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Abstract 

Land-use and land-cover change (LUCC) can have local-to-global environment impacts such as 

loss of biodiversity and climate change as well as social-economic impacts such as social 

inequality. Models that are built to analyze LUCC can help us understand the causes and effects 

of LUCC, which can provide support and evidence to land-use planning and land-use policies to 

eliminate or alleviate potential negative outcomes. A variety of modelling approaches have been 

developed and implemented to represent LUCC, in which statistical methods are often used in 

the classification of land use and land cover as well as to test hypotheses about the significance 

of potential drivers of LUCC. The utility of statistical models is found in the ease of their 

implementation and application as well as their ability to provide a general representation of 

LUCC, given a limited amount of time, resources, and data. Despite the use of many different 

statistical methods for modelling LUCC (e.g., linear models and logistic regression), comparison 

among more than two statistical methods is rare and an evaluation of the performance of a 

combination of different statistical methods with the same dataset has not been done before. The 

presented research fills this gap in LUCC modelling literature using four statistical methods, 

Markov chain, logistic regression, generalized additive models and survival analysis, to quantify 

their ability to represent LUCC. The selection of these methods is based on criteria: 1) the 

popularity of a method, 2) the difficulty level of implementation, and 3) the ability of accounting 

for different scenarios. Results from this comparison show that generalized additive models 

outperformed Markov chain, logistic regression and survival analysis in overall accuracy of 

LUCC but logistic regression performed the best for industrial land-use change, and survival 

analysis performed the best for low-density residential land-use change. The superiority of 

generalized additive models is due to its ability to model non-linear LUCC predictors, but there 

is no absolute favor in generalized additive models over other methods in terms of classification 

accuracies of specific LU changes and the run time. Markov chain is not competitive with the 

other three methods in most of the LU change cases but it retains the meaning as a null model 

(i.e., a model without any predictors) in our study. 
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Chapter 1  Primer on land use modelling approaches  

1.1 Introduction 

Land-use and land-cover change (LUCC) is the result of interactions between humans and their 

environment. Land use (LU) and land cover (LC) are often used interchangeably but they are 

very different in definition. The LU of a piece of land is determined by human’s interests to 

describe the function that the land serves. LU change is caused by the change in the activities of 

humans from one type of LU to another (e.g., from agricultural to residential). LC refers to the 

biophysical attributes at the surface of the earth and changes due to human or environmental 

intervention (e.g., from bare ground to impermeable surface; Lambin et al., 2006). The LU and 

LC often have a relationship with each other and one can help determine the other (e.g., 

residential LU and buildings). Identification of LU change and LC change requires monitoring 

and mapping of LU and LC over time. Moreover, LU and LC data provide useful information for 

applications such as natural resource management and studies of climate change. It is important 

to distinguish LU and LC since LU and LC data provide distinct information to different 

applications. For instance, baseline thematic map is created using LC data, and studying social 

problems such as conflict among different uses of land and developmental pressures incorporate 

the use of LU data (Natural Resources Canada, 2015). LU change and LC change in combination 

are called LUCC and usually appear together due to their inseparable effects to a society and an 

environment. The effects of LUCC span from local alteration to ecosystem services (Quintas-

Soriano et al., 2016), land management and planning (Nelson, et al., 2010; Pereira et al., 2012), 

through to regional and global processes such as weather modification and climate change 

(Lambin et al., 2006). Because of the relevance of LUCC across different academic disciplines, 

economic process (e.g., collapsing of agricultural supporting sectors due to a loss of agricultural 

lands), and government regulations (e.g., meeting UNFCCC, Kyoto, and Paris carbon targets), 

understanding and modelling LUCC is a priority research area (National Research Council, 

2014). 

Modelling LUCC can help understand environmental issues, such as increasing 

greenhouse gases (GHGs) in the atmosphere caused by a variety of activities occurring on the 

ground, and thus influence human responses to those problems. Studies of LUCC can also help 

manage natural resources such as land, water and wild animals, which are important to achieve a 
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sustainable development of human society in the long run (Meyer and Turner, 1992). More 

importantly, revealing patterns of LUCC is critical to future planning and management of the 

landscape to mitigate associated environmental problems (Foley et al., 2005).  

Models are used to analyze causes and effects of LUCC and make predictions on future 

LU and LC under different scenarios (Verburg et al., 2004). A variety of approaches have been 

developed to model LUCC, which can be grouped based on different techniques used to 

construct the model such as mathematical models, statistical models and agent-based models 

(e.g., Parker et al., 2003). Models can also be grouped to represent similar perspectives, for 

instance, LUCC models can be grouped as spatial versus non-spatial and object versus field 

(Verburg et al., 2006). Each approach has its own strength and weakness for modelling different 

types of LUCC under different scenarios. Many LUCC models (e.g., Forest and Agricultural 

Sector Optimization Model by Adams et al., 1996; California Urban and Biodiversity Analysis 

Model by Landis et al., 1994) have been developed to focus solely on a specific sector of the 

economy or target only one or two LU types. In contrast, statistical models, which are not 

originally designed for modelling any specific subjects, can detect drivers of any types of LUCC 

and predict LUCC. Therefore, modelling LUCC with statistical models can provide an overall 

perspective for all LU changes occurred in an area. 

Statistical modelling is one of the most widely used approach to representing LUCC 

because of its relative simplicity of comprehension and operationalization compared to other 

approaches (e.g., ABM, Bonabeau, 2002; Systems Dynamics Models, Ford and Ford, 1999). 

Despite the use of many different statistical methods for modelling LU change (e.g., Markov 

Chain and logistic regression), to the best of author’s knowledge, no one has investigated the 

performance of a combination of different traditional statistical methods with the same dataset. 

Hence, four conceptual approaches (stochastic process, parametric model, non-parametric model, 

and time series model) to modelling LU change are compared and contrasted in the presented 

research. These four approaches are operationalized as Markov chain, logistic regression, 

generalized additive model and survival analysis. The selection of these methods is based on : 1) 

frequency of use, 2) the difficulty of implementation, and 3) ability to account for different 

scenarios. The background and mathematical underpinning of these methods are presented prior 
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to concluding the chapter with the overarching goal and research questions of the presented 

thesis. 

1.2 Statistical Approaches 

Statistical models usually require distinct sets of drivers that are suitable for different study 

interests in LUCC modelling. Note that, drivers in LU science context have the same meaning as 

predictors in the context of statistics. The results from statistical models can be used either as a 

final product (e.g., a probability of LUCC) or as suitability maps for subsequent allocation of LU 

across space (Alcamo et al., 2006). In addition, the LU at a location can be classified using the 

estimated probability of LU change from statistical models. Classification accuracy implies the 

suitability of a method in LUCC modelling. The classification accuracies of Markov chain, 

logistic regression, generalized additive model and survival analysis are compared and the 

analysis is presented in Chapter 2. In this thesis, dependent variable is used interchangeably with 

response variable; independent variable is used interchangeably with covariates and predictors. 

1.2.1 Markov Chain  

Markov chain (MC) models incorporate stochasticity in LUCC between states (time steps). A 

transition probability matrix is used to record probabilities of changes (probabilities of LU 

changes) between different statuses/events (LU types) occurred over time. MC produces the 

transition probability between two states as a function of past state. MC has been used for many 

research interests such as movements of classes of the rental housing in several U.S. cities (Clark, 

1965) and consequences of urban growth to agricultural and natural land uses in Niagara Region, 

Ontario, Canada (Muller and Middleton, 1994). In LUCC studies, it has been applied to quantify 

the LU changes in a future state (Muller and Middleton, 1994; Iacono et al., 2012). 

1.2.1.1 Method 

The MC process works slightly differently when time is represented discretely versus 

continuously. As data are usually collected in a discrete manner in LUCC studies, discrete time 

MC (DTMC) is more appropriate to model LUCC. DTMC requires a finite number of discrete 

states with a set of finite events that are mutually exclusive and collectively exhaustive (Stokey 

and Zeckhauser, 1978). In LUCC context, having mutually exclusive events ensures that only 

one LU or LC exists at a given location and time. Collectively exhaustive in LUCC context 

refers to the feature of a land that must be at least one type of LU or LC given all the possibilities. 
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Together, mutually exclusive and collectively exhaustive guarantee one type of LUCC occurs on 

a single unit of land at a time over the entire study area. The probability of an event at a given 

time has a memory-less property, which means the probability only depends on the event 

occurred in the nearest past. Furthermore, the transition probability of a change between any two 

specific states is constant over time.  

Combining mathematical notations with LUCC context, 𝑋𝑛 denotes the LU or LC at time 

𝑛 at a location, where 𝑛 = 1 , 2, … and is finite. Any time interval between any two states are 

assumed to have a uniform length. Given a set of LUs or LCs indexed by i and j, 𝑋𝑛 = 𝑖 or 𝑗 

means that the LU or LC type is 𝑖 or 𝑗 at time 𝑛 at a location. 𝑋𝑛′𝑠 are rarely independent in 

LUCC context since the current LU or LC at least depends on the previous LU or LC at a 

location. Moreover, let 𝑃𝑖𝑗 denote a transition probability, a fixed probability of going from a 

current state with status 𝑖  to a future state with status 𝑗 . 𝑃𝑖𝑗  is called a one-step transition 

probability when 𝑋𝑛 = 𝑖 and 𝑋𝑛+1 = 𝑗, which means 𝑃𝑖𝑗 is the probability of going from state 𝑛 

with status 𝑖 to the next state 𝑛 + 1 with status 𝑗. The mathematical expression of 𝑃𝑖𝑗 is shown in 

Equation (1): 

                                𝑃𝑖𝑗 = 𝑃{𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0}                      (1) 

for all statuses 𝑖0, … , 𝑖𝑛−1, 𝑖 , 𝑗 and 𝑛 ≥ 0. Equation (1) is read as the conditional probability of 

status 𝑗 at time 𝑛 + 1 given all past states. However, the probability of 𝑋𝑛+1 given all past states 

only depends on the status of 𝑋𝑛 and the probability of  𝑋𝑛 = 𝑖 is conditional on its previous 

states back to the initial status 𝑖0 at the initial time point. Furthermore, 𝑃𝑖𝑗  has the following 

properties: 1) 𝑃𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 ≥ 0 since it is a probability and cannot be negative and 2) ∑ 𝑃𝑖𝑗 =∞
𝑗=0

1 , 𝑖 = 0, 1, … since the probabilities of all events occur sum to one. The collection of all 𝑃𝑖𝑗′𝑠, 

the transitioning probabilities between every two states, can be written in a matrix form in 

Equation (2): 

                                                                 𝑷 = ‖
‖

𝑃00 𝑃01    𝑃02      …
𝑃10 𝑃11    𝑃12      …

  ⋮          ⋮         ⋮          

𝑃𝑖0     𝑃𝑖1    𝑃𝑖2       …
  ⋮          ⋮         ⋮          

‖
‖.                                                                       (2) 
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An n-step transition probability should be used when an event takes 𝑛 steps to occur. Let 

𝑃𝑖𝑗
𝑛 denote the n-step transition probability of changing from status i to status j via a period with n 

equal intervals, which can be expressed mathematically as 𝑃𝑖𝑗
(𝑛)

= 𝑃{𝑋𝑛+𝑘 = 𝑗 | 𝑋𝑘 = 𝑖} where 

𝑛, 𝑘 ≥ 0  and 𝑖, 𝑗 ≥ 0 . The calculation of 𝑃𝑖𝑗
(𝑛)

 is done by (𝑃𝑖𝑗)𝑛  (i.e., 𝑃𝑖𝑗  to the nth power). 

Similarly, 𝑷(𝑛) is used to denote the n-step transition probability matrix.  

In addition to one-step and n-step transition probabilities, 𝑃𝑖𝑗
(𝑛+𝑚)

is used to represent the 

transitioning probability from status 𝑖 to status 𝑗 via state 𝑠, where 𝑛 is the number of steps taken 

from state 𝑖  to 𝑠 , and 𝑚  is the number of steps taken from state 𝑠  to 𝑗 , and is expressed 

mathematically in Equation (3): 

                                                   𝑃𝑖𝑗
(𝑛+𝑚)

= ∑ 𝑃𝑖𝑠
(𝑛)∞

𝑠=0 𝑃𝑠𝑗
(𝑚)

          ∀𝑛, 𝑚 ≥ 0 𝑎𝑛𝑑 ∀𝑖, 𝑗                                     (3)           

The transition probability matrix containing all 𝑃𝑖𝑗
(𝑛+𝑚)

′𝑠 is denoted by 𝑷(𝑛+𝑚). The following 

relationship can be derived: 𝑃𝑖𝑗
(𝑛+𝑚) = 𝑃𝑖𝑠

(𝑛) ∙ 𝑃𝑠𝑗
(𝑚) . Moreover, time intervals between any 

two time steps in 𝑛 and 𝑚 steps are assumed to be equal.  

Knowing the background of transition probabilities is important since LUCC studies with 

different availability of data require different transition probabilities to conduct MC. When a MC 

is used to model LUCC between two dates, which is the simplest case of DTMC that only 

contains a single time interval between the two dates, a one-step transition probability should be 

used. The n-step transition probability is used when there is a need to model LUCC over 𝑛 equal-

length time points. Moreover, 𝑃𝑖𝑗
𝑛+𝑚 is suitable for studying LUCC from one LU or LC type to 

another via a transient LU or LC when time intervals between all 𝑛 + 𝑚 steps are all in the same 

length.  

Furthermore, a transition probability can reach a steady state as time 𝑡 goes on, which is 

called a steady state probability. Mathematically, this process can be expressed as lim
𝑡→∞

𝑃𝑡 = 𝑃, 

which means 𝑃, the steady state probability matrix, will become steady as time goes to infinity. 

In fact, the duration that the process takes to become steady can be calculated. Once the steady 

state has reached, the event will stop changing. A transition probability matrix is a square matrix 

in which its number of rows or columns should equal the number of elements in the initial state 
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vector that contains possibilities for all events at the initial time point. For example, if an initial 

vector contains transition probabilities for three LUs, then the transition probability matrix 

should have a dimension of three by three. The steady states of the three LU types can be 

determined by multiplying the initial state vector with the steady state probability matrix. This 

feature of MC is important when the goal of a study is 1) to determine the steady LU or LC for 

given locations, 2) to verify the steady LU or LC based on theory, and 3) to investigate the 

duration to steady states.  

1.2.2 Logistic Regression 

Logistic Regression (LR) is a statistical modelling approach that is used to model categorical 

dependent variables. There are several types of LR: 1) simple LR that regresses binary responses 

on a single independent variable, 2) multiple LR that regresses binary responses on a set of 

independent variables, 3) ordinal LR that requires ordinal responses and 4) multinomial LR that 

is able to model a dependent variable with more than two categories. Among the statistical 

approaches found in the literature, LR is a common approach used in LUCC modelling (Brown 

et al., 2012). In addition to typical LUCC modelling, it has applied to achieve other interests such 

as modelling of urban development (Landis, 1994; Landis and Zhang, 1998a; 1998b) and 

modelling of deforestation (Chomitz and Gray 1996; Mertens and Lambin, 1997).  

1.2.2.1 Method 

LR has gained popularity in modelling LUCC due to the categorical nature of LU and LC data 

(Muller and Zeller, 2002). Among all types of LR, multiple LR has been used most often since 

there is typically more than one driver affecting LUCC. Therefore, multiple LR is the focus of 

this study among all other models in the family of LR. Before going into details of LR, a brief 

introduction is given to the Exponential family and generalized linear models (GLMs) in order to 

better understand LR. Exponential family is a class of probability distributions (e.g., Normal 

distribution, Exponential distribution, and Binomial distribution; Evans et al., 2000) that can be 

formulated in a general format by re-arranging and transforming parameters (Andersen, 1970). 

GLMs are a group of models (e.g., linear model and Poisson regression) in which their response 

variables follow probability distributions from the Exponential family. A link function is 

required to connect the mean of response variables with a linear combination of covariates in 

GLMs since the relationship between responses and covariates are not always linear. In summary, 
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LR resides within the broader category of GLMs since its response variables follow a Binomial 

distribution that belongs to the Exponential family, and require a link function to express the 

binary feature of responses. 

Moreover, a link function connects a linear predictor, denoted by 𝜂, and the mean of the 

response variable, denoted by 𝜇, through the equation 𝜂 = 𝑔(𝜇) = 𝑿𝜷, where 𝑔 is a function of 

𝜇 , 𝑿  is a set of covariates, and 𝜷  is the corresponding coefficients of 𝑿 . Examples of link 

functions are identity link (linear regression) and log link (Poisson regression). To understand the 

use of link function, it is useful to introduce some general notation. Let 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑛) be 

the vector form of response variables, 𝑦𝑖  be the measurement of observation 𝑖, where 𝑖 is the 

index of 𝑛  observations (i.e., 𝑖 = 1, 2, … , 𝑛 ), and 𝐗 = ( 𝒙1, 𝒙2, … , 𝒙𝑛)′  be the design matrix 

formed by covariates. Each 𝒙𝑖 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) , an element of 𝐗 , contains a set of 𝑝 

covariates for observation 𝑖 , where 𝑖 = 1, 2, … 𝑛. To be more explicit, 𝒙𝑖𝑗 , an element of 𝒙𝑖 , 

denotes the measurement of covariate 𝑗 for individual 𝑖 where 𝑗 is the index of 𝑝 covariates (i.e., 

𝑗 = 1, 2, … , 𝑝) . Moreover, 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝)  is a vector of coefficients corresponding to 𝑝 

covariates and 𝝐 = (𝜀1, 𝜀2, … , 𝜀𝑛) is a vector of errors corresponding to 𝑛 regression models. 

The formulation of linear regressions is reviewed to better understand the mathematical 

background of LR. In a linear regression, the linear relationship among 𝒀, 𝑿, 𝜷, and 𝝐 is 𝒀 =

𝑿𝜷 + 𝝐. The structure of this relationship is expressed in Equation (4): 

                                        [

𝑦1

𝑦2

⋮
𝑦𝑛

] =  [

1 𝑥11

1 𝑥21
   

𝑥12 ⋯ 𝑥1𝑝

𝑥22 ⋯ 𝑥2𝑝
  

⋮ ⋮
1 𝑥𝑛1

   
⋮ ⋱ ⋮

𝑥𝑛2 ⋯ 𝑥𝑛𝑝
 
] ∙ [

𝛽0

𝛽1

⋮
𝛽𝑝

] + [

𝜀1

𝜀2

⋮
𝜀𝑛

].                                 (4) 

𝒀 is assumed to follow a Normal distribution with a mean equals to 𝑿𝜷 and a variance equals to 

𝝈2. The 𝝐 follows a Normal distribution with a mean of 0 and a variance of 𝝈2. Moreover, the 

identity link used in linear regression is expressed as 𝜂 = 𝑔(𝜇) = 𝜇. 

LR replaces the identity link used in linear regression by a logit link that is written 

generally as 𝜂 = 𝑙𝑜𝑔𝑖𝑡(𝜇) = 𝑙𝑜 𝑔 (
𝜇

1−𝜇
). Binary response variable in a multiple LR follows a 

Bernoulli distribution with π(𝒙𝑖) that indicates the probability of an observation 𝑖 with 𝒙𝑖. An 
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individual logit link function for observation 𝑖  is provided in Equation (5) to give a better 

visualization of the link function in a multiple LR. 

                               𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥𝑖)) = 𝑙𝑜𝑔[
𝜋(𝑥𝑖)

1−𝜋(𝑥𝑖)
] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽1𝑥𝑖2 + ⋯ + 𝛽1𝑥𝑖𝑝.                 (5) 

Hence, the logit link function used to represent all observations in a multiple LR can be 

expressed as 𝜂 = 𝑙𝑜𝑔𝑖𝑡(𝜋(𝑿)). The linear predictor in LR has the property of being continuous 

and ranging from −∞ to +∞ as the Normal response variables in a linear regression. The inverse 

of the logit link function is 𝜋(𝐗) =
𝑒  𝑿𝛽

1+𝑒𝑿𝛽, which can also be expressed as 𝐸(𝒀|𝑿) that is read as 

the expectation of 𝒀 given 𝐗 (i.e., the mean of 𝒀 given 𝐗). This feature can be used to calculate 

the mean parameter of LR when values of all covariates and estimated coefficients are given and 

can be used to quantify the amount of change in the response variable due to a unit change in one 

of the covariates. 

Equation (5) does not incorporate the LR error term (𝝐) that has a distribution that differs 

from the Normal distribution of 𝝐 in a linear regression. The individual error term equals to 1 −

𝜋(𝒙𝒊) when 𝑦𝑖 = 1 (i.e., the occurrence of event 𝑦𝑖) with a probability of 𝜋(𝒙𝒊) and equals to  

𝜋(𝒙𝒊) when 𝑦𝑖 = 0 (i.e., the absence of event𝑦𝑖) with a probability of 1 − 𝜋(𝒙𝒊). In summary, 𝜀𝑖 

follows 𝑁(0, 𝜋(𝒙𝒊)[1 − 𝜋(𝒙𝒊)]) in LR. Therefore, 𝒀, 𝑿 , 𝜷 and 𝝐  have the relationship of 𝒀 =

𝑒  𝑿𝛽

1+𝑒𝑿𝛽 + 𝝐.  

In terms of modelling LUCC with LR, 𝒀 is the set of binary variables (0 or 1) that 

indicate the status of LUCC (unchanged or changed) at a location. 𝑿  is the set of LUCC 

predictors and 𝜷  is the set of estimated coefficients corresponding to 𝑿 . Moreover, 𝜋(𝒙𝒊) 

represents the probability of a LUCC occurring given a set of LUCC predictors at a location. 

One approach to interpreting the result of a multiple LR is to use the odds ratio (OR). The OR is 

a measurement of the likelihood of an outcome in the presence of the effects of some covariates 

compared to the outcome occurring in absence of the effects of the same covariates. A simple LR 

is used to illustrate the use of the OR. Let the single covariate 𝑥 in the simple LR be a binary 

variable with 𝑥 = 1 meaning a presence of some characteristic and 𝑥 = 0 meaning an absence of 

the characteristic. Then, OR can be expressed mathematically as  
𝜋(𝑥=1)/[1−𝜋(𝑥=1)]

𝜋(𝑥=0)/[1−𝜋(𝑥=0)]
= 𝑒𝛽1 and is 



9 
 

interpreted as the likelihood of an event with presence of 𝑥 against the absence of 𝑥, where 𝛽1 is 

the coefficient of 𝑥. In some cases, the logarithmic form of OR is preferred, which is referred to 

as the log-odds ratio (LOR). The LOR of the simple LR (i.e., log(𝑒𝛽1))  is 𝛽1, which infers to the 

direct impact on the event caused by different levels of 𝑥.  

