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Abstract 

In the coupled human-environment system, humans play a central role in creating various 

environmental problems, and in turn, are impacted by these environmental consequences. In 

Canada, water quality degradation caused by agricultural activities has become a severe problem 

for a long time. It has been noted that the application of pesticides, manure and fertilizers have 

led to an increasing amount of chemicals and other pollutants in surface runoff which eventually 

converge into surface water bodies and result in water eutrophication. To maintain water quality 

and develop a sustainable agricultural system, Best Management Practices (BMPs) have been 

suggested. However, the high complexity of the agriculture system makes it difficult for 

policymakers and researchers to monitor and evaluate the performance of BMPs across large 

spatial scales and develop appropriate improvement strategies accordingly. Under these 

circumstances, agent-based models (ABM) stand out for their ability to deal with the 

complexities in the agri-environment system. 

To better understand the dynamics of farmer’s decision-making on BMP application under 

different socio-economic and environmental situations, an ABM has been developed to simulate 

the decision-making processes in the Upper Medway Creek subwatershed in this study. The 

ABM uses an optimizing decision-making structure that relies on choice by highest utility. In 

addition, the ABM integrates a weighted sum function to evaluate the influences of economic, 

environmental and social factors on farmers’ decision-making. Results from the model pre-test 

were compared to those obtained from a random generator to examine how does the developed 

ABM perform against the random generator. Then, a sensitivity analysis has been performed 

using the one-factor-at-a-time method to examine the impacts of different potential interventions, 

including government subsidies and educational activities, on farmers’ decision-making for 

certain BMP adoptions.  

The results demonstrated that the developed ABM is robust in simulating farmers’ decision-

making on BMP application within the Upper Medway Creek subwatershed. According to the 

sensitivity analysis, providing subsidies and improving knowledge level of BMPs have positive 

effects on the implementations of certain BMPs in general. While comparing to improving 

knowledge levels of BMPs, providing subsidies makes greater contribution to motivating farmers 
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to adopt BMPs. For each BMP, a subsidy rate, which indicates the proportion of implementation 

costs needs to be subsidized to effectively encourage the BMP adoption, has been suggested. The 

results of this study provide a better understanding of how different socio-economic conditions 

affect farmers’ decision-making on BMP adoptions and offer insights for policymakers to 

develop effective strategies incentivising farmers’ adoptions of BMPs and further preserving 

water quality in the Upper Medway Creek subwatershed. 
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Chapter 1 Introduction 

1.1 Background 

In the recent years the world has experienced massive unexpected environmental changes and 

resource losses occurring in the coupled human-environment system which is characterized by 

the interactions between human system and natural environment across spatial and temporal 

scales (Filatova et al., 2013; An, 2012; Schlueter et al., 2012; Alberti et al., 2011). In this 

complex system, humans play a central role in creating various environmental problems (e.g. soil 

degradation, water eutrophication), and in turn, are impacted by these environmental 

consequences. Such interactions involve heterogeneity, nonlinearity, uncertainty, cross-scale 

feedbacks, emergence, and resilience against the adaption, which increases the difficulties for 

resource managers, policymakers, and researchers to explore and understand the behaviour of the 

coupled human-environment system (Deadman et al., 2004; Schlueter et al., 2012; Filatova et al., 

2013; An, 2012).  

Within the coupled human-environment system, agricultural systems have highly exposed to the 

risks of environmental change. In Canada, water quality and availability are extremely important 

to the agriculture system (Agriculture and Agri-Food Canada [AAFC], 2016 b). A large amount 

of freshwater with good quality is required for crop irrigation every year to ensure the food 

production. However, water flowing from agricultural fields carries soil, chemicals, and other 

pollutants due to the application of pesticides, and fertilizers including manure (AAFC, 2014). 

These contaminants, particularly phosphorus and nitrogen (King et al., 2015), are eventually 

transported into surface water bodies and lead to water problems such as eutrophication 

(Chardon & Schoumans, 2007; Johnston & Steén, 2000). Accordingly, the declining water 

quality potentially threatens a variety of human activities including agriculture (AAFC, 2016 c), 

food production (Kirby et al., 2003), fisheries (Schindler et al., 2008), tourism (King et al., 

2015), as well as human drinking water supply system (Davies and Mazumder, 2003).  
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To maintain good soil and water quality and develop a sustainable agricultural system, Best 

Management Practices (BMPs) have been suggested. BMPs (e.g. conservation tillage, grassed 

waterways, windbreaks, riparian buffer strip) refer to a set of practical and affordable practices 

that farmers can take to protect soil health, enhance water quality and mitigate other adverse 

environmental impacts of intensive agricultural activities (Ingram, 2008; Feather and Amacher, 

1994; Ontario Ministry of Agricultural, Food and rural Affairs [OMAFRA], n.d.). By choosing 

appropriate BMPs, the adverse consequences of agricultural activities can be reduced and 

agricultural production can be improved. In order to encourage the implementation of BMPs, 

various projects and strategies have been developed including the GLASI Priority Subwatershed 

Project (Ontario Soil and Crop Improvement Association [OSCIA], 2015), Farmland Health 

Incentive Program (FHIP) (OSCIA, 2016), and Clean Water Act (Government of Ontario, 2006) 

to provide funds and technical support for farmers. Whereas, human-environment interactions 

occur in the agricultural system usually involve multiple disciplines and are subject to change 

depending on the application time and location (An et al., 2005). The implementation of BMPs is 

limited by the topology, soil characteristics, subsurface conditions, and nutrient requirements of 

different crops, all of which may vary from location to location (Rudolph et al., 2015). A large 

amount of effort and time is required for investigating the regional conditions and determine the 

suitable BMPs. Moreover, the time lag between implementing BMPs and the time their impacts 

show up is different according to the time, location and the type of BMPs (Rudolph et al., 2015). 

This further adds challenges to policymakers and researcher to monitor and evaluate the 

performance of BMPs across large spatial scales and develop appropriate improvement strategies 

in a short term (Rudolph et al., 2015). Therefore, modelling technique has been suggested to 

mathematically and logically simulate the processes occurred across a large areal scale in the real 

world in a small amount of time. A growing number of methods such as statistical and 

mathematical models (Willock et al., 1999; Schreinemachers, 2005), multi-objective 

optimization method (Chiang et al., 2014), and conceptual model (Aubry et al., 1998), have been 

developed to simulate the dynamics in the system and explore the possible outcomes from 

certain management actions. Among these tools, agent-based models (ABM) stand out for their 

ability to deal with the complexities in the agri-environment system.  

ABM is a useful computational tool that can provide a process-based representation of real world 

phenomenon embedded in a coupled human-environment system (Bert et al., 2014; Robinson et 
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al., 2007; Parker et al., 2003). They simulate the microscale processes and predict the outcomes 

of different policies, accounting for the heterogeneity, feedbacks, nonlinearity, as well as 

temporal and spatial dynamics, without sacrificing large amount of time and budget. Compared 

to other models (e.g. statistical or mathematical models), ABM puts more attention on the 

uniqueness of individuals- farmers in the agricultural context (Bert et al., 2014). In an 

agricultural system, farmers are decision makers who are heterogeneous with regard to their 

demographic characteristics (e.g. income levels, gender, ages), sizes of their properties, personal 

experience, and preferences. They decide what BMPs to use and how to implement them to 

satisfy their needs in response to different social and environmental conditions. ABMs are able 

to reflect these heterogeneities and incorporate the interactions among farmers and between 

farmers and their environment into the simulation (Bert et al., 2014; Valbuena et al., 2010; 

Filatova et al., 2013). Furthermore, ABMs have the ability to incorporate economic factors (e.g. 

financial benefits), social impacts (e.g. policy, others’ behaviours), environmental influences 

(e.g. climate change), and spatial accessibility (e.g. distance to water body) simultaneously, 

which can offer a realistic representation of the real-world interactions. These advantages make 

ABM a powerful tool to explore the process of decision-making in the agricultural management 

system and evaluate the effectiveness of suggested policies (Kent, 2014). 

This study was conducted as part of the Agricultural Water Futures (AWF) project. The AWF 

project is a seven-year project funded under the umbrella of the Global Water Futures (GWF) 

project (University of Saskatchewan, n.d.). The project investigates how agriculture and food 

production systems may change in the future in response to risks and uncertainties brought by 

different climate stressors and socio-economic drivers (Univerisity of Waterloo, n.d.). By 

developing improved predictive tools, policy instruments, and governance strategies, it aims to 

achieve a goal of improving the agricultural water sustainability in Canada (Univerisity of 

Waterloo, n.d.). The entire project was organized into three work packages. Work package 1 

(WP1) intends to calculate and estimate the water use and productivity for agricultural systems, 

specifically for crop and livestock production system, using a series of innovative models 

combined with agricultural hydrology models (Macrae et al., n.d.). Work package 2 (WP2) 

focuses on better understanding the impacts of climate and soil geomorphic factors on water 

quality through modelling and analysing the existing historical data and literature (Macrae et al., 

n.d.). Work package 3 (WP3) aims to model the dynamics of the coupled human-environmental 
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system in affecting phosphorus transportation in agricultural watersheds using an ABM approach 

coupled with a hydrological model (Macrae et al., n.d.). This study contributes to the WP3 of the 

AWF project. It is a proof of concept study conducted to assess the impacts of different socio-

economic and environmental factors on farmers decision-making process of the adoption of 

BMP. This study was designed to establish a framework for future modelling efforts of the 

simulation of human-environmental interactions in agricultural system in Canada. 

1.2 Goals and Objectives 

This study intends to answer the question of how different socio-economic conditions may affect 

individual farmers’ behaviour when adopting BMPs in the Medway Creek subwatershed. The 

goal of this study is to better understand the dynamics of farmer’s decision-making on BMP 

application under different socio-economic and environmental situations and provide insights for 

policymakers to develop more effective strategies for water quality preservation. Six BMPs, 

including the reduced tillage, the no-till system, grassed waterways, riparian buffer strips, Water 

and Sediment Control Basin (WASCoB), and windbreaks are focused in this study. By using 

both geographic information system (GIS) based approach and ABM, four objectives has been 

identified:  

(1) Determine the possible BMPs for each agricultural field in the Medway Creek 

subwatershed; 

(2) Develop an ABM which is able to represent the heterogeneities among farmers and their 

environment in the Upper Medway Creek subwatershed; 

(3) Model farmers’ behaviours on BMP decision-making using the developed ABM 

(4) Examine the impacts of different potential interventions to change farmers’ decisions to 

adopt certain BMPs. 

The first objective is achieved by considering the topographic characteristics and spatial 

accessibility of an agricultural field. The second objective focuses on the internal (e.g. 

demographic characteristics, preferences) and external (e.g. policies, market price) factors related 

to farmers’ decision-making on BMP application, and provide a tool for addressing the third and 
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fourth objective. The third objective is to examine the outcomes of the developed ABM under a 

set of initial conditions. The fourth objective is to estimate how farmers’ decision-making will 

change in response to different intervention, including government subsidies or educational 

activities. 

1.3 Thesis Outline 

This thesis consists of six chapters. This chapter provides the background knowledge and the 

overview of this research. Chapter 2 reviews the contributions of previous literature regarding 

the implementation of BMPs and the application of ABM in the study of human decision-making. 

Chapter 3 introduces the study area and describes the adopted methodology and the used data. 

Chapter 4 states the results obtained in this study. Chapter 5 analyses the results of this study and 

discusses the implications, limitations, and contribution of this study. Chapter 6 summarizes the 

findings and outlines the possible future work.  
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Chapter 2 Literature Review 

This chapter introduces the required background for this study including BMPs examined in this 

study, influential factors of BMP adoption, methods for identifying land-use/land-cover change 

(LUCC) patterns, the application of ABM in simulating human decision-making, the 

implementation of ABM of LUCC, techniques for model validation, and different approaches for 

sensitivity analysis. The first section summarizes how each BMP works, what benefits does each 

BMP have, as well as what requirements need to be met to implement each BMP. In the second 

section, two methods that have been used by previous literatures to determine the major LUCC 

change patterns are presented. The third section provides an introduction of the basic structure of 

the ABM and its advantages in simulating human decision-making processes. Moreover, this 

section discusses and compares two commonly used decision-making structures. In the last 

section, the purposes of sensitivity analysis and approaches that can be used to perform the 

sensitivity analysis depending on the research goals are presented. 

2.1 Introduction of Agricultural BMPs 

Agricultural Best Management Practices (BMPs) refer to a set of practical and affordable 

practices that farmers can take to protect soil health, enhance water quality and mitigate other 

negative environmental impacts of intensive agricultural activities (Ingram, 2008; Feather and 

Amacher, 1994; OMAFRA, n.d.). By choosing appropriate BMPs, farmers are able to maintain 

more responsible and sustainable agricultural environments without sacrificing soil and water 

resources, while improving agricultural production and saving farm management costs (Ingram, 

2008; OMAFRA, n.d.). The three most commonly adopted BMPs in the Upper Thames River 

watershed are discussed in this section, which are erosion control structures, tillage systems, and 

windbreaks. 

2.1.1 Erosion Control Structures 

Erosion control structures are constructions used to reduce the erosive force of the runoff and 

remove the sediments from the water flow (Credit Valley Conservation, n.d.). Depending on the 

characteristics of farm fields and the types of erosion, different erosion control structures such as 
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grassed waterways, water and sediment control basin (WASCoB), and riparian buffer strips 

could be implemented. 

2.1.1.1 Grassed Waterway 

Grassed waterways are permanently vegetated channels constructed for redirecting runoff water 

to a stable outlet and alleviating soil erosion. The vegetative cover in the waterway increases 

surface roughness that slows down the water flow and traps the sediment, thus further reducing 

sediment loading and protecting soil against rill and gully erosion. Generally, grassed waterway 

channels are designed to follow the natural drainage ways fitting the characteristics of the 

landscape. According to the Upper Thames River Conservation Authority (UTRCA) (n.d. b), a 

grassed waterway is recommended to be implemented when a drainage area is greater than 35 

acres. When designing a grassed waterway, the dimensions such as width, height, as well as the 

channel grades, and the shape of waterway are designed depending on the volume of runoff 

water flow and soil characteristics (Stone and McKague, 2009). A slope greater than 1% has 

been suggested to prevent out-of-bank flow (United States Department of Agriculture [USDA], 

2007). A grassed waterway has a minimum lifespan of ten years (Schroter and Kansas, n.d.). 

It has been noted by previous studies that grassed waterways are an effective method against soil 

erosion. Typically, about 60% to 80% of sediment load can be reduced by implementing grassed 

waterways (Kansas, 1989). The efficiency of grassed waterways may vary depending on soil 

characteristics and their design. Comparatively, grassed waterways are more efficient to reduce 

soil erosion than to control surface runoff (Kansas, 1989). From Mtibaa et al.’s study (2018), 

grassed waterways reduced sedimentation by 40%, yet surface runoff by only 15.7%.  

The grassed waterway is usually combined with other BMPs such as conservation tillage to 

achieve better effectiveness (Kansas, 1989; UTRCA, n.d. b). Although the effect of grassed 

waterways on sediment reduction is relatively inferior to buffer strips, the annualized costs 

(including investment and maintenance costs) for applying grassed waterways are lower than 

applying buffer strips, which are respectively 18.13 dollars and 40.71 dollars per hectare, 

respectively (Mtibaa et al., 2018). Additionally, depending on the crop type, topography, and the 

climate, adopting the grassed waterway could slightly affect the crop yields both positively or 

negatively (Kansas, 1989).   
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2.1.1.2 WASCoB 

WASCoBs are small embankments constructed to temporarily store the runoff water in order that 

the sediments can be trapped and collected (UTRCA, n.d. b). After sediments are settled out, the 

water will be slowly released, thus reducing gully erosion (St. Clair Conservation, n.d.). 

According to the area of watershed, slope, drainage area, soil characteristics and farm 

management, the number, size and structure of WASCoBs may vary. First, a single WASCoB is 

recommended for agricultural field covering an area between 2 acres and 50 acres (NRCS, 2010 

b). For those larger than 50 acres, multiple WASCoBs are needed (Maitland Conservation, 2017). 

Depending on the field slope, broad-based or narrow-based berm can be installed for WASCoB 

in cross-section. For fields with a slope smaller than 14%, a broad berm is established; while a 

narrow berm is used if the slope is less than 8% (Maitland Conservation, 2017).  

Various studies have been conducted to investigate the sediment removal and nonpoint sources 

removal efficiencies of the WASCoBs. Yang et al. (2013) found that there was a positive effect 

on sediment and total phosphorus reduction after implementing new WASCoBs. They found that 

annual average sediment and total phosphorus loadings were reduced by 559 tons and 334 

kilograms, respectively. Because the WASCoBs cannot control soluble phosphorus, its 

efficiency for phosphorus reduction is somewhat lower than sediment trapping (Kansas, 1989). 

According to Kansas (1989), WASCoBs can typically remove sediments by 60% to 95% and 

reduce phosphorus loads by 25% to 50%. They also stated that the sediment removal efficiency 

could be greater than 90% if it was well designed and maintained. Usually, a typical basin, which 

is able to serve approximately 5 to 10 acres of croplands, will have ten-year lifespan (Kansas, 

1989). 

2.1.1.3 Riparian Buffer Strips 

Riparian buffer strips are permanent vegetated areas established along rivers, streams or other 

natural watercourses to reduce the speed of runoff and capture the sediments. Riparian buffer 

strips serve as barriers between agricultural fields and surface water body that slows down the 

runoff coming from the fields, reduces sediment and nutrient transport to watercourses, and 

reduces soil erosion. The effectiveness of buffer strips varies depending on the soil 

characteristics (e.g. soil texture, slope), vegetation species, as well as the dimension of the buffer 
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strips (e.g. width, length). For example, the effectiveness of a riparian buffer strip is largely 

reduced if an agricultural field has a slope greater than 15% (Hawes and Smith, 2005; Natural 

Resources Conservation Service [NRCS], 2010 a).  

The documented trapping effectiveness of buffer strips varies widely. Mtibaa et al. (2018) 

compared the effectiveness of 5-m and 20-m buffer strips, and the results showed that the 20-m 

buffer strips have greater sediment trapping efficiency of 89%, while 5-m buffer strips only 

trapped 59% of sediment. According to Borin et al. (2005), a 6-m buffer strip could reduce the 

sediment by 92% in three years. Generally, as concluded by Liu et al. (2008) from more than 80 

studies, the sediment reduction rate for the riparian buffer strips ranges from 45% to 100%. For 

total phosphorus reduction efficiency, Balana et al. (2012) noted that the total phosphorus loads 

can be reduced by 27% to 97% by implementing the riparian buffer strips (as cited in Uusi-

Kämppä and M Kilpinen, 2000). Different species of vegetative covers play different roles in 

buffer strip system. For example, grasses are planted to leach and trap the nutrients in the runoff, 

shrubs and trees with deeper roots are planted to better filter the nutrients and sediments, and 

also stabilize the stream bank (UTRCA, n.d. a; Walker, 2000).  

2.1.2 Tillage System 

Soil and water erosion can also be affected by different tillage systems. Depending on the 

proportion of land surface covered by residues or crop remains, conventional tillage, 

conservation tillage, and no-till system, are usually applied by farmers. 

2.1.2.1 Conventional Tillage 

Conventional tillage refers to tillage systems that leave less than 30% of the land surface covered 

with crop residues or remains (e.g. straw, stubble and leaves) after planting (Gasser, 1993; 

Hofmann, 2015; UTRCA, n.d. c). Because of the small amount of residue left on the ground, 

more soil is directly exposed to precipitation and wind, resulting in a higher risk of soil erosion 

(Gasser, 1993). Moreover, the application of mouldboard system results in higher equipment and 

labour costs for conventional tillage compared to other tillage systems (UTRCA, n.d. c; Kansas, 

1989). Whereas conventional tillage still has some advantages. First of all, the conventional 

tillage involves the implementation of mouldboard plough which loosen and invert the soil, bury 



 10 

weeds and crop residues under the soil and bring fresh nutrient to the top layer of the soil 

(Shubham Industries, n.d.). In such a way, the soil porosity can be increased which gives rise to a 

higher soil microbial activity with conventional tillage (UTRCA, n.d. c). Moreover, conventional 

tillage requires less herbicides. Kansas (1989) compared and summarized the needs of herbicides 

for different tillage systems from previous literature, they found that conventional tillage requires 

approximately 50% or less herbicides compared to no-till systems. Hofmann (2015) also noted 

that the machinery required for implementing conventional tillage are widely available and 

familiar to farmers, which therefore, saves the cost for new equipment and reduces learning 

effort. 

2.1.2.2 Conservation Tillage 

Different from the conventional tillage, conservation tillage, or reduced tillage system, aims to 

leave more than 30% crop residues on the soil surface to minimize the disruption of soil (Gasser, 

1993; Hofmann, 2015; UTRCA, n.d. c). These crop residues will increase soil surface roughness 

and increase the organic matter at soil surface, which eventually reduce soil erosion (Gasser, 

1993; Devlin et al., 2002). According to previous literature, this tillage can reduce 30% - 60% (or 

1 - 12 tons per acre) of soil loss compared to conventional tillage (Kansas, 1989). In addition to 

soil erosion, reduced tillage also leads to considerable reduction of phosphorus loss from 

agricultural land. In Yang et al.’s (2013) study, 43.6% of total phosphorus loss was reduced with 

conservation tillage. This accords with phosphorus reduction rate summarized by Kansas (1989) 

that 20% to 50% of phosphorus losses can be mitigated with reduced tillage. However, some 

studies indicate that soluble phosphorus may increase due to the implementation of reduced 

tillage. For instance, though the particulate phosphorus was reduced by 37%, the soluble 

phosphorus was about 36% greater after using reduced tillage compared to conventional (AAFC, 

2013). Generally, as concluded by Kansas (1989), the loss of total phosphorus can be mitigated 

by the reduced tillage even though the dissolved phosphorus was greatly increased. Reduced 

tillage has been identified by many researchers as the most cost-effective method for reducing 

nonpoint source losses from agricultural land (Kansas, 1989). As previously mentioned, 

conventional tillage requires more expense in terms of equipment and labour, while reduced 

tillage requires more pesticides and herbicides (Kansas, 1989; Mtibaa et al., 2018). Whereas the 

expenses for labour, machinery and fuel are relatively lower than for conventional tillage 
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(Kansas, 1989; Mtibaa et al., 2018). Data acquired from previous studies indicates that reduced 

tillage on corn and soybean can save 52% and 58% labour cost, respectively, while machinery-

related costs reduced from 54.84 dollars per acre with conventional tillage to 46.10 dollars per 

acre with reduced tillage (Kansas, 1989). 

