
Multiscale GARCH Modeling and

Inference

by

Lichen Chen

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2018

c© Lichen Chen 2018



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision

of the Examining Committee is by majority vote.

External Examiner: Lars Stentoft

Associate Professor and

Canada Research Chair in Financial Econometrics

Dept. of Economics and

Dept. of Statistics and Actuarial Science

Western University

Supervisors: Adam Kolkiewicz

Associate Professor

Dept. of Statistics and Actuarial Science

Tony S. Wirjanto

Professor

Dept. of Statistics and Actuarial Science and

School of Accounting and Finance

Internal Members: Martin Lysy

Associate Professor

Dept. of Statistics and Actuarial Science

Greg Rice

Assistant Professor

Dept. of Statistics and Actuarial Science

Internal-External Member: Pierre Chaussé
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Abstract

The motivation behind this thesis is the shortage of formal statistical inference

methods in the literature for testing whether a time series model is consistent

with a sample at multiple sampling frequencies simultaneously. Most existing

statistical methods for time series data focuses on a particular frequency of sam-

ple. However, in the statistical modeling of financial time series and applications,

having a modeling being consistent with data at multiple frequencies can provide

better interpretation of the underlying phenomenon and provide convenience in

practical applications.

Mantegna and Stanley (1995[49], 1996[50]) and Ghashghaie, et.al.(1996)[27] are

among the pioneers in pointing out the distinctive scaling behavior in financial

asset return distributions. Mandelbrot, et.al. (1997)[47] explicitly pointed out the

need to look at financial time series at multiple frequencies and use the scaling

property of the data to help identify a model. Engle and Patton (2001)[22] raised

the question of whether a GARCH(1,1) model, acceptable for modeling return

volatility at each single time scale from 1-day to 1-week, is consistent across scales.

It is the purpose of this thesis to propose formal statistical inference methods for

testing whether a given time series of ARMA and GARCH type is consistent with

a sample at multiple frequencies simultaneously. To do so, we first examine the

problem of model temporal aggregation. Then, based on temporal aggregation

relations, we propose a novel statistical inference methods based on empirical like-

lihood with estimating equations. The proposed method can be used to formally

test hypotheses of the following types: (i) whether a model with a fixed set of

parameter values is consistent with sample at multiple frequencies; (ii) whether

the model itself is capable of being consistent with the sample at multiple frequen-

cies. Some related problems on GARCH model parameterization and parameter

estimation with temporally aggregated data are also addressed.

iv



Acknowledgements

I would like to begin by thanking my PhD supervisors, Professor Adam Kolkiewicz

and Professor Tony S. Wirjanto, for their education, their encouragements, and

their support. In fact, all the essential ideas in this thesis come from the enormous

amount of discussions I had with them. Their broad knowledge and great patience

are unparalleled. I also want to thank my PhD thesis committee, Professor Lars
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Chapter 1

Introduction

1.1 Motivations

Over the years, financial time series has become available at increasingly higher

frequencies. This increase in information is happening along with, and perhaps

is also a driving force behind, the desire to have models that are able to capture

the features of data at multiple time scales and fit data consistently across mul-

tiple sampling frequencies. This is in contrast to the more traditional modeling

approaches which usually focus on one time scale with a single sampling frequency.

The desire for multiscale models is a consequence of observing data at multiple fre-

quencies. Financial time series sampled at different time scales exhibit distinctive

behaviors in terms of their statistical properties such as temporal dependency and

statistical distribution. Traditionally favored single scale models have been found

to be inadequate for modeling the multiscale features in financial time series.

The desire for multiscale models is also driven by practical needs. A brief reflec-

tion on the goals of financial modeling would help us appreciate the importance of

having models that work well on multiple time scales. In options pricing, the pric-

ing and hedging problems concern the dynamics of the underlying process at two

different time scales. Financial risk management requires forecasting volatilities at

different horizons. In all of these tasks, we would prefer having only one model for

different horizons as using different models for different horizons is inconvenient.

Inspired by the increased popularity of the multiscale perspective in financial time

series analysis, we devote this thesis to the study of particular issues in financial

1



time series modeling and inference which are of a multiscale nature, namely, mod-

eling and testing the scaling behavior of the linear dependency structure of ARMA

and GARCH models.

1.2 Interests in the Multiscale Behavior of Asset

Returns in the Literature and the Focus of

This Thesis

The interests in the statistical property of asset price changes over multiple time

scales can be traced back at least to Mandelbrot’s (1963)[48] modeling of the

distribution of cotton price change over multiple time periods. Since then, the

multiscale perspective had been an essential part of financial modeling. A surge

of interests in multiscale modeling may be linked to a series of publications in

the leading scientific journal Nature, including Mantegna and Stanley (1995[49],

1996[50]) and Ghashghaie, et.al.(1996)[27]. With larger data sets and a wider

range of sample frequencies, the authors presented some empirical patterns of

financial asset returns over different scales, also called the scaling behavior of

returns.

Motivated by these findings, many authors subsequently began to approach the

problem of multiscale modeling of financial time series from various perspec-

tives. For instance, Muller, et.al.(1997)[55] discovered asymmetric correlations

between long and short horizon volatilities and proposed a Heterogeneous ARCH

(HARCH) model to capture this phenomenon. Mandelbrot, et.al. (1997)[47] pro-

posed a model, called a multifractal model of asset returns (MMAR), to capture

the moment scaling property in exchange rate returns 1. Andersen and Bollerslev

(1998)[5] investigated the ability of the GARCH(1,1) model to capture volatility

persistence from intradaily to weekly scales. LeBaron (2001)[43] gave intuitive

insights into capturing the scaling behavior with a stochastic volatility model with

three components. Dragulescu and Yakovenko (2002)[15] considered a multiscale

goodness-of-fit of the Heston model in terms of its unconditional distributions.

Eberlein and Ozkan (2003)[19] considered time consistency of Levy models, also

in terms of distributional properties. In summary, a common theme in all of these

1See also Augustyniak, et. al. (2018)[2] for a recent development following the ideas of
multifractal models.
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studies is that the scaling behavior of empirical return distribution and/or return

volatility dependency can be used to identify the statistical model for asset returns.

Despite the interests in the multiscale modeling of financial time series, there is no

clear consensus emerging on a particularly preferred modeling framework or sta-

tistical method to focus on. Therefore, instead of asking which model we should

use for the purpose of multiscale modeling, we find it more fruitful to use the mul-

tiscale perspective to improve the understanding and application of model classes

that have already been widely used. In particular, this thesis focuses on ARMA

and GARCH type models in studying the problems of temporal aggregation and

the formal testing of scaling behavior of their linear dependency structure over

different time scales.

We focus on the linear dependency structure for the following reasons. Firstly, lin-

ear dependency structure is a general concept which is applicable to any stationary

non-deterministic process. In fact, the fundamental Wold Decomposition The-

orem of stationary time series is phrased in term of linear dependency. See, for

example, Brockwell and Davis (1991)[7], Theorem 5.7.1. Secondly, the scaling re-

lation of the linear dependency structure of a stationary ARMA process can be

derived by using well-establish techniques from the temporal aggregation litera-

ture. See, for example, Wei (2005)[73] and Silvestrini and Veredas (2008)[66]. In

contrast, distributional properties are generally not robust to aggregation. Thirdly,

many important concepts relevant to practical applications are based on the lin-

ear dependency structure, including autocorrelations, impulse response, and per-

sistence measures. These are closely related to the linear forecasting of financial

time series, which is among the ultimate goals of the modeling task.

Within the ARMA and GARCH model frameworks, the scaling property of the

linear dependency structure is important for accurate forecasting over different

horizons because of the following relation between scale and horizon. Consider an

AR(1) process

Xt − φ1Xt−1 = Zt,

where {Zt} ∼ WN(0, σ2
Z) is a driving white noise process with σ2

Z < ∞. On

the one hand, from standard time series analysis texts, such as Brockwell and

Davis(1991)[7], we know that the parameter φ1 is the characteristic root of the

autoregressive polynomial. It characterizes the persistence of the process, which

is also the rate of decay of the autocorrelation function of the process. The h-step
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prediction of Xt based on information up to time t in this model is

Xt+h|t = φh1Xt.

Thus, an accurate estimate of φh1 for h = 1, 2, 3, · · · is important for making accu-

rate predictions into the future.

On the other hand, we can derive the h-scale dynamics of the process Xt through

a repeated substitution and obtain

Xt − φh1Xt−h = Zt + φ1Zt−1 + · · ·+ φh−1
1 Zt−h+1.

We observe that, on the h-scale, the process Xt preserves the AR(1) structure

(with an additional moving-average part) and the h-scale autoregressive coefficient,

φh1 , coincides with the h-step prediction coefficient of the process on the original

scale. Therefore, an accurate estimate of the parameter in the h-scale process is

important for making an accurate h-step prediction.

This basic relation between horizon and scale not only highlights the importance

of an accurate statistical characterization of the process at multiple time scales for

the purpose of multiple step predictions, it also provides us with a way to improve

multiple step predictions through examining the model at multiple time scales.

To realize this idea, we need to consider the following two problems:

• Temporal aggregation: given a model at a high frequency, what is the

statistical representation of the model at lower frequencies?

• Scale consistency: when a model is fitted to data at different scales/fre-

quencies, are the fitted models consistent with each other according to their

temporal aggregation relation?

To provide the readers with some examples, we give a brief review of studies on

each of these problems from the literature.
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The Temporal Aggregation Problem

Consider a GARCH(p,q) process with i.i.d. innovations {ηt}:

εt =
√
htηt,

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j,
(1.1)

with the usual assumptions about the model parameters α0 > 0, αi ≥ 0, i =

1, · · · , q, and βj ≥ 0, j = 1, · · · , p, in order to ensure that the conditional variance

process {ht} remains positive. Here, the observable εt represents the demeaned

asset returns.

In empirical applications, GARCH models have been specified for data at different

frequencies, most commonly for daily and weekly data, and are often found to

provide a good fit to data at each of these frequencies. Drost and Nijman (1993)[16]

addressed the question of whether a specification of the above strong GARCH

process (featuring the i.i.d assumption for the innovation terms) is consistent with

a strong GARCH specification at the weekly scale. They showed that the strong

GARCH specification is not closed under temporal aggregation: the aggregation of

a daily scale strong GARCH yields a so-called weak GARCH at the weekly scale.

In short, {ht} generally no longer has the conditional variance interpretation in

the weak GARCH representation, and it only amounts to a linear projection of

{ε2t} on the past of the process2. Moreover, the orders p and q may change with

the level of aggregation. In addition, as we will emphasize, the usual assumptions

on the model parameters need to be relaxed as well. Since {ε2t} in the GARCH

model admits an ARMA representation, the problem of temporal aggregation of

GARCH processes is closely related to temporal aggregation of ARMA processes.

The Scale Consistency Problem

Drost and Nijman (1993)[16] showed that the parameters in a weekly scale GARCH

aggregated from a daily GARCH can be determined from the daily GARCH pa-

rameters. They derived a set of formulas in the GARCH(1,1) case which are

known as the Drost-Nijman formula. For example, the sum α1 + β1 in a weekly

GARCH(1,1) process is shown to be the fifth power of the corresponding sum in

2We only give a brief idea about the weak GARCH process here, and the exact definition will
be provided later in the relevant chapters.
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the daily GARCH(1,1) process. On the one hand, one can estimate a GARCH(1,1)

model with a high frequency data, say daily, and then convert the estimated pa-

rameters to a lower frequency, say, weekly, using the Drost-Nijman formula. On

the other hand, one can estimate a GARCH(1,1) model directly with weekly data.

By comparing the converted and the estimated weekly GARCH model parameters,

one can examine whether a GARCH(1,1) model consistently describes the data at

daily and weekly scales or not. Engle and Patton (2001)[22] found with a sample

of Dow Jones Industrial Average (DJIA) index returns that a GARCH(1,1) model

fitted to daily returns and a GARCH(1,1) model fitted to several-day returns

could give apparently different estimates which vary considerably across sample

frequencies. As an important measure of the persistence of the impact of a shock

to volatility, volatility half-life is defined as the time taken for the volatility to

move halfway back towards its unconditional mean following a deviation from it.

In the GARCH(1,1) model, volatility half-life is given by τ = ln(1
2
)/ln(α1 +β1)+1.

The estimates of τ obtained in Engle and Patton (2001)[22] using one day to five

day returns are 73, 168, 183, 508, and 365 days, respectively3. Importantly, these

estimated values would be expected to be constant across different sampling fre-

quencies if the GARCH(1,1) model had been consistent with the sample across

scales.

The Goal and Objectives of the Thesis

Our goal in this thesis is to carry the multiscale modeling perspective to the

practice of the ARMA and GARCH modeling. The objectives of this thesis are

(i) to study members in the GARCH family that add to the practical value of

modeling dependency in financial asset return volatilities at multiple scales, and

(ii) to construct statistical tests that are capable of determining whether a weak

ARMA structure is compatible with a sample at multiple scales.

To give a brief overview of the tests for scale consistency proposed in this thesis,

consider the following second order stationary AR(p) process {Xt, t = 0, t ∈ Z}
3The volatility half-life estimates are cited from Engle and Patton (2001)[22]. While the au-

thors do not report interval estimates of the half-life measure and mention that further studies are
needed to assess their statistical and forecast significance, there may be some intrinsic difficulties
in accurately estimating the half-life measure. These include (i) unknown and possibly intractable
distribution of plug-in estimator of half-life using estimated GARCH model parameters, (ii) pos-
sibly infinite sample moments due to the construction of the half-life measure, and (iii) intrinsic
bias in small samples. These issues may be addressed by using non-parametric method such as
bias-corrected bootstrap or a highest density region method proposed by Hyndman (1996)[36].
We cite the half-life estimates as an intuitive way of highlighting the scale-inconsistency issue as
in Engle and Patton (2001)[22] and thus elaborate on its estimation methods.
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given by

Xt − φ1Xt−1 − ...− φpXt−p = Zt, (1.2)

where {Zt} ∼ WN(0, σ2
Z) is the driving white noise process with σ2

Z <∞. Let us

assume that one estimates this model with a given daily (d) frequency sample at

the highest available frequency (i.e. daily), denoted by scale m1 = 1, and obtain

estimates:

θ̂(d) = (φ̂
(d)
1 , · · · , φ̂(d)

p , σ
2(d)
Z ).

Let us assume that for an application purpose, one is interested in the weekly

scale dynamics of the process. One thus estimates the model again with weekly

(w) data, obtained through a temporal aggregation of the original daily data, and

an appropriately aggregated model. One obtains a set of parameters for the weekly

scale model, at scale m2 = 5:

θ̂(w) = (φ̂
(w)
1 , · · · , φ̂(w)

p , σ
2(w)
Z ).

As we will show, under the postulated model, the parameters of the model at

daily and weekly scales satisfy a certain functional relation which can be derived

by using temporal aggregation results. Denote by fd,w(θ(d)) the function that

maps the daily scale model parameters to the weekly scale model parameters. If

the postulated model is true, then one would have

θ̂(w) = fd,w(θ̂(d)). (1.3)

The relation (1.3) provides us with a theoretical foundation for deciding whether

the postulated model is consistent with the samples at two different scales. In

particular, as we will show, the functional relation between the characteristic roots

of the AR polynomials at different scales is a simple power relation. We are going

to introduce novel tests which exploit this type of functional relations and utilize

the samples from multiple frequencies.
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1.3 Contributions and Organization of the The-

sis

The contents of this thesis are divided into two parts. Part I, which contains

Chapter 2 and Chapter 3, focus on the temporal aggregation problem of ARMA

and GARCH models, and related issues of model parameterization. Part II, which

contains Chapter 4, Chapter 5, and Chapter 6, focus on our proposed statistical

tests of scale consistency based on the framework of empirical likelihood with

estimating equations. Chapter 7 concludes the thesis and discusses an avenue for

some future research.

In Part I, we make the following contributions. In Chapter 2, we propose

a numerical method for computing parameter values in temporally aggregated

GARCH(p,q) models with general orders p and q, extending the formula-based

method of Drost and Nijman (1993)[16] for GARCH(1,1) model. In Chapter 3,

we propose to use the component GARCH models of Ding and Granger (1996)[14]

and Engle and Lee (1999)[21] as reparameterization of the GARACH(p,q) model

in some situations where the GARCH(p,q) model under general parameter con-

straints having a singularly shaped parameter space.

In Part II, we propose a novel statistical inference framework based on temporal

aggregation and empirical likelihood for testing whether a ARMA or GARCH type

model is consistent with a sample at multiple frequencies.
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1.4 Notations

Table 1.1: Notations

X A generic random variable (r.v.)
{Xt} or {Xt}t∈Z A generic time series/discrete-time stochastic process

or ARMA process, where Z is the set of integers
γX(h) Autocovariance coefficient of {Xt} at lag h
ρX(h) Autocorrelation coefficient of {Xt} at lag h
{Zt} A generic white noise (WN) process
{ηt} Strong white noise process with unit variance
κη Kurtosis coefficient of ηt
{εt} Innovations with a GARCH process
ht Conditional variance
νt = ε2t − ht Driving white noise process in a GARCH process
h Time lag or forecast horizon
m Level of aggregation
{X̄(m)tm}t∈Z Temporally aggregated process at level m of {Xt},

flow variable case
{Xtm}t∈Z Temporally aggregated process at level m of {Xt},

stock variable case
{Z̄(m)tm}t∈Z Driving WN process in a temporally aggregated ARMA

process at level m, flow variable case
{Ztm}t∈Z Driving WN process in a temporally aggregated ARMA

process at level m, stock variable case
Θ Parameter set
θ Element of the parameter set
θ0 True parameter value
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Chapter 2

Temporal Aggregation of ARMA

and GARCH Processes

This chapter contains two parts. In the first part, consisting of Section 2.2 and

Section 2.3, we summarize some relevant existing results on temporal aggregation

of ARMA and GARCH type processes. The focus is on the structure of the

aggregated processes and their statistical representations. In particular, we are

interested in the relations between the parameters in the original model and the

aggregated model. In the second part, Section 2.4, we make contributions in giving

new results on calculating the parameters in the aggregated processes beyond the

GARCH(1,1) case as in Drost and Nijman (1993)[16]. Some of the results in this

chapter are used later in the thesis.

2.1 Preliminaries

Aggregation schemes

The investigation will involve two types of commonly used aggregation schemes,

called flow and stock variable aggregations, respectively. A flow variable is mea-

sured over an interval of time and represents the change of a quantity over the

interval of time. A stock variable is measured at one specific time and represents

the existing quantity at that point in time. A simple way to understand the two

definitions in the context of modeling financial time series is to take asset returns

as an example of a flow variable and asset price as an example of a stock variable.
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Let {Xt, t = 0,±1,±2, ...} be a generic time series observed at a high frequency.

We are interested in studying the resulting aggregated or low frequency series at

an aggregation level m, where m ≥ 2 is an integer. The aggregated processes over

m periods areX̄(m)tm = Xtm +Xtm−1 + ...+Xtm−m+1, flow variables,

X(m)tm = Xtm, stock variables.

Definitions of white noise

White noise sequences are fundamental building blocks of time series models. In

many textbooks, for example, Brockwell and Davis(1991)[7], white noise is defined

as a sequence of uncorrelated random variable, indexed by time, and with a con-

stant finite second moment. It can be further specified in three alternative ways

as in our Definition 1 below. These specifications are often not emphasized in the

literature because a clear distinction among these definitions might not be of much

interest and importance in the context of modeling the conditional mean as in the

ARMA process. It is, however, crucial for the study of temporal aggregation of

the GARCH processes.

Definition 1 (White Noise) Let {Zt, t = 0,±1,±2, ...} be a stochastic process

with mean 0 and a covariance function

γ(h) = Cov(Zt, Zt−h) =

σ2 if h = 0,

0 if h 6= 0.

The process {Zt} is

1. a strong white noise process if the random variables Zt are independently and

identically distributed with mean 0 and variance σ2
Z ;

2. a semi-strong white noise process if the random variables Zt form a martingale

difference sequence (m.d.s.) relative to its own past values, i.e. E(Zt+1|Zs,−∞ <

s ≤ t) = 0;

3. a weak white noise process if the random variables Zt are only assumed to be

uncorrelated.

In this thesis, we use {ηt} to denote a strong white noise sequence with a unit

variance.
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From the definitions of the strong, semi-strong, and weak white noises, it is clear

that we have the following inclusion relation:

{Strong WN} ⊆ {Semi-Strong WN} ⊆ {Weak WN}

Remark: The definitions of weak and strong white noises are given in some

texts on time series analysis, such as Brockwell and Davis(1991)[7] and Francq

and Zakoian (2010)[26]. The definition of a semi-strong white noise is not so

commonly formulated in textbooks but is of interest in econometric time series

analysis due to its link to rational expectations. It will play an important role in

the definitions of the ARMA and GARCH processes given shortly below.

Definition 2 (Gaussian Time Series): The process {Xt, t = 0,±1,±2, ...}
is a Gaussian time series if and only if the distribution functions of {Xt} are

multivariate normal.

It is well known that for random variables having a joint normal distribution, zero

correlation is equivalent to independence. Therefore, for Gaussian white noises,

the three definitions (strong, semi-strong, and weak) are equivalent to each other.

2.2 Temporal Aggregation of ARMA Processes

2.2.1 Definitions of strong, semi-strong, and weak ARMA

processes

In analogy to the definitions of white noises, we have three definitions for ARMA

processes.

Definition 3 (ARMA process): Let {Xt, t = 0,±1,±2, ...} be a (second order)

stationary stochastic process given by

Xt − φ1Xt−1 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q, (2.1)

where {Zt} ∼ WN(0, σ2
Z) is the driving white noise process with σ2

Z <∞. We say

{Xt} is

1. a strong ARMA(p,q) process if {Zt} is a strong white noise process;

2. a semi-strong ARMA(p,q) process if {Zt} is a semi-strong white noise process;

3. a weak ARMA(p,q) process if {Zt} is a weak white noise process.
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As a note, {Xt} is an ARMA(p,q) process with mean µ if {Xt−µ} is an ARMA(p,q)

process (with mean zero).

The definitions of strong/semi-strong/weak ARMA processes are parallel to those

of the white noise processes. It is clear that strong/semi-strong/weak ARMA(p,q)

process also form an inclusion relation

{Strong ARMA} ⊆ {Semi-Strong ARMA} ⊆ {Weak ARMA}

Equation (2.1) can be written in a more compact form as

φ(L)Xt = θ(L)Zt, t = 0,±1,±2, ..., (2.2)

where φ and θ are the pth and qth degree polynomials

φ(z) = 1− φ1z − ...− φpzp (2.3)

and

θ(z) = 1 + θ1z + ...+ θqz
q, (2.4)

respectively, and L is the lag operator.

We assume that the polynomials φ(z) and θ(z) have no common zeros. We assume

that φ(z) has all roots outside the unit circle so that the ARMA process {Xt} is

a causal function of {Zt}, which implies that φ(z) has no roots on the unit circle

and so that {Xt} is second-order stationary. Lastly we assume that θ(z) has all

roots outside the unit circle so that the ARMA process {Xt} is invertible.

To derive the temporal aggregated process of {Xt} at the aggregation level m, we

follow the procedure as summarized in Silvestrini and Veredas (2008)[66].

2.2.2 Deriving temporally aggregated ARMA processes

Flow variable aggregation

We start the discussion by expressing the AR polynomial φ(L) in terms of its

inverted roots δj’s as φ(L) =
∏p

j=1(1− δjL). Next, we define polynomials

Tf (L) =

[
1− Lm

1− L

] p∏
j=1

[
1− δmj Lm

1− δjL

]
(2.5)
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and

Ts(L) =

p∏
j=1

[
1− δmj Lm

1− δjL

]
(2.6)

to be used for flow and stock variable aggregations, respectively.

Let us first consider the case of the flow variable aggregation. Multiply both sides

of the ARMA model in (2.2) by Tf (L), we have

Tf (L)φ(L)Xt = Tf (L)θ(L)Zt

1− Lm

1− L
·

p∏
j=1

[
1− δmj Lm

1− δjL

] p∏
j=1

(1− δjL)Xt = Tf (L)Θ(L)Zt

p∏
j=1

(1− δmj Lm) ·

[(
m−1∑
i=0

Li

)
Xt

]
=

p∏
j=1

(
m−1∑
i=0

δijL
i

)
·

q∑
l=0

θlL
l ·

m−1∑
i=0

Li · Zt[
φ̄(B)

] [
X̄(m)tm

]
= θ̄(B)Z̄(m)tm

(2.7)

with δ0 = 0 and θ0 = 1, where B is the lag operator on the aggregated scale. For

the AR part, we have {X̄(m)tm} being the aggregated (flow) variable and φ̄(B)

defines the AR polynomial of the aggregated ARMA model in this flow variable

case. For the MA part, we have Z̄(m)tm being a (weak) white noise sequence with

respect to the aggregated scale {tm, t ∈ Z} and θ̄(B) defines the MA polynomial.

We can see that the aggregated model has the same number of AR lags as the

original (or disaggregated) model, with inverted roots being mth power of the

corresponding inverted roots of the original AR polynomial.

The MA part of the aggregated process is more complicated than the AR

part. By inspection, the lag of the aggregated MA polynomial is (at most)

b[(p+ 1)(m− 1) + q]/mc where b·c indicates the floor function. The exact or-

der of the aggregated processes depends on the values of the parameters and the

level of aggregation. Define v̄(m)tm := θ̄(B)Z̄(m)tm. The coefficients of the aggre-

gated MA polynomial can be calculated (in general, numerically) by matching the

autocorrelation function of {v̄(m)tm} and that of an MA process with the corre-

sponding order. Since the autocovariance function of the MA part is nonzero at

only a finite number of lags q∗, the MA coefficients of the aggregated process can

be computed by solving a system of q∗ nonlinear equations. For example, in the

case of the ARMA(2,2) model, this leads to a system of two equations, matching

the autocovariances of {v̄(m)tm} at lags 1 and 2 (in the aggregated scale) with the

corresponding autocovariances of an MA(2) process.
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Stock variable aggregation

Next, we consider a stock variable aggregation. By replacing the polynomial Tf

with the polynomial Ts and going through the same calculations as in (2.7), we

can derive the aggregated ARMA process in the stock variable case as

φ̄(B) ·Xtm = θ̄(B)Ztm. (2.8)

Compared to the flow variable case, we have a simpler expression in the stock

variable case because the polynomial [1− Lm]/[1− L] is omitted.

In practice, whether we should consider a flow or stock variable aggregation de-

pends on a specific application problem. For example, a flow variable aggregation

is the relevant case for studying asset returns, while a stock variable aggregation

is the relevant case for studying asset prices or index levels.

The weak ARMA processes considered in this thesis

As we can see from the definition of weak ARMA processes, the class of weak

ARMA processes contains potentially a wide range of processes, including tempo-

ral and marginalization of (strong) ARMA and vector ARMA processes, bilinear

processes, switching-regime models, and threshold models. We refer readers to

Franq and Zakoian (1998)[25] for examples in each of these cases and estimation

methods under the general weak ARMA assumption. In this thesis, we restrict our

attention to the weak ARMA processes resulting from the temporal aggregation

of strong ARMA processes. In particular, the weak ARMA processes we consider

are resulting from a temporal aggregation of strong ARMA processes assumed for

the highest frequency observed sample.
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2.3 Temporal Aggregation of GARCH Processes

In order to have a closed-under-aggregation property, Drost and Nijman (1993)[16]

defined a more general class of GARCH models, called the weak GARCH models,

by generalizing the ARCH and GARCH models as defined in Engle (1982)[20] and

Bollerslev (1986)[5], respectively. The commonly used definition of the GARCH

model in the literature, the one with independent normalized innovations, is named

a strong GARCH model by Drost and Nijman (1993)[16]. In addition, they also de-

fined a class of semi-strong GARCH models which lie between the strong GARCH

model and the weak GARCH model. The definitions of the three classes of GARCH

models are given below.

2.3.1 Definitions of strong, semi-strong, and weak

GARCH processes

Definition 4 (GARCH Process): Let {εt, t ∈ N} be a second order stationary

process with finite fourth moments. Denote A(L) = 1 +
∑q

i=1 αiL
i and B(L) =

1 −
∑p

i=1 βiL
i, and let the sequence {ht, t ∈ N} be defined as a second order

stationary solution of

B(L)ht = α0 + {A(L)− 1}ε2t . (2.9)

It is assumed that B(L) and B(L) + 1 − A(L) have roots outside the unit circle

and hence are invertible. The sequence {εt, t ∈ N} is defined to be generated by

1. a strong GARCH(p,q) process if α0, A(L), and B(L) can be chosen such that

zt := εt/
√
ht ∼ D(0, 1), (2.10)

and {zt, t ∈ N} is an i.i.d. process. We use D(0, 1) to denote a distribution with

mean zero and unit variance;

2. a semi-strong GARCH(p,q) proces if α0, A(L), and B(L) can be chosen such

that

E[εt|εt−1, εt−2, ...] = 0,

E[ε2t |εt−1, εt−2, ...] = ht;
(2.11)
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3. a weak GARCH(p,q) process if α0, A(L), and B(L) can be chosen such that

P [εt|εt−1, εt−2, ...] = 0,

P [ε2t |εt−1, εt−2, ...] = ht,
(2.12)

where P [xt|εt−1, εt−2, ...] denotes the best linear predictor of xt in terms of 1, εt−1,

εt−2,..., ε2t−1, ε2t−2, ..., i.e.

E[(xt − P [xt|εt−1, εt−2, ...])ε
r
t−i] = 0 for i ≥ 1 and r = 0, 1, 2. (2.13)

Notice that ht is driven by its own past values and past values of εt. If we assume

that the conditioning σ-algebra Ft is generated by the past values of the process

plus the initial value of ht, then ht is a measurable function with respect to the

filtration {Ft}. This measurability condition of ht with respect to the conditioning

filtration is important and is needed to show that ht is the conditional variance of

εt in the strong GARCH definition.