For a multiple LR, it is very often that both continuous and categorical covariates exist at 

the same time. In general, when 𝑥  is continuous, the OR equals an exponential of the unit 

difference of 𝑥 and is interpreted as the likelihood of an event with a unit increase or decrease of 

𝑥 . When 𝑥  is categorical, the OR equals an exponential of the level difference of 𝑥  and is 

interpreted as the likelihood of an event with 𝑥 being at a specific level. When both continuous 

and categorical variables present in a multiple LR, the interpretation of OR needs to account for 

both the differences in measurements of continuous variables and the differences in levels of 

categorical variables. Dummy variables or indicator variables are used to account for levels of 

categorical variables such as gender and treatment groups. In general, if a categorical variable 

contains 𝐾 levels, 𝐾 − 1 dummy variables are needed to replace the function of the categorical 

variable in the model. A level among all 𝐾 levels is used as the base case and can be set by user’s 

preference and the rest of 𝐾 − 1 levels are represented by 𝐾 − 1 dummy variables to indicate the 

existence of the corresponding 𝐾 − 1 levels of the categorical variable. The way a continuous 

variable is used is not affected by categorical variables but the interpretation of it may need to 

account for the effects of categorical variables at specific levels. Variables in GLMs can be 

selected by a forward method, a backward method or a step-wise method based on Akaike 

Information Criterion (AIC; Bozdogan, 1987). 

1.2.3 Generalized Additive Models  

Generalized additive models (GAMs) extend GLMs by using a series of smoothing splines to 

represent non-linear relationships between the expected mean of responses and the independent 

variables (Hastie and Tibshirani, 1990). Predictors in GAMs can have unique and non-linear 

impacts on the response variable individually, in which an individual non-linear impact of a 

predictor does not need to follow any probability distributions. GAMs have been used in LU 

science since drivers of LU change are usually non-linear (Brown, 1994). This advantage of 

GAMs over GLMs ensures that more realistic situations can be modeled. However, GAMs are 

used less frequently because they are more difficult to implement and interpret. 
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1.2.3.1 Method 

A GAM with 𝑘𝑡ℎ-order smoothing splines/functions is referred to as a GAM that uses 𝑘𝑡ℎ-order 

piecewise polynomials to represent the relationship between 𝒀 and 𝑿. A smoothing spline has a 

continuous property on itself and on the derivatives of all its 𝑘 − 1  degree of polynomial 

functions. A commonly used spline is the cubic spline (𝑘 = 3).  

The smoothing parameter (λ) controls the degree of smoothness of a smoothing spline 

and determines the complexity of a GAM. In general, a large λ  increases the degree of 

smoothness, lowers the level of complexity of the model and thus can underestimate the real 

situation; a small λ introduces more variability into the smoothing spline while raising the level 

of complexity of the model and can cause overfitting.  

A GAM can be viewed as a parametric approach when smoothing functions are replaced 

by parametric variable transformations and parametric functions (Hastie and Tibshirani, 1990). 

Parametric variable transformations can be done through some functions such as logarithmic 

function, square-root function, inverse function and polynomials. The set of transformed 

predictors can also be used to construct non-parametric spline functions. A GAM with smoothing 

functions is usually seen as non-parametric, given the non-parametric nature of smoothing 

functions but a GAM can contain a mixture of parametric and non-parametric terms.  

Since GAM is an extended version of GLM, the general representation of the linear 

relationship between the expected mean of responses given a set of predictors with some 

undefined smoothing functions is very similar to that of a GLM and is shown as follows:  

                   𝐸(𝒀|𝑋1, 𝑋2, … , 𝑋𝑝) = 𝛼 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯ + 𝑓𝑝(𝑋𝑝) =  𝛼 + ∑ 𝑓𝑗(𝑋𝑗)𝑝
𝑗=1         (6) 

where 𝒀 is response variable, 𝑋1, 𝑋2, … , 𝑋𝑝 are predictors, and 𝑗 is the index for predictors and 

𝑗 = 1, 2, … , 𝑝. The 𝑓𝑗 where 𝑗 = 1, 2, … , 𝑝 in Equation (6) represents an unspecified smoothing 

function of predictor 𝑋𝑗; the parameter 𝛼 is similar to the intercept term, 𝛽0, in a linear regression. 

Without future restrictions on the model, 𝛼 is unidentifiable since it can change while smoothing 

functions change; thus 𝛼  is not unique. One way to provide an initial guess of 𝛼  is to set 

∑ 𝑓𝑗(𝑋𝑖𝑗)𝑁
𝑖=1 = 0 ∀𝑗 where 𝑁 is the total number of observations. This returns 𝛼 =

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 = 𝑦̅, 

where 𝑦𝑖 represents the measurement of observation 𝑖 and 𝑦̅ represents the mean of 𝑦𝑖′𝑠.  
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Parametric terms in GAMs are estimated the same way as they are estimated in GLMs 

with defined link functions. Smoothing functions can be estimated using the back-fitting 

algorithm. The procedure of the back-fitting algorithm was introduced along with the idea of 

GAMs by Leo Breiman and Jerome Friedman in 1985. The following steps of the back-fitting 

algorithm were retrieved from Hastie and Tibshirani (1990). They used 𝑆  to represent an 

arbitrary scatterplot smoother. The steps are: 

1. Initialize: 𝛼 = 𝑎𝑣𝑒(𝑦𝑖), 𝑓𝑗 = 0, 𝑗 = 1, … , 𝑝  

2. Cycle: 𝑗 = 1, 2, … , 𝑝, … , 1, 2, … , 𝑝, … 

           𝑓𝑗 ← 𝑆𝑗(𝒚 − 𝛼 − ∑ 𝒇𝑘  | 𝑥𝑗)𝑘≠𝑗  

3. Continue step 2 until the individual functions do not change.  

The second step in above process means that a smoothing function 𝑓𝑗  is fit by regressing the 

partial residuals of 𝑓𝑗( 𝑥𝑗) on  𝑥𝑗  while all other smoothing functions and predictors are fixed. 

The fitting of a smoothing function stops when the function becomes stable, and every 

unspecified smoothing function has to go through this process.  

The way of selecting a link function for GLMs is extended to GAMs. Due to the nature of 

LUCC data that is used as response variables in GAM, a logit link should be selected, which 

specifies the GAM to be an additive logistic regression (ALR). Therefore, a review was done for 

the fitting of smoothing functions in an ALR using the back-fitting algorithm. Using the 

notations of 𝒀 as a binary response variable and 𝑿 as the set of predictors, the general form of the 

linear predictor of an ALR is expressed in Equation (7): 

                                    𝑔(𝑋) = 𝑙𝑜𝑔 [
𝐸(𝑌 = 1|𝑋)

1−𝐸(𝑌 = 1|𝑋)
] = 𝛼 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯ + 𝑓𝑝(𝑋𝑝).                  (7) 

For ALR, the Newton-Raphson procedure is used along with the back-fitting algorithm to 

estimate unspecified smoothing functions. The combined algorithm was retrieved from Hastie et 

al. (2009) and shows as following: 

1. Initialize: 𝛼̂ = log[
𝑦̅

1−𝑦̅
] , 𝑓𝑗̂ = 0, 𝑤ℎ𝑒𝑟𝑒 𝑦̅ =

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 ∀𝑖, 𝑗  

2. Define: 𝜂𝑖̂ = 𝛼̂ + ∑ 𝑓𝑗̂(𝑥𝑖𝑗)𝑗  and 𝑝𝑖̂ =
1

1+exp (−𝜂𝑖̂)
 

Iterate: (a) Construct the working target variable 𝑧𝑖 = 𝜂𝑖̂ +
(𝑦𝑖−𝑝𝑖̂)

𝑝𝑖̂(1−𝑝𝑖̂)
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           (b) Construct weights 𝑤𝑖 = 𝑝𝑖̂(1 − 𝑝𝑖̂) 

            (c) Fit an additive model to the targets 𝑧𝑖 with weights 𝑤𝑖, using a weighted  

                  back-fitting algorithm. This gives new estimates 𝛼̂, 𝑓𝑗̂ ∀𝑗  

3. Continue Step 2 until the individual functions do not change or change less than a 

pre-specified threshold. 

In general, the value of 𝛼 can be determined once all smoothing functions are stabilized. 

In a GAM, 𝒀, 𝑿, 𝜷 (for linear LUCC predictor only) and 𝜋(𝒙𝒊) (refers to the probability of 

LUCC given a set of LUCC predictors at a location) are identical to those in a GLM. GAMs and 

GLMs also use the same variable selection methods (e.g., forward selection, backward selection 

and stepwise selection). However, the interpretation of smoothing functions of predictors in 

GAMs requires more attention since their relationship with the response variable cannot simply 

be explained using linearity. 

1.2.4 Survival Analysis 

Survival analysis (SA) methods are typically used to analyze longitudinal data through a set of 

statistical techniques and use both the time length of observations stayed in the experiment and 

an indicator variable showing the occurrence of an event of interest for all observations as the 

response variables. Potential factors that influence the occurrence of an event are represented as 

predictors, which are used to calculate the success/failure rate of the event occurring. 

SA models are useful to detect effects of spatial and temporal predictors of LUCC over 

time (e.g., An et al., 2011). The Cox proportional hazard (PH) model is used to calculate a 

hazard ratio that represents the risk of an event occurring at a given time. Using a PH model, 

Irwin and Bockstael (2002) found an evidence of a negative relationship between the share of 

development within neighborhoods and the hazard of development in residential subdivisions in 

exurban Maryland, US. SA may have the potential to accurately model LUCC because it can 

handle time-related variables (An and Brown, 2008) but they are still not widely used in the 

study of LUCC modelling.  

1.2.4.1 Method 

SA in LUCC modelling is based on the concept of establishing the survival time of a LU or LC 

at a specific location given a set of predictors that may influence the occurrence of LUCC. The 
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survival time of a parcel can be characterized using a survival function, a density function, or a 

hazard function. These functions are mathematically equivalent, which means that one can be 

derived given any of the other two. 

Let 𝑇 be the survival time，the time that an event of interest (i.e., an occurrence of a 

particular type of LU or LC change at a parcel) occurs, where 𝑇 ≥ 0. The survival function, also 

known as cumulative survival rate, determines the probability of an object surviving beyond time 

𝑡. This function is usually denoted by 𝑆(𝑡) and can be expressed in terms of probability as 

           𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 𝑃(𝑎 𝑝𝑎𝑟𝑐𝑒𝑙′𝑠 𝐿𝑈 𝑜𝑟𝐿𝐶 𝑡𝑦𝑝𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑢𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑙𝑜𝑛𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡) ,    (8) 

where 𝑃(∙) means the probability of some event. Therefore, 𝑆(𝑡) calculates the probability of a 

parcel remaining its initial LU or LC beyond time 𝑡. The probability that an event occurs at or 

before time 𝑡 is defined by a cumulative distribution function 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡). Hence, 𝐹(𝑡) can 

be used to calculate the probability of a parcel having a LUCC before or at time 𝑡. Note that, 

𝑆(𝑡) is equivalent to 1 − 𝐹(𝑡). Moreover, 𝑆(𝑡) is a non-increasing function of time 𝑡 and has two 

properties: 1) 𝑆(0) = 1 and 2) 𝑆(∞) = 0. Survival curve, a graphic presentation of 𝑆(𝑡), shows 

the relationship between survival rate/probability and time. In LUCC context, 𝑆(𝑡)  can be 

calculated as 

                              𝑆(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝐿𝑈/𝐿𝐶 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑 𝑢𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑏𝑒𝑦𝑜𝑛𝑑 𝑡𝑖𝑚𝑒 𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠
.                         (9) 

The survival time 𝑇 is like any other continuous random variable that has a density function, 

which can be expressed as 

                             𝑓(𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑎 𝑝𝑎𝑟𝑐𝑒𝑙 𝑓𝑎𝑖𝑙𝑠 𝑡𝑜 𝑟𝑒𝑚𝑎𝑖𝑛 𝐿𝑈/𝐿𝐶 𝑢𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡,∆𝑡)

∆𝑡
.                       (10) 

𝑓(𝑡) also has two properties: 1) 𝑓(𝑡) ≥ 0 ∀𝑡 ≥ 0 and 𝑓(𝑡) = 0 𝑓𝑜𝑟 𝑡 < 0, and 2) ∫ 𝑓(𝑡)𝑑𝑡 = 1. 

The plot of 𝑓(𝑡) is called density curve that shows the relationship between the frequency of 

failure and time. 𝑓(𝑡) can be calculated as 

                            𝑓(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑚𝑎𝑖𝑛 𝐿𝑈/𝐿𝐶 𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡,∆𝑡) 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝑠 ×∆𝑡
 .                (11) 

𝑓(𝑡) can also be derived from 𝑆(𝑡) and 𝐹(𝑡) as following: 
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                                                        𝑓(𝑡) = −
𝑑𝑆(𝑥)

𝑑𝑥
= −𝑆′(𝑡) =

𝑑𝐹(𝑥)

𝑑𝑥
= 𝐹′(𝑡).                                                (12) 

 Hazard function, also known as hazard rate, gives the conditional failure rate and is 

usually denoted by ℎ(𝑡). It can be considered as a rate of failure per unit of time. Hazard rate is 

not a probability but a limit of a probability (Equation (13)). 

                                    ℎ(𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑃(𝑎 𝑝𝑎𝑟𝑐𝑒𝑙 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝐿𝑈/𝐿𝐶 𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑓𝑎𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡,∆𝑡)

∆𝑡
.                       (13) 

In addition, ℎ(𝑡) has the following relationship with 𝑓(𝑡), 𝐹(𝑡), and 𝑆(𝑡): ℎ(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
=

𝑓(𝑡)

𝑆(𝑡)
, 

which can be calculated as 

                            ℎ(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝐿𝑈/𝐿𝐶 𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑣𝑎𝑙 (𝑡,∆𝑡) 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝐿𝑈/𝐿𝐶 𝑢𝑛𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
.                    (14) 

There is no constraint on the shape of ℎ(𝑡) curve. A cumulative hazard function is defined as 

𝐻(𝑡) = ∫ ℎ(𝑥)𝑑𝑥
𝑡

0
 and has the following relationship with 𝑆(𝑡): 𝐻(𝑡) = − ln 𝑆(𝑡). Equations (9), 

(11) and (14) are not applicable to incomplete data. Non-parametric methods and different 

likelihood functions need to be used to estimate those statistics when incomplete data present.  

Similar to a linear model and a LR, the relationship between the responses (i.e., the 

hazard of an observation at time 𝑡) and predictors can be expressed in a linear format in Equation 

(15): 

                          𝑙𝑜𝑔 ℎ𝑖(𝑡) = 𝑙𝑜𝑔ℎ0(𝑡) + 𝛽1𝑥𝑖1(𝑡) + 𝛽1𝑥𝑖2(𝑡) + ⋯ + 𝛽1𝑥𝑖𝑝(𝑡),                         (15) 

where 𝑖 is the index of parcels and 𝑝 is the index of predictors. Predictors can be functions of 

time (i.e., time-varying). The baseline hazard, ℎ0(𝑡) , can also be a function of time but is 

constant for all observations (i.e., parcels) at time 𝑡. 

Traditional statistical models (e.g., linear regression and logistic regression) are 

insensitive to time variables but SA can handle both time-varying and time invariant variables 

occurred in the same model. In addition, skewness is a feature of survival data due to occurrence 

of censoring and truncation (Hougaard, 1999; Clark et al., 2003). Therefore, the Normal 

distribution is usually forgone in favor of other distributions such as Exponential, Weibull, and 

Gamma.  
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When only partial information about an observation is known, censoring occurs. Three 

types of censoring can occur in a LUCC study: right censoring (e.g., the LU type of a parcel is 

observed at the beginning of the study and remains unchanged at the end of the study), interval 

censoring (e.g., a LU change of a parcel is observed during the study but the exact time of the 

event occurred is unknown), and left censoring (e.g., a parcel that is enrolled in a study 

experienced a LU change prior to the commencement of the study and the time of the event is 

unknown). Truncation occurs when the failure time of an observation falls at a time that is 

outside of the study period and is usually caused by the design of a longitudinal study. There are 

two types of truncations: left and right. Left truncation often occurs with right censoring when 

age is the time scale of a study. For example, patients who have a certain disease and do not 

satisfy an age requirement for entering a study are not observed. Right truncation occurs when a 

patient is infected by some diseases but has not developed the disease in a study period. 

Therefore, the age and the development of a disease are considered the two milestones to 

determine a truncation in a longitudinal study. Transferring this idea to a LUCC study, left 

truncation may occur when a parcel has experienced a LUCC prior to the entry of the study but is 

not enrolled in the study due to its age. Right truncation may occur when a parcel is observed to 

have undergone a process of LUCC after the entry but has not completed the conversion before 

the end of the study. 

 In LUCC studies, censored observations will be treated differently in the likelihood 

function of a selected distribution, which is the same as in longitudinal studies. Moreover, left 

truncation is not a big issue since ages of parcels are usually not an interest of a study, which 

makes an occurrence of a LUCC considered the only milestone. If age is an interest, left 

truncation can be taken into account by using a nonparametric product-limit estimator with age 

being treated as a variable to estimate the distribution of truncated data (Cain et al., 2011). Right 

truncation in a LUCC study can be solved by classifying developing parcels to a new category 

such as under-development.  

1.3 Agent-based Models and Statistical Approaches 

Statistical methods are limited in their ability to account for complicated interactions among 

many factors including an explicit representation of decision-making process. To accommodate 

the limitations, agent-based models, which are designed to simulate process-based phenomenon, 
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can be merged with statistical methods to provide improved understanding and representation of 

LUCC.  

1.3.1 Agent-based Models  

Agent-based models (ABMs) are composed of agents, an environment, and a set of rules that 

regulate agents’ behavior. The agents in ABMs interact directly with their environment, with 

each other, or indirectly with each other through their environment. Agents represent real-world 

decision-making actors, which can be individuals, households, or organizations at all levels. In a 

decision-making process, an agent can interact and be influenced by other agents and its 

environment. In many cases, ABMs provide simple proofs of existence that demonstrate how 

one or more mechanisms taking place at a sub-system level can produce system-level outcomes 

(Waldrop, 1990). For example, using a simple ABM that simulates household movement within 

an urban area, Schelling (1969) demonstrated that society has the potential to be segregated 

based on a relative preference (e.g., languages and races) of individuals to be adjacent to other 

individuals who are similar to them. Alternatively, ABMs could be developed to incorporate 

large amounts of data, and simulate highly detailed and complicated processes (e.g., simulation 

of traffic network; Nguyen and Ho, 2016).  

Compared to traditional statistical methods, ABMs have the advantage of representing 

human decision-making, which may be influenced by interaction among social, economic and 

environment factors at different levels, about how a piece of land is used (Matthews et al., 2007) 

in the context of LUCC modelling. ABMs are also flexible in adding, removing, and exchanging 

the components in the model (e.g., changing rationales of agents and creating a new environment 

for agents to react) outside the simulation period, which adds strength to the wide application of 

ABMs. However, the ability of ABMs to represent the complexity found in human systems and 

human decision-making can be influenced by decentralized agents that face limited local 

information while acting in a parallel fashion (Huigen, 2003). 

On the other hand, as computer simulation models, ABMs face challenges associated 

with model validation. Compounding the challenges of validation is the availability of 

appropriate data. While quantitative techniques can be used to assess the validation (e.g., 

statistical measurements of linear similarity; Huigen, 2003) of model structure and outputs 

against real-world processes and observations, our ability to represent seemingly stochastic, 
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chaotic, and irrational human decisions is difficult and requires extensive amounts of data. Due 

in part to the challenges associated with representing human decision-making behaviour, most 

ABMs have been case based and applied at small spatial extents in LUCC studies. While some 

are attempting the application of ABMs across large spatial extents (e.g., Murry-Rust et al., 

2014), data limitations remain a predominant constraint. One solution could be to construct 

hybrid models of ABMs that incorporate statistical representations that 1) can act as agents to 

produce outcomes repeatedly in a relatively short time period, 2) can be validated, and 3) can be 

applied across large spatial extent.  

1.3.2 Hybrid Models of Statistical Approaches and Agent-based Models 

Statistical models can produce probabilities of LUCC relatively efficiently in terms of cost and 

time, and can be constructed to cover a large spatial extent with the support of remote sensing 

data. In contrast, obtaining agent characteristic data and defining practical rules that regulate 

agents behavior (how they interact with other agents and their environment) in ABMs can be a 

costly and labor intensive undertaking that typically involves the use of survey data which may 

not be feasible to scale up to large spatial extents. If there are insufficient data being collected 

using a sampling method, the validity of the model and the representativeness of the agents at a 

larger scale might be questioned. When empirical data about actor characteristics and decision-

making are not available or scarce, probabilities of LUCC can be used as substitutes for the 

decision-making process used by agents. In other words, statistical models can be situated within 

an agent-based framework and represent the individual decisions of agents driving LUCC 1) in 

lieu of behavioral data about the actors represented by the statistical models, 2) as a placeholder 

for more characteristic and behavioral data about real-world actors making LU decisions, and 3) 

to provide a mechanism, which one can get a representative model up running quickly, and can 

provide a range of insights and findings that can be extended when behavior data become 

available.  

1.5 Thesis Overview 

To contribute to current scientific efforts in LUCC modelling across large spatial extents, four 

statistical methods (MC, LR, GAM and SA) have been conducted and compared for their 

predicting powers of LUCC to fulfill the gap of a lack of formal comparison between their 

relative performances. These methods span a range in 1) frequency of use in existing research 
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(from frequent to rare) and 2) statistical approach (e.g., probabilistic versus time-series analysis). 

The result of this study can also help develop hybrid models that could underpin a provincial 

agent-based model. The presented research answers the following research questions: 

1) What is the overall accuracy of different types of statistical methods in representing LUCC? 

2) What is the distribution of accuracies for different types of statistical methods by LU type? 

In order to answer the research questions stated above, each of the four methods was used 

to model changes among pre-defined LU types. The prediction accuracy of each model was 

calculated and recorded by method type and LU change type.  

