1)d

n− 1

are also on u. Therefore, the number of positive entries in (QP − PQ)euv is

(d− 1)

(
d− (d− 1)d

n− 1

)
=
d(n− d)(d− 1)

n− 1
.

Finally, since U1 = UT1 = 1, there are as many negative entries as positive
entries in each column of UT−U . The eigenvalues of the H-weighted digraph
follow from Theorem 5.4.2.

Of course, our quantum walk is based on more than just an incidence
structure—not every vertex-face incidence matrix can be realized by a cir-
cular embedding. In addition to the obvious conditions for a symmetric
2-design to exist, we also need the following, at the very least.

(i) The parameter
(d− 1)d

n− 1

is a positive integer greater than one, since every edge is used by two
faces.

(ii) The product nd must be divisible by 4, due to Euler’s formula

n− nd

2
+ n = 2− 2g.
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Two candidates for the vertex-face incidence structure are the trivial de-
sign, and the projective geometry design with parameters(

qk − 1

q − 1
,
qk−1 − 1

q − 1
,
qk−2 − 1

q − 1

)
.

We move on to the case where U has exactly four eigenvalues, that is,
1, −1 and two complex numbers on the unit circle. We have the following
characterization in terms of C.

5.4.4 Theorem. Let X be a connected d-regular graph on n vertices. Let
U be the transition matrix of a vertex-face walk for a circular embedding
of X. Let C be the vertex-face incidence matrix. Then U has exactly four
eigenvalues if and only if CCT has exactly three eigenvalues, two of which
are d2 and 0.

Proof. We prove one direction. Suppose U has exactly four eigenvalues. By
Theorem 5.2.3 we need either rk(C) < n or rk(C) < s, so C is not invertible.
It follows that CCT has at least two eigenvalues: 0 and d2. Moreover, for U
to have exactly two complex eigenvalues, there must be one more eigenvalue
of CCT lying between 0 and d2.

5.5 Graph-Encoded Maps

Rotation systems are one way to describe orientable embeddings. In this
section, we introduce another system, called graph-encoded maps, which
encodes embeddings that could be orientable or non-orientable.

LetM be an embedding, where every face is bounded by a cycle. A flag
is a triple (u, e, f) of vertex u, edge e and face f , where u is incident to e, and
e is incident to f . Pictorially, a flag is a triangle in the barycentric division
of a face. Figure 5.3 gives the planar embedding of C3, for which every dot
represents a flag.

For each flag (u, e, f), let u′ be the other endpoint of e, let e′ be the other
edge in f that is incident to u, and let f ′ be the other face that contains e.
Define three functions

τ0 :(u, e, f) 7→ (u′, e, f),

τ1 :(u, e, f) 7→ (u, e′, f),
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Figure 5.3: Planar embedding of C3 and the flags

τ2 :(u, e, f) 7→ (u, e, f ′).

We have the following observations.

(i) τ0, τ1, τ2 are fixed-point-free involutions.

(ii) τ0τ2 = τ2τ0, and τ0τ2 is fixed-point-free.

(iii) The group 〈τ0, τ1, τ2〉 acts transitively on the flags.

If we join two flags in Figure 5.3 by an edge whenever they are swapped
by one of τ0, τ1 and τ2, then we obtain a cubic graph with a 3-edge-coloring,
as shown in Figure 5.4.

In general, for an embeddingM, a graph-encoded map, or gem, is a cubic
graph with a 3-edge coloring, where the vertices are the flags, and the 3-edge
coloring is induced by the three involutions τ0, τ1 and τ2, as described above.
The concept of gem was first introduced by Lins in [50], where he also proved
the following characterization of orientability.

5.5.1 Theorem. An embedding is orientable if and only if the gem is bipar-
tite.

Note that an embedding M with ` edges has 4` flags. Thus, if M is
orientable, then there are two components in the distance-2 graph of the
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Figure 5.4: Planar embedding of C3 and the gem

gem, each with 2` vertices. Let Y be one such component. We claim that
the vertex-face walk forM is equivalent to a two-reflection walk on Y . Let π1
be the partition of the vertices (u, e, f) of Y based on their third coordinates
f . It is not hard to see that the size of each cell in π1 is the degree of some
face. Similarly, let π2 be the partition of V (Y ) based on their first coordinates

u. Let M̂ and N̂ be the normalized characteristic matrices for π1 and π2,
respectively. Then

(2M̂M̂T − I)(2N̂N̂T − I)

is precisely the vertex-face walk forM relative to one consistent orientation
of the faces.

One advantage of using gems is that our definition of vertex-face walks
can be extended to non-orientable embeddings; we will discuss this at the
end of this chapter.

5.6 Sparse Hamiltonians from Regular Em-

beddings

In this section, we show that for every prime power n, a regular embedding
of Kn yields a vertex-face walk with exactly three eigenvalues. This provides
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an infinite family of discrete quantum walks that can be implemented using
continuous quantum walks on unweighed digraphs.

We start by introducing some basic concepts on rotation systems. For
more background, see Gross and Tucker [38]. A rotation system is a set
{πu : u ∈ V (X)} where each πu is a cyclic permutation on the neighbors of
the vertex u. For any arc (u1, u2), consider the walk

(u1, u2), (u2, u3), (u3, u4), · · · , (uk−1, uk), · · ·

where

uj+1 = πuj(uj−1).

Since the graph is finite, eventually this walk will meet an arc that is already
taken. Moreover, the first arc that is used twice must be (u1, u2), as the
preimage π−1u (v) is uniquely determined for each u. Therefore this walk is
closed with no repeated arc. All closed walks arising in this way partition
the arcs of X; they are precisely the facial walks, as we have seen. For each
facial walk of length k, we associated it with a polygon with k sides, labeled
by the arcs in the same order as they appear in the walk. We then “glue”
each two sides of these polygons labeled by the same edge. This results in
an embedding of the graph onto an orientable surface.