For the strong and semi-strong GARCH, we have

E[εtεt−k] = E[Et−1[εtεt−k]] = E[εt−kEt−1[εt]] = E[εt−k · 0] = 0 for k > 0.

Thus strong and semi-strong GARCH processes are semi-strong white noise pro-

cesses. For the weak GARCH process, it follows from definition that they are weak

white noises processes.

Just as the definitions for white noise and ARMA processes, strong/semi-

strong/weak GARCH process form an inclusion relation: a strong GARCH is

also a semi-strong GARCH, and a semi-strong GARCH is also a weak GARCH.

Arguably, the most used version of the GARCH model in empirical research is the

strong GARCH model.

2.3.2 Examples of semi-strong and weak GARCH pro-

cesses resulting from temporal aggregation

It is well known since Bollerslev (1986)[5] that a GARCH process admits a ARMA

representation of its squared observations ε2t . The squared observations ε2t in a
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GARCH(p,q) model can be written as

ε2t = α0 +
r∑
i=1

(αi + βi)ε
2
t−i + νt −

p∑
j=1

βjνt−j, (2.14)

where r = max(p, q), αi = 0 for i > q, and βj = 0 for j > q, and νt = ε2t − ht.
The process {νt} is an uncorrelated sequence for all of the three definitions of

GARCH processes (i.e. strong/semi-strong/weak). So a GARCH(p,q) process

can be written as an ARMA(r,p) process for its squared observations {ε2t}. The

sequence {νt} can thus be interpreted as the driving white noise of the GARCH

process. It can be derived from Definition 4 that, for the strong and semi-strong

GARCH processes, ht is the conditional expectation of ε2t with respect to the

natural filtration {Ft} where Ft := σ{εt, εt−1, ...}. Therefore, in the strong and

semi-strong GARCH processes, νt is a martingale difference sequences (MDS) with

respect to the natural filtration {Ft}, i.e.

E(νt|Ft−1) = 0.

In the weak GARCH process, ht is a linear projection of ε2t on the infinite di-

mensional Hilbert space spanned by all linear combinations of a constant and

εt−1, εt−2,..., ε2t−1, ε2t−2, .... So {νt} is also uncorrelated in weak GARCH but not

necessarily an MDS.

The representation in (2.14) is helpful for establishing an analogue between a

GARCH process and an ARMA process. Strong and semi-strong GARCH pro-

cesses are driven by a semi-strong white noise. A weak GARCH process is driven

by a weak white noise.

As an illustration of non-aggregation of strong GARCH models, consider the fol-

lowing two cases:

CASE 1: A strong ARCH(1) process aggregates to a semi-strong

ARCH(1) process but not a strong ARCH(1) procss under a stock vari-

able aggregation

Consider a strong ARCH(1) model of a stock variable:

εt =
√
htzt,

ht = α0 + α1ε
2
t−1, where α0 > 0, 0 < α1 < 1, zt ∼ i.i.d.(0, 1), E(z4

t ) <∞.
(2.15)
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By substitution (2.15) into itself we have

ε2t =
√
h2tz2t

=
√
α0 + α1ε22t−1z2t

=
√
α0 + α1h2t−1z2

2t−1z2t

=
√
α0 + α1(α0 + α1ε22t−2)z2

2t−1z2t

=
√
α0(1 + α1z2

2t−1) + α2
1ε

2
2t−2z

2
2t−1z2t.

(2.16)

The conditional mean and variance under the aggregated model are

E[ε2t|ε2t−2, ε2t−4, ...] =
√
α0(1 + α1z2

2t−1) + α2
1ε

2
2t−2z

2
2t−1E[z2t] = 0 (2.17)

and

E[ε22t|ε2t−2, ε2t−4, ...] =
(
α0(1 + α1E[z2

2t−1]) + α2
1ε

2
2t−2E[z2

2t−1]
)
E[z2

2t]

= α0(1 + α1) + α2
1ε

2
2t−2,

(2.18)

where we have used the fact that z2t and z2t−1 are independent of the variables in

the conditioning set {ε2t−2, ε2t−4, ...}. Thus the aggregated process is a semi-strong

ARCH(1) process with parameters α(2)0 = α0(1 + α1) and α(2)1 = α2
1.

However, the aggregated process is not a strong ARCH(1) process since the

rescaled innovations, z̃2t = ε2t/
√
α0(1 + α1) + α2

1ε
2
2t−2, are not i.i.d.. Although

they have a zero conditional mean and a unit conditional variance (and thus a

zero unconditional mean and a unit unconditional variance), the conditional fourth
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moment is

E[z̃4
2t|ε2t−2, ε2t−4, ...]

= E

[
ε42t

(α0(1 + α1) + α2
1ε

2
2t−2)2

|ε2t−2, ε2t−4, ...

]
= E

[
h2

2tz
4
2t

(α0(1 + α1) + α2
1ε

2
2t−2)2

|ε2t−2, ε2t−4, ...

]
= E[z4

2t]E

[
(α0 + α1ε

2
2t−1)2

(α0(1 + α1) + α2ε22t−2)2
|ε2t−2, ε2t−4, ...

]
= E[z4

2t]E

[
α2

0 + 2α0α1ε
2
2t−1 + α2

1ε
4
2t−1

(α0(1 + α1) + α2
1ε

2
2t−2

|ε2t−2, ε2t−4, ...

]
= E[z4

2t]E

[
α2

0 + 2α0α1h2t−1z
2
2t−1 + α2

1h
2
2t−1z

4
2t−1

(α0(1 + α1) + α2
1ε

2
2t−2)2

|ε2t−2, ε2t−4, ...

]
= E[z4

t ]

(
1 +

(E[z4
t ]− 1)α2

1(α0 + α1ε
2
2t−2)2

(α0(1 + α1) + α2
1ε

2
2t−2)2

)
.

(2.19)

In order for E[z̃4
2t|ε2t−2, ε2t−4, ...] to be a constant, we need to require either

(i) α1 = 0, or

(ii) E[z4
t ] = 1, or

(iii) (α0 + α1ε
2
2t−2)/(α0(1 + α1) + α2

1ε
2
2t−2) being a constant.

In case (i), we have no ARCH effect. In case (ii), we have 1 = E[z4
t ] =

(E[z2
t ])

2 + V ar[z2
t ], or V ar[z2

t ] = 0, or z2
t = constant a.s.. In case (iii), we have

ε22t−2 = constant a.s., which implies, by stationarity of εt, that ε2t = constant

a.s.. Since z2
t = ε2t/(α0 + α1ε

2
t−1), we have that z2

t = constant a.s.. All of these

cases lead to the conclusion of either no ARCH effect or that z2
t being a constant,

which is apparently not true in general. Therefore the aggregated process is not

a strong ARCH(1) process. But in this case, it can be seen that the aggregated

model is a semi-strong GARCH process.

CASE 2: A strong ARCH(2) process aggregates to a weak GARCH(1,2)

process which is not a semi-strong GARCH(1,2) process

Consider a strong ARCH(2) model of a stock variable under a stock variable

aggregation:

εt =
√
htzt,

ht = 0.05 + 0.1ε2t−1 + 0.12ε2t−2 where zt ∼ i.i.d.N(0, 1).
(2.20)
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Writing the process {ε2t} in the AR(2) form, we have

(1− 0.4L)(1 + 0.3L)ε2t = 0.05 + νt, (2.21)

where νt = ε2t − ht. Multiplying both sides of the last equation by (1 + 0.4L)(1−
0.3L), we have

(1− 0.16L2)(1− 0.09L2)ε2t = 1.4× 0.7× 0.05 + (1− 0.4L)(1 + 0.3L)νt. (2.22)

We omit the details of the next few steps which rely on the procedure to be

described in Section 2.3.2. In short, it can be shown that if one aggregates the

last AR(2) process at level m = 2, one obtains an ARMA(2,1) process given by

ε2(2)t − 0.25ε2(2)(t−2) + 0.144ε2(2)(t−4) = 0.49 + 0.0766ut,

where ut, ut−2, ut−4, ... is a white noise sequence at the 2-scale. Thus, the

aggregated strong ARCH(2) process at level m = 2 admits a weak GARCH(1,2)

representation with β(2)1 = −0.0766. However, a (semi-)strong GARCH(1,2)

process with a negative β parameter violates the necessary and sufficient con-

ditions for guaranteeing nonnegative conditional variance, as we will explain in

Section 3.1. Therefore, parameters in the aggregated ARCH(2) process are not

compatible with a (semi-)strong GARCH(1,2) process and thus it can only be a

weak GARCH(1,2) process.
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Interpretations of Semi-Strong and Weak GARCH Pro-

cesses

In the definition of semi-strong GARCH models, squared observations are as-

sumed to follow an ARMA structure in which the error sequence is assumed to

be an MDS. However, such models are not closed under aggregation. From the

ARMA model literature we know that only weak ARMA models, where innova-

tions are assumed to be serially uncorrelated, are closed under aggregation. (See,

for example, Meddahi and Renault(2004)[54]). Therefore, in order to have a model

structure closed under temporal aggregation, Drost and Nijman(1993)[16] defined

squared observations as following a weak ARMA structure, i.e., ARMA models in

which the error sequence is not assumed to be independent, nor even an MDS,

but only uncorrelated. However, this relaxed definition achieves closeness under

aggregation at the expense of losing the interpretation of ht as conditional vari-

ance; instead, ht is only the best linear prediction of future squared observation

based on past observations and past squared observations.

A natural question to ask is how can we construct weak GARCH models? As

strong GARCH models are, by definition, also weak GARCH models, it would

be more interesting to ask how to obtain strictly weak GARCH models which are

not strong or semi-strong GARCH models. The answer to this question can be

obtained from the last example, which shows that temporally aggregated strong

GARCH models are generally weak GARCH models which are not semi-strong.

Therefore, one can simulate from a strong GARCH model, then temporally aggre-

gate the simulated values, to obtain a sample from a strictly weak GARCH model.

However, the functional form of the conditional distributions (and thus the likeli-

hood function) of this weak GARCH model are generally not available analytically;

what is known is the relation between the model parameters of the original high

frequency strong GARCH model and the aggregated low frequency weak GARCH

model. These model parameters depict the linear dependency structure of the

process at each scale.
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2.3.3 Deriving temporally aggregated GARCH processes:

Drost-Nijman formula for the GARCH(1,1) Process

Given the structure of the temporally aggregated GARCH processes, we are in-

terested in deriving the model parameters in the temporally aggregated models.

Drost and Nijman (1993)[16] derived formula for GARCH(1,1). Let {εt, t ∈ Z}
be a weak GARCH(1,1) process with symmetric marginal distributions, ht =

ψ+βht−1+αy2
t−1, and an unconditional kurtosis coefficient κε, then the temporally

aggregated process in the case of flow variable aggregation, {ε̄(m)mt, t ∈ Z}, is a

symmetric weak GARCH(1,1) process with

h̄(m)mt = ψ̄(m) + β̄(m)h̄(m)m(t−1) + ᾱ(m)ε̄
2
(m)m(t−1),

and a kurtosis coefficient κ̄(m)ε where

ψ̄(m) = mψ
1− (β + α)m

1− (β + α)
, ᾱ(m) = (β + α)m − β̄(m), (2.23)

κ̄(m)ε = 3 + (κε − 3)/m+ 6(κε − 1)

× [m− 1−m(β + α) + (β + α)m][α− βα(β + α)]

m2(1− β − α)2(1− β2 − 2βα)
.

(2.24)

The parameter β̄(m) in (2.24) satisfies |β̄(m)|< 1 and is the solution of a quadratic

equation
β̄(m)

1 + β̄2
(m)

=
a(β, α, κε,m)(β + α)m − b(β, α,m)

a(β, α, κε,m)[1 + (β + α)2m]− 2b(β, α,m)
, (2.25)

with

a(β, α, κε,m) = m(1− β)2 + 2m(m− 1)
(1− β − α)2(1− β2 − 2βα)

(κε − 1)[1− (β + α)2]

+ 4
[m− 1−m(β + α) + (β + α)m][α− βα(β + α)]

1− (β + α)2
,

(2.26)

b(β, α,m) = [α− βα(β + α)]
1− (β + α)2m

1− (β + α)2
. (2.27)

From equation (2.23) we see that the it is easy to convert the sum α + β from

an aggregated (low frequency) model to the corresponding sum in a disaggregated

(high frequency) model. This is not true for the individual parameters β or α, as
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we can see from (2.25) that low frequency β depends on high frequency β through

a highly nonlinear relation which also involves other model parameters.

2.3.4 Deriving temporally aggregated GARCH processes:

general procedures for GARCH(p,q) Process

Squared observations in a GARCH(p,q) model admit an ARMA(r,p) representa-

tion with r = max(p, q). The AR coefficients of the ARMA(r,p) model are equal to

βi + αi and MA coefficients are equal to −βi. In principle, calculating parameters

in the aggregated GARCH processes can be done by applying the methods for

finding parameters in the aggregated ARMA processes to the ARMA representa-

tion of the GARCH processes. However, an additional complication arising in the

GARCH case is that the ARMA representation of the GARCH process is in terms

of squared observations, i.e., {ε2t}, and we need to find an ARMA representation for

the squared aggregated process, say, {(εt+ εt−1)2}, instead of {ε2t + ε2t−1}. One way

to accommodate the cross product terms like 2εtεt−1 is to group the cross-product

terms with the moving average terms. Under the symmetric GARCH assumption,

the cross product terms have mean zero and are uncorrelated with the moving

average terms.

Next, we first state and prove a theorem regarding the structure of aggregated

GARCH(p,q) processes. The theorem we state is a special case of Theorem 1 of

Drost and Nijman(1993)[16] and we simplify it to the case of interest to us, i.e.

a pure GARCH for the flow variable case. Next, we use a numerical example to

show how to derive the parameters in the aggregated GARCH(2,2) process. For a

general GARCH(p,q) process, there does not seem to be any straightforward way

to find parameters in the aggregated process.

Theorem 1 (Temporal aggregation of the GARCH(p,q) process, flow

variable) Let {εt} be a weak GARCH(p,q) process following (2.9), i.e. B(L)ht =

ψ + {A(L)− 1}ε2t . Then for any integer m ≥ 1, the aggregated process at level m

for a flow variable {ε̄(m)mt} is a weak GARCH(b (r+1)(m−1)+p
m

c, r) process.

Proof: First we write the GARCH process (2.9) in an ARMA form for its squared

observations

C(L)ε2t = ψ +B(L)νt,

where C(L) = B(L)−A(L) + 1, A(L) and B(L) are extended to a common order

r = max(p, q) with αi = 0 for i > q and βj = 0 for j > p, and νt = ε2t − ht.
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Without loss of generality, we assume p = q = r. Rewriting C(L) in terms of its

inverted roots δi’s, we have

p∏
i=1

(1− δiL)ε2t = ψ +B(L)νt. (2.28)

Then, multiplying both side of (2.28) by a polynomial∏p
i=1 (1 + δiL+ ...+ δm−1

i Lm−1)(1 + L+ ...+ Lm−1), we get

p∏
i=1

(1− δmi Lm)(ε2t + ε2t−1 + ...+ ε2t−m+1) =

p∏
i=1

(1 + δi + ...+ δm−1
i )mψ

+

p∏
i=1

(1 + δiL+ ...+ δm−1
i Lm−1)(1 + L+ ...+ Lm−1)B(L)νt.

(2.29)

Next, adding
∏p

i=1 (1− δmi Lm) · 2
∑m−2

i=1

∑m−1
j=i+1 εt−iεt−j to both sides of the last

equation, we obtain

p∏
i=1

(1− δmi Lm)(εt + εt−1 + ...+ εt−m+1)2

=

∏p
i=1 (1− δmi )∏p
i=1 (1− δi)

mψ

+

p∏
i=1

(1 + δiL+ ...+ δm−1
i Lm−1)(1 + L+ ...+ Lm−1)B(L)νt

+

p∏
i=1

(1− δmi Lm) · 2
m−2∑
i=0

m−1∑
j=i+1

εt−iεt−j.

(2.30)

From the LHS of (2.30) the AR part of the aggregated process has an order

p with inverted roots being the mth power of the corresponding inverted roots

of the disaggregated process. For the RHS of (2.30), we notice that νt−i and

εt−iεt−j are uncorrelated terms. The polynomial multiplying νt has an order of

p · (m − 1) + (m − 1) + p = (p + 1)(m − 1) + p and the polynomial multiplying

εtεt−1 is of an order of p ·m+ 1. Denote

vt =

p∏
i=1

(1 + δiL+ ...+ δm−1
i Lm−1)(1 + L+ ...+ Lm−1)B(L)νt

+

p∏
i=1

(1− δmi Lm) · 2
m−2∑
i=0

m−1∑
j=i+1

εt−iεt−j.

(2.31)

25



By inspection we have that {vt} is an ((p + 1)(m − 1) + p)-dependent

sequence and thus admits an MA(b (r+1)(m−1)+p
m

c) representation on the m-

scale. Therefore, a GARCH(p,q) process aggregated at level m admits an

ARMA(p, b (r+1)(m−1)+p
m

c) representation for its squared observations and thus is

a weak GARCH(b (r+1)(m−1)+p
m

c, p) process. And since we assume p = q = r, the

aggregated process can also be denoted by GARCH(b (r+1)(m−1)+p
m

c, r).
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2.4 Computing the Coefficients in Aggregated

GARCH(p,q) Processes

2.4.1 Fourth moment of GARCH process and autocorrela-

tion function of squared observations of the GARCH

process

Existence of fourth moment

In the definition for the weak GARCH process, it is assumed that the GARCH pro-

cess has a finite unconditional fourth moment. The finite fourth moment condition

is also required to define the autocorrelation function of squared observations in

a GARCH process. These quantities are used in computing parameters of tempo-

rally aggregated GARCH process. In addition, the finite fourth moment condition

is needed for the limiting theorems involving squared observations of GARCH pro-

cesses. Therefore, we summarize some relevant results on the fourth moment and

the autocorrelation function of the squared observations of the GARCH processes.

He and Terasvirta (1999a)[34] derived an expression of the fourth moment and

autocorrelation function of squared observations of GARCH(p,q) process. Based

on the expression of the fourth moment, He and Terasvirta (1999a)[34] gave a

necessary condition 1 for the existence of fourth moment. The expressions that He

and Terasvirta (1999a)[34] derived involve expectation of products of random ma-

trices with dimensions proportional to the orders of the model. For a GARCH(2,2)

model, a relatively simple expression can be derived. But the expressions are dif-

ficult to evaluate for higher order GARCH models. Ling and McAleer (2002)[44]

provided an necessary and sufficient condition for the existence of even order mo-

ments of GARCH(p,q) process with non-negative parameters.

Karanasos (1999)[38] derived a system of linear equations involving the fourth

moments of GARCH(p,q) processes, which can be solved numerically to ob-

tain the fourth moments. Similar to He and Terasvirta (1999a)[34], Karanasos

(1999)[38] gave a necessary condition for the existence of fourth moments. Karana-

sos (1999)[38] also obtained a formal expression of the autocorrelation function of

squared observations.

1He and Terasvirta (1999a) called their condition necessary and sufficient. However, as
pointed out in Ling and McAleer (2002)[44], the conditions given in He and Terasvirta(1999a)
was only necessary.

27



In summary, the literature has not provided any ready-to-evaluate expressions

of the fourth moment and autocorrelation function of squared observations of

GARCH(p,q) process with general orders. Also, the necessary and sufficient con-

dition for the existence of fourth moment, as given in Ling and McAleer (2002)[44],

applies only to GARCH(p,q) process with non-negative parameters.

Given the limitations of the literature, we make two contributions. First, we

provide a numerical method for computing the fourth moment and the autocor-

relation function of squared observations simultaneously by using the method of

Brockwell and Davis (1991)[7] for computing variance and autocorrelation func-

tion of ARMA processes. Second, in the next chapter, we adapt the proof of Ling

and McAleer (2002)[44] and extend their necessary and sufficient for the existence

of fourth moment to a class of GARCH models with negative parameters.

Computation of fourth moment and autocorrelation of squared obser-

vations

We give a numerical approach to compute the fourth moment structure of GARCH

process which is parallel to the method for computing variance and covariance

of ARMA process as given in Brockwell and Davis (1991)[7]. Our method is

straightforward to implement.

Let {εt} be a strong GARCH(p,p) process with i.i.d. innovations zt. Assume that

zt have unit variance and kurtosis coefficient κz. As an example, we consider the

case when zt follows a standard normal distribution, κz = 3.

The ARMA representation of the squared observations in a GARCH(p,p) process

is an ARMA(p,p) and is given by (2.14), which is rearranged as:

ε2t −
p∑
i=1

(αi + βi)ε
2
t−i = α0 + νt −

p∑
j=1

βjνt−j.

We can also write the squared process {ε2t} in an AR(∞) form:

ε2t = α∗0 +
∞∑
j=0

ψjνt−j, (2.32)

where α∗0 = α0/(1−
∑p

i=1(αi + βi)).
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Multiplying both sides of (2.14) with ε2t−k and taking expectation, we obtain

E[ε2t ε
2
t−k]− (α1 + β1)E[ε2t−1ε

2
t−k]− · · · − (αp + βp)E[ε2t−pε

2
t−k]

= E

[(
α∗0 +

∞∑
j=0

ψjνt−k−j

)(
α0 + νt −

p∑
j=1

βjνt−j

)]
(2.33)

for k = 0, 1, 2, · · ·.

Simplifying the expectation on the RHS of the last equation, we have

E[ε2t ε
2
t−k]− (α1 + β1)E[ε2t−1ε

2
t−k]− · · · − (αp + βp)E[ε2t−pε

2
t−k]

= α∗0α0 −
κz − 1

κz
E[ε4t ]

∑
k≤j≤p

βjψj−k
(2.34)

for 0 ≤ k ≤ p, where we used the fact that Eν2
t = κz−1

κz
Eε4t , and

E[ε2t ε
2
t−k]− (α1 + β1)E[ε2t−1ε

2
t−k]− · · · − (αp + βp)E[ε2t−pε

2
t−k] = α∗0α0 (2.35)

for k ≥ p+ 1.

For 0 ≤ k ≤ p, we have a system of p + 1 linear equations to solve for p + 1

unknowns

Eε4t , E[ε2t ε
2
t−1], · · · , E[ε2t ε

2
t−p],

which can be used to further compute E[ε2t ε
2
t−k] for k ≥ p+ 1.

2.4.2 Computing temporal aggregation of higher order

GARCH models

Using the methods described in the previous subsection for computing the fourth

moment and autocorrelation of squared observations of GARCH processes, we

can now compute the parameters of temporally aggregated GARCH processes by

following the general procedure as described in Theorem 1. We illustrate this with

an example on the temporal aggregation of a GARCH(2,2) process.

Example: Temporal aggregation of a GARCH(2,2) process in the case

of a flow variable

We give a numerical example of aggregation of the GARCH(2,2) model. Consider
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the GARCH(2,2) process defined byεt =
√
htzt, {zt}

i.i.d.∼ (0, 1)

ht = 0.08 + 0.05ε2t−1 + 0.17ε2t−2 + 0.3ht−1 + 0.4ht−2.

We show how to derive the aggregate process for a flow variable at aggregation

level m = 2, i.e. {ε̄(2)2t}.
The ARMA representation of {ε2t} is:

ε2t = 0.08 + 0.35ε2t−1 + 0.57ε2t−2 + νt − 0.3νt−1 − 0.4νt−2,

or

(1− 0.95L)(1 + 0.6L)ε2t = 0.08 + (1 + 0.5L)(1− 0.8L)νt.

Multiplying this equation by (1+0.95L)(1−0.6L)(1+L), which comes from (2.6),

we obtain

(1− 0.9025L2)(1− 0.36L2)(ε2t + ε2t−1)

= 0.1248 + (1 + 0.95L)(1− 0.6L)(1 + 0.5L)(1− 0.8L)(1 + L)νt.

Adding (1 − 0.9025L2)(1 − 0.36L2) · 2εtεt−1 to both sides of the last equation to

make a “complete square”, we have

(1− 0.9025L2)(1− 0.36L2)(εt + εt−1)2

= 0.1248 + (1 + 0.95L)(1− 0.6L)(1 + 0.5L)(1− 0.8L)(1 + L)νt

+ (1− 0.9025L2)(1− 0.36L2) · 2εtεt−1.

(2.36)

From the LHS of the last equation we have that

α(2)1+β(2)1 = 0.9025+0.36 = 1.2625 and α(2)2+β(2)2 = −0.9025×0.36 = −0.3249.

Denote

v2t = (1 + 0.95L)(1− 0.6L)(1 + 0.5L)(1− 0.8L)(1 + L)νt

+ (1− 0.9025L2)(1− 0.36L2) · 2εtεt−1

= (1 + 0.05L− 1.075L2 + 0.031L3 + 0.228L4)(1 + L)νt

+ (1− 1.2625L2 + 0.3249L4) · 2εtεt−1.

(2.37)
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The process {v2t} is an MA(2) process, denoted by

v2t = u2t −Θ1u2(t−1) −Θ2u2(t−2),

where {u2t} denotes a white noise process 2, Θ1 and Θ2 are the solution of the

system of equations 
Θ1(1+Θ2)

1+Θ2
1+Θ2

2
=

Cov(v2t,v2(t−1))

V ar(v2t)

Θ2

1+Θ2
1+Θ2

2
=

Cov(v2t,v2(t−2))

V ar(v2t)
.

In this example,

Cov(v2t, v2(t−1)) = [(−1.025)2 + (−1.0962)2 + (−0.2655)2 + (−0.2380)2] · Eν2
t

+ [(−1.2625)2 + (−0.4102)2] · 4 · E[ε2t ε
2
t−1],

Cov(v2t, v2(t−2)) = [(0.259)2 + (0.2394)2] · Eν2
t + (0.3249)2 · 4 · E[ε2t ε

2
t−1],

V ar(v2t) = [12 + (1.05)2 + (−1.025)2 + (−1.044)2 + (0.259)2 + (0.288)2]

× Eν2
t + [12 + (−1.2625)2 + (0.3249)2] · 4 · E[ε2t ε

2
t−1],

(2.38)

and we can calculate

Eν2
t = 3.3174, E[ε2t ε

2
t−1] = 1.7676.

Therefore, 
Θ1(1+Θ2)

1+Θ2
1+Θ2

2
= −0.6119,

Θ2

1+Θ2
1+Θ2

2
= 0.1177.

The solutions Θ1 and Θ2 give the GARCH coefficients in the aggregated model,

i.e.,

β1(2) = −Θ1 = 1.1070 and β2(2) = −Θ2 = −0.2706.

Consequently, the values of the ARCH parameters in the aggregated model, α(2)1

and α(2)2, can be calculated. The weak GARCH(2,2) representation of the process

{ε̄(2)2t} is then

ε̄2(2)2t = 0.1248+1.2625ε̄2(2)2(t−1)−0.3249ε̄2(2)2(t−2)+u2t−1.1070u2(t−1)+0.2706u2(t−2).

Observe that the aggregated model has negative parameters α(2)2 = −0.0543 and

β(2)2 = −0.2706. These results seem to contradict the commonly used non-negative

2Here {u2t} is a white process defined on the aggregated scale, i.e. the whole sequence is
{..., u2(t−1), u2t, u2(t+1), ...}
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parameters constraints for GARCH parameters but negative parameters may well

be allowed.
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2.5 Summary of Chapter

In this chapter, we explain the problem of temporal aggregation of the ARMA and

GARCH processes and show how to derive the parameters of the aggregated low

frequency model from the parameters in the original high frequency model. We

also extend the results of Drost and Nijman (1993)[16] for computing temporal

aggregation of the GARCH(1,1) model parameters to the general GARCH(p,q)

model parameters.
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Chapter 3

GARCH Models: Non-Negative

Conditions, Singular Geometry,

and the Component GARCH

Models

In this chapter we review results on the parameter constraints for non-negative

conditional variance in GARCH processes. We point out the parameter space of

a GARCH process under general parameter constraints for non-negative variance

may well have singular shapes which could cause serious difficulty to numerical

estimation algorithms. To alleviate this problem, we suggest using the component

GARCH models as an alternative parameterization of the GARCH processes. The

component GARCH models are useful for capturing the dependency structure of

empirical return volatility time series and the multiscale-type volatility dynamics.

3.1 Parameter Constraints for GARCH Models

Parameter constraints are among an important aspect of consideration for the

estimation of GARCH models. If a GARCH model is estimated by maximum like-

lihood estimation, then the estimated conditional variances will not be negative in

sample because any negative conditional variance will cause the likelihood function

to reach negative infinity. However, this does not guarantee that the estimation

procedure will not generate negative conditional variances out of sample.
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It is customary to restrict all of the ARCH and GARCH parameters to be nonneg-

ative to ensure that the conditional variance process of the model is nonnegative

almost surely. However, as first pointed by Nelson and Cao(1992)[57], this is too

restrictive. Nelson and Cao(1992)[57] showed that the necessary and sufficient

conditions for a non-negative conditional variance can be substantially weakened,

especially in higher order GARCH models. Subsequently, Tsai and Chan(2008)[71]

gave more precise characterization of the constraints for a non-negative conditional

variance.

More importantly, perhaps, the non-negative parameters constraints exclude the

potentially best-fitting model. The class of component GARCH models as pro-

posed by Ding and Granger (1996)[14] generally have negative parameters whereas

the conditional variance process remains positive. The component GARCH mod-

els are useful for modeling the empirically observed long-memory type volatility

dependency and are economically interpretable.

Last but not least, from a temporal aggregation perspective, negative GARCH

model parameters may arise from the temporal aggregation of a GARCH model

with all positive parameters.