2.1.2.3 No-till system 

Unlike other tillage systems, the no-till system tends to reduce soil erosion by avoiding all tillage 

techniques and minimizing the disturbance of soil (OMAFRA, n.d.; Hofmann, 2015; Walker, 

2000). Due to its effectiveness in reducing soil loss and nonpoint source pollution, the no-till 

system has been widely adopted by farmers who are concerned with soil and water quality to 

prevent soil erosion. Mtibaa et al. (2018) reported sediment yields under no-till farming with 

residue management were 42.46% lower than conventional tillage. Kansas (1989) concluded that 

no-till farming is able to reduce soil loss by 60% to 90% and phosphorus loads in the runoff by 

50% to 80% in general. However, the effectiveness of phosphorus reduction may vary depending 

on different land characteristics such as slope and soil texture. Liu et al. (2014) investigated and 

compared the cost-effectiveness for seven BMPs, and the results indicated that no-till 

implemented on slope less than fifteen degree reduced total phosphorus by 21.93% which is 

outside the phosphorus reduction range summarized by Kansas (1989). Furthermore, costs for 

no-till farming are lower than both reduced tillage and conventional tillage (UTRCA, n.d. c). It 

has been shown by Liu et al. (2014) that costs decrease from conventional tillage by 11.37 

dollars per acre annually with no-till farming. Kansas (1989) also summarized that no-till 

farming saves roughly five to fifteen dollars per acre compared to conventional tillage. This is 

mainly because of less labour, fewer machinery and less fuel required by no-till system. 

2.1.3 Windbreaks 

Windbreaks are trees that are planted linearly on an agricultural field to reduce wind speed and 

redirect wind to protect agricultural fields and livestock. In addition to the main function of 

reducing wind speed, a well-designed windbreak can also bring many environmental and 

economic benefits. Windbreaks are able to protect soil from wind erosion and prevent crops and 

livestock from wind damage. According to fact sheet reported by UTRCA (n.d. d), windbreaks 

can protect soil within a distance of ten to fifteen times the height of the trees. It has been noted 
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that the declined wind speed improves the soil pollutant filtering ability and decreases plant 

evaporation rates, which leads to better water quality and higher soil moisture (USDA, 2002; 

UTRCA, n.d. d). As concluded by Brandle (n.d.), the humidity may be increased by 2% to 4% by 

applying windbreaks. In the winter, especially in many northern, semi-arid areas, well 

established windbreak is significant for producing winter wheat due to its ability to capture snow 

and recharge the melting snow to adjust soil moisture preventing winter desiccation. Meanwhile, 

the reduced wind speed can also slightly increase the soil temperature within the windbreak 

sheltered areas (Hodges and Brandle, n.d.; Brandle, n.d.). As a result of all these benefits 

(include higher soil moisture, better water quality, and warmer temperature), crop yields can be 

increased by about 5% to 45% (Hodges and Brandle, n.d.; UTRCA, n.d. d; USDA, 2012). It has 

been stated by previous literatures that the economic return is increased after applying 

windbreaks (USDA, 2012; Quam et al., n.d.; Brandle, n.d.; USDA, 2002). This is not only 

because of the improved crop yields, but also attributed to the reduced costs for energy (USDA, 

2012; Quam et al., n.d.). Furthermore, windbreaks can also provide shelter and food for wildlife, 

increase carbon storage, as well as enhance aesthetics of the landscape (USDA, 2012; USDA, 

2002; Hodges and Brandle, n.d.). 

The efficiency of a windbreak is determined by various factors including height, density, number 

of rows, species, length, and orientation (Brandle, n.d.; Ontario Woodlot Association, n.d.). For 

field protection, windbreaks are typically oriented perpendicular to the prevailing wind at the 

edge of the field to maximize the protected areas. Windbreak density, which is the ratio of the 

solid portion of the tree barrier to the total planted areas, is another critical factor that affect the 

effectiveness of the windbreak. It has been summarized that windbreaks with medium density of 

40% to 60% contribute to the greatest protection for sheltered fields (Hodges and Brandle, n.d.; 

Brandle, n.d.; USDA, 2002). Under this circumstance, an area within a distance of approximately 

ten to thirty times the height of the trees on the downwind side and two to five times on the 

upwind side, can be protected (Brandle, n.d.; USDA, 2002). At least 20% of wind speed can be 

reduced, which can effectively improve crop yields and reduce soil erosion (Ontario Woodlot 

Association, n.d.). In order to take full advantage of windbreaks, the length of a windbreak has to 

be at least ten times the tree height (Brandle, n.d.).  
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2.2 Influential Factors of BMP Adoption	

BMPs have been widely suggested for reducing non-point source pollution caused by 

agricultural activities (Ingram, 2008). To effectively improve water quality, it is important to 

understand how different factors impact the BMP adoption. Factors that influence farmer’s BMP 

adoption can be grouped into seven categories including financial incentives, information and 

awareness, neighbour’s behaviour, locations, farmers’ demographics, characteristics of the farm, 

and farmer’s environmental consciousness.  

Financial incentives have been shown to have positive impacts on the adoption of BMPs. Läpple 

and Hennessy (2014) explored the impact of financial rewards on farmers’ willingness to 

participate in agricultural extension programmes. They compared the farm performance of 

farmers who joined the programme to those who did not join the programme. Results indicate 

that financial rewards are the main factors influencing famers’ willingness to participate in an 

extension programme that can improve farm performance. Ward et al. (2016) have also 

conducted a study to explore the impacts of farmer’s preferences on adopting agricultural 

conservation practices. They found that some farmers would not adopt conservation agricultural 

practices if there was no financial incentive provided. They also indicated that providing 

subsidies increased the adoption of agricultural conservation practices. According to Tiwari et 

al.’s study (2008), credits or loans can positively affect the implantation of BMPs. While 

associated costs can have a negative influence in the BMP adoption. A survey was conducted by 

Tosakana et al. (2010) to examine how different factors affect the adoption of buffer strips. 

Results show that maintenance costs were negatively related to the adoption of buffer strips.   

Timely access to information related to conservation programs or BMPs plays an important role 

in BMP adoption. According to D'Emden et al. (2006), the availability and use of technical 

information are influential to the adoption of conservation tillage. In Rezvanfar et al. investigated 

how different factors affect the adoption of soil conservation practices using a set of descriptive 

and inferential statistics (e.g. standard deviation, correlation analysis, and regression analysis). It 

has been noted that the level of awareness and the availability of information can positively 

impact the adoption of conservation practices. Interactions with local conservation agencies, 

extension services, and farm organizations are also correlated with the BMP adoption. Woods et 

al. (2014) have found that farmers who have frequent interactions with local conservation staff 
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are more likely to adopt conservation practices. Tamini (2011) has studied factors that determine 

the adoption of BMPs. Through a non-parametric approach, the impacts of agri-environmental 

extension activities have been analysed. Results show that farmers who participate in an agri-

environmental advisory club are more willing to adopt BMPs.  

Neighbour’s behaviour has been identified as a critical factor in influencing the BMP adoption. 

According to Wollni and Andersson (2014), who have studied the spatial patterns of organic 

adoption in response to several influential factors, farmers are more likely to adopt organic 

farming when it is also be implemented by their neighbours. The similar statement has also been 

concluded by Turinawe et al. (2015) who have conducted a study to determine influential factors 

for adopting conservation agriculture. A logistic regression model was performed to build the 

relationship between influential factors and adoption rates. Results indicate that when other 

parameters are all fixed, having neighbours implementing conservation technologies can increase 

the adoption rate by 45% (Turinawe et al., 2015). 

Location may have great influence on farmer decision-making regarding BMPs. Agroecological 

factors such as soil type and precipitation pattern that vary by location can impact farmers 

decision-making on BMP adoption (D'Emden et al., 2006). Moreover, political views and 

policies in different locations may also impact the adoption of BMP. Reimer et al. (2013) carried 

out a study to explore the adoption of conservation practices in response to different agri-

environment policies across the United States. A fractional logit model was applied to assess the 

influence of different factors in adoption rates of conservation practices. It has been found that 

the adoption rates in fifty states show different values.  

It has been found by previous studies that the age, gender, education level, and income are all 

factors that impact the adoption of BMPs. For both age and gender, mixed results can be found 

from previous literature. Rahelizatovo and Gillespie’s study (2004) has found that younger dairy 

producers are more willing to adopt BMPs in Louisiana. While in Tiwari et al.’s study (2008), 

older farmers are more likely to adopt the conservation technology in Nepal. Tiwari et al. (2008) 

also found that in Nepal, female farmers are more likely to implement conservation technology 

than male farmers. An opposite conclusion was obtained by Ward et al. (2016). In addition, a 

farmer’s education level will also affect their BMP adoption. AAFC (2012) has summarized 

factors affect BMP adoption in Quebec. It shows that more educated producers are more likely to 
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adopt the riparian buffer strip, crop rotation, and manure management. While the farmer’s 

education level has no impact to reduce the herbicide use (AAFC, 2012). Farmers income level 

can also impact the adoption of BMPs. It has been concluded by Vignola et al. (2013) that 

farmers with low income are more risk-averse and therefore, are less likely to adopt BMPs.  

Characteristics of the farm including the land tenure, crop and livestock diversity, and farm size. 

As concluded by previous literature, renters have a lower probability to adopt BMPs than farm 

owners because environmental effectiveness brought by BMPs can benefit the owner for a longer 

period (Parker et al., 2007). In Parker et al.’s study (2007), impacts of land tenure relationships 

on farmer’s conservation behaviours were investigated. They found that farm succession and 

land tenure are positively related to the adoption of BMPs. However, the opposite conclusion 

was obtained by Varble et al. (2016) that renters are more likely to adopt an intensive corn 

rotation and conservation tillage than the owner. To explore the role that crop and livestock 

diversities play in the cover crop adoption, a study has been conducted by Arbuckle and Roesch-

McNally (2015). Results obtained from this study indicate positive relationships between crop 

and livestock diversity and cover crop adoption. Finally, farm size is also an influencer of BMP 

adoption. In Baumgart-Getz et al.’s study (2012), it has been discovered that farmers operating 

small farms are less likely to adopt BMPs. This is because small farms usually don’t have 

sufficient resources and therefore, they need more incentives to operate the farm (Baumgart-Getz 

et al., 2012).   

Farmer’s environmental consciousness has been identified as an important factor that influences 

the BMP adoption. Previous literature has found that farmer’s awareness of the environmental 

benefits of BMPs can result in adoption. Gedikoglu and McCann (2012) have studied the 

similarities and differences in the factors that affect the adoption of environment-oriented and 

profit-oriented practices using the probit regression. Results show that the perceived 

environmental effectiveness and profitability contributed to an increasing trend of the adoption 

of environment-oriented practices. The same conclusion was also obtained by Tosakana et al. 

(2010) that the awareness of the environmental benefits of conservation practices can impact the 

adoption positively. Additionally, farmers’ attitudes regarding the land cost and conservation 

policy were identified as a critical factor for predicting the adoption of the Conservation Reserve 

Enhancement Program in the New York City watershed. 
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In summary, financial incentives, information and awareness, neighbour’s behaviour, locations, 

farmers’ demographics, characteristics of the farm, and farmer’s environmental consciousness 

have been identified as major factors that influence the adoption of BMP. Financial incentives 

including government subsidies and financially reward can positively affect BMP adoption. 

While maintenance costs may reduce the probability of adopting BMPs. Neighbour’s behaviour 

is positively related to BMP adoption. Moreover, BMP adoption will vary depending on the 

location of the farm. Impacts of farmers’ age, gender, and land tenure can be both negative and 

positive. While education level, income, farm size, and farmer’s awareness all have positive 

relationships with BMP adoption.  

2.3 Identify LUCC Patterns 

Two methods have been reviewed to identify land use and cover change patterns. Both of the 

methods are implemented using land use maps from more than two observation years. Wang et al. 

(2012) have developed a trajectory computing method which uses a set of trajectory codes to 

express the LUCC change trajectories of the given time series. Because this is a pixel-based 

study, trajectory code will be calculated for every pixel according to the LUCC classification 

results using Equation 2.1: 

𝑇"# = (𝐺1)"#	×	10,-. + (𝐺2)"#	×	10,-1 …	+	 𝐺𝑛 "#	×	10,-,                         Equation 2.1 

where Tij is the trajectory code of the pixel at row i and column j in the trajectory layer; n is the 

number of time nodes which is four in Wang et al.’s study; (Gn)ij is the LUCC class code of the 

corresponding pixel. Accordingly, trajectory codes consist of four digits each of which represents 

a corresponding LUCC type at the given observation year. Trajectory codes with same number, 

such as 1111 and 3333, stand for pixels with no LUCC change overtime; while others with 

different numbers, like 1234 and 1313, stands for pixels with a series of changes. However, this 

method is only useful for those images with a maximum of ten LUCC classes as the decimal 

system is used.  

Another approach to identify LUCC change trajectories has been addressed by Swetnam, (2007), 

which aims to determine change patterns by creating a multi-attribute database. Land-use maps 

of 23 sites in six time-steps have been used in this study. Every land-use map was converted into 

raster format and classified to twenty different LUCC types, each of which has been coded with 
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number ranging from one to twenty. In order to represent the LUCC occurred in each site, six 

land-use maps for a same site were combined into one multi-attribute raster file whose attribute 

table records both the original value and new values at each location. In the obtained attribute 

table, each column indicates the LUCC type in a time-step; each row illustrates the LUCC 

change happened at a given pixel. Nevertheless, researchers have to go through every row in the 

multi-attribute table to identify the most significant trajectories, which is time-consuming. Thus, 

this method is not suitable for studies that simulate a large number of LUCC classes or many 

time nodes. 

Although, both of the methods are straightforward and easy to understand, drawbacks exist. As 

mentioned, the trajectory computing method can only be used to simulate images with a 

maximum of ten LUCC categories. On the other hand, the Swetnam’s method is limited to the 

raster data with a pixel type of 32-bit floating point or double precision. Comparing the two 

methods, the trajectory computing method would be more practical than the Swetnam’s approach 

when the number of LUCC types is low. The obtained trajectory codes allow the researcher to 

identify different LUCC trajectory in a timely manner. In this way, it is easy not only to count 

the number of each LUCC trajectories occurred in the study area, but also to visualize the results 

by creating a distribution map. 

2.4 Application of ABMs to Simulate Human Decision-making 

Agent-based modelling (ABM) is a micro-scale computational modelling approach that can be 

used to simulate the complex interactions between human and natural systems. It has been 

applied as a powerful tool to explore the human decision-making and behaviours due to its 

flexibility and unique capacity (Evans and Kelley, 2004; Mialhe et al., 2012). Unlike other 

models, ABM provides a more process-based understanding of the interactions, learning, and 

adaptation of human decision-making (Bert et al., 2014; Robinson et al., 2007). Its capability to 

incorporate multi-scale processes and multi-disciplinary knowledge also makes it stand out from 

other models such as mathematical and statistical models (Parker et al., 2003). Moreover, ABM 

is also able to incorporate the heterogeneity among individuals and their environment during the 

simulation, which offers a more realistic representation of the processes occurring in the real 

world (Filatova et al., 2013; Matthews et al., 2007; Robinson et al., 2007). 
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An ABM usually consists of three components including agents with unique attributes, the 

environment where agents live, and rules which regulate agent’s behaviour. Agents are decision-

makers that interact with each other and their environments. They may learn from other agents 

and adapt to the changing environment to meet a set of goals. An agent’s behaviour is specified 

through a given set of rules or behaviours models (e.g. neural networks) (Macal and North, 2010). 

The environment offers a space for agents to interact with each other and behave. It is affected 

by agents’ behaviours, and meanwhile, plays an important role in affecting agents’ decision-

making. In an ABM, all of the interactions, learning and adaptive processes are defined by a set 

of rules which are grounded in the decision theory. The decision theory is the study of how the 

decisions are made by agents (Hansson, 2005; Steele and Stefánsson, 2015). Grounding the 

ABM into established decision theory not only improves the model reusability, but also enables 

the model application in prediction (Groeneveld et al., 2017). There are four theories that are 

commonly used in the ABM: (1) expected utility theory (Bernoulli, 1954) that assumes that 

agents choose the option that will maximise their expected utility based on the perfect and 

complete knowledge; (2) concept of bounded rationality (Simon, 1956) that assumes that agents 

with limited knowledge and cognitive capabilities will choose the option that can satisfy their 

aspiration level instead of the optimal one; (3) stochastic theory (Hey and Orme, 1994) that 

proposes to incorporate stochastic elements (e.g. a random error term) into the model that agents 

choose options randomly; (4) the theory of planned behaviour (Ajzen, 1985) that suggests that 

agents make decisions based on their intentions, beliefs, habits, and perceived social pressure. 

Two main decision architectures are used in ABM - the heuristic structure and the optimizing 

structure - to simulate the human decision-making process.  

2.4.1 Heuristic Decision-making Structure 

Heuristics refers to a set of relatively simple rules that guide the decision-making process of an 

individual (Schreinemachers and Berger, 2006). Instead of always making decisions by 

comparing all the alternatives and selecting the optimum option, the heuristic structure 

emphasises that decision makers are limited by their cognitive capabilities (Groeneveld et al., 

2017; Parker et al., 2003). During the decision-making processes, heuristic agents assess options 

sequentially and stop once they find an option that can reach their aspiration level. Therefore, 
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setting decision rules with appropriate conditions and correct sequence is important to simulate 

the heuristic behaviours (Schreinemachers and Berger, 2006). Heuristics are usually used by 

those who make decisions under the great uncertainties of natural phenomena such as farmers 

(Schreinemachers and Berger, 2006). For example, the cool-season grass should be seeded 45 

days before the estimated date of the first fall frost (PENNINGTON, n.d.). Various methods, 

including sociological research methods, data-mining techniques, participatory modelling, 

laboratory experiments, group discussions, or expert opinions (Schreinemachers and Berger, 

2006; Groeneveld et al., 2017), can be used to parameterize the decision rules and determine the 

conditions. For example, Valbuena et al. (2010), who have used the heuristic agents in a 

regional-scale LUCC model, have determined the thresholds between different options based on 

both expert knowledge and a field survey. Deadman (1999) has used a series of common-pool 

experiments to parameterize and develop an ABM to understand individual actions and group 

performances. In baseline experiments, agents intend to invest tokens in two markets, which the 

first market have a constant return rate; and the second market offers a return that varies 

depending on the relationship between total group investment and individual investment. Low-

endowment experiments and high-endowment experiments in which 10 tokens and 25 token 

endowments were given to each agent, respectively, were also run. Castella et al. (2005) has used 

heuristic agents in an ABM to simulate the LUCC in Vietnam. They have applied group 

discussions and participatory modelling to identify the relations between the driving factors and 

their effects (e.g. relations between crop yield and labour). 

Generally, the heuristic behaviour is addressed using a decision tree. For instance, Deadman et al. 

(2004) have developed a LUCITA (Land Use Change in The Amazon) to explore the interactions 

between farming households and LUCC in the Amazon frontier region using heuristic decision-

making strategy. Four key factors including burn quality, annual subsistence requirements, 

household characteristics (i.e. household capital endowment level, and household composition), 

and soil quality (i.e. soil pH), have been assessed. For each agent, three decisions may be made 

as Figure 2-1 shows. The first decision was made by evaluating whether their subsistence 

requirements have been met. If not, the agent assesses whether the capital and labour 

requirements have been met for planting annual crops; if yes, the agent then assesses the soil 

quality and further check if there are enough capital and labour for planting perennials or pasture. 

Different plants are seeded by following the decision tree (Deadman et al., 2004).  
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Figure 2-1 Flow of household decision-making in Deadman et al. (2004) 

 

Another example is the CARCHSCAPE model developed by Becu et al. (2003) to understand 

the effects of upstream irrigation management on downstream agricultural availability in 

Thailand. The crop decisions are made according to the season, rice production expectation, 

labour requirements, land-use type, and water availability (i.e. expected average irrigation level). 

Agents first check the season of planting; if it is in the wet season, the rice production 

expectation is checked. If the rice production expectation is less than the annual rice needs, rice 

is planted; while if the needed rice is less than the rice production expectation, land-use type 

should be checked. If it is in Paddy zone, check the expected level of irrigation and decide the 

cash crop that will be planted, if it is in Upland zone, the expected irrigation level is 

automatically identified as high, therefore, particular cash crop is selected. If it is during the dry 

season, the land-use is first examined. If the land-use is Paddy zone, the agent’s expectation of 

irrigation level is evaluated, and then the cash crop type is determined based on the identified 

irrigation expectation; if the land-use is Upland irrigated zone, the expected irrigation level is 

identified as high and the particular cash crop is planted (Becu et al., 2003).  