The structure of the remaining portion of the thesis is as following: Chapter 2 is 

structured as a manuscript that situates the research questions in the context of LUCC modelling 

literature and then describes the study area, data used, and results. The broader implications of 

the research are then discussed and conclusions are provided. Chapter 3 highlights the 

contribution of the presented research, discusses broader applications of these methods, and 

identifies future research directions that can be built based on the presented research. 
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Chapter 2 Comparisons of Statistical Models in Modelling Land-use Changes 

2.1 Introduction  

Land use (LU) describes the use/purpose of a piece of land, which is defined by human interests 

and can be altered by human activities. Land cover (LC) is the biophysical characteristic of a 

piece of land. Even though LU types appear in various patterns across different parts of the 

world, they generally tend to sacrifice the natural environment in exchange for providing for 

human needs (Foley et al., 2005). For example, LU practices such as clearing forest and 

grassland for farming cause changes in soil carbon storage (Bolin and Sukumar, 2000). 

Moreover, the change of LU can cause a change of LC, for instance, from deciduous to crops. 

More carbon is released into the atmosphere as the capacity of soil absorbing carbon reduces 

thus enhancing problems such as climate change. Other consequences of LU change are, but not 

limited to, a loss of biodiversity and impacts on ecosystem services (e.g., Foley et al., 2005; 

Pereira et al., 2012).  

Land-use and land-cover change (LUCC) models can help understand causes of LUCC 

through detecting drivers of LUCC. Drivers of LUCC come from various aspects, such as social, 

economic and biophysical, and can interact with other drivers to influence LUCC. Models can 

also help reveal patterns and impacts of LUCC, which provides evidence and support for LU 

policies and planning. LUCC models that incorporate different disciplines also imply the diverse 

influences that LUCC can produce.  

A variety of models have been developed and implemented to represent and improve our 

understanding of LUCC (e.g., FASOM by Adams et al., 1996; CLUE Model by Veldkamp and 

Fresco, 1996a). Among the methods used to model LUCC, empirical statistical models are often 

used to test hypotheses about the significance of potential drivers of LUCC, which can be seen as 

complementary to the development of process-based models (Veldkamp and Lambin, 2001). To 

date, many statistical models have been used to model LUCC, of which logistic regression and 

linear regression are the most frequent (Aspinall, 2004). The utility of statistical models is found 

in the ease of their implementation and application as well as their ability to provide a general 

representation of LUCC, given a limited amount of time, resources, and data. The trade-off in the 

use of statistical modelling approaches is their limited ability to represent the explicit processes 



20 
 

associated with human decision-making (e.g., farmers’ planting decision on agricultural lands) 

which can be complemented by process-based models such as agent-based models.   

Despite the utility and widespread use of statistical methods in LUCC modelling, there is 

a lack of review or assessment of the performance of more than two different statistical methods 

(or different combinations) with the same dataset at the same location in the field of LUCC 

modelling. As a step toward filling this gap, four statistical approaches (Markov chain, logistic 

regression, generalized additive models and survival analysis), which were selected based on 

popularity, difficulty of implementation and ability to account for different scenarios (e.g., 

availability of data and structure of data), were conducted to model LUCC in the Region of 

Waterloo. Their performance of predicting LUCC was quantified in terms of prediction accuracy. 

The study of modelling LUCC with these methods can answer the questions: what is the overall 

accuracy of different types of statistical methods in representing LUCC and what is the 

distribution of accuracies for different types of statistical methods by LU type?   

2.2 Methods 

2.2.1 Study Area  

The presented research is situated in the Region of Waterloo, which compresses 1369 km2 and is 

located in southern Ontario, Canada (Figure 1). The region is composed of three cities (Kitchener, 

Waterloo and Cambridge) and four townships (Wellesley, Woolwich, Wilmot and North 

Dumfries), with which exists a mixture of residential, commercial, agricultural, and other LU 

types. The Region of Waterloo has been experiencing above average population growth and 

subsequent LUCC due in part to the employment opportunities in high-tech research and 

development, low cost housing relative to Toronto, its location along the highway 401 (the 

busiest highway in North America; Maier, 2007), and close proximity to the City of Toronto (the 

5th largest North American financial centre; Yeandle, 2017).  
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(a) 

 

(b) 

Figure 1: (a) Land use map of the Region of Waterloo in 2010. (b) The location of the Region of 

Waterloo associated with Toronto and Higyway 401. [Notes: low-density residential (LDR), 

medium-density residential (MDR), high-density residential (HDR), commercial (COM), 

industrial (IND), institution (INS), transportation (TRA), protected area and recreation (REC), 

agriculture (AGR), water (WAT), under-development (UND); white areas within the boundary 

of the Region of Waterloo but beyond the colored LUs in (a) are areas without available data of 

ownership property parcels.] 
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Waterloo Region had the 7th largest population in Ontario and the 13th largest population 

in Canada according to the 2011 Census data (Region of Waterloo, 2011). The population of the 

region increased from 478,121 to 507,096 from 2006 to 2011, which was a 6.06 percent increase 

in population that exceeded the 5.7 percent provincial and the 5.9 percent national population 

growth rates recorded in 2011. Moreover, the total urban areas of the three cities together ranked 

as the 10th largest in Canada in 2011. The fast growth rate for the region has resulted in urban 

sprawl (Figure 2), which influences the types of LU and LC transitions occurring in the region. 

                    

 

                           

Figure 2: Suburban development in the Region of Waterloo, 1960 – 2000. Reprinted from 

Planning Our Future: Regional Growth Management Strategy (2003) (p. 2). 

According to the 2010 and 2015 LU data used in this study, which were classified by 

Smith (2017), 10,606 parcels have experienced LU changes (Figure 3), in which approximately 

67 percent of the parcels have converted to medium-density residential LU (51 percent) and 

commercial LU (16 percent). Other noticeable LU changes are LU change to transportation LU 

(9 percent), high-density residential LU (8 percent) and under-development LU (7 percent). The 

proportions of other LU changes are all less than 4 percent.  
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Figure 3: Land use change in the Region of Waterloo from 2010 to 2015. 

Moreover, within the study area, approximately 0.7 percent, 0.8 percent and 6 percent of 

protected areas and recreational parcels have been converted to residential LUs, commercial and 

industrial LUs, and transportation LU from 2010 to 2015, respectively. Agricultural parcels have 

lost about 1 percent due to expansion of residential, commercial, industrial, transportation and 

under-development LUs from 2010 to 2015. In addition, approximately 66 percent, 9 percent and 

4.7 percent of parcels classified as under-development LU in 2010 completed their transition to 

residential LUs, commercial LU and transportation LU by 2015, respectively. These statistics 

were obtained by comparing 2010 LU data and 2015 LU data that were used to construct 

statistical models in this study in the same region. 

In addition to the statistics mentioned above, historical statistics about agricultural LU 

changes show that the total number of farms decreased from 1,444 to 1,398 (4 percent) from 

2006 to 2011 (Region of Waterloo, 2011). The net loss of agricultural land from 2006 to 2011 

was around 5,000 acres. Despite the decline in the total number of farms and total acres of 
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farming land, the dominant LU type across the region remains in agricultural land, which 

accounts for 65 percent of total land area. Another characteristic of agricultural LU change 

between census years 2006 and 2011 is that the average size of farms had increased. The study 

area has not only experienced farm loss, expansion of residential LU but also a set of LU 

changes such as conversion from low-density residential LU to high-density residential LU and 

conversion from medium-density residential LU to commercial LU according to the data used in 

this study.  

2.2.2 Data  

LU raster data were generated for the years 2006, 2010 and 2015 for the Region of Waterloo by 

a member of the Modelling and Spatial Analysis Lab at the University of Waterloo (Smith, 2017). 

The original LU raster data consist of ten LUs and one LC: low-density residential (LDR), 

medium-density residential (MDR), high-density residential (HDR), commercial (COM), 

industrial (IND), institution (INS), transportation (TRA), protected area and recreation (REC), 

agriculture (AGR), water (WAT), under-development (UND), in which WAT is the only LC in 

the dataset. LC raster data were also generated for the same years for the Region of Waterloo by 

Smith (2017) and were used as LU change predictors. Even though the LU raster data contain 

one LC type, the name, LU data, is specifically referred to the data that contain ten LUs and one 

LC and all elements in the LU data are considered LUs including WAT in the following context 

in order to distinguish from the real LC data. In addition to the LU data and LC data, 2010 parcel 

data (Ownership property parcels) for the Region of Waterloo, which contain boundary of 

parcels, were acquired from Teranet. LU and LC data were extracted to parcel data based on 

parcel units. The LU of a parcel was determined by the majority of LU within the parcel 

boundary.  

LU change drivers were selected based on LU literatures and were categorized as 

geometric variables (i.e., parcel perimeter and area), site variables (i.e., slope and DEM), 

demographic variables (i.e., population density), distance variables (e.g., distance from a parcel 

to the nearest highway ramp) and spatial variables (Table 1). Geometric variables were 

calculated using ArcGIS. Demographic variables were acquired from the 2011 Census data at the 

Dissemination Areas (DAs) level (Canadian Census Analyzer, 2011). The Canadian Census is 

taken every five years and 2011 provided the closest year to 2010. Moreover, spatial variables 
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were created to account for some spatial autocorrelation among parcels (e.g., the proportion of 

commercial LU parcels around a target parcel). All these variables were treated as potential LU 

change drivers and were evaluated during model construction.  

In addition to the LU change predictors mentioned above, zoning is an important factor 

that can influence the types and locations of LUs in a municipality.  Zoning policy regulates LUs 

in defined zones (e.g., residential and commercial). In other words, a specific LU in a zone can 

be restricted by zoning policies; thus, a change of LU can be prohibited to occur in a particular 

zone (Maser et al., 1977). Zoning may vary across different municipalities and can change over 

time at a given location. Therefore, rules that regulate the change of a parcel’s LU may vary 

spatially and temporally. An exception of LU may occur in addition to the LUs permitted by the 

zoning (i.e., zoning variance; Cohen, 1994), which increases the difficulty of making predictions 

of LU change. Moreover, zoning regulations and LU plans are made at local levels (i.e., 

municipalities) and are not collated across broader spatial scales, which limits their use in models 

that can be applied across large spatial extents. Thus, when zoning information of an area is used 

as drivers in a statistical model to predict future LU changes, the model becomes non-

transferable, which means that the model is restricted to predict local LU changes and contribute 

to local LU planning. The goal of this thesis is to construct statistical models that can be applied 

widely across the world and can provide a general representation of LU change pattern. 

Therefore, the consideration of zoning effect to LU changes was excluded from this study. 

In general, LU modelling was conducted through analyzing the changes between 2010 

and 2015 LU types and all potential drivers. The detailed steps of variable creation and data 

processing are documented in Appendix A. The full list of variables used in model building can 

be found in Appendix C. In addition to variable creation, variable transformation was performed 

to unify the units of distance variables from meters to kilometers, units of population density 

variables from person/m2 to person/km2, units of parcel geometry variables from m2 to km2, and 

units of elevation from m2 to km2. The measurement transformations ensure the gradients of 

values of all predictors are on a similar scale. 
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Table 1: Name and source of original data. 

Name Source 

LU data (2006, 2010, 2015) 80cm resolution 

 

Smith, 2017 

 

LC data (2006, 2010) 80cm resolution 

 

Smith, 2017 

Ownership property parcels in 2010 Teranet Inc. 

 

Census Dissemination Areas Divisions  Statistics Canada,2011 

 

Population  Canadian Census Analyzer, 2011 

 

Ontario road network Ontario Ministry of Transportation 

 

Highway Access Point  Ontario Ministry of Transportation 

 

Rivers Ontario Ministry of Natural Resources 

 

Water Bodies Ontario Ministry of Natural Resources 

 

Wooded Areas Ontario Ministry of Natural Resources 

 

Digital Elevation Model (DEM) Ontario Ministry of Natural Resources 

 

Slope10m resolution Ontario Ministry of Natural Resources 

 

Note: All spatial datasets were projected to the NAD_1983_UTM_Zone_17N throughout the 

study. 

 

2.2.3 Analysis 

For LR, GAM and SA, parcels with the same LU types at 2015 were grouped together as one full 

dataset for each type of LU change. This indicates that parcels in a full datasets may have 

different LUs at 2010 but surely have the same LU at 2015. When 2010 LU type and 2015 LU 

type of a parcel are different, the parcel is considered experienced a LU change. Otherwise, it is 

considered unchanged. For instance, the full dataset for LDR LU change contains all parcels that 

have changed from anything to LDR from 2010 to 2015 and all parcels that have remained as 

LDR during the study period. Eleven full datasets were created corresponding to the eleven 

defined LUs in 2015. Binary response variables, Y, were created to indicate the status of a LU 

change for each parcel in each full dataset (i.e., 1=changed, 0=unchanged) and were attached to 

full datasets.  
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Based on full datasets, two more datasets were created for each of the eleven types of LU 

change. One is named the full and balanced (FB) dataset and another one is named the reduced 

and balanced (RB) dataset. In general, a balanced dataset refers to a dataset that contains the 

same amount of observations for all existing levels of a categorical independent variable (Batista 

et al., 2004). In this study, the word ‘balanced’ was used to describe the structure of dependent 

variable. The dependent variable in each of the FB datasets and RB datasets was constructed to 

contain an equal number of changed and unchanged parcels.  

The purpose of creating balanced 𝑌  is to use 0.5 as the threshold for grouping 

probabilities into two categories in the prediction phase. For LR, GAM, and SA, probabilities 

that are greater than or equal to 0.5 were classified as changed and otherwise classified as 

unchanged. While LR and GAM produce probabilities, SA produces a hazard function that can 

be converted to a survival function that determines the probability of an object surviving beyond 

a given point in time. Subtracting the survival probability from a value of one produces a death 

probability that was used in the same manner as the probabilities for LR and GAM.  

In FB datasets, the number of 𝑌 = 1 is equal to the total number of changed parcels. In 

RB datasets, the number of 𝑌 = 1 is fixed at 500; therefore, the total number of parcels is fixed 

to 1,000. The size of a RB dataset (i.e., 1000) is chosen to 1) reduce the potential of over-fitting, 

yet maintain enough data to construct a model with many predictors and 2) access the minimum 

number of samples required to yield similar or the same results as the FB. When the number of 𝑌 

that equals to 1 is less than 500 for one type of LU change, the FB dataset and the RB dataset for 

this LU change are the same. The size of FB datasets ranges from 10 to 10,816 points (Table 2). 

In our data, no parcel had changed to agricultural LU from 2010 to 2015. Moreover, only five 

and thirty-six parcels had changed from some LUs to institution and water, respectively. Thus, 

there are insufficient data for LR, GAM and SA to model agricultural, institutional, and water 

LU changes with many predictors.  

The format of all datasets (Figure 4) includes the binary response variable 𝑌 that indicates 

the status of LU change for each parcel and the LU change predictors 𝑋𝑖’𝑠, where i is the index 

of predictors and ranges from 1 to p where p>=1.  
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                Variable 

Parcel 

Y X1 X2 …… Xp 

1 Y1 X11 X12 …… X1p 

2 Y2 X21 X22 …… X2p 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

n Yn Xn1 Xn2 …… Xnp 

Figure 4: Format of datasets. 

Table 2: Sample sizes of full balanced (FB) and reduced balance (RB) datasets by land-use type. 

LU Change (To) FB RB 

LDR 870 870 

MDR 10816 1000 

HDR 1698 1000 

COM 3320 1000 

IND 530 530 

INS 10 10 

TRA 1892 1000 

REC 520 520 

AGR 500* 500* 

WAT 72 72 

UND 1484 1000 

* The samples of agricultural parcels are 

only for MC. 

The traditional hold-out method (e.g., Kohavi, 1995) was used to partition FB datasets 

and RB datasets into training and test datasets. A 10-fold cross validation (CV; e.g., Kohavi, 

1995) was applied to the training data to produce an averaged CV accuracy for each LU change 

type and an overall CV accuracy for each method and dataset (Figure 5). Spatial CV (Brenning, 

2012) with 10-fold was performed and compared with the conventional CV to reveal the effect 

of spatial autocorrelation in spatial data to MC, LR, GAM and SA in this study. Spatial 

autocorrelation is a common problem in LU modelling, which causes violation of independence 

among observations in many statistical techniques. With conventional CV, parcels that have been 
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randomly selected to form training data and test data may be neighbors and can cause over-

fitting of statistical models due to spatial autocorrelation. Spatial CV alleviates over-fitting by 

partitioning dataset using k-means clustering (Hartigan, 1975) based on parcels’ spatial 

coordinates. The notations of CCV and SCV are used to denote conventional CV and spatial CV 

in the rest of this thesis. Predictor coefficients were estimated, and only significant predictors 

with p-values less or equal to 0.1, which was chosen with an intention to expand the range of 

significant predictors, were retained in final LR, GAM and SA models. Final models were 

further adjusted since originally identified significant predictors can become insignificant when 

fitting a new model The FB and RB test data were then used to calculate the classification 

accuracy of the final LR, GAM, and SA models. 

 

Figure 5: Methodology for developing full balanced (FB) and reduced balance (RB) training and 

testing data, model selection, and land use (LU) and land cover (LC) classification accuracy 

assessment. 

For MC, the transition probability matrix, which contains the probabilities of changing 

from any LU to another, requires data that contain all types of LU changes. Therefore, the ten 

LU datasets (Table 2) are combined with 500 agriculture parcels to form the MC FB and RB 

dataset, of which 70 percent was randomly selected for training models with 10-fold CCV and 

10-fold SCV and the rest was used for testing final models.  
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The averaged CV accuracy (i.e., the average of ten accuracy values produced by fitting 

models with ten folds of data) for predicting LU change is the criterion used to compare the 

performance of methods since 1) the most direct future implication of these methods is to make 

prediction of future LU changes and 2) result from a first-order DTMC cannot be evaluated by 

other criteria (e.g., R2; Taylor, 1990). The overall CV accuracy of a method was calculated by 

averaging averaged CV accuracies for defined LU changes. Thus, methods that produce the 

highest overall CV accuracies and the combination of methods that produces the highest 

averaged final model accuracies by LU change type were determined.  Furthermore, the 

distribution of accuracy values for different types of statistical methods by LU change type was 

determined.  

2.2.4 Implementation of Statistical Approaches 

Each of the following subsections consists of a short description of the implementation of a 

statistical method used in LUCC modelling. Among many available software, R statistical 

software (R Core Team, 2017) was used to implement these methods due to its open source 

format and widespread document and use. For MC, LR, GAM and SA, the partition of subsets of 

data for 10-fold CCV and 10-fold SCV was done using creatFolds function from the caret 

package (Kuhn, 2018) and partition.kmeans function from the sperrorest package (Brenning, 

2012), respectively. The fitting of 10-fold CCV models and 10-fold SCV models were done 

manually for MC, LR and SA and wad one using train function from the caret package (Kuhn, 

2018) for GAM. Other fitting procedures are described in the following subsections for the 

implementation of MC, LR, GAM and SA.   

2.2.4.1 Markov Chain 

Markov Chain (MC) is a statistical method that incorporates stochasticity in the process of 

changes between states. Discrete time MC (DTMC) requires a countable set of states and events 

that are mutually exclusive and collectively exhaustive (Stokey and Zeckhauser, 1978). 

Moreover, uniform length is required between any two time points. In this research, a DTMC 

method was used to model LU changes occurred between 2010 and 2015 LU at a parcel level, 

which is considered a first-order DTMC that the status at a given time only depends on the status 

occurred at the nearest past state. 
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Using the current LU data (2015) and the past LU data (2010), a transition probability 

matrix that contains only one-step transition probabilities was calculated. The probability matrix 

was obtained by observing the frequencies of LU changes occurred between two years. To test 

the performance of MC, a random value between 0 and 1 was assigned to each parcel in the test 

set to represent the LU transition probability from 2010 to 2015. A roulette-wheel-selection 

approach (Lipowski and Lipowska, 2012) was used to determine the LU type a parcel will be 

converted to according to its starting state LU type and the transition probability matrix. The 

creation of the transition probability matrix was done in R using prop.table function which is 

applied to a contingency table of LU classes. The roulette-wheel-selection approach was created 

to suite this specific study in R.  

2.2.4.2 Logistic Regression 

Logistic regression (LR) is a type of statistical method used to model categorical variables and is 

a member of generalized linear models. Its response variable follows a binomial distribution and 

connects to the linear combination of all covariates though a logit link function.  LR can be used 

to simulate and predict categorical LUCC outcomes (Trexler and Travis, 1993). Multiple LR, 

which contains more than one independent variable, has often been used to model LC change 

(Muller and Zeller, 2002). Since the idea of modelling LC change with multiple LR is the same 

as modelling LU change, multiple LR was used in the presented research among all other models 

in the family of LR (e.g., ordinal LR and multinomial LR). 

When predicting parcels with unknown LU types, either 0 or 1 was assigned to each 

parcel based on the estimated probability and a threshold. If the LU change status at a location 

was determined to be 1, it means the model predicted the parcel converts from one LU type to a 

target LU type; otherwise, it means no change occurred.. 

2.2.4.3 Generalized Additive Model 

Generalized additive models (GAMs) extend generalized linear models (GLMs) by using a series 

of smoothing splines to express the non-linear relationship between the expected mean of 

responses and a set of predictors (Hastie and Tibshirani, 1990). Therefore, GAM has been 

implemented in LU science in addition to GLM (e.g., Brown, 1994). The advantage of GAM 

over GLM is that it has the ability to represent non-linear relationships, which ensures that more 
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realistic situations can be represented. The presented research used the additive logistic 

regression (ALR) model among all other GAMs. 

ALR was chosen to conduct the modelling because responses variables (i.e., statuses of 

LU changes) are binary. The fitting of CCV and SCV models was conducted using the train 

function that adopts the algorithm of GAM from the mgcv package (Wood, 2003, 2004, 2011 and 

2017; Wood et al., 2016).  The train function with gam from mgcv package fits predictors with 

default smoothing functions, the thin plate regression splines that are considered robust 

smoothers regardless of the dimension of basis functions, which cannot be modified. Similar to 

LR, a value of 0 or 1 was assigned to each parcel to determine the status of predicted LU change. 

2.2.4.4 Survival Analysis 

SA analysis (SA) is used mostly in health and clinical studies to predict the mortality rate or 

recovery rate (e.g., recovery rate from injury or diseases). SA can handle both time-varying and 

time invariant variables and can take into account incomplete data. SA models use both the 

duration of each observation in the experiment and an indicator variable showing the occurrence 

of the event of interest as response variables, and all other potential factors that influence the 

occurrence of the event as covariates to calculate the success/failure ratio of the event at the time.  

In the context of LUCC modelling, the event of interest is the change from one LU to 

another between two time points and the failure time of a parcel would be the time that a LU 

change occurs. The LU data were derived from remotely sensed images for years 2010 and 2015. 

In this sense, each parcel was observed twice in the five year time period. However, multiple 

measurements of LU for each parcel in the study period are required to determine the failure time. 