However, simply imposing the necessary and sufficient conditions of Nelson and

Cao (1992)[57] may cause difficulty to a numerical estimation algorithms. The

Nelson-Cao constraints generally involves nonlinear inequality constraints, and

it is well known that numerical optimization under nonlinear constraints can be

problematic in this instance. We show with an example in the GARCH(2,2) model

case that Nelson-Cao constraints can lead to a singularly shaped parameter space

and thus cause a severe problem for numerical estimation algorithms to explore the

whole sample space. To overcome this difficulty, we propose to use the component

GARCH models as an alternative parameterization.

3.1.1 Necessary and sufficient conditions for a non-

negative conditional variance

We first explain how the parameter constraints for a non-negative conditional

variance are derived. The basic idea is to express the conditional variance ht in

an ARCH(∞) form. Then, a non-negativity of conditional variance ht can be

ensured by non-negativeness of all of the coefficients in the ARCH representation.

As there is an infinite number of ARCH coefficients, it is difficult (if not impossible)
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to impose a set of infinite number of inequalities in practice. For this, Nelson and

Cao(1992)[57] derived an equivalent set of finitely many constraints, which can be

used in practice. In the case of GARCH(1,q) and GARCH(2,q) models, Nelson

and Cao(1992)[57] showed that their conditions are necessary and sufficient. For

the case of GARCH(p,q) where p > 2, Nelson and Cao(1992)[57] claimed that the

conditions are sufficient. In fact, as shown in Tsai and Chan(2008)[71], the Nelson

and Cao(1992)[57] conditions are still necessary and sufficient in the case of p > 2.

Consider the strong GARCH(p,q) process

εt =
√
htzt where {zt}

i.i.d.∼ D(0, 1)

ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiht−i
(3.1)

where D(0, 1) means some distribution with zero mean and unit variance.

Define

B(z) = 1− β(z) = 1−
p∑
i=1

βiz
i (3.2)

and denote the roots of B(z) = 0 by λ1, · · · , λp.

We can write the GARCH(p,q) model in an ARCH(∞) form:

ht =

(
1−

p∑
i=1

βiL
i

)−1 [
α0 +

q∑
j=1

αjε
2
t−j

]

= α∗0 +
∞∑
k=0

ψkε
2
t−k,

(3.3)

where L is the lag operator and α∗0 = α0/(1−
∑p

i=1 βi).

Requiring

α∗0 ≥ 0 and ψk ≥ 0 for k ≥ 0 (3.4)

will be sufficient to guarantee the nonnegativity of ht almost surely. To make α∗0

and the ψk’s well defined, we make the following assumptions:

Assumption (A1). The roots of the polynomial

(
1−

p∑
i=1

βiz
i

)
are outside the unit circle,

(3.5)
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and

Assumption (A2). The polynomials

(
1−

p∑
i=1

βiz
i

)
and

q∑
j=1

αjz
j−1

have no common roots.

(3.6)

Without loss of generality, assume the following about the roots of B(z) = 0:

1 < |λ1|≤ |λ2|≤ · · · ≤ |λp|. (3.7)

Under these assumptions, the ψk’s are well defined and finite. Denote M =

max{p, q}, αj = 0 for j > q and βi = 0 for i > p. Then ψk, k = 1, 2, · · · ,
satisfy the system of equations

ψ0 = α1

ψ1 = β1ψ0 + α2

ψ2 = β1ψ1 + β2ψ0 + α3

...

ψM−1 = β1ψM−2 + β2ψM−3 + ...+ βM−1ψ0 + αM , and

ψk = β1ψk−1 + β2ψk−2 + ...+ βMψk−M for k ≥M.

(3.8)

Notice that it is impractical to impose an infinite set of inequality constraints as

in (3.8). The contribution of the Nelson-Cao constraints is to reduce the set of

infinite number of constraints (3.8) to a set of a finite number of constraints which

are necessary and sufficient for ensuring that the conditional variance process ht is

non-negative. The detailed proofs of this are given in Nelson and Cao (1992)[57]

and Tsai and Chan (2008)[71]. We give the Nelson-Cao constraints and only sketch

the idea of the proofs here.

The GARCH(1,q) Case: When (3.5) and (3.6) are satisfied, (3.4) holds if and

only if

α0 ≥ 0, β ≥ 0, and ψk ≥ 0 for k = 0, 1, ..., q − 1.

Sketch of proof: In the GARCH(1,q) case, we have β1 = β and βi = 0 for i ≥ 2.

Since α∗0 = α0/(1 − β) and |β|= 1/|λ1|< 1, α∗0 ≥ 0 is equivalent to α0 ≥ 0 under
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the assumption (A1) and β ≥ 0. The coefficients corresponding to (3.8) are

ψ0 = α1 ≥ 0,

ψ1 = βα1 + α2 ≥ 0,

ψ2 = β2α1 + βα2 + α3 ≥ 0,

· · ·

ψq−1 = βq−1α1 + βq−2α2 + ...+ βαq−1 + αq ≥ 0, and

ψk = βkα1 + βk−1α2 + ...+ βk+2−qαq−1 + βk+1−qαq = βk+1−qφq−1 ≥ 0 for k ≥ q.

(3.9)

The necessity and sufficiency of (3.9) for ensuring ψk ≥ 0 for all k are both

apparent.

The GARCH(p,q) Case where p ≥ 2: When (3.5) and (3.6) are satisfied,

1) α∗0 ≥ 0 if and only if α0 ≥ 0;

2) Further assuming that the roots of 1−β(z) = 0 are distinct, and that 1 < |λ1|<
|λ2|, (3.4) holds if and only if the following conditions hold:

λ1 is real, and λ1 > 1, (3.10)

α(λ1) > 0, (3.11)

ψk ≥ 0, for k = 1, · · · , k∗, (3.12)

where k∗ is the smallest integer greater than or equal to max{0, γ}, where

γ∗ =
log r1 − log((p− 1)r∗)

log|λ1|− log|λ2|
,

r∗ = max
2≤j≤p

|rj|,

and

rj = − α(λj)

B(1)(λj)
, 1 ≤ j ≤ p,

in which B(1)(z) is the first derivative of B(z).

Sketch of proof: For part 1), it is true because α∗0 = α0/(1−β(1)) and assumption

(A1) implies that 1− β(1) > 0.
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To prove the sufficiency of part 2), we start by writing ψk with k ≥ max{p, q} by

using partial fractions formula from Feller (1968)[23](pp. 276) as

ψk =
r1

λk+1
1

+
r2

λk+1
2

+ · · ·+ rp
λk+1
p

.

Rearranging the terms in the last equation, we obtain

λk+1
1 ψk ≥ r1 − (p− 1)r∗

(
λ1

|λ2|

)k+1

. (3.13)

If λ1 is real and positive, and r1 ≥ 0, the first term on the RHS of (3.13) will be

positive and it will dominate the rest of the terms on the RHS as k →∞. So that

(3.13) only needs to hold for k = 1, 2, · · · , k∗ where k∗−1 makes (3.13) an equality.

Solving this equality for k∗, one can easily see that k∗ = γ∗. The condition

r1 ≥ 0 can be simplified to α(λ1) ≥ 0 since −B(1)(λ1) =
∏p

j=2(1− λ1/λj)/λ1 > 0.

Assumption (A2) rules out α(λ1) = 0. So r1 ≥ 0 is equivalent to α(λ1) > 0.

The necessity of part 2) can be proved as follows. It is obvious that (3.12) is

necessary. To prove the necessity of (3.10) and (3.11), we need to invoke an

approximation formula from Feller (1968)[23](pp. 276 - 277) which tells us that,

for k ≥ max{p, q},

ψk =

p∑
i=1

ri

λk+1
i

∼ r1

λk+1
1

,

in which ∼ indicates that the ratio of the two sides tends to 1 as k → ∞. The

approximation shows that the term r1/λ
k+1
1 will dominate for large k. Therefore,

we must have λ1 be real greater than 0, consequently greater than 1 by assumption

(A2), and r1 ≥ 0. As shown earlier, r1 ≥ 0 is equivalent to α(λ1) > 0.

Remarks 1: In the GARCH(2,q) case, the variable k∗ depends on the models

parameters αi’s and βj’s since the variable γ∗ does so. This means that we have

a set of changing number of inequality constraints corresponding to ψ1, · · · , ψk∗ .

This may be practically undesirable.
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Remarks 2: Substituting the expression of ri into equation (3.13), we have

λk+1
1 ψk ≥ −

α(λ1)

B(1)(λ1)
− (p− 1) max

2≤i≤p

∣∣∣∣ α(λi)

B(1)(λi)

∣∣∣∣ ( λ1

|λ2|

)k+1

= − 1

B(1)(λ1)

q−1∑
j=0

αj+1λ
j
1 − (p− 1) max

2≤i≤p

∣∣∣∣∣ 1

B(1)(λi)

q−1∑
j=0

αj+1λ
j
i

∣∣∣∣∣
(
λ1

|λ2|

)k+1

.

(3.14)

Observe that the first term on the RHS of the last equation,

− 1

B(1)(λ1)

q−1∑
j=0

αj+1λ
j
1,

is positive, whereas the second term

−(p− 1) max
2≤i≤p

∣∣∣∣∣ 1

B(1)(λi)

q−1∑
j=0

αj+1λ
j
i

∣∣∣∣∣
(
λ1

|λ2|

)k+1

is negative and its value is increasing (or decreasing in absolute value) as k in-

creases. It is obvious that if ψk ≥ 0 for k = 1, · · · ,max{p, q}, ψk ≥ 0 holds

for all k ≥ max{p, q}. Thus, instead of setting k∗ = max{0, γ∗}, we can set

k∗ = max{p, q}. This latter choice of k∗ yields Theorem 2 of Nelson and Cao

(1992)[57], which, together with the (3.10) and (3.11), specifies necessary and suf-

ficient conditions for a non-negative condition variance for GARCH(2,q) model.

Therefore, the necessary and sufficient condition is not unique in that the choice

of k∗ is not unique. The choice k∗ = max{0, γ∗} may give a smaller value of k∗ but

it depends on the model parameter values. In contrast, the choice k∗ = max{p, q}
does not depend on the model parameter values.

Example 1: GARCH(1,2):

In the case of the GARCH(1,2) model, the Nelson-Cao constraints are

α0 ≥ 0, βα1 + α2 > 0, 0 ≤ β < 1.

Example 2: GARCH(2,1):

For the GARCH(2,1) model, the Nelson-Cao conditions are

α0 ≥ 0, α1 ≥ 0, β1 ≥ 0, β1 + β2 < 1, β2
1 + 4β2 ≥ 0.
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Example 3: GARCH(2,2):

Similar to the GARCH(2,1) case, the Nelson-Cao constraints for the GARCH(2,2)

model are

α0 ≥ 0, α1 ≥ 0, β1 ≥ 0, β1 + β2 < 1,

β2
1 + 4β2 ≥ 0, α1 +

2α2

β1 +
√
β2

1 + 4β2

> 0,

φ1 = β1α1 + α2 ≥ 0, φ2 = β2
1α1 + β1α2 + β2α1 ≥ 0.

(3.15)

We observe that the Nelson-Cao constraints for a non-negative conditional variance

become increasingly complicated with higher order GARCH models. In particular,

the parameterization of the roots of the polynomial 1− β(z) becomes more com-

plicated with an increasing order of p. As we will show in the next section, in the

GARCH(2,2) case, the constraints resulting from the constraints on the roots of

1− β(z) could result in singularly-shaped geometry in the parameter space under

a set of realistic parameter values which are important for the GARCH models to

capture a quasi-long memory type dependency in volatility.

3.1.2 Projections of the GARCH(2,2) Parameter Space

In this section, we give some graphical illustration of the GARCH parameter space

under the Nelson-Cao constraints. This not only helps illustrating the difference

between the Nelson-Cao constraints and the commonly used non-negative param-

eter constraints, it also highlights the potential difficulties that the Nelson-Cao

constraints can pose to estimation algorithms, e.g. MCMC sampling algorithms.

To focus attention, ws consider the GARCH(2,2) model. In the GARCH(2,2) case,

the dimension of the parameters is five. So we cannot plot the entire parameter

space on a single plot. Instead, we can fix α or β and visualize the projection of

the parameter space on the other variables.

Fixed α, projection on (β1, β2) space

We fix α = (α1, α2) at two sets of values. The first set of parameters is

α = [.0573, .2262], which is taken from the estimated GARCH(2,2) model with

Deutschmark/US Dollar FX return data as reported in Nelson and Cao (1992)[57].

The second set of parameters is α = [0.1101,−0.1087], which is taken from the
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estimated two component GARCH model with S&P 500 return data from January

3, 1928 - August 30, 1991, and is reported in the GARCH(2,2) form, as reported

in Ding and Granger (1996)[14]. Fig. 3.1 and Fig. 3.2 plot the projections under

these two sets of α values, respectively. The (red) stars on the plots indicate the

estimated β parameter values.

Figure 3.1: Projection of the GARCH(2,2) parameter space onto the (β1, β2)-
plane using the parameter values as estimated in Nelson & Cao(1992)[57] on a

sample of Mark/ Dollar exchange rates.

Figure 3.2: Projection of the GARCH(2,2) model parameter space onto the
(β1, β2)-plane using the parameter values as estimated in Ding & Granger

(1996)[14] on a sample of the S&P500 index.

Notice that the second set of α parameters has a negative α2. Comparing the

projections on the (β1, β2) space with different α values, we see that a negative α2
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parameter could significantly narrow the admissible region for the β parameters

and push the ‘best-fitting’ β parameters to the boundary of the parameter space.

This observation generally applies as we have tried other parameter values as well

as some analytical analysis (not reported here).

Fixed β, projection on (α1, α2)

Similarly, we fix β = (β1, β2) at two sets of values corresponding to the two cases for

α above. The first set of parameters has β = [.3833, .31], corresponding to the esti-

mates with Deutschmark/US Dollar FX return data as reported in Nelson and Cao

(1992)[57]. The second set of parameters has β = [1.8380,−0.8394], correspond-

ing to the β parameter values of a component-GARCH-equivalent GARCH(2,2)

model estimated with S&P 500 return data from January 3, 1928 - August 30,

1991, as reported in Ding and Granger (1996)[14].

Figure 3.3: Projection of the GARCH(2,2) model parameter space onto the
(α1, α2)-plane using the parameter values as estimated in Nelson & Cao (1992)

on a sample of Mark/ Dollar exchange rates.

Fig.3.3 and Fig.3.4 plot the projections under these two sets of β values,

respectively. The (red) stars on the plots indicate the estimated α parameter

values. From the comparison of the (α1, α2) space projections, we see that a

negative β2 parameter does not necessarily narrow the admissible region for the α

parameters. However, a negative β2 also pushes the ‘best-fitting’ α parameters to

the boundary of the parameter space, which is similar to the case with a negative

α2.
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Figure 3.4: Projection of the GARCH(2,2) parameter space onto the (α1,
α2)-plane using parameter values as estimated in Ding & Granger (1996) on a

sample of the S&P500 index.

3.2 The Component GARCH Models of Ding

& Granger (1996)[14] and Engle & Lee

(1999)[21]

In this section, we summarize the component GARCH models proposed in the

literature. As we will see, the component GARCH models generally have negative

parameter values in their GARCH(p,q) representation. While these negative pa-

rameters lie in the corner regions under the GARCH(p,q) parameterization, the

corresponding parameterization of the component GARCH model have more reg-

ular constraints. Therefore, we propose to use the component GARCH models as

alternative parameterizations of the GARCH(p,q) models for exploring the corner

regions of the parameter space.

First proposed in Ding and Granger(1996)[14], the class of component GARCH

models has been found to be able to provide a better fit to empirical data than

the benchmark GARCH(1,1) model in terms of sample ACFs of squared and ab-

solute returns. Ding and Granger(1996)[14] found that the pattern of the sample

ACFs of absolute and squared financial returns series are quite different from that

of the theoretical ACF of the GARCH(1,1) model or Integrated GARCH(1,1)

(IGARCH(1,1)) model. Prior to the introduction of this component GARCH

model, Fractionally Integrated GARCH (FIGARCH) models as proposed in Baille,
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Bollerslev, and Mikelsen (1996)[3] have been used to model the hyperbolically de-

caying ACF observed in empirical data. However, FIGARCH models are generally

difficult to estimate. Meanwhile, there is evidence pointing to volatility compo-

nents that mean-revert at different speeds, which is known as multiscale volatility.

See, for example, Fouque, et.al. (2011)[24]. Because of this, one may model

volatility with multiple volatility components that evolve at different speeds (or

time scales). Some of them may have a short life cycle but large effects on the over-

all volatility, while others may have a long life cycle but small intermediate effects.

The component GARCH models serve both the purpose of capturing slowly decay-

ing autocorrelation function of squared returns and modeling multiscale volatility.

The component GARCH models can be written as restricted GARCH(p,q) models

and the corresponding GARCH(p,q) representation generally has negative param-

eters values. Empirically estimated component GARCH models have parameter

values correspond to the GARCH(p,q) model with parameters lying in the corner

regions of the parameter space which is difficult to explore under the GARCH(p,q)

parameterization. Therefore, the component GARCH models can also be seen as

a useful alternative parameterization of the GARCH(p,q) model which serves to

mitigate the singular geometry problem caused by general constraints.

3.2.1 Ding and Granger’s (1996)[14] parameterization

Two-component case

We start the discussion by considering the case of the two-component GARCH

model as proposed in Ding and Granger (1996)[14]:

εt =
√
htzt for t = 1, ..., T,

zt
iid∼ N(0, 1),

ht = wh1,t + (1− w)h2,t,

h1,t = ᾱ1ε
2
t−1 + (1− ᾱ1)h1,t−1,

h2,t = σ2(1− ᾱ2 − β2) + ᾱ2ε
2
t−1 + β̄2h2,t−1.

(3.16)

In this model, the overall variance of returns is modeled as a weighted sum of

two components h1,t and h2,t with weights w and 1 − w, respectively. The first

component h1,t is an IGARCH(1,1)-type specification and the second component

h2,t is a GARCH(1,1)-type specification. Ding and Granger (1996)[14] show that

the component type GARCH models are able to reproduce the long-memory type
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hyperbolically decaying ACF observed in the empirical return data.

Expanding the two variance components h1t and h2t, we have

h1,t = ᾱ1

∞∑
k=1

(1− ᾱ1)k−1ε2t−k, (3.17)

and

h2,t = σ2 1− ᾱ2 − β̄2

1− β̄2

+ ᾱ2

∞∑
k=1

β̄k−1
2 ε2t−k, (3.18)

When wᾱ1(1−ᾱ1)k−1 > (1−w)ᾱ2β̄
k−1
2 , the first variance component has a larger ef-

fect on the overall variance than the second variance component. Consider, for ex-

ample, the following set of parameter values which corresponds to the fitted param-

eters to a sample of S&P500 daily return studied by Ding and Granger(1996)[14]:

w = 0.704, ᾱ1 = 0.153, ᾱ2 = 0.008, β̄2 = 0.991, and σ = 1.62e− 4.

The first component h1,t starts from 0.704× 0.153 = 0.1077 and the second com-

ponent starts from 0.296 × 0.008 = 0.0024. However, the first component decays

much faster than the second component (0.847 vs. 0.991). Straightforward cal-

culations show that wᾱ1(1 − ᾱ1)k−1 > (1 − w)ᾱ2β̄
k−1
2 when k ≤ 25, i.e. the first

component h1,t has a larger effect on the overall volatility than the second com-

ponent h2,t over the 1 day to 25 day horizon. Beyond that, the second component

dominates. Therefore, we may interpret the fist component h1,t as capturing the

short-run fluctuations of volatility and the second component h2,t as the long-run

fluctuations of volatility.

N-component case

Ding and Granger (1996)[14] also generalized the above two-component GARCH

to an N-component GARCH:

εt =
√
htzt for t = 1, ..., T,

zt
iid∼ N(0, 1),

ht =
N∑
i−1

wihi,t,

hi,t = σ2(1− ᾱi − β̄i) + ᾱiε
2
t−1 + β̄ihi,t−1, i = 1, 2, · · · , N,

(3.19)
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where wi is the weight for volatility component i. Since each volatility component

hi,t follows a GARCH(1,1) structure, the parameter constraints ᾱi > 0, β̄i > 0,

ᾱi + β̄i < 1 will ensure that hi,t, i = 1, · · · , N is non-negative and thus the overall

conditional variance process ht is non-negative almost surely. In addition, we may

assume that the first N − 1 components to be integrated, i.e. ᾱi + β̄i = 1 for

i = 1, · · · , N − 1. For an identification of the volatility components, we assume

that β̄1 < · · · < β̄N . These constraints follow Ding and Granger (1996)[14].

3.2.2 Engle and Lee’s (1999)[21] parameterization

An alternative parameterization of the two-component GARCH model by Engle

and Lee(1999)[21] can be motivated by first writing the standard GARCH(1,1)

model as:

ht = σ2 + α(ε2t−1 − σ2) + β(ht−1 − σ2) (3.20)

where σ2 is the unconditional variance. Engle and Lee(1999)[21], based on previous

empirical studies, postulate the existence of a time-varying unconditional variance

process. Denote it by qt, the time-varying unconditional variance component.

Then, the conditional variance in the standard GARCH(1,1) model becomes

ht = qt + α(ε2t−1 − qt−1) + β(ht−1 − qt−1), (3.21)

where the dynamics of qt is specified as

qt = ω + ρqt−1 + φ(ε2t−1 − ht−1). (3.22)

By writing (3.21) as

ht − qt = α(ε2t−1 − qt−1) + β(ht−1 − qt−1), (3.23)

we call (ht − qt) the short-run or transitory volatility component and qt the long-

run volatility component. Both volatility components are driven by (ε2t−1 − ht−1).

Let st := ht − qt. Then the volatility components can be written in a symmetric
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form as

ht = qt + st,

st = α(ε2t−1 − ht−1) + (α + β)st−1,

qt = ω + φ(ε2t−1 − ht−1) + ρqt−1.

(3.24)

Under this representation, we see that the short-run variance mean-reverts around

zero when 0 < (α + β) < 1. The long-run variance dynamics has an AR(1) form

when 0 < ρ < 1 and converges to a constant level ω/(1 − ρ). Engle and Lee

(1999)[21] assume that the long-run variance has a slower mean-reverting rate

than the short-run variance, i.e. 0 < (α + β) < ρ < 1. This serves as an

identifiability condition. In addition, they expect the immediate impact of the

short-run component to be greater than that of the long-run component.1 So they

also impose the restriction that α > φ. Thus, Engle and Lee (1999)[21] used the

following set of parameter constraints for their model:

0 < (α + β) < ρ < 1, α > φ > 0, β > 0, φ > 0, ω > 0. (3.25)

They showed that this set of conditions satisfies the Nelson-Cao constraints and

thus is sufficient to guarantee the nonnegativity of conditional variances.

3.2.3 Comparisons of Ding & Granger and Engle & Lee

parameterization in the 2-component case

GARCH(2,2) Representation

It will be helpful for our discussion to rewrite the component GARCH mod-

els of both Ding and Granger (1996)[14] and Engle and Lee (1999)[21] in the

GARCH(2,2) form.

For Ding and Granger’s component GARCH model, write the volatility compo-

nents using the lag operator notation as

h1,t =
ᾱ1

1− (1− ᾱ1)L
ε2t−1,

h2,t =
σ2(1− ᾱ2 − β̄2)

1− β̄2

+
ᾱ2

1− β̄2L
ε2t−1.

(3.26)

1This agrees with the fitted model with S&P500 daily returns studied in Ding and Granger
(1996)[14].
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Then, substituting h1,t and h2,t into ht, we have

ht =
(1− w)σ2(1− ᾱ2 − β̄2)

1− β̄2

+

[
wᾱ1

1− (1− ᾱ1)L
+

(1− w)ᾱ2

1− β̄2L

]
ε2t−1,

=
(1− w)σ2(1− ᾱ2 − β̄2)

1− β2

+
wᾱ1(1− β̄2L) + (1− w)ᾱ2[1− (1− ᾱ1)L]

[1− (1− ᾱ1)L](1− β̄2L)
ε2t−1,

(3.27)

which is a restricted GARCH(2,2) model:

ht =σ2(1− w)ᾱ1(1− ᾱ2 − β̄2) + [wᾱ1 + (1− w)ᾱ2]ε2t−1

− [wᾱ1β̄2 + (1− w)(1− ᾱ1)ᾱ2]ε2t−2

+ (1− ᾱ1 + β̄2)ht−1 − (1− ᾱ1)β̄2ht−2.

(3.28)

The sum of the ARCH and GARCH parameters (which equals 1− (1−w)ᾱ1(1−
ᾱ2 − β̄2)) is bigger than zero and less than one when 0 < w < 1, 0 < ᾱ1 < 1, and

0 < ᾱ2 + β̄2 < 1. Under these conditions, the process {εt} is covariance-stationary

with

Eht = Eh1,t = Eh2,t = Eε2t = σ2. (3.29)

An interesting point to note is that although the ARCH(2) and GARCH(2) co-

efficients are negative, the variance processes are still guaranteed to be positive.

These negative coefficients are usually not considered in the specification of the

GARCH(p,q) models. However, we see in the current case that negative coeffi-

cients might arise quite naturally and do not necessarily lead to nonstationarity.

More importantly, as pointed out by Ding (2016)[13], restricting the parameters

to be positive will likely exclude better fitting models. Similar derivations to Ding

and Granger’s model show that Engle and Lee’s model (3.24) can also be written

in the GARCH(2,2) form:

ht = (1− α− β)ω + (α + φ)ε2t−1 + [−φ(α + β)− αρ]ε2t−2

+ (ρ+ β − φ)ht−1 + [φ(α + β)− βρ]ht−2.
(3.30)

Mapping between parameters in Ding-Granger and Engle-Lee models

As stated in Ding (2016)[13], it is useful to point out that one can establish map-

pings among the parameters in Ding and Granger (1996)[14] parameterization,
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in Engle and Lee (1999)[21] parameterization, and that in the GARCH(2,2) pa-

rameterization. Denote by a1, −a2 the ARCH parameters in the GARCH(2,2)

representations of the component GARCH models and by b1, −b2 the GARCH

parameters. That is,

a1 = wᾱ1 + (1− w)ᾱ2 = α + φ

a2 = wᾱ1β̄2 + (1− w)(1− ᾱ1)ᾱ2 = αρ+ (α + β)φ

b1 = 1− ᾱ1 + β̄2 = β + ρ− φ

b2 = (1− ᾱ1)β̄2 = βρ− (α + β)φ.

(3.31)

For example, given a set of parameters in the GARCH(2,2) parameterization, the

corresponding parameters in Engle and Lee’s parameterization are given by

ρ =
1

2

(
(a1 + b1)±

√
(a1 + b1)2 − 4(a2 + b2)

)
α + β =

1

2

(
(a1 + b1)∓

√
(a1 + b1)2 − 4(a2 + b2)

)
φ =

a2 − a1ρ

α + β − ρ
α = a1 − φ

β =
1

2

(
(a1 + b1)∓

√
(a1 + b1)2 + 4(a2 + b2)

)
− α.

(3.32)

3.2.4 Modeling multiscale volatility

The component volatility models are useful for modeling the so-called multiscale

volatility, which is an empirical phenomenon as elaborated in Chapter 3 of Fouque,

et.al. (2011)[24]. Intuitively, it refers to the empirical observations that financial

volatilities have a mean-reverting behavior at two or more time scales with dif-

ferent and, often, well-separated rates. Component type volatility models are

natural candidates for modeling multiscale volatility. See, for example, Barndorff-

Nielsen and Shephard (2001)[4], Chernov, et.al. (2003)[10], Christoffersen, et.al.

(2008)[11], as well as Fouque, et.al. (2011)[24]. In these models, the temporal

dependency structure of volatility is parameterized with multiple parameters rep-

resenting the multiple decaying rates of the components.

The two component GARCH models is one of the simplest multiscale volatility

model. From the estimated parameters on a S&P500 index sample as reported

in Ding and Granger (1996)[14], we observe that innovations to the volatility

components have well-separated decay rates β̄1 = 1 − ᾱ1 = .847 and β̄2 = .991,
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respectively. Similar estimates from another S&P 500 index sample and from

individual stock returns can be found in Engle and Lee (1999)[21]. In our empirical

study of the component GARCH models presented in the next section, we find

that estimated component GARCH models on the DJIA return sample as used

in Engle and Patton (2001)[22] also have components with well-separated decay

rates with respect to innovations.

3.3 An empirical study of the component

GARCH models on a Dow Jones Industrial

Average (DJIA) index return sample

In this section, we provide an empirical illustration of the estimation of the com-

ponent GARCH models on a DJI return sample as used in Engle and Patton

(2001)[22]. Although there exists several statistical software packages for estimat-

ing GARCH(p,q) models (with non-negative parameter constraints), to the best of

our knowledge, not much attention has been paid to GARCH models with general

parameter constraints, nor is there attention to the component GARCH models.

The R package rugarch implements the two-component GARCH of Engle and

Lee (1999)[21].

The R package RStan provides an efficient and convenient framework to estimate

the component GARCH models using Bayesian MCMC estimation. It requires

only a simple model specification and conducts an automated efficient MCMC

sampling.

We use the sample of Dow Jones Industrial Average (DJIA) index daily returns

from Aug. 23, 1988 through Aug. 22, 2000, yielding a total of 3,131 observations

of daily adjusted closing prices 2. The sample size of daily log returns is T = 3,130.

Figure 3.5 plots the return sample.

We fit three models from the component GARCH family to the sample: 1. a

GARCH(1,1) model, 2. a two component GARCH model, and 3. a three com-

ponent GARCH model. We assume a normal distribution for the innovations in

2A stock’s adjusted closing price is the daily close price amended to include any distributions
and corporate actions that occurred at any time prior to the next day’s open. In the analysis of
historical returns, adjusted closing price are often used instead of closing price.
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Figure 3.5: Sample returns on the Dow Jones Industrial Average index.

each of the three models as in Engle and Patton (2001)[22]. As to the prior distri-

bution, we use normal priors with mean 0 and variance of 100 for all of the model

parameters. Such choices lead to a very weak prior impact.