The application of heuristic decision trees also allows the incorporation of agent typology. A 

typology refers to a system to classify agents to different categories depending on specific 

criteria (Valbuena et al., 2008). In a heuristic-based decision-making model, agents can be 
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classified into several categories depending on the modelling objectives. Agents in different 

categories are assigned with different decision trees to guide them through decision-making 

processes. In Mialhe et al.’ s study (2012), heuristic decision-making strategy has been 

incorporated into the developed CHANOS model to investigate the influences of various 

variables on farmers decision-making process related to the cropping system. In this study, 

agents have been divided into three types. According to the level of satisfaction and certainty, 

agents make decisions following four cognitive strategies: (1) repetition which suggests keeping 

the current cropping system; (2) social comparison which implies that the agent chooses the 

majority cropping system among their social network if the currently used one is less than one 

third of the total; (3) imitation which suggests choosing the most commonly used cropping 

system; (4) deliberation which proposes to choose the best cropping system depending on the 

historical salinity records. As shown in Figure 2-2, different decision-making processes may be 

addressed depending on the agent type. A-type agents make only one decision according to their 

satisfaction level; B-type agents use two decisions to choose a favourite cropping system 

according to both satisfactory and certainty level; three decisions were made by C-type agents to 

decide the cropping system that will be implemented at the next iteration (Mialhe et al., 2012). 

The agent typology has also been conducted in MameLuke framework by Huigen (2004) to 

study the interactions between the socioeconomic system and LUCC in Philippine using the 

heuristic decision-making strategy. In this framework, agents have been divided into categories 

depending on the theory that a researcher wants to explore. The agent category determines the 

available options for an agent who then choose these options based on their motivations. The 

decisions have been made following sequential steps. First, the agent has to check whether the 

requirements of implementing an option are met by the agent. If the requirements have not been 

met, move on and check the next option in the list; otherwise, the agent pays the option with its 

initialisation costs and executes the selected option (Huigen, 2004). 
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Figure 2-2 Cognitive strategies of all agent types in Mialhe et al.’ s research (2012) 

As can be seen from previous examples, heuristic decisions are made by independently 

evaluating each predefined rules and conditions following a specific order. The decision tree is a 

straightforward graphic representation of heuristic structure depicting how decisions are made 

step by step. 

2.4.2 Optimizing Decision-making Structure 

Unlike heuristic strategy, optimizing strategy allows the simultaneous evaluation of decisions by 

using computational models. The optimization-based approach is built upon the microeconomic 

theory which assumes that agents will always make rational choices (Schreinemachers and 

Berger, 2006). It assumes that agents are capable of evaluating all of the available alternatives 

based on perfect information and cognitive ability and selecting the one that returns the highest 

utility or profits. Without setting the exact decision rules, the decision is made by specifying an 

objective function (either linear or nonlinear) to map every option into a scalar value. Equation 

2.2 to Equation 2.4 show examples of different utility functions that have been used in Aporia 

framework developed by Murray-Rust et al. (2014) to model the agricultural land-use change. 

These utility functions are used to evaluate land-use options for each agent who aims to 

maximize their economic returns or utility. Equation 2.2 is the function that only takes economic 

factors into consideration. Equation 2.3 and Equation 2.4 allow the incorporation of both 
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economic factors and non-economic factors; while Equation 2.3 is a linear weighted sum method, 

and Equation 2.4 offers a non-linear sum function with user-specified slopes and offset values 

(Murray-Rust et al., 2014).  

E R = 	𝐸789,(𝑅)                                                              Equation 2.2 

E R = 	 .
,
	 𝜆"	𝐸<(𝑅),

"=.           Equation 2.3 

E R = 	 .
,
	 𝜆"	+	𝛿 + (𝐸"(𝑅)) + 𝜆"	– 	𝛿 − (𝐸"(𝑅)),

"=.       Equation 2.4 

Generally, parameters (e.g. weights, offsets) and the form of utility function vary according to 

the research objective and agent typology. For example, Millington et al. (2008) have presented 

an ABM to simulate agricultural land-use decision-making. Two types of agents which are 

commercial and traditional agents, have been determined depending on agents’ perspectives. 

Commercial agents choose options that maximizes their profits, thus, incomes, market values, 

and conversion costs have been put into a utility function to estimate the potential profits of each 

option. Traditional agents are those who make decisions based on land size and retirement age 

rather than economic related factors (Millington et al., 2008). Liu et al. (2006) have developed an 

optimization-based ABM in which agents of different types use the same linear utility function 

but with different preference weights for the factors of environmental quality, education benefits, 

accessibility, land price, and public facilities. In Ligmann-Zielinska’s research (2009), a non-

linear utility function has been used by three types of agents, each of which use different weights 

distribution depending on the agent’s preferences for different decision criteria. In such a way, 

the heterogeneity among agents can be clearly represented.  

As noted by Schreinemachers and Berger (2006), the application of mathematical utility function 

offers a straightforward way to represent agents’ heterogeneities. Therefore, the optimization 

ABM is able to be used to investigate the implications of heterogeneities among agents’ 

characteristics, perspectives, and behaviours. Brown and Robinson (2006) presented an ABM to 

explore how the agents’ heterogeneity in resident preferences influences the residential 

development in an urban system. Two types of the heterogeneities, including the preference 

variation among the entire population or within an agent type, as well as the heterogeneities 

across different agent types, have been studied. Five methods have been addressed by Brown and 
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Robinson (2006) to distribute agents’ preference weights to four identified evaluation criteria: (1) 

preference weights are drawn randomly from a uniform distribution; (2) equal preference 

weights which is mean value for each criteria drawn from all of the survey sample, are assigned 

for the entire population; (3) preference weights are drawn randomly from a normal distribution 

specified by the mean and Std. obtained from the entire survey sample; (4) agents in the same 

type have equal preference weights of group means; (5) preference weights are drawn randomly 

from a normal distribution described by the group mean and standard deviation. The magnitude 

of impacts for different preference setting was examined according to the mean of resident utility 

value, Gini coefficient value, and the Shannon evenness index. The result shows that the impacts 

of heterogeneities and variations among agents’ preference weights are much greater than the 

influences of categorization.  

As can be seen, optimization model puts more focus on the decision outcomes. Using an 

objective utility function, all alternatives are evaluated simultaneously, and finally, the optimum 

option should be selected. In an optimization-based model, all factors are evaluated 

quantitatively without knowing the exact decision rules. This provides a high level of flexibility 

to model human behaviour and represents heterogeneity among agents. However, it has been 

criticized by various studies (e.g. Rounsevell et al., 2012; Filatova et al., 2013) that simulation 

outcomes from the optimization model are unrealistic as people in the real world do not always 

make rational decisions.  

To better represent human decision-making processes, some studies (references) have carried out 

a simulation that incorporates heuristic strategies into optimization methods. For instance, 

Malawska and Topping (2016) have developed an ABM which incorporates both heuristic 

decision trees and optimizing utility functions to simulate the farmer decision-making on crop 

choices, as well as the application of fertilizers and pesticides. Agent typology has been created 

based on agents’ goals and motivations toward farming. Depending on the agent type, four 

decision-making methods, including Imitation, Social comparison, Deliberation, and Repetition, 

are addressed. If Imitation, Social comparison, or Repetition is used, agents make decisions 

following a heuristic decision tree; if Deliberation is implemented, crop plan is selected based on 

the rules of utility optimization (Malawska and Topping, 2016). Another example is the LUDAS 

presented by Le et al. (2008), which simulates the land-use decision-making processes of 
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household agents by considering household characteristics, environmental and policy 

information. The decisions are made based on the maximum utilities estimated by a spatial 

multi-nominal logistic functions nested with heuristic rules.  

2.4.3 Methods Comparison 

Both optimization and heuristic approaches have been widely applied in the ABM to simulate the 

processes of human decision-making. Depending on the research questions and the available data, 

either the optimization approach or the heuristic method, or a combination of both can be 

selected by the researcher. For example, the heuristic decision tree is more suitable for a study 

that focuses on the decision process, that is, how decisions are made. Comparatively, the 

optimization method puts more attention on exploring the impacts of multiple inputs on decision 

outcomes. As concluded by Schreinemachers and Berger (2006), the heuristic model considers 

the limited cognitive capacity as the main source of inefficiency, yet the optimization model 

takes external structural factors as the major source of inefficiency. Therefore, optimization 

model is more powerful to investigate the impacts of policy intervention (Schreinemachers and 

Berger, 2006). Furthermore, the optimization approach is able to capture the economic trade-offs 

due to its ability to make decisions simultaneously (Schreinemachers and Berger, 2006). 

Comparing to the optimization model, the heuristic model is easier to be calibrated and validated 

as heuristic agents make decisions using a set of relatively simple rules instead of complex 

computational models. Whereas the decision-making rules, conditions, and their sequence are 

extremely significant to realistically represent human behaviours using the heuristic model. 

Accordingly, accurate and complete data is required to identify and set the important decision 

and appropriate conditions in the correct sequence. Though some research has questioned the 

optimization model’s capability of realistically representing human behaviour, its ability to 

include multiple inputs and outputs adds the flexibility to integrate different decision models and 

offers a straightforward way to represent agent heterogeneity (Schreinemachers and Berger, 

2006).  

2.5 Application of ABMs to the LUCC in Agricultural Environments 

The ABM is a powerful tool in the study of land use change which involves interactions between 

different entities at different scales and is greatly influenced by human decision-making 
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processes (Mialhe et al., 2012; Evans and Kelley, 2004). In the study of land use change, ABM-

based approaches are able to explore how information diffusion and spatial externalities would 

influence the spatial pattern and composition of land use over time (Evans and Kelley, 2004), 

and provide a way to explicitly and heterogeneously represent the emergent land use patterns 

caused by various decision-making process (Matthews et al., 2007; Robinson et al., 2007; 

Filatova et al., 2013).  

The ABM model is superior in three aspects: (1) the ability to capture emergent phenomena 

(Parker et al., 2003; Castle and Crooks, 2006); (2) the capability of offering natural description 

of certain systems (Bazghandi, 2012; Bonabeau, 2002); (3) the flexibility (Castle and Crooks, 

2006). Emergence is a phenomenon appearing along with unexpected behaviours resulting from 

the non-linear and discontinuous interactions between individual entities (Castle and Crooks, 

2006; Bazghandi, 2012). The ABM is capable of describing these discrete behaviours which are 

difficult to be represented by using mathematical equations (Bonabeau, 2002; Parker et al., 2003).  

Moreover, the ABM can provide a better representation of agent typology and heterogeneities 

(Filatova et al., 2013; Matthews et al., 2007; Parker et al., 2003). Other methods (e.g. equation-

based methods), which describe heterogeneities among agent interactions using aggregate 

equations, smooth out the fluctuations and result in significant deviations from the predicted 

behaviour (Castle and Crooks, 2006; Bonabeau, 2002). The ABM is able to provide a simulation 

of a system composed of behavioural entities that are closer to reality (Bazghandi, 2012; Bert et 

al., 2014; Castle and Crooks, 2006). For instance, describing how people move on the street 

through ABM is more natural than using a set of equations to govern the dynamics of people 

density. Finally, the ABM is flexible. First, the ABM can be built for various systems (e.g. 

building, city, and road networks). Agents in the model can be specified using various 

mechanisms, and they are allowed to move along different directions in their environment 

(Castle and Crooks, 2006). Furthermore, interactions among agents can be governed by space, 

networks, or a combination of structures, which would be more complicated to be explained by 

mathematics (Castle and Crooks, 2006). Additionally, the ABM allows the coexistence of 

aggregate agents, subgroups of agents, and single agents with different level of description 

(Castle and Crooks, 2006; Bazghandi, 2012; Bonabeau, 2002). For all these reasons, the ABM 

has been applied as a powerful tool to explore the human decision-making and behaviours 

(Evans and Kelley, 2004; Mialhe et al., 2012; Parker et al., 2003). 
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To explore how different variables may affect the decision-making processes of farmers on 

choosing cropping system and further lead to the resulting land use pattern, Mialhe et al. (2012) 

developed an ABM named CHANOS based on empirical field data. Agent typology was 

introduced in Mialhe et al.’s research (2012). There are two basic classes of agents in CHANOS, 

which are farmers who own the farm and investors who “acquire new land in favorable 

circumstances” (Mialhe et al., 2012). Internal attributes were acquired through a questionnaire 

survey for farmers including household size, behaviour type, strategies, and outcomes. Some of 

these attributes are static, while economic attributes may change according to decision-making 

processes and external economic factors. External factors are the natural, economic, and political 

factors relevant to the system including market forces, government policies, and environmental 

and climatic processes such as deltaic land subsidence and typhoon. Thirty runs were first 

implemented to assess the underlying effects of randomness and uncertainties in the modelling 

results. After that, twelve scenarios were illustrated by combining the identified three types of 

farmers’ behaviours (rational, collective-minded, and bounded rational) with four environmental 

dynamics (i.e. no deltaic subsidence, steady subsidence, accelerating subsidence, and subsidence 

punctuated by external impacts). The results indicate three potential land use change patterns 

(Mialhe et al., 2012). For agents in different categories, different adaptive abilities were observed.  

Valbuena et al. (2010) developed an ABM framework that combines the existing concepts to 

simulate the diversity of land use decision-making at a regional scale. A case study was 

conducted to identify how the farmers’ views and structural variables contribute to determining 

the diversification of farming practices (Valbuena et al., 2010). Census data, socio-economic and 

spatial data were used to describe the attributes of the environment; the farmers’ willingness and 

the ability for farm expansion and farm practices diversification were also addressed to 

determine the direction and boundaries of the decision-making process (Valbuena et al., 2010). 

The developed model had been run three times with different set of parameters to identify the 

influence of internal feedbacks on agents’ behaviours and decision-making processes, observe 

the effects of external factors - adoption of policy of promoting agents to keep their land-on 

agents’ behavior, and the impacts of external factors on the structure of landscape (Valbuena et 

al., 2010). Finally, additional runs with different random sets of parameters were conducted to 

observe the uncertainty in the decision-making process (Valbuena et al., 2010). Results indicate 

that the developed ABM framework is able to explicitly incorporate and represent the diversity 
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of decision-making strategies (Valbuena et al., 2010). This gives it the flexibility to be 

implemented to simulate different LUCC processes in different regions where heterogeneous 

individual decision-making is a critical driver of LUCC (Valbuena et al., 2010). Impacts of 

heterogeneities among agent typology were also examined by Sengupta et al. (2005). An ABM 

was developed to explore the impacts of policies on affecting farmer land-use decision-making 

in southern Illinois. In this study, a heuristic decision-tree method was applied. Farmers were 

classified into three groups: (1) opportunists are commercial farmers who make decisions to 

maximize their profits; (2) “mixed” agents who are medium-sized farmers; (3) “enrolees” which 

including small farmers and retirees. Results of this study indicate that the ABM is able to 

produce a more realistic simulation of land-use decision-making in the Illinois than did a 

traditional profit-maximization model (Sengupta et al., 2005).  

The capability of the ABM to cope with learning and adaptive processes was exhibited in Becu 

et al.’s study (2003). In Becu et al.’s research (2003), CARCHSCAPE model was developed to 

explore the individual decision-making of downstream agricultural viability in response to the 

upstream irrigation management. Four scenarios related to water management were analysed: (1) 

a baseline scenario in which farmers were forbidden to convert forest into agricultural field; (2) a 

conflict scenario in which downstream farmers behave under the willingness of upstream 

managers; (3) a dishonesty scenario in which farmers took more water than was permitted; (4) a 

water shortage scenario in which the low rainfall situation continued for 10 years. The simulation 

was based on a heuristic decision-making structure (Becu et al., 2003). 

In conclusion, the ABM is an approach that has been commonly used in the study of LUCC due 

to its ability to couple socio-economic and environmental models, incorporating the micro-level 

impacts of human decision-making on environmental management, and studying the emergence 

in response to management policies (Deadman et al., 2004). It provides a dynamic representation 

of individual decision-making entities taking into account the interaction and heterogeneities 

among them (Matthews et al., 2007; Millington et al., 2008). Moreover, the capability of 

incorporate adaptive behaviour at different levels also makes the ABM a powerful tool to explore 

the existing land use patterns and predict the observable real-world phenomenon at a micro-scale 

(Mialhe et al., 2012; Evans and Kelley, 2004; Parker et al., 2003). 
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Based on all advantages discussed above, an ABM is applied in this study for the following 

reasons. First, heterogeneities (e.g. income level, occupation, preferences, and knowledge level) 

among agents play a critical role in the decision-making of BMP adoption (Liu et al., 2018). It 

may lead to the diversity of the individual farmer’s decision-making and behaviour (Valbuena et 

al., 2010). To better understanding the BMP decision-making dynamics, it is important to take 

into account the local heterogeneity. Compared to other methods such as the equation-based 

method which represents these heterogeneities using a set of aggregate equations (Bonabeau, 

2002), the ABM do not require a numerical or analytical solution to the system (Parker et al., 

2003). This highly increases the level of complexity that can be handled by the ABM and makes 

it become a powerful tool for representing heterogeneous and discrete behaviours (Parker et al., 

2003). Second, the decision-making of BMP adoption is also impacted by interactions among 

farmers (Liu et al., 2018). Although statistical models can reflect the regional heterogeneity to 

some extent, it lacks the ability to incorporate dynamic interactions and feedbacks in the system, 

and thus, downplays the decision-making process in the real world (Parker et al., 2003). 

Nevertheless, the ABM is capable of dynamically describing the impacts of agent interactions on 

their decision-making (Parker et al., 2003). For all these reasons, an ABM was developed for this 

study to facilitate the understanding of farmer’s decision-making on BMP adoptions.  

2.6 Model Validation 

More and more researchers have been attracted to apply simulation models to represent 

phenomena in the real world and solve problems. The models’ ability to provide “correct” results 

is always concerned by the developers, users and other individuals that may be affected by the 

model results (e.g. policymakers) (Sargent and Smith, 2011). While due to the lack of sufficient 

data, inadequate model structure, and the variability of real-world entities, uncertainties and 

errors are raised (Sargent and Smith, 2011; Bert et al., 2014). To ensure that the developed model 

can represent the behaviours closely enough to reality, model validation should be performed 

(Rykiel Jr, 1996; Bharathy and Silverman, 2013). Model validation usually refers to 

implementing a set of techniques and processes to evaluate whether a model can perform as 

expected (Oreskes et al., 1994). It should be carried out to evaluate whether the developed model 

can provide an accurate representation of reality and whether the model is acceptable for its 

intended purpose and use (Bharathy and Silverman, 2013). Accordingly, a model’s validity 
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should be determined based on the purpose specified when developing the model (Rykiel Jr, 

1996; Sargent and Smith, 2011; Oreskes et al., 1994).  

The model validation can be classified into three types: the conceptual validation, the operational 

validation, and the data validation (Rykiel Jr, 1996). The conceptual validation refers to the 

process of assessing whether theories and assumptions underlying the model are correct or 

justifiable (Sargent and Smith, 2011; Bert et al., 2014; Rykiel Jr, 1996). It has to start from the 

beginning of the model design and development stage (Bert et al., 2014). Two methods can be 

used to evaluate the conceptual validity of a model. The first one is expert evaluation which 

includes both experts engaging in model development processes and those independent who did 

not closely involve in model development processes or with model developers (Bert et al., 2014). 

Both types of experts are able to provide feedbacks contributing to ABM validation (Bert et al., 

2014). The other method for conceptual validation is to assess how the chosen theories and 

underlying assumptions fit the purpose of a model (Bert et al., 2014). The operational validation 

is the process to evaluate the model accuracy and adequacy in mimicking the real world (Sargent 

and Smith, 2011; Bert et al., 2014). Different from the conceptual validation, the operational 

validation usually starts in the later processes after model verification (Bert et al., 2014). 

Statistical tests are usually used here to compare the simulated results with real data (Bert et al., 

2014). Data validation is performed to identify whether the data used in the model can meet the 

specified quality standard (Sargent and Smith, 2011; Rykiel Jr, 1996). 

A number of techniques have been proposed and implemented for model validation, and both 

qualitative and quantitative approaches can be performed for model validation. A historical data 

validation method can be performed when historical data exists. The data is split into two parts, 

the first part of which is used for building the model, while the second part is used to test 

whether the model presents a reasonable performance (Sargent and Smith, 2011; Rykiel Jr, 1996). 

The historical data validation method has been applied in Bert et al.’s study (2011) to validate 

the developed PM by comparing the predicted outputs with a set of available historical datasets. 

The results suggested that the simulated land use patterns were consistent with historical 

development demonstrating the developed PM was able to accurately represent the phenomena 

and emerging changes in the real world (Bert et al., 2011). Instead of comparing results against 

the empirical dataset, models can also be validated by comparing outputs to those of other 
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models. In Sengupta et al.’s study (2005), an ABM was developed to simulate the land-use 

decision-making process in the Illinois based on a heuristic decision-tree method. A traditional 

profit-maximization model was also implemented of which the outputs were compared to those 

obtained from the developed ABM. Comparison results indicated that the ABM provided a 

simulation that is closer to the real world (Sengupta et al., 2005).  

While both of the historical data validation method and the comparison to other model method 

have relatively high data requirements. When there is no historical data nor the data for building 

another model, the statistical method is suggested. For example, in Zhang and Mahadevan’s 

study (2003), Bayesian hypothesis test has been used to validate the developed state-based 

reliability prediction model. A Bayes factor, which indicates a good model prediction when it is 

larger than one, was derived (Zhang and Mahadevan, 2003). Other than the Bayesian test, a 

quantitative comparison approach has also been suggested by Urbina et al. (2003). In this study, 

a probability distribution has been created for the model outputs and the reference data. The 

model prediction can be identified as acceptable when zero is included in the generated 

probability interval (Urbina et al., 2003).  

The model can also be validated using an extreme condition test. By assigning the model with 

extreme values, the performance of the model in response to behaviours outside of normal 

conditions can be evaluated (Rykiel Jr, 1996). In Qudrat-Ullah and Seong’s study (2010), 

extreme values have been given to selected parameters to explore whether the model would 

produce logical results. Results of the extreme condition test were compared to the behaviours of 

the real system showing that the developed energy policy model is capable of dealing with the 

extreme conditions and the model is valid (Qudrat-Ullah and Seong, 2010).  