An embeddingM of a graph X is graph self-dual if the dual graph X∗ is
isomorphic to X. For the complete graph Kn, the dual graph is regular on
n vertices if and only if M is graph self-dual. If this embedding is circular,
in addition to being graph self-dual, then the vertex-face incidence structure
is the complement of a trivial design, that is, C can be obtained from J − I
by permuting the rows and columns.

Using Euler’s formula, one can show that Kn has a graph self-dual em-
bedding only if n ≡ 0, 1 (mod 4). The other direction requires clever con-
structions, and has been proved several times independently. For one of these
treatments, see White [63].

5.6.1 Theorem. The complete graph Kn has a graph self-dual orientable
embedding if and only if n ≡ 0, 1 (mod 4).

However, not all graph self-dual embeddings of Kn are circular. In fact,
such constructions are only known for Kn with n a prime power, due to Biggs
[13]. We describe his rotation systems in the following theorem.
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5.6.2 Theorem. Let n = pk for some prime p. Let g be a primitive generator
of the finite field F of order n. For each element u in F, define the cyclic
permutation

πu := (v + g0, v + g1, · · · , v + gn−2).

The rotation system {πu : u ∈ V (Kn)} gives a circular embedding of Kn.

Proof. The complete graph Kn can be viewed as as Cayley graph over F.
Clearly, πu is a permutation on the neighbors of u. Further, the facial walk
containing arc (v, v + g0) visits vertices in the following order

v, v + g0, v + g0 − g1, v + g0 − g1 + g2, · · ·

Since
m−1∑
j=0

(−g)j =
1− (−g)m

1 + g

is distinct for m = 0, 1, · · · , n− 2, this facial walk has length n− 1 with no
vertex repeated. Therefore the embedding is circular and graph self-dual.

An embedding M is regular if the group generated by the three invo-
lutions 〈τ0, τ1, τ2〉 acts regularly on the flags. Biggs showed that Kn has a
regular embedding if and only if n is a prime power, and every regular em-
bedding of Kn must arise from the rotation system described above [13].
Using his construction, we find an infinite family of vertex-face walks whose
transition matrices are also transition matrices of continuous quantum walks
on oriented graphs.

5.6.3 Theorem. Let n be a prime power. Let U be the transition matrix
of the vertex-face walk for a regular embedding of Kn. Then there is γ ∈ R
such that

U = exp(γ(UT − U)).

Moreover, UT−U is a scalar multiple of the skew-symmetric adjacency matrix
of an oriented graph, which

(i) has n(n− 1) vertices,

(ii) is (n− 2)-regular, and

(iii) has exactly three eigenvalues: 0 and ±i
√
n2 − 2n.
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Proof. We have
CCT = I + (n− 2)J,

So the eigenvalues of U are 1 and eiθ, where

cos(θ) =
2

(n− 1)2
− 1.

By Lemma 5.3.1 and Theorem 5.4.3, the Hamiltonian is

H =
2iθ

sin(θ)
(QP − PQ) =

2iθ

(n− 1)2 sin(θ)
A(Z),

where A(Z) is the skew-symmetric adjacency matrix of the digraph under-
lying H. The eigenvalues of A(Z) then follows from the eigenvalues of H.

Figure 5.5 shows the H-digraph of the planar embedding of K4.

Figure 5.5: H-weighted digraph for the planar embedding of K4

5.7 Covers

Before moving on to transition matrices with four eigenvalues, we spend a
section understanding covers of embeddings. This provides a natural way to
“lift” vertex-face walks.
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0

1

23

Figure 5.6: K4

(0,0) (2,1)

(1,0)(3,1)

(1,1) (3,0)

(0,1)(2,0)

Figure 5.7: A double cover of K4

An arc-function of index r of X is a map φ from the arcs of X into
Sym(r), such that φ(u, v) = φ(v, u)−1. The fiber of a vertex u is the set

{(u, j) : j = 0, 1, · · · , r − 1}.

If we replace each vertex of X by its fiber, and join (u, j) to (v, k) whenever
φ(u, v)(j) = k, then we obtain a new graph Xφ, called the r-fold cover of X.
For example, we can let φ be the constant arc-function that sends every arc
to (1, 2) ∈ Sym(2). Then the double cover Kφ

4 is isomorphic to the cube, as
shown in Figure 5.7.

The above definition tells us how to construct a cover from a base graph.
Alternatively, we say a graph Y covers X if there is a homomorphism ψ from
Y to X, such that for any vertex y of Y and x = ψ(y), the homomorphism ψ
restricted to NY (y) is a bijection onto NX(x). The map ψ is called a covering
map. If X is connected, then the preimages ψ−1(x) all have the same size;
they are precisely the fibers of X.

Given an orientable embedding MX of X, and a covering map ψ from a
connected graph Y to X, we define an orientable embedding MY of Y by
specifying its facial walks; such an embedding will be called the embedding
induced by (MX , ψ), or the embedding induced by (MX , φ) if φ is the cor-
responding arc-function. Let W be a facial walk of MX starting at vertex
u. Clearly, the preimage ψ−1(W ) consists of walks starting and ending in
the fiber ψ−1(u), and each arc of Y appears in at most one of these walks.
Then, the facial walks of MY are exactly the closed walks in the preimages
of the facial walks of MX . In the previous example, the planar embedding
of K4 gives rise to an embedding of the cube on the torus, with 4 faces, each
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of length 6.
We will focus on a special type of cover, known as the voltage graphs.