Table 3.1 reports posterior means and 95% posterior credible intervals (i.e. 2.5%

and 97.5% quantiles of the posterior distribution) of the parameters in the three

GARCH models considered. We observe that the two component model have

cleanly separated parameter values ᾱ1 and ᾱ2, which means that the two volatility

components are cleanly separated in terms of persistence. Similarity, the ᾱ1, ᾱ2,

and ᾱ3 parameters in the three component GARCH model are also well-separated

in terms of their posterior means. The posterior interval estimates of the pa-

rameters in the three component model do have overlaps, which implies that the

sample under study does not contain enough information to separate all the three

components as cleanly as in the one- and two-component models. We therefore

do not pursue estimating models with larger numbers of components, although

the estimation of higher order models can be carried out similarly in principle on

longer samples.

Last but not least, we conduct white noise tests on the standardized residuals

resulting from the three estimated GARCH models in order to assess whether

they have adequately captured the dependency in volatility. Following Engle and

Patton (2001)[22], we use the Ljung-Box Q-statistics at lags up to lags 60. For all

of the three models, the p-values of the tests are above 0.5, meaning that there
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Table 3.1: Posterior inference results of the parameters in the GARCH models

GARCH(1,1) Two-component Three-component
µ 0.061 (.032, .088) 0.063 (.035, .090) 0.063 (.035, .091)
w1 0.43 (.28, .57) 0.18 (.0073, .46)
w2 0.30 (.023, .56)
σ2 1.07 (.70, 2.51) 2.45 (.61, 8.87) 1.81 (.60, 5.38)
ᾱ1 0.04 (.028, .057) 0.14 (.083, .22) 0.26 (.10, .56)
ᾱ2 0.0067 (.0037, .013) 0.091 (.0062, .18)
ᾱ3 0.0063 (.0025, .012)
β̄N 0.95 (.93, .97) 0.993 (.986, .996) 0.9925 (.985, .996)

(·, ·) are 95% credible intervals.

is no evidence against the null hypothesis of a zero correlation in the standard-

ized residuals. Therefore, all the three models estimated in our study adequately

capture dependency in the DJI volatility.
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3.4 Summary of Chapter

In this chapter we have discussed the issue of parameter constraints for GARCH

processes. In particular, we have shown that negative parameter values, which

may result from temporal aggregation, could lead to a singular geometry in the

parameter space and constitute practical difficulties to parameter estimation. As

a solution to the potential singular geometry problem, we propose to use the

component GARCH models as a re-parameterization tool for some practically

relevant cases, which also have a multiscale volatility interpretation.
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Chapter 4

Empirical Likelihood-Based

Two-scale Tests of

Scale-Consistency for ARMA

Processes

One of the most important themes of this chapter is that the empirical likelihood

framework provides us with a way of formally testing whether a time series model

is compatible with data at two different sampling frequencies.

4.1 Chapter Introduction

In this chapter, we introduce a class of tests for the scaling property of the linear

dependency structure of ARMA processes, called the Multiscale Tests of Scale-

Consistency. The tests exploit the temporal aggregation relation of time series

models and are designed to test whether a given weak ARMA struc-

ture is consistent with a time series sampled at multiple frequencies.

An important application of the test is to test whether a high frequency volatil-

ity model is also consistent with a low frequency return sample1. The proposed

tests are based on the weak ARMA structure which is a general stationary non-

deterministic process. The linear dependency structures are tested without relying

1As we will see, our current version of the tests uses low frequency model representations
derived from the high frequency model. The low frequency model representations are only
necessary conditions for testing whether the low frequency model is also fully sufficient for the
low frequency data.
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on any parametric distributional assumptions. The resulting tests exploit infor-

mation from multiple frequencies of samples and are generally more

powerful than the corresponding tests based on one frequency of sam-

ple. They can be used to complement the usual statistical tests for

ARMA type processes, such as white noise tests for residuals.

The idea of using information in samples at multiple frequencies to test model spec-

ification has been found useful by many authors. Lo and MacKinlay (1988)[46]

proposed a variance ratio test of a random walk process which is based on the

ratio of variances of a series at different scales. Mandelbrot, et.al.(1997)[47] sug-

gested that reliance upon a single time scale may lead to forecasts which vary with

sample frequencies and proposed a model called a Multifractal Model of Asset Re-

turns to capture the moment scaling property observed in exchange rate returns.

More recently, Ohanissian, et.al.(2008)[60] proposed a test of long-memory which

is based on the invariance property of the fractional integration parameter with

respect to temporal aggregation. Our proposed tests show that the exploration of

information from multiple frequency samples can also be beneficial for a search for

the specification of ARMA-type models.

According to the Wold Decomposition Theorem of time series, the weak ARMA

structure is a basic structure applicable to any stationary non-deterministic pro-

cess. It also exists in some commonly used nonlinear processes, such as GARCH

processes. In particular, the squared observations in a ARCH(p) process is a weak

AR(p) process, and the squared observations in a GARCH(p,q) process is a weak

ARMA process.

Our proposed test is based on the framework of empirical likelihood (EL) which

is implemented through a set of estimating equations. The empirical likelihood

framework allows us to carry out likelihood type inference without specifying

a distributional model. It leads to test statistics with asymptotic distributions

analogous to their fully parametric likelihood counterparts and data-determined

confidence regions. The empirical likelihood framework can also be conveniently

implemented through a set of estimating equations, which is a very general way

of estimating parameters of statistical and time-series models.

We form estimating equations over multiple sampling frequencies based on the

temporal aggregation relations. The basic estimating equations corresponding to

a single sampling frequency may already be enough to identify a model under

the usual single scale inference procedures. However, we add auxiliary estimat-

ing equations corresponding to a second sampling frequency to construct more
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powerful tests which test, in particular, whether a model is compatible with data

simultaneously at two different scales. If the null hypothesis, that a model is com-

patible with data simultaneously at two different scales, is rejected, our proposed

test could suggest to the user of the model to increase the autoregressive and/or

moving average orders, which could increase the flexibility of the model and thus

to better capture the scaling property of the data in terms of its linear dependency

structure.

A major motivation for the multiscale tests of scale-consistency is the “volatility

half-life puzzle” pointed out in Engle and Patton (2001)[22]. Our proposed test

can be used to formally address the following questions:

• Is the QMLE based on a high frequency sample also consistent with data at

lower frequencies?

• Is a particular model, like a GARCH model, able to simultaneously fit data

at two different time scales?

The proposed testing procedure can be applied to general ARMA and GARCH

type processes where temporal aggregation is performed.

Fig. 4.1 provides an overview of our proposed testing procedure.

The rest of the chapter is organized as follows. In section 4.2 we show how to

form the corresponding estimating equations. In section 4.3 we give a general

description of our proposed tests for the ARMA(p,q) processes. In section 4.4 we

give some asymptotic results for the proposed tests. Section 4.5 discusses some

computational details. In section 4.6 we present some simulation studies to assess

the finite sample performances of our proposed tests. Section 4.7 concludes.

Some background materials on the empirical likelihood are given in Appendix A.
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Figure 4.1: Flowchart of multiscale testing procedure.
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4.2 Estimating Equations for ARMA(p,q) Pro-

cesses at Different Time Scales

Let us consider a stationary strong ARMA(p,q) process with mean µ = φ0/(1 −
φ1 − · · · − φp):

Xt = φ0 + φ1Xt−1 + . . . φpXt−p + Zt + θ1Zt−1 + · · ·+ θqZt−q, (4.1)

where {Zt} is a sequence of i.i.d. random variables defined on some probability

space (Ω,F ,P) with zero mean and common variance σ2
Z , denoted as D(0, σ2

Z).

We also assume that the AR polynomials Φ(z) = 1 − φ1z − · · · − φpzp and MA

polynomials Θ(z) = 1 + θ1z + · · ·+ θqz
q have no common zeros. We assume that

Φ(z) has all roots outside the unit circle so that the ARMA process {Xt} is causal

and second-order stationary.

We denote by m1 the level of aggregation of the (highest frequency) observations

with respect to the data generating level at which the model (4.1) is assumed. For

example, if the true data generating process (DGP) (4.1) operates on the daily

scale and we only have weekly observations, then m1 = 5. We further denote by m2

a second level of aggregation which is higher than m1, i.e. m2 > m1, where m2 is

an integer multiple of m1. Using these notations, m1 = 1 if we have observations

at the data generating level. We call m1 a high frequency (HF) and m2 a low

frequency (LF).

To facilitate our presentation, we assume that m1 = 1 unless otherwise specified.

We also use the notation m to denote a generic level of aggregation. We would

mostly consider m1 = 1 and m2 = m. But we keep the m1 and m2 notations to

allow for a further generalization. The cases of general m1 can be derived relatively

straightforwardly.

An estimating equations (EE) approach defines how the parameters of a sta-

tistical model should be estimated. Consider a random vector X ∈ Rd following a

distribution function F with an unknown s-dimensional parameter θ ∈ Rs, and a

real, r-dimensional vector-valued function g(x,θ) ∈ Rr given by

g(x,θ) = [g1(x,θ), · · · , gr(x,θ)]′. (4.2)
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Suppose that information about both data and F is contained in the following

equation

E(g(X,θ)) = 0, (4.3)

where the expectation is taken with respect to the random vector X with distri-

bution parameterized by θ.

We assume that g1(X,θ), · · · , gr(X,θ) have non-degenerate and invertible

variance-covariance matrix.

The parameter θ can be estimated by solving

1

n

n∑
i=1

g(Xi, θ̂) = 0 (4.4)

for θ̂, where X1, ...., Xn is a random sample from Fθ.

Equation (4.4) is called an estimating equation and g(x,θ) is called an estimating

function.

We need at least as many equations as the number of parameters, i.e. r ≥ s.

When r = s, and under the following conditions on g(x,θ) and the distribution

F given by Godambe (1960)[28], equation (4.3) has a solution with respect to θ.

We shall denote this root as θ0 and refer to it as the “true value”.

Conditions on the estimating equations:

(i) E[g(X,θ) : θ] = 0 for all θ ∈ Θ;

(ii) for almost all x, ∂g/∂θ exists for all θ ∈ Θ;

(iii)
∫
g(x,θ)p(x,θ)dx is differentiable under the integral sign where p(x,θ) is the

density function of X;

(iv) [E(∂g/∂θ(X) : θ)]2 > 0 for all θ ∈ Θ.

Following Wirjanto (1997)[74] and Smith (2011)[68], among others, we assume that

the focus is on a unique θ0 which satisfies E[g(X,θ0)] = 02. For general methods

of dealing with the potential problem of multiple root problems in estimation, we

refer readers to Small, et.al. (2000)[67].

Well-known examples of estimating equations include those corresponding to the

method of moments and the maximum likelihood estimator. Since we will be

using estimating equations based on temporally aggregated models, and likelihood

2Otherwise, we would focus on the most practically meaningful θ0.
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assumptions are generally not closed under temporal aggregation, we consider

estimating equations corresponding to the method of moments.

In general, we seek estimating equations that are not linearly dependent, so that

the variance-covariance matrix of the estimating functions is invertible, and in

consequence the variance-covariance of the limiting distribution of the estimator

is well-defined.

For more comprehensive treatments of the topic of estimating equations, we refer

the reader to Godambe (1991)[29], Godambe and Heyde (1987)[30], and McLeish

and Small(1988)[51].

Example 4.1: Single-scale estimating equations for the ARMA(1,1) pro-

cess

Consider the model (4.1) with p = 1 and q = 1. A possible choice of estimating

functions g(X,θ) satisfying E[g(X,θ)] = 0 for estimating the parameter vector

θ := (φ0, φ1, θ1, σ
2
Z) can be based on the following equalities:

E[Xt − φ0 − φ1Xt−1] = 0,

E[(Xt − φ0 − φ1Xt−1)Xt−2] = 0,

E[(Xt − φ0 − φ1Xt−1)2]− (1 + θ2
1)σ2

Z = 0

E[(Xt − φ0 − φ1Xt−1)(Xt−1 − φ0 − φ1Xt−2)]− θ1σ
2
Z = 0.

(4.5)

The corresponding estimating equations are

n∑
i=3

Xi − φ0 − φ1Xi−1 = 0,

n∑
i=3

(Xt − φ0 − φ1Xt−1)Xt−2 = 0,

n∑
i=3

(Xt − φ0 − φ1Xt−1)2 − (1 + θ2
1)σ2

Z = 0

n∑
i=3

(Xt − φ0 − φ1Xt−1)(Xt−1 − φ0 − φ1Xt−2)− θ1σ
2
Z = 0.

(4.6)

Here we have a just determined case with equal number of equations as the number

of parameters.
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By the ARMA(1,1) model assumption, the residual sequence is

Xt − φ0 − φ1Xt−1 = Zt + θ1Zt−1.

The first EE corresponds to the fact that the residuals have mean zero. The

second EE is based on the fact Xt−2 is a function of {Zt−τ , τ ≥ 2} by the causality

assumption, and, since {Zt} is a temporally uncorrelated sequence, we have that

Xt − φ0 − φ1Xt−1 is orthogonal to Xt−2. Likewise, other choices of Xτ with τ ≥ 2

may also be used to form orthogonality conditions. The third and fourth equations

result from matching the variance and first-order auto-covariance of the residual

variance.

In our proposed method of multiscale tests, we construct estimating equations at

two different time scales by following two main steps:

Step 1 (S1) - we start with the basic estimating equations, which are the same

as one would have in the usual single scale estimation. This first set of

estimating equations correspond to the high frequency (HF) and thus we

name it the HF estimating equations;

Step 2 (S2) - we add one or more auxiliary estimating equations from a second

time scale, corresponding to the temporally aggregated model. We name

this second set of estimating equations the low frequency (LF) estimating

equations. The parameters in the LF estimating equations are parameterized

independently of those in the HF estimating equations. In this way, no prior

constrains are imposed on the relations between the parameters in the HF

and LF estimating equations. Whether the temporal aggregation relation

are satisfied by the HF and LF estimating equations will be tested with at

a specified confidence level.

The final set of estimating equations should satisfy the general rules for estimating

equations. The relation between parameters at the two different time scales is very

important to the proposed test and will be explained later in detail.
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Example 4.2 Two scale estimating equations for the ARMA(1,1) process

based on flow aggregation

In the proposed multiscale test, we form estimating equations at two scales m1 = 1

and m2 = m, respectively, based on the forms of the model at the corresponding

levels of aggregation. Let us consider the case of a flow variable.

(S1) We start with the natural choice of estimating equations at the HF m1 = 1

given by (4.6).

(S2) In addition to (4.6), we add the counterparts of (4.6) at the LF m2 = m.

Step 1 and step 2 lead to:

E[Xt − φ0 − φ1Xt−1] = 0,

E[(Xt − φ0 − φ1Xt−1)Xt−2] = 0,

E[(Xt − φ0 − φ1Xt−1)2]− (1 + θ2
1)σ2

Z = 0,

E[(Xt − φ0 − φ1Xt−1)(Xt−1 − φ0 − φ1Xt−2)]− θ1σ
2
Z = 0,

E[X̄(m)t − φ̄(m)0 − φ̄(m)1X̄(m)t−m] = 0,

E[(X̄(m)t − φ̄(m)0 − φ̄(m)1X̄(m)t−m)X̄(m)t−2m] = 0,

E[(X̄(m)t − φ̄(m)0 − φ̄(m)1X̄(m)t−m)2]− σ̄2
(m)Z = 0,

E[(X̄(m)t − φ̄(m)0 − φ̄(m)1X̄(m)t−m)(X̄(m)t−m − φ̄(m)0 − φ̄(m)1X̄(m)t−2m)]− γ̄(1)
(m)Z = 0,

(4.7)

where φ̄(m)0, φ̄(m)1, σ̄2
(m)Z , γ̄

(1)
(m)Z represent the LF intercept, the AR coefficient, the

LF residual variance and lag-1 auto-covariance, respectively, and are assumed to be

independent of the HF model parameters. These new parameters are introduced

so that the system of equations (4.7) is just-determined and thus always has a

unique solution. We will refer to (φ0, φ1, θ1, σ
2
Z) as the HF model parameters,

abbreviated as θHF , and to (φ̄(m)0, φ̄(m)1, σ̄
2
(m)Z , γ̄

(1)
(m)Z) as the LF model parameters,

abbreviated as θLF . The parameter vector of the system of estimating equations

is θ := (θHF ,θLF ).

In order to test scale-consistency, we need to establish a relation between the two

sets of parameters. Under the assumed ARMA(1,1) model (i.e. (4.1) with p = 1

and q = 1), an application of temporal aggregation as explained in Chapter 2 tells

us that

φ̄(m)0 = (1 + φ1 + · · ·+ φ
(m−1)
1 ) ·m · φ0,
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φ̄(m)1 = φm1 ,

and σ̄2
(m)Z and γ̄

(1)
(m)Z are respectively equal to the variance and lag-1 auto-

covariance implied by temporal aggregation of the HF ARMA(1,1) model.

Again, from temporal aggregation we know that

X̄(m)t − φ̄(m)0 − φ̄(m)1X̄(m)t−m

=
1− φm1 Lm

1− φ1L
(1 + L+ · · ·+ Lm−1)(1− φ1L)Xt

= (1 + φ1L+ · · ·+ φm−1
1 Lm−1)(1 + L+ · · ·+ Lm−1)(1 + θ1L)Zt.

(4.8)

This tells us that σ̄2
(m)Z and γ̄

(1)
(m)Z can be calculated based on the LF residual

sequence

(1 + φ1L+ · · ·+ φm−1
1 Lm−1)(1 + L+ · · ·+ Lm−1)(1 + θ1L)Zt.

For example, when m = 2, we have, under the true model,

σ̄2
(m)Z =

[
1 + (1 + φ1 + θ1)2 + (φ1 + θ1 + φ1θ1)2 + φ2

1θ
2
1

]
σ2
Z ,

γ̄
(1)
(m)Z = [(φ1 + θ1 + φ1θ1) + φ1θ1(1 + φ1 + θ1)]σ2

Z .
(4.9)

(4.10)

The explicit expression of σ̄2
(m)Z and γ̄

(1)
(m)Z for general m are complicated but it is

straightforward to compute them numerically.

In addition, when {Xt} follows a ARMA(1,1) model, the maximal lag of Zt in the

LF residual is 2m− 1. Since X̄(m)t−2m can be written as a function of {Zt−τ , τ ≥
2m} and {Zt} is a temporally uncorrelated sequence, X̄(m)t− φ̄(m)0− φ̄(m)1X̄(m)t−m

and X̄(m)t−2m are orthogonal, it is legitimate to use the lagged variable X̄(m)t−2m

in forming the orthogonality condition the LF as of the sixth equation in (4.7).
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4.3 The Two-scale Test for ARMA Processes

In this section we present our proposed test for testing scale-consistency of an

ARMA(p,q) process. The test is designed to test whether the linear dependency

structure of a given stationary ARMA(p,q) process is consistent with data at multi-

ple frequencies. The test does not hinge on any assumption about the distribution

of the innovation process and hence it focuses on testing the linear dependency

structure. The test is based on the temporal aggregation relation of the model

under the null hypothesis at different levels of aggregation. Models that are re-

jected by the multiscale test are considered not to adequately capture the linear

dependency in the data to the extent that estimating the process at different scales

may lead to inconsistent estimates. Therefore, in the case of rejection of the null

hypothesis, the user may consider extending the model to higher orders in order

to increase its flexibility and to better capture the linear dependency structure in

the data.

The main idea in the construction of the test is to cast the testing problem in

the framework of vector empirical likelihood inference. Samples at multiple scales

are used to form vectors of observations and then used to construct estimating

equations at multiple scales. With a proper parameterization, the multiscale esti-

mating equations constitute a just determined system. Under the null hypothesis,

the parameters must satisfy certain functional relation, based on which the test

statistic is constructed.

4.3.1 The null and the alternative hypotheses

As discussed in the introduction, the purpose of the test is to test whether the

linear dependency structure of a postulated ARMA process is consistent with

data at multiple scales. In an ARMA process, the linear dependency structure is

determined by both the AR and the MA coefficients. Therefore, the quantities of

interests are the AR and MA parameters (φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z) and their

counterparts in the aggregated processes.

For a given ARMA(p,q) process, our proposed two-scale test tests the following

hypothesis:

H0 : f(m)(θ
HF ,θLF ) = 0,

HA : f(m)(θ
HF ,θLF ) 6= 0,

(4.11)
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where θHF := (φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z) denotes the HF model parameters,

θLF := (φ̄(m)0, φ̄(m)1, · · · , φ̄(m)p, σ̄
2
(m)Z , γ̄

(1)
(m)Z , · · · , γ̄

(q)
(m)Z) denotes the LF model pa-

rameters, and the function f(m) is determined by the temporal aggregation relation

between the high and low frequency model parameters in the ARMA(p,q) process

at levels m1 = 1 and m2 = m, as in equation (4.7) of Example 4.2.

Notice that the parameter vector in the hypothesis is θ := (θHF ,θLF ). We use the

notation f(m)(θ
HF ,θLF ), instead of f(m)(θ), in order to emphasize the partition of

the parameter vector into the parts associated with the HF and the LF. Later on,

we may also use the more succinct notation of f(m)(θ) for the sake of brevity.

Example 4.2 (continued) A specialization of the multiscale test in the case of

ARMA(1,1) process with m2 = 2 tests the following hypothesis

H0 : f(2)(θ
HF ,θLF ) = 0,

HA : f(2)(θ
HF ,θLF ) 6= 0,

(4.12)

where θHF := (φ0, φ1, θ1, σ
2
Z), θLF := (φ̄(2)0, φ̄(2)1, σ̄

2
(2)Z , γ̄

(1)
(2)Z), and

f(2)(θ
HF ,θLF )

:=


(1 + φ1) · 2 · φ0 − φ̄(2)0

φ2
1 − φ̄(2)1

[1 + (1 + φ1 + θ1)2 + (φ1 + (1 + φ1)θ1)2 + φ2
1θ

2
1]σ2

Z − σ̄2
(2)Z

[(φ1 + θ1 + φ1θ1) + φ1θ1(1 + φ1 + θ1)]σ2
Z − γ̄

(1)
(2)Z

 .
(4.13)

The elements in the vector in (4.13) are the differences between the LF parameters

implied by the HF parameters and the directly estimated LF parameters. The

four elements correspond to the intercept term, the AR coefficient, the residuals

variances, and the first-order residual auto-covariance, respectively. All of the

elements in matrix (4.13) are equal to zero under the null hypothesis.

We will consider two types of testing problems:

(i) testing a model with a particular set of parameters;

(ii) testing the model.

From a computational perspective, a major difference between the two types of

testing problems is that in the former type of test, the model parameters are fixed

at the hypothesized values whereas, in the later type of test, the model parameters

are estimated.
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To provide the reader with some intuition about the usefulness of each of the two

types of the proposed tests, we describe two corresponding plausible cases in which

the functional relation f(m)(θ
HF ,θLF ) = 0 may be violated:

1. Discrepancy between the true and estimated value of the autore-

gressive parameter φ1. Consider, for example, the ARMA(1,1) model. In

this case, a small estimation bias in φ1 will be magnified through the power

function relation when we examine the process at an temporally aggregated

level.

2. Data coming from a model with a different dependency structure. For

example, data may be generated from a higher order autoregressive and/or

moving average component. In this case, both the relation regarding the AR

coefficient and that regarding the residual variances at scales m1 and m2 will

likely deviate from the relation f(m)(θ
HF ,θLF ) = 0.

In practice, there can be many more possible ways of deviations from the null

hypothesis. The possibilities we consider here are motivated by cases encountered

in financial return volatility modeling.

4.3.2 Construction of two-frequency samples, estimat-

ing equations, and empirical likelihood testing for

ARMA(p,q) model

In this section, we give the steps in constructing the two-scale tests.

Constructing two-frequency samples as vectors of observa-

tions

In order to formulate the empirical likelihood inference method using samples from

two time scales, we need to formulate samples corresponding to the two scales.
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Denote

ē(m)t(θ) :=

[
1−

p∑
j=1

φ(m)jL
m

](
m−1∑
i=1

Li

)
Xt − φ̄(m)0

=

[
1−

p∑
j=1

φ(m)jL
m

]
X̄(m)t − φ̄(m)0,

(4.14)

where L denotes a lag operator. We call {et, t ∈ Z+ and t ≤ T} and {ē(m)t, t ∈
Z+ and t ≤ T} the high frequency (HF) and the low frequency (LF) sam-

ples, respectively. Stacking the HF and LF samples into a vector, we have

{(et, ē(m)t)
′, t ∈ Z+ and t ≤ T} as our vector-valued observations. By doing so, we

can cast the inference problem into a vector-valued (block) empirical likelihood

framework. More detailed examples will be provided in the following subsection.

Constructing the estimating equations

To test the null hypothesis given in (4.11) based on a sample of data, we now

formulate the corresponding estimating equations to be used for the empirical

likelihood inference.

Using the given observations, we form estimating equations which are satisfied by

the postulated ARMA(p,q) process at both of the scales m1 = 1 and m2 = m.

We use estimating equations analogous to the ones used in Example 4.2 for the

ARMA(1,1) model. These are straightforward generalizations of the estimating

equations for the ARMA(1,1) process. At the HF,m1 = 1, we have a generalization

of (4.6) : ∑
t

gHF,t(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z) = 0 (4.15)
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where

gHF,t(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z) =



et(θ)

et(θ)Xt−p−1

et(θ)Xt−p−2

· · ·
et(θ)Xt−2p

et(θ)2 − (1 + θ2
1 + · · ·+ θ2

q)σ
2
Z

et(θ)et−1(θ)− (θ1 + θ2θ1 · · ·+ θqθq−1)σ2
Z

· · ·
et(θ)et−q+1(θ)− (θt−q+1 + θqθ1)σ2

Z


.

(4.16)

Next, we add estimating equations from the LF. In the case of a flow aggregation,

they are generalizations of LF estimating equations in (4.7):∑
t

gLF,t(φ̄(m)0, φ̄(m)1, · · · , φ̄(m)p, σ̄
2
(m)Z , γ̄

(1)
(m)Z , · · · , γ̄

(q)
(m)Z) = 0 (4.17)

where

gLF,t(φ̄(m)0, φ̄(m)1, · · · , φ̄(m)p, σ̄
2
(m)Z , γ̄

(1)
(m)Z , · · · , γ̄

(q)
(m)Z) :=

ē(m)t(θ)

ē(m)t(θ)X̄(m)t−p(m−1)−q−m

ē(m)t(θ)X̄(m)t−p(m−1)−q−m−1

· · ·
ē(m)t(θ)X̄(m)t−p(m−1)−q−m−(p−1)

ē(m)t(θ)2 − σ̄2
(m)Z

ē(m)t(θ)ē(m)t−m(θ)− γ̄(1)
(m)Z

· · ·
ē(m)t(θ)ē(m)t−qm(θ)− γ̄(q)

(m)Z


,

(4.18)

Stacking the HF and LF estimating equations into a single vector, we have the

final vector of estimating equations given by∑
t

gt(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z , φ̄(m)0, φ̄(m)1, · · · , φ̄(m)p, σ̄

2
(m)Z , γ̄

(1)
(m)Z , · · · , γ̄

(q)
(m)Z)

= 0,

(4.19)
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where

gt(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z , φ̄(m)0, φ̄(m)1, · · · , φ̄(m)p, σ̄

2
(m)Z , γ̄

(1)
(m)Z , · · · , γ̄

(q)
(m)Z)

:=



et(θ)

et(θ)Xt−p−1

et(θ)Xt−p−2

· · ·
et(θ)Xt−2p

et(θ)2 − (1 + θ2
1 + · · ·+ θ2

q)σ
2
Z

et(θ)et−1(θ)− (θ1 + θ2θ1 · · ·+ θqθq−1)σ2
Z

· · ·
et(θ)et−q+1(θ)− (θt−q+1 + θqθ1)σ2

Z

ē(m)t(θ)

ē(m)t(θ)X̄(m)t−p(m−1)−q−m

ē(m)t(θ)X̄(m)t−p(m−1)−q−m−1

· · ·
ē(m)t(θ)X̄(m)t−p(m−1)−q−m−(p−1)

ē(m)t(θ)2 − σ̄2
(m)Z

ē(m)t(θ)ē(m)t−m(θ)− γ̄(1)
(m)Z

· · ·
ē(m)t(θ)ē(m)t−qm(θ)− γ̄(q)

(m)Z



.

(4.20)

Conducting empirical likelihood inference

With the estimating equation defined above, an empirical likelihood inference fol-

lowing the lines of Qin and Lawless (1994)[65] can be applied. Since the vector-

valued two-frequency samples are temporal dependent as the process Xt is tem-

porally dependent, we apply the block empirical likelihood inference framework of

Kitamura (1997)[40], which is a modification of the framework of Qin and Law-

less (1994)[65] to account for temporally dependency in the data. The basic idea

of the blocking technique is to construct new observations which nonparamet-

rically preserve the dependence structure of the original series and thus deliver

valid asymptotic inference results based on the blocked observations. Alternative

procedures to the blocking technique, such as kernel smoothing techniques, may

be considered. However, we focus our attention on multiscale inference by only

considering the blocking technique in this thesis, and reserve the investigation of

using alternative techniques as a future research topic.
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A block empirical likelihood inference is based on the following profile empirical

likelihood function

RB(θ) = sup
wB

i

{
Q∏
i=1

QwBi |wBi > 0,

Q∑
i=1

wBi = 1,

Q∑
i=1

wBi Ti(θ) = 0

}
, (4.21)

where

θ = (φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z , φ̄(m)0, φ̄(m)1, · · · , φ̄(m)p, σ̄

2
(m)Z , γ̄

(1)
(m)Z , · · · , γ̄

(q)
(m)Z)

is the parameter vector, and Ti(θ) = 1
M

∑M
j=1 g(i−1)L+j(θ), i = 1 · · · , Q are the

blocked observations in which M denotes the block length and L is the separation

between block starting points.