A face validity method is one of the conceptual validation techniques that determine whether a 

model and its behaviours are reasonable by asking individuals who are knowledgeable about the 

system (Sargent and Smith, 2011; Rykiel Jr, 1996). Bert et al. (2014) implemented a face validity 

method in a developed Pampas model (PM) to make sure all of the relevant components and 

processes are included and correctly characterized. The conceptual validation of PM has started 

from and in parallel with the process of model designing which includes the review of relevant 

publications and documentation about the theoretical basis of relevant processes or behaviours 

and ABMs with similar purposes (Bert et al., 2014). Experts, including members and technical 
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staff from Argentina Association of Regional Consortia for Agricultural Experimentation 

(AACREA)- a civil association for sustainable development of agricultural entrepreneur (Inicio, 

n.d), and a collaborating farmers’ organization, were also involved in the development process of 

PM and interacted with stakeholders to not only test the correctness of PM’s design, but also 

define the specific processes and parameters for its sub-models (Bert et al., 2014). The results 

show that the model is able to provide a valid representation of emerging patterns (Bert et al., 

2014). 

Except for the validation techniques introduced above, sensitivity analysis can also be used in 

model validation. Sensitivity analysis is a technique that explores model performance by 

assessing the impacts of a model parameter on model outcomes under given assumptions. Details 

of the sensitivity analysis were presented in the following section. Depending on model 

objectives and data availability, different validation techniques may be applied. When the 

historical data are available, a historical data validation method can be implemented. A face 

validity technique can be used when relevant knowledge can be inquired from experts easily. 

The comparison to other modelling methods can be used when data for building another model is 

available. While when lacking both data and it is difficult to inquire about expert knowledge, 

statistical validation can be applied. 

2.7 Sensitivity Analysis of the ABM 

Although ABMs have proved to be a powerful tool in simulating the dynamics of coupled 

human-environment systems (e.g. Bert et al., 2014; Robinson et al., 2007; Parker et al., 2003), 

they still face the challenge of verifying and validating the reliability and robustness of the 

outcomes. Sensitivity analysis is a technique that explores model performance by assessing the 

impacts of a model parameter on model outcomes under given assumptions. According to Ten 

Broeke et al. (2016), three major goals of implementing sensitivity analysis in ABM can be 

identified. First is to understand how emergent patterns in the real-world are generated in the 

model. By implementing a sensitivity analysis, how changing a parameter may affect the model 

outcome can be explored. In such a way, researchers are able to gain insights into the model 

dynamics (e.g. linear, nonlinear) resulting from these impacts. Second, sensitivity analysis is 

usually used to test the robustness of the model outcomes in regards to changes in the parameter 



 33 

values corresponding to a set of given assumptions. Especially for models which aim to represent 

a phenomenon that involves a range of situations, proving that the model is robust to parameter 

changes is very important for indicating the reliability of the model outcomes. The third 

motivation of conducting sensitivity analysis is to quantify the uncertainty in the model 

outcomes from the parameter set. This facilitates the identification of parameters that contribute 

the most to the uncertainty of the model outcomes. Accordingly, it is possible to reduce the 

model uncertainty by only focusing on the identified parameters.  

Various methodologies have been used to carry out the sensitivity analysis. One of the most 

widely used methods is global sensitivity analysis which explores the uncertainty in the model 

output by measuring the proportion of the variance explained by the model inputs. A Monte 

Carlo approach has been used by Schreinemachers (2005) to examine the robustness of the 

applied model under different parameter settings. The average value of model outcomes obtained 

from a range of parameter settings have been calculated for each of the identified fifty 

populations. Std. has been computed for the fifty averages to quantify the variations in the model 

output. Accordingly, the relative importance for each variable has been defined by comparing the 

normalized standard deviation. A greater Std. indicates that the model is more sensitive to the 

corresponding variable. Similarly, the Monte Carlo approach has also been applied by Tsai et al. 

(2015) in the sensitivity analysis for the developed ABM to investigate the impacts of different 

socio-economic conditions on land-use change.  

However, Parry et al. (2013) pointed out that the Monte Carlo approach may create duplicate 

information when the output is smooth. Moreover, a great number of runs is required by the 

Monte Carlo approach to get accurate results. This largely increases the amount of steps and time 

required for implementing the sensitivity analysis for ABMs that have a large amount of inputs. 

Therefore, Parry et al. (2013) have conducted a Bayesian Analysis of Computer Code Outputs 

(BACCO) method to perform sensitivity analysis with greater computational efficiency. An 

emulator, or meta-model, was constructed to represent the results both qualitatively and 

quantitatively. The sensitivity has been measured by averaging the model output in regarding to 

probability distributions on the selected inputs. Sensitivity indices have been used to quantify the 

uncertainty caused by each input and rank them based on their contributions to uncertainty in 

model outcomes. Accordingly, parameters that contribute the most to the variation in the model 
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output can be identified. The meta-modeling has also been used by Happe et al. (2006) 

combining with a statistical technique to measure the variations in the model outcomes that 

results from the uncertainty in the model parameters. Instead of testing all of the input 

combinations, major factors that impact agriculture structural change have been selected and 

simulated in the sensitivity analysis. For every input, factor levels, which indicate the how inputs 

may be changed based on a set of assumptions, have been assigned. Finally, by using a graphical 

analysis and meta-models (e.g. regression model), the relationship between structural changes 

and the effects of factor level change can be statistically analysed. Additionally, the use of DOE 

(Design of Experiments) techniques provides an insight of the relative importance of model 

parameters regarding to their contribution to the model variations. 

The previous reviewed methods are all model-based which determining model variability based 

on the individual parameters and their interactions (Zhang et al., 2015). While the sensitivity 

analysis can also be carried out using model-free methods which is “independent of assumptions 

about the model structure (Lilburne et al., 2006)”. For example, Ten Broeke et al. (2016) has 

used a Sobol’s method to measure model variance caused by different parameter combinations 

based on the assumption that all model inputs are independent. Keeping all other parameters 

fixed, sensitivity of a model is indicated by the ratios of the decomposed partial variance of 

selected (one or multiple) parameters to the total variance in the model output. A bootstrap 

method has also been addressed to evaluate the accuracy of obtained sensitivity indices. 

Ligmann-Zielinska et al. (2014) have also performed a model-free sensitivity analysis in which 

the sensitivity to a factor is represented using the ratios of the contribution of each parameter to 

the total model variance. A greater ratio indicates that the model is more sensitive to the 

examined parameter.  

Another method to perform sensitivity analysis is the One-factor-at-a-time (OFAT). In this 

method, one parameter is changed at a time while keeping all other parameters at their baseline 

values. This adds the comparability of the results, which makes it stands out in investigating how 

parameter changes affect the model output (Ten Broeke et al., 2016). Ten Broeke et al. (2016) 

has implemented the OFAT to examine the effects of all parameters to model output. Dot graph 

was used to represent the change of model outcomes based on the minimum, mean, and 

maximum value among ten replicates. In this way, tipping points have been easily identified, 
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which indicates the model dynamics responding to the change of a particular parameter. 

However, the OFAT method cannot provide an accurate measurement of the variance of 

combined parameters (Ligmann-Zielinska et al., 2014).  

To sum up, different methodologies may be used to perform the sensitivity analysis depending 

on the research goals. The OFAT provides a simplest way to qualitatively represent the 

relationships between model inputs and outputs. It can be applied to explore model dynamics 

with respect to changes of an input parameter, and assess the robustness of the model in 

regarding to the variance of a model input. Unfortunately, it presents a limited ability in 

explaining the effects of combined parameters on model behaviours (Ligmann-Zielinska et al., 

2014). Comparatively, the global sensitivity analysis approaches allow the simulation of the 

combined impacts of multiple variables and offer quantitative representation of the variance in 

the model output. Whereas as noted by Ligmann-Zielinska et al. (2014), the computational costs 

for global sensitivity analysis approaches are higher than the OFAT approach.  

2.8 Chapter Summary 

This chapter first introduces the BMPs that are examined in this study and their potential benefits. 

It shows that all discussed BMPs are able to improve soil health, enhance water quality and 

facilitate the development of sustainable agricultural system. Depending on the location, crop 

type, topography and climate, different BMPs or combinations of BMPs may be adopted. While 

for each BMP, the effectiveness is highly determined by the construction dimensions such as 

width, height, channel grades, as well as the shape. Then methods for identifying primary LUCC 

change patterns are summarized. Two methods were presented, which are the trajectory 

computing method suggested by Wang et al. (2012) and Swetnam’s method (2007) which 

determines the LUCC change patterns by creating a multi-attribute database. Comparing to the 

Swetnam’s method, the trajectory computing method would be more practical than the 

Swetnam’s approach when the number of LUCC types is less than ten. Moreover, the trajectory 

computing method allows the researcher not only to identify different LUCC trajectory without 

taking a lot of time, but also to visualize the results by creating a distribution map. In the third 

section, two decision-making structures that have been widely applied in the ABM are discussed. 

The choice between these two methods should be based on the research questions and the 
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available data. Although the heuristic decision tree is able to provide a sequential representation 

of how decisions are made step by step, the optimization model, which is built upon the 

microeconomic theory, is more suitable for exploring the influences of policy intervention since 

it takes external structural factors as the major source of inefficiency (Schreinemachers and 

Berger, 2006). Furthermore, the ability of the optimization model to include multiple inputs and 

outputs offers a straightforward way to represent agent heterogeneity (Schreinemachers and 

Berger, 2006). Finally, approaches for performing the sensitivity analysis are summarized. 

Different methodologies may be used to perform the sensitivity analysis depending on the 

research goals. Both of the global sensitivity analysis and Sobol’s method are able to simulate 

the impacts of interactions between the parameters, or inputs, and offer quantitative 

representation of the variance in the model outputs. However, comparing to the OFAT, the 

computational costs of these two methods are much higher. On the contrary, the OFAT could 

qualitatively demonstrate the relationships between model inputs and outputs in a simplest way. 

By changing exactly one factor at a time, the OFAT is more powerful in study the impacts of 

changing model parameters on model outputs. 
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Chapter 3 Data and Methodology 

3.1 Study Area 

 
Figure 3-1 Study area of the Upper Medway Creek subwatershed 
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The Medway Creek subwatershed is one of the 28 subwatersheds in the Upper Thames River 

Watershed in Ontario, Canada (Medway Creek, n.d.; 2017 Watershed Report Card, 2017; 

UTRCA, n.d. c). It covers 205km2, taking up 6% of the entire Upper Thames River watershed. 

The Medway Creek subwatershed sits along the western edge of the Upper Thames River basin, 

it spans the northwest part of London, the Middlesex Centre, Thames Centre, and Lucan-

Biddulph. As a tributary of the Thames River, the Medway Creek is 218 km long, originating 

from the north of Elginfield road and flows to the North Thames River near the Western 

University in London. About 66% of the Medway Creek watershed has agricultural field tile and 

6% of the watershed has urban drainage (2017 Watershed Report Card, 2017). The dominant soil 

types in the Upper Medway subwatershed are clay loam and silty loam which cover about 33% 

and 32% of the subwatershed, respectively (2017 Watershed Report Card, 2017). The current 

prevailing land use type in the Medway Creek subwatershed is the agricultural land which covers 

82% of the total land throughout the entire region (2017 Watershed Report Card, 2017).   

The Medway Creek subwatershed has been suffering from a severe surface water quality 

problem for more than ten years (UTRCA, n.d. c; 2017 Watershed Report Card, 2017). In 2007, 

it was identified as a region that are highly requisite for the environmental improvement 

(UTRCA, n.d. c). According to the 2017 Watershed Report Card (2017), the overall water 

quality in the Medway Creek subwatershed has remained a grade of D over the past ten years. 

The concentration of Phosphorus, one of the major elements that affect surface water quality, is 

two times as high as the provincial aquatic life guideline having an overall grade of B in the 

Medway Creek subwatershed (2017 Watershed Report Card, 2017). It has been noted by the 

UTRCA in the 2017 Watershed Report Card (2017) that the poor water quality of the 

subwatershed is closely related to the regional agricultural activities. The application of fertilizer 

and manure increases the nutrient loadings in the surface runoff which further flows into the 

surface waterbodies in the end and causes eutrophication (UTRCA, n.d. c). In order to control 

soil erosion and reduce nutrient losses from farm land, Best Management Practices (BMPs) 

including conservation tillage, no-till system, grassed waterways, buffer strips, Water and 

Sediment Control Basin (WASCoB), and windbreaks are used in the Medway Creek 

subwatershed (Medway Creek, n.d.). 



 39 

Throughout the subwatershed, the upper region has higher soil erodability and poorer surface 

water quality (UTRCA, n.d. c.; 2017 Watershed Report Card, 2017). Little research has been 

addressed to investigate the agri-environment system, specifically farmers’ agricultural decision-

making process, in this region. Therefore, the Upper Medway Creek subwatershed was selected 

as the study area. The Upper Medway Creek subwatershed locates at the north of the Medway 

Creek subwatershed and extends to the Observator Drive and south of Granton to the South. It 

has an area of 21.55km2 which covers 10.51% of the entire Medway Creek subwatershed. As 

calculated, about 83.71% of the land in the Upper Medway Creek subwatershed is used for 

agriculture. As estimated by the UTRCA, there are approximately forty farmers operating in the 

Upper Medway Creek subwatershed. In 2015, the Upper Medway Creek was selected as a 

priority subwatershed project by the UTRCA and OMAFRA (2017 Watershed Report Card, 

2017). The project encourages the application of BMPs and assesses its effects to mitigate soil 

and phosphorus losses from agricultural land into surface runoff (2017 Watershed Report Card, 

2017). Refer to Figure 3-1 to see the location and boundary of the study area.  

3.2 Social Field Survey 

A survey is a widely used method to collect quantitative or qualitative information from a 

particular group of people. It can be conducted by phone, mail, internet, or a face-to-face 

interview (De Leeuw, 2008). Among these methods, a face-to-face interview is one of the oldest 

and common, implemented by direct communication with target respondents (De Leeuw, 2008). 

Although doing a face-to-face survey can be costly and time-consuming, there are still many 

advantages that make it an appropriate survey method for this study (De Leeuw, 2008). First, a 

face-to-face interview allows the use of visual aids and body language, which help farmers who 

are not familiar with BMPs to understand survey questions related to the BMP adoption (De 

Leeuw, 2008). Moreover, the interviewer can discuss with interviewee during the interview so 

that get more in-depth understanding regarding why a farmer implements BMPs (De Leeuw, 

2008). Compared to a structured interview, a semi-structured interview is preferred in this study 

as it allows respondents to express new idea and views toward factors affect their BMP adoption 

(De Leeuw, 2008). Therefore, a semi-structured interview was conducted with the farmers in the 

Upper Medway Creek subwatershed to capture the decision-making dynamics of the BMP 

adoption. 
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This survey was developed for the WP3 of AWF. It is a modified version from the survey, 

“Sustainability in Agriculture: Southwestern Ontario”, under the Early Researcher Awards 

(ERA) program for Dr. Derek Robinson. The Sustainability in Agriculture: Southwestern 

Ontario survey consists of four parts. The first part collects information related to agricultural 

practices, including farm characteristics (i.e. farm size and farmland type), crop rotations, what 

agricultural practices are being adopted, and the initiatives or programs a farmer participates in.  

The second part focuses on factors that influence farmer’s decision-making. The third part 

focuses on information dissemination and social network that may influence farmer’s decision-

making. Questions such as “how important are the listing sources of information to your land use 

decisions on your farm?” and “from what source have you heard of drone technology for 

application in agriculture?” have been asked in this part. In the fourth part, farmer’s general 

information, including the year of birth, gender, farm succession and inheritance, weekly 

farm/off-farm working hours and the proportion of farm/off-farm income. Therefore, based on 

influential factors of the BMP adoption discussed in Section 2.2, questions including “what 

BMPs are you using?”, “what motivate you to adopt BMPs”, “what are the main concern of 

adopting BMPs”, and “do you participate in any BMP-related support or incentives from any 

programs or organizations?” have been added to the Sustainability in Agriculture: Southwestern 

Ontario survey.  

The modified survey was designed in collaboration with the UTRCA. I’ve also participated in 

designing parts of the survey. It was composed of three parts to elicit the factors that may 

influence farmers’ decision-making, the motivation for applying for agricultural BMPs, as well 

as general information about farmers and their farmlands. In the first part, information related to 

the agricultural practices has been collected, which includes crop rotations that are followed by 

farmers, factors that affect farmers’ agricultural decision-making in terms of economic, 

environmental and social aspects, as well as the proportion of a farmer’s agricultural decision-

making that is affected by each of the three factors (i.e. economic, environmental and social 

factors). Questions such as “how many years have you been farming?”, “how much 

environmental factors affect your crop rotation/livestock choices?”, “what percent of your 

agricultural decision-making is affected by economic, environmental, and social factors, 

respectively?”, and “what farming practices most influence water quality?” were asked in this 

part. The second part of the survey focuses on motivations and barriers, especially the finical 
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concerns, of BMPs adoption, BMPs that are currently utilized by farmers and farmers’ 

satisfaction level of implementing these BMPs. Except for BMP-related questions introduced in 

the previous paragraph, questions such as “what is your satisfaction level for currently used 

BMPs?” and “are you considering implementing any new BMPs?” were also asked in the second 

part. Part 3 intends to collect general information of the purpose of adopting farming practices, 

farmer, such as the age, the proportion of average weekly on-farm working hour, the percentage 

of income that comes from farming activities and whether the farmer has an off-farm occupation. 

Questions such as “was your farm inherited?” and “what proportion of your weekly labour is 

spent on farming?” were asked in here. Additionally, this section generates the sources of 

agriculture-related information preferred by the farmer. For example, “how often do you search 

for information on the following media”, and “what form of information do you prefer?”. 

The survey participants were recruited by the UTRCA staffs. Before the interview, farmers were 

first contacted by the UTRCA staff to get their willingness of participation and their available 

time for taking the interview. Only farmers who present their willingness of participation were 

interviewed by UTRCA staffs. This survey has been reviewed and received ethics clearance 

through a University of Waterloo Research Ethics Committee (ORE#21913).  

3.3 Identifying Prominent Land-cover Changes 

3.3.1 Data 

3.3.1.1 Boundary Data 

The Medway Creek boundary data used in this study is one of the quaternary subwatershed 

divisions obtained from the Land Information Ontario. The quaternary divisions were created 

based on the Water Resources Index Inventory Filing System which is also known as federal 

'Drainage Area' reporting framework (Land Information Ontario, 2010). The boundaries of each 

division were determined based on drainage area, and all land mass and waters within this 

drainage area was included in the polygon (Land Information Ontario, 2010). The boundary of 

the Upper Medway Creek subwatershed was digitized manually based on both of the Medway 

Creek boundary data and the Upper Medway base map (see Appendix A) provided by the 

UTRCA. The boundary data for agricultural fields was created by manually digitizing according 

to the world imagery base map with a spatial resolution of 1m (Esri, 2018) embedded in the 
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ArcMap. The digitization was performed at scales ranging from 1:3,000 to 1:1,000. Satellite 

images and street views in Google Maps were taken as the reference data for digitizing. The field 

borders were identified by the non-crop strip or the strip of shrubby. Furthermore, the field 

borders were also determined where the adjacent area are coloured differently. Drainage systems 

and watercourse running through the middle of fields were all excluded from the field parcel. As 

the boundary of the Upper Medway subwatershed was determined by the drainage area, it goes 

through the middle of some agricultural fields, which makes parts of these fields sit outside of 

the subwatershed. However, as parts of the fields are still within the Upper Medway 

subwatershed boundary, instead of only taking areas within the boundary, the whole fields were 

digitized. Finally, 176 polygons were obtained.  

3.3.1.2 Land-cover Data 

The Annual Crop Inventory data from 2011 to 2015 obtained from the Agriculture and Agri-

Food Canada (AAFC) were used as land-cover data in this study. It is a set of raster data that 

shows the distribution of different crop types in Canada at a spatial resolution of 30m. Different 

crop types were classified using a Decision Tree based method based on the combination of 

multi-temporal optical data (e.g. Landsat images, RADARSAT-2 data, and AWiFS imagery), 

annual crop insurance data and ground-truth information (Agriculture and Agri-food Canada, 

2016 a). Finally, 66 categories of land-cover types in total were classified with an overall 

accuracy of at least 85% (Agriculture and Agri-food Canada, 2016 a). For the Ontario region, the 

overall target accuracy of all crop classes is higher than 82% except for images in 2012 which 

have a target accuracy of 76% (Agriculture and Agri-food Canada, 2016 a). Depending on the 

availability of spectral data and training sites, some classes such as Cereal class were further 

divided to sets of sub-categories. 

3.3.2 Identifying Prominent Land-cover Change Patterns 

The Annual Crop Inventory data from 2011 to 2015 obtained from the AAFC was used here to 

identify the prominent crop rotations within the Upper Medway Creek subwatershed. To begin 

with, raster-based land-cover dataset was first summarized by agricultural field boundary 

spatially. The land-cover type of each agricultural field was determined by the pixel that occurs 

most often in the same parcel. As a result, eight land-cover types, including Beans, Wheat, 
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Cereal, Corn, Mixedwood, Pasture and Forage, Soybean, and Barley, were obtained. Because 

Wheat is one of the subcategories of Cereal (Agriculture and Agri-food Canada, 2016 a), it was 

reclassified to the class of Cereal. Furthermore, according to UTRCA (n.d. c), major cereal 

grown in the Upper Medway Creek subwatershed is winter wheat and most of the pasture and 

forage area are planted with hay. Therefore, Cereal and Pasture and Forages classes were 

renamed to Winter Wheat and Hay, respectively. The existence of Mixed Wood class may be 

because of the misclassification in the original crop inventory data.  