A voltage graph of X is an r-fold cover Y = Xφ, where the image of the
arc-function φ is a subgroup Γ ≤ Sym(r) of order r, and

V (Y ) = V (X)× Γ, E(Y ) = E(X)× Γ.

Voltage graphs correspond to normal covers [40], and have been extensively
studied. We only state one property that voltage graphs satisfy; for more
background, see Gross and Tucker [38].

5.7.1 Theorem. Let X be a graph. Let Z be a k-cycle in X. Let Y = Xφ

be a voltage graph of order r. If φ(Z) has order `, then the components of
F (Z) consists of r/` cycles, each of length k`.

The next result shows that the transition matrix of X is a block sum of
the transition matrix of its voltage graph. To prove it, we need the concept of
equitable partition, due to Godsil [25, Ch 12]. Let A be a matrix over C. Let
σ and ρ be the partition of the columns and rows of A, and let K and L be
their respective characteristic matrices. The pair (ρ, σ) is column equitable
if col(AK) ⊆ col(L), row equitable if col(A∗L) ⊆ col(K), and equitable if it
is both column and row equitable.

5.7.2 Theorem. Let X be a graph. Let Y = Xφ be a voltage graph of X.
Let ρ be the partition of the arcs of Y , where each class is the preimage of
some arc of X. Let L̂ be its normalized incidence matrix of ρ. If UX and UY
are the transition matrices for the corresponding embeddings of X and Y ,
then

UX = L̂TUY L̂.

Proof. Write UY as

UY = (2M̂Y M̂
T
Y − I)(2N̂Y N̂

T
Y − I).

Let σ be the partition of the vertices of Y into fibers, with normalized inci-
dence matrix K̂. It is not hard to verify that

N̂Y K̂ = L̂N̂X

and
N̂T
Y L̂ = K̂N̂T

X .
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Thus (ρ, σ) is an equitable partition of N̂Y [25, Ch 12]. It follows that

N̂Y K̂K̂
T = L̂L̂T N̂Y . (5.7.1)

Since
N̂X = L̂T N̂Y K̂,

the projection onto its column space can be written as

N̂XN̂
T
X = L̂T (N̂Y K̂K̂

T )N̂T
Y L̂

= ŜT (L̂L̂T N̂Y )N̂T
Y L̂

= L̂T N̂Y N̂
T
Y L̂.

Applying a similar argument to the preimages of facial walks, we can show
that

M̂XM̂
T
X = L̂TM̂Y M̂

T
Y L̂.

Thus,
UX = L̂T (2M̂Y M̂

T
Y − I)L̂L̂T (2N̂Y N̂

T
Y − I)L̂. (5.7.2)

Finally, from Equation (5.7.1) we see that

L̂L̂T N̂Y N̂
T
Y = N̂Y K̂K̂

T N̂T
Y

is a symmetric matrix, and so ŜŜT commutes with N̂Y N̂
T
Y . Therefore, Equa-

tion (5.7.2) reduces to

UX = L̂TUY L̂.

5.8 Sparse Hamiltonians from Covers

If U has exactly four eigenvalues, then they must be 1, −1 and e±iθ. Thus

H = πF−1 + θ(F+ − F−),

where F± is the projection onto the e±iθ-eigenspace. As a consequence, the
H-weighted digraph splits into two weighted digraphs, whose Hermitian ad-
jacency matrices are orthogonal.

In this section, we construct an infinite family of circular embeddings for
which U has four eigenvalues, and the H-weighted digraph has only distinct
weights on the arcs. These are embeddings of K2×Kn that arise from regular
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embeddings of Kn. The first example in the infinite family is the embedding
of the cube, viewed as the double cover K2 × K4 in Figure 5.7, with facial
walks

f0 = {(0, 0) , (1, 1) , (2, 0) , (0, 1) , (1, 0) , (2, 1)};
f1 = {(3, 0) , (2, 1) , (1, 0) , (3, 1) , (2, 0) , (1, 1)};
f2 = {(2, 0) , (3, 1) , (0, 0) , (2, 1) , (3, 0) , (0, 1)};
f3 = {(0, 0) , (3, 1) , (1, 0) , (0, 1) , (3, 0) , (1, 1)}.

In general, the facial walks of our embedding of K2 × Kn are preimages of
the facial walks of a regular embedding of Kn.

5.8.1 Lemma. Let n be a power of 2. LetM be a regular embedding of Kn.
Let φ be the 2-fold arc-function that sends every arc of X to (1, 2) ∈ Sym(2).
Let M′ be the embedding of K2 × Kn induced by (M ′, φ). Let M and M ′

be the arc-face incidence matrices for M and M′. Let N and N ′ be the
arc-tail incidence matrices forM andM′. Let ρ be the partition of the arcs
of K2 ×Kn, where each class is the preimage of some arcs of Kn. Let L be
the incidence matrix of ρ. We have

(i) N ′ = 2LN ;

(ii) M ′ = LM .

Proof. (i) is immediate. For (ii), note that every facial cycle Z in Kn has
odd length n− 1, so φ(Z) = (1, 2) and the preimage of Z is a facial cycle of
length 2(n− 1). It follows that a facial walk in M′ contains ((u, 1), (v, 2)) if
and only if it contains ((u, 2), (v, 1)).