Therefore, a time variable was created by randomly generating integers in the range of 1 to 6 to 

represent the failure time of each parcel. The year is 2010 when time=1 and is 2015 when 

time=6. Other values of time represent years between 2010 and 2015 in an ascending order. The 

reason for generating discrete times instead of continuous times is to keep consistent for the unit 

of time (year) since the LU raster data created by Smith (2017) were generated from SWOOP 

data that are considered to represent the LU for a year.  

 The coxph function in the survival package (Therneau, 2015) in R was used to construct a 

Cox proportional hazards (PH) model (Cox, 1972), which is a type of SA technique. The Cox PH 

model was selected because the PH assumption assumes constant effects of covariates on 
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hazards over time, which is consistent with the assumptions of predictor effects in other models 

(i.e., LR and GAM). Since the coxph function in R can only handle right-censored data,  all time 

measurements are considered precise and only right-censored data (i.e., parcels have not 

experienced LUCC at the end of study) exist in this study.  

2.3 Results  

2.3.1 Conventional Cross Validation and Final Models 

Results from the 10-fold CCV by method demonstrated that the overall CCV accuracy was 

highest for GAM, followed by LR, SA, and MC for both the FB and RB training datasets (Table 

3). GAM achieved 85.17 percent and 82.39 percent overall accuracies for FB and RB training 

datasets, respectively. For FB training datasets, the overall accuracy of GAM is 4.2 percent, 4.26 

percent and 42.53 percent higher than the overall accuracies of LR, SA and MC, respectively. 

For RB training datasets, the overall accuracy of GAM is 2.15 percent, 2.8 percent and 35.03 

percent higher than the overall accuracies of LR, SA and MC, respectively. This infers that 

sample size positively influences the differences between overall accuracies of GAM and any 

one of MC, LR and SA.  

Excluding MC, the increase in overall CCV accuracy by method and averaged CCV 

accuracy by LU change due to use of the FB dataset over the RB dataset was at most 2.78 

percent (i.e., GAM FB and GAM RB) and 6.98 percent (i.e., GAM FB and GAM RB for HDR 

LU change) among LR, GAM, and SA, respectively, which implies that the size of sample 

dataset is not a critical factor that would influence the overall accuracy but surely has more 

impact on averaged CCV accuracy for LR, GAM and SA. In contrast, MC RB performed better 

than MC FB by approximately five percent in terms of overall accuracy. Moreover, averaged 

MC RB accuracy performed better than averaged MC FB accuracy for all LU changes except 

MDR and WAT, which may due to the mechanism of MC observing frequencies of changes 

based on given sample datasets. For example, the rise of RB accuracy over FB accuracy is the 

highest for INS LU change, which is approximately 52 percent. This large difference was caused 

by a relatively large decrease in sample sizes of other LU changes while keeping all parcels with 

INS LU change (i.e., five) in MC RB dataset. 

Given the close performance of LR, GAM, and SA, it is worth noting that the run time 

for computing 10-fold MC, LR, and SA results were less than 20 seconds (Appendix D-1). 
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However, performing the 10-fold CV for GAM took over eighty-five minutes for both FB and 

RB datasets due to the iteration in back-fitting of smoothing functions. 

GAM outperformed the other modelling approaches in overall accuracy but it did not 

achieve the highest average accuracy for LU changes of LDR and IND. Among the eight LU 

changes modeled by LR, GAM and SA, GAM performed best for six LU changes with FB 

datasets (MDR, HDR, COM, TRA, REC, UND) and five LU change with RB datasets (HDR, 

COM, TRA, REC, UND), and LR (IND). SA performed the best one type of LU change (LDR), 

LR performed the best for LU changes of LDR and MDR (RB) (Table 3). The MC approach 

performed best for the three LU types (INS, AGR, WAT) that were not modeled by the other 

methods and performed surprisingly well for AGR due to the observed low frequency of AGR 

LU change that reflects the reality in the data.  

Differences in averaged accuracies between methods were much greater than the 

differences between overall accuracies for some LU changes (e.g., GAM FB and MC FB for 

UND; GAM FB and LR FB for COM) and much lower for some other LU changes (e.g., LR FB 

and SA FB for TRA; GAM FB and LR FB for IND). Excluding MC, the differences in averaged 

accuracies across the other three models were lowest for FB TRA (0.08 percent)  and greatest for 

FB COM (13.16 percent). These results suggest that, model choice is critical to gaining an 

accurate representation of pattern for some LU change types. In addition, our results suggest that 

greatly increasing the sample size from RB to FB for LU changes of MDR, HDR, COM and 

UND has little effect on the within LU accuracy for LR, whereby the difference is less than 1.18 

percent for all LU types except transportation (3.53 percent). The difference is  around 7 percent 

or less for all LU types within GAM, and the difference is 3.54 percent or less within SA 

(Appendix D-2).  

The final LR, GAM, and SA models that derived from 10-fold CCV were models that 

produced the highest accuracy in the 10-fold CCV process for specific types of LU changes and 

showed the significance of some predictors. Each final model was evaluated against partitioned 

test datasets. Since MC does not have a specific form and does not contain any predictor 

variables, it was excluded from this comparison. 

 

 



35 
 

Table 3: The averaged and overall 10-fold CCV accuracy for FB and RB training datasets. 

                           Model      

 

LU Change (To) 

Averaged accuracy (%) 

MC LR GAM SA 

FB RB FB RB FB RB FB RB 

LDR 36.67 46.91 68.62 68.62 65.85 65.85 70.95 70.95 

MDR 66.41 28.02 89.62 88.44 93.98 87.00 89.56 89.18 

HDR 43.29 43.36 71.10 69.88 79.46 77.71 71.64 70.26 

COM 23.90 24.56 80.89 81.80 91.61 86.53 78.45 76.25 

IND 48.56 53.99 90.05 90.05 89.95 89.95 88.84 88.84 

INS 10.00 62.50 n/a n/a n/a n/a n/a n/a 

TRA 56.43 57.38 79.68 76.15 83.08 79.72 79.76 76.71 

REC 24.02 36.70 87.24 87.24 89.80 89.80 85.52 85.52 

AGR 93.45 96.05 n/a n/a n/a n/a n/a n/a 

WAT 57.45 47.45 n/a n/a n/a n/a n/a n/a 

UND 8.88 24.08 82.93 82.13 87.66 82.56 82.54 79.00 

Overall  42.64 47.36 80.97 80.24 85.17 82.39 80.91 79.59 

Note: FB means full and balanced and RB means reduced and balanced. For the definition and 

difference between FB and RB, please refer to section 2.4 Analysis. Bold values indicate highest 

accuracy by land-use and land-cover type. 

 

The ranking of overall final models’ accuracies by method with RB test datasets is the 

same as the ranking of the overall CCV accuracies by method with either FB or RB training 

datasets (i.e., GAM > LR > SA). The overall final models’ accuracies with FB test datasets are 

again slightly higher than the overall final models’ accuracies with RB test datasets. For FB test 

datasets, the overall accuracy of GAM is 4.37 percent and 4.11 percent higher than the overall 

accuracies of LR and SA, respectively. For RB test datasets, the overall accuracy of GAM is 2.41 

percent and 3.07 percent higher than the overall accuracies of LR and SA, respectively.   This 

implies that the advantage of GAM predicting overall LU changes with FB dataset over RB 

dataset is increased with final models.  

While the best GAM outperformed the best LR and SA models in overall accuracy, 

variation was observed among LU change types. Of the eight LU types tested, final GAM 



36 
 

performed best for seven LU changes (LDR, MDR (FB), HDR, COM, IND, TRA,  UND), final 

SA performed best for two LU changes (MDR (RB) and IND), and final LR performed best for 

one LU change (REC, Table 4). The differences in accuracies by LU change type between 

methods were much greater than the difference in overall accuracies between methods for some 

LU change types (e.g., GAM FB and LR FB for COM; GAM RB and LR RB for MDR) and 

smaller than for some others (GAM FB and SA FB for REC; GAM RB and SA RB for LDR).  

Table 4: The individual and overall accuracy for final models derived from 10-fold CCV with 

FB and RB test datasets. 

                         Method                 

 

LU Change (To) 

Accuracy (%) 

LR GAM SA 

FB RB FB RB FB RB 

LDR 67.05 67.05 70.11 70.11 69.73 69.73 

MDR 89.83 87.63 93.78 89.30 90.01 89.90 

HDR 69.22 67.33 78.24 76.67 69.35 68.67 

COM 78.82 83.67 92.15 90.17 80.32 82.33 

IND 91.19 91.19 91.82 91.82 91.82 91.82 

INS n/a n/a n/a n/a n/a n/a 

TRA 79.05 79.67 83.98 80.00 79.05 76.59 

REC 90.32 90.32 88.39 88.39 88.24 88.24 

AGR n/a n/a n/a n/a n/a n/a 

WAT n/a n/a n/a n/a n/a n/a 

UND 83.86 82.33 85.87 82.00 82.95 76.67 

Overall 81.17 81.15 85.54 83.56 81.43 80.49 

 

2.3.2 Spatial Cross Validation and Final Models 

The ranking of overall SCV accuracies of MC, LR, GAM and SA is similar to the ranking of 

overall CCV accuracies of these four methods. The overall accuracies of 10-fold SCV are 

highest for GAM, followed by SA, LR and MC for FB training dataset, and by LR, SA and MC 

for RB training datasets (Table 5). GAM achieved 79.03 percent and 79.58 percent overall SCV 

accuracies for FB and RB training datasets, respectively. The overall SCV accuracy of GAM is 

2.79 percent, 3.13 percent and 32.54 percent higher than the overall SCV accuracies of SA, LR 
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and MC for FB training datasets, and is 0.72 percent, 0.74 percent and 30.67 percent higher than 

the overall accuracies SCV of LR, SA and MC for RB training datasets. This infers that sample 

size positively influences the differences between overall SCV accuracies of GAM and any one 

of MC, LR and SA.  

The differences in overall SCV accuracies within methods are within 2 percent (0.01 

percent for MC, 0.55 percent for LR, 1.86 percent for GAM, and 0.19 percent for SA). Therefore, 

sample sizes of designed 10-fold SCV datasets for different types of LU changes are not a 

critical factor that influenced the difference in overall SCV accuracies within methods. Moreover, 

the differences in overall SCV accuracies within methods are all lower than the differences in 

overall CCV accuracies within methods (i.e., 4.72 percent for MC, 0.73 percent for LR, 2.78 

percent for GAM, and 1.32 percent for SA), which infers that 10-fold SCV reduced these 

differences.  

In general, GAM was the best for modelling six LU changes with FB training dataset 

(MDR, HDR, COM, IND) and three LU changes with RB training dataset (HDR, IND, TRA);  

LR performed best for LU changes of COM and UND with RB training dataset, and REC with 

training dataset; SA performed best for LU changes of LDR regardless of sample sizes, and 

MDR with RB training dataset. MC was the best for modelling LU changes of INS, AGR and 

WAT. Differences in averaged accuracies between methods were much greater than the 

differences between overall accuracies for some LU changes (e.g., GAM FB and LR FB for 

COM; GAM RB and SA RB for HDR) and much lower for some other LU changes (e.g., GAM 

FB and SA FB for REC; GAM RB and LR RB for UND). This agrees with the conclusion made 

in Section 2.3.1 that model choice is critical to gaining an accurate representation of pattern for 

some LU change types. 

For final models derived from SCV, GAM performed the best overall as well as for 

modelling LU changes of MDR, HDR, COM, TRA and UND (FB) (Table 6). LR produced the 

second highest overall final model accuracies and best models LU changes of LDR, IND, REC, 

and UND (RB). SA produced the same accuracy value, which is the second highest, for UND 

(RB) as LR did. The overall final models’ accuracies with FB test datasets are again slightly 

higher than the overall final models’ accuracies with RB test datasets in most cases. For FB test 

datasets, the overall accuracy of GAM is 3.14 percent and 4.41 percent higher than the overall 
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accuracies of LR and SA, respectively. For RB test datasets, the overall accuracy of GAM is 2.18 

percent and 3.57 percent higher than the overall accuracies of LR and SA, respectively. The 

differences between FB and RB overall accuracies within methods are 0.64 percent, 1.4 percent, 

and 0.56 percent for LR, GAM and SA, respectively. The largest difference in averaged 10-fold 

SCV accuracies by LU change type occurred for COM, which is 12 percent. These results 

confirm the finding made by analyzing results from CCV and CCV-final models that model 

choice is a more critical factor than sample size is for making predictions of LU changes.  

Table 5: The averaged and overall 10-fold SCV accuracy for FB and RB training datasets. 

                        Model                

 

LU Change(To) 

Averaged accuracy (%) 

MC LR GAM SA 

FB RB FB RB FB RB FB RB 

LDR 35.37 50.76 67.43 67.43 66.06 66.06 69.15 69.15 

MDR 68.35 28.20 89.38 89.67 92.87 86.78 89.25 90.35 

HDR 41.09 40.80 66.72 69.50 73.92 78.19 68.86 72.03 

COM 25.41 28.36 79.82 78.92 88.29 78.59 78.99 77.70 

IND 45.56 45.57 89.37 89.37 90.52 90.52 90.03 90.03 

INS 80.00 80.00 n/a n/a n/a n/a n/a n/a 

TRA 57.82 60.32 76.77 76.91 82.52 78.80 79.40 76.54 

REC 27.78 45.57 85.68 85.68 84.51 84.51 84.32 84.32 

AGR 90.71 97.36 n/a n/a n/a n/a n/a n/a 

WAT 63.78 41.65 n/a n/a n/a n/a n/a n/a 

UND 9.90 27.29 77.09 78.98 78.58 78.92 74.98 76.34 

Overall  49.62 49.63 79.03 79.58 82.16 80.30 79.37 79.56 

Note: FB means full and balanced and RB means reduced and balanced. For the definition 

and difference between FB and RB, please refer to section 2.4 Analysis. Bold values 

indicate highest accuracy by land-use and land-cover type. 
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Table 6: The individual and overall accuracy for final models derived from 10-fold SCV with 

FB and RB test datasets. 

                          Method                 

 

LU Change (To) 

Accuracy (%) 

spLR spGAM spSA 

FB RB FB RB FB RB 

LDR 70.88 70.88 69.35 69.35 67.82 67.82 

MDR 88.20 89.67 93.71 92.98 89.89 90.00 

HDR 69.61 67.33 77.65 79.33 70.00 67.33 

COM 81.33 80.27 91.37 82.94 80.62 79.67 

IND 97.48 97.48 94.34 94.34 91.19 91.19 

INS n/a n/a n/a n/a n/a n/a 

TRA 79.58 77.00 83.98 83.33 78.70 77.00 

REC 89.30 89.30 87.74 87.74 87.74 87.74 

AGR n/a n/a n/a n/a n/a n/a 

WAT n/a n/a n/a n/a n/a n/a 

UND 82.96 82.33 84.75 81.67 81.61 82.33 

Overall 82.42 81.78 85.36 83.96 80.95 80.39 

 

Moreover, by comparing results from Table 3 and Table 4, it can be found that the overall 

SCV accuracies were reduced about 1.94 percent and 0.66 percent for LR with FB and RB 

datasets, 3.01 percent and 2.09 percent for GAM with FB and RB datasets, and 1.54 percent for 

SA with FB dataset, which implies that SCV only contributed to alleviate over-fitting by a small 

amount in terms of the reduction in overall SCV accuracies. In terms of the number of averaged 

SCV accuracies by LU change type being reduced, the problem of over-fitting was most serious 

for LR, followed by GAM, SA and MC. On the other hand, GAM was the method that suffered 

the most from over-fitting in terms of the averaged reduction in averaged SCV accuracies (4.15 

percent), in which HDR (FB), COM (RB) and UND (FB) contributed 5.54 percent, 7.94 percent 

and 9.08 percent, respectively. Therefore, it can be concluded that spatial autocorrelation existed 

in our data did not cause severe over-fitting of statistical models in terms of overall accuracies 

but had more impact on individual LU changes and single methods.  
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2.3.3 The Combination of Statistical Methods 

Given the above best models and their different performance by LU change type, a LU change 

model should take advantage of the methods that perform best for specific LU changes. A 

theoretical LU change model was constructed by obtaining methods that produced the highest 

final model accuracies by LU change type (Table 7). Since SCV-final models generally 

alleviated over-fitting caused by spatial autocorrelation, final models derived from SCV were 

selected to form the theoretical method. Moreover, MC derived from CCV was selected to model 

a LU change if the accuracy value was higher than the corresponding accuracy value regardless 

of the amount since MC only accounted for frequencies of LU changes. In the following context, 

the extensions “-CCV” and “-SCV” followed by a method’s name indicate the type of CV a final 

model of the method has derived from. 

Table 7: The combination of final models that produces the highest accuracy by LU type with 

FB and RB test datasets. 

LU Change (To) FB RB 

Method Accuracy Method Accuracy 

LDR LR-SCV 70.88 LR-SCV 70.88 

MDR GAM-SCV 93.71 GAM-SCV 92.98 

HDR GAM-SCV 77.65 GAM-SCV 79.33 

COM GAM-SCV 91.37 GAM-SCV 82.94 

IND LR-SCV 97.48 LR-SCV 97.48 

INS MC-CCV/MC-SCV 25 MC-CCV/MC-SCV 40 

TRA GAM-CCV/GAM-SCV 83.98 GAM-SCV 83.33 

REC LR-SCV 89.30 GAM-SCV 89.30 

AGR MC-SCV 96.58 MC-SCV 96.03 

WAT MC-CCV 55 MC-SCV 53.85 

UND GAM-SCV 84.75 LR-CCV/LR-SCV/ 

SA-SCV 

82.33 

Overall1   78.70  78.95 

Overall2  86.14  84.82 

Note: Overall1 is the overall accuracy of all LU changes. Overall2 is the overall accuracy excluding 

LU changes of INS, AGR and WAT. 
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The theoretical LU change model produces an overall accuracy that is 1.26 percent and 0.86 

percent higher than the best performing GAM models derived from SCV with FB and RB 

datasets, respectively. When IND, AGR and WAT are included (as represented by the MC model) 

the overall accuracy drops from 85.36 percent (overall GAM-SCV) to 78.70 percent for FB 

datasets and from 83.96 percent (overall GAM-SCV) to 78.95 percent for RB datasets; however, 

it is only through this mixed approach that all types of LU changes can be modelled.  

2.3.4 The Effect of Land-use Change Predictor  

LU change predictors are important for constructing statistical LU change models. The 

coefficients of significant predictors in final LR, final GAM and final SA models with RB and 

FB test datasets can be found in Appendix E. Different methods (i.e., LR, GAM and SA) chose 

different sets of predictors to construct final models. Moreover, the sets of predictors selected by 

final models with RB test dataset and FB test dataset may also be different for a single method. 

Coefficients of regular predictors in LR and GAM are both log-odds ratios and are not directly 

comparable to coefficients of predictor in SA that are hazards in terms of magnitudes. However, 

the signs of coefficients in LR, GAM and SA can provide useful information for interpreting the 

effects of predictors. A positive sign of a coefficient in LR and GAM will result an odds ratio 

(exp(log-odds ratio)) that is greater than 1, which also indicates an increase in the odds of 

experiencing a LU change. A positive sign of a coefficient in SA will result a hazard ratio 

(exp(hazard)) that is greater than 1, which also indicates an increase in the hazard (risk) of 

experiencing a LU change. Therefore, the impacts of common LU change predictors in final LRs, 

final GAMs and final SAs were analyzed by comparing signs of coefficients. Moreover, the 

discussion of effects of LU change predictors is focus on predictors other than LU type and LC 

type in 2006 and LC type in 2010. In the following context, a smoothed term refers to a variable 

that was fit using a smoothing function to represent the non-linear relationship between it and the 

response variable in GAM. 

Final LR, final GAM, and final SA derived from both CCV and SCV for predicting LDR 

LU change all recognize the variable MRoad_dist (distance to the nearest main road) as a 

significant LU change predictor even if final GAM sees it as a smoothed term. The positive 

coefficients of MRoad_dist in final LR-CCV and final SA-CCV (i.e., 0.67 and 0.26), and in final 

LR-SCV and final SA-SCV (i.e., 0.76 and 0.23) indicate that an increase in the unit of this 
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predictor will increase the odds and the hazard of a parcel experiencing a LDR LU change while 

holding all other predictors constant, respectively. Hence, both final LR and SA agree with the 

positive effect of this predictor. Moreover, final LR-SCV, final GAM-SCV and final SA-SCV 

for predicting LDR LU change also agree with the fact that the odds and the hazard of a parcel 

experiencing a LDR LU change will increase as the size of DA increases (i.e, positive effect of 

DA_Area) and will decrease as the distance to its nearest commercial parcel increases (i.e., 

negative effect of lu4_dist). 

The negative effect of lu4_dist was considered significant for LU change of MDR by 

final LR, final GAM, and final SA derived from both CCV and SCV regardless of sample sizes. 

Moreover, final GAM-CCV and final GAM-SCV see lu4_dist as a significant smoothed term. 

The negative effects of lu4_dist indicate that one kilometer increase in distance will reduce the 

odds and the hazard of a parcel experiencing a MDR LU change while holding all other 

predictors constant, respectively. Final LR-CCV, final GAM-CCV, and final SA-CCV for 

predicting MDR LU change with FB test datasets all recognize variables Wood_dist (distance to 

the nearest wooded area), Water_dist (distance to the nearest water area), LRoad_dist (distance 

to the nearest local road), lu8_dist (distance to the nearest recreational parcel) and 

DA_Popn_Density (DA population density) as significant LU change predictors while final 

GAM-CCV estimated them as smoothed terms. Except for Water_dist, final LR-CCV and final 

SA-CCV agree with signs of all coefficients of significant predictors mentioned above. Final LR-

SCV and final SA-SCV with FB test datasets also agree with the significance and the effects of 

Wood_dist, Water_dist, LRoad_dist, and lu8_dist. Final GAM-SCV estimated them as significant 

smoothed terms. In addition, the significance and negative effects of Residential_Popn_Density 

(population density calculated by dividing population by total residential areas) and 

Change_Popn (change in population) were also identified by final LR-SCV and SA SCV. 