The decision rule for rejecting the null hypothesis H0

According to the asymptotic results presented in the following section (i.e. Theo-

rem 1 and Theorem 2 of Section 4.4), under the true model, we have that the log

profile empirical likelihood statistic

WB(θ0) = −2A−1
n logRB(θ0), (4.22)

where An = QM/n, converges to a χ2
2(p+q+2) distribution under the null hypothesis

and

WB(θ̃) = −2A−1
n logRB(θ̃) (4.23)

converges to a χ2
(p+q+2) distribution under the null hypothesis, in which θ̃ maxi-

mizes the profile empirical likelihood function (4.21).

Testing H0 : f(m)(θ) = 0 at θ = θ0

The decision rule is the following: if the value of WB(θ0) is greater than the

(1 − α)-quantile of a χ2
2(p+q+2) distribution, then we reject the null hypothesis

H0 : f(m)(θ0) = 0 at the level of significance α.

Testing H0 : f(m)(θ) = 0

The decision rule is as follows: if the minimal value of WB(θ) with respect to θ

over the subset of the parameter space of θ defined by f(m)(θ) = 0, denoted as

WB(θ̃), is greater than the (1 − α)-quantile of a χ2
(p+q+2) distribution, then we

reject the null hypothesis H0 : f(m) = 0 at the level of significance α.
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Example 4.2 (continued) In the case of the ARMA(1,1) process, the estimat-

ing equations (4.7) contain a total of 8 estimating equations which are linearly

independent. Therefore, WB(θ0) converges to a χ2
(8) distribution under the null

hypothesis and WB(θ̃) converges to a χ2
(4) distribution under the null hypothesis.

Decision rules for rejecting the null hypothesis can be made accordingly.

Intuitions behind the proposed tests

Here we provide some intuitive explanation of our proposed multiscale tests using

a simple AR(1) setting. Consider testing the scale consistency of the following

AR(1) process:

Xt = φXt−1 + Zt,

where we assume that the intercept term is zero for the sake of simplicity and that

the parameter space for φ is {φ;φ ∈ (−1, 1)}. If this AR(1) model is consistent

with data at the two scales, say, m1 = 1 and m2 = 2, then the AR(1) coefficient at

the scales m1 and m2, denoted respectively as φ and φ̄(2) shall follow the temporal

aggregation relation of φ̄(2) = φ2. This quadratic relation defines a subset of the

parameter space. We may evaluate the log-empirical likelihood ratio statistic over

this quadratic subset and thus evaluate how likely this quadratic relation holds

for a given data set. Graphically, as illustrated in Fig. 4.2, the highest likelihood

over the quadratic subset lies between the confidence levels of 95% and 99%.

Consequently, we do not reject the null hypothesis that the hypothesized AR(1)

relation holds at the scales m1 = 1 and m2 = 2 with a two-scale test at 5% level,

but we reject the same null hypothesis at 1% level.
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Figure 4.2: Intuition behind the multiscale tests. The contours are empirical
likelihood confidence regions for the parameters φ and φ̄2, and the contours

correspond to confidence levels of 50%, 90%, 95%, 99%, 99.9%, 99.99%.

4.4 Asymptotic Results

In this section, we give a proof of the asymptotic results for our proposed tests.

The proof follows closely the one for i.i.d. observations given in Owen (2001)[62]

and is adapted to the setting of dependent processes of our interest. It also borrow

heavily from the proof in Kitamura (1997)[40] for general dependent processes. We

fill in the steps which are omitted in Kitamura (1997)[40] and point the readers

to Kitamura (1997)[40] where the needed steps are given there.

We make the following assumptions:

(i) The process {Xt} is strictly stationary and ergodic;

(ii) The process {Xt} is α-mixing with a mixing coefficient αX(k) satisfying

∞∑
k=1

αX(k)1−1/c <∞

where c is some constant;

(iii) The process {Xt} has enough moments such that g(Xt, θ0) has a finite 2c

moment.
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Let WB(θ) := −2A−1
n logRB(θ) where An = QM/n.

Theorem 1 (Block Empirical Likelihood Theorm for Testing a Model

with a Particular Set of Parameters) Under the true model, WB(θ0) con-

verges, as n goes to ∞, to a χ2
r distribution where r is the number of estimating

equations.

Proof: When 0 is inside the convex hull of the Ti(θ)’s, there is a unique set of

weights wBi > 0 with
∑Q

i=1w
B
i = 1 and

∑Q
i=1w

B
i Ti(θ0) = 0 for which

∏Q
i=1 Qw

B
i is

maximized. By a Lagrange multiplier argument, the maximizing weights can be

written as

wBi =
1

Q

1

1 + λ′Ti(θ0)
,

where the vector λ = λ(θ0) ∈ Rr satisfies r equations given by

l(λ) ≡ 1

Q

Q∑
i=1

Ti(θ0)

1 + λ′Ti(θ0)
= 0. (4.24)

Let λ = ||λ||ξ where ||·|| denotes the Euclidean norm and ξ is a unit vector. Next

we introduce the following equation

Yi = λ′Ti(θ0), and Z∗Q = max
1≤i≤Q

||Ti(θ0)||.

Substituting 1/(1 + Yi) = 1 − Yi/(1 + Yi) into ξ′l(λ) = 0 and multiplying both

sides of the equation by M , we obtain

||λ||ξ′S̃ξ = Mξ′
1

Q

Q∑
i=1

Ti(θ0), (4.25)

where

S̃ =
M

Q

Q∑
i=1

Ti(θ0)Ti(θ0)′

1 + Ti(θ0)
. (4.26)

Denote

S =
M

Q

Q∑
i=1

Ti(θ0)Ti(θ0)′.

Since the weights wBi > 0, we have 1 + Ti(θ0) > 0. Therefore we have

||λ||ξ′Sξ ≤ ||λ||ξ′S̃ξ(1 + ||λ||Z∗Q)

= Mξ′
1

Q

Q∑
i=1

Ti(θ0)(1 + ||λ||Z∗Q).
(4.27)
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So

||λ||

(
ξ′Sξ − Z∗QMξ′

1

Q

Q∑
i=1

Ti(θ0)

)
≤Mξ′

1

Q

Q∑
i=1

Ti(θ0).

By the CLT for an α-mixing process of Ibragimov and Linnik (1971)[37] Theorem

18.5.3, we have
∑Q

i=1 Ti(θ0)/Q = Op(n
−1/2). By Lemma 3.2 of Kunsch (1989)[42],

it can be shown that Z∗Q = o(n1/2M−1). Finally, a central limit theorem applied to

S shows that ξ′Sξ = Op(1). It follows that ||λ||= Op(Mn−1/2). Since M = o(n1/2),

this proves that λ(θ0) converges to 0 in probability.

Having established an order bound for ||λ||, we can use Lemma 3.2 of Kunsch

(1989)[42] to show that

max
1≤i≤Q

|Yi|= Op(Mn−1/2)o(n1/2M−1) = op(1). (4.28)

Using l(λ) = 0 again we obtain

0 =
M

Q

Q∑
i=1

Ti(θ0)

(
1− Yi +

Y 2
i

1− Yi

)

=
M

Q

Q∑
i=1

Ti(θ0)− M

Q

Q∑
i=1

Ti(θ0)Ti(θ0)′λ+
M

Q

Q∑
i=1

Ti(θ0)Y 2
i

1− Yi
.

(4.29)

The final term in the last expression has a norm bounded by

M

Q

Q∑
i=1

||Ti(θ0)||3||λ||2|1− Yi|−1= Mo(n1/2M−1)Op(n
−1/2)Op(M

2n−1)Op(1) = op(1)

where we used M = o(n1/2). Thus, we have

λ = S−1M

Q

Q∑
i=1

Ti(θ0) + β

where β = op(1).

By (4.28) we may write

log(1 + Yi) = Yi −
1

2
Y 2
i + ηi,

where for some finite B > 0

Pr(|ηi|≤ B|Yi|3, 1 ≤ i ≤ Q)→ 1,
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as n→∞.

Now we may write

−2A−1
N logRB(θ0) = −2A−1

N

Q∑
i=1

log(QwBi )

= 2A−1
N

Q∑
i=1

log(1 + Yi)

= 2A−1
N

Q∑
i=1

Yi − A−1
N

Q∑
i=1

Y 2
i + 2A−1

N

Q∑
i=1

ηi

= A−1
N QMT̄ (θ0)S−1T̄ (θ0)− A−1

N

Q

M
β′Sβ + 2A−1

N

Q∑
i=1

ηi

(4.30)

where T̄ (θ0) =
∑Q

i=1 Ti(θ0)/Q.

In the limit as Q→∞, we have

A−1
N QMT̄ (θ0)S−1T̄ (θ0) = nT̄ (θ0)S−1T̄ (θ0)→ χ2

(r)

in distribution,

A−1
N

Q

M
β′Sβ =

n

M2
op(1)Op(1)op(1) = op(1),

and

A−1
N |

Q∑
i=1

ηi|≤ A−1
N B||λ||3

Q∑
i=1

||Ti(θ0)||2 =
n

QM
Op(M

3n−3/2)o(n1/2M−1)QOp(n
−1/2)

= op(1).

Therefore WB(θ0) = −2A−1
N logRB(θ0)→ χ2

r in distribution.

Theorem 2 (Block Empirical Likelihood Theorem for Testing a Model)

Under the true model, WB(θ̃) converges to a χ2
(r−s) distribution.

Proof: First, we establish the asymptotic consistency and asymptotic normality of

θ̃n and λ̃n = λ(θ̃n) which correspond to the maximizer of the log empirical likeli-

hood ratio function. This can be done by checking the assumptions of Theorem 1

of Kitamura (1997)[40] and thus applying the theorem.

Then, we can establish the asymptotic distribution of the block empirical likeli-

hood statistic for testing a model by following the argument of Theorem 2 (i) of
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Kitamura (1997) [40].

4.5 Computation of the test statistic

In this section, we give some details about computing the values of the test statis-

tics.

Existence of optimum

As explained in Owen (2001)[62], section 2.9, the objective function of the empir-

ical likelihood optimization problem
∑nm

i=1 log(nmwi) is a strictly concave function

on a convex set of weight vectors. Therefore, a unique global minimum exists.

Moreover, the minimum does not have any wi = 0, so it is an interior point of the

domain.

Dealing with the parameter constraints

To compute the value of the test statistic under the null hypothesis H0, we need to

conduct a constrained optimization where the constraints are imposed by the tem-

poral aggregation relation between the HF and LF parameters from the temporal

aggregation relation. Such a constrained EL testing problem had been considered

in Qin (1992)[64], Chapter 3, who showed that there are two approaches to deal

with this problem which are first order equivalent.

The first approach is to express the LF parameters in terms of the HF parameters

and then optimize the test statistic with respect to the HF parameters. In this case,

the optimized parameters always obey the functional relation under H0, and there

are more constraints (or estimating equations) than the number of parameters.

the Empirical Likelihood Theorem (ELT) for testing a model can be applied to

derive the limiting distribution of the test statistics.

A second approach is to treat the constraints among the parameters as additional

constraints upon the estimating equations (or moment constraints). This second

approach has the advantage over the first approach when we cannot express some

of the parameter explicitly as functions of the others. Qin (1992)[64], Chapter

3, derived the asymptotic distribution of the test statistics subject to parameter
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constraints, which has a χ2 distribution with the same degrees of freedom as the

over-identification test in the first approach.

In our multiscale test, the LF parameters can naturally be expressed as functions

of the HF parameters. Therefore, it is computationally more straightforward to

use the over-identification test approach. That is, when computing the value of

the test statistic W (θ), we parameterize the LF parameters as functions of the

HF parameters and optimize with respect to the HF parameters.

Choosing block length in the BEL

As pointed out in Nordman and Lahiri (2014)[59], theoretical results on optimal

block length selection remains an open research question. There are two main

types of strategies for determining the block length. The first strategy borrows the

idea from spectral density estimation. As pointed out in Kitamura (1997)[40], the

block-based variance estimator in BEL can be seen as a spectral density estimator

based on Bartlett’s kernel. Thus, rules for a kernel bandwidth selection have

been used to select the block length. However, as discussed in Nordman and

Lahiri (2014)[59], different approaches may lead to different choices of block length,

which are not guaranteed to be theoretically optimal. Another strategy, from

Politis, et.al. (1999)[63], is to choose a block size based on the principle that

approximately correct block lengths for inference might be characterized by a

stable behavior of confidence regions with respect to the block length. One can

use a visual inspection to determine an appropriate block size based on plots of

confidence regions (or equivalent measures) against the block sizes. We use this

second strategy in our simulation studies.
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4.6 Simulation Study

In this section, we conduct simulation studies to investigate the finite sample

properties of our proposed test for the ARMA models.

Corresponding to the intended uses of our proposed tests, we conduct two types

of tests. The first type tests a model with a particular set of parameters, and

the second type tests the model. For each type of tests, we study their empirical

size properties and demonstrate the empirical power properties against particular

alternatives motivated by practical situations.

As for the alternatives in the first type of tests, we consider data generated from

the true model but with slightly different parameters. This alternative mimics

the practical situation in which one may have a biased estimate of model param-

eters resulting from, say, a misspecified innovation distribution. For the second

type of tests, we generate data from some higher order models, which mimics the

practical situation of an under-specified model due to the existence of a multiscale

phenomenon as observed in financial time series.

For every data generating process, we simulate from a strong model with i.i.d.

normal innovations. The HF data corresponds to m1 = 1, i.e. we use all of the

simulated data. The LF m2 is chosen at various values.

4.6.1 Testing a model with a particular set of parameters

AR process

Size of the test

We generate data from an AR(1) process with parameter θ0 = (φ0, φ1, σ
2
Z) =

(0, 0.95, 1) and test the estimating equations (4.7) with the true parameter θ = θ0

using the block EL inference. In the case of the AR(1) process, (4.7) contains a set

of 6 estimating equations 3. We study the empirical sizes of the test with various

values of sample size and levels of aggregation.

3Because the AR(1) process does not have the θ1 parameter, we have two fewer equations
compared to the eight equations as in (4.7).

79



To determine the choice of the block length, we vary block length from 1 to some

values large enough. For each level of aggregation, we plot the empirical sizes

against the block lengths to determine the appropriate block length to be used.

Fig. 4.3 is an example plot of empirical sizes against the block lengths for aggre-

gation level m2 = 5. In this plot, the curves in different line types from top to

bottom correspond to empirical sizes at significance levels 99%, 95%, and 90%,

respectively. The corresponding horizontal lines represent the nominal significance

levels. When a curve intersects the horizontal line of the same type, it means that

the block length corresponding to the intersection point yields a test statistic with

an empirical size matching its nominal value. In this case, we choose a block length

of M = 15 as the empirical size of the test statistics become stable at the nominal

levels with respect to the block length starting from M = 15. In the cases where

there is no intersection of a curve with a horizontal line of the same type, we pick

points where the two are closest to each other.

Admittedly, the method that we use to choose the block lengths is more of an

intuitive one which is described in Nordman and Lahiri (2014)[59]. In that paper,

the authors provided a comprehensive review of EL methods for time series data.

In particular, Nordman et.al. (2013)[58] proposed the expansive block empirical

likelihood (EBEL) method, which uses data blocks of every possible length, may

be used to avoid the problem of choosing a particular block length. We leave the

exploration of block length selection methods for future research.

Figure 4.3: Empirical sizes of the test for AR(1) model against block length
for aggregation level m2 = 5.
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Table 4.1 shows the percentage of WB(θ0) ≥ χ−1
(4)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications for the AR(1) process with parameter vector (φ1, σ
2
Z) = (0.95,

1).

Table 4.1: Empirical size of the two-scale tests when the observations are
generated from

the AR(1) model with (φ1, σ
2
Z) = (0.95, 1).

m2 T = 1,500 m2 T = 3,000 m2 T = 6,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

2 11.8 6.7 0.7 2 12.0 6.1 1.7 2 10.7 6.2 1.7
5 11.2 6.0 0.9 5 10.4 4.9 1.3 5 10.0 5.3 1.3

10 15.8 8.5 2.1 10 13.4 6.8 1.4 10 12.5 6.4 1.4
20 17.8 11.8 4.2 20 14.4 8.9 2.0 20 12.8 7.8 2.0
m2 T = 12,000 m2 T = 30,000 m2 T = 60,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 10.6 6.2 1.4 2 10.4 5.1 1.3 2 12.2 6.3 1.3
5 12.1 5.9 1.1 5 10.3 5.8 0.8 5 7.9 3.9 0.9

10 13.7 7.4 2.1 10 12.9 6.1 1.3 10 12.8 6.8 1.8
20 14.0 7.7 2.2 20 13.2 7.4 1.4 20 12.9 8.0 1.4

As one can see from the empirical sizes in Table 4.1, tests using LF EE based on a

lower level of aggregations (i.e. m2 = 2, 5) have accurate empirical sizes. However,

it requires a relatively large sample size of T = 6, 000 in order for the tests using

higher levels of LF aggregations (i.e. m2 = 10, 20) to be well approximated by

the theoretical asymptotic distribution. We also notice that the sizes of the tests

corresponding to m2 = 5 seem not to follow the pattern of changes based on the

neighboring scales. By trying some slightly different choices of block lengths, we

found that the sizes of the m2 = 5 tests can be made in line with the patterns with

more tailored choices of block lengths. However, we present here and in the rest

of the thesis with size and power results based on a simple fixed choice of block

lengths. We leave the deeper exploration of the issue of block length selection as

part of the future research questions.
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Power of the test against small deviations in the parameters

To demonstrate the empirical power of the test, we test against a small deviation

from the true parameter. In order to demonstrate the advantage of using a multi-

scale sample, we compare the powers of the multiscale test with the corresponding

single-scale test where only HF estimating equations are used.

Table 4.2 shows the percentage of WB(θ0) ≥ χ−1
(b)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications where b is the relevant degrees of freedom of the limiting

distribution. Specifically, b = 4 in the multiscale test and b = 2 in the correspond-

ing single scale test. In this case data is generated from an AR(1) process with

(φ0, φ1, σ
2
Z) = (0, 0.95, 1) and a slightly disturbed parameter of φ1 = 0.94 is tested.

From Table 4.2 we observe that the multiscale test has a good power property and

is consistently more powerful than the corresponding single scale test.

Table 4.2: Empirical power comparison of one- and two-scale tests (in %)
when the observations are from the AR(1) model with parameter vector

(φ0, φ1, σ
2
Z) = (0, 0.95, 1).

Testing parameter (0, 0.94, 1).

1 Scale
T = 1,500 T = 3,000 T = 6,000
10% 5% 1% 10% 5% 1% 10% 5% 1%
18.1 10.9 3.0 26.7 17.9 6.5 39.1 27.5 13.6
T = 12,000 T = 30,00 T = 60,000
10% 5% 1% 10% 5% 1% 10% 5% 1%
65.9 54.9 33.3 89.6 84.8 66.8 98.9 99.9 99.9

2 Scales
m2 T = 1,500 m2 T = 3,000 m2 T = 6,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 26.8 18.3 7.1 2 41.5 32.0 16.1 2 64.3 53.0 34.0
5 30.1 21.1 8.6 5 41.0 31.7 17.7 5 66.6 54.6 35.5

10 29.5 19.3 7.7 10 42.0 30.9 14.6 10 62.0 50.9 32.6
20 27.8 18.6 6.6 20 38.5 27.3 13.1 20 61.0 48.2 27.2
m2 T = 12,000 m2 T = 30,000 m2 T = 60,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 88.8 84.2 69.4 2 99.8 99.5 98.2 100 100 100
5 90.4 83.6 70.4 5 99.8 99.7 98.3 100 100 100

10 86.6 81.0 65.8 10 99.6 99.2 97.7 100 100 100
20 85.9 78.4 61.5 20 99.4 99.2 96.9 100 100 100
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To provide some intuition behind the increased power brought about by the mul-

tiscale scale test, we plot in Fig.4.4 the sample version of the two scale EEs.

Correctly specified EEs would result in histograms which centered closely around

0. In contrast, violation of one or more of the EEs would result in deviation from

0 of the corresponding histogram(s). A careful observation of the that the small

deviation in the AR coefficient at HF is magnified through the LF estimating

equations, and thus leads to a higher power of the two-scale test compared to a

single scale test based on the HF sample only.

Figure 4.4: Sample moment conditions at two scales for the AR(1) model with
LF at m2 = 10.
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ARMA processes

Size of the test

Parallel to the study of the AR(1) process example above, we conduct another

study using an ARMA(1,1) process.

Table 4.3 shows the percentage of WB(θ0) ≥ χ−1
(8)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 repetitions for the ARMA(1,1) process with (φ0, φ1, θ1, σ
2
Z) = (0.082,

0.9904, -0.9505, 1).

Table 4.3: Empirical size of the two-scale tests when the observations are
generated from the ARMA(1,1) model with parameter vector (φ0, φ1, θ1, σ

2
Z) =

(0.082, 0.9904, -0.9505, 1).

m2 T = 1,500 m2 T = 3,000 m2 T = 6,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

2 11.3 6.8 1.3 2 9.9 5.6 1.2 2 10.1 5.6 1.4
5 9.4 5.5 1.4 5 7.8 3.2 0.5 5 8.9 4.7 0.7

10 10.7 6.3 1.5 10 10.2 4.6 0.8 10 7.6 4.0 0.8
20 12.7 7.7 2.6 20 10.7 5.5 1.4 20 10.4 5.2 1.0
m2 T = 12,000 m2 T = 30,000 m2 T = 60,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 12.0 6.5 1.1 2 9.9 4.9 1.4 2 9.0 5.8 1.8
5 9.9 5.3 0.9 5 9.1 5.0 0.8 5 9.5 4.0 1.0

10 8.6 4.5 0.7 10 8.8 4.3 0.8 10 9.2 4.8 0.6
20 9.3 5.6 0.9 20 9.4 4.9 1.0 20 10.5 4.9 1.3

As one can see from the empirical sizes in Table 4.3, the test has good empirical

sizes.

84



Power of the test against small deviations in the parameters

To demonstrate the empirical power of the test, we test against a small devia-

tion from the true parameter. We compare the power ot the multiscale with the

corresponding single scale test where only HF estimating equations are used to

demonstrate the advantage of using multiscale information.

Table 4.4 shows the percentage of WB(θ0) ≥ χ−1
(8)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications. In this case the data is generated from an ARMA(1,1)

process with a parameter vector (φ0, φ1, θ1, σ
2
Z) = (0.0082, 0.9904, - 0.9505, 1), and

a slightly perturbed parameter of φ1 = 0.9854 is tested with the other parameters

fixed at the true value.

We compare the power of tests based on a single scale EE (i.e. HF EE) and that

based on the multiscale EEs with various LF levels. We observe that the tests

based on the single scale EEs has a low power against the small deviation in the

AR parameter. In contrast, multiscale EEs are consistently more powerful and the

power increases quickly with increasing levels of aggregations and sample sizes.

Table 4.4: Empirical power comparison of one- and two-scale tests (in %) when
the observations are generated from the ARMA(1,1) model with parameter

vector (φ0, φ1, θ1, σ
2
Z) = (0.0082, 0.9904, -0.9505, 1).

Testing parameter (0.0082, 0.9854, -0.9505, 1).

1 Scale
T = 1,500 T = 3,000 T = 6,000
10% 5% 1% 10% 5% 1% 10% 5% 1%
9.7 5.0 1.4 11.3 5.2 0.8 9.1 5.7 1.2
T = 12,000 T = 30,00 T = 60,000
10% 5% 1% 10% 5% 1% 10% 5% 1%
11.3 5.8 1.5 12.5 6.7 1.4 14.8 8.2 2.2

2 Scales
m2 T = 1,500 m2 T = 3,000 m2 T = 6,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 11.5 7.1 1.2 2 10.7 6.0 1.3 2 11.9 6.4 1.5
5 11.0 5.5 1.7 5 10.9 5.1 0.6 5 13.7 8.0 1.8

10 17.9 9.6 3.0 10 23.5 13.2 3.1 10 45.8 29.4 10.8
20 40.5 29.2 11.3 20 68.7 56.1 30.7 20 95.9 91.0 74.7
m2 T = 12,000 m2 T = 30,000 m2 T = 60,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 14.1 7.3 1.8 2 16.2 9.4 2.6 2 24.9 14.1 4.3
5 25.1 12.9 3.9 5 61.2 44.2 16.0 5 96.7 92.1 66.9

10 86.3 73.6 38.8 10 100 100 99.6 10 100 100 100
20 100 100 99.7 20 100 100 100 20 100 100 100
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4.6.2 Testing a model

In this part, we conduct simulation studies to investigate the empirical size and

power properties of our proposed tests for testing a model. To investigate the em-

pirical size property, we generate the data from an ARMA(1,1) model and test the

model specified through the two-scale estimating equations (4.7) optimized under

the constraints of temporal aggregation relations. To investigate the empirical

power property, we generate the data from a particular ARMA(2,2) model.

Size of the test

Table 4.5 shows the percentage of WB(θ̃) ≥ χ−1
(4)(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 repetitions for the ARMA(1,1) process with parameter vector

(φ0, φ1, θ1, σ
2
Z) = (0.082, 0.9904, -0.9505, 1).

Table 4.5: Empirical size of the two-scale tests when the observations are
generated from the ARMA(1,1) model with parameter vector (φ0, φ1, θ1, σ

2
Z) =

(0.082, 0.9904, -0.9505, 1).

m2 T = 3,000 m2 T = 6,000 m2 T = 12,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

10 5.3 3.8 2.0 10 7.7 5.6 2.4 10 8.3 6.5 2.1
20 4.8 2.7 1.2 20 6.0 3.3 1.0 20 7.2 4.6 1.4
30 6.2 4.4 2.4 30 5.5 3.4 1.3 30 6.7 3.8 0.8

As one can see from the empirical sizes in Table 4.5, the multiscale test generally

has conservative empirical sizes in this case.
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Power of the test against multiscale-type higher order data generating

mechanism

To demonstrate the empirical power of the test, we test against an ARMA(2,2)

process with a choice of parameter values motivated by the ARMA representation

of two-component GARCH models, which has a multiscale volatility interpreta-

tion.

Table 4.6 shows the percentage of WB(θ̃) ≥ χ−1
(4)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications. In this case the data is generated from an ARMA(2,2)

process with parameter vector (φ0, φ1, φ2, θ1, θ2, σ
2
Z) = (0.00008, 1.9279, - 0.9280,

-1.8644, 0.8652, 1).

From Table 4.6 we observe that the multiscale test has increasing powers along an

increasing levels of aggregations and sample sizes.

Table 4.6: Empirical power of the two-scale tests (in %) when the ob-
servations are generated from the ARMA(2,2) model with parameter vector

(φ0, φ1, φ2, θ1, θ2, σ
2
Z) = (0.00008, 1.9279, - 0.9280, -1.8644, 0.8652, 1).
Testing the ARMA(1,1) model.

m2 T = 3,000 m2 T = 6,000 m2 T = 12,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

10 13.8 8.0 3.0 10 22.4 15.4 6.8 10 37.8 29.8 13.4
20 54.4 45.4 27.8 20 80.8 76.0 59.2 20 93.8 93.8 88.0
30 73.2 67.8 52.8 30 92.0 90.2 81.8 30 98.0 98.0 94.2
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4.7 Section Conclusion

In this chapter, we present a class of novel tests of scale-consistency for ARMA

models. We use the empirical likelihood framework to combine information from

samples from different scales. The proposed testing framework can be used to test

against deviations from the true parameters or departure from the true model

Simulation studies show that the proposed tests have good empirical size properties

and superior power properties compared to the corresponding tests based on only

HF sample in terms of detecting a small bias in the ARMA model parameters.

The tests also have good empirical size properties and powers against particular

higher order models with a multiscale type behavior.
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Chapter 5

Empirical Likelihood-Based

Two-scale Tests of

Scale-Consistency for GARCH

Processes

5.1 Chapter Introduction

In this chapter, we extend the two-scale test for the ARMA processes proposed in

Chapter 4 to test scale consistency of GARCH processes.

Due to the fact that the squared observations in the GARCH models have ARMA

representations, and the ARMA representation can be used to recover the GARCH

parameters, we can test the scaling property of the GARCH processes through

their linear ARMA representations.
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5.2 Model, Testing Framework, and Adapta-

tions

Let us consider a stationary strong GARCH(p,q) process:

εt =
√
htzt

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjh
2
t−j,

(5.1)

where {zt} is a sequence of i.i.d. random variables with mean zero and unit

variance.

The squared observations of a GARCH(p,q) process admit the following restricted

ARMA(r,p) representation:

ε2t = α0 +
r∑
i=1

(αi + βi)ε
2
t−i + νt −

p∑
j=1

βjνt−j, (5.2)

where r = max(p, q), and νt = ε2t − ht is an MDS with respect to the natural

filtration of the process {εt}. In particular, the {νt} is a temporally uncorrelated

sequence. Therefore, the testing framework for the ARMA processes proposed in

Chapter 4 can, in principle, be adapted to test scale-consistency of the GARCH

processes by replacing the {Xt} sequence of the ARMA(p,q) process by the {ε2t}
sequence of the GARCH process. Other than this replacement, the implementa-

tion of the two-scale test for the GARCH(p,q) processes is exactly the same as

the corresponding test for the ARMA(p,q) process. Specifically, in the case of the

GARCH(1,1) process, which is considered in our simulation studies, we use esti-

mating equations of the form of (4.7) with Xt replaced by ε2t and the aggregated

variables of the form

X̄(m)t = ε2t + ε2t−1 + · · ·+ ε2t−m+1.