5.8.2 Corollary. Let n be a power of 2. Let M be a regular embedding of
Kn. Let φ be the 2-fold arc-function that sends every arc of X to the element
(1, 2) ∈ Sym(2). Let M′ be the embedding of K2 ×Kn induced by (M ′, φ).
Let C and C ′ be the vertex-face incidence matrices forM andM′. We have

(i) (C ′)TC ′ = 2CTC;

(ii) C ′(C ′)T =
1

n− 1
CCT ⊗ J2.
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Proof. The first part follows from the previous Lemma 5.8.1. To see the
second part, note that for any vertex u of Kn, the vertex (u, 1) appears in a
face f of K2 ×Kn if and only if (u, 2) appears in f . Since

CCT = In + (n− 2)Jn,

two vertices of Y in the same fiber lie in exactly n−1 faces, and two vertices
from different fibers lie in exactly n − 2 faces. Applying Property (iv) in
Lemma 5.1.2 yields the identity.

5.8.3 Corollary. Let n be a power of 2. Let M be a regular embedding of
Kn. Let φ be the 2-fold arc-function that sends every arc of X to the element
(1, 2) ∈ Sym(2). Let M′ be the embedding of K2 ×Kn induced by (M ′, φ).
Let U be the transition matrix of the vertex-face walk forM. Let U ′ be the
transition matrix of the vertex-face walk for M′. We have the following.

(i) The complex eigenvalues of U ′ are the same as the complex eigenvalues
of U , with the same multiplicity.

(ii) −1 is an eigenvalue of U ′. Moreover, the eigenspace is spanned by the
vectors yu over all vertices u of Kn, where yu is 1 on the outgoing arcs
of (u, 0), and −1 on the outgoing arcs of (u, 1), and 0 elsewhere.

Proof. The first part follows from Corollary 5.8.2 (i). Let M ′ and N ′ be the
arc-face incidence matrix and the arc-tail incidence matrix of M′. Let P ′

and Q′ be the orthogonal projections onto col(M ′) and col(N ′), respectively.
From Corollary 5.8.2 (ii) we also see that

col(P ′) ∩ ker(Q′) = {0}.

Since each yu is constant on the outgoing arcs of each vertex of K2×Kn, and
yu sum to zero over each face of M′, the set

{yu : u ∈ V (X)}

forms an orthogonal basis of

ker(P ′) ∩ col(Q′).

This proves the second part.
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Our main result of this section is that the H-weighted digraph of the
vertex-face walk forM′ splits into two unweighted digraphs, whose Hermitian
adjacency matrices are orthogonal.

5.8.4 Theorem. Let n be a power of 2. Let M be a regular embedding of
Kn. Let φ be the 2-fold arc-function that sends every arc of X to the element
(1, 2) ∈ Sym(2). Let M′ be the embedding of K2 ×Kn induced by (M ′, φ).
Let U be the transition matrix of the vertex-face walk forM. Let U ′ be the
transition matrix of the vertex-face walk for M′. There is a real β and an
imaginary η such that

U ′ = exp(βH1 + ηH2),

where

H1 = Jn ⊗
(

1 −1
−1 1

)
⊗ Jn−1,

and

H2 = (U ′)T − U ′ = (UT − U)⊗ J2.

Moreover, H1H2 = 0.

Proof. Let H be the Hamiltonian of U ′. We have for some complex numbers
e±iθ that

H = πF−1 + θ(F+ − F−).

By Corollary 5.8.3 (ii), the eigenprojection F−1 is a real multiple of H1.

Let M and N be the arc-face incidence matrix and the arc-tail incidence
matrix for M. Let P and Q denote the orthogonal projections on col(M)
and col(N), respectively. From Lemma 5.3.1, Theorem 5.4.3 and Lemma
5.8.1, we see that F+ − F− is an imaginary multiple of

QL̂WL̂T − L̂WL̂TQ,

where

W = P − 1

n(n− 1)
Jn(n−1).

Applying Lemma 5.8.1 again yields the expression for H2.

If follows that (U ′)2 is the transition matrix of a continuous quantum
walk on an oriented graph.
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5.8.5 Theorem. Let n be a power of 2. Let M be a regular embedding of
Kn. Let φ be the 2-fold arc-function that sends every arc of X to the element
(1, 2) ∈ Sym(2). Let M′ be the embedding of K2 ×Kn induced by (M ′, φ).
Let U ′ be the transition matrix of the vertex-face walk for M′. Then there
is γ ∈ R such that

(U ′)2 = exp(γ((U ′)T − U ′)).

Moreover, (U ′)T − U ′ is a scalar multiple of the skew-symmetric adjacency
matrix of an oriented graph, which

(i) has 2n(n− 1) vertices,

(ii) is (n− 2)-regular, and

(iii) has exactly three eigenvalues: 0 and ±2i
√
n2 − 2n.

5.9 Sedentary Walks

One counterintuitive phenomenon in quantum walks is that the walker may
be reluctant to leave its initial state. This was first observed in continuous
quantum walks on Kn: for any time t, the mixing matrix

U(t) ◦ U(t)

converges to I as n goes to infinity. In [30], Godsil investigated quantum
walks on complete graphs, some cones and some strongly regular graphs that
enjoy the same property. Following his paper, we say a sequence of discrete
quantum walks, determined by transition matrices {U1, U2, · · · }, is sedentary
if for any step K, the mixing matrices Uk

n ◦ Uk
n converges to I as n goes to

infinity. Both families studied in earlier sections exhibit this phenomenon.

5.9.1 Theorem. For each prime power n, let Un be the vertex-face walk for
a regular embedding of Kn. The quantum walks determined by

{Un : n is a prime power}

form a sedentary family.
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Proof. Fix n and k. We compute the diagonal entries of the mixing matrix
Uk ◦ Uk. Recall that the non-real eigenvalues of Un are e±iθ, where

cos(θ) =
2

(n− 1)2
− 1.