The significance and negative effects of ParcelArea (an area of a parcel), Wood_dist, and 

lu4_dist regardless of sample sizes, and the significance and negative effects of 

Residential_Popn_Density and DA_Popn_Density with FB test datasets were all identified by 

final LR-SCV and final SA-SCV for modelling LU change of HDR. Final GAM-SCV estimated 

them as significant smoothed terms except for ParcelArea that was estimated to have negative 

effect.  
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Final LR-CCV, final GAM-CCV and final SA-CCV recognized the significance of 

Parcel_Area and lu4_dist for modelling LU change of COM regardless of sample sizes. They 

also agree with the significance of LRoad_dist and MRoad_dist with FB test datasets. In addition 

to the four predictors, final LR-SCV, final GAM-SCV and final SA-SCV also revealed the 

significance of lu9_dist to LU change of COM. Final LR and final SA derived from both CCV 

and SCV agreed with the effects of significant predictors. 

Final LR-CCV, final GAM-CCV and final GAM-SCV did not reveal the significant 

effect of any LU change predictor for LU change of IND. Final LR-SCV and final SA-SA agreed 

with the significance and effects of lu4_dist and lu5_dist. Final LR-SCV, final GAM-SCV and 

final SA-SCV also successfully  revealed significant effect of  ParcelArea, LRaod_dist and 

lu4_dist with FB datasets and the significant effect of  lu8_dist regardless of sample sizes. 

For LU change of TRA, final LR-CCV, final GAM-CCV and final SA-CCV agreed with 

the significance of ParcelArea and MeanDEM (the mean elevation value within a parcel) with 

FB test datasets, the significance of lu4_dist with RB test datasets, and the significance of 

lu8_dist regardless of sample sizes.Both final LR and final SA derived from both CCV and SCV 

agreed with the significance and negative effect of ParcelArea, the significance and positive 

effects of River_dist and lu8_dist for modelling LU change of REC. In contrast, both final GAM-

CCV and final GAM-SCV did not return any significant predictors. 

ParcelArea was identified as a significant LU change predictor for modelling LU change 

of UND with FB test dataset by final LR, final GAM and final SA derived from CCV and with 

RB test dataset by final LR, final GAM and final SA derived from SCV. Moreover, MRoad_dist, 

lu4_dist, and DA_Popn_Density showed significant influence to LU change of UND with RB 

test datasets in final LR_CCV, final GAM-CCV and final SA-CCV. In addition to ParcelArea, 

final LR, GAM and SA derived from SCV only identified MeanSlope (mean slope within a 

parcel) and lu4_dist as significant predictors with RB test datasets. 

2.4 Discussion 

The study investigated the performance of MC, LR, GAM and SA in predicting eleven types of 

LU changes occurred during 2010 and 2015 in the Region of Waterloo. For most of the types of 

LU change, LR, GAM and SA have very similar results. MC is not competitive with LR, GAM 
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and SA in predicting LU change except for INS, AGR and WAT. Thus, there is no absolute 

favor in LR, GAM and SA in terms of the prediction accuracies. The advantages and limitations 

of each method are addressed in this section. With the consideration of different aspects of each 

method, MC, LR, GAM and SA should be selected accordingly to model each type of LU 

change. Moreover, future work can be done to improve these models with addressed potential 

solutions that are given based on reviews of similar studies and experiences. As the result of 

improving each method, the combination of methods that is expected to give the optimal result of 

LUCC modelling can also be improved.  

2.4.1 Opportunities and Challenges 

2.4.1.1 MC 

MC is the only method used to model institutional LU change in this study. In total, there are 

only ten parcels found with institutional LU change. For training datasets with 10-fold CV, MC 

produced 55 percent accuracy with FB and 65 percent accuracy with RB for institutional LU 

change, which means MC performed slightly better than a random classification result (i.e., 50 

percent chance being accurate). However, the accuracies dropped to 0.4 percent with FB and 

0.25 percent with RB when MC was tested with test datasets. In contrast, all accuracies of 

predicting agricultural LU change by MC are greater than 93 percent and the difference among 

FB and RB accuracies is at large 2.6 percent. Above findings suggest that 1) MC does not 

provide robust performance for predicting LU changes with limited sample data (i.e., small 

sample set) and 2) MC can give better prediction performance for a LU with sufficient data but 

rarely changes to another LU type which indicates that MC performs better with unbalanced 

datasets.  

Iacono et al. (2012) investigated the ability of MC to predict ten LU types over a medium 

to long-term time scale with five time periods in Minneapolis-St. Paul region, Minnesota, US. 

Their results, using equal time intervals based on two different time periods, achieved 70 percent 

and 84.4 percent, which are substantially higher than the overall 10-fold CV MC accuracy (i.e., 

46.73 percent for FB and 47.59 percent for RB) of this study. This superiority could be caused by 

the larger sample dataset (610,000 cells) used by Iacono et al. (2012). In comparison, the MC FB 

dataset contains 21,712 parcel data and the MC RB dataset contains 7,502 parcel data in our 

study. This finding agrees with the conclusion in Clark (1965) that “Markov Chain Analysis is 
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most effectively applied when there are a large number of time periods (year to year for example) 

and a large number of observations”. Moreover, our sample datasets are all balanced, which 

further reduces the ability of MC to make better predictions. 

In conclusion, MC cannot sense the trend of LU changes driven by exterior predictors 

and account it in a transition probability, and does not consider the effect of spatial 

autocorrelation among spatial objects. In reality, LUCC models typically do not follow all the 

assumptions of MC (Turner, 1987), in which the uniformed length assumption of time interval in 

DTMC is often violated when several states are presented in LUCC modelling since spatial data 

typically lack consistent intervals between dates of acquisition. For instance, Iacono et al. (2012) 

showed that the prediction accuracy drops noticeably when the available data was used to make 

long-term prediction, which means the accuracy decreases as the time interval of the forecasted 

year becomes larger than the period that the probability matrix was constructed. Furthermore, the 

time period that each LU change takes may be different. Hence, the time periods used in a study 

may not best reflect the rate of LU conversion. However, it needs to be tolerated by many 

researchers since the availability of data is the key to solve the problem. MC would be a good 

choice to model LUCC when LUCC drivers are unavailable. It can also serve as a null model 

(i.e., a model without any predictors) that performs similar to random classification in our study, 

which means it should not perform better than other statistical models with predictors. Moreover, 

MC has been coupled with other techniques such as LR (Arsanjani et al., 2013), Cellular 

automata (CA) (Huang et al., 2015; Ebrahimipour et al., 2016), and genetic algorithm (GA) 

(Tang et al., 2007) to better perform LUCC modelling. Therefore, results of MC can be 

improved by having a larger sample dataset, more time steps with equal lengths and coupling 

with other methods. 

2.4.1.2 LR 

LR is a relatively popular statistical method for modelling LUCC. It has been used in some 

studies to detect drivers of LUCC (e.g., Serneels and Lambin, 2001), and compare its 

performance in detecting LUCC and making prediction of LUCC with some other methods (e.g., 

Lin et al., 2011; Wang et al., 2013). One worth noting is that Wang et al. (2013) compared the 

performance for detecting spatial predictors of LU changes between LR and SA and concluded 

that SA performed better than LR due to the ability of SA accounting for temporal variables. In 
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our study, SA does not perform better than LR in terms of making prediction of LU changes. 

This could due to 1) the limited time steps (two time steps), 2) the randomization of five failure 

times between the two time steps in our study since the simulated failure times may not represent 

the reality of the duration of LU conversion, and 3) the absence of temporal variables. However, 

the difference between accuracies produced by LR and SA in our study is within 1.7 percent for 

the overall 10-fold CV accuracies and 0.86 percent for the final model accuracies, which does 

not provide an evidence for having a favor of anyone of them.  

In general, LR is relatively simple to implement and is especially made for categorical 

response variables. The relationship between the linear predictor, usually denoted by 𝜂, and the 

linear combination of predictors can be assessed by estimating coefficients of LU change 

predictors in this relationship. Due to the linearity presented between 𝜂  and the linear 

combination of predictors, interpretation of its results can be made relatively easily by using 

odds ratio or log-odds ratio. One limitation of using LR in modelling LUCC is that LR often 

ignores the spatial aspect of data (Zeng et al., 2008). This problem could be mitigated by 

choosing spatially independent observations (Serneels and Lambin, 2001) and potentially be 

alleviated by using predictors that can account for spatial autocorrelation. Moreover, the LR used 

in our study contains only fixed effects, which means the effect of each predictor is constant for 

all observations. In reality, some predictors are time-varying and have different effects by groups. 

To solve the problem, random effects can be introduced to regression models to allow predictors 

being varying for different reasons (e.g., group and time). A model that contains both fixed 

effects and random effects is recognized as a mixed effects models. Future study can be done to 

investigate the ability of a mixed effects LR for modelling LUCC. 

2.4.1.3 GAM 

The GAM used in this study is the additive logistic regression (ALR) that is a non-linear version 

of LR and allows capturing non-linear relationship between predictors and response variables. In 

our study, the ALR performed the best in terms of prediction accuracies. Brown et al. (2002) 

achieved 87 percent prediction accuracy for modelling LU change from non-forest to forest and 

90 percent prediction accuracy for modelling LU change from forest to non-forest with the use of 

GAMs. Similar LU change exists in our study (i.e., LU change from any LUs to REC) and the 

corresponding prediction accuracies are above 90 percent for both the 10-fold CV and final 
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model regardless of sample sizes. The gap between the studies’ results could be caused by the 

disparity between sample sizes, in which the number of samples in our study (i.e., 520 parcels) is 

nearly half of the amount used by Brown et al. (2002) (i.e., 1,014 cells). A GAM with a quasi-

binomial distribution was used to “account for spatial autocorrelation and the boundedness of the 

percent woody cover variable” in a study done by Eitzel et al. (2016) to model historical land 

cover change. The quasi-binomial distribution is not a real distribution. It infers to the quasi-

likelihood estimation used in binomial distribution to allow for over-dispersion.  

Compared to generalized linear models (e.g., LR), GAMs have the advantages of having 

a relaxation of variable assumptions and allowing non-linear relationships, but the advantages 

can also be considered as limitations. These advantages can increase the overall complexity of 

models, make interpretation of results more complicated and cause a need of more computational 

power. However, because many LU change drivers interact non-linearly to influence the future 

LU, GAM can be helpful to determine the complex relationship between drivers when they 

interact heavily in a non-linear fashion. Moreover, the quasi-likelihood estimation and smooth 

function of coordinates could help reduce spatial autocorrelation without resampling data for 

GAM (Eitzel et al., 2016). 

2.4.1.4 SA 

In general, SA can model time-varying predictors, and capture behavior of response variables 

and predictors at different time steps. The implementation of SA requires the input of a time 

variable, which means at least two years’ data are required. SA would be considered the same as 

LR when data comprising both complete observations and censored observations are only 

available for two time points. Therefore, it is better to have more than two measurements per 

observed parcel to distinguish SA from LR. Furthermore, the effects of covariates on hazard may 

increase over time with more information involved and causes competition of land and resources, 

which can cause violation of the PH assumption that effects of predictors are constant on hazard 

over time (Wang et. al., 2013).  

In our study, the prediction accuracies of LR are greater than the accuracies of SA for 

both the overall 10-fold CV accuracy and the final model accuracy regardless of the sample sizes. 

This infers that even though SA took less time to process, LR may be preferred over SA under 

the condition that no time varying predictors present, and only complete data and right censored 
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data exist. The comparison result between LR and SA is expected to change when time-varying 

predictors are present. In a study of detecting spatial predictors done by Wang et al. (2013), 

which includes one time-independent variable and two time-varying variables, a Cox model 

outperformed a logistic model by 16 percent. Therefore, the performance of SA with presence of 

time-varying predictors requires further investigation. 

2.4.3 Modelling One-to-One LUCC vs. Many-to-One LUCC 

LR and GAM that have been used to model LUCC are usually designed to represent one-to-one 

LUCC (e.g., non-urban to urban, Wang et al., 2013; Braimoh and Onishi, 2006; non-forest to 

forest and forest to non-forest, Brown et al., 2002). SA has been used to model one-to-one LU 

change from non-urban to urban (Wang et al., 2013) and LU changes from farm to three types of 

subdivisions (An and Brown, 2008). In this way, focusing on modelling one-to-one LUCC could 

help reveal effects of predictors on a specific LUCC and help better understand causes of a 

specific LUCC. However, modelling one-to-one LUCC can be time-consuming when many LU 

classes are involved in a study. Moreover, the availability of LU data could also restrict the 

ability of statistical methods for modelling LU changes. For example, there are eleven LU 

classes in our study. If LR, GAM and SA were designed to model one-to-one LUCC, datasets 

would be constructed by including parcels that experienced a specific LU change and a matching 

number of unchanged parcels. In this case, each unique LU is treated as a starting LU for 

modelling ten types of LUCC. Figure 5(a) shows an example of the ten possibilities of modelling 

one-to-one LUCC from AGR to all other LUs. Hence, each of the four methods (MC, LR, GAM 

and SA) would need to obtain 110 final models in order to model all unique LU changes. In 

contrast, each unique LU is treated as an end LU in the case of modelling many-to-one LUCC. 

Therefore, each method would only have eleven final models for all eleven possible LU changes. 

Figure 5(b) shows an example of modelling many-to-one LUCC from any LU to AGR. 

 

 



49 
 

 

   (a) 

 

    (b) 

Figure 6: (a) The ten possibilities of modelling one-to-one LUCC from AGR to all other LUs.  

(b) Modelling many-to-one LUCC from any LU to AGR. [Notes: low-density residential (LDR), 

medium-density residential (MDR), high-density residential (HDR), commercial (COM), 

industrial (IND), institution (INS), transportation (TRA), protected area and recreation (REC), 

agriculture (AGR), water (WAT), under development (UND)] 

Furthermore, preparing data for modelling unique LUCC would result in samples with 

only a few observations and even an empty set of samples (i.e., LU change of AGR) in our study. 

Therefore, shifting the focus of LUCC models from modelling one-to-one LUCC to many-to-one 

LUCC helped us increase sample observations in each designed dataset and reduce spatial 

autocorrelation by having samples with non-monotone LUCC type. Our results prove that the 

many-to-one modelling technique performed well in terms of prediction accuracy for LR, GAM 

and SA and performed fairly well compared to prediction results from models modelling one-to-

one LUCC. 

2.4.4 Operationalizing the Combined Statistical Model 

An application of this study is to predict future LU with MC, LR, GAM and SA in a given area. 

When a method is applied to an area, each parcel in the area will be given a set of probabilities of 

changing to different LUs, which determines the future LU of the parcel by the highest 
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probability. The four methods are competitors with each other when they are applied to the same 

parcel. In other words, final models will be constructed for each of LR, GAM and SA when all 

LUCCs are present. Probabilities will be produced for a single parcel and compete for the highest 

probability of LUCC when a single method is used to map the LU in the whole study area. The 

highest probability produced by each method will further compete for the highest value to 

determine the LU type when all methods are used to map the LU in the whole study area 

(detailed procedures can be found in Appendix F). 

In addition to provide a reference for future LU, statistical LUCC models built in this 

study can help allocate predicted LU changes to appropriate locations in the Region of Waterloo. 

Since the statistical LUCC models built in this study do not account for government LU policies 

and zoning regulation, the feasibility of predicted LU changes needs to be verified when MC, LR, 

GAM and SA are used to predict future LUs in this region. For example, if a projection of a 

residential development is made on a piece of protected natural land, the local government may 

not grant a permit to the development. However, the prediction of new residential development 

may be driven by population growth in this area. It raises the necessity of re-allocating the 

predicted amount of residential development to appropriate locations. Moreover, the amount and 

types of residential development (LDR, MDR and HDR) can be allocated by residential house 

developers according to criteria such as people’s preference about the location and LU policy 

(Robinson et al., 2012).  

Furthermore, future population can be projected as a derivative of statistical LUCC 

models. In this study, population density and population change rate were created using 

population and were used as predictors to model LU changes. Once the predicted amount and 

types of residential LU changes have been determined, population can be projected based on 

these data. For instance, when a residential development of a hundred MDR parcels is predicted, 

the population is expected to grow for approximately 300 people based on an average amount of 

three people per MDR. 

2.5 Conclusions 

MC, LR, GAM and SA have been used to model LU changes and a comparison of their 

predicting powers has been conducted. To the best of the author’s knowledge, this is the first 

study to formally compare the relative performance of these statistical methods for LUCC 
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modelling. The goal of determining the overall accuracies of the four methods for 10-fold CCV, 

10-fold SCV and final models derived from CCV and SCV in representing eleven types of LU 

changes illustrated that GAM performed the best in making prediction of future LUs but the 

superiority of it is not obvious when we consider the difficulty of its implementation and 

interpretation, and its run time relative to LR and SA models. For both CCV and SCV results, it 

can be concluded that SCV did reduce the averaged accuracy by LU change type and overall 

accuracy by method.  The effect of SCV alleviating over-fitting caused by spatial autocorrelation 

among spatial parcels is minor in terms of overall accuracy but is substantial for some methods 

modelling parcels with specific LU changes. 

 Moreover, a decrease in sample size causes a reduction of overall accuracy for LR, GAM 

and SA and reduces the difference in overall accuracies of LR, SA and MC from the overall 

accuracy of GAM. However, the reduction in overall accuracy between FB and RB training 

datasets with 10-fold CCV and 10-fold SCV is minor. For both 10-fold CCV and 10-fold SCV, 

GAM is the most sensitive method to the reduction of sample sizes since it experiences the 

largest difference between overall accuracies. GAM is also the best method in modelling training 

datasets with 10-fold CCV and 10-fold SCV, and test datasets with final models derived from 

CCV and SCV. In contrast, LR and SA are less sensitive to results of CV models and final 

models. Moreover, SA has the shortest run time for conducting 10-fold CCV compared to MC, 

LR and GAM for FB training datasets and has the second shortest run time for conducting 10-

fold CCV compared to MC, LR and GAM for RB training datasets. LR only took a few seconds 

more compared to SA, and overall accuracies of LR rank the second place for both 10-fold CV 

and final models regardless of sample sizes. In contrast, the decrease in sample size has an 

adverse effect to MC. The overall accuracy is 4.72 percent higher for the RB training dataset 

than the overall accuracy for the FB training dataset with CCV and is 0.01 percent higher for the 

RB training dataset than the overall accuracy for the FB training dataset with SCV. 
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Chapter 3 Contribution and Future Work 

3.1 Summary 

The presented analysis and comparison of statistical methods sought to evaluate the prediction 

power of four different statistical methods (MC, LR, GAM and SA) for representing LU change. 

The LU of a parcel was classified into one of eleven LU classes (ten LUs and one LC) in the 

Region of Waterloo. LU change among the pre-defined LU classes between 2010 and 2015 were 

modeled by the four statistical methods. The preparation of the study involves an identification 

of potential LUCC drivers from literature, a creation of LUCC drivers with available data, a 

review of mathematical background of the four statistical methods and a review of related studies. 

An analysis of the modelling results was conducted, which quantified the relative performance of 

each method and revealed the distribution of overall accuracy and final model accuracy of MC, 

LR, GAM and SA by LU type. 

 Among the four methods, GAM performed slightly better than LR and SA in terms of 

overall prediction accuracy by method type due to its ability of modelling non-linear relationship 

between responses and LUCC predictors. However, non-parametric smooth functions in GAM 

can increase the difficulty of implementation and interpretation at the same time. The estimation 

of smooth functions also requires a large amount of time, which is caused by iterations of finding 

fitted smooth functions for all LUCC predictors in the back-fitting algorithm. LR and SA 

produced similar overall accuracies and run times. Furthermore, even though GAM yielded the 

highest overall accuracy, it did not produce the highest accuracy for all LU changes. Moreover, 

MC was not competitive for modelling most LU changes. However, when the amount of data is 

scare or predictors are unavailable, it performs better than standard null models (e.g., pure 

persistence of LU and LC, Pontius Jr. and Spencer, 2005) and can outperform GAM, LR and SA 

under these data constraints.  

Perhaps it is not surprising that no single statistical method achieved the highest accuracy 

for all LU changes. Different methods have different strengths and weaknesses for capturing the 

different underlying processes of LUCC. Therefore, a combination of methods should be used to 

make a more accurate prediction instead of using a single method for modelling all LU changes. 

Surprisingly, to the best of the author’s knowledge this is rarely done, with a few exceptions (e.g., 

Robinson et al. 2012). The theoretical relationship between the overall accuracy and model 
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complexity for the MC, LR, GAM and SA methods individually and in combination (i.e., the 

combination of statistical methods (CSM)) is shown in Figure 6(a). Figure 6(b) further illustrates 

the superior performance of a LU change model that uses different statistical approaches for 

different LU types in terms of overall accuracy and overall time consumption. In this context, the 

model complexity refers to the author’s consideration of complexities in terms of learning and 

implementation, thus is a relative scale that cannot be quantified. The overall time consumption 

is also presented as a relative scale since the point is not to show the exact run time of each 

method. The overall accuracy of each method is based on the real value of overall accuracy of 

final model with FB test dataset. 

Figure 7: (a) The theoretical relationship between the overall accuracy and model complexity 

for MC, LR, GAM, SA and the combination of statistical methods (CSM). (b) The theoretical 

relationship between the overall accuracy and overall time consumption for MC, LR, GAM, SA 

and CSM. 

In addition, the four statistical methods used in this study can be categorized as stochastic 

process (MC), parametric model (LR), non-parametric model (GAM) and time series analysis 

technique (SA)). However, the four tested statistical methods are not restricted to the classes of 

models listed here. For instance, a GAM with both linear terms and smoothing functions can be 

considered semi-parametric; Cox PH model, the SA technique used in this study, is a semi-

parametric model; an accelerated failure time (AFT) model, a type of SA technique, is 

parametric; Kaplan-Meier estimator, a type of SA technique, is non-parametric. Moreover, LR 

and ALR are classification models but MC and SA are not. MC and SA can handle time series 

data but LR and ALR cannot. Hence, statistical methods cannot simply be grouped into a few 

categories. In conclusion, the selection of the four statistical methods covers a wide range of 

statistical techniques that target different interests. This study provides a general understanding 
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of modelling LU change with MC, LR, GAM and SA, in which ALR and Cox PH model are 

specifically chosen for GAM and SA, respectively. 

Furthermore, it is worth investigating the performance of mixed effects models (Pinheiro 

et al., 2007), especially mixed effects LR (MELR) and mixed effects GAM (MEGAM), and 

some machine learning (ML) techniques such as random forest (RF; Liaw and Wiener, 2002) 

and support vector machine (SVM; Suykens and Vandewalle, 1999). MELR and mixed effects 

additive logistic regression (MEALR) are expected to perform better than LR and ALR, 

respectively, since random effects in mixed effects models could take account of time-varying 

variables and spatial autocorrelation but would increase model complexity. ML approaches are 

more flexible than traditional statistical methods since they are spared from general assumptions 

of statistical methods such as linearity, independency and an underlying distribution of data. 