One issue needs to be emphasized when we apply the test to test the scaling be-

havior of return volatilities. When we model financial asset (log-)return volatility

with GARCH processes, our multiscale test of scale consistency is applied to test

whether an assumed GARCH model is appropriate for modeling both the volatil-

ity of HF returns εt and the volatility of m-period LF returns, which is denoted
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as

ε̄(m)t := εt + εt−1 + · · · εt−m+1.

From the temporal aggregation results given in Chapter 2, we can derive the

dynamic of ε̄(m)t from the original HF model governing the dynamics of εt. Without

loss of generality, consider εt following a ARCH(1) model, which implies

(1− α1L)ε2t = α0 + νt,

where νt = ε2t − ht is the driving white noise sequence in the AR representation of

the ARCH model. An application of the temporal aggregation techniques yields

the dynamics of the squared m-period returns:

(1− αm1 Lm)ε̄2(m)t = (1− αm1 Lm)

(
m−1∑
i=1

Liεt

)2

=

(
1− αm1 Lm

1− α1L

m−1∑
i=1

Li

)
(α0 + νt)− 2(1− αm1 Lm)

∑
2≤i≤m−1

∑
1≤j<i

εt−iεt−j.

(5.3)

We may formally derive LF estimating equations based on (5.3) as we did

for AR models. However, unlike AR processes, the cross-product terms∑
2≤i≤m−1

∑
1≤j<i εt−iεt−j create an additional complication when we calculate the

variance of the residuals (i.e. the RHS of (5.3)). In particular, without the assump-

tion that the distribution of εt is symmetric around zero, the cross products terms

give rise to non-zero covariances with the νt terms, which can only be calculated

with a further specification of the exact distributions of the εt’s.

However, we may avoid dealing with the cross-product terms by adding the term

2(1− αm1 Lm)
∑

2≤i≤m−1

∑
1≤j<i

εt−iεt−j

to both sides of (5.3) to obtain the following equation:

(1− αm1 Lm)

(
m−1∑
i=1

Liε2t

)
=

(
1− αm1 Lm

1− α1L

m−1∑
i=1

Li

)
(α0 + νt). (5.4)

Equation (5.4) may be called the dynamics of sum of squared returns whereas

equation (5.3) is squared LF returns (or sum of returns squared). Our original

interest, which is in testing the dynamics of squared LF returns, can be tested sim-

ilarly through the dynamics of sum of returns squared, which is mathematically

simpler. Specifically, since the AR polynomials in (5.3) and in (5.4) are the same,
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the tests are equivalent in testing the scaling behavior of the AR part. The pro-

posed approach can be justified in several ways. The AR part is generally of more

interest than the MA part. Statistically, the AR part determines the asymptotic

behavior of the autocorrelation function whereas the MA polynomial only affects

the first few lags of the autocorrelation function. In addition, in the econometrics

literature, some popular measures of persistence of an ARMA type process are de-

fined in terms of the AR coefficients, like the sum of AR coefficients or the largest

AR root in terms of absolute value. See, for example, Stock (1991)[70], Dias and

Marques (2010)[12], and Hansen and Lunde (2014)[33]. Thus, our modification of

the test does not affect the main interest in terms of testing the scaling behavior

of the linear dependency structure, although there is some issues associated with

a strict interpretation of the quantities involved.

Last but not least, the sacrifice of a strict interpretability for mathematical conve-

nience may be necessary when temporal aggregation needs to be performed. An

example can be found in Ohanissian, et.al.(2008)[60]. In that case, the log returns

on a financial asset, rt, is modeled by

rt = σ exp(Yt/2)et, (5.5)

where {Yt} is a stationary Gaussian long memory process independent of the i.i.d.

mean-zero random variables {et}. In order to estimate the long memory parameter

associated with the process Yt, a transformation

Wt ≡ log(r2
t ) = log(σ2) + Yt + log(e2

t )

is taken to linearize the process. Then, to estimate the long-memory parameter of

low frequency returns, (flow variable) temporal aggregation is performed on the

transformed variable Wt, resulting in summations log(r2
t ), which does not have a

straightforward financial interpretation.
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5.3 Simulation Study

5.3.1 Testing a model with a particular set of parameters

In this section, we conduct simulation studies to investigate the finite sample

properties of our proposed test in the case of GARCH models. The design of

the simulations studies are parallel to that for the ARMA processes in Chapter 4.

Namely, we conduct two types of tests: testing a model for a given set of parameters

and testing the model itself. The alternative data generating mechanisms used in

the empirical power study also parallels that in the ARMA case.

For every data generating process, we simulate from a strong model with i.i.d.

normal innovations. The HF data corresponds to m1 = 1, i.e. we use all of the

simulated data. The LF m2 is chosen at various values.

Size of the test

Table 5.1 shows the percentage of WB(θ0) ≥ χ−1
(8)(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 repetitions for the GARCH(1,1) process with parameter vector

(α0, α1, β1) = (0.0082, 0.0399, 0.9505).

Table 5.1: Empirical size of the two-scale tests when the observations are from
the GARCH(1,1) model with parameter vector (α0, α1, β1) = (0.0082, 0.0399,

0.9505).

m2 T = 1,500 m2 T = 3,000 m2 T = 6,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

2 8.6 5.2 0.4 2 7.3 4.6 0.4 2 9.8 4.7 0.7
5 11.3 6.5 2.3 5 9.8 6.4 1.5 5 8.9 4.6 1.1

10 8.8 6.3 2.4 10 8.5 3.9 1.4 10 9.2 4.1 1.2
20 13.5 5.6 1.9 20 11.8 6.5 1.9 20 10.1 5.1 1.6
m2 T = 12,000 m2 T = 30,000 m2 T = 60,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 8.7 4.4 0.7 2 9.0 4.5 1.2 2 9.2 4.8 0.8
5 8.6 4.8 1.0 5 9.2 5.2 1.4 5 9.6 5.2 1.7

10 9.0 5.2 1.6 10 8.9 4.6 1.2 10 9.4 4.8 1.4
20 10.6 5.6 3.8 20 10.7 5.8 2.0 20 10.6 5.4 1.6

As one can see from the empirical sizes in Table 5.1, the test has empirical sizes

in broad agreement with the nominal sizes as sample size increases.
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Power of the test against small deviations in the parameters

To demonstrate the empirical power of the test, we test against a small deviation

from the true parameter. We compare the power of the multiscale test with the

corresponding single scale test where only HF estimating equations are used to

demonstrate the advantage of using multiscale information.

Table 5.2 shows the percentage of WB(θ0) ≥ χ−1
(8)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications. In this case the data is generated from a GARCH(1,1)

process with parameter vector (α0, α1, β1) = (0.0082, 0.0399, 0.9505) and a slightly

perturbed parameter value of α1 = 0.0349 is tested with the other parameters fixed

at true value.

We compare the power of tests based on a single scale EE (i.e. HF EE) with

that based on multiscale EEs with various LF levels. We observe that the tests

based on a single scale EEs has virtually no power against the small deviation in

the parameter value of α1. In contrast, multiscale tests using aggregation levels

of m2 = 5 or higher are consistently more powerful, and the powers grow quickly

with both the sample size and the levels of aggregation.
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Table 5.2: Empirical power comparison of one- and two-scale tests (in %) when
the observations are generated from the GARCH(1,1) model with parameter

vector (α0, α1, β1) = (0.0082, 0.0399, 0.9505).
Testing parameter vector (0.0082, 0.0349, 0.9505).

1 Scale
T = 1,500 T = 3,000 T = 6,000
10% 5% 1% 10% 5% 1% 10% 5% 1%
1.1 0.6 0 1.1 0.6 0 0.7 0.2 0
T = 12,000 T = 30,000 T = 60,000
10% 5% 1% 10% 5% 1% 10% 5% 1%
0.3 0.2 0.2 1.0 0.5 0 1.3 0.6 0

2 Scales
m2 T = 1,500 m2 T = 3,000 m2 T = 6,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 2.5 1.3 0.4 2 2.0 1.5 0.4 2 1.4 0.6 0.3
5 13.4 9.0 3.6 5 17.8 12.0 5.7 5 30.3 19.6 7.0

10 26.7 17.4 6.7 10 53.0 40.2 19.8 10 89.4 81.9 60.4
20 64.0 54.1 32.6 20 91.6 87.3 77.1 20 99.7 99.6 97.8
m2 T = 12,000 m2 T = 30,000 m2 T = 60,000

10% 5% 1% 10% 5% 1% 10% 5% 1%
2 1.9 0.4 0.3 2 4.5 3.2 0.4 2 8.7 4.8 1.0
5 78.6 61.7 26.8 5 100 100 99.8 5 100 100 100

10 100 100 98.6 10 100 100 100 10 100 100 100
20 100 100 100 20 100 100 100 20 100 100 100

5.3.2 Testing a model

In this part, we conduct simulation studies to investigate the empirical size and

power of our proposed tests when testing a model. To investigate the empirical

size property, we generate data from a GARCH(1,1) model and test the model

specified through the two-scale estimating equations (4.7) optimized under the

constraints of temporal aggregation relations. To investigate the empirical power

property, we generate data from a particular GARCH(2,2) model.

Size of the test

Table 5.3 shows the percentage of WB(θ̃) ≥ χ−1
(4)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 repetitions for the GARCH(1,1) process with parameter vector (α0, α1, β1)

= (0.0082, 0.9904, 0.9505).

As one can see from the empirical sizes in Table 5.3, the multiscale test generally

has a smaller number of rejections of the null hypothesis than the nominal values.
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Table 5.3: Empirical size of the two-scale tests when the observations are from
the GARCH(1,1) model with parameter vector (α0, α1, β1) = (0.0082, 0.9904,

0.9505).

m2 T = 6,000 m2 T = 12,000 m2 T = 18,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

10 3.3 1.9 0.6 10 2.3 1.5 0.4 10 5.1 2.2 0.8
20 6.0 3.6 1.7 20 6.9 3.3 1.0 20 6.2 3.9 1.0
30 5.4 3.7 0.9 30 6.2 3.9 1.0 30 7.5 4.8 0.6

Power of the test against multiscale-type higher order data generating

mechanism

To demonstrate the empirical power of the test, we generate data from a particular

GARCH(2,2) model corresponding to a two-component GARCH model estimated

with real data, which has a multiscale volatility interpretation.

Table 5.4 shows the percentage of WB(θ̃) ≥ χ−1
(4)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications. In this case data is generated from a GARCH(2,2) process

with parameter vector (α0, α1, α2, β1, β2) = (7e-5, 0.0635, -0.0628, 1.8644, -0.8652)

and a GARCH(1,1) model is tested.

Table 5.4: Empirical power of the two-scale tests (in %) when the observations
are generated from the GARCH(2,2) model with parameter vector

(α0, α1, α2, β1, β2) = (7e-5, 0.0635, -0.0628, 1.8644, -0.8652).
Testing the GARCH(1,1) model.

m2 T = 6,000 m2 T = 12,000 m2 T = 18,000
10% 5% 1% 10% 5% 1% 10% 5% 1%

10 7.3 4.6 3.4 10 6.6 3.1 1.6 10 10.5 6.9 4.1
20 32.1 23.5 9.7 20 55.2 46.3 30.9 20 76.8 66.8 47.8
30 47.6 38.4 21.5 30 76.3 67.2 50.2 30 92.9 87.3 73.9

From table 5.4 we observe that a fairly large sample (i.e. T = 18, 000) size and

a high level of aggregation at the LF is needed in order for the two-scale test to

have a significant power.
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5.4 Empirical Study

In this section, we apply the two-scale test to the Dow Jones Industrial Average

(DJIA) index return sample used in Engle and Patton (2001)[22]. The sample data

used in Engle and Patton (2001)[22] is the DJIA daily percentage returns from

August 23, 1988 to August 22, 2000. It contains a total of 3,130 observations.

Engle and Patton (2001)[22] used quasi-maximum likelihood estimation (QMLE)

based on a Gaussian innovation distribution. They found that the Schwarz In-

formation Criterion favors the GARCH(1,1) model in the GARCH(p,q) class for

p ∈ [1, 5] and q ∈ [1, 2]. The resulting QMLE estimates of the model parameters

are

α0 = 0.0082, α1 = 0.0399, β1 = 0.9505.

In addition, squared returns normalized by conditional variance filtered using a

GARCH(1,1) model with this set of parameters pass the Ljung-Box Q test of

white noise, suggesting that the persistence in the variance of returns has been

adequately captured and the standardized residuals are white noise.

In the following subsections, we conduct two-scale tests of consistency to test

whether (i) the GARCH(1,1) model as estimated in Engle and Patton (2001)

is consistent with the DJIA sample at different scales and (ii) whether the

GARCH(1,1) model itself is consistent with the DJIA sample at different scales.

5.4.1 Two-scale testing of QMLE estimates

We test the GARCH(1,1) model with the set of QMLE as estimated in Engle

and Patton (2001)[22] using our proposed two-scale test for its consistency with

data at two scales. This corresponds to the situation of testing a model with

a particular set of parameters. For the purpose of comparison, we also test the

QMLE at a single scale (i.e. daily). Since the QMLE does not contain an estimate

of the variance of the innovations {νt} in the ARMA representation of squared

observation in the GARCH process, σ2
ν , we first estimate the parameter σ2

ν . We

choose the value of σ2
ν such that the profile empirical likelihood based on the HF

data is maximized. This yields an estimate of σ̂2
ν = 4.34.

While the choice of block size is based on calibrating the size of the tests to the

nominal values in the simulation studies, there seems to be no rule for choosing a

block size in the empirical studies. We thus conduct tests using a range of values

for the block size. As exemplified in Fig.5.1, the value of the EL test statistic is
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usually a slowly changing and smooth function of the block size and the conclusion

of the test is consistent with respect to a range of values of the block size.

Figure 5.1: Two-scale test statistic values and test results against block length
for the DJIA sample data.

Table 5.5 summarizes the test results of single and two-scale tests for the DJIA

sample data. First of all, the single scale test based on only daily returns indicates

that the GARCH(1,1) model with the parameter vector (α0, α1, β1) = (0.0082,

0.0399, 0.9505) is not rejected at the daily scale. Next, the GARCH(1,1) model is

rejected by the two-scale tests using daily and two-day returns, daily and three-

day returns, and daily and 60-day returns at higher confidence levels. A closer

look at the values of two-scale test statistics associated with 2-day, 3-day, and

60-day tests indicates that these values are not too large above the corresponding

threshold values. Thus we interpret the test results as that the GARCH(1,1)

model with the parameter vector (α0, α1, β1) = (0.0082, 0.0399, 0.9505) not being

inconsistent at the pairs of scales m1 = 1 and m2 with m2 = 4, 5, 10, 20, 30, while

slightly inconsistent at the pairs of scales m1 = 1 and m2 = 2, 3, 60.

The rejections of the estimated GARCH(1,1) model at scales m2 = 2 and m2 = 3

do not seem to fit into the patterns we have observed in the simulation studies

where rejections at lower frequencies are usually followed by rejections at higher

frequencies. Therefore, we suspect that there are features in the data at 2-day and

3-day scales which have caused violations of scale-consistency in ways other than

those considered in our simulation studies (i.e. small deviation in the parameters

or multiscale-type data generating process). In the literature, 2-day and 3-day

returns are much less studied compared to returns over horizons with calendar

meaning such as 5-day (weekly), 10-day (bi-weekly) and so on. Therefore we do
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not pursue further investigations into the reasons why the estimated GARCH(1,1)

model is rejected at 2- and 3-day scales.

Overall, the GARCH(1,1) model estimated with a daily return sample of size

3,130 daily return observations as in Engle and Patton (2001) is not rejected by

our two-scale consistency test over a range of scale up to 20-day scale, except on 2-

day and 3-day scales. We would also like to emphasis here some of the limitations

that the above conclusions may subject to. First of all, given the sample size of

3,130, the empirical power property of the two-scale test with the LF being less

than 20 may not be high enough as one can see from the simulation studies (i.e.

Table 5.2). Secondly, as part of the nature of two-scale tests, they test the pair-

wise consistency of the model at the HF scale (i.e. daily) and one particular LF

scale instead of the simultaneous consistency at an arbitrary set of scales. In the

next chapter, we extend the two-scale tests to multiscale tests which address both

limitations.
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Table 5.5: Empirical likelihood testing results of GARCH(1,1) model with
parameter vector (α0, α1, β1) = (0.0082, 0.0399, 0.9505) and σ̂2

ν = 4.34 on the
DJIA return sample as in Engle and Patton (2001).

One Scale (daily)
10% 5% 1%

Test statistics χ2(4)
Critical values 7.78 9.49 13.28
Test statistics value: 5.79
Test Conclusion A A A

Two Scales
10% 5% 1%

Test statistics χ2(8)
Critical values 13.36 15.51 20.09
Test statistics value (average):
m2 = 2 19.89
Test Conclusion R R A
m2 = 3 15.41
Test Conclusion R A A
m2 = 4 10.11
Test Conclusion A A A
m2 = 5 8.61
Test Conclusion A A A
m2 = 10 6.35
Test Conclusion A A A
m2 = 20 7.76
Test Conclusion A A A
m2 = 30 8.40
Test Conclusion A A A
m2 = 60 17.73
Test Conclusion R R A

A: accept; R: reject.
(Test statistic values is averaged over a range of choices of block length.)

5.4.2 Two-scale testing of the GARCH(1,1) model

In this section, we conduct two-scale test of the GARCH(1,1) model using the

DJIA sample data. This corresponds to testing the model itself. We have already

seen from the preceding subsection that the GARCH(1,1) model with the set of

QMLE as estimated in Engle and Patton (2001)[22] is not rejected by the two-

scale tests for a range of scales, except at scales 2, 3, 30 and 60. The tests in this

subsection helps to answer whether the GARCH(1,1) model can be consistent for

the data at the daily and LF scales at 2, 3, 30 or 60.
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Table 5.6 shows the results of two-scale testing. We observe that the conclusions

of two-scale tests of the GARCH(1,1) model for the DJIA index return sample

generally follows the same pattern of the corresponding tests of the GARCH(1,1)

with a particular set of QMLE. This indicates that the set of QMLE as estimated

in Engle and Patton (2001)[22] does a fairly good job in enabling the GARCH(1,1)

model to fit the sample data at different scales as the model itself is capable of.

Table 5.6: Log profile empirical likelihood statistics value for testing the
GARCH(1,1) model using sample from HF and various LFs on the DJIA return

sample as in Engle and Patton (2001)[22].

Two-Scale Test of Model
10% 5% 1%

Test statistics χ2(4)
Critical values 7.78 9.49 13.28
Test statistics value (average):
m2 = 2 4.49
Test Conclusion A A A
m2 = 3 11.03
Test Conclusion R R A
m2 = 4 1.45
Test Conclusion A A A
m2 = 5 0.97
Test Conclusion A A A
m2 = 10 1.42
Test Conclusion A A A
m2 = 20 6.60
Test Conclusion A A A
m2 = 30 7.17
Test Conclusion A A A
m2 = 60 9.48
Test Conclusion R A A

A: accept; R: reject.
(Test statistic values is averaged over a range of choices of block length.)
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5.5 Section Conclusion

In this section, we have presented the two-scale tests of consistency for GARCH

processes. The theoretical development of the two-scale tests for GARCH pro-

cesses follows closely the corresponding theory for the ARMA processes with some

minor adaptation.

Simulation studies show that the multiscale test is useful for detecting a small

bias in models parameters which is otherwise difficult to detect by using only a

high frequency sample. It is also useful for detecting a certain type of model

misspecification.

Empirical study on a sample of Dow Jones Industrial Average index return sample

indicates that a GARCH(1,1) model accepted at the high frequency data may not

be adequate for data at certain lower frequencies.
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Chapter 6

Empirical Likelihood-Based

Multiscale Tests of

Scale-Consistency

6.1 Chapter Introduction

The two-scale tests described in the previous chapters can be generalized straight-

forwardly to using a number of S scales where S ≥ 3 1. Such a generalization

is both natural and of practical values. Firstly, it can lead to an increase in the

power of the tests. Secondly, it allows one to test the model at a selection of scales

over which the model may be used.

As in the two-scale tests, we start with a set of high frequency (HF) estimating

equations at scale m1 and then add corresponding estimating equations from low

frequencies (LF). Instead of having only one LF scale m2 as in the two-scale test,

we add estimating equations from a set of LF scales m2, ..., mS.

6.2 The Multiscale Tests

We present the S-scale version of the test in the context of the ARMA(p,q) process

(4.1). Adaption of the test to GARCH processes follow the same steps outlined in

Chapter 5.

1The two-scale tests correspond to the case of S = 2.
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6.2.1 S-scale Estimating Equations

The same rules for choosing estimating equations described in section 4.2 apply to

the construction of multiscale estimating equations. Specifically, we can construct

multiscale estimating equations analogous to the two-scales estimating equations

in Example 4.2 as follows.

Example 6.1 S-scale estimating equations for the ARMA(1,1) process

based on flow aggregation

E[Xt − φ0 − φ1Xt−1] = 0,

E[(Xt − φ0 − φ1Xt−1)Xt−2] = 0,

E[(Xt − φ0 − φ1Xt−1)2]− (1 + θ2
1)σ2

Z = 0,

E[(Xt − φ0 − φ1Xt−1)(Xt−1 − φ0 − φ1Xt−2)]− θ1σ
2
Z = 0,

E[X̄(m2)t − φ̄(m2)0 − φ̄(m2)1X̄(m2)t−m2 ] = 0,

E[(X̄(m2)t − φ̄(m2)0 − φ̄(m2)1X̄(m2)t−m2)X̄(m2)t−m2−1] = 0,

E[(X̄(m2)t − φ̄(m2)0 − φ̄(m2)1X̄(m2)t−m2)
2]− σ̄2

(m2)Z = 0,

E[(X̄(m2)t − φ̄(m2)0 − φ̄(m2)1X̄(m2)t−m2)

×(X̄(m2)t−m2 − φ̄(m2)0 − φ̄(m2)1X̄(m2)t−2m2)]− γ̄
(1)
(m2)Z = 0,

· · ·

E[X̄(mS)t − φ̄(mS)0 − φ̄(mS)1X̄(mS)t−mS
] = 0,

E[(X̄(mS)t − φ̄(mS)0 − φ̄(mS)1X̄(mS)t−mS
)X̄(mS)t−mS−1] = 0,

E[(X̄(mS)t − φ̄(mS)0 − φ̄(mS)1X̄(mS)t−mS
)2]− σ̄2

(mS)Z = 0,

E[(X̄(mS)t − φ̄(mS)0 − φ̄(mS)1X̄(mS)t−mS
)

×(X̄(mS)t−mS
− φ̄(mS)0 − φ̄(mS)1X̄(mS)t−2mS

)]− γ̄(1)
(mS)Z = 0,

(6.1)

where φ̄(m)0, φ̄(m)1, σ̄2
(m)Z , γ̄

(1)
(m)Z represent the LF intercept, AR coefficient, and

the LF residual variance and lag-1-auto-covariance at scales m = m2, · · · ,mS,

respectively. The parameters in the LF estimating equations are assumed to be

independent of the HF model parameters as in the two-scale tests. These new

parameters are introduced so that the system (6.1) is just-determined and thus

always has a unique solution. We will refer to (φ0, φ1, θ1, σ
2
Z) as the HF model

parameters, abbreviated as θHF , and to

(φ̄(m2)0, φ̄(m2)1, σ̄
2
(m)Z , γ̄

(1)
(m2)Z , · · · , φ̄(mS)0, φ̄(mS)1, σ̄

2
(m)Z , γ̄

(1)
(mS)Z) altogether as the LF

model parameters, abbreviated as θLF .
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6.2.2 The null and the alternative hypotheses

For a given ARMA(p,q) process, our proposed multiscale test tests the following

hypothesis:

H0 : f(m2,···,mS)(θ
HF ,θLF ) = 0,

HA : f(m2,···,mS)(θ
HF ,θLF ) 6= 0,

(6.2)

where the function f(m2,···,mS) is determined by the temporal aggregation relation

between the high and low frequency model parameters in the ARMA(p,q) process

at the HF m1 = 1 and each of the LFs m2 through mS. We give an example in

the case of S = 3 below.

Example 6.1 (continued) A specialization of the multiscale test in the case of

the ARMA(1,1) process with S = 3, i.e. a HF scale and two LF scales, m2 = 2

and m3 = 3, tests the following hypothesis

H0 : f(m2,m3)(θ
HF ,θLF ) = 0,

HA : f(m2,m3)(θ
HF ,θLF ) 6= 0,

(6.3)

where

θHF := (φ0, φ1, θ1, σ
2
Z),

θHF := (φ̄(m2)0, φ̄(m2)1, σ̄
2
(m2)Z , γ̄

(1)
(m2)Z , φ̄(m3)0, φ̄(m3)1, σ̄

2
(m3)Z , γ̄

(1)
(m3)Z),

and

f(m2,m3)(θ
HF ,θLF ) :=

(1 + φ1) · 2 · φ0 − φ̄(m2)0

φ2
1 − φ̄(m2)1

[1 + (1 + φ1 + θ1)2 + (φ1 + (1 + φ1)θ1)2 + φ2
1θ

2
1]σ2

Z − σ̄2
(m2)Z

[(φ1 + θ1 + φ1θ1) + φ1θ1(1 + φ1 + θ1)]σ2
Z − γ̄

(1)
(m2)Z

(1 + φ1 + φ2
1) · 3 · φ0 − φ̄(m3)0

φ3
1 − φ̄(m3)1

[1 + (1 + φ1 + θ1)2 + [(1 + φ1)(1 + θ1) + φ2
1]2 + [φ1(1 + φ1)(1 + θ1) + θ1]2

+[φ1θ1 + φ2
1(1 + θ1)]2 + φ4

1θ
2
1]σ2

Z − σ̄2
(m3)Z

[[φ1(1 + φ1)(1 + θ1) + θ1]

+[φ1θ1 + φ2
1(1 + θ1)](1 + φ1 + θ1) + φ2

1θ1[(1 + φ1)(1 + θ1) + φ2
1]]σ2

Z − γ̄
(1)
(m3)Z



.

(6.4)
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The elements in the vector in (6.4) are the differences between (1) the LF param-

eters at each of the LF scale implied by the HF parameters and (2) the directly

estimated LF parameters. The first four elements correspond to the intercept term,

the AR coefficient, residual variance, and first-order residual auto-covariance at

scale m2 = 2. The next four are analogous elements for the scale m3 = 3.

Similar to the two-scale tests, we consider two types of testing problems: (i) testing

a model with a particular set of parameters and (ii) testing the model itself.

6.2.3 Constructing S-frequency samples as a vector of ob-

servations

In order to formulate the empirical likelihood inference problem using samples

from S time scales, we need to formulate samples corresponding to the S scales.

Denote

ē(mk)t(θ) :=

[
1−

p∑
j=1

φ̄(mk)jL
mk

](
mk−1∑
i=1

Li

)
Xt − φ̄(mk)0

=

[
1−

p∑
j=1

φ̄(mk)jL
mk

]
X̄(mk)t − φ̄(mk)0

(6.5)

for k = 1, · · · , S. Then, {et, t ∈ Z+ and t ≤ T} is the HF sample and {ē(mk)t, t ∈
Z+ and t ≤ T}, k = 2, · · · , S are the LF samples. Stacking the HF and LF

samples into a vector, we have {(et, ē(m2)t, · · · , ē(mS)t)
′, t ∈ Z+ and t ≤ T} as our

vector-valued observations. By doing so, we can cast the inference problem as a

vector-valued (block) empirical likelihood framework. More detailed examples will

be provided in the following subsection.

6.2.4 Empirical likelihood inference based on multiscale

estimating equations

To test the null hypothesis given in (6.2) based on a sample data, we now formulate

the corresponding estimating equations to be used for the empirical likelihood

inference.

Using the given observations, we form estimating equations which are satisfied

by the postulated ARMA(p,q) process at every scales from m1 = 1 through mS.
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We use estimating equations analogous to the ones used in Example 6.1. These

are straightforward generalizations of the estimating equations for the ARMA(1,1)

process. At the HF, m1 = 1, we have:∑
t

gHF,t(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z) = 0 (6.6)

where

gHF,t(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z) :=

et(θ)

et(θ)Xt−p−1

et(θ)Xt−p−2

· · ·
et(θ)Xt−2p

et(θ)2 − (1 + θ2
1 + · · ·+ θ2

q)σ
2
Z

et(θ)et−1(θ)− (θ1 + θ2θ1 · · ·+ θqθq−1)σ2
Z

· · ·
et(θ)et−q+1(θ)− (θt−q+1 + θqθ1)σ2

Z


.

(6.7)

Next, we add estimating equations from the LFs. In the case of the flow aggre-

gation, they are generalizations of LF estimating equations in (4.7). For the LF

scale mk where 2 ≤ k ≤ S, we have∑
t

gLF,t(φ̄(mk)0, φ̄(mk)1, · · · , φ̄(mk)p, σ̄
2
(mk)Z , γ̄

(1)
(mk)Z , · · · , γ̄

(q)
(mk)Z) = 0 (6.8)

where

gLF,t(φ̄(mk)0, φ̄(mk)1, · · · , φ̄(mk)p, σ̄
2
(mk)Z , γ̄

(1)
(mk)Z , · · · , γ̄

(q)
(mk)Z) :=

ē(mk)t(θ)

ē(mk)t(θ)X̄(mk)t−p(mk−1)−q−mk

ē(mk)t(θ)X̄(mk)t−p(mk−1)−q−mk−1

· · ·
ē(mk)t(θ)X̄(mk)t−p(mk−1)−q−mk−(p−1)

ē(mk)t(θ)2 − σ̄2
(mk)Z

ē(mk)t(θ)ē(mk)t−mk
(θ)− γ̄(1)

(mk)Z

· · ·
ē(mk)t(θ)ē(mk)t−qmk

(θ)− γ̄(q)
(mk)Z


.