Let F± be the orthogonal projection onto the e±iθ-eigenspace of U . Corollary
5.2.5 says that that F± is a linear combination of the four matrices:

W, PW, WP, PWP, (5.9.1)

where

W = N̂

(
I − 1

n
J

)
N̂T = Q− 1

n
J.

Using Lemma 5.1.2 it is not hard to see that all four matrices in Equation
5.9.1 have constant diagonal. Thus F+ and F− have constant diagonal. As
as linear combination of

F+, F−, F1 = I − F+ − F−,

the power Uk also has constant diagonal. On the other hand, the trace of
Uk can be computed its spectrum. By Theorem 5.2.4, both eiθ and e−iθ have
multiplicity n− 1, so 1 has multiplicity (n− 2)(n− 1). It follows that

tr(Uk) = (n− 2)(n− 1) + 2 cos(kθ)(n− 1).

Hence, each diagonal entry if Uk
n ◦ Uk

n equals(
1− 2− 2 cos(kθ)

n

)2

,

which converges to 1 as n tends to infinity.

5.9.2 Theorem. For each n that is a power of 2, let M be a regular em-
bedding of Kn, and let φ be the 2-fold arc-function that sends every arc of
Kn to (1, 2) ∈ Sym(2). Let U ′n be the transition matrix of the embedding of
K2 ×Kn induced by (M, φ). The quantum walks determined by

{U ′n : n is a power of 2}

form a sedentary family.
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Proof. Fix n and k. The eigenvalues of Uk are 1, −1 and e±ikθ, where

cos(θ) =
2

(n− 1)2
− 1.

Again, one can check that the projections F1, F−1 and F± onto the eigenspaces
have constant diagonal. Moreover, by Theorem 5.2.3 and Theorem 5.2.4,

rk(F1) = 2(n− 1)2 − n, rk(F−1) = n, rk(F±) = n− 1.

Therefore

tr(Uk
n) = 2(n− 1)2 − n+ (−1)kn+ 2 cos(kθ)(n− 1).

It follows that each diagonal entry of Uk
n ◦ Uk

n is(
1− 2− 2 cos(kθ)

2n
+

(−1)2 − 1

2(n− 1)

)2

,

which converges to 1 as n goes to infinity.

5.10 Open Problems

At the end of this chapter, we mention some open problems related to the
vertex-face walks.

Theorem 5.4.3 characterizes all vertex-face incidence structures for which
the transition matrix has precisely three eigenvalues. So far, the only known
examples are regular embeddings of complete graphs. It remains open whether
a non-complete graph has an embedding that satisfies Theorem 5.4.3. One
approach we can take is to check if there exist other H-digraphs with param-
eters given by Theorem 5.4.3.

(i) Characterize digraphs on n(n− 1) vertices, with valency

d(n− d)(d− 1)

n− 1
,

and eigenvalues

0, ± arccos

(
2(n− d)

d(n− 1)
− 1

)
.
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Another more direct approach is to investigate whether a symmetric 2-design
can be realized by the vertex-face incidence structure of an existing embed-
ding. More generally, we would like to answer the following.

(ii) Given an incidence structure with points V and blocks F , can we con-
struct an orientable embedding with V as vertices and F as faces?

Our original definition of a vertex-face walk requires the embedding to be
orientable, since the arc-face partition is based on a consistent orientation of
the faces. However, the discussion at the end of Section 5.5 provides a way
to generalize vertex-face walks to non-orientable embeddings. Let Y be the
gem of an embeddingM, where every face is bounded by a cycle. Let π1 be
coarsest partition of the flags, such that in each cell, all flags share an face,
while no two flags share an edge. Similarly, let π2 be the coarsest partition
of the flags, such that in each cell, all flags share a vertex, while no two flags
share an edge. Let M̂ and N̂ be the normalized characteristic matrices for
π1 and π2, respectively. Then

U = (2M̂M̂T − I)(2N̂N̂T − I)

defines a quantum walk on Y , which is reducible if and only ifM is orientable.
In other words, each arc (u, v) in the underlying graph X is paired with two
flags (u, e, f) and (u, e, f ′), and the probability that the walker is on the
arc (u, v) can be computed by summing the probabilities of her being on
(u, e, f) and (u, e, f ′). There are many questions we may ask about this new
definition of vertex-face walks; below are two examples.

(iii) How much can the limiting distribution of a vertex-face walk for an
orientable embedding differ from that of a vertex-face walk for a non-
orientable embedding?

(iv) Can we characterize non-orientable embeddings for which theH-weighted
digraphs are sparse with few weights on the arcs?

Finally, our vertex-face model can be viewed as a generalization of the
walk used by Ambainis et al in [6], for the spatial search on a 2-dimensional
lattice. While their walk does not satisfy the locality condition, the travel
distance for the quantum walker during one step is at most 2, which is a
constant. By comparison, simply applying the Grover’s search on the lat-
tice requires the walker to travel across the entire database. Therefore, the
moving cost is in some sense negligible.
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We would like to know whether the vertex-face walk can be used to design
other quantum algorithms. For spatial search on a regular graph X, let u be
the marked vertex and

Vu := (I − 2Euu)⊗ I

the oracle operator. Since each step of a vertex-face walk is equivalent to
two steps of the arc-reversal walk, we define the perturbed vertex-face walk
to be

(2M̂M̂T − I)Vu(2N̂N̂
T − I)Vu;

this is in the same form as the search operator in [6]. Compared to the
arc-reversal search [5], the vertex-face search seems to have a higher success
probability, as indicated by our numerical experiments. Of course, one needs
to take into consideration the maximum distance of two vertices in a face,
since a high moving cost may offset the speedup in the algorithm.