Moreover, ML can benefit from a large amount of input data, both observations and predictors, 

and is less affected by multi-collinearity among predictors. RF is a popular ML method, which 

has been used in LC classification (Rodriguez-Galiano et al., 2012; Liu et al., 2016). SVM is 

another popular ML method used for classification purpose and has been used to classify LC 

(Kavzoglu and Colkesen, 2009; Huang et al., 2002). Based on literature and knowledge about 

MELR, MEALR, RF and SVM, the conceptual performance of MELR, MEGAM, RF and SVM 

with MC, LR, GAM, SA and CSM can be constructed against model complexity and time 

consumption (Figure 7). Both model complexity and overall time consumption are relative scales 

that designed to show the conceptual relationship among methods. Moreover, the overall 

accuracy of each method in Figure 7 is a conceptual value that was created based on the 

consideration of author’s experience and results of this study.  
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Figure 8: (a) The theoretical relationship between the overall accuracy and model complexity 

for MC, LR, GAM, SA, MELR, MEGAM, RF, SVM and CSM. (b) The theoretical relationship 

between the overall accuracy and overall time consumption for MC, LR, GAM, SA, MELR, 

MEGAM, RF, SVM and CSM. 

3.2 Contribution and Future Work 

Prediction results of the four statistical methods for modelling LU changes can be used to 

support decision-making associated with solving real world problems since human’s decision-

making on LU have clearly linked LU science and policy (Aspinall, 2007). The population in the 

Region of Waterloo has been projected to reach 742,000 in the year 2031 (Ministry of Municipal 

Affairs, 2017). This indicates an approximately 46 percent increase in population with the 

reference year 2011. The Region of Waterloo will experience a variety of social problems caused 

by LU practices that are made to satisfy human needs such as building residential houses and 

industries. Then, there will be environmental problems followed by social problems after LU and 

LC have been altered (Bell, 2009). Therefore, understanding how different statistical approaches 

model different LU changes can help draw a big picture that represents real-world patterns.  

Moreover, moelling LU change with statistical methods not only contributes to a historical and 

contemporary area of scientific investigation, insight from a comparison of these methods is also 

essential to the sustainable development of social, environmental and scientific aspects of society.  

3.2.1 Social Aspect 

Results from statistical LUCC models can influence LU policies and LU planning by providing 

improved understanding of LUCC in an area. The prediction results of statistical LUCC models 

can provide estimated LU types at each potential location. Then, an estiamted amount of each 
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LU change can be quantified. It is also important to study the effect of LUCC predictors since 

knowing why LUCC occurs is as critical as knowing where and how it occurs. The effect of a 

LUCC predictor on a specific LUCC, the value and the magnitude, can be revealed by studying 

coefficients of significant LUCC predictors. Therefore, results from our models can provide 

suggestions and evidences for making LU policies and LU planning.  

Since the study area is the Region of Waterloo, results from the four statistical methods 

can provide insight about future LU in the region. In fact, building permits worth $670 million 

were issued for the residential sector in the Region of Waterloo in 2017, in which the largest 

proportion of permits (47%) were given to development of HDR (apartments) (Region of 

Waterloo, 2018). Other permits were issued to industrial, commercial and institutional 

development. Among the eight building permits issued to institutional sector in 2017, six of them 

were granted to the addition and renovation of existing institutional facilities and two were for 

the development of new elementary schools. Residential, commercial and industrial LU changes 

can all be modeled using statistical LUCC models constructed in this study but it is difficult to 

model institutional LU change since the amount of such LU change is minor. Even though it is 

difficult to predict institutional LU changes with limited data, understanding how other LU 

changes work can provide clues and insight toward understanding the conditions that lead to 

institutional LU changes.  

As previously mentioned, by studying the coefficients of significant predictors driving 

LUCC may add decision making capacity to the Region of Waterloo when conducting LU 

planning. Using the final LR model and conversions to HDR as an example, we illustrate the use 

of coefficients of three significant predictors: the distance from a target parcel to its nearest 

COM parcel, the distance from a target parcel to its nearest AGR parcel, and the proportion of 

neighborhood REC parcels of a target parcel. In the context of statistics, the coefficients of LR 

are log-odds ratio that can be converted to odds ratio (i.e., exp(log-odds ratio)). The odds ratio is 

more regularly used to interpret results than the log-odds ratio. The odds ratio is a relative 

measurement of the odds of some event occurring given some covariates and the odds of the 

event not occurring without the same set of covariates. The odds of an event is interpreted as the 

likelihood of the event occurring. In LUCC context, the odds ratio measures the strength of 

LUCC predictors to the presence or absence of a LUCC. Higher values of odds ratio indicate 
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higher strength of LUCC predictors to the occurrence of some LUCC and vice versa. Therefore, 

the estimated coefficients for these three predictors can be interpreted as the likelihood of a 

parcel experiencing a change from any LU to HDR increases by a factor of 0.0622 and 0.8050 

for each kilometer increases comparing to the likelihood of the parcel not experiencing any 

LUCC for the first two predictors in our example, and an increase by a factor of 51.5215 with a 

percent increase comparing to the likelihood of the parcel not experiencing any LUCC for the 

third predictor. When interpreting the odds ratio of a predictor, all other predictors are held 

constant. Interpreting these results suggest that a parcel is less likely to convert to HDR as the 

distance between the parcel and its nearest COM parcel (e.g., shopping mall, grocery store and 

small business) or AGR parcel increases, and it is more likely to convert to HDR as the 

proportion of parcels in its neighborhood classified REC (e.g., green areas, trails and protected 

areas) increases.  

The above interpretation of coefficients would suggest that new HDRs would be built 1) 

near urban fringe, the transitioning area between urban and rural, where commercial LU (e.g., 

plaza that contains grocery store, restaurant and bank) has already existed nearby in the Region 

of Waterloo and 2) at places inside the city where green spaces and business services can be 

easily accessed. Therefore, local government could expect residential housing developers to seek 

permits to build high-rise residential buildings in satisfied areas, which are the areas identified by 

our models for having HDR LU change, when the region experiences urban intensification and 

sprawl. Similarly, the trend of other residential development (LDR and MDR) can be revealed by 

studying corresponding model coefficients. By knowing the trend of residential LU change in 

advance, the local government can regulate the development of this LU change with 

considerations of other criteria such as projected population, the availability of existing public 

services and zoning regulations. Other types of LU changes would be influenced by residential 

LU changes in response to the growing demand of some LU types (e.g., commercial LU and 

institutional LU). The development of other LUs  and the consequence of such development in 

the Region of Waterloo can be determined and revealed by investigating through the coefficients. 

Therefore, LU planning and LU policies can be made to manage and regulate LUCC with the 

help of statistical LUCC models when the effects of LUCC predictors have been estiamted. 
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3.2.2 Environment Aspect 

Protecting farmlands and sensitive natural areas is an objective of the regional government of the 

Regional of Waterloo (Ministry of Municipal Affairs, 2017). Lands not only retain social values, 

they also possess ecological value. LUCC can directly affect our environment and ecosystem 

function that refers to the underpinning processes conducted by ecosystems that often provide 

goods and services to humans. Therefore, understanding the potential patterns of LUCC can help 

estimate the ecological consequences of different policies and development plans. Actions can 

then be taken to alleviate the negative impacts. Furthermore, the aggregated effects of LU 

practices at small scales can influence global environment and global climate. Hence, the study 

of modelling LUCC with statistical methods at a smaller scale (i.e., the Region of Waterloo) can 

provide meaningful insight to reveal the impacts of LU practices at the provincial level.  

With statistical LUCC models, the effects of LU changes can be estimated when the scale 

and the area of LU changes have been determined. For instance, predicted urban sprawl with 

mixed LUs, such as residential, commercial and transportation, can take place on lands 

previously defined as farmlands (AGR) or protected natural areas (REC) in the Region of 

Waterloo. The replacement of these LUs by urban LUs will create impermeable surface, which 

would exacerbate problems of climate change by reducing the intake of carbon by vegetation and 

soil (Watson et al., 2000), reduce evapotranspiration and increase local heat island effects 

(Trenberth, et al., 2007), as well as contribute to surface runoff and eutrophication of local 

waterways (Shi et al., 2007; Huang et al., 2013). Moreover, human activities occurred on newly 

developed LUs (e.g., driving and heating) may have broader scale impacts such as increase 

energy consumption causing the efflux of greater concentrations of greenhouse gases (GHGs) 

being produced and released into the atmosphere. Furthermore, features on land can also cause 

environmental issues. For instance, high-rise buildings covered by massive amount of light-

reflective glasses can cause light pollution (Horváth et al., 2009). All these consequences need to 

be taken into consideration when a LUCC plan is being made. The Region of Waterloo has 

already experienced a loss of AGR lands and REC lands over time. Therefore, urban sprawl 

needs to be curbed when the speed of expansion predicted by statistical LUCC models causes 

unaffordable consequences to the environment.  



59 
 

3.2.3 Science Aspect 

In addition to contributions made to the society and environment, this study also has several 

scientific contributions. In LU science, statistical methods are more often used to detect spatial 

predictors of LUCC instead of directly modelling LUCC. The presented research seeks to 

achieve and contribute to both our understanding of the drivers of LUCC and our ability to 

model LUCC. Moreover, GAM and SA models are rarely used to represent LUCC. The 

presented comparison of these two methods to MC and LR provides insight about their overall 

and specific performance for modelling LU changes. The comparison of methods remains rare in 

the LUCC modelling literature.  

A comparison among different statistical methods is challenging for many reasons, 

including maintaining an adequate amount of knowledge about the mechanism of these methods  

and knowing underlying assumptions. Therefore, this study is important for discovering and 

understanding the potential of MC, LR, GAM and SA in modelling LUCC under the same 

circumstances. This study also reveals limitations of each method in modelling LU change with 

current data. The advantages and limitation of each method are discussed (Section 2.4.1) and 

further improvement can be made with a support from similar studies. 

Furthermore, canonical correlation analysis (CCA) was reviewed for its ability to model 

LU change in addition to MC, LR, GAM and SA. CCA is a multivariate statistical method and is 

often used to explore the relationships between two sets of variables (Härdle and Simar, 2007). It 

has been used to identify relationships between LU patterns and influential factors. However, to 

the best of the author’s knowledge, only one publication of its use for modelling LC changes 

exists (Lee et al., 1999). In an effort to include CCA along with the four methods presented in 

this thesis, an experiment of modelling LU changes with CCA was conducted. Results showed 

that CCA is not an appropriate method to make prediction of future LUs with a set of LUCC 

predictors. The accuracy of classification achieved was extremely low. This implies that CCA is 

not able to capture the relationship between LU changes and associated LUCC predictors. In this 

study, LU change status was used as one set of variables in CCA models since all other methods 

were constructed to model LU change instead of classifying LU. In future studies, it is worth 

investigating the performance of CCA for classifying LUs or LCs instead of LU changes. A 

detailed review of the mathematical background of CCA can be found in Appendix G. 
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In conclusion, given the nature of statistical models, the methods used in this study can 

be deployed across large spatial extents with high-resolution data and be implemented with 

relative ease when data are available. In addition, statistically significant drivers of LUCC can 

provide insights to impacts of geographical, demographical and social-economic factors on 

specific LU changes. Considering all the facts mentioned here, statistical models built in this 

study can be used as guide for future studies of modelling LUCC and can provide a reference to 

screen a set of variables for modelling each type of the defined LU changes. Moreover, statistical 

models can be integrated with many other methods in LU science. For instance, statistical 

models can produce probabilities, which can be used in agent-based models (ABMs). An ABM 

is under the risk of failure when parameters are not properly calibrated, and a failure of an ABM 

will cause a waste of time and resources. Meanwhile, statistical methods alone have to face 

limitations for accounting complicated interactions among many factors and having minimal 

ability to account for explicit decision-making processes. Therefore, a hybrid model that 

combines statistical LUCC models and ABMs can offset both limitations of statistical methods 

and ABMs due to the ability of ABM to simulate process-based phenomenon. This can be 

achieved by using statistical models as agents in ABMs and using probabilities as decision roles 

of stakeholders in a decision-making process when empirical data are scarce. Hence, statistical 

LUCC models can help reduce the risk of wasting resources such as data and human labor due to 

a relatively efficient cost and time of producing data (i.e., probabilities) compared to some data 

collecting methods such as traditional survey especially when the scale of the study area is large.  
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Appendices 

Appendix A – Data Processing, Variable Creation and Problems with the Data 

The need of a manual classification arose when misclassification found in computer simulated 

2010’s LU raster data created by Alexander Smith in 2016. The manual classification of 2010’s 

LU was conducted for the Region of Waterloo with the support of 2010’s SWOOP data and 

ownership parcels data. The LU raster data were extracted to ownership parcels based on the 

main features (e.g., grass, house and road) and functions (e.g., agricultural and residential) of the 

land within parcels. The rules of manual LU classification were the result of discussion between 

us, which can be found in Smith (2017).  

After the manual classification, three small areas in the Region of Waterloo were 

randomly chosen and compared with the classification result from computer simulated LU data. 

The result of comparison has achieved an overall accuracy of 90 percent. Later, an overall 

accuracy of the computer simulated 2010 LU data in the whole study area was computed using 

manually classified LU data as reference, which is about 88 percent. Thus, the classification of 

computer simulated 2010 LU data was considered satisfactory. Similarly, computer simulated 

2006 and 2015 LU data were also considered satisfactory since all LU data were all classified 

using the same rules, methods and technology. Therefore, computer simulated LU data for 2006, 

2010 and 2015 were used as ground truth data toward modelling LU changes with the proposed 

statistical methods. 

Before creating any variables, DAUIDs (i.e., unique IDs of DAs) in the Region of 

Waterloo in 2010s were assigned to parcels according to the location of parcels in the DA in 

order to relate DA’s information to parcels. Geometries (i.e., perimeter and area) of the parcel 

polygons and DA polygons were calculated in ArcGIS and attached to the parcel data. 

Geographic variables (i.e., mean slope and mean DEM) were created using slope and DEM data. 

Demographic data from 2010 Census data (e.g., population) associated with the DA in the 

Region of Waterloo retrieved from Statistics Canada were merged with the parcel data in excel 

format in R by the common variable DAUID. The parcel data were then imported back to 

ArcGIS since spatial variables need to be created using the Polygon Neighbors tool in ArcGIS. 

The tool created a table that contains IDs of source polygons, IDs of neighbor polygons and 

records of LU types for neighbor polygons. The table was then used to calculate the percentage 
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of each LU type around each source polygon by manually programmed code in R. The 

percentage of neighbor LU was merged with the parcel data by unique parcel ID (i.e., ID of 

source polygon) in R. Furthermore, the parcel data were converted to point data (i.e., centroids of 

parcels) in order to calculate Euclidean distances from parcel centroids to other features (e.g., 

highway ramp and commercial parcel) in ArcGIS. During the process of variable creation, some 

parcels have been removed from the full dataset due to the lack of data for creating drivers 

associated with the parcels (e.g., a lack of census data in some areas).  

Unfortunately, misclassification was found in some rare cases of LU change during the 

process of creating status for LU change (i.e., binary response variables). Since rare cases of 

LUCC (e.g., from industrial to water) are a relatively small amount of data compared to the total, 

second round of manual classification was conducted by myself to increase the classification 

accuracy of these cases. During this round, SWOOP data for all three years (i.e., 2006, 2010 and 

2015) were used to classify LU types that associated with parcels being found with the 

occurrence of rare cases of LU change. The manual classification was also done to parcels that 

found with the occurrence of some other LU changes that have a relatively small amount of data 

compared to the total due to the consideration of data accuracy. Meanwhile, some rules of 

manual LU classification have been modified based on Smith’s work. The complete and 

modified rules are presented in Appendix B. Moreover, spatial variables were re-created using 

2010 as the reference year since the neighborhood parcels may be changed.  

Furthermore, some other problems have raised. As mentioned in Section 2.2.4 in Chapter 

2, each full dataset is consisted of all parcels that had their LU converted to a specific LU in 

2015 and parcels that had remained the specific LU during the study period. After conducting an 

explanatory analysis on full datasets, it has been found that the majority types of LU change in a 

full dataset came from the part of parcels that has not been manually verified or modified in the 

second round. Therefore, it is reasonably to suspect the accuracy of the data. However, the study 

has moved forward with the current set of data due to the high overall accuracy of computer 

simulated LU data and the time constraint of this project. Another finding is that the 

classification accuracy of computer simulated 2010 LU is about 68 percent for the approximately 

6000 parcels that have been verified or modified in the second round of manual classification. 

This infers that the computer classification approach performed differently for different LU types. 
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In addition, the season that SWOOP data have been taken is another factor that can cause 

misclassification of the same LU in different years by computer simulation methods. 
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Appendix B – Rules of Manual Land Use Classification  

Table B-1: Manual land use classification of parcels in the Region of Waterloo. 

# Name Classification description based on perceived uses and services 

1 Low-Density 

Residential 

Parcels which appear to contain a single dwelling for a single 

family on a large property. These parcels typically appear outside 

the urban core in suburbs or rural areas. While houses tend to be 

larger than medium density residential, it is not a requirement for 

the classification.  

2 Medium-Density 

Residential 

Average sized parcels containing a single dwelling for a single 

family, which may or may not be attached to adjacent dwellings. 

This class contains the majority of residential parcels within 

subdivisions and the urban core. In most parcels, the house and 

driveway cover most or all of the width of the parcels, with yards 

in the front and back.  

Townhouses are usually classified as medium-density 

residential.1 

3 High-Density 

Residential 

Parcels containing buildings with multiple dwellings or units, and 

therefore multiple families within the parcel. Typically in two 

forms, apartment or condo buildings, and townhouses where one 

parcel contains multiple units. Parcels may contain green space 

and parking lots in addition to the buildings.  

4 Commercial Parcels containing business where customers visit to obtain 

products and services, or office buildings which may not receive 

customers. Larger parcels, such as malls or box stores, will 

contain large parking lots for customers. These parcels do not 

contain large outdoor storage areas, although garden and home 

improvement stores may have some outdoor storage.  

 

5 Industrial Parcels which contain a business with an outdoor storage area 

such as a factory or a car scrapyard. These business typically do 

not receive customers although there may be parking lots for 

employees and areas for incoming materials and outgoing 

products.  

6 Institutional Manually classified parcels for schools (private and public) and 

hospitals. Schools and hospitals can appear as a variety of classes 

but provide different services from these misclassifications (e.g. 

                                                           
1 This is an additional clarification to the rule of manual land use classification. 
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Commercial or Protected Areas and Recreation). Manually 

classifying these parcels allows for them to be included in the 

landscape without large amounts of misclassification.  

7 Transportation Parcels which represent roads and railways. These parcels often 

include the boulevard and sidewalks. Highway interchange 

parcels include all the land which is owned and managed by the 

managing government.  

8 Protected Areas and 

Recreation 

Areas which have a primary purpose of recreation, such as parks, 

or protected areas such as forests. Commercial forests and private 

forests are included in this class as they appear very similar, or 

even identical to the natural forests.  

9 Agriculture Parcels which are primarily used for raw food production. This 

includes fields for crops and pastures. Some parcels will have 

barns and/or a farm house, while others may have neither. Parcels 

may also include a portion which is forested, sometimes referred 

to as “the back forty”.  

10 Water Parcels which have a main purpose of outlining waterbodies such 

as rivers. Lakes are included when the lake occupies a majority of 

the parcel. The rest of the parcel may include sections which 

would otherwise be classified as Protected Areas and Recreation.  

11 Under Development Properties where construction has not been completed and no 

residents or business has moved in. These parcels may become 

many different classes when complete, but the class cannot be 

guaranteed at the time of the imagery. Depending on the progress 

of a development project, residential areas and big box stores or 

shopping complexes may appear similar as the area is represented 

by only a single parcel.  
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Table B-2: Clarifications between similar land use classes. 

First Class Second Class Problem Solution 
Low-

Density 

Residential 

Medium-

Density 

Residential 

Parcel size is a 

continuous variable 

and it is difficult to 

define the exact 

separation between the 

two classes. 

In many cases where there is confusion, the 

house is the same size as the surrounding 

properties which are either low or medium 

density and is a similar distance from the 

road. The parcel in question will usually 

have its additional size added through its 

backyard. If the backyard visually occupies 

two thirds of the property, it can be easily 

called low density, if less, medium density. 

If the parcel has a backyard smaller than 

two thirds, but the front yard and house are 

large, then it can also be classified as low 

density. If an absolute value of size is 

needed, 2000m2 should be used as the 

minimum size for Low Density Residential.  

Low-

Density 

Residential 

Protected Area 

and Recreation 

Household in a large 

parcel is surrounded 

by forest or green land 

with no appearance of 

backyard/garden.  

Sometimes the parcel 

could contain a small 

portion of 

backyard/garden 

relative to the total of 

the parcel.2 

 

Even the size of the house and the 

maintained portion of the property is very 

small compared to the area of the forest, the 

parcel should be classified as low-density 

residential.3 

Medium-

Density 

Residential 

Under 

Development 

A house is visible in 

the parcel that is under 

development  

 

If there is a completed house with grass on 

the property it should be considered 

complete and classified as Medium Density 

Residential. If the house does not appear 

complete or there is no grass where there 

should be, it should be classified as Under 

Development.  

 

 

                                                           
2 This is an additional clarification to the problem. 
3 This is the change in the rule of the original manual land use classification. 



75 
 

Table B-3: Exemptions and special cases in land use classification. 

Example Class Reasoning 

Airport Commercial Airports provide services similar to Commercial parcels, 

where people are constantly visiting the parcel. Visually 

they are similar as they both include large paved areas 

such as parking lots and a large building.  

 

Fire station Commercial Although functionally different from Commercial 

parcels, they are very similar in the imagery.  

 

Graveyard Protected Areas 

and Recreation 

Graveyards and cemeteries are visually similar to parks, 

where there are paths for people to walk and grass 

fields. The only visual difference is that there are pieces 

of stone (headstones) scattered across the fields and 

there is no sports equipment.  

 

Water Tower Protected Areas 

and Recreation 

Water towers can be visually similar to parks as they 

can have large grassy areas surrounding the tower. If the 

water tower is in a parcel without much grassed area, it 

may be classified as Commercial instead.  

 

Commercial 

Forest – Post-

Harvest 

Various If the harvested forest appears to be converted into 

agriculture, classify as Agriculture. If it shows signs of 

urban development, it should be classified as Under 

Development. If it appears to be replanted and is still 

being used as a commercial forest, classify as Protected 

Areas and Recreation.  