A trajectory computing method, which represents the land-cover change pattern of the examined 

time series using a set of trajectory codes, developed by Wang et al. (2012) was conducted to 

represent the land-cover change from 2011 to 2015 in the Upper Medway Creek subwatershed 

on a parcel-based level. To address the trajectory computing analysis, land-cover codes ranging 

from 1 to 7 were assigned to each land-cover class (refer to Table 3-2). In such a way, a code 

could be identified for each parcel to represent the land-cover type it has at particular time node. 

Next, Equation 3.1 (Wang et al., 2012) was used to combine the five land-cover maps and 

calculate the trajectory code for each parcel. 

𝑇" = (𝐺1)"	×	10,-. + (𝐺2)"	×	10,-1 …	+	 𝐺𝑛 "	×	10,-,                            Equation 3.1 

where, 𝑇" is the trajectory code for parcel i, n is the number of time nodes (5 in this case), and 

𝐺𝑛 " is the land-cover code of the given parcel at time node n (Wang et al., 2012). The 

calculation takes all of the five years into consideration simultaneously.  

As a result, the land-cover change code consists of five digits, which describes the pattern of 

land-cover change on a field parcel for five years. From left side to right side, every digit 

indicates the land-cover for a giver year on the given parcel from 2011 to 2015, respectively. If 

all the digits in the code are the same number (e.g. 11111 and 55555), it suggests that there was 

no land-cover change that occurred on the parcel over the examined five years. Moreover, the 

crop rotation implemented on a specific field was also indicated by a trajectory code presenting a 

certain pattern (e.g. 23232 and 36236). Trajectory codes without any pattern would also exist. 

Finally, the prominent land-cover changes happened in the Upper Medway Creek subwatershed 

were determined based on the number of each land-cover change pattern that occurred in the 

study area. However, one land use change pattern could be indicated by different codes. For 
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instance, both code 36363 and 63636 indicate a two-year crop rotation of corn and soybeans; 

similarly, code 23623, 36236 and 62362 indicate a three-year rotation from winter wheat to corn 

and to soybean. Thus, the numbers of trajectory codes which represent the same change pattern 

will be summed up when counting the occurrence of each land-cover change pattern. The 

identified prominent land-cover change patterns will become the choices for farmers to decide 

the crop rotation adopted on each agricultural field in the developed ABM. 

3.4 Determining Possible BMPs  

3.4.1 Data 

3.4.1.1 Hydrology and Soil Data 

The hydrology data used in this study, including enhanced watercourse and integrated water 

body data, were derived from the Ontario integrated hydrology data produced by the Ministry of 

Natural Resources and Forestry. The enhanced watercourse dataset comprises all connected 

watercourse features in the Ontario hydrologic network. Similarly, the integrated waterbody 

dataset includes all of the on-network water bodies in the Ontario. The digital elevation model 

(DEM) data was obtained from the Ministry of Natural Resources and Forestry, Southwestern 

Ontario Orthophotography Project (SWOOP) 2015 Digital Elevation Model. It is a set of raster 

graphics with a spatial resolution of 2m that represents the elevation of earth’s surface. The 

SWOOP 2015 DEM has been processed using a “steam rolling” algorithm to reduce the impacts 

of raised surface features and make it closer to “bare-earth” elevations (Ministry of Natural 

Resources and Forestry, 2016). The drainage system was manually digitized according to the 

Upper Medway Creek base map provided by the UTRCA (shown in Appendix A). The soil type 

data was obtained from the Soil Survey Complex dataset provided by the Agriculture Food and 

Rural Affairs. The Soil Survey Complex data was collected by a number of soil surveyors 

between 1929 and 2002. It consists of a set of soil polygons, each of which indicates one to three 

soil components. 

3.4.1.2 BMP Installation Data 

The criteria and requirements for installing each BMP were acquired from government 

publications. To effectively control the erosion and reduce the nutrient losses, the slope of the 
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grassed waterway has to be steep enough to minimize the deposition of sediments, but cannot be 

too steep to mitigate the soil erosion (Alberta Agriculture and Forestry, 2007; USDA, 2007). 

According to USDA (2007), it is recommended to have a grassed waterway with a slope that is 

higher than 1%, as the contributing area may suffer the out-of-bank flow if the slope of grassed 

waterways is lower than 1%. Therefore, a minimum slope of 1% is required for the grassed 

waterway. While with the help of a permanent erosion mat, a grassed waterway is able to have a 

slope of up to 15% (Alberta Agriculture and Forestry, 2007). Thus, to effectively reduce soil 

erosion, the grassed waterway has to be designed with a slope lower than 15%. For the riparian 

buffer strip, the effectiveness would be largely reduced when the slope is steeper than certain 

level. According to NRCS (2010 a), the maximum slope for a riparian buffer strip varies between 

10% and 30% depending on the topology and climate. While Hawes and Smith (2005) have 

recommended that the slope of the riparian buffer strip has to be smaller than 15% in general, 

which is also the average of the steep slope suggested by NRCS (2010 a). Therefore, field slopes 

that are lower 15% has been set as one of the installation requirements of the riparian buffer 

strips in this study. Moreover, the riparian buffer strip shows little effectiveness when it is 

installed on soil that composed mostly of sand (Hawes and Smith, 2005). The implementation of 

WASCoB is recommended for fields that cover an area of more than two acres (NRCS, 2010 b), 

yet not exceed fifty acres (Maitland Conservation, 2017). In general, the slope of a field cannot 

exceed 14% to implement the WASCoB. When the slope is lower than 8%, a broad berm should 

be adopted; while when the slope is between 8% and 14%, a narrow berm may be established 

(Maitland Conservation, 2017). In the light of Brandle (n.d.), the length of the windbreak has to 

be at least ten times the tree height. As one of the most commonly used tree species for the 

windbreak in the Upper Thames River watershed (Roberts, 2017), the white cedar has the 

average height of 15m (Government of Ontario, 2018). Hence, the minimum length of the 

windbreak is 150m in this study. The summarization of these requirements and their sources are 

shown in Table 3-1. 
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Table 3-1 Data source of crop products related data 

BMP Requirements Sources 

Grassed 
Waterway 

• Area > 35 acres 
• 1% < Slope < 15% 
• Upon drainage ways 

UTRCA (n.d. b) 
USDA (2007) 

Alberta Agriculture and Forestry (2007) 

Riparian 
Buffer Strip 

• Slope < 15% 
• Not on soil composed 

mostly of sand 
• Adjacent to water body and 

drainage ways 

Hawes and Smith (2005) 
NRCS (2010 a) 

WASCoB • 2 acres < Area < 50 acres 
• Slope < 14% 

NRCS (2010 b) 
Maitland Conservation (2017) 

Windbreak • Installation length < 150m 
Brandle (n.d.) 

Government of Ontario (2018) 
Roberts (2017) 

 

3.4.2 Determining Suitable BMPs on Each Agricultural Field 

The availability of BMPs on each agricultural field were determined according to the area, slope, 

soil type, land-cover type, drainage systems, water accessibility, and the edge length of each field. 

A heuristic decision tree was applied to determine whether a field is suitable for particular BMP. 

In the lights of government documentation files, criteria and requirements for installing an 

effective BMP were summarized as a set of rules (refer to Table 3-1).  

Average slope of each field polygon was calculated in degrees using the DEM data. Because the 

geometry of soil type data and field boundary data are different, a field polygon may include 

more than one types of soil. Four types of soil, including sandy loam, loam, silt loam, and silt 

clay loam, were identified within the Upper Medway Creek subwatershed. According to the soil 

texture triangle created by USDA (n.d.), sandy soil is the only one that is predominantly sand. 

Moreover, riparian buffer strips would be less effective if it is installed on soil that composed 

mostly of sand (Hawes and Smith, 2005). Therefore, fields that contain sandy soil were 

considered as not suitable for installing the riparian buffer strip. To identify the fields that are 

adjacent to drainage system and water body, a 10m buffer was established for all drainage 
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system and water body. Fields that intersect with buffered area were identified as adjacent to 

drainage system and water body. According to Klock et al. (2002), the prevailing winds in 

Ontario come from the southwest in the summer while northwest in the winter. Moreover, as 

noted by the Arbor Day Foundation (n.d.), windbreaks should be installed on the northern side of 

the field.  Additionally, an L-shaped windbreak is recommended to increase the protected area 

(Brandle, n.d.). For all these reasons, the windbreak should be installed at northern and western 

sides of the field to protect the field from the wind. Because most of the fields are rectangular 

shaped parcels, we assume that the length of windbreaks equals to the length of northern and 

western sides of the field to be installed, half of the entire edge length. If half of a parcel’s edge 

length is less than 150m, this field is determined to be not suitable for installing a windbreak. 

The availability of each BMP was determined by the VBA function in the Field Calculator in 

ArcGIS using “IF...THEN...ELSE” statements. The agricultural fields that are suitable for 

particular BMP were assigned a value of 1, others were assigned a value of 0. The obtained 

availability of certain BMP on each field will be used as input data in the developed ABM. 

3.5 Modelling BMP application Decision-makings Process 

3.5.1 Data 

To estimate annual profits a farmer can obtain after adopting each BMP, farmers’ average off-

farm income, average annual crop yields and market price, as well as the costs of different crops 

and BMPs were collected from previous literatures and government documentations. 

3.5.1.1 Farmer Income Data 

The Ontario minimum hourly off-farm wages and the proportion of operators’ average weekly 

hours of off-farm work were collected. The minimum hourly off-farm wages from 2015 to 2019 

(refer to Table B-2 in Appendix B) was obtained from the Government of Canada (n.d.). An 

increasing trend with an average growth rate of 0.07 was calculated with the minimum hourly 

off-farm wages from 2015 to 2019 as shown in Table B-1 in Appendix B. The proportion of 

operators’ average weekly hours of off-farm work in 2010 (as shown in Appendix Table B-1) 

were obtained from the Snapshot of Canadian Agriculture reported by Statistical Canada (2012).   
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3.5.1.2 Crop Products Related Data 

The input costs, market prices and yields for soybeans, hay, winter wheat, and corn were 

collected to estimate the costs and gross income of planting certain crops. The input costs of each 

crop (in dollars per acre) were obtained from the 2017 FIELD CROP BUDGETS reported by the 

Ontario Ministry of Agricultural, Food and rural Affairs [OMAFRA] (2016). It estimated the 

expenses, including seeding, herbicide, machinery, labour and other relevant costs for the 

selected field crops in 2017 based on field surveys and other government documentations. The 

input costs for different field crops are summarized in Table D-1 in Appendix D. The market 

prices from 2008 to 2015 (see Table D-3 in Appendix D) were obtained from OMAFRA which 

summarized the historical provincial estimates of the harvested area, production, yield, and 

market price by crop from 1981 to 2016 (OMAFRA, 2018 a). The yield data from 2012 to 2017 

(see Table D-2 in Appendix D) was obtained from OMAFRA (2018 b). The unit, source, and 

timespan of all data are summarized in Table 3-2.  

Table 3-2 Data source of crop Products related data 

Data Unit Timespan Source 

Annual Input Price $/Acre 2017 OMAFRA (2016) 

Annual Average Yields tonnes/Acre 2012 - 2017 OMAFRA (2018 a) 

Annual Market Price $/tonne 2008 - 2015 OMAFRA (2018 b) 
 

3.5.1.3 BMP Related Data  

Data on the annual costs of implementing each BMP including labour, machinery, operation and 

installation expense, were derived from previous literature as a set of ranges (refer to Appendix 

D, Table D-1). The costs data was recorded in dollars per acre of field. Similarly, the 

environmental effectiveness of each BMP including sediment removal, P loss reduction, and 

soil/wind erosion control were also summarized from previous literature as a set of ranges due to 

their variability regarding the soil and climate characteristics (e.g. soil type, slope, precipitation, 

and temperature). The effectiveness of sediment removal was expressed in percentage of 
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decrease, which is calculated from the amount of sediments in tons that have been reduced per 

acre of field. The P loss reduction efficiency was also expressed in percentage, which is derived 

from the amount of P in pounds that have been reduced per acre. While the effectiveness of soil 

erosion control was the proportion of decreased soil losses expressed in percentage. The data 

sources of collected BMP costs and environmental effectiveness data are summarized in Table 3-

3. As the summarized costs of the grassed waterway and the riparian buffer strip do not fit the 

condition of the upper Medway Creek subwatershed, their annual costs of implementation in the 

study area were calculated according to the data obtained from Kansas (1989) and Tourte et al.'s 

(2003) research. The annual costs of adopting the riparian buffer strip were computed using the 

costs data summarized by Mtibaa et al. (2018) and the buffer width data presented by UTRCA 

(n.d. a). The details of the calculation were elaborated in Section 3.5.2.1. As can be seen, most of 

the data are obtained from Kansas’s study (1989) which summarizes the cost-effectiveness of 

some of the most commonly used BMPs in reducing P losses from previous literatures. Though 

this literature is very old, several reasons can be given for using it. First, Kansas’s study area is 

the great lakes basin in the United States, the climate and topographic of which are very close to 

Ontario. Second, this study was backed by the US Environmental Protection Agency, an 

independent agency for the United States federal government, which adds the credibility to the 

data provided by this study. Third, because data about the costs and the environmental 

effectiveness of BMPs are very limited, reference data that fits my study most.  

Table 3-3 Data source of BMP costs and environmental effectiveness data 

Data Source (Costs) Source (Env. Effectiveness) 

Conventional Tillage OMAFRA (2016) NA 
Reduced Tillage Kansas (1989) Kansas (1989) 

No-till Kansas (1989) Kansas (1989) 

Grassed Waterways Kansas (1989) 
Tourte et al. (2003) Kansas (1989) 

Riparian Buffer 
Strips 

Mtibaa et al. (2018) 
UTRCA (n.d. a) Hawes and Smith (2005) 

WASCoB Kansas (1989)  
UTRCA (n.d. a) Kansas (1989) 

Windbreak 
Roberts (2017) 
Kansas (1989) 

Howmuch (n.d.). 

López et al. (2017) 
Dafa-Alla and Al-Amin (2011) 
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3.5.2 Agent Based Model Development 

In order to simulate the farmers’ decision-making related to the adoption and use of BMP 

applications, an agent-based model (ABM) was developed on a parcel-based manner. The ABM 

was built using the Java-based modelling system embedded in the Repast Simphony 2.5. The 

model was built on the Aporia framework developed by Murray-Rust et al. (2014). The idea that 

agents will calculate a score for each influential factor embedded in the Aporia (Murray-Rust et 

al., 2014) was inherited by this study. The linear weighted sum multi-criteria utility function 

suggested in the Aporia (Murray-Rust et al., 2014) was used in this study to modelling farmers’ 

decision-making processes. Similar to Murray-Rust et al.’s study (2014), drivers of decision-

making were grouped into economic, environmental, and social factors each of which has 

assigned a multi-criteria preference.  

In the ABM developed in this study, farmers in the Upper Medway Creek subwatershed are 

taken as agents, while the environment is represented as a set of manually digitized agricultural 

field parcels. The choice of BMP applications was determined based on the Expected Utility 

Theory (Groeneveld et al., 2017) assuming that land manager will choose the BMP scenario with 

the highest utility. The utility is calculated using a weighted sum function suggested by Murray-

Rust et al. (2014) (Equation 3.2) which is defined by evaluating the influence of economic (e.g. 

income, cost, and subsidies), social (e.g. neighbours’ behaviour and knowledge level) and 

environmental (e.g. sediment, nutrients, and soil erosion reduction efficiency) factors that 

influence farmer BMP decision-making (Murray-Rust et al., 2014). 

𝑈BCD = 	𝑤789 ∗ 	𝑆789 +	𝑤7,H ∗ 	𝑆7,H +	𝑤I98 ∗ 	𝑆I98            Equation 3.2 

where, 𝑈BCD is the utility score for the specified BMP, 𝑤789, 𝑤7,H, and 𝑤I98 are the preference 

weights assigned to economic (𝑆789), environmental (𝑆7,H), and social (𝑆I98) criteria, 

respectively (Murray-Rust et al., 2014). The economic, environmental, and social score will be 

normalized before feeding it into the utility function (Equation 3.2).  

In the model, each farmer has unique information about their knowledge level towards each 

BMP, whether they have an off-farm employment, the weekly off-farm working hours, and their 

preference weights on the economic, environmental, and social criteria. Each parcel contains 
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unique information about land-cover type, land manager, land-cover change scenario, a list of 

suitable BMP scenarios on this parcel, the currently implemented BMP scenario, and a list of 

their neighbours. Land-cover type suggests the crop that is currently growing on the field such as 

“Wheat”, “Hay” or “Soybeans”. Land manager is the farmer that manages this parcel. They are 

responsible for choosing a BMP scenario that will be conducted to an parcel. Land-cover change 

scenario indicates the crop rotation that is being followed by a specific parcel. The BMP 

scenarios refers to the application of a single BMP, as well as those of combinations of multiple 

BMPs summarized from local government publications and field surveys. A total of eleven BMP 

scenarios, including the conventional tillage (SCT), the reduced tillage (SRT), the no-till system 

(SNT), the grassed waterway (SGW), the riparian buffer strip (SBS), the WASCoB (SWA), the 

windbreak (SWI), the combination of the reduced tillage and the riparian buffer strip (SRB), the 

combination of the no-till system and the riparian buffer strip (SNB), the combination of the 

reduced tillage, the riparian buffer strip, and the windbreak (SRBW), as well as the combination of 

the no-till system, the riparian buffer strip, and the windbreak (SNBW) have been examined in this 

study. Each of the BMP scenarios has a lifespan which indicates the minimum required time 

period of implementation with proper maintenance. The list of suitable BMPs on a parcel 

indicate a set of available multi-year BMP scenarios determined based on the soil type, area, 

slope, land-cover type, the accessibility to drainage system and water body, as well as the edge 

length of each parcel (refer to Section 3.4.2 for details). 

The decision-making was simulated following a year-incremented loop. Stochastic process was 

also incorporated in the model where both random factors and systematic factors were included. 

The details of these stochastic processes are discussed in the following section. Meanwhile, the 

developed ABM does not consider any adaptation process among the decision makers. Farmers 

are always aiming to maximize their utility, and their preferences towards the three factors would 

never change during the simulation. Figure 3-2 shows the overall workflow of the developed 

ABM. 
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 Figure 3-2 Overall workflow of the developed ABM  
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3.5.2.1 Economic Submodel 

The economic score (Murray-Rust et al., 2014), which estimates the average annual profits, was 

obtained based on the costs of crop seeding, pesticides expenses, planting and harvesting 

expenses, BMP installation and maintenance costs, labour expenses, gross income of crop 

products, off-farm income, as well as government subsidies or cost-share program. The 

economic score can be obtained through Equation 3.3:  

𝑆789 = 	
𝐼𝑐𝑟𝑜𝑝𝑌

𝑖=1 	+	𝐼𝑜𝑓𝑓−𝑓𝑎𝑟𝑚	×	𝑌−	𝑇𝐶𝐵𝑀𝑃−	 𝐶𝑖𝑛𝑝𝑢𝑡𝑌
𝑖=1 	+	𝑆

𝑌 	                  Equation 3.3 

where, 𝑆789 is the economic score of specified BMP, 𝐼8<9Z and 𝐼9[[-[\<] are the gross income of 

crop products in year i and the annual gross off-farm income, respectively, Y is the lifespan of 

the simulated BMP scenario, 𝑇𝐶BCD stands for the total cost of implementing a BMP; 𝐶",Z^_ 

refers to the total input costs for planting the selected crop in year i; and S is the subsidies 

provided by government, it is calculated as Equation 3.4 shows. Notably, the income and the 

input costs of crop products were estimated following the crop rotation conducted on the 

corresponding field. 

𝑆 = 𝑇𝐶BCD ∗ 𝑆<\_7																						 							 	 	 	 	 		Equation	3.4	

where S is the total amount of subsidies offered by government, 𝑇𝐶BCD stands for the total cost 

of implementing a BMP, 𝑆<\_7	is	the	subsidy	rate	which	indicates	the	proportion	of	

implementation	costs	of	a	BMP	that	is	subsidized. The input costs of growing a crop estimated 

by OMAFRA (2016), including the expenses of seeding, fertilizing, planting, harvesting and 

other machinery costs which are fixed value estimated from agricultural engineering formulas 

and Ontario average custom rates by OMAFRA (2016), were used to estimate the costs of 

growing certain crop (refer to Appendix C for Table C-1). Because there is no archive data 

indicating the trends or changing rate of the crop input price, an assumption is made that the crop 

input price keeps the same during the simulation. It was computed using Equation 3.5:  

𝐶8<9Z = 	𝑃",Z^_×	𝐴"                                                                    Equation 3.5 

where, 𝐶8<9Z is the total input price for the selected crop, 𝑃",Z^_ refers to the unit input costs (in 

dollar/acre) of a certain crop, and 𝐴" stands for the field area for field i.  
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The gross income of crop products was calculated using yields and crop market price data. 

According to the annual average yields data from 2012 to 2017 (refer to Table C-2 in Appendix 

C), a normal distribution that models the yields was created for each of the crop type based on 

the standard deviation and the mean of yields in the six years. Similarly, a normal distribution 

was also created for each field crop to model its market price from 2008 to 2015 (refer to Table 

C-3 in Appendix C). During the simulation, the yields and market price of the specific crop will 

be drawn randomly from the defined normal distribution. The seeded and harvested areas are 

assumed to be consistent with the area of a field parcel. Therefore, the gross income of crop 

products can be calculated by using Equation 3.6: 

𝐼8<9Z = 	𝑌"	×	 1 + 𝑅BCD 	×	𝐴"	×	𝑀𝐾"	                                                                       Equation 3.6 

where, 𝐼8<9Z is the gross income of crop products; Y, A and MK refers to the annual yields, 

harvested area and market prices of crop i, respectively; and 𝑅BCD is the percentage of 

increase/decrease of crop yields caused by BMP. 