(v) Can we design other fast algorithms based on the vertex-face walks?

124



Chapter 6

Walking on Unitary Covers

When a particular model does not exhibit the desired property, our quantum
walker seeks alternatives by changing the coins, the shunt-decompositions,
or even the operator itself. One thing she has not tried, though, is to enlarge
the state space she lives in.

In this chapter, we introduce quantum walks on unitary covers of di-
graphs; they can be seen as quantum walks on the base digraphs with en-
larged state spaces. Our model generalizes the shunt-decomposition walks
[2], as well as the Möbius quantum walks [53]. In the Möbius walk, the
walker can rotate around the axis of movement while walking on the cycle,
and the extra rotation space allows uniform average vertex mixing to occur
with optimized mixing time [53].

We start by extending the definition of covers. For a digraph X, an r-fold
unitary arc-function is a map φ from the arcs of X to the unitary group of
degree r. If the image of φ consists of only permutations, then Xφ is the usual
cover we have seen in Section 5.7. Next, given a shunt-decomposition ofX, we
define what it means for φ to be “compatible with” the shunt-decomposition;
such a unitary arc-function is called a shunt-function. Finally, for a digraph
X with shunt-function φ, we construct a quantum walk on Xφ, and study
the spectral decomposition of its transition matrix. Numerical experiments
show that such a walk allows uniform average vertex mixing to occur on X,
even if it is impossible on the usual shunt-decomposition walk.
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6. WALKING ON UNITARY COVERS

6.1 Unitary Covers

We have seen how covers give rise to interesting walks in Chapter 5. There are
two parts in the definition of a cover that we can generalize: the underlying
graph, and the arc-function.

Let X be a connected digraph. A unitary arc-function of index r of X
is a map φ from the arcs of X to U(r), the unitary group of degree r, such
that φ(u, v) = φ(v, u)−1. Let A(X)φ be the matrix obtained from A(X) by
replacing Auv with φ(u, v) if (u, v) is an arc of X, and with an r × r block
of zeros otherwise. The weighted digraph Xφ underlying A(X)φ is called a
unitary r-fold cover.

When the image of φ consists of only permutation matrices, we omit the
word “unitary” and call φ an r-fold cover. If in addition X is undirected,
then we are back to the special case in Section 5.7. Recall that Xφ can be
built as follows: replace each vertex u of X by its fiber:

{(u, j) : i = 0, 1, · · · , r − 1},

and join (u, j) to (v, k) whenever φ(u, v)(j) = k. Alternatively, a digraph
Y covers X if there is a homomorphism ψ from Y to X, such that for any
vertex y of Y and x = ψ(y), the homomorphism restricted to the outgoing
arcs of y in Y is a bijection onto the outgoing arcs of x in X.

As shown in Figure 6.1 and Figure 6.2, the hypercube Q3 is a double
cover of the complete graph K4, with covering map ψ given by the vertex
coloring. The arc-function φ sends every arc of K4 to (1, 2) ∈ Sym(2). We
attach their adjacency matrices to illustrate the construction from φ.

0

1

23

A(K4) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



Figure 6.1: K4 and its adjacency matrix

Most discussion of covers focuses on voltage graphs, see for example [38].
The orthogonal covers, for which the image of φ consists of only orthogonal
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6.2. SHUNT-FUNCTIONS

(0,0) (2,1)

(1,0)(3,1)

(1,1) (3,0)

(0,1)(2,0)

A(Q3) =



0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0


Figure 6.2: Q3 and its adjacency matrix

matrices, have also been studied in [24]. In this chapter, we will consider
unitary covers that respect shunt-decompositions, for they may preserve nice
properties that the underlying digraphs admit.

6.2 Shunt-Functions

The aim of this section is to lift a shunt-decomposition walk on X to a walk
on its cover Xφ. Our construction generalizes the shunt-decomposition model
due to Aharonov et al [2], as well as the Möbius walk defined by Moradi and
Annabestani [53].

Let X be a d-regular digraph on n vertices, with shunt-decomposition

A(X) = P1 + · · ·+ Pd.

We are interested in unitary arc-functions φ that are “compatible with” the
shunt-decomposition, that is,

(i) for every arc (u, v), the value φ(u, v) depends only on the shunt (u, v)
belongs to;

(ii) whenever Pj and P T
j both appear as shunts, we have

φ(Pj)
−1 = φ(P T

j ).

A unitary arc-function φ satisfying (i) and (ii) is called a shunt-function.
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6. WALKING ON UNITARY COVERS

Given a shunt-function φ, we define a quantum walk on Xφ as follows.
Pick a d×d unitary coin C. The shift matrix S is a dnr×dnr block diagonal
matrix:

S =


P1 ⊗ φ(P1)

P2 ⊗ φ(P2)
. . .

Pd ⊗ φ(Pd)

 ,

and the coin matrix is a dnr × dnr unitary matrix of the form

C ⊗ In ⊗ Ir.

Our new quantum walk on Xφ, called the shunt-function walk, is then de-
termined by the transition matrix

U := S(C ⊗ In ⊗ Ir).

We explain the connection between this walk and the ones in [2] and [53].
If r = 1 and φ is the identity map, then Xφ = X and the shift matrix is
simply

S =


P1

P2

. . .

Pd

 .