 

Catwalk Transportation The paths between houses, or catwalks, are similar to 

roads, although a little smaller. A path through a park or 

green space would not be considered transportation.  

 

Walking paths Protected Areas 

and Recreation 

Walking paths in the area can often be found under 

large electrical transmission lines. The transmission 

lines and towers account for a small portion of the 

parcel, and therefore simply appear as grassy corridors 

through subdivisions, similar to parks.  

 

Church Commercial Churches are visibly similar to Commercial parcels 

because they are a building which has a parking lot and 
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some property. Functionally they are also similar as 

people will visit a church for a relatively short period of 

time, similar to a business.  

 

Artifacts N/A The parcel data is not perfect and has artifacts from 

either previous versions, or mistakes during creation. 

Some artifacts have little impact on the data, while 

others have large impacts. The most frequent example is 

a single parcel being divided into multiple parcels by the 

artifacts.  

 

Artifacts – Splits N/A When a parcel is divided by artifacts all segments 

should be classified as the original type if suitable. If a 

segment can clearly be classified as another land use 

type it should be done. For example, if a Low Density 

Residential parcel is divided into three pieces, two 

covering the house and one covering a forest at the back 

of the property, the two on the house should be Low 

Density Residential and the one on the forest should be 

Protected Areas and Recreation.  

 

Artifacts – 

Slivers  

N/A Another form of artifact is a sliver. These sliver parcels 

are very thin and long. Examples can be a few 

centimeters wide but almost a kilometer long. Sliver 

parcels should be ignored and not classified if noticed.  

 

Mixed Parcels N/A Occasionally parcels will contain multiple land use 

types other than the previously mentioned scenarios. For 

example a parcel may contain a house and land on one 

half and part of a waterbody on the other half. In these 

scenarios where there is no clear majority of land use 

type the following order of priority should be used: 

Medium Density Residential > High Density 

Residential > Low Density Residential > Commercial > 

Industrial > Institution > Transportation > Under 

Development > Agriculture > Protected Areas and 

Recreation > Water  

 

Future 

Development 

N/A In the scenarios where parcels have been created but no 

development has begun, classify the parcel based on the 



77 
 

currently present land use type. If the imagery shows 

evidence of development, then classify as Under 

Development.  

 

Note: The original tables were created by Smith (2017) and can be found in the Appendix section 

in his thesis paper. Footnotes are used to indicate modifications made to the original content. 
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Appendix C – Predictors of Land-Use and Land-Cover Change 

Table C-1: Names and Description of Predictors 

Name Description (unit) 

lu2015 2015 land-use of parcels in the Region of Waterloo 

lu2010 2010 land-use of parcels in the Region of Waterloo 

lu2006 2006 land-use of parcels in the Region of Waterloo 

lc2010 2010 land-cover of parcels in the Region of Waterloo 

lc2006 2006 land-cover of parcels in the Region of Waterloo 

DA_Area Area of a DA (km2) 

Parcel_Area Area of a parcel (km2) 

MeanDEM Mean DEM of a parcel (km) 

MeanSlope Mean slope of a parcel 

Ramp_dist Distance from the centroid of a parcel to the nearest fixed 

highway ramp (km) 

River_dist Distance from the centroid of a parcel to the nearest river 

(km) 

Water_dist Distance from the centroid of a parcel to the nearest water 

body (km) 

Wood_dist Distance from the centroid of a parcel nearest wooded 

area (km) 

LRoad_dist Distance from the centroid of a parcel to the nearest local 

road (km) 

MRoad_dist Distance from the centroid of a parcel to the nearest main 

road (km) 

lu4_dist Distance from the centroid of a parcel to the nearest 

commercial parcel (km) 

lu5_dist Distance from the centroid of a parcel to the nearest 

industrial parcel (km) 

lu8_dist Distance from the centroid of a parcel to the nearest 

protected area/recreational parcel (km) 
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lu9_dist Distance from the centroid of a parcel to the nearest 

agricultural parcel (km) 

DA_population_density Population density in a DA (population in DA/DA area) in 

2010 (person/km2) 

Residential_population_density Residential population density in a DA (population in 

DA/total residential areas in DA) in 2010 (person/km2) 

Change_Population The rate of change of population from 2006 to 2011 based 

on the DA a parcel resides 

Change_AveIncome The rate of change of average income from 2006 to 2011 

based on the DA a parcel resides  

F_lu1 Proportion of low-density residential parcels around a 

parcel  

F_lu2 Proportion of median-density residential parcels around a 

parcel  

F_lu3 Proportion of high-density residential parcels around a 

parcel  

F_lu4 Proportion of commercial parcels around a parcel  

F_lu5 Proportion of industrial parcels around a parcel  

F_lu6 Proportion of institution parcels around a parcel 

F_lu7 Proportion of transportation parcels around a parcel 

F_lu8 Proportion of protected area/recreation parcels around a 

parcel 

F_lu9 Proportion of agricultural parcels around a parcel 

F_lu10 Proportion of water parcels around a parcel 

F_lu11 Proportion of developing parcels around a parcel 

Note: Variables listed in this table are the variables actually being used to construct models 

in this study. Some variables have been created were excluded from model building since 

they are highly correlated with some variables listed in this table.  
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Appendix D – Additional Analysis Results 

Table D-1: Running time of methods with 10-fold CCV by land-use type.  

             Model                 

 

LUC (To) 

Running Time (second) 

MC LR GAM SA 

FB RB FB RB FB RB FB RB 

LDR n/a n/a 2.93 2.93 152.06 152.06 1.14 1.14 

MDR n/a n/a 6.21 3.56 2468.95 2816.7 4.56 1.24 

HDR n/a n/a 2.92 1.02 282.7 199.04 1.41 1.2 

COM n/a n/a 1.55 1.03 1127.83 3408.59 2 1.27 

IND n/a n/a 0.83 0.83 5 5 1.16 1.16 

INS n/a n/a n/a n/a n/a n/a n/a n/a 

TRANS n/a n/a 1.07 0.98 311.44 229.72 1.5 1.25 

REC n/a n/a 0.89 0.89 17.28 17.28 1.14 1.14 

AGR n/a n/a n/a n/a n/a n/a n/a n/a 

WAT n/a n/a 0.65 0.65 4.42 4.42 0.79 0.79 

UD n/a n/a 1.06 1.03 779.71 434.11 1.47 1.24 

Total 17.42 8.7 18.11 12.92 5149.39 7266.92 15.17 10.43 
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Table D-2: Absolute difference between averaged 10-fold CCV accuracies and overall 

accuracies of FB and RB training datasets in percentage (%). 

             Model 

LUC (To) 

Difference in averaged accuracy (%) 

MC LR GAM SA 

LDR 10.24 0 0 0 

MDR 38.39 1.18 5.04 0.38 

HDR 0.07 1.22 6.98 1.38 

COM 0.66 0.91 1.75 2.20 

IND 5.43 0 0 0 

INS 52.5 n/a n/a n/a 

TRANS 0.95 3.53 3.36 3.05 

REC 12.68 0 0 0 

AGR 2.6 n/a n/a n/a 

WAT 10 n/a n/a n/a 

UND 15.2 0.80 5.10 3.54 

Overall 4.72 0.73 2.78 1.32 

 

  



82 
 

Table D-3: Absolute difference between overall accuracies of final models derived from 10-fold 

CCV with FB and RB test datasets in percentage (%). 

             Model 

LUC (To) 

Difference in overall accuracy (%) 

LR GAM SA 

LDR 0 0 0 

MDR 2.20 4.48 0.11 

HDR 1.89 1.57 0.68 

COM 4.85 1.98 2.01 

IND 0 0 0 

INS n/a n/a n/a 

TRANS 2.83 3.98 2.46 

REC 0 0 0 

AGR n/a n/a n/a 

WAT n/a n/a n/a 

UD 1.53 3.87 6.28 

Overall 0.02 1.98 0.94 
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Table D-4: Absolute difference between averaged 10-fold SCV accuracies and overall 

accuracies of FB and RB training datasets in percentage (%). 

             Model 

LUC (To) 

Difference in averaged accuracy (%) 

MC LR GAM SA 

LDR 15.39 0 0 0 

MDR 40.15 0.29 6.09 1.10 

HDR 0.29 2.78 4.27 3.17 

COM 2.95 0.90 9.70 1.29 

IND 0.01 0 0 0 

INS 0 n/a n/a n/a 

TRANS 2.5 0.14 3.72 2.86 

REC 17.79 0 0 0 

AGR 6.65 n/a n/a n/a 

WAT 22.13 n/a n/a n/a 

UND 17.39 1.89 0.34 1.36 

Overall 0.01 0.55 1.86 0.19 
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Table D-5: Absolute difference between overall accuracies of final models derived from 10-fold 

SCV with FB and RB test datasets in percentage (%). 

             Model 

LUC (To) 

Difference in overall accuracy (%) 

LR GAM SA 

LDR 0 0 0 

MDR 1.47 0.73 0.11 

HDR 2.28 1.68 2.67 

COM 1.06 8.43 0.95 

IND 0 0 0 

INS n/a n/a n/a 

TRANS 2.58 0.65 1.70 

REC 0 0 0 

AGR n/a n/a n/a 

WAT n/a n/a n/a 

UD 0.63 3.08 0.72 

Overall 0.64 1.40 0.56 
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Appendix E – Coefficients of Significant Land-use Change Predictors 

In the following context, a smoothed term refers to a variable that was fit using a smoothing 

function to represent the non-linear relationship between it and the response variable in GAM. 

Table E-1: Coefficients of significant LU change predictors in final LR derived from CCV with 

RB test datasets. 

        Method 

Predictor 

Final LR 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 1.21     4.04 3.37  

lu2006_3 2.63  -1.36      

lu2006_4 1.11   -2.51     

lu2006_5   -1.13     -3.57 

lu2006_7        -2.71 

lu2006_8 1.53  2.75     -1.96 

lu2006_9        -2.07 

lu2006_11        -3.24 

lc2006_2 1.82 -4.23       

lc2006_3  -2.99       

lc2006_5  -3.74       

lc2006_6        -5.08 

lc2006_7  -3.77       

lc2006_8 2.32 -2.74       

lc2010_2  1.69 -1.42     1.47 

lc2010_3  3.47    -1.28  -1.03 

lc2010_5 1.06 2.33    0.97 4.40  

lc2010_6       4.45  

lc2010_7 2.62 5.01     6.51 -2.65 

lc2010_8 2.89     1.91  2.39 

ParcelArea   -48.15 -209.63  -17.55 -41.70 12.70 

DA_Area    -54.93     

MeanSlope        -0.59 

Wood_dist   -0.69     -0.67 

River_dist       2.11  

LRoad_dist  9.73  -6.63     

MRoad_dist 0.67       -1.42 

Ramp_dist  0.17       

lu4_dist -0.41 -6.01 -2.72 19.15  -1.16  -3.04 

lu5_dist         

lu8_dist 2.03     -3.44 15.49  

lu9_dist   -0.27      

Residential_ 

Popn_Density 

 0.03       

DA_Popn_ 

Density 

  -1.43x10 - 4     2.42 x10 - 4 

Change_ 

AveIncome 

   -1.02     

F_lu1        3.10 

F_lu2  -1.37       

F_lu7  -2.56       

F_lu9    -2.69     

F_lu11        -1.77 
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Table E-2: Coefficients of significant LU change predictors in final LR derived from CCV with 

FB test datasets. 

        Method 

Predictor 

Final LR 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 1.21 -4.43    2.71 3.37  

lu2006_3 2.63 -2.59 -1.49      

lu2006_4 1.11 -2.93 -0.52 -2.47  1.78   

lu2006_5   -1.27     -3.69 

lu2006_7  -1.81    -1.29  -3.55 

lu2006_8 1.53       -2.80 

lu2006_9    1.75    -2.18 

lu2006_11  -2.07 -1.05     -3.39 

lc2006_2 1.82 -1.65       

lc2006_3  -1.50       

lc2006_4  -1.17       

lc2006_5  -1.56       

lc2006_6    -2.16     

lc2006_7  -1.92       

lc2006_8 2.32 -1.52 -1.74      

lc2010_2  0.78      2.06 

lc2010_3  2.39  -0.98  -1.85  -0.90 

lc2010_5 1.06 1.97  0.61  0.52 4.40 -1.47 

lc2010_6  -1.05     4.45  

lc2010_7 2.62 3.91  0.61   6.51 -2.86 

lc2010_8 2.89 1.21    2.09  1.51 

ParcelArea   -0.01 -48.91  -40.99 -41.70 5.19 

DA_Area    -28.73     

MeanSlope        -3.52 

MeanDEM  -3.54 5.94   -9.62  -9.18 

Wood_dist  0.33 -0.70     -0.72 

River_dist       2.11  

Water_dist  0.32      0.52 

LRoad_dist  6.47  -9.23  2.41   

MRoad_dist 0.68   1.26     

Ramp_dist      0.08   

lu4_dist -0.41 -10.42 -2.78 8.69  -0.86  -1.33 

lu5_dist         

lu8_dist 2.03 -1.71 1.05   -3.80 15.49  

lu9_dist   -0.22 0.18     

Residential_ 

Popn_Density 

-0.04  -0.04 0.03     

DA_Popn_ 

Density 

 -1.31x10 - 4 -1.49x10 - 4     2.74x10 - 4 

F_lu1        2.48 

F_lu2        1.46 

F_lu7  0.83      1.25 

F_lu8   3.94   3.00   

F_lu9        2.30 

F_lu11  0.84    0.76   
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Table E-3: Coefficients of significant LU change predictors in final GAM derived from CCV 

with RB test datasets. 
               Method 

Predictor 

Final GAM 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 1.22     4.56  2.16 

lu2006_3 2.67  -1.52      

lu2006_4 0.98  -0.84 -3.79     

lu2006_5   -1.51      

lu2006_8 1.54        

lu2006_9        -1.39 

lu2006_11        -2.07 

lc2006_2 1.76       2.48 

lc2006_3        3.54 

lc2006_5        2.59 

lc2006_7 0.66       2.18 

lc2006_8 2.61       2.28 

lc2010_2   -2.18 4.85     

lc2010_3  3.28 -2.05 3.80    -2.41 

lc2010_5 0.96 2.85 -0.82 3.52  1.45  -1.25 

lc2010_6      2.14   

lc2010_7 2.66 4.51  5.52  1.76  -3.69 

lc2010_8 2.37 -2.34  4.51     

ParcelArea   S S  S  S 

DA_Area   S S     

MeanSlope        S 

MeanDEM   S     S 

Wood_dist   S     S 

River_dist        S 

LRoad_dist S   -9.98  S   

MRoad_dist S     S  S 

Ramp_dist  S       

lu4_dist  S S S  S  S 

lu5_dist    S     

lu8_dist      S  S 

Residential_Popn_Density S  S S    S 

DA_Popn_Density        S 

F_lu2  -1.81  -1.14     

F_lu11        -2.09 

Note: The symbol “S” in the table indicates that the predictor is considered significant as a smoothed term. 
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Table E-4: Coefficients of significant LU change predictors in final GAM derived from CCV 

with FB test datasets. 
               Method 

Predictor 

Final GAM 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 1.22 -3.76  -1.24  2.08   

lu2006_3 2.67 -2.66 -1.65      

lu2006_4 0.98 -2.74 -1.05 -4.51     

lu2006_5   -1.81     -3.68 

lu2006_7    -1.46  -2.00  -3.99 

lu2006_8 1.54       -3.54 

lu2006_9   -3.44     -3.52 

lu2006_11   -1.32 -2.00    -4.41 

lc2006_2 1.76 -2.11       

lc2006_3  -1.94       

lc2006_4  -1.87       

lc2006_5  -1.88       

lc2006_7 0.66 -1.93       

lc2006_8 2.61 -1.92       

lc2010_2  -0.41 -2.23 2.28     

lc2010_3  1.17 -1.09 1.09  -0.98  -2.53 

lc2010_5 0.96 1.90  1.18  0.82  -2.63 

lc2010_7 2.66 4.32  2.65  0.88  -4.76 

lc2010_8 2.37  -1.20 2.59  1.61   

ParcelArea   -6.83 S  S  S 

MeanSlope  S       

MeanDEM   S   S  S 

Wood_dist  S S     S 

River_dist        S 

Water_dist  S  S     

LRoad_dist S S  S  S   

MRoad_dist S   S  S  S 

Ramp_dist  S  S    S 

lu4_dist  S S S  S  S 

lu5_dist    S     

lu8_dist  S    S  S 

lu9_dist   S S     

Residential_Popn_Density S  S      

DA_Popn_Density  S S      

Change_AveIncome   S S     

Change_Popn  S      S 

F_lu2        S 

F_lu11  0.69       

Note: The symbol “S” in the table indicates that the predictor is considered significant as a smoothed term. 
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Table E-5: Coefficients of significant LU change predictors in final SA derived from CCV with 

RB test datasets. 
               Method 

Predictor 

Final SA 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 0.79 -2.09    0.91 1.87 -0.67 

lu2006_3 1.36  -0.85      

lu2006_4 0.61 -1.04  -1.27     

lu2006_5   -1.08     -2.58 

lu2006_7   0.88  2.60 -0.99 1.30  

lu2006_8 0.80  0.92     -0.66 

lu2006_9 1.56    1.90  1.01 -2.11 

lu2006_11 0.54       -1.96 

lc2006_2 1.15    2.77    

lc2006_3     2.51    

lc2006_5     2.32  -1.48  

lc2006_6        -1.63 

lc2006_7       -1.16  

lc2006_8 0.85      -1.42  

lc2010_2  1.42 -1.19  1.40    

lc2010_3  2.42  -0.79  -0.76  -0.62 

lc2010_4         

lc2010_5 0.58 1.86    0.62 2.43  

lc2010_6       1.88  

lc2010_7 1.01 2.12   -1.33  3.25 -0.91 

lc2010_8 1.11 0.96 -1.00   0.57   

ParcelArea   -49.28 -1.05x10 2 6.42  -19.21  

MeanSlope   -0.13      

MeanDEM      -3.85   

Wood_dist   -0.35  0.78    

River_dist  -0.42     0.88  

MRoad_dist 0.26       -1.16 

lu4_dist  -3.13 -1.22 1.66 -24.36 -1.10  0.47 

lu5_dist         

lu8_dist 0.68     -1.36 3.07  

lu9_dist   -0.27      

Residential_Popn 

_Density 

  -0.02      

DA_Popn_Density        1.21x10 - 4 

F_lu7        0.81 

F_lu9     0.90    
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Table E-6: Coefficients of significant LU change predictors in final SA derived from CCV with 

FB test datasets. 
               Method 

Predictor 

Final SA 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 0.79 -1.92  0.43   1.87 -0.95 

lu2006_3 1.36 -0.60 -0.81      

lu2006_4 0.61 -0.73  -1.20    -1.04 

lu2006_5   -0.76     -2.59 

lu2006_7     2.60 -1.11 1.30 -2.39 

lu2006_8 0.80       -1.94 

lu2006_9 1.56   0.57 1.90  1.01 -1.17 

lu2006_10  -0.46       

lu2006_11 0.54 -0.34      -2.02 

lc2006_2 1.15 -0.64   2.77    

lc2006_3  -0.40   2.51    

lc2006_5  -0.52   2.32  -1.48  

lc2006_6  -0.92      -1.87 

lc2006_7  -0.68     -1.16  

lc2006_8 0.85 -0.38     -1.42  

lc2010_2  0.80 -1.26  1.40    

lc2010_3  1.66  -0.65  -1.03  -0.70 

lc2010_5 0.58 1.56  0.29  0.30 2.43 -0.68 

lc2010_6  -1.07     1.88  

lc2010_7 1.01 1.85  0.29 -1.33  3.25 -2.01 

lc2010_8 1.12 1.22    0.59   

ParcelArea   -75.41 -18.69 6.42 -23.15 -19.21 2.12 

DA_Area    -26.90     

MeanSlope        -0.16 

MeanDEM  -2.13  2.66  -4.14   

Wood_dist  0.28 -0.45  0.78    

River_dist       0.88  

Water_dist  -0.15       

LRoad_dist  0.576  -2.46     

MRoad_dist 0.26 -0.26  0.28    -0.80 

Ramp_dist      0.04   

lu4_dist  -4.65 -1.90 1.47 -24.36    

lu5_dist         

lu8_dist 0.68 -0.59    -1.93 3.07  

lu9_dist         

Residential_Popn 

_Density 

 -0.02 -0.02 0.02     

DA_Popn_Density  -0.65x10 - 4 -1.16x10 - 4     0.98x10 - 4 

Change_AveIncome  -0.20       

Change_Popn  -0.03       

F_lu3      0.93   

F_lu7   0.54 0.49     

F_lu9     0.90    

F_lu11      0.37   
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Table E-7: Coefficients of significant LU change predictors in final LR derived from SCV with 

RB test datasets. 