According to the total number of operators in Canada and the proportion of operators’ average 

weekly hours of off-farm work (refer to Appendix B, Table B-1) reported in the Snapshot of 

Canadian Agriculture (Statistical Canada, 2012), the range of overall average hours of off-farm 

work per week can be computed. The result shows that a farmer spends about 27 to 38 hours per 

week on his (or her) off-farm employment on average. Because data about off-farm wage is 

scarce, the minimum wage for off-farm work was used. Accordingly, the off-farm income is 

computed by Equation 3.7: 

𝐼9[[-[\<] = 	𝑊× 1 + 𝑟 ×	~
�
	×	𝐷                Equation 3.7 

where, 𝐼9[[-[\<] is the annual off-farm income, W is the minimum wage (in dollars per hour) of 

farmer i’s off-farm employment which is fourteen dollars per hour with an interest rate r of 0.07, 

T is the hours per week of off-farm work, and D is the total number of days in a year which is 

365. Notably, r was obtained by calculating the average yearly increasing rate of the minimum 

general wage provided by the Government of Ontario (n.d.) from 2015 to 2019. 

The calculation of BMP costs varies with different BMPs. Data of the costs of implementing 

BMPs were summarized as a set of ranges (refer to Table E-1 in Appendix E) because the costs 
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of the BMPs are site-specific. The expense of implementing particular BMP is estimated through 

randomly selecting a value within its cost range specified in Table E-1. The values within the 

specified range are uniformly distributed, and thus each value has an equal possibility to be 

picked.  

(1) Tillage. The annual expenses of implementing conventional tillage were summarized from 

the 2017 FIELD CROP BUDGETS report (OMAFRA, 2016) which suggests that the cost ranges 

from $50/acre to $83/acre. Therefore, the initial expense of the conventional tillage for every 

parcel was randomly selected from the cost range (refer to Table E-1 in Appendix E) at the 

beginning of the simulation. When a reduced tillage practice was used, its expenses were 

computed based on the costs of conventional tillage. As the costs of reduced tillage and no-till 

system decrease from conventional tillage by about 3% and 7%, respectively (Kansas, 1989), the 

expenses of using reduced tillage system were computed through multiplying the costs of 

conventional tillage by 97%, while the expenses of applying no-till system were calculated by 

multiplying the conventional tillage expenses by 93%. 

 (2) Grassed waterways. As Kansas (1989) noted, one acre of grassed waterway is able to serve 

about 75 acres of cropland on average. Thus, to convert the costs for grassed waterways into 

dollars per acre of cropland, Equation 3.8 is used: 

𝑈𝑝𝑝𝑒𝑟	𝐵𝑜𝑢𝑛𝑑:	𝐶^ZB = 	
���
�����

	×	 .
��

𝐿𝑜𝑤𝑒𝑟	𝐵𝑜𝑢𝑛𝑑:	𝐶�9�B = 	
����
�����

	×	 .
��

                                                                 Equation 3.8 

where, 𝐶^ZB and 𝐶�9�B refer to the upper and lower bound of the costs for grassed waterways per 

acre of cropland, 𝐶^Z and 𝐶�9� are the estimated maximum and minimum costs, 𝐴^,"_ stands for 

the area unit used by Tourte et al. (2003). The results of implementing Equation 3.6 indicate that 

the minimum and maximum costs of grassed waterways are $1.57 and $44.46 per acre of 

croplands, respectively. Furthermore, grassed waterways may increase or decrease crop yields by 

+/- 10% (Kansas, 1989). Hence, a percentage value from -10% to 10% was randomly drawn and 

added to or deduced from the generated yields, so that the impacts of changed yields on 

economic returns could be considered. 
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(3) Riparian buffer strips. According to UTRCA (n.d. a), the width of the buffer strips 

established for sediment removal should be between 10m and 30m. However, there is no data 

indicating the costs for a 30-m buffer strip. Therefore, the annual costs of the 5-m and 20-m 

buffer strips, which are $3.16/acre and $12.65/acre, respectively, reported by Mtibaa et al. (2018) 

will be used to estimate the costs of the 10-m and 30-m buffer strips. First, the unit change in 

price is calculated to indicate the costs for increasing 1m of buffer width. Then, the costs for a 

10-m and 30-m buffer strip can be estimated using Equation 3.9: 

𝐶.�] = 	𝐶�] + ����-	���
.�

	×(10 − 5)

𝐶��] = 	𝐶�] + ����-	���
.�

	×(30 − 5)
                                                       Equation 3.9 

where, C5m, C10m, C20m and C30m are the costs for the 5-m, 10-m, 20-m and 30-m buffer strips, 

respectively. As a result, the costs for a 10-m buffer strip is $6.32/acre, and the expenses for a 

30-m buffer strip is $18.98/acre. Accordingly, the costs of buffer strips for sediment removal 

range from $6.32/acre to $18.98/acre annually.  

(4) WASCoB. The annual costs of WASCoBs are summarized by Kansas (1989), which range 

from $26.3/acre to $78.8/acre of croplands. Therefore, the annual cost per acre of implementing 

the WASCoB would be drawn randomly from $26.3/acre to $78.8/acre. 

(5) Windbreaks. The planting and maintenance expenses of windbreaks are estimated separately. 

First, to be eligible to apply for the cost-share program, minimum 500 trees need to be planted 

for the windbreak (Roberts, 2017). Therefore, expenses for planting 500 trees will be used to 

evaluate the minimum economic criteria for windbreak. The planting costs of coniferous tree 

were used in this study as they are the most common tree species used for windbreaks in the 

Upper Medway Creek subwatershed. Planting windbreaks without plastic matting costs least 

while planting into plastic matting costs most. Accordingly, the costs of planting a 1km 

windbreak with 500 trees range from $961 to $2819.25. The average labour expense for planting 

windbreaks is 106 dollars per tree (Howmuch, n.d.). The cost-share rate is 75% for the Upper 

Medway Creek region (Roberts, 2017), which means 75% of the installation costs could be 

covered by the government. The maximum windbreak length is half of the entire edge length of a 

parcel as previously mentioned. As for the maintenance costs of windbreaks, an assumption was 

made that the maintenance expenses of a windbreak were in the same proportion as the 
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maintenance costs of implementing the grassed waterways, which is 5% of the installation 

investment (Kansas, 1989). This is because both of them required the use of pesticide, fertilizers, 

and weed-control efforts (UTRCA, n.d. a; Stange and Brandle, n.d.).  The expenses for installing 

windbreaks are computed as Equation 3.10 shows:  

𝐶",I_\�� = 	 (𝐶Z�\,_	×	𝑙	 + 	𝑁𝑜._<77	×	𝑙	×𝐶�\�)	×	(1 − 	75%)            Equation 3.10 

where, 𝐶Z�\,_ is the 1km windbreak planting cost drawn randomly from the provided range, l is 

the length of the windbreak, 𝑁𝑜._<77 is the number of trees per kilometre which is 500 in this 

case, and 𝐶�\� refers to the average labour cost for planting one tree. 

The total costs of implementing the grassed waterways, buffer strips, WASCoB and tillage 

system are calculated using Equation 3.11: 

𝑇𝐶BCD = 	𝐴#×	𝑌	×	𝐶BCD                                Equation 3.11 

where, 𝑇𝐶BCD is the total costs of implementing certain BMP, 𝐴# refers to the area of the field 

where BMP is applied, Y is the lifespan of a BMP, 𝐶BCD stands for the annual cost per acre of a 

BMP. The total cost of windbreak is computed as Equation 3.12 shows:  

𝑀�B = 	𝐶",I_\��	×	𝑌	×0.05	                        Equation 3.12 

where, 𝑇𝐶�B is the maintenance cost of implementing windbreaks, Y refers to the number of 

years a windbreak can be applied, 𝐶",I_\�� is the installation expenses of the windbreak. 

Meanwhile, the increased yields by windbreaks will be drawn randomly from 8% to 25% and 

used for calculating the gross income of crop products. 

3.5.2.2 Environmental Submodel 

The efficiencies of sediment removal, P loss reduction and soil/wind erosion control were 

considered as three environmental indicators in the environmental submodel. Sediment removal 

means capturing runoff water to trap and settle sediment in the water (Credit Valley 

Conservation, n.d.). While erosion control refers to the activities that can stabilize the soil and 

prevent soil from detaching from the surface and being transported elsewhere (OMAFRA, 2015). 

The sediment removal, P loss reduction, and soil/wind erosion control efficiencies for each BMP 
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were selected randomly from their corresponding ranges (refer to Table E-2 in Appendix E). The 

default value for each indicator is zero when the data values are not available (shown as NA in 

table 6). In order to get an environmental score for each BMP, a weighted sum function, which is 

similar to the one suggested by Murray-Rust et al. (2014), was used to combine the three 

environmental indicators. To weight the three indicators, they were first ranked in ascending 

order depending on their importance (Flitter et al., 2013). Since this study puts more attention on 

the effects of BMPs on mitigating p loading in the freshwater, the efficiency of P loss reduction 

was given rank 1. Moreover, rank 1 was also assigned to soil/wind erosion control efficiency as 

it was identified as an essential concern by all survey participants. The efficiency of sediment 

removal was given a rank of 2. Then a rank sum method was used to calculate the relative 

importance for each environmental indicator as Equation 3.13 shows: 

𝐼 = 𝑛 − 𝑟 + 1              Equation 3.13 

where, I is the relative importance for each of the sediment removal, P loss reduction and 

soil/wind erosion control indicators , n is the total number of indicator which is three in this case, 

and r refers to the rank of an environmental indicator. The weights assigned to each of the 

environmental indicators are calculated by normalizing the obtained relative importance 

(Equation 3.14) (Flitter et al., 2013).  

𝑤7,H-",�" 	= 	
𝐼𝑒𝑛𝑣−𝑖𝑛𝑑𝑖

𝐼𝑠𝑒𝑑𝑖+	𝐼𝑃𝑙𝑜𝑠𝑠	+	𝐼𝑒𝑟𝑜
                                 Equation 3.14 

where, 𝑤7,H-",�" is the weights assigned to an environmental indicator, 𝐼7,H-",�" is the relative 

importance of the that environmental indicator, 𝐼I7�", 𝐼D�9II, and 𝐼7<9 are the relative importance 

for the the sediment removal, P loss reduction and soil/wind erosion control indicators, 

respectively. 

Eventually, the weights for sediment removal, P loss reduction and soil/wind erosion control 

effectiveness are 0.375, 0.25 and 0.375, respectively. Accordingly, the environmental score was 

calculated by Equation 3.15: 

𝑆7,H = 	𝑤Z ∗ 	 𝐼Z +	𝑤I7� ∗ 	 𝐼I7� +	𝑤7<9 ∗ 𝐼7<9                              Equation 3.15 
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where, 𝑆7,H is the environmental score, 𝑤I7�, 𝑤Z, and 𝑤7<9 are the weights for sediment removal, 

P loss reduction, and soil/wind erosion control efficiencies, respectively, 𝐼I7�, 𝐼Z and 𝐼7<9 are the 

total efficiencies of sediment removal, P loss reduction, and soil/wind erosion control of the 

examined BMP scenario.  

3.5.2.3 Social Submodel 

Two aspects were included in the social submodel, which are farmers’ knowledge level 

regarding different BMPs and the impacts of their neighbours on their BMP decision-making. 

The knowledge level indicates the degree of how familiar a farmer is with certain BMPs. It 

considers the farmer’s personal experience and the information a farmer obtains from various 

social media. From Very Unfamiliar to Very Familiar, the knowledge level score ranges from 

one to ten. The knowledge level for each of the BMP scenario is the average value of the 

knowledge level of all BMPs it contains. The value of neighbours’ behaviours indicates the 

number of a parcel’s neighbours which are applying each BMP Scenario. For each parcel, its 

neighbour is defined by parcels within a 30m buffer which is the maximum distance measured 

between two parcels in the Upper Medway Creek region. Therefore, the social score was 

calculated using Equation 3.16:  

𝑆I98 = 𝐾𝐿 + 𝑁𝐵                      Equation 3.16 

where, 𝑆I98 refers to the social score of each BMP, KL represents the knowledge level of a 

farmer, and NB stands for the value of Neighbourhoods’ behaviour. Neighbourhood parcels 

belonging to the same farmers were not counted.  

To ensure that any of the economic, environmental, and social score value would not greatly 

overpower the other factors, a normalization process has been conducted for each of factors 

respectively. Taking the economic factor as an example, the normalization process (refers to 

Equation 3.17) was carried out after the economic scores for all of the possible BMP scenarios 

that can be adopted on a parcel were calculated.  

𝑁789," = 	
𝑆𝑒𝑐𝑜,𝑖
𝑆𝑒𝑐𝑜,𝑖𝑛

𝑖=1
                 Equation 3.17 
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where, N¤¥¦ is the normalized economic score for the ith BMP scenario in the list of suitable 

BMP scenarios for a parcel; S¤¥¦,¨ refers to the original economic score for the ith BMP scenario 

in the list; n is the total number of BMP scenarios in the list.  

3.5.2.4 Model Initialization 

Before running the model, each agent and parcel was initialized. First, a farmer’s knowledge 

level regarding each BMP was initialized by randomly assigning a score between one (Very 

Unfamiliar) and ten (Very Familiar). While as a widely used tillage system, the knowledge level 

of conventional tillage is always ten. Preference weights toward economic, environmental, and 

social criteria (Murray-Rust et al., 2014) were also initialized for each agent to indicate farms’ 

preference on each factor. Although data related to farmers’ preferences assigned to each of the 

economic, environmental, and social factors have been collected in a field survey, assuming that 

all of the forty agents in the Upper Medway Creek region have the same preferences with the 

five responses would be very unrealistic. Moreover, as there is no data to explain how farmers 

balance their preferences among the three factors, agent’s preference weights were randomly 

picked from a uniform distribution. To ensure that the preference weights assigned to an agent 

should always sum to one, randomly selected preference weights for an agent were normalized 

using the Equation 3.18. 

𝑤[ 	= 	
𝐼𝑓

𝐼𝑒𝑐𝑜+	𝐼𝑒𝑛𝑣	+	𝐼𝑠𝑜𝑐
                                                         Equation 3.18 

where, 𝑤[ is the normalized preference weight to a factor (i.e. one of the economic, 

environmental, and social factor); 𝐼[ is the preference weight for the same factor, which is 

randomly selected before normalization; 𝐼789, 𝐼7,H, and	𝐼I98, are the randomly picked preference 

weights for economic, environmental, and social factors, respectively.  

According to Ikerd (2001), the farm management system is experiencing a transition from 

conventional farm economics to a sustainable farm economics. Instead of always focusing on the 

profit maximization, farmers also dedicate resources to balancing their economic, ecological and 

social objectives (Ikerd, 2001). Therefore, the preference weight assigned to the economic factor 

is always the highest (greater or equal to preference weights of other factors). Then, 46.8%, 

which is identical with the proportion of farm operators with off-farm employment in Canada 
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summarized by Statistics Canada (2012), of total farmers within the Upper Medway Creek 

subwatershed were randomly selected as those who hold an off-farm employment. For each of 

them, the number of average weekly working hours was generated randomly from the range of 

average weekly off-farm working hours provided by Statistics Canada (2012).  

Each parcel was initialized with a set of attributes including land managers, land-cover types, 

land-cover change scenarios, and currently adopted BMPs. The land manager which indicates the 

farmer who is managing the parcel, is drawn randomly from the forty farmers. One farmer could 

be assigned to different parcels, while each parcel has exactly one farmer. The land-cover change 

scenario that indicate the crop rotation followed by a parcel, is selected randomly from the three 

prominent rotation patterns, including the Corn-Soybean rotation, the Corn-Soybean-Wheat 

rotation, and the one-crop system of hay, observed in the Upper Medway Creek subwatershed. 

Then, the initial land-cover type for each parcel was randomly picked from the crop types 

involved in the selected land-cover change scenario. Once the crop rotation pattern on a field 

parcel has been determined, it will remain unchanged during the entire simulation. The BMP 

scenario implemented on each parcel was also determined by randomly selecting from the 

available BMP scenarios list obtained in Section 3.3.2. When a BMP scenario is selected, a 

management index was generated randomly between one and the lifespan of the selected BMP 

scenario to indicate the age of the selected BMP scenario. The management index was. 

Additionally, if windbreaks were used, a windbreak index would be also given to indicate the 

age of windbreak. As mentioned by Hodges and Brandle (n.d.), a windbreak is able to live at 

least fifty years. Therefore, the windbreak index was drawn randomly from one to fifty. 

3.5.2.5 Decision-making process 

The simulation was carried out year by year iteratively. At the beginning of the simulation, the 

model would first look at its management index to identify the age of the BMP scenario that is 

currently applied. If the BMP scenario applied on a field parcel has not finished, that is, the 

management index has not reached the last year in its timespan, the particular parcel would keep 

implementing the current BMP scenario in the next year. While if the BMP Scenario has finished, 

new BMP scenario has to be determined. 
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To determine the new BMP scenario, the windbreak index was checked to determine whether the 

windbreak reaches its lifespan during the period of conducting new BMP scenario. If yes, both 

maintenance and planting costs of implementing a windbreak would be considered, otherwise, 

only maintenance expense should be included. For each field parcel, BMP scenario with the 

highest utility score would be selected. After all parcels make their decisions, agents’ perceptions 

would be updated and move on to the next year simulation. Farmers are always aiming to 

maximize their utility, and their preferences towards the three factors would never change in a 

simulation. Referring to Figure 3-3 for the workflow of the decision-making process. 

A pre-test has been conducted to examine the effects of stochastic elements embedded in the 

model. In the lights of pervious literatures (Tuite et al., 2017; Garbey et al., 2017), at least fifteen 

replicate runs are required to account for the stochasticity in the model. Moreover, as this model 

contains many random processes, the simulation was carried out with twenty replicates to 

evaluate the model variance caused by the random elements in the model. The number of parcels 

implemented with each BMP scenario at every time-step is counted and recorded for each run.  

A random number generator was also used to evaluate the performance of the model. Instead of 

choosing the BMP scenario with the highest utility, the decisions were made by randomly 

selecting a BMP scenario from the list of possible BMPs for a parcel. When a BMP scenario’s 

lifespan has reached and a new decision has to be made, each BMP scenario in the list is chosen 

entirely by chance and has an equal probability of being selected. The random generator was run 

100 times at a fifty-year time scale. To compare the results of the developed ABM with those 

generated from the random generator, another eighty runs were carried out for the developed 

ABM at a fifty-year time scale.  
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Figure 3-3 Workflow for decision-making process in the ABM
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3.6 Sensitivity Analysis 

Sensitivity analysis was implemented to explore agents’ decisions on adopting certain BMPs in 

response to different interventions. In the view of UTRCA (n.d. c), the fact that management 

actions implemented in the Upper Medway Creek subwatershed mainly focus on providing 

funding support and educational activities (e.g. workshops, presentations, seminars). These 

actions intend to encourage the BMP application by influencing farmers’ economic condition 

and knowledge level regarding BMPs. Thus, parameters changed in the sensitivity analysis are 

the amount of subsides in the economic submodel and the farmers’ knowledge level regarding 

each BMP in the social submodel.  

The OFAT method (Ten Broeke et al., 2016) was addressed to investigate how increasing 

subsidies and farmers’ knowledge levels to each BMP may affect model results. All model 

parameters introduced in Section 1.4 were included as input for the sensitivity analysis. The 

impacts of different subsides were explored by changing the subsidy rate individually for each 

BMP. The subsidy rate indicates the proportion of a BMPs’ implementation costs that would be 

covered by subsidies. Beginning with 20% of the implementation costs of a BMP, 20% was 

incremented every time a new subsidy rate was carried out for each BMP except for the 

windbreak. Because the cost of windbreaks has been subsidized by the cost-share program, it 

was excluded from this analysis. Other parameters keep unchanged during the simulation. 

Accordingly, for each of the five BMPs (reduced tillage, no-till, grassed waterway, riparian 

buffer strip, and WASCoB), five experiments were carried out, each of which was given a 

specific subsidy rate as shown in Table 3-4. 

Table 3-4 Subsidy rates assigned to each experiment for each of the five BMPs 

Experiments Subsidy Rates (in %) 

1 20 

2 40 

3 60 

4 80 

5 100 
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For the changing BMP knowledge level, we assumed that farmers’ knowledge level regarding a 

BMP would increase after attending an educational activity. The impacts of the growing agents’ 

knowledge level were investigated by adding a farmer’s original knowledge level towards a 

particular BMP by two every time a new experiment was addressed. The increment would stop 

once a famer’s knowledge level has reached ten which is the upper bound of farmers’ knowledge 

level. All other parameters remain unchanged during the simulation. In such a way, five 

experiments, each of which was given a specific subsidy rate as shown in Table 3-5, were 

addressed for each of the examined BMPs (reduced tillage, no-till, grassed waterway, riparian 

buffer strip, WASCoB, windbreak). 

Table 3-5 The value of increment of farmers’ knowledge level in each experiment for each 
of the six BMPs 

Experiments Increased Value of Knowledge Level 

1 +2 

2 +4 

3 +6 

4 +8 

5 +10 
 

As mentioned by Ten Broeke et al. (2016), the time-step used for the sensitivity analysis should 

be time when the model output does not largely change, instead, it fluctuation randomly around a 

mean. Outputs of the pre-test conducted in Section 3.4.2.5 shows that the number of parcels 

adopting each BMP scenario does not strongly fluctuant when the time-step has reached fifty. 