Thus U coincides with the transition matrix of a shunt-decomposition walk on
X. On the other hand, if X is the n-cycle Cn, there is a shunt-decomposition

A(Cn) = P + P−1

where P is cyclic of order n. Suppose in addition that

φ(P ) =

(
cos
(
θ
2

)
i sin

(
θ
2

)
i sin

(
θ
2

)
cos
(
θ
2

) )
and

φ(P−1) =

(
cos
(
− θ

2

)
i sin

(
− θ

2

)
i sin

(
− θ

2

)
cos
(
− θ

2

) ) ,
then our walk is precisely the Möbius walk defined in [53].
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6.3. SPECTRAL DECOMPOSITION

6.3 Spectral Decomposition

To simplify our analysis, we assume all shunts commute, and

φ(Pj)φ(Pk) = φ(Pk)φ(Pj).

The following lemma shows how to obtain the spectral decomposition of a
shunt-function walk.

6.3.1 Lemma. LetX be a d-regular graph on n vertices with shunt-decomposition

A(X) = P1 + · · ·+ Pd.

Let φ be a shunt-function of index r. Let

U = S(C ⊗ In ⊗ Ir)

be the transition matrix of a shunt-function walk on Xφ. Let y be a common
eigenvector of the shunts, with

Pjy = λjy.

Let z be a common eigenvector of φ(P1), φ(P2), · · · , φ(Pd), with

φ(Pj)z = µjz.

Let x be a vector of length d. Then x⊗ y ⊗ z is an eigenvector of U for the
eigenvalue α if and only if x is an eigenvector ofλ1µ1

. . .

λdµd

C

for the eigenvalue α.

Proof. Rewrite
S =

∑
j

Ejj ⊗ Pj ⊗ φ(Pj).

Then
U =

∑
j

EjjC ⊗ Pj ⊗ φ(Pj).
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6. WALKING ON UNITARY COVERS

Let

D :=

λ1µ1

. . .

λdµd

 .

We have

U(x⊗ y ⊗ z) =
∑
j

EjjCx⊗ Pjy ⊗ φ(Pj)z

=

(∑
j

λjµjEjj

)
Cx⊗ y ⊗ z

= DCx⊗ y ⊗ z.

Thus x⊗ y ⊗ z is an eigenvector of U for the eigenvalue α if and only if x is
an eigenvector of DC for the eigenvalue α.

Using an argument similar to the proof of Theorem 3.6 in [2], we see that
simple eigenvalues of U guarantees uniform average vertex mixing.

6.3.2 Lemma. Let X be a Cayley digraph over an abelian group, with
shunt-decomposition

A(X) = P1 + · · ·+ Pd.

Let φ be a shunt-function of index r, such that for all j and k, we have
φ(Pj) = φ(Pk). Let

U = S(C ⊗ In ⊗ Ir)
be the transition matrix of a shunt-function walk on Xφ. If U has simple
eigenvalues, then U admits uniform average vertex mixing.

6.4 Open Problems

The shunt-function walks have not been studied in depth yet. Here are some
problems we would like to work on.

The Möbius quantum walks allow uniform average vertex mixing to occur
on all cycles [53]. In comparison, the usual shunt-decomposition walk with
the same coin does not have uniform average vertex mixing, on any even
cycle [2]. We wish to know if similar improvements can be made for other
digraphs. Numerical experiments indicate that this is possible for many
Cayley digraphs over abelian groups.
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6.4. OPEN PROBLEMS

(i) Let X be a Cayley digraph over an abelian group. Let

A = P1 + · · ·+ Pd

be the shunt-decomposition induced by the connection set. Let C be a
d×d unitary coin. Can we find a shunt-function φ for which Xφ admits
uniform average vertex mixing?

On the other hand, some properties of a shunt-decomposition walk on
X may be preserved by a shunt-function φ of X. This leads to a different
direction in comparing models of discrete quantum walks.

(ii) What is the relation between the shunt-decomposition walk on X and
a shunt-function walk on Xφ?
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Chapter 7

Appendix

7.1 Graph Theory

A graph is an ordered pair (V,E) of vertex set V and edge set E, where E is
a subset of V × V . A digraph is an ordered pair (V,A) of vertex set V and
arc set A, where A consists of ordered pairs of vertices, called arcs. Given
an arc (u, v), its tail is u, and its head is v. An oriented graph is a digraph
(V,A) where, for any vertices u and v, at most one of (u, v) and (v, u) is in
A.

In this thesis, we may treat a graph (V,E) as a digraph (V,A), where A
contains arcs (u, v) and (v, u) whenever {u, v} is in E.

Let u be a vertex of a digraph X. The out-neighbors of u are vertices
v such that (u, v) is an arc, and the out-degree of u is the number of its
out-neighbors. X is d-out-regular if all vertices have out-degree d. The in-
neighbors of u are vertices v such that (v, u) is an arc, and the in-degree
of u is the number of its in-neighbors. X is d-in-regular if all vertices have
in-degree d. If X is both d-out-regular and d-in-regular, then we say X is
d-regular.

The adjacency matrix of a digraph X = (V,A) is a |V | × |V | matrix A
with

Au,v =

{
1, (u, v) ∈ A,
0, (u, v) /∈ A.

Given an oriented graph X = (V,A) and its adjacency matrix A, the
skew-symmetric adjacency matrix of X is A− AT .
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7. APPENDIX

A weighted digraph is a digraph X together with a function ω on the
arcs; for an arc (u, v), the value ω(u, v) is called the weight on (u, v).

Given an m × m Hermitian matrix H, the H-weighted digraph is the
digraph X = (V,A) where

V = {1, 2, · · · ,m},

and
A = {(u, v) : Hu,v 6= 0}

together with the weight Hu,v assigned to the arc (u, v). We call H a Hermi-
tian adjacency matrix of X.