        Method 

Predictor 

Final LR 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 1.49 -3.45   4.04  3.51  

lu2006_3 3.87  -1.30      

lu2006_4 1.74   -2.73     

lu2006_5   -1.11     -3.21 

lu2006_7        -2.50 

lu2006_8 1.57       -1.89 

lu2006_9     1.79   -2.00 

lu2006_11 1.49    1.34  1.66 -2.89 

lc2006_6        -4.75 

lc2006_8 1.06        

lc2010_2  1.34 -1.49 1.10    1.39 

lc2010_3  3.49   -1.37   -1.16 

lc2010_5 0.77 1.89   0.88  4.35  

lc2010_6 0.59      4.37  

lc2010_7 1.08 3.56  0.93   6.39 -2.72 

lc2010_8 1.67   1.39    2.41 

ParcelArea 24.30  -46.73 -45.64 -12.75  -3.88 12.38 

MeanSlope -0.21   0.41    -0.63 

MeanDEM    9.70     

Wood_dist   -0.92      

River_dist       2.30  

LRoad_dist    -7.23     

MRoad_dist 0.76        

lu4_dist -0.42 -4.87 -3.02 13.83 -38.12 -2.05  -3.27 

lu5_dist     24.05    

lu8_dist      -3.06 15.36  

lu9_dist    0.33     

Residential_ 

Popn_Density 

     -0.04   

DA_Popn_ 

Density 

  -1.64x10 - 4     2.44x10 - 4 

Change_ 

AveIncome 

   -1.19     

F_lu1        3.91 

F_lu2 -1.52        

F_lu8    -3.91     

F_lu11        -1.85 
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Table E-8: Coefficients of significant LU change predictors in final LR derived from SCV with 

FB test datasets. 
        Method 

Predictor 

Final LR 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 1.49 -4.36 -1.54   2.89 3.51  

lu2006_3 3.87 -2.43 -0.62   1.90   

lu2006_4 1.74 -2.80 -1.14 -2.43     

lu2006_5        -4.07 

lu2006_7  -1.55    -1.27  -3.75 

lu2006_8 1.57       -3.08 

lu2006_9    2.23    -1.81 

lu2006_11 1.49 -2.00 -1.17    1.66 -3.68 

lc2006_2  -1.65 1.41      

lc2006_3  -1.42       

lc2006_4  -1.11       

lc2006_5  -1.50       

lc2006_6       4.35  

lc2006_7  -1.82     4.37  

lc2006_8 1.06 -1.38     6.39  

lc2010_2  0.81      2.00 

lc2010_3  2.48  -0.98  -1.84 -3.88 -0.90 

lc2010_5 0.77 2.04  0.54  0.53  -1.47 

lc2010_6 0.59 -1.00  1.90     

lc2010_7 1.08 3.88  0.61    -2.69 

lc2010_8 1.67 1.33    2.16 2.30 1.12 

ParcelArea   -110.10 -60.91  -43.29  5.03 

DA_Area 24.30   -30.89  30.50   

MeanSlope -0.21       -0.34 

MeanDEM      -9.38  -10.43 

Wood_dist  0.37 -0.86    15.36 -1.12 

Water_dist  -0.42      0.72 

LRoad_dist  6.21  -1.00  2.67   

MRoad_dist 0.76   1.38     

Ramp_dist      0.07   

lu4_dist -0.42 -10.28 -3.07 10.34 -38.12 -1.14   

lu5_dist  0.45   24.05    

lu8_dist  -1.79 1.46   -3.90   

lu9_dist    0.26    0.54 

Residential_ 

Popn_Density 

 -0.03 -0.03 0.03     

DA_Popn_ 

Density 

 -1.32x10 - 4 -1.62x10 - 4     2.40x10 - 4 

Change_Popn  -0.18       

F_lu1  -0.77      1.77 

F_lu2        1.24 

F_lu7  0.78       

F_lu8   -4.02   2.79   

F_lu11      0.94   
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Table E-9: Coefficients of significant LU change predictors in final GAM derived from SCV 

with RB test datasets. 
               Method 

Predictor 

Final GAM 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2  -4.56 -1.45   5.00   

lu2006_3 2.90  -0.89      

lu2006_4 1.00 -4.81 -1.51 -3.95     

lu2006_5        -3.36 

lu2006_7        -2.44 

lu2006_8 1.74   -2.50     

lu2006_9        -2.55 

lu2006_11 1.41       -3.38 

lc2006_2 1.50        

lc2006_3 1.46        

lc2006_4         

lc2006_5 0.91        

lc2006_6        -5.49 

lc2006_7         

lc2006_8 1.28        

lc2010_2   -2.06 3.08     

lc2010_3  2.68 -1.98 1.46     

lc2010_5 0.92 2.18 -0.68 1.63    -1.83 

lc2010_6 0.58       -1.08 

lc2010_7 1.11 4.27  2.66  1.96  -3.49 

lc2010_8    3.12  2.89  2.18 

ParcelArea   S   S  S 

DA_Area 35.23  S      

MeanSlope        -0.64 

MeanDEM   S      

Wood_dist   -2.01      

River_dist        S 

Water_dist  S    S   

LRoad_dist S     S   

MRoad_dist S     S   

Ramp_dist         

lu4_dist -0.39 S S S    S 

lu5_dist         

lu8_dist    S  S  S 

lu9_dist         

Residential_Popn_Density   S   S  S 

DA_Popn_Density        S 

Change_AveIncome    S     

Change_Popn         

F_lu1  S       

F_lu2         

F_lu11         

Note: The symbol “S” in the table indicates that the predictor is considered significant as a smoothed term. 
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Table E-10: Coefficients of significant LU change predictors in final GAM derived from SCV 

with FB test datasets. 
               Method 

Predictor 

Final GAM 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2  -3.96 -1.87 -1.54     

lu2006_3 2.90 -3.13 -1.19      

lu2006_4 1.00 -2.91 -1.98 -4.79     

lu2006_5        -2.87 

lu2006_7      -2.77  -3.32 

lu2006_8 1.74       -2.28 

lu2006_9   -3.52     -2.42 

lu2006_11 1.41  -2.06 -2.32    -3.03 

lc2006_2 1.50 -1.86       

lc2006_3 1.46 -1.58       

lc2006_4 0.91 -1.55       

lc2006_5  -1.64       

lc2006_7  -1.70       

lc2006_8 1.28 -1.60       

lc2010_2  -0.69  2.43     

lc2010_3  0.90  1.11  -1.02  -2.31 

lc2010_5 0.92 1.80  1.17  0.78  -2.38 

lc2010_7 0.58 4.11  2.59  0.78  -3.98 

lc2010_8 1.11 -0.63 -1.22 2.75  1.58   

ParcelArea   -73.74 S  S   

DA_Area 35.23 S       

MeanSlope  S       

MeanDEM      S   

Wood_dist  S S S    S 

Water_dist  S       

LRoad_dist S S  S  S  S 

MRoad_dist S   S  S  S 

Ramp_dist    S     

lu4_dist -0.39 S S S  S  S 

lu5_dist    S     

lu8_dist  S    S  S 

lu9_dist    S     

Residential_Popn_Density  S S      

DA_Popn_Density   S S     

Change_AveIncome   S S     

Change_Popn  S  S    S 

F_lu2        S 

Note: The symbol “S” in the table indicates that the predictor is considered significant as a smoothed term. 
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Table E-11: Coefficients of significant LU change predictors in final SA derived from SCV with 

RB test datasets. 
               Method 

Predictor 

Final SA 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 0.90 -2.09   2.36 1.05 1.91  

lu2006_3 1.33  -0.75      

lu2006_4 0.55 -1.04  -1.29     

lu2006_5 1.30       -1.88 

lu2006_6     7.33    

lu2006_7   1.10  2.99 -0.88 1.36 -1.47 

lu2006_8 0.63  1.78     -1.00 

lu2006_9 1.56  3.04  1.66  1.07 -1.13 

lu2006_11 0.48      0.80 -1.47 

lc2006_2 1.28    2.83  -1.72  

lc2006_3 0.96    2.44  -1.35  

lc2006_5     2.23  -1.58  

lc2006_7 0.45      -1.25  

lc2006_8 0.87    2.03  -1.57  

lc2010_2  1.42 -1.04      

lc2010_3  2.42  -0.77  -0.73 3.75 -0.49 

lc2010_5 0.67 1.86    0.60 2.37 -0.39 

lc2010_6 -0.50      1.83  

lc2010_7 1.24 2.12   -1.10  3.22 -1.82 

lc2010_8 1.18 0.96       

ParcelArea 8.13  -39.48 -101.00 6.73  -20.11 6.14 

DA_Area 1.56        

MeanSlope        -0.20 

Wood_dist   -0.60  0.92    

Water_dist   0.26      

River_dist  -0.42     0.91  

LRoad_dist        0.84 

MRoad_dist 0.23       -0.79 

lu4_dist -0.35 -3.13 -2.20 2.06 -25.33 -1.46  -1.29 

lu5_dist    0.53 0.48   -1.18 

lu8_dist 0.77    -1.69 -1.14 2.68  

DA_Popn_Density   -1.21x10 - 4      

F_lu1    -1.70     

F_lu2     -0.39    

F_lu7 1.00        

F_lu11        -2.10 
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Table E-12: Coefficients of significant LU change predictors in final SA derived from SCV with 

FB test datasets. 
               Method 

Predictor 

Final SA 

LDR MDR HDR COM IND TRA REC UND 

lu2006_2 0.90 -1.92 -0.84  2.36  1.91 -1.16 

lu2006_3 1.33 -0.60 -0.25     -1.15 

lu2006_4 0.55 -0.73 -0.76 -1.37    -2.56 

lu2006_5 1.30       -2.62 

lu2006_6     7.33   -1.96 

lu2006_7     2.99 -1.17 1.36 -0.99 

lu2006_8 0.63       -2.08 

lu2006_9 1.56   0.51 1.66  1.07  

lu2006_10  -0.46       

lu2006_11 0.48 -0.34     0.80  

lc2006_2 1.28 -0.64   2.83  -1.72  

lc2006_3 0.96 -0.40   2.44  -1.35  

lc2006_5  -0.52   2.23  -1.58  

lc2006_6  -0.92      -1.90 

lc2006_7 0.45 -0.68     -1.25  

lc2006_8 0.87 -0.38   2.03  -1.57  

lc2010_2  0.80 -1.42      

lc2010_3  1.66  -0.68  -1.01 3.75 -0.71 

lc2010_5 0.67 1.56    0.34 2.37 -0.66 

lc2010_6 -0.50 -1.07     1.83  

lc2010_7 1.24 1.85 -0.31 0.24 -1.10  3.22 -1.88 

lc2010_8 1.18 1.22 -0.75   0.63   

ParcelArea 8.13  -6.77 -20.99 6.73 -24.66 -20.11  

DA_Area 1.56   -21.53     

MeanSlope        -0.18 

MeanDEM  -2.13       

Wood_dist  0.28 -0.51  0.92    

River_dist       0.91  

Water_dist  -0.15       

LRoad_dist  0.58  -3.73  1.45   

MRoad_dist 0.23 -0.26  0.43    -0.62 

Ramp_dist      0.04   

lu4_dist -0.35 -4.65 -2.35 2.53 -25.33 -0.52   

lu5_dist     0.48    

lu8_dist 0.77 -0.59  -0.85 -1.69 -1.96 2.68 0.81 

lu9_dist    0.14     

Residential_Popn 

_Density 

 -0.02 -0.02 0.02     

DA_Popn_Density  -0.65x10 - 4 -1.05x10 - 4     9.30x10 - 5 

Change_AveIncome  0.20       

Change_Popn  -0.03       

F_lu2     -0.39   0.31 

F_lu3      1.07   

F_lu7 1.00        

F_lu11   -0.82   0.37   

 

 



97 
 

Appendix F – Procedures of Mapping Land Use with Statistical Methods 

When all final models of a single method, LR, GAM or SA, have been applied to all parcels in a 

study area, each of the final models will produce a probability of a certain type of LU change for 

each parcel. Thus, a parcel will have eleven probabilities produced by eleven final models of a 

method that correspond to eleven types of LU change. Among eleven final models applied to a 

parcel, those that produce LU change probabilities that exceed a predefined threshold (e.g., 0.5) 

will enter the competition of determining LU for a parcel. If none of the final models could 

produce a probability that is higher than a predefined threshold for a parcel, then the parcel will 

remain its previous LU. If only one final model among all eleven final models can produce a 

probability that is higher than a predefined threshold for a parcel, then the LU of the parcel will 

be determined by the final model. When there are several final models qualified for the entry and 

no exterior forces (e.g., LU planning and policies), the one with the highest probability 

determines the LU change of a parcel and others would provide options of LU change for the 

parcel in case the first priority has been withdrawn due to interference by exterior forces. For 

example, if the threshold of LU change is 0.5 and three final models produce probabilities that 

exceed the threshold for a parcel, then the LU of the parcel will be determined by the final model 

with the highest probability among the three under the circumstances of no intervention and 

restrictions from LU policies and government. The other two will kept as options of LU change. 

Every parcel in the study area will experience the above process to determine if its LU 

will change or remain unchanged. For MC, it will directly produce transition probability matrices 

instead of final models. If prediction of LUs is entirely based on probabilities in the matrix, LU 

changes will be predicted perfectly since there is no randomness involved. Therefore, a random 

probability will be generated for each parcel and the Roulette Wheel selection approach will be 

used to set ranges for probability of each type of LU change. If the random value generated for a 

parcel resides in a range of a LU change, the LU type will be determined to be the specific LU 

type. Prediction accuracy of each individual method for the entire study area can be calculated 

using the real LU data. Then, the method that makes the best prediction of LU changes can be 

determined. In addition, a map can be constructed for each of the methods to show predicted LUs 

in the study area.  These maps can help visually identify locations of LU changes occurred and 

the trend of LU changes. 
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In addition to the LU competition within final models of a method, a competition also 

exists among the four methods, MC, LR, GAM and SA. MC is usually uncompetitive to LR, 

GAM and SA in modelling LU change. However, it has the advantage of modelling LU changes 

of rare cases. For instance, there are insufficient LU change data for institution and agriculture in 

our study. Hence, only MC can model these two LU changes. 

As mentioned in Section 2.2.4, the LU type of a parcel will be determined by the highest 

probability, either exceeds or does not exceed a predefined threshold, produced by a final model 

for a single method. For convenience, let us call the final model of LR, GAM and SA with the 

largest probability within a method the ultimate model. Each parcel will have three ultimate 

models if LR, GAM and SA are all applied to the parcel. If none of ultimate models produces a 

probability that is greater than a threshold, the LU of the parcel will remain unchanged. If only 

one ultimate model produces a probability that is higher than the threshold, the LU type of the 

parcel will be determined by the ultimate model. If two or more ultimate models produce 

probabilities that exceed a predefined threshold for a parcel, the LU type of the parcel will be 

determined by the ultimate model with the highest probability. Let us call the ultimate model that 

determines the LU type of a parcel the end model. Moreover, the probability of an end model 

will be compared to probabilities produced by MC. If the probability of an end model is greater 

than a threshold and all probabilities produced by MC, the LU of a parcel will be determined by 

the end model. If any probability produced by MC is higher than a threshold and the probability 

of an end model for a parcel, the higher probability from MC determines the LU of the. 

Otherwise, the parcel remains its previous LU type. Attention needs to be paid to parcels 

classified as rare LU classes since they may not be able to be modeled by LR, GAM and SA. 

Therefore, LU types classified by MC alone for these parcels may have a greater chance to be 

misclassified even with high probabilities of changing. For example, parcels classified as 

institution by MC in our study may require additional visual inspection since 1) this LU change 

rarely happens, 2) institutions may require special locations (e.g., elementary schools usually 

locate near to or in the residential area), and 3) the 10-fold CV prediction accuracy of LU change 

to institution from MC is above 50 percent, which means a parcel has 50 percent chance being 

classified as institutions. Moreover, the real probability of converting LU to agriculture is very 

low. Therefore, rational decision of whether agree or disagree with a LU change to these two 

types of LUs needs to be made carefully. Overall, parcels may be modeled by different methods. 
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The same process goes through every parcel to produce a LU map for a study area. If MC, 

LR, GAM and SA are used to project future LU change, which means future LU changes are 

unknown at this moment, the CSM produced until this point would be considered the optimal set 

of methods that best predicts LU changes in the area. If the four methods are used to predict 

known LUs, the predicted LUs will be compared to real LU data to assess the prediction 

accuracy of modelling LU change by the CSM. Furthermore, if an end model fails to make 

correct prediction under the condition that MC has lower probability than the end model does, 

the place that the best method for predicting LU change at a parcel goes to the next method that 

contains the ultimate model with the second highest probability. If all three ultimate models fail 

to model the LU change at a parcel, the chance of being the best method goes to the method that 

contains the final model with the highest probability excluding the ultimate model. This process 

continues until a method is found to produce a probability that is greater than a threshold and 

correctly predicts the LU change. Moreover, we can conclude which method can best model 

which type of LU change after finding the best method that models each parcel. Thus, a CSM 

that produces the highest accuracy of predicting LU change for all parcels in the study area can 

be determined. At the end, a LU map could be made to show the result of the CSM and be 

compared with LU maps produced by individual statistical methods. LU patterns can be revealed 

visually through LU maps. The misclassified LUs can be revealed by comparing a LU map 

constructed by real LU data and the LU map constructed by a CSM. 
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Appendix G – Review of Canonical Correlation Analysis 

Canonical correlation analysis (CCA), a multivariate method, is used to explore the 

relationships between two sets of variables (Härdle and Simar, 2007). Variables in the same set 

should be related and the two sets of variables should come from the same observations. CCA 

can work with both quantitative and qualitative data. It has been used to identify relationship 

between LU patterns and influential factors. However, it has rarely been used to classify LUCC 

with the exception of Lee et al. (1999).  

To understand how CCA works, let 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑝) and 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑞) be two 

sets of variables measured from the same observations where p ≤ 𝑞.The goal of CCA is to find a 

relationship between 𝑿 and 𝒀 through linear combinations of 𝑼 = 𝒂′𝑿 and 𝑽 = 𝒃′𝒀, where 𝒂 

and 𝒃 are vectors chosen to maximize the correlation (𝜌) between 𝑿 and 𝒀 (i.e., 𝜌 = 𝑐𝑜𝑟𝑟(𝑼, 𝑽)). 

In addition, 𝑼 and 𝑽 are called canonical variates. 𝑼 and 𝑽 contain p elements and q elements, 

respectively. The number of canonical pairs of 𝑼 and 𝑽 equals p. An CCA requires the following 

constraints to be satisfied: 1) 𝑉𝑎𝑟(𝑈𝑖) = 𝑉𝑎𝑟(𝑉𝑖) = 1  where 𝑖 = 1, 2, … , 𝑝 ; 2) 𝐶𝑜𝑣(𝑈𝑖) =

𝐶𝑜𝑣(𝑉𝑗) = 0 where = 1, 2, … , 𝑝 and 𝑖 ≠ 𝑗. 

In CCA the symbol ∑ is used to represent the variance-covariance matrix of 𝑿 and 𝒀. 

After conducting a series of tests, the relationship between 𝑿 and 𝒀 can be determined. In an 

example of both 𝑿 and 𝒀 containing two variables, ∑ can be expressed as 

∑ = (
∑11 ∑12

∑21 ∑22
) 

where ∑11 and ∑22 are variances of 𝑿 and 𝒀 respectively and ∑21′ = ∑12 is the covariance 

between 𝑿 and 𝒀. The standard deviations of 𝑼 and 𝑽are (𝒂′∑11𝒂)1/2 and (𝒃′∑22𝒃)1/2, 

respectively. The term 𝒂′∑12𝒃 represents the covariance of 𝑼 and 𝑽. Therefore, the correlation 

between 𝑈 and 𝑉 can be expressed as 

𝜌(𝒂, 𝒃) =
𝒂′∑12𝒃

(𝒂′∑11𝒂)1/2(𝒃′∑22𝒃)1/2
 .                                       

Lagrange multipliers are used to solve 𝒂 and 𝒃. The following equation can be constructed: 

             𝜌(𝒂, 𝒃) = 𝒂′∑12𝒃 −
1

2
𝜆(𝒂′∑11𝒂 − 1) −

1

2
𝛾(𝒃′∑22𝒃 − 1).                    
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Steps for solving this equation are as follows: 

1) Differentiating and equating to 0. 

                                            
𝜕𝜌

𝜕𝒂
= ∑12𝒃 − 𝜆∑11𝒂 = 𝟎                                                    (F.1) 

                                            
𝜕𝜌

𝜕𝒃
= ∑21𝒂 − 𝛾∑22𝒃 = 𝟎                                                    (F.2) 

2) Multiplying Equation (F.1) by 𝒂′ and Equation (F.2) by 𝒃′. 

                                            𝒂′∑12𝒃 − 𝜆𝒂′∑11𝒂 = 𝟎                                                     (F.3)                    

                                            𝒃′∑21𝒂 − 𝛾𝒃′∑22𝒃 = 𝟎                                                     (F.4)                                                                         

3) By solving Equations (F.3) and (G.4), 𝜆 = 𝛾 = 𝒂′∑12𝒃 = 𝜌, then Equations (F.1) and 

(F.2) become  

                                            ∑12𝒃 − 𝜌∑11𝒂 = 𝟎                                                             (F.5)                                                          

                                            ∑21𝒂 − 𝜌∑22𝒃 = 𝟎  𝟎                                                        (F.6)                                                             

4) Multiplying Equation (F.5) by 𝜌∑11
−1

 and Equation (F.6) by ∑11
−1∑12∑22

−1
. 

                                            𝜌∑11
−1∑12𝒃 − 𝜌2𝑰𝒂 = 𝟎                                                   (F.7)                                 

                                ∑11
−1∑12∑22

−1∑21𝒂 − 𝜌∑11
−1∑12𝒃 = 𝟎                                    (F.8)                       

Adding Equations (F.7) and (F.8), gives 

                                          (∑11
−1∑12∑22

−1∑21 − 𝜌2𝑰)𝒂 = 𝟎                                      (F.9)                    

            Then, 𝜌2 is the eigenvalue of ∑11
−1∑12∑22

−1∑21 and 𝒂 is the corresponding 

            eigenvector. Similarly, 

                                         (∑22
−1∑21∑11

−1∑12 − 𝜌2𝑰)𝒃 = 𝟎                                     (F.10)                          

            Then, 𝜌2 is the eigenvalue of ∑22
−1∑21∑11

−1∑12 and 𝒃 is the corresponding 

            eigenvector. 

Therefore, the maximum correlation 𝜌 = (∑11
−1∑12∑22

−1∑21)1/2 = (∑22
−1∑21∑11

−1∑12)1/2. 

The largest correlation found in the first iteration of the above steps is denoted as 𝜌1, which is 

also called the first canonical correlation coefficient of 𝑈1 = 𝒂1
′ 𝑿 and 𝑉1 = 𝒃1

′ 𝒀. After finding 

𝑈1, 𝑉1 and 𝜌1, it is easy to get 𝑈2, 𝑉2 and 𝜌2 by replicating the above processes. Similarly, 𝜌2 is 

the largest correlation between 𝑈2 and 𝑉2. It also can be seen as the second largest correlation in 

the first iteration. 𝑈2 and 𝑉2 have to be uncorrelated with 𝑈1 and 𝑉1. The above processes can be 

continued until a threshold has met.  
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Solutions are usually not the same for different combinations of canonical variates. 

Similar to Principle Component Analysis (PCA), only pairs of canonical variates with high 

correlations are considered significant to the model. Interpretation of canonical variates requires 

attention since the original variables comprising canonical variates can be highly correlated with 

each other. Correlations of canonical variables with original variables can help determine which 

original variable contributes the most to the correlation. Furthermore, by comparing canonical 

variables from the same set of original variables (i.e., either response or covariates), the 

association between original variables can be found.  

For the experiment done for exploring CCA’s ability to model LUCC, two sets of 

variables have been created using a modified version of the study done by Lee et al. (1999). A 

set of variables contains the indicator of LUCC and another set of variable contains mean values 

of each predictor. When CCA performs classification duties, the theory behind it is very similar 

to discriminate analysis (DA). The experiment was done in R with self-programmed codes. The 

results turned out to be unrealistically low, which are much worse than a random classification 

result.  

 

 

 

 

 

 

 

 

 

 

 