Furthermore, at least ten replicate runs are needed for each parameter setting to evaluate how 

results spread (Ten Broeke et al., 2016). Therefore, twenty replicates were run per parameter 

setting at a fifty-year time scale. The outputs of the per-test at the time-step of fifty are used as 

the comparison standard for the sensitivity analysis. The number of fields implemented with each 

BMP scenario was considered as the output of interest for the sensitivity analysis. 
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A linear regression (LR) was performed at 95% confidence intervals to explore the significance 

of the impacts of defined subsidy rates and knowledge levels on adopting agricultural BMPs. In 

the LR, the IRs of a BMP scenario derived from twenty replicate runs have been taken as the 

dependent variables; the defined subsidy rates and increased knowledge levels have been 

considered as the independent variables. The p-value of the LR, which indicates a statistically 

significant influence when it is smaller than 0.05, is examined. Additionally, variable importance 

has been measured to compare the relative contribution each defined subsidy rate or increased 

knowledge level makes to the BMP adoption. The larger the value of variable importance, the 

greater the influence of the increased knowledge level on facilitating the BMP adoption. The LR 

and variable importance have been performed using RStudio version 1.1.453. The influences of 

increasing subsidies and knowledge levels on BMP adoption have been examined separately. 

3.7 Chapter Summary 

This chapter summarizes the study area, data and methodologies used in this research. A field 

survey was conducted to farmers in the Upper Medway Creek subwatershed to collect 

information about the BMPs utilized by farmers and the factors that influence farmers’ 

agricultural decision-making. A trajectory computing method developed by Wang et al. (2012) 

has been addressed to observe the prominent land-cover change patterns in the study area. In 

order to determine the suitability of BMPs to be implemented on every agricultural field, area, 

slope, soil type, land-cover type, drainage systems, water accessibility, and the edge length of 

each agricultural field have been obtained and analysed. An ABM was developed based on the 

Expected Utility Theory using a weighted sum function to evaluate the influence of economic, 

environmental, and social factors and simulate farmers’ decision-making on the adoption of 

different BMPs. Finally, a OFAT method has been carried out to perform a sensitivity analysis to 

investigate the impacts of government subsidies and educational activities on encouraging 

farmers to adopt certain BMPs. 
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Chapter 4 Results 

4.1 Field Survey 

A total of five responses were collected. The five participants comprise both full-time and part-

time farmers. These farmers work land ranging in size from 80 to 1600 acres, including fields 

that are both rented and owned. The survey collects information about the agricultural practices 

and factors influencing farmers’ agricultural decision-making. Two prominent land-cover change 

patterns were identified from survey responses: (1) the “corn-soybean-winter wheat” rotation; (2) 

the one-crop system of hay. According to the responses, participants consider economic factors 

to be of primary importance in agricultural decision-making. There are three economic factors 

have been identified that play essential roles in affecting farmers’ agricultural decision-making, 

the costs of new equipment and technology, commodity prices and market values of crops, and 

crop yields. Respondents indicated that at least 55% of their agricultural decision-making was 

impacted by these economic factors. Environmental factors were rated as the second most 

important influencer on farmers’ agricultural decision-making, with farmers giving this factor a 

20% to 30% weighting. The environmental factors that have major impacts are soil and wind 

erosion, nutrient runoff/loss, and soil health. Social factors have the least impacts on farmers’ 

agricultural decision-making. Three out of five participants responded that social factors have no 

effect on their agricultural decision-making, while the other two responses indicated that social 

factors have the same contribution as environmental factors. The wind direction and speed must 

be considered when applying herbicides so as not to upset the neighbours. Four out of five 

respondents think implementing conservation tillage is one of the best management practices to 

improve regional water quality. Additionally, all five participants indicated that their fields are 

suffering problems of soil and nutrient losses. 

The second part of the survey aims to obtain information related to the BMPs utilized by farmers 

in the Upper Medway Creek region and their motivations and satisfactions of using these BMPs. 

In general, the adoption of agricultural BMPs is motivated by a desire for soil/wind erosion 

reduction, profit maximization, and sustaining the land for future use. Nevertheless, financial 

costs have also been identified as the greatest barrier to applying BMPs. There are two financial 

concerns of adopting BMPs including the high costs versus low benefits and the availability of 
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financial incentives. No-till, riparian buffer strip, and cover crops are the most commonly used 

BMPs. Among these BMPs, the satisfaction level for implementing cover crops is the highest 

followed by the adoption of conservation tillage, no-till, and riparian buffer strips which are all 

medium high. Other BMPs such as manure storage, nutrient management, windbreaks, 

WASCoB, and other erosion control structures (e.g. berm, rock chutes) have also been adopted 

by the farmers. Both windbreaks and WASCoB have received a satisfaction levels of medium 

high; while nutrient management is given a satisfaction level of high. Refer to Table 4-1 for the 

summarized motivations and satisfaction levels of implementing different BMPs.  

Table 4-1  Summary of motivation and satisfaction level of adopting different BMPs 

BMP Name Motivation Satisfaction Level 

Conservation Tillage/No-till 

• Less time  
• Economic & environmental 

motivations 
• Soil erosion reduction 

High 

Cover Crop 

• Erosion reduction 
• Build organic matter 
• Improve soil health 
• Pushed by UTRCA staff 
• Avoid non-growing periods 

 Very High 

Manure Storage • Suggested by the Environmental 
Farm Plan (EFP) NA 

Nutrient Management • Suggested by the EFP Very High 

Riparian Buffer Strip 

• Recreational benefits 
• Soil erosion control 
• Hilly geography 
• Improve water quality 

High 

WASCoB • Soil erosion and loss control 
• Strip cropping Medium high 

Windbreaks 
• Wind and soil erosion reduction 
• Wildlife habitat 
• Reforestation 

Medium high 

Other: Blind Inlets, Berms, 
Hicken bottoms, Rock chutes 

• Erosion reduction 
• Drainage management High 
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Farmers reported that their own experience and knowledge, government organizations and 

farmers’ associations (e.g. OSCI, AAFC, OMAFRA), friends and neighbourhood farmers, 

university researchers, as well as online documents are the main sources of information that 

influence farmers’ agricultural decision-making. Websites are the most popular medium for 

farmers to acquire agriculture-related information. Other preferred sources of information 

include magazines/newsletters, government publication, workshops, and presentations. Moreover, 

it has been shown that for all of the participants, at least 50% of household income comes from 

their farming. For farmers who have off-farm employments, no more than 50% of their weekly 

labour would be spent on farming.  

4.2 Primary Land-cover Change Patterns 

After summarizing the raster-based AAFC land-cover dataset by agricultural field boundary, 

seven land-cover types, including Beans, Wheat/Cereal, Corn, Mixedwood, Pasture and Forage, 

Soybean, and Barley, were obtained. As can be seen from Figure 4-1, corn, soybeans, wheat or 

cereals, as well as pasture and forages are the primary crop types growing in the Upper Medway 

Creek subwatershed. It could be observed in 2012 that eight out of 167 agricultural fields were 

planted with beans. In both 2012 and 2014, only one out of 167 fields was classified to 

Mixedwood class. The barley class appears in 2015, in which exactly one agricultural field was 

identified to be covered with barley. In the end, the Wheat or Cereal and Pasture or Forage 

classes have been renamed to Wheat and Hay, respectively since the major cereal growing in this 

subwatershed is wheat and the major pasture and forages area are planted with hay (UTRCA, n.d. 

c). 

A total of 77 different trajectory codes have been identified after addressing the trajectory 

computing method (refer to section 3.2 for details). Based on the number of agricultural fields 

that have trajectory codes representing the same land-cover change pattern (e.g. 23623 and 

36236), three major land-cover change patterns have been determined: 1) Corn-Soybean rotation; 

2) Corn-Soybean-Wheat rotation; 3) Hay with no change over time. These three primary land-

cover change patterns cover 103 fields, which is about 62% of the total agricultural fields (see 

Figure 4-2). Among these 103 fields, 31 fields implement Corn-Soybean rotation, thirty fields 

follow a Corn-Soybean-Wheat rotation, and another 42 fields show land-cover change pattern of 
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Hay with no change over time. For the other trajectory codes, no more than ten agricultural fields 

have been identified for each of them. Therefore, they are excluded from the major land-cover 

change patterns. Among the three major land-cover change patterns, the Corn-Soybean rotation 

and the one-crop system of hay are also shown as the major land-cover change patterns in the 

field survey. 

 
 Figure 4-1 Land-cover on each agricultural field from 2011 to 2015 in the Upper Medway 

Creek subwatershed in different years 
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Figure 4-2 Major rotations and land-cover change patterns in the Upper Medway Creek 

subwatershed from 2011 to 2015 

4.3 Determining Possible BMP on Each Agricultural Field 

The availability of different BMPs on each agricultural field is determined according to the area, 

slope, soil type, land-cover type, drainage systems, water accessibility, and field’s edge length. 

Generally, conservation tillage and no-till systems are able to be implemented to all fields. As 

can be seen from Figure 4-3-a, agricultural fields that are suitable for installing grassed 

waterways are least prevalent in the Upper Medway Creek subwatershed. Among the total 167 

agricultural fields, only 25 fields can be implemented with grassed waterways. The number of 
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agricultural fields that are suitable for riparian buffer strips is about twice the number of fields 

suitable for grassed waterways. Approximately 68% of the agricultural fields can accommodate a 

WASCoB. A majority of agricultural fields are suitable for adopting windbreaks as Figure 4-3-d 

shows. Windbreaks is able to be planted on a total of 159 fields, about 95% of all agricultural 

fields in the entire Upper Medway Creek region. Given these points, the number of agricultural 

fields that are suitable for SRB, SNB, SRBW, and SNBW is 52, 52, 50, and 50 respectively. Though 

many other factors may also have impacts on the suitability of a particular BMP on a field, this 

study only considers the above factors, and further investigations can be implemented in the 

future. 

 
Figure 4-3 The suitability of agricultural fields for grassed waterways, riparian buffer 

strips, WASCoBs and windbreaks, respectively 
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4.4 Pre-test of the ABM 

To evaluate the model variance caused by the random elements in the model, a pre-test has been 

conducted with twenty replicate runs. The number of agricultural fields implementing each BMP 

Scenario after fifty time-step has been counted for each of the twenty runs. The result shows that 

SWI is always the predominant BMP scenario in the Upper Medway Creek subwatershed 

followed by SNT and SWA. However, nearly no farmer would like to implement SGW, SRB, and 

SRBW after fifty years. 

In order to get the insight of the overall situations of BMP implementations, the average value of 

the number of agricultural fields using each BMP scenario after twenty runs has been calculated 

(Table 4-2). As mentioned in Section 3.4.2, the number of fields suitable for each BMP scenario 

varies according to the topography, soil characteristics, water accessibility, as well as the field 

size. This makes it unreasonable to directly compare the number of fields using each BMP 

scenario. Therefore, the implementation rates (IR), which is the ratio of the number of fields 

adopted with each BMP scenario to the total number of fields that are suitable for each BMP 

scenario, is calculated and expressed as a percentage to improve the comparability of the results 

between different BMP scenarios. As can be seen from Table 4-2, the proportion of agricultural 

fields implemented with SWI is the largest, as more than half of the available agricultural fields 

would choose to apply SWI. Though a few number of agricultural fields is implemented with 

SNBW, the small data size of available agricultural fields for SNBW make it becomes the second 

highest among the eleven BMP scenarios. Among the three examined tillage system, no-till is the 

most popular tillage technique whose IR is about ten times the IR for either the conventional 

tillage or the reduced tillage system. The average IR of the grassed waterway demonstrates that 

nearly no farmer would adopt grassed waterways after fifty years. Additionally, the proportions 

of agricultural fields implemented with SRB and SRBW stay low.  
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Table 4-2 Statistics of the results of model pre-test at a fifty-year time scale 

Scenario SCT SRT SNT SGW SBS SWA SWI SRB SNB SRBW SNBW 

Total No.  
of fields* 167 167 167 25 52 113 159 52 52 50 50 

Avg.** 2.79 2.16 26.00 0.16 7.63 19.05 89.21 0.79 6.26 1.21 11.74 

Avg. IR 
(in %)  1.67 1.29 15.57 0.63 14.68 16.86 56.11 1.58 12.04 2.33 23.47 

Std.*** 2.34 1.79 7.31 0.37 4.82 8.56 8.69 1.37 2.96 1.31 5.85 

CV**** 0.85 0.83 0.28 2.44 0.60 0.44 0.10 1.83 0.47 1.14 0.51 

* The total number of agricultural fields suitable for each BMP scenario 
** Mean value of the number of agricultural fields using each BMP scenario after 20 runs 
*** Standard deviation of the number of agricultural fields using each BMP scenario after 20 runs 
**** Coefficient of variation = Std. / Avg. 

 

The results obtained from running the model twenty times are used to determine the degree of 

variation of the model. Here, the coefficient of variance (CV) is calculated to indicate the relative 

variability of the model on simulating the BMP implementation decision-making under the 

impacts of the randomness embedded in the model. As shown in Table 4-2, ten out of eleven 

BMP scenarios have a CV that is smaller than one, which indicates a relatively low variation in 

the outputs (Brown, 2012). The highest value of CV is computed for SGW. Though the values of 

CV for both SRB and SRBW are lower than SGW, they are still relatively higher than other BMP 

scenarios, the CV of which is greater than one. This indicates a relatively high variability in the 

datasets of SGW, SRB, and SRBW. 
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4.5 Random Generator	

Table 4-3 Statistics of the results of the 100 model runs at a fifty-year time scale  

Scenario SCT SRT SNT SGW SBS SWA SWI SRB SNB SRBW SNBW 

Total No.  
of fields* 167 167 167 25 52 113 159 52 52 50 50 

Avg.** 2.92 2.13 28.79 0.41 6.74 18.32 85.95 0.95 5.76 0.79 14.24 

Avg. IR 
(in %)  1.75 1.28 17.24 1.64 12.96 16.21 54.06 1.83 11.08 1.58 28.48 

Std.*** 2.59 1.39 11.01 0.55 5.72 10.98 9.93 1.15 4.70 1.18 10.65 

CV**** 0.89 0.65 0.38 1.34 0.85 0.60 0.12 1.21 0.82 1.50 0.75 

* The total number of agricultural fields suitable for each BMP scenario 
** Mean value of the number of agricultural fields using each BMP scenario after 20 runs 
*** Standard deviation of the number of agricultural fields using each BMP scenario after 20 runs 
**** Coefficient of variation = Std. / Avg. 

 

Table 4-3 shows the result obtained from 100 times running of the developed ABM. Similar 

results were obtained as the model pre-test. That is, SWI is the most prevalent BMP scenario in 

the Upper Medway Creek subwatershed while SGW is the least predominant BMP scenario in the 

Upper Medway Creek subwatershed after fifty years. According to values of CV, a relatively low 

variability can be identified for SCT, SRT, SNT, SBS, SWA, SWI, SNB, and SNBW; while relatively high 

variation has been observed for the datasets of SGW, SRB, and SRBW. 
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Table 4-4 Statistics of the results of the random generator at a fifty-year time scale 

Scenario SCT SRT SNT SGW SBS SWA SWI SRB SNB SRBW SNBW 

Total No.  
of fields* 167 167 167 25 52 113 159 52 52 50 50 

Avg.** 4.15 4.24 4.13 1.39 4.61 15.17 109.92 4.43 7.03 5.44 6.51 

Avg. IR 
(in %)  2.49 2.54 2.47 5.56 8.87 13.42 69.13 8.52 13.52 10.88 13.02 

Std.*** 2.27 1.67 1.82 1.21 1.88 3.45 5.74 2.20 2.61 2.97 2.50 

CV**** 0.55 0.39 0.44 0.87 0.41 0.23 0.05 0.50 0.37 0.55 0.38 

* The total number of agricultural fields suitable for each BMP scenario 
** Mean value of the number of agricultural fields using each BMP scenario after 20 runs 
*** Standard deviation of the number of agricultural fields using each BMP scenario after 20 runs 
**** Coefficient of variation = Std. / Avg. 

 

Results of the random generator are presented in Table 4-4. As shown, the IR of SWI is 

significantly greater than other BMP scenarios. SCT, SRT, and SNT show relatively low values of 

IR. The CV was also calculated to assess the degree of variation generated by the random 

generator. As can be seen, none of the BMP scenarios has a value of CV that is greater than one, 

which indicates a relatively low variation in all of the datasets.  

4.6 Sensitivity Analysis 

The results introduced in Section 4.4 are taken as the baseline in the entire sensitivity analysis. 

The average value of the number of agricultural fields implemented with each BMP scenario and 

their IRs derived from twenty replicate runs is computed for each BMP scenario.  

4.6.1 Impacts of Increasing Subsidies 

In this section, the influence of adding subsidies on the adoption of a particular BMP (both 

individually or combining with other BMPs) has been explored first. The IR for a particular 

BMP is the ratio of the total number of agricultural fields adopting that BMP (both individually 

and combined with other BMPs) to the number of fields available for that BMP expressed in 

percentage. For example, the IR of no-till system should be calculated by dividing the sum of 
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fields implemented with SNT, SNB, and SNBW by the number of fields available for the no-till 

system.  

Generally, an increasing trend for all of the examined BMPs is observed when more subsidies 

are provided. The impact of adding subsidies on encouraging the implementation of BMPs is the 

greatest for the no-till system and WASCoB. According to Figure 4-4, the IR of no-till system 

would increase about 12%-18% when 20% of the subsidy rate is added each time after the 

subsidy rate has reached 20%. For the WASCoB, a drastic increment can be found when the 

subsidy rate increases from 40% to 60%. Similarly, the IR of the riparian buffer strip has 

increased the most when subsidies change from 40% of the implementation expenses to 60%. 

However, the impact of increasing subsidies on the implementation of the riparian buffer strip is 

not as evident as the influence on the WASCoB. Figure 4-4 shows that the increasing subsidy 

rate would not strongly impact the implementation of reduced tillage until it is at least 60% of 

implementation costs of the reduced tillage. Nevertheless, adding subsidies could barely affect 

the implementation of grassed waterways in the Upper Medway Creek subwatershed.  

  
Figure 4-4 Changes of the number of agricultural fields adopting each BMP in regard to 

the increasing subsidies 

Table 4-5 and Table 4-6 summarises the p-value and variable importance of LR built from the 

defined subsidy rates and the number of fields adopting each BMP except windbreaks. The p-

values of the reduced tillage and the no-till become lower than 0.05 after the subsidy rate has 
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reached 40%, which indicates that the influences of subsidy rates on increasing the IR of the 

reduced tillage and the no-till system are statistically significant when it has reached 40%. 

Whereas for the reduced tillage system, values of the variable importance of subsidy rates that 

are higher than 80% are almost three times the subsidy rates that are lower than 80% (refer to 

Table 4-6). Thus, subsidy rates higher than 80% make a greater contribution to increasing the 

application of reduced tillage. Moreover, the IR of the reduced tillage first exceeds the IR of the 

WASCoB when the subsidy rate of the reduced tillage has reached 80%. For both the riparian 

buffer strip and the WASCoB, statistically significant increases of IR have been identified when 

the subsidy rates are higher than 60%. Furthermore, there are a sudden increases of the variable 

importance for both the riparian buffer strip and the WASCoB when the subsidies increase from 

40% to 60% as shown in Table 4-6. This demonstrates that subsidy rates that are higher than 60% 

have a much stronger impact on encouraging the adoption of riparian buffer strips and 

WASCoBs. Comparatively, there is no statistically significant impact of growing subsidies on 

the implementation of grassed waterways as the p-values of the grassed waterway under all 

defined subsidy rates are greater than 0.05. According to Table 4-6, the contributions made by 

each defined subsidy rate to changes of IR of the grassed waterway are about the same. 

Therefore, increasing subsidies to installing grassed waterways could hardly encourage the 

adoption of grassed waterways.   

Table 4-5 The p-value of LR between defined subsidy rates and the number of fields 
adopting each BMP (except windbreaks) 

 LR p-value 

Subsidy 
Rate 

Reduced 
Tillage No-till Grassed 

Waterway 
Riparian 

Buffer  Strip WASCoB 

20% 0.568 0.286 0.384 0.991 0.634 

40% 0.008 0.000 0.384 0.991 0.136 

60% 0.000 0.000 0.579 0.043 0.000 

80% 0.000 0.000 0.236 0.048 0.000 

100% 0.000 0.000 0.071 0.017 0.000 
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Table 4-6 Variable importance of defined subsidy rates to the number of fields adopting 
each BMP (except windbreaks) 

 Variable Importance 

Subsidy 
Rate 

Reduced 
Tillage No-till Grassed 

Waterway 
Riparian 

Buffer  Strip WASCoB 

20% 0.573 1.074 0.875 0.012 0.478 

40% 2.700 4.018 0.875 0.012 1.505 

60% 5.790 6.449 0.557 2.050 6.950 

80% 14.396 8.258 1.193 2.003 8.591 

100% 17.120 10.352 1.830 2.424 10.321 

 

To obtain a better understanding of how giving different subsidy rates could affect the 

implementation of different BMPs, the eleven BMP scenarios are examined in detail respectively. 