Let X = (V (X), E(X)) and Y = (V (Y ), E(Y )) be two graphs with
adjacency matrices A(X) and A(Y ). The tensor product ofX and Y , denoted
X × Y , is the graph with vertex set V (X) × V (Y ), and two vertices (u, a)
and (v, b) are adjacent in X × Y if

{u, v} ∈ E(X) and {a, b} ∈ E(Y ).

The adjacency matrix of X × Y is given by the Kronecker product

A(X)⊗ A(Y ).

The Cartesian product of X and Y , denoted X�Y , is the graph with vertex
set V (X)× V (Y ), and two vertices (u, a) and (v, b) are adjacent in X × Y if

{u, v} ∈ E(X) and a = b

or
u = v and {a, b} ∈ E(Y ).

The adjacency matrix of X�Y is given by

A(X)⊗ I + I ⊗ A(Y ).

The double graph of X is the graph with vertex set V (X)× {1, 2}, and two
vertices (u, j) and (v, k) are adjacent in the double graph if {u, v} is in E(X).
The adjacency matrix of the double graph of X is given by

A(X)⊗ J2.

The notions of tensor product, Cartesian product and double graph can
be extended to oriented graphs X and Y , with adjacency matrices A(X) and
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A(Y ) replaced by the skew-symmetric adjacency matrices of X and Y in the
definitions.

Let Γ be a group, and C a subset of Γ. A Cayley digraph over Γ with
connection set C, denoted X(Γ, C), is a digraph with Γ as its vertex set, and
(u, v) is an arc if vu−1 ∈ C. If the connection set C is inverse-closed, then
X(Γ, C) is a graph, called a Cayley graph.

If Γ is a finite abelian group, then the eigenvalues and eigenvectors of a
Cayley digraph over Γ are determined by the characters of Γ. The following
theorem is a standard result; for references, see Godsil [25, Ch 12] and Lovasz
[51].

7.1.1 Theorem. Let Γ be a finite abelian group. Let X = X(Γ, C) be a
Cayley digraph over Γ, with adjacency matrix A. For any character χ of Γ,
we have

Aχ =

(∑
g∈C

χ(g)

)
χ.

A circulant digraph is a Cayley digraph over a cyclic group Zn.

Given a graph X with adjacency matrix A, the characteristic polynomial
of X, denoted φ(X, t), is given by

φ(X, t) := det(tI − A).

Two vertices u and v of X are cospectral if the vertex-deleted subgraphs
X\u and X\v have the same characteristic polynomial, that is,

φ(X\u, t) = φ(X\v, t).

7.2 Quantum Theory

A quantum system is a Hilbert space H. In this thesis, we are mostly con-
cerned with finite-dimensional quantum systems. Let H = Cm be the m-
dimensional vector space over the complex numbers with the usual inner
product

〈x, y〉 = x∗y.

A quantum state is a vector in H of unit length.
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7. APPENDIX

An observable is a Hermitian matrix H acting on H. Let the spectral
decomposition of H be

H =
∑
r

λrEr,

where λr is an eigenvalue of H, and Er is the orthogonal projection onto
the eigenspace of λr. If the system is in state x, then a measurement of the
observable H returns value λr with probability

〈x,Eλrx〉.

In the case where H has simple eigenvalues, the measurement can be de-
scribed using an orthonormal basis of H consisting of the eigenvectors of
H.

The only operations we can apply to an isolated quantum system, that is,
a system that does not interact with the environment, are unitary operations.
Let {v1, v2, . . . , vm} be an orthonormal basis of H. Let U be a unitary matrix
acting onH. Given initial state x, applying U changes the system state to Ux,
and measuring in the basis {v1, v2, . . . , vm} yields outcome j with probability

|〈vj, Ux〉|2.

In an open quantum system, however, the operations do not have to be
unitary, and we must give a more general definition of quantum states, which
may occur after non-unitary transformations. A density matrix is a positive
semidefinite matrix ρ with tr(ρ) = 1. A pure state is represented by a rank-
one density matrix ρ; in this case, ρ = xx∗ for some unit vector x in H.
Thus, all states in an isolated quantum systems are pure. A mixed state is
a probabilistic ensemble of pure states {(pj, ρj) : j = 1, 2, · · · , `}, and can be
represented by a density matrix ρ with rank greater than one:

ρ = p1ρ1 + · · ·+ p`ρ`.

Let ρ be the current state of the system. In the case where a unitary operation
U is applied, the state is changed to UρU∗, and the outcome of a measurement
in the standard basis is j with probability given by the trace inner product

〈UρU∗, Ejj〉 = tr(UρU∗Ejj).
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circular embedding, 95
coin operator, 23
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covers, 114

density matrix, 50, 136
digraph, 133
double graph, 134
dual graph, 91
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eigenvalue support, 43
embedding induced by (MX , φ), 114
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entropy, 59
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face-edge incidence matrix, 99
facial walks, 93
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flag, 108
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graph, 133
graph self-dual, 111
graph-encoded map, 109
Grover coin, 23
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quantum state, 21, 135
quantum system, 135

reducible, 98
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regular, 112
resultant, 78
rotation system, 111

row equitable, 115

sedentary, 120
shunt, 66
shunt-decomposition, 66
shunt-decomposition C-walk, 68
shunt-function, 127
shunt-function walk, 128
skew-symmetric adjacency matrix, 133
strongly cospectral, 44
superposition, 21
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tensor product of X and Y , 134
total entropy, 59
transition matrix, 21

uniform average mixing, 59
uniform average vertex mixing, 59
unitary r-fold cover, 126
unitary arc-function of index r, 126
unpertubed, 23

vertex set, 133
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vertex-face walk, 95
voltage graph, 115

weight, 134
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