(6.9)
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Stacking the HF and LF estimating equations into a single vector, we have the

final vector of estimating equations as

∑
t

gt(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z , φ̄(m2)0, φ̄(m2)1, · · · , φ̄(m2)p, σ̄

2
(m2)Z , γ̄

(1)
(m2)Z , · · · ,

γ̄
(q)
(m2)Z · · · , φ̄(mS)0, φ̄(mS)1, · · · , φ̄(mS)p, σ̄

2
(mS)Z , γ̄

(1)
(mS)Z , · · · , γ̄

(q)
(mS)Z) = 0,

(6.10)
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where

gt(φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z , φ̄(m2)0, φ̄(m2)1, · · · , φ̄(m2)p, σ̄

2
(m2)Z , γ̄

(1)
(m2)Z , · · · , γ̄

(q)
(m2)Z

· · · , φ̄(mS)0, φ̄(mS)1, · · · , φ̄(mS)p, σ̄
2
(mS)Z , γ̄

(1)
(mS)Z , · · · , γ̄

(q)
(mS)Z)

:=



et(θ)

et(θ)Xt−p−1

et(θ)Xt−p−2

· · ·
et(θ)Xt−2p

et(θ)2 − (1 + θ2
1 + · · ·+ θ2

q)σ
2
Z

et(θ)et−1(θ)− (θ1 + θ2θ1 · · ·+ θqθq−1)σ2
Z

· · ·
et(θ)et−q+1(θ)− (θt−q+1 + θqθ1)σ2

Z

ē(m2)t(θ)

ē(m2)t(θ)X̄(m2)t−p(m2−1)−q−m2

ē(m2)t(θ)X̄(m2)t−p(m2−1)−q−m2−1

· · ·
ē(m2)t(θ)X̄(mm2)t−p(m2−1)−q−m2−(p−1)

ē(m2)t(θ)2 − σ̄2
(m2)Z

ē(m2)t(θ)ē(m2)t−m2(θ)− γ̄(1)
(m2)Z

· · ·
ē(mS)t(θ)ē(mS)t−qmS

(θ)− γ̄(q)
(mS)Z

· · ·
ē(mS)t(θ)

ē(mS)t(θ)X̄(mS)t−p(mS−1)−q−mS

ē(mS)t(θ)X̄(mS)t−p(mS−1)−q−mS−1

· · ·
ē(m2)t(θ)X̄(mS)t−p(mS−1)−q−mS−(p−1)

ē(mS)t(θ)2 − σ̄2
(mS)Z

ē(mS)t(θ)ē(mS)t−mS
(θ)− γ̄(1)

(mS)Z

· · ·
ē(mS)t(θ)ē(mS)t−qmS

(θ)− γ̄(q)
(mS)Z



.

(6.11)
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Block empirical likelihood inference is then based on the following profile empirical

likelihood function

RB(θ) = sup

{
Q∏
i=1

QwBi |wBi > 0,

Q∑
i=1

wBi = 1,

Q∑
i=1

wBi Ti(θ) = 0

}
, (6.12)

where

θ = (φ0, φ1, · · · , φp, θ1, · · · , θq, σ2
Z , φ̄(m2)0, φ̄(m2)1, · · · , φ̄(m2)p, σ̄

2
(m2)Z , γ̄

(1)
(m2)Z , · · · ,

γ̄
(q)
(m2)Z · · · , φ̄(mS)0, φ̄(mS)1, · · · , φ̄(mS)p, σ̄

2
(mS)Z , γ̄

(1)
(mS)Z , · · · , γ̄

(q)
(mS)Z)

is the parameter vector, Ti(θ) = 1
M

∑M
j=1 g(i−1)L+j(θ) is the blocked observations.

Decision rule for rejecting the null hypothesis H0

The same asymptotic results for the two-scale tests in Chapter 4 apply to the

multiscale tests. According to these results, we have that the log profile empir-

ical likelihood statistics W (θ0) converges to a χ2
S(p+q+2) distribution and W (θ̃)

converges to a χ2
(S−1)(p+q+2) distribution under the null hypothesis.

Testing H0 : f(m)(θ) = 0 at θ = θ0

The decision rule for the test is the following: if the value of W (θ0) is greater than

the (1− α)-quantile of a χ2
S(p+q+2) distribution, then we reject the null hypothesis

H0 : f(m)(θ0) = 0 at the level of significance α.

Testing H0 : f(m)(θ) = 0

The decision rule for the test is the following: if the minimal value of W (θ)

with respect to θ, denoted as W (θ̃), is greater than the (1 − α)-quantile of a

χ2
(S−1)(p+q+2) distribution, then we reject the null hypothesis H0 : f(m) = 0 at the

level of significance α.

Example 6.1 (continued) In the case of the ARMA(1,1) process, the estimating

equations (4.7) contain a total of 12 estimating equations which are not linearly

dependent. Therefore, W (θ0) converges to a χ2
(12) distribution and W (θ̃) converges

to a χ2
(8) distribution under the null hypothesis. Decision rules for rejecting the

null hypothesis can be made accordingly.
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6.3 Simulation Study for ARMA Processes

In this section, we conduct simulation studies to investigate the finite sample

properties of the S-scale tests of ARMA models.

Corresponding to the design of the simulation studies for the two-scale tests, we

conduct two types of tests. The first type tests a model for a given set of param-

eters, and the second type tests the model itself. For each type of tests, we study

their empirical size properties and demonstrate the empirical power properties

against particular alternatives motivated by practical situations.

As for the alternatives in the first type of tests, we consider data generated from the

true model but with slightly different parameters. For the second type of tests, we

generate data from some higher order models, which mimics the practical situation

of an under-specified model due to the existence of multiscale phenomenon as

observed in financial volatility of return time series.

For every data generating process, we simulate from a strong model with i.i.d.

normal innovations. The HF data corresponds to m1 = 1, i.e. we use all of the

simulated data. The LF m2 is chosen at various values.

6.3.1 Testing a model with a particular set of parameters

Size of the test

We generate data from an ARMA(1,1) process with parameter vector θ0 =

(φ0, φ1, θ1, σ
2
Z) = (0.0082, 0.9904,−0.9505, 1) and test the estimating equations

(6.1) with the true parameter θ = θ0 using the block EL inference. In the case

of the ARMA(1,1) process, (6.1) contains a set of 12 estimating equations. We

study the empirical sizes of the test with various values of sample size and levels

of aggregation.

To determine the choice of the block length, we vary the block length from 1 to

some values large enough. For each level of aggregation, we plot the empirical

sizes against the block lengths to determine the appropriate block length to be

used.

Table 6.1 shows the percentage of WB(θ0) ≥ χ−1
(4S)(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 repetitions for the ARMA(1,1) process.
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Table 6.1: Empirical size of the multiscale tests when the observations are
from the ARMA(1,1) model with parameter vector (φ0, φ1, θ1, σ

2
Z) = (0.0082,

0.9904, -0.9505, 1).

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

2, 5 6.6 4.0 2.3 2, 5 8.7 5.0 1.9
2, 10 9.5 4.1 2.0 2, 10 9.1 4.8 2.0
5, 10 7.3 4.6 1.8 5, 10 9.6 5.0 1.6

2, 5, 10 8.2 5.2 1.9 2, 5, 10 9.3 5.1 1.4
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
2, 5 9.1 4.5 1.9 2, 5 8.5 4.4 1.2

2, 10 10.6 5.2 1.8 2, 10 10.2 5.2 1.2
5, 10 10.4 4.6 1.4 5, 10 9.6 4.6 1.0

2, 5, 10 9.2 5.2 1.3 2, 5, 10 9.1 3.5 1.3

As one can see from the empirical sizes in Table 6.1, the three-scale test has good

empirical sizes.
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Power of the test against small deviations in the parameters

To demonstrate the empirical power of the test, we test against a small deviation

from the true parameter.

Table 6.2 shows the percentage of WB(θ0) ≥ χ−1
(4S)(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 replications. In this case the data is generated from an ARMA(1,1)

process with parameter vector (φ0, φ1, θ1, σ
2
Z) = (0.0082, 0.9904, -0.9505, 1) and a

slightly perturbed parameter of φ1 = 0.9854 is tested with the other parameters

fixed at the true value.

Comparing the results in Table 4.4 and that in Table 6.2, we observe that the tests

based on three- or four-scale EEs has a higher power against the small deviation

in the AR parameter than the corresponding tests based on two-scale and at the

same levels of aggregation.

Table 6.2: Empirical power of the multiscale tests (in %) when the observa-
tions are generated from the ARMA(1,1) model with parameter vector

(φ0, φ1, θ1, σ
2
Z) = (0.0082, 0.9904, -0.9505, 1).

Testing parameter (0.0082, 0.9854,−0.9505, 1).

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

2, 5 34.5 23.2 11.1 2, 5 71.7 63.3 44.1
2, 10 55.8 44.8 25.0 2, 10 84.8 78.5 58.7
5, 10 59.4 49.3 27.7 5, 10 88.5 83.3 67.1

2, 5, 10 52.9 42.7 26.8 2, 5, 10 71.6 63.1 44.2
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
2, 5 97.6 95.5 85.3 2, 5 100 100 100

2, 10 99.6 99.4 96.1 2, 10 100 100 99.1
5, 10 99.7 99.5 97.0 5, 10 100 100 100

2, 5, 10 99.2 96.7 88.8 2, 5, 10 100 100 98.4
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6.3.2 Testing a model

In this part, we conduct simulation studies to investigate the empirical size and

power properties of our proposed tests for testing a model. To investigate the em-

pirical size property, we generate the data from an ARMA(1,1) model and test the

model specified through the two-scale estimating equations (6.1) optimized under

the constraints of temporal aggregation relations. To investigate the empirical

power property, we generate data from a particular ARMA(2,2) model.

Size of the test

Table 6.3 shows the percentage of WB(θ̃) ≥ χ−1
(4(S−1))(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 repetitions for the ARMA(1,1) process with parameter vector

(φ0, φ1, θ1, σ
2
Z) = (0.0082, 0.9904, -0.9505, 1).

Table 6.3: Empirical size of the multiscale tests when the observations are
from the ARMA(1,1) model with parameter vector (φ0, φ1, θ1, σ

2
Z) = (0.0082,

0.9904, -0.9505, 1).

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

2, 5 4.3 3.2 1.3 2, 5 6.2 4.8 2.7
2, 10 5.2 4.4 1.4 2, 10 5.4 3.1 2.2
5, 10 7.4 5.4 2.1 5, 10 5.1 3.3 1.8

2, 5, 10 4.7 3.9 1.3 2, 5, 10 5.3 3.2 1.3
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
2, 5 4.1 2.3 0.8 2, 5 3.5 1.5 0.2

2, 10 5.1 3.3 1.0 2, 10 6.2 3.4 1.1
5, 10 6.1 3.5 0.9 5, 10 8.9 4.6 2.1

2, 5, 10 5.2 3.6 0.9 2, 5, 10 7.6 4.3 0.7

As one can see from the empirical sizes in Table 6.3, the multiscale test generally

has conservative empirical sizes in this case.
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Power of the test against multiscale-type higher order data generating

mechanism

To demonstrate the empirical power of the test, we test against a ARMA(2,2) pro-

cess with a choice of parameter values motivated by the ARMA representation of

two-component GARCH models, which has a multiscale volatility interpretation.

Table 6.4 shows the percentage of WB(θ̃) ≥ χ−1
(4)(1−α) (α = 0.1, 0.05, 0.01) based

on 1,000 replications. In this case data is generated from an ARMA(2,2) process

with parameter vector (φ0, φ1, φ2, θ1, θ2) = (0.00008, 1.9279, - 0.9280, -1.8644,

0.8652).

Comparing the results in Table 6.4 and that in Table 4.6, we observe that the tests

based on three- or four-scale EEs has a higher power against the small deviation

in the AR parameter than the corresponding tests based on two-scale and at the

same levels of aggregation.

Table 6.4: Empirical power the multiscale tests (in %) when the observations
are generated from the ARMA(2,2) model with parameter vector
(φ0, φ1, φ2, θ1, θ2) = (0.00008, 1.9279, - 0.9280, -1.8644, 0.8652).

Testing the ARMA(1,1) model.

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

2, 5 35.5 32.8 30.8 2, 5 54.5 51.2 47.7
2, 10 31.2 26.3 14.9 2, 10 49.0 38.3 24.5
5, 10 48.6 42.5 38.1 5, 10 67.4 53.0 31.1

2, 5, 10 59.1 56.8 53.0 2, 5, 10 70.6 64.9 53.5
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
2, 5 75.6 68.5 60.3 2, 5 84.1 76.0 60.4

2, 10 75.2 65.1 46.9 2, 10 97.8 94.7 87.6
5, 10 89.0 82.8 64.1 5, 10 100 98.5 91.8

2, 5, 10 83.9 73.5 60.2 2, 5, 10 98.1 95.2 88.3
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6.4 Simulation Study for GARCH Process

In this section, we conduct simulation studies to investigate the finite sample

properties of the S-scale tests of GARCH models.

Corresponding to the design of the simulation studies for the two-scale tests, we

conduct two types of tests. The first type tests a model for a given set of param-

eters, and the second type tests the model itself. For each type of tests, we study

their empirical size properties and demonstrate the empirical power properties

against particular alternatives motivated by practical situations.

As for the alternatives in the first type of tests, we consider data generated from the

true model but with slightly different parameters. For the second type of tests, we

generate data from some higher order models, which mimics the practical situation

of an under-specified model due to the existence of multiscale phenomenon as

observed in financial volatility time series.

For every data generating process, we simulate from a strong model with i.i.d.

normal innovations. The HF data corresponds to m1 = 1, i.e. we use all of the

simulated data. The LF m2 is chosen at various values.

6.4.1 Testing a model with a particular set of parameters

Size of test

Table 6.5 shows the percentage of WB(θ0) ≥ χ−1
(4S)(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 repetitions for the GARCH(1,1) process with parameter vector

(α0, α1, β1) = (0.0082, 0.9904, 0.9505).

As one can see from the empirical sizes in Table 6.5, the test has empirical sizes

in broad agreement with the nominal sizes as sample size increases.

Power of the test against small deviations in the parameters

To demonstrate the empirical power of the test, we test against a small deviation

from the true parameter.

Table 6.6 shows the percentage of WB(θ0) ≥ χ−1
(4S)(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 replications. In this case the data is generated from a GARCH(1,1)
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Table 6.5: Empirical size of the multiscale tests when the observations are
generated from the GARCH(1,1) model with parameter vector (α0, α1, β1) =

(0.0082, 0.9904, 0.9505).

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

2, 5 8.3 4.8 2.0 2, 5 6.7 4.6 1.8
2, 10 7.4 5.4 2.4 2, 10 8.6 4.8 2.0
5, 10 7.8 4.8 2.4 5, 10 11.2 7.5 1.6

2, 5, 10 8.1 5.5 2.3 2, 5, 10 10.3 6.8 1.7
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
2, 5 7.8 4.5 1.4 2, 5 8.2 4.4 1.2

2, 10 8.6 5.2 1.8 2, 10 9.3 5.2 1.2
5, 10 9.8 5.1 1.9 5, 10 10.8 4.6 1.0

2, 5, 10 8.2 5.2 1.6 2, 5, 10 9.1 4.8 1.3

process with parameter vector (α0, α1, β1) = (0.0082, 0.9904, 0.9505) and a slightly

perturbed parameter value of α1 = 0.0349 is tested with the other parameters fixed

at the true value.

Comparing the results in Table 6.6 and that in Table 5.2, we observe that the tests

based on three- or four-scale EEs has a higher power against the small deviation

in the parameter than the corresponding tests based on two-scale and at the same

level of aggregation.

Table 6.6: Empirical power of the multiscale tests (in %) when the observa-
tions are generated from the GARCH(1,1) model with parameter vector

(α0, α1, β1) = (0.0082, 0.9904, 0.9505).
Testing parameter (0.0082, 0.0349, 0.9505).

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

2, 5 35.2 25.3 10.4 2, 5 80.5 70.6 47.5
2, 10 36.1 29.1 13.6 2, 10 89.6 84.5 70.8
5, 10 42.6 32.6 17.3 5, 10 93.2 89.1 79.2

2, 5, 10 38.0 29.4 15.6 2, 5, 10 87.2 83.0 69.4
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
2, 5 99.3 98.8 96.5 2, 5 100 100 100

2, 10 99.8 99.6 98.7 2, 10 100 100 100
5, 10 99.6 99.5 99.6 5, 10 100 100 100

2, 5, 10 99.4 99.0 99.5 2, 5, 10 100 100 100
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6.4.2 Testing a model

In this part, we conduct simulation studies to investigate the empirical size and

power of our proposed tests when testing a model. To investigate the empirical

size property, we generate the data from a GARCH(1,1) model and test the model

specified through the two-scale estimating equations (4.7) optimized under the

constraints of temporal aggregation relations. To investigate the empirical power

property, we generate data from a particular GARCH(2,2) model.

Size of test

Table 6.7 shows the percentage of WB(θ̃) ≥ χ−1
(4(S−1))(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 repetitions for the GARCH(1,1) process with parameter vector

(α0, α1, β1) = (0.0082, 0.9904, 0.9505).

Table 6.7: Empirical size of the multiscale tests when the observations are
generated from the GARCH(1,1) model with parameter vector (α0, α1, β1) =

(0.0082, 0.9904, 0.9505).

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

5, 30 6.4 3.8 2.0 5, 30 6.0 4.1 2.0
10, 30 7.0 5.0 2.0 10, 30 4.2 3.8 0.9

5, 10, 60 21.0 19.0 15.8 5, 10, 60 6.2 4.3 1.2
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
5, 30 6.8 3.9 0.8 5, 30 7.2 4.3 0.8

10, 30 6.9 4.1 0.7 10, 30 7.9 4.5 0.8
5, 10, 60 7.2 4.2 0.8 5, 10, 60 8.2 4.8 1.1

As one can see from the empirical sizes in Table 6.7, the multiscale test generally

has a smaller number of rejections of the null hypothesis than the nominal values

except in the case of m2 −mS = 5, 10, 60 and T = 1, 500. The reason of the large

size in this case is likely due to the high level of aggregation involved, which is

60, together with the relatively small sample size. In this case, violation of EEs

associated with scale 60 could occur more often then the nominal size of the test

would indicate.
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Power of the test against multiscale-type higher order data generating

mechanism

To demonstrate the empirical power of the test, we generate data from a particular

GARCH(2,2) model corresponding to a two-component GARCH model estimated

with real data, which has a multiscale volatility interpretation.

Table 6.8 shows the percentage of WB(θ̃) ≥ χ−1
(4(S−1))(1 − α) (α = 0.1, 0.05, 0.01)

based on 1,000 replications. In this case data is generated from GARCH(2,2)

process with parameters vector (α0, α1, α2, β1, β2) = (7e-5, 0.0635, -0.0628, 1.8644,

-0.8652) and a GARCH(1,1) model is tested.

Table 6.8: Empirical power of the multiscale tests (in %) when the observa-
tions are generated from the GARCH(2,2) model with parameters vector

(α0, α1, α2, β1, β2) = (7e-5, 0.0635, -0.0628, 1.8644, -0.8652).
Testing the GARCH(1,1) model.

m2 −mS T = 1,500 m2 −mS T = 3,000
10% 5% 1% 10% 5% 1%

5, 30 18.7 16.6 10.2 5, 30 25.4 21.2 16.4
10, 30 26.2 23.1 19.8 10, 30 33.4 29.8 25.6

5, 10, 60 100 100 100 5, 10, 60 100 100 100
m2 −mS T = 6,000 m2 −mS T = 12,000

10% 5% 1% 10% 5% 1%
5, 30 31.2 23.4 12.0 5, 30 61.4 53.6 36.6

10, 30 29.8 22.8 12.0 10, 30 57.4 48.4 32.8
5, 10, 60 100 100 100 5, 10, 60 100 100 100

Comparing the results in Table 6.8 and that in Table 5.4, we observe that the tests

based on three- or four-scale EEs has a higher power against the small deviation

in the parameter than the corresponding tests based on two-scale and at the same

level of aggregation.
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6.5 Empirical Study

In this section, we apply the multiscale test to the Dow Jones Industrial Average

(DJIA) index return sample used in Engle and Patton (2001)[22], which forms a

comparison with the empirical studies in Section 5.4.

6.5.1 Multiscale testing of QMLE estimates

Table 6.9 summarizes the test results of multiscale tests for the DJIA sample

data. First, we test the GARCH(1,1) model with a three-scale test based on daily,

2-day, and 3-day returns to seek confirmation of the findings of the two-scale

tests that the GARCH(1,1) model as estimated in Engle and Patton (2001)[22] is

inconsistent with the sample data at 2-day and 3-day scales. The test result shows

that the GARCH(1,1) model is rejected with high level of confidence, which seems

to confirm the results of the related two-scale tests. However, as we are going to

elaborate in the following subsection, a closer examination of the matrix condition

number of the variance-covariance matrix of the estimation equations involved in

this three-scale test raises alarm about potential problems of numerical stability

in computing the value of the test statistics.

Next, the estimated GARCH(1,1) model is inconsistent with the sample data at

scales of 60-day (or higher, as we have tested but not reported here for the sake

of space).

Finally, for the intermediates scales, from 5-day to 30-day, the estimated

GARCH(1,1) is not rejected by the multiscale tests of consistency.
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Table 6.9: Empirical likelihood testing results of GARCH(1,1) model with
parameter vector (α0, α1, β1) = (0.0082, 0.0399, 0.9505) and σ̂2

ν = 4.34 on the
DJIA return sample as in Engle and Patton (2001)[22].

Three-Scale Test
10% 5% 1%

Test statistics χ2(12)
Critical values 18.55 21.03 26.22
Test statistics value (average):
m2 = 2,m3 = 3 53.30
Test Conclusion R R R
m2 = 2,m3 = 5 14.36
Test Conclusion A A A
m2 = 2,m3 = 10 9.61
Test Conclusion A A A
m2 = 3,m3 = 5 20.80
Test Conclusion R A A
m2 = 3,m3 = 10 8.740
Test Conclusion A A A
m2 = 5,m3 = 10 10.58
Test Conclusion A A A
m2 = 5,m3 = 20 9.50
Test Conclusion A A A
m2 = 5,m3 = 30 9.98
Test Conclusion A A A
m2 = 5,m3 = 60 32.73
Test Conclusion R R R
m2 = 10,m3 = 20 10.03
Test Conclusion A A A
m2 = 10,m3 = 60 43.46
Test Conclusion R R R
m2 = 20,m3 = 60 49.23
Test Conclusion R R R
m2 = 30,m3 = 60 61.44
Test Conclusion R R R
Four-Scale Test

10% 5% 1%
Test statistics χ2(16)
Critical values 23.54 26.30 32.00
Test statistics value (average):
m2 = 5,m3 = 10,m4 = 20 12.25
Test Conclusion A A A
m2 = 5,m3 = 10,m4 = 60 52.76
Test Conclusion R R R
m2 = 5,m3 = 10,m4 = 120 27.60
Test Conclusion R R A
m2 = 10,m3 = 20,m4 = 30 12.32
Test Conclusion A A A
m2 = 10,m3 = 20,m4 = 60 54.11
Test Conclusion R R R

A: accept; R: reject.
(Test statistic values are averaged over a range of choices of block length.)
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6.5.2 Multiscale testing of the GARCH(1,1) model

In this section, we have conducted multiscale tests of the GARCH(1,1) model

using the DJIA sample data and form comparison with the results of the two-scale

tests as presented in Section 5.4.

Table 6.10 shows the results of multiscale testing of the GARCH(1,1) model. We

observe that the conclusions of multiscale tests of the GARCH(1,1) model for the

DJIA return sample generally follows similar patterns of the two-scale tests of the

GARCH(1,1) model as well as the multiscale tests with a particular set of QMLE.

Some notable differences are summarized below.

Firstly, the test of the GARCH(1,1) model itself shows that it is not rejected by

the three-scale test based on daily, 2-day, and 3-day data whereas the two-scale

test based on daily and 3-day data rejected the GARCH(1,1) model, which seems

to be counterintuitive. (See Table 5.6.) A calculation of the matrix condition

numbers (under the 2-norm) of the variance-covariance matrix associated with

the three-scale tests based on daily, 2-day, and 3-day, in both of the cases of

testing the model with QMLE and the model itself, yields, respectively, the values

of 845 and 680, which indicate that the inversion of the these matrices tend to

be numerically unstable. In contrast, the values of the condition numbers of the

corresponding matrices associated with the tests based on more separated scales

are usually less than 50 and generally less than 100 and the numerical inversion of

those matrices are much more stable. Since the inverse of the variance-covariance

matrix associated with the estimating equations used to construct the test plays

a key role in the computation of the test statistics, we suspect the result of the

three-scale test based on daily, 2-day and 3-day data to be numerically unreliable.

We suggest that the users of the multiscale test shall not use scales too close to

each other.

Secondly, comparing the test results corresponding to the set of scales m2 = 10,

m3 = 20, and m4 = 60, we observe that certain sets of parameter values could

lead to the model not being rejected at 60-day scale at confidence levels of 5% and

1%. However, the GARCH(1,1) model is clearly rejected at scale 60.
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Table 6.10: Log profile empirical likelihood statistics values for testing the
GARCH(1,1) model using sample from HF and various LFs on the DJIA return

sample as in Engle and Patton (2001)[22].

Three-Scale Test
10% 5% 1%

Test statistics χ2(8)
Critical values 13.36 15.51 20.09
Test statistics value (average):
m2 = 2,m3 = 3 7.24
Test Conclusion A A A
m2 = 2,m3 = 5 4.22
Test Conclusion A A A
m2 = 2,m3 = 10 4.55
Test Conclusion A A A
m2 = 3,m3 = 5 3.70
Test Conclusion A A A
m2 = 3,m3 = 10 4.32
Test Conclusion A A A
m2 = 5,m3 = 10 4.89
Test Conclusion A A A
m2 = 5,m3 = 20 6.18
Test Conclusion A A A
m2 = 5,m3 = 30 5.78
Test Conclusion A A A
m2 = 5,m3 = 60 15.54
Test Conclusion R R A
m2 = 10,m3 = 20 6.72
Test Conclusion A A A
m2 = 10,m3 = 60 18.85
Test Conclusion R R A
m2 = 20,m3 = 60 17.06
Test Conclusion R R A
m2 = 30,m3 = 60 17.95
Test Conclusion R R A
Four-Scale Test

10% 5% 1%
Test statistics χ2(12)
Critical values 18.55 21.03 26.22
Test statistics value (average):
m2 = 5,m3 = 10,m4 = 20 8.90
Test Conclusion A A A
m2 = 5,m3 = 10,m4 = 60 25.84
Test Conclusion R R R
m2 = 10,m3 = 20,m4 = 30 7.59
Test Conclusion A A A
m2 = 10,m3 = 20,m4 = 60 20.98
Test Conclusion R A A
m2 = 10,m3 = 60,m4 = 120 61.26
Test Conclusion R R R

A: accept; R: reject.
(Test statistic values are averaged over a range of choices of block length.)
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6.6 Applications of the Multiscale Testing

Framework to Estimation

In this section, we apply the empirical likelihood based approach to the multiscale

testing framework to estimate the model parameters.

As we have seen in the multiscale tests of a model, our proposed testing framework

results in a set of optimized parameters corresponding to the maximal value of

the corresponding empirical likelihood function. This set of parameters is called

the maximum empirical likelihood estimate (MELE). See, for example, Qin and

Lawless (1994)[65] and Owen (2001)[62]. In particular, Qin and Lawless (1994)[65],

Corollary 2, showed that the MELE based on a given set of r estimating equations

(4.2) for estimating the s-dimensional parameter θ is fully efficient in the sense

that it has the same asymptotic variance as the optimal estimator obtained from

the class of s estimating equations that are linear combinations of the r estimating

equations (4.2).

In addition to the general properties of the MELE known in the literature, our

simulation study suggests that there are two additional advantages of the MELE

resulting from our proposed two-scale inference framework. The first one is that

the HF model parameters can be estimated by using only the LF sample. This can

be useful when one only has access to the LF sample but wants to make predictions

at the HF. The second one is that the MELE obtained by using the multi-frequency

sample can reduce the bias in estimating the parameters, especially when the the

estimation errors are examined at LF scales which is key to the multiple step

forecasts. We illustrate these two benefits with simulation studies.

Specifically, we generate the data from a strong GARCH(1,1) model with a pa-

rameter vector (α0, α1, β1) = (0.0082, 0.9904, 0.9505) and standard normal inno-

vations. We consider the situation where one only has access to samples already

subject to some known level of aggregation and we focus on the estimation of

the persistence parameter α1 + β1. We conduct multiscale maximum empirical

likelihood estimation by using the data sampled at the highest available frequency

(i.e. m1) combined with samples at some lower frequencies. For comparison, we

conduct single scale MELE and quasi-maximum likelihood estimation based on

normal innovations using highest available frequency sample.

In the maximum empirical likelihood estimation, we parameterize the model at

the data generating scale, which is assumed to be known. As in the multiscale
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testing framework, we derive estimating equations at the scales where the cor-

responding samples are used for multiscale estimation. As we assume that one

knows the data generating process but only has access to aggregated sample, we

parameterize the estimating equations at all scales using the parameters in the

data generating process. For example, when conducting multiscale estimation us-

ing samples at the scales m1 = 5 and m2 = 10, the corresponding estimating

equations based on the ARMA(1,1) representation of the GARCH(1,1) at the two

scales have their AR(1) parameters parameterized as (α1 + β1)5 and (α1 + β1)10,

respectively. The other model parameters are similarly specified. This is different

from the multiscale testing situation where we parameterize the LF parameters

as independent parameters. In the current situation, we have an over-identified

system of estimation equations.