The change of IRs with respect to increasing subsidies to the reduced tillage can be seen in 

Figure 4-5-A. The IR of SRT increases when more subsidies are offered. For SRB and SRBW, the 

IRs are slightly reduced when the subsidy rate is 20% of the implementation costs of the reduced 

tillage. However, p-values for both SRB and SRBW are greater than 0.05 when the subsidy rate is 

20% (refer to Table 4-7), which means that the impact of adding subsidies of 20% 

implementation costs on these reductions is not statistically significant. The impact of adding 

subsidies on adopting reduced tillage individually becomes statistically significant when the 

subsidy rate has reached 40%. For BMP scenarios that combine the reduced tillage with other 

BMPs (SRB and SRBW), the influences of subsidy rates are statistically significant when it is 

higher than 80%. Moreover, a drastic increase of IR for all of the three BMP scenarios is 

observed when the subsidy rate increases from 60% to 80%. Accordingly, the effects of adding 

subsidies of 80% implementation costs are statistically significant to the increment of 

implementing SRT, SRB, and SRBW. For all of the three BMP scenarios implementing reduced 

tillage, a drastic increase can be identified for the values of variable importance when the subsidy 

rate changes from 60% to 80% (refer to Table 4-7).  
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Table 4-7 The p-value and variable importance of defined subsidy rates to the IRs of BMP 
scenarios adopting reduced tillage 

 LR p-value Variable Importance  

Subsidy Rate SRT SRB SRBW SRT SRB SRBW 

20% 0.204 0.584 0.468 1.281 0.549 0.729 

40% 0.024 0.421 0.248 2.290 1.020 1.163 

60% 0.000 0.286 0.090 5.638 1.333 1.714 

80% 0.000 0.000 0.000 11.932 4.336 7.547 

100% 0.000 0.000 0.000 13.869 5.307 9.517 

 

According to Figure 4-5-B, the IRs of all of the three BMP scenarios adopting a no-till system 

present an increasing trend with the increase of subsidies. While the IR of SNT and SNBW have a 

greater increase from a subsidy rate of 0% (the baseline) to 100% compared to SNB. Results of 

the LR and variable importance performed for the impacts of different subsidy rates on the IR of 

BMP scenarios that implement no-till system are provided in Table 4-8. The p-value of LR for 

SNT  indicates that the influence of subsidies on the no-till adoption becomes statistically 

significant when it is 40% of the implementation expenses of no-till system. A statistically 

significant influence is observed for SNB when the subsidy rate is 100% of the implementation 

costs of no-till system. For SNBW, which combines no-till with riparian buffer strips and 

windbreaks, the p-value becomes lower than 0.05 when the subsidies are higher than 80% of the 

no-till implementation costs. Furthermore, the variable importance reveals that subsidy rates 

higher than 60% make a great contribution to the growth of adopting no-till individually. 

Subsidy rate of 100% is identified that plays a critical role in affecting the adoption of SNB. 

Subsidy rates higher than 80% present a relatively high importance to increasing the IR of SNBW.  
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Table 4-8 The p-value and variable importance of defined subsidy rates to the IRs of BMP 
scenarios adopting no-till  

 LR p-value Variable Importance  

Subsidy Rate SNT SNB SNBW SNT SNB SNBW 

20% 0.393 0.344 0.956 0.858 0.950 0.056 

40% 0.000 0.175 0.264 3.710 1.366 1.125 

60% 0.000 0.147 0.115 6.543 1.462 1.593 

80% 0.000 0.139 0.019 8.305 1.494 2.395 

100% 0.000 0.028 0.001 9.976 2.228 3.286 

 

Though there is an increasing trend of the adoption of grassed waterways when more subsidies 

of implementation costs are provided except increasing the subsidy rates from 40% to 60% (refer 

to Figure 4-5-C), the p-value for all defined subsidy rates are higher than 0.05 as shown in Table 

4-9. This indicates that the influence of increasing subsidies for installing grassed waterways on 

the growing IR is not statistically significant. The variable importance (refer to Table 4-9) also 

indicates that the contribution each defined subsidy rate makes in changing the IR of SGW is not 

evidently different with each other.  

Table 4-9 The p-value and variable importance of defined subsidy rates to the IRs of BMP 
scenarios adopting grassed waterways 

 LR p-value Variable Importance  

Subsidy Rate SGW SGW 

20% 0.384 0.875 

40% 0.384 0.875 

60% 0.579 0.557 

80% 0.236 1.193 

100% 0.071 1.183 
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The changes of IR of BMP scenarios incorporating riparian buffer strips are visualized in Figure 

4-5-D. The IR of SBS remains the same as baseline when the subsidy rate is only 20%; while it 

keeps increasing when the subsidies are higher than 20% of the implementation costs of riparian 

buffer strips. According to Table 4-10, the p-values of SBS indicate that the influence of the 

defined subsidy rates on the IR is statistically significant when the subsidies are at least 60% of 

the riparian buffer strips implementation expenses. In addition, the variable importance reflects 

that subsidy rates of 60%, 80%, and 100% make a relatively large contribution in improving the 

implementation of SBS. As can be seen from Figure 4-5-D, the change of IRs of SRB caused by 

the increased subsidies represent a decreasing trend except when the subsidy rate is between 20% 

and 40%. However, the p-values of the subsidy rates that are smaller than 100% are all greater 

than 0.05, which indicates that the influences of these subsidy rates on adopting riparian buffer 

strips are not statistically significant. It has been also proved by the value of variable importance 

that the subsidy rate of 100% plays a more important role than other defined subsidy rates in 

facilitating the adoption of SRB. Although increasing subsidies can somehow impact the 

implementation of SNB to SNBW, their p-values have shown that these influences are not 

statistically significant.  

Table 4-10 The p-value and variable importance of defined subsidy rates to the IRs of BMP 
scenarios adopting riparian buffer strips  

 LR p-value Variable Importance  
Subsidy 

Rate SBS SRB SNB  SRBW  SNBW SBS SRB SNB  SRBW SNBW 

20% 0.924 0.159 0.917 0.051 0.561 0.096 1.419 0.105 1.978 0.584 

40% 0.340 0.255 0.078 0.078 0.255 0.959 1.419 1.783 1.785 1.222 

60% 0.030 0.610 0.126 0.314 0.470 2.205 1.511 1.543 1.013 0.726 

80% 0.002 0.385 0.264 0.231 0.333 3.211 2.101 1.124 1.206 0.974 

100% 0.000 0.123 0.643 0.004 0.791 3.738 2.555 0.464 2.942 0.266 
 

As shown in Figure 4-5-E, the IR of SWA increases with the growth of subsidy rates. There is a 

sudden rise of IR when the subsidies increase from 40% of WASCoB implementation costs to 

60%. When the subsidy rate is at least 80% of the WASCoB implementation costs, the IR of 
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adopting WASCoB individually has exceeded the IR of SWI which adopts windbreaks 

individually. By examining the p-value obtained from the LR (refer to Table 4-11), it can be 

concluded that the impacts of increased subsidy rates on the IR of SWA become statistically 

significant when the subsidies are at least 60% of the WASCoB implementation expenses. 

Moreover, subsidy rates of 60%, 80%, and 100% play an important role in improving the 

implantation rate of the WASCoB.  

Table 4-11 The p-value and variable importance of defined subsidy rates to the IRs of BMP 
scenarios adopting WASCoB  

 LR p-value Variable Importance  

Subsidy Rate SWA SWA 

20% 0.634 0.478 

40% 0.136 1.505 

60% 0.000 6.950 

80% 0.000 8.591 

100% 0.000 10.321 
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Figure 4-5 Changes of the IR for BMP scenarios in regard to different subsidy rates 

Because the implementation of windbreaks has been subsidized by a cost-share program which 

covers 75% of the windbreak installation expenses, this information was compared with results 

of sensitivity analysis for windbreaks to examine the performance of the model in simulating the 

impacts of different subsidy rates on encouraging the implementation of BMPs. Beginning with 

15% of the installation costs of windbreaks, 15% was incremented every time a new subsidy rate 

was given until the subsidy rate reached 75% which is equal to the proportion of expenses 

subsidized by the cost-share program. A total of five experiments, each with twenty replicate 

runs, were carried out. The results show that the IR of windbreaks would increase with growing 

subsidies (refer to Figure 4-6). However, according to the p-value derived from the LR (refer to 

Table 4-12), the impact of increasing subsidies on the adoption of a windbreak is statistically 

significant when the subsidy rate has reached 75%. Moreover, the value of variable importance 

shows a drastic increase when the subsidy rate changes from 60% to 75%. This demonstrates that 

the subsidy has the strongest influence on facilitating the windbreak implementation when it is 

75% of the installation costs of the windbreak. 
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 Figure 4-6 Changes of the IR for the windbreaks in regard to different subsidy rates 

Table 4-12 The p-value of LR model between defined subsidy rates and the number of 
fields adopted with windbreaks 

 LR p-value Variable Importance  

Subsidy Rate Windbreak Windbreak 

15% 0.643 0.466 

30% 0.948 0.065 

45% 0.308 1.025 

60% 0.073 1.816 

75% 0.000 5.074 
 

4.6.2 Impacts of Increasing Farmers’ Knowledge Levels 

Figure 4-6 shows how the IR changes with respect to the increasing knowledge level of a 

particular BMP. Similar to investigating the impacts of increasing subsidies, the average IR for a 

particular BMP, obtained from twenty replicate runs, was used to explore the influence of 

growing farmers’ knowledge level on the adoption of this BMP (both individually or combining 

with other BMPs). The results demonstrate that with the increase of farmers’ knowledge level to 

each BMP, the IR presents an increasing trend. However, no evident growth has been identified 

for all of the examined BMPs every time the knowledge level of a BMP has been added with two 

units. In general, the degree of increment of IR caused by the growing farmers’ knowledge level 
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is smaller compared to the increases that resulted from increasing subsidies (refer to Figure 4-4). 

However, for the grassed waterway, increasing the farmers’ knowledge level seems to have a 

greater impact.  

  
 Figure 4-7 Changes of the number of agricultural fields adopted with each BMPs in regard 

to the increasing the knowledge level 

Table 4-13 and Table 4-14 summarises the p-value and variable importance of LR models built 

from the increasing knowledge level and the number of fields adopted with each BMP. For both 

the reduced tillage and the windbreak, p-values indicate that the influence of increased 

knowledge levels on the IRs become statistically significant when four or more units have been 

added to the farmers’ knowledge level towards these two BMPs. According to Table 4-14, the 

increasing knowledge level for the reduced tillage system accounts for the substantial part of the 

contribution to increasing the application of reduced tillage when eight or more have been added. 

A statistically significant impact of growing knowledge level has been found for the no-till 

system and the WASCoB when farmers’ knowledge level toward these two BMPs has increased 

by at least six. For both the no-till system and the WASCoB, the values of variable importance 

when the added knowledge level is equal to or higher than six is two times greater than those 

when the increased knowledge level is lower than six. Thus a greater influence of the growing 

knowledge level can be identified when at least six have been added to the original farmers’ 

knowledge level towards the no-till system and the WASCoB. As shown in Table 4-13, p-values 

of the grassed waterway are all smaller than 0.05 after adding at least six to the farmers’ 
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knowledge level. This indicates that the increase of IR of the grassed waterway is statistically 

significant when six or more have been added to farmers’ knowledge level. There are little 

differences among the variable importance of the grassed waterway under different increased 

knowledge level, which indicates that each increased knowledge level makes the similar 

contribution to facilitating the adoption of grassed waterways. The growth of the IR for riparian 

buffer strips caused by the increasing knowledge level is statistically significant for all of the 

experiments.  

Table 4-13 The p-value of LR model between the increased knowledge level and the 
number of fields adopted with each BMP  

 LR p-value 

Increased 
Knowledge 

Level 

Reduced 
Tillage No-till Grassed 

Waterway 

Riparian 
Buffer 
Strip 

WASCoB Windbreak 

+2 0.078 0.439 0.190 0.040 0.396 0.606 

+4 0.028 0.161 0.079 0.004 0.078 0.035 

+6 0.010 0.003 0.015 0.000 0.000 0.000 

+8 0.001 0.000 0.004 0.000 0.000 0.000 

+10 0.000 0.000 0.003 0.000 0.000 0.000 
 

Table 4-14 Variable importance of the increased knowledge level to the number of fields 
adopted with each BMP  

 Variable Importance 

Increased 
Knowledge 

Level 

Reduced 
Tillage No-till Grassed 

Waterway 

Riparian 
Buffer 
Strip 

WASCoB Windbreak 

+2 1.786 0.777 1.321 2.070 0.852 0.518 

+4 2.229 1.413 1.780 2.995 1.786 2.142 

+6 2.633 3.070 2.469 3.919 3.887 4.737 

+8 3.601 4.076 2.928 5.446 5.872 5.868 

+10 4.368 3.957 3.158 5.584 6.549 8.081 
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4.7 Chapter Summary 

This chapter summarizes the results of field survey, land-cover change pattern analysis, and the 

sensitivity analysis of the developed ABM. Results from the field survey show that contributions 

made by economic factors to farmers’ agricultural decision-making are always the highest 

among the economic, environmental, and social factors. Reducing the soil/wind erosion and 

maximizing profits are the most common motivations for BMP adoption. Among the BMPs that 

are implemented by the five survey participants, cover crops, the manure storage, the reduced 

tillage/no-till system, as well as riparian buffer strip have been given the highest satisfaction 

level. Moreover, the five responses demonstrate that farmers would like to obtain agricultural 

information through attending presentations or workshops and reading newsletters or 

government publications. According to the land-cover change pattern analysis, three major land-

cover change patterns have been observed in the Upper Medway Creek region, which are the 

Corn-Soybean rotation, the Corn-Soybean-Wheat rotation, and the one-crop system of hay. For 

the developed ABM, the values of CV computed for the eleven BMP scenarios indicate a low 

variability of the model on simulating the decision-making of BMP adoption under impacts of 

the randomness embedded in the model. The sensitivity analysis shows that increasing subsidies 

and farmers’ knowledge level to a particular BPM would facilitate the implementation of that 

BMP. However, not all of these impacts are statistically significant. In most of the cases, a 

threshold can be determined to indicate the minimum requirement for subsidy rates to lead to 

statistically significant increases of the implementation of a specific BMP.  
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Chapter 5 Discussion 

5.1 Pre-test of the ABM 

According to the values of CV for all of the BMP scenarios (refer to Table 4-2), most of them 

indicate that there is a relatively low variation in the model outputs. However, a relatively high 

variation could be identified for SGW, SRB, and SRBW whose CVs are greater than one. This is 

because that, as mentioned in Section 4.4, more than half of the data obtained for SGW, SRB and 

SRBW have a values of zero, which results in a small mean value and a high value of standard 

deviation. Accordingly, a greater value of CV could be obtained. Moreover, as reported by 

Heckert and Filliben (2003), the CV is sensitive to the subtle changes in the mean value when the 

mean value is close to zero. As can be seen from Table 4-2, the mean value of SGW, SRB, and 

SRBW are all very close to zero, which would lead to a great change of the value of CV for these 

three BMP scenarios when more replication runs are performed. Consequently, the developed 

model could be considered as a robust model in simulating farmers’ decision-making on BMP 

application within the Upper Medway Creek subwatershed since it presents a low variability on 

most of outputs. 

Because the preference weights on the economic factors are always the highest, BMPs with 

lower implantation costs are more preferred by agents in general. Although the cost of installing 

the windbreak is the highest among all of the BMPs, the cost-share program covers 75% of its 

installation which greatly reduces the expenses of implementing the windbreak. Because the 

windbreak has long lifespan, low maintenance expense, as well as higher improvement 

percentage of crop yields, applying windbreaks may bring higher economic benefits. 

Furthermore, the higher implementation rate could also contribute to the higher wind erosion 

reduction efficiency, which has the greatest weight in the environmental submodel, of the 

windbreak. The relatively high implementation rate for SNBW can be explained by the relative 

high economic return and environmental effectiveness. Though the expense of SNBW has to cover 

the installation costs of three BMPs (i.e. no-till, riparian buffer strip and windbreak), the 

adoption of windbreaks improves the crop yields and therefore, increases the agricultural income. 

Moreover, due to the high environmental effectiveness brought by the three BMPs in SNBW, the 
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environmental score for SNBW is at a relatively high level among all of the BMP scenarios. As a 

result, a higher IR is attained by SNBW.  

Among the three tillage systems (SCT, SRT, and SNT) which have the same data size of available 

agricultural fields, the no-till system is the most commonly used technique due to its lower 

implementation expense and higher environmental efficiency. This was confirmed by the 

responses of farmers in the field survey. The implementation rate for SGW is extremely low. This 

is identical with the responds of our field survey which shows that none of the five participants 

have installed a grassed waterway. One of the most important reasons is that the number of 

available agricultural fields for SGW is very small. Only 25 out of 167 agricultural fields in the 

entire Upper Medway Creek subwatershed satisfy the requirements for installing the grassed 

waterway. Another reason that the implementation rate of SGW is low is that the impacts of 

installing the grassed waterway on crop yields could be negative (refer to Section 3.5.2.1). 

Though installing the grassed waterway may also lead to 10% increment of crop yields, this 

number is much smaller than the improvement percentage brought by windbreaks.  

5.2 Random Generator	

Comparing outputs of the random generator with those obtained from running the ABM, 

different distribution of IRs for BMP scenarios can be identified. This indicates that instead of 

making decisions randomly, the developed model is making rational decisions. Results obtained 

from the random generator show that SWI is still the predominant BMP scenario; while SCT, SRT, 

and SNT has become the least prevalent BMP scenarios. This can be explained by the long time 

period of the lifespan for SWI. In this study, the simulation was run at a fifty-year time scale 

which is identical to the lifespan for SWI. Therefore, a new decision would not be made during 

the simulation once the parcels have decided to implement SWI. However, for other parcels 

implemented with other BMP scenarios with a shorter lifespan, SWI is still an alternative choice 

for their new decisions. As a result, the number of fields implemented with SWI keeps increasing 

during the fifty-year simulation. For SCT, SRT, and SNT, which have a lifespan of one year, a new 

decision has to be made at the beginning of every year. However, the probability of choosing 

other BMP scenarios (about 70%) is higher than that of any of them. Accordingly, a lower IR 

was obtained for SCT, SRT, and SNT.  
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According to values of CV, outputs of the random generator have relatively lower variability 

than those obtained from the developed ABM. This is because the probability of selection for 

each BMP scenario varies in the ABM depending on a set of randomly selected parameters. In 

the developed ABM, parameters such as BMP annual costs and the P loss reduction efficiency 

are randomly drawn from a predefined range. When a larger value is drawn, the BMP scenario 

will get a higher probability to be selected, vice versa. Thus, the probability of selection of a 

BMP scenario is fluctuant according to the randomly selected values of parameters. The 

fluctuation of the probability of selection will further impact the decision-making. For example, 

the number of fields implemented with that BMP scenario would become larger when the 

probability of selection for a BMP scenario is high. In that case, a higher value of IR can be 

obtained. Accordingly, the value of IR for each BMP scenario will fluctuate with the changing 

parameters and lead to a higher variability. While for the random generator, every BMP scenario 

has an equal probability of selection. Hence, a lower value of CV can be observed for outputs of 

the random generator.  

Though the value of CV for the ABM are higher than those for the random generator, a relatively 

high variation can only be observed for SGW, SRB, and SRBW as Table 4-3 shows. This is mainly 

because for SGW, the small sample size (i.e. the number of fields that is suitable for SGW) and low 

environmental effectiveness make it less competitive than other BMP scenarios; while for SRB 

and SRBW, the lower economic and environmental benefits than SNB, and SNBW reduces its 

probability of selection. In that case, other BMP scenarios are more preferred, which have led to 

a lot of values of zero in outputs of SGW, SRB, and SRBW. Consequently, a small mean value was 

obtained for the three datasets. Because the CV measures the variation in the dataset relative to 

the mean (Heckert and Filliben, 2003), a lower mean value would result in a higher value of CV 

which indicates relatively high variation. To reduce the variance exists in model outputs, more 

data about BMP and crop are required. If more accurate estimates of BMP costs and 

environmental effectiveness can be provided, the variability of the probability of selection 

caused by randomly selected parameters can be reduced. Accordingly, variance in the model 

outputs can be reduced. 
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5.3 Sensitivity Analysis 

Generally, providing subsidies is a favourable way to encourage farmers to adopt the promoted 

BMP. However, a threshold has to be met to significantly increase the implementation of a 

specific BMP. This is identical to the conclusion obtained in Kent’s study (2014), which 

demonstrates that the impacts of cost shares on increasing the adoption of watershed-specific 

BMPs are effective when the subsidy has reached a threshold. Compared to this study, ABM 

developed in Kent’s research has some advantages. Frist of all, the SWAT (Soil and Water 

Assessment Tool) model has been embedded in the ABM developed by Kent (2014), which 

enables more accurate estimates of crop yield changes and the environmental effectiveness of 

adopting a BMP. In such a way, learning and adaptation processes (i.e. update farmers’ 

perspective towards each BMP based on the environmental and economic feedbacks, and make 

yearly crop decisions instead of consistently following one crop rotation) have been included in 

Kent’s study (2014) to produce more realistic simulation. Second, the ABM developed by Kent 

also includes community agents to incorporate the influence of enforced community policies (e.g. 

tax). However, the ABM built by Kent (2014) did not include farmers with off-farm employment, 

which is taken into account in this study. Furthermore, the developed ABM in this study 

examines more types of BMP and allows farmers to adopt multiple BMPs simultaneously. In 

Kent’s study (2014), simulation of BMP decision-making has been carried out at a yearly scale, 

which is impractical for simulating BMPs that have a minimum required time period of 

implementation that is longer than one year such as the grassed waterway, WASCoB, and 

riparian buffer strip. Unlike Kent’s ABM, the developed ABM in this study is capable to 

evaluate and compare BMPs or BMP scenarios with different lifespans. Comparatively, more 

detailed data of community policies, topography and hydrological characteristics are required for 

the Kent’s ABM. This makes it difficult to be used for studies that are highly limited by data 

availability, for example this study.  

Results of the sensitivity analysis have been examined by LRs. According to the p-values and the 

variable importance (refer to Table 4-6 to Table 4-14), it is not surprising to see that higher 

subsidies make a greater contribution to the change in the implementation rate of a BMP. This is 

because farmers’ economic motivations to adopt certain BMP scenarios generally increase with 

the growth of subsidies. The sensitivity analysis for the windbreak indicates that 75% of the 
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installation expenses have to be subsidized to effectively increase the implementation of the 

windbreak (refer to Table 4-12). This is identical to the amount of subsidies provided by the 

windbreak cost-share program, which indicate that the estimated subsidy rates for BMPs are 

capable to provide insights for further explorations. According to responses of the field survey 

which identify the high costs and the availability of financial incentives as the major economic 

concerns of adopting BMPs, providing subsidies would be a qualified method to motivate the 

implementation of