Table. 6.11 below summarizes the estimation results based on various data aggre-

gation levels (i.e. various levels of aggregation of the highest frequency available

sample) and an generating data of length 600 times of the level of aggregation of

the highest frequency available sample. For example, when the highest frequency

available sample is assumed to be aggregated at the level m1 = 5, we generate

data of length 3, 000. And when the highest frequency available sample is as-

sumed to be aggregated at the level m1 = 10, we simulated data of length 6, 000.

The summary statistics for the estimates are based on 1,000 replications. The

QMLE estimates are obtained by using the built-in function in Matlab 2014 for

estimating GARCH models specified with a normal innovation distribution.

At any level of aggregation assumed for the highest frequency available sample,

the parameters of the data generating model are naturally obtained through the

MELE due to the parameterization we use. For the QMLE, the directly ob-

served estimates correspond to the model at the aggregation level m1. As we

can see from the temporal aggregation results in Chapter 2, not every parameter

in a HF GARCH(1,1) model can be uniquely recovered from the aggregated LF

GARCH(1,1) model. This illustrates the first advantage of using the multiscale

MELE estimation since the model parameters at the data generating level can be

naturally estimated, which may not be possible if we had used QMLE.

The persistence parameter (α1 + β1) in a GARCH(1,1) model can be converted

from a LF to a HF through a simple power relation. Using this relation, we convert

the estimated persistence parameters among various scales and compare the cor-

responding percentage errors with respect to their true values. As can be observed
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from Table. 6.11, the medians of the point estimates based on the 1,000 replica-

tions obtained through the multiscale MELEs generally have smaller biases than

the corresponding medians of the single scale MELE and the means and medians

obtained through QMLE. The advantages of multiscale MELE are especially large

at larger scales. Admittedly, the MELEs generally have larger standard deviations

than the QMLEs, and this could result in quite large deviations of the means of

the MELE point estimates based on the 1,000 replications from the correspond-

ing true value. In comparison, the median of the MELE point estimates are less

affected by the standard deviations and this is why we choose to use the median

instead of the mean for the MELEs. However, we would like to emphasize the

advantage brought by using multiple frequency samples in reducing the biases in

estimating the persistence parameter evaluated at a range of scales, which will be

beneficial to the forecasting using the GARCH(1,1) model at the corresponding

horizons.
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Table 6.11: Comparison of the estimation of the persistence parameter α1+β1

in a GARCH(1,1) model.

Scale 1 5 10 20 60 120
True value of α1 + β1 0.9904 0.9529 0.9080 0.8245 0.5606 0.3145
MELE (median)
m1 = 5 0.9871 0.9371 0.8782 0.7713 0.4588 0.2105
(percentage error) (0.3%) (1.7%) (3.3%) (6.5%) (18.1%) (33.0%)
m1 = 5,m2 = 10 0.9885 0.9438 0.8908 0.7935 0.4996 0.2496
(percentage error) (0.2%) (1.0%) (1.9%) (3.8%) (10.9%) (20.6%)
m1 = 5,m2 = 20 0.9892 0.9472 0.8971 0.8048 0.5213 0.2717
(percentage error) (0.1%) (0.6%) (1.2%) (2.4%) (7.0%) (13.5%)
m1 = 5,m2 = 30 0.9908 0.9548 0.9117 0.8312 0.5743 0.3299
(percentage error) (0.0%) (0.2%) (0.4%) (0.8%) (2.5%) (5.0%)
m1 = 5,m2 = 60 0.9884 0.9433 0.8899 0.7919 0.4966 0.2466
(percentage error) (0.2%) (1.0%) (2.0%) (4.0%) (11.4%) (21.5%)
QMLE estimates
QMLE (mean)∗ 0.9920 0.9606 0.9228 0.8516 0.6176 0.3814
(percentage error) (0.2%) (0.8%) (1.6%) (3.3%) (10.2%) (21.4%)
QMLE (median) 0.9935 0.9679 0.9369 0.8777 0.6762 0.4572
(percentage error) (0.3%) (1.6%) (3.2%) (6.4%) (20.6%) (45.5%)
MELE (median)
m1 = 10 0.9886 0.9443 0.8917 0.7951 0.5026 0.2526
(percentage error) (0.2%) (0.9%) (1.8%) (3.6%) (10.3%) (19.6%)
m1 = 10,m2 = 20 0.9902 0.9520 0.9062 0.8212 0.5538 0.3067
(percentage error) (0.0%) (0.1%) (0.2%) (0.4%) (1.2%) (2.4%)
m1 = 10,m2 = 30 0.9908 0.9548 0.9117 0.8312 0.5743 0.3299
(percentage error) (0.0%) (0.2%) (0.4%) (0.8%) (2.5%) (5.0%)
m1 = 10,m2 = 60 0.9903 0.9524 0.9071 0.8229 0.5572 0.3105
(percentage error) (0.0%) (0.1%) (0.1%) (0.2%) (0.6%) (1.2%)
QMLE estimates
QMLE (mean) 0.9934 0.9674 0.9359 0.8760 0.6721 0.4518
(percentage error) (0.3%) (1.5%) (3.1%) (6.2%) (19.9%) (43.8%)
QMLE (median) 0.9939 0.9699 0.9406 0.8848 0.6927 0.4799
(percentage error) (0.4%) (1.8%) (3.6%) (7.3%) (23.6%) (52.7%)
MELE (median)
m1 = 20 0.9894 0.9481 0.8989 0.8080 0.5276 0.2784
(percentage error) (0.1%) (0.5%) (1.0%) (2.0%) (5.9%) (11.4%)
m1 = 20,m2 = 30 0.9909 0.9553 0.9126 0.8329 0.5778 0.3339
(percentage error) (0.1%) (0.3%) (0.5%) (1.0%) (3.1%) (6.2%)
m1 = 20,m2 = 60 0.9901 0.9515 0.9053 0.8196 0.5505 0.3030
(percentage error) (0.0%) (0.2%) (0.3%) (0.6%) (1.8%) (3.6%)
QMLE estimates
QMLE (mean) 0.9940 0.9704 0.9416 0.8866 0.6969 0.4857
(percentage error) (0.4%) (1.8%) (3.7%) (7.5%) (24.3%) (54.6%)
QMLE (median) 0.9942 0.9713 0.9435 0.8902 0.7054 0.4976
(percentage error) (0.4%) (1.9%) (3.9%) (8.0%) (25.8%) (58.3%)
∗ The QMLEs corresponding to the scales smaller than m1 are obtained by

taking the (1/m1)th power of the QMLEs estimated with the aggregated data.127



6.7 Section Conclusion

In this section, we have presented the multiscale tests of consistency for the ARMA

and GARCH processes. The theoretical development of the multiscale tests ex-

tends straightforwardly the corresponding theory for the two-scale tests. However,

cautions need to be exercised in choosing the scales to be used in the multiscale

tests in order to avoid a potentially numerical instability in computing the value of

the test statistics resulting from inverting matrices with large condition numbers

Overall, simulation studies show that the multiscale tests are able to significantly

improve powers over the corresponding two-scale tests.

Empirical study on a sample of Dow Jones Industrial Average (DJIA) index return

sample corroborate results from the two-scale tests that although a GARCH(1,1)

model is accepted at the high frequency data, it may not be adequate for data at

lower frequencies.
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Chapter 7

Conclusions and Future Research

Questions

In this chapter, we conclude the works completed in this thesis and outline sev-

eral future research questions. Each section corresponds to one future research

question.

7.1 Conclusion of the Works Completed in This

Thesis

In this thesis, we have proposed a novel statistical inference method for testing

whether an ARMA or GARCH type model is consistent with data at multiple

time scales. Our proposed method uses functional relations derived from tempo-

ral aggregation of time series models and is based on the framework of empirical

likelihood which are implemented through a set of estimating equations. Sim-

ulation studies demonstrated that our proposed tests have good empirical size

property and high power against some particular alternatives which are motivated

by empirical studies on financial asset returns data.

A particular focus of our study is on the modeling and testing of the GARCH

models for financial asset return volatility. Some practical issues related to model-

ing multiscale type volatility dynamics with the GARCH models are discussed. In

particular, we have highlighted the usage of component GARCH models as alterna-

tive parameterizations for the GARCH models with general parameter constraints

in order to better capture multiscale dynamics in financial asset return volatility.
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7.2 Some Future Research Questions

7.2.1 Two open problems with block empirical likelihood

inference related to this thesis

Since block empirical likelihood inference plays a fundamental role in the multiscale

inference procedure developed in this thesis, it is worth pointing out two important

open problems with the BEL approach.

The first problem concerns how to deal with dependency in the data in the EL

method. As far as blocking techniques are concerned, it may be useful to develop

methods which automatically determine various block sizes. Another direction

for exploration, as already mentioned in Chapter 4, it to consider alternative

techniques to the blocking methods. For example, kernel smoothing and expan-

sive block empirical likelihood are among the alternative class of methods to the

blocking technique. Relevant reference in these directions include Smith(2011)[68]

and Nordman, et.al. (2013)[58].

The second important problem concerning the empirical likelihood approach is the

so-called “convex hull” problem (CHP). The CHP is a common practical problem

that, with realized data, the constraint set in (A.9) and

R(θ) = sup
wi

{
n∏
i=1

nwi|wi > 0,
n∑
i=1

wi = 1,
n∑
i=1

wigi = 0

}
,

may be empty at possibly many points of θ), even all the points in Θ. The

conventional approach in the literature, as mentioned in Chen, et.al. (2008)[8], is

to set the value of the profile log empirical likelihood function to be infinity, which

is equivalent to saying that the convex hull of the n real vectors g1, · · · , gn does

not contain the origin. As a remedy to the CHP, the so called “adjusted empirical

likelihood” (AEL) approach had been developed by Chen, et.al. (2008)[8] and Liu

and Chen (2010)[45] in the context of i.i.d. data. However, whether we can extend

the AEL to the case of weakly dependent data remains an open research question.
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7.2.2 Aggregation and multiscale inference of multivariate

GARCH models

It is both natural and important to consider temporal aggregation and scale-

consistency of multivariate GARCH models. For example, practical problems like

portfolio selection requires modeling the joint dynamics of returns on several assets.

Hafner(2008)[31] studied the temporal aggregation of multivariate GARCH(1,1)

processes and showed that the class of multivariate weak GARCH(1,1) processes in

the general vector specification is closed under temporal aggregation. Relation be-

tween coefficients in the high frequency process and aggregated low frequency pro-

cess, similar to the Drost-Nijman formula as given in our Section 2.3.3, was estab-

lished. The techniques used to derive temporal aggregation relation draws heavily

on the techniques for studying temporal aggregation of vector ARMA(VARMA)

processes. Therefore, temporal aggregation relation for multivariate GARCH(2,2)

and thus multivariate component GARCH models can be derived, at least in prin-

ciple.

In an empirical study, Hafner and Rombouts(2007)[32] estimated a bivariate

GARCH(1,1) model with daily DJIA index return and NASDAQ index return.

They found that the estimates using daily data are inconsistent with estimates

obtained from using weekly and biweekly data. We translate their parameter

estimates into volatility and co-volatility half-life and it essentially points to the

same scale-inconsistency problem as reported in Engle and Patton(2001)[22].

Therefore, it is empirically interesting to investigate whether some bivariate

version of the two component GARCH model could solve the scale inconsistency

problem of the bivariate GARCH(1,1) model for modeling DJIA/NASDAQ

variance and covariance.

7.2.3 Aggregation and multiscale inference of variations of

the standard GARCH models and applications 1

In this thesis, we only considered standard GARCH models of Engle (1982)[20] and

Bollerslev (1986)[5] with normal innovations. There have been many variations of

the standard GARCH model proposed in the literature over the years. Bollerslev

1We thank the external examiner, Professor Lars Stentoft, for emphasizing this research
direction.
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(2008)[6] provides a summary of them. In particular, asymmetric GARCH mod-

els and GARCH models with heavy-tailed innovations are important extensions

of the standard GARCH models, especially for financial applications. While a

complete understanding of the probabilistic properties, such as stationarity and

mixing conditions, of all those variations of GARCH models may be difficult to

guarantee, we plan to conduct more extensive studies to examine the properties

of our proposed inference framework using GARCH models with heavy-tailed and

skewed innovation distributions.

In particular, it would be interesting to study applications of GARCH models in

financial risk management, such as Value-at-Risk (VaR) estimation. See, for ex-

ample, McNeil and Frey (2000)[52] and McNeil, Frey, and Embrechts (2005)[53].

A particular problem involving multi-scale characterization of financial asset re-

turn process is the problem of “scaling of VaR”. This problem arises as, in some

situations, one may want to scale a the model estimated with daily return data,

to several-day scales in order to obtain estimates of VaR measure over various

horizons. Kaufmann (2004)[39] investigated scaling rules based on GARCH(1,1)

model. It is of interest to investigate the scaling rules under higher order GARCH

models following the line of Kaufmann (2004)[39].

7.2.4 Scale-consistency of continuous-time Processes

The problem of scale-consistency also naturally concerns continuous-time diffusion

models which are widely used in the pricing of financial derivatives. Drost and

Werker (1996)[17] and Meddahi and Renault (2004)[54] showed that the the weak

ARMA structure is also the underlying dependency structure of some commonly

used continuous-time volatility models. For example, the famous Heston model of

Heston (1993)[35] has an underlying weak AR(1) structure. When estimating the

continuous-time models, the choice of sample frequency may be arbitrary. And the

estimated models are often used on time scales different from the scale where the

sample data are from. Therefore, testing the scale-consistency of continuous-time

models is important for practical purposes just as it is for the ARMA and GARCH

models.

Drost and Werker (1996)[17] considered some continuous-time models which has a

weak GARCH structure at all discrete time scale and derived the functional rela-

tion between the parameters of the continuous-time models and that of the weak
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GARCH representation. Meddahi and Renault (2004)[54] proposed the square-

root stochastic autoregressive volatility (SR-SARV) representation which nests

many commonly used continuous-time volatility models. Using the SR-SARV rep-

resentation, one can derive the weak ARMA representation of the continuous-time

models and the corresponding functional relations between the model parameters

at different time scales. Chen, et.al. (2008)[9] considered the problem of model

specification test for continuous-time diffusion models using an empirical likeli-

hood approach. Therefore, it is an interesting and feasible direction to explore

the testing of scale-consistency of continuous-time processes commonly studied in

Finance.

Another related stream of research focuses on studying the continuous-time lim-

its of discrete-time GARCH processes and the related problems of statistical in-

ference and financial applications. Nelson(1990)[56] lists a set of conditions to

guarantee weak convergence of a discrete time Markov chain, defined by a sys-

tem of stochastic difference equations, towards a diffusion. This approach requires

convergence, as the interval between observations shrinks to zero, of a number of

conditional moments to well defined limits at an appropriate rate. In the context

of GARCH-type models, Nelson (1990)[56] shows convergence results for a series

of GARCH specifications. This approach is later exploited by Duan(1997)[18] to

derive a diffusion limit of an Augmented GARCH model and by Alexander and

Lazar(2005)[1] to derive a diffusion limit of a weak to derive a diffusion limit of

a weak GARCH process. When a discrete time model is cast as a diffusion ap-

proximation, inference on the parameters of a diffusion model can be conducted

through parameter estimates of a discrete time GARCH-type model. This sug-

gests that, instead of direct estimation of the diffusion parameters, we can infer

the diffusion parameters by means of a tractable likelihood function of an approx-

imating discrete time multivariate GARCH process. This approach is known as

quasi-approximated maximum likelihood (QAML), and has been used in studies

such as Stentoft(2011)[69]. However, it is potentially difficult to show consistency

of the QAML estimator even if the discrete time approximation is closed under

temporal aggregation, as pointed out by Drost and Werker(1996)[17]. For the

univariate GARCH model, Wang(2002)[72] proves that the statistical experiments

resulting from the estimation of the diffusion model and its approximating dis-

crete time model are not equivalent. This suggests that the QAML estimator are

unlikely to be consistent in both the univariate and multivariate GARCH setting.
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Appendix A

Appendix: Some Background

Material for Empirical Likelihood

Inference

We first introduce the empirical likelihood method for the inference of the mean

of an i.i.d. (vector-valued) sample, and then we describe how to combine EL

with general estimating equations in the context of weakly dependent data. We

mainly follow Owen (2001)[62] for the exposition. The proofs of the results used in

our exposition can be found in Owen(1990)[61], Qin and Lawless (1994)[65], and

Kitamura (1997)[40].

A.1 EL for i.i.d. data and inference about the

mean

The key idea behind inference based on the empirical likelihood approach can be

defined through a nonparametric likelihood ratio function under a set of estimating

equations. It results in using a parametric family that is a multinomial distribution

over the observed data values.

Suppose that X1, ..., Xn ∈ Rd are independent vector-valued random variables

with a common distribution function (DF) F0 with some d ≥ 1. It is convenient

to describe distributions by the probabilities that they attach to sets in the vector

case. Therefore, we denote by F (A) = Pr(X ∈ A) for X ∼ F and A ⊆ Rd.
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We let δx denote the distribution under which X = x with probability 1. Thus

δx(A) = 1x∈A. Let x1, · · · , xn be a realization of X1, · · · , Xn.

Definition The empirical cumulative distribution function (ECDF) of X1, ..., Xn

is

Fn(x) =
1

n

n∑
i=1

δXi
(x) for x ∈ Rd.

Definition Given X1, ..., Xn ∈ Rd, which are assumed to be independent with a

common DF F0, the nonparametric likelihood function of any DF F (not necessarily

F0) is

L(F ) :=
n∏
i=1

F ({xi}).

where F ({xi}) is the probability of obtaining the observation, or realization of

Xi, i = 1, · · ·n under F .

Theorem 3.1 of Owen (2001)[62] Let X1, ..., Xn ∈ Rd be independent random

variables with a common DF F0. Let Fn be their EDF and let F be any DF. If

F 6= Fn, then L(F ) < L(Fn).

Proof: See Owen (2001)[62] Theorem 3.1.

We use a ratio of nonparametric likelihoods as a basis for hypothesis testing and

confidence intervals. For a distribution F , we define

R(F ) :=
L(F )

L(Fn)
.

Denote by pi ≥ 0 the probability that the distribution F assigns to the realization

of xi ∈ Rd, where
∑n

i=1 pi ≤ 1. Then L(F ) =
∏n

i=1 pi and

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi. (A.1)

In practice, it is possible to have ties in the data, i.e. xi = xj for some i 6= j. To

deal with ties in a more convenient fashion, we may replace the pj’s with a set of

observation specific weights wi ≥ 0, for i = 1, ..., n. The wi’s are chosen such that

pj is equal to the sum of wi over all i with xi = xj. Such a distribution which puts

weight wi on observation xi reproduces F . So we work with

R(F ) =
n∏
i=1

nwi, (A.2)
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where wi ≥ 0,
∑n

i=1wi = 1, and F puts probability
∑

j:xi=xj
wj on Xi.

Assume that we are interested in making inference about the common mean µ of

the random vectors X1, ..., Xn ∈ Rd, i.e. E(Xi) = µ. Using the distributions with∑n
i=1wi = 1, we write the profile empirical likelihood ratio function for the vector

mean as

R(µ) = sup
wi

{
n∏
i=1

nwi|wi ≥ 0,
n∑
i=1

wi = 1,
n∑
i=1

wiXi = µ

}
. (A.3)

The replacement of
∑n

i=1wi ≤ 1 by
∑n

i=1wi = 1 is justified by the following

argument. If we have 1−
∑n

i=1wi > 0, then this probability can be reassigned to

data points in such a way that the new distribution F̃ has the same mean as F

but has L(F̃ ) > L(F ).

Confidence region for the mean is

Cr0,n =

{
n∑
i=1

wiXi|wi ≥ 0,
n∑
i=1

wi = 1,
n∏
i=1

nwi ≥ r0

}
, (A.4)

for some threshold value r0.

For testing the null hypothesis H0 : µ = µ0, we reject H0 when R(µ0) is less then

some threshold value r0. The following empirical likelihood theorem serves as a

basis for determining the threshold value r0.

Empirical Likelihood Theorem (ELT) for Vector Mean (Owen 2001[62],

Theorem 3.2). Let X1, ..., Xn be independent random vectors in Rd with a

common distribution F0 having mean µ0 and a finite variance matrix V0 of rank

b > 0. Then Cr,n is a convex set and −2 logR(µ0) converges in distribution to a

χ2
(b) random variable as n→∞.

−2 logR(µ0) = n(X̄ − µ0)′S−1(X̄ − µ0)→ χ2
b .

Proof: See Owen (2001)[62].

We denote W (µ) = −2 logR(µ). Approximate α-level confidence regions for µ

may be obtained as the set of points µ such that W (µ) ≤ cα, where cα is defined

such that Pr(χ2
(b) ≤ cα) = 1− α.
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Solving the EL problem

As described in Owen (2001)[62], section 2.1, a unique value for the right-hand

side of (A.3) exists, provided that 0 is inside the convex hull of the points

x1 − µ, ..., xn − µ. An explicit expression for R(µ) can be derived by a Lagrange

multiplier argument: the maximum of
∏n

i=1 nwi subject to the constraints wi > 0,∑n
i=1wi = 1 and

∑n
i=1 wi(xi − µ) = 0 is attained when

wi = wi(µ) = n−1{1 + λ′(xi − µ)}−1, (A.5)

where λ = λ(µ) is a d× 1 vector given as the solution to

n∑
i=1

{1 + λ′(xi − µ)}−1(xi − µ) = 0. (A.6)

Thus,

R(µ) =
n∏
i=1

{1 + λ′(xi − µ)}−1. (A.7)

The profile log-empirical likelihood ratio is

logR(µ) =
n∑
i=1

log{1 + λ′(xi − µ)}. (A.8)

A.2 EL with estimating equations

While the empirical likelihood inference method proposed by Owen (1990)[61] ini-

tially focused on the mean of random vectors, Qin and Lawless (1994)[65] combined

empirical likelihood and estimating equations to form a very general inference

framework.

Assume that there are r estimating equations as given in (4.2) and s parameters

which are summarized in the vector of parameters θ. We consider cases where

there are at least as many estimating equations as the number of parameters, i.e.

r ≥ s. Assume that there are n i.i.d. d-dimensional samples X1, · · · , Xn.
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For the estimating equations (4.2), the empirical likelihood approach is based on

the profile empirical likelihood ratio function:

R(θ) = sup
wi

{
n∏
i=1

nwi|wi > 0,
n∑
i=1

wi = 1,
n∑
i=1

wigi = 0

}
. (A.9)

We may maximize logR(θ) to obtain an estimate θ̃ of the parameter θ, called the

maximum empirical likelihood estimate (MELE), and empirical likelihood ratio

statistics can be constructed, similar to the case for the vector mean, to test

various hypotheses about parameter values and model specification.

The following assumptions are made by Qin and Lawless (1994)[65] in order to

prove the asymptotic results:

i) E[g(X,θ0)g′(X,θ0)] is positive definite,

ii) ∂g(X,θ)/∂θ is continuous in a neighborhood of the true parameter θ0,

iii) ||∂g(X,θ)/∂θ|| and ||g(X,θ)||3 are bounded by some integrable function in

this neighborhood,

iv) the rank of E[∂g(X,θ0)/∂θ] is r,

v) ∂2g(x,θ)/∂θ∂θ′ is continuous in θ in a neighborhood of the true value θ0,

vi) ||∂g(x,θ)/∂θ∂θ′|| can be bounded by some integrable function in the neigh-

borhood of the true value θ0.

Then, Theorem 1 of Qin and Lawless (1994)[65] showed that θ̃, λ̃, and F̃n(x) are

asymptotically normally distributed. In addition, the MELE θ̃ is fully efficient

in the sense that it has the same asymptotic variance as the optimal estimator

obtained from the class of r× 1 estimating equations that are linear combinations

of g(X,θ).

Empirical likelihood ratio statistics can be constructed to test hypothesis about

parameters and the model. The following theorems provide a basis for the testing

problems that we are interested in.

Empirical Likelihood Theorem (ELT) for Testing a Model with a Par-

ticular Set of Parameters. The empirical likelihood ratio statistic for testing

H0 : E[g(X,θ0)] = 0 is

W1(θ0) = −2 logR(θ0). (A.10)

Under the regularity conditions, W1(θ0) converges to a χ2
r random variable as

n→∞ when H0 is true.
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Empirical Likelihood Theorem (ELT) for Testing a Model (Qin and

Lawless (1994)[65], Corollary 4). The empirical likelihood ratio statistic for

testing H0 : E[g(X,θ)] = 0 is

W2(θ̃) = −2 logR(θ̃). (A.11)

Under the regularity conditions, W2(θ̃) converges to a χ2
r−s random variable as

n→∞ when H0 is true.

A.3 EL for dependent data

While Qin and Lawless (1994)[65] considered i.i.d. data, there are many other

situations where we have dependent data, such as in the cases of ARMA processes

that we will deal with. A naive application of the empirical likelihood theorems of

Qin and Lawless (1994)[65] in the case of dependent data will cause the theorems to

fail because the covariance estimator for i.i.d. data is improper for dependent data.

In this respect, Kitamura (1997)[40] proposed block empirical likelihood (BEL)

method which applies to weakly dependent data under α-mixing assumption. We

use the BEL approach to deal with temporal dependency in our case. For reviews

of methods for empirical likelihood methods for dependent data, see Kitamura

(2006)[41] and Nordman and Lahiri (2014)[59].

Particularly, Kitamura (1997)[40] considered a strong mixing type of dependency:

Definition (Strong Mixing): Let {Xt} be a d-dimensional real-valued station-

ary stochastic process satisfying

αX(k)→ 0, when k →∞, (A.12)

where αX(k) = sup
A,B
|P (A ∩ B) − P (A)P (B)|, A ∈ F0

−∞, B ∈ F∞k and Fnm =

σ(Xt, m ≤ t ≤ n). And it is further assumed there exists some constant c such

that
∞∑
k=1

αX(k)1−1/c <∞ (A.13)

Let M ≤ n be block length and some L ≤ M be the separation between con-

secutive blocks. Assume M → ∞, M = o(n1/2), L = O(M) as n → ∞,

and L ≤ M . Denote by Bi, i ∈ N a vector of M consecutive observations

(X(i−1)L+1, · · · , X(i−1)L+M). M is called the “window width” of the blocking
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scheme and L is the separation between block starting points. Then, each block

of observation is mapped by the mapping φM(Bi) defined as

Ti(θ) = φM(Bi,θ) =
M∑
j=1

g(X(i−1)L+j,θ)/M,

in which i = 1, · · · , Q where Q = [(n−M)/L]+1 is the total number of blocks and

[c] is the biggest integer smaller than c. Then, the empirical likelihood method

is applied to the blocked observations Ti’s. The profile empirical likelihood ratio

function is

RB(θ) = sup
wB

i

{
Q∏
i=1

QwBi |wBi ≥ 0,

Q∑
i=1

wBi = 1,

Q∑
i=1

wBi Ti = 0

}
. (A.14)

Using the Lagrange multiplier argument, RB(θ) can be written as

RB(θ) =

Q∏
i=1

{1 + λ′Ti}−1. (A.15)

Notice that in the block empirical likelihood method, wBi and λ depend on the

blocking parameters M and L.

The key to the success of the blocking EL method is that
∑
Ti(θ)Ti(θ)′ constitutes

a consistent estimator of the variance of g(Xi,θ), whereas
∑
gi(θ)gi(θ)′ does not as

the latter ignores the dependency in the g(Xi,θ)’s. Ignorance of the dependency in

the g(Xi,θ)’s would cause the empirical likelihood ratio statistics fail to converge

to a χ2 limit.

Kitamura (1997)[40] proved empirical likelihood theorems for the following block

version of the log-empirical likelihood ratio statistics with weakly dependent obser-

vations, which are counterparts to the empirical likelihood theorems for estimating

equations with i.i.d. observations.

Denote by Γ(z, δ) an open sphere with center z and radius δ and ||·|| the Eclidean

norm. The following regularity conditions are assumed:

i) The parameter space Θ is compact;

ii) θ0 is the unique root of Eg(Xt,θ0) = 0;

iii) For sufficiently small δ > 0 and η > 0, E supθ∗∈Γ(θ,δ)||g(Xt, θ
∗)||2(1+η)< ∞ for

all θ ∈ Θ;

iv) If a sequence θj, j = 1, 2, · · · converges to some θ ∈ Θ as j → ∞, g(x,θ) for

all x except perhaps on a null set, which may vary with θ;
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v) θ0 is an interior point of Θ and g(x,θ) is twice continuously differentiable at

θ0;

vi) V ar[n−1/2
∑n

i=1 g(Xi,θ0)]→ S > 0 as n→∞;

vii) E||g(x,θ0)||2< ∞ for c > 1 defined in (A.13), E supθ∗∈Γ(θ0,δ)||g(Xt, θ
∗)||2+ε<

K, M = o(n1/2−1/(2+ε)) for some ε > 0, E supθ∗∈Γ(θ0,δ)||∂g(Xt, θ
∗)/∂θ′||2< K and

E supθ∗∈Γ(θ0,δ)||∂
2gj(Xt, θ

∗)/∂θ∂θ′||2< K for all j = 1, · · · , r where K <∞;

viii) E∂g(Xt,θ0)/∂θ′ is of full column rank.

Then, we have

Block Empirical Likelihood Theorem for Testing a Model with a Par-

ticular Set of Parameter. The empirical likelihood ratio statistic for testing

H0 : E[g(X,θ0)] = 0 is

WB1(θ0) = −2A−1
n logRB(θ0), (A.16)

where An = QM/n. Under the regularity conditions, WB1(θ0) converges to a χ2
r

random variable as n→∞ when H0 is true.

Block Empirical Likelihood Theorem for Testing a Model. The empirical

likelihood ratio statistic for testing H0 : E[g(X,θ)] = 0 is

WB2(θ̃) = −2A−1
n logRB(θ̃). (A.17)

Under the regularity conditions, WB2(θ̃) converges to a χ2
r−s random variable as

n→∞ when H0 is true.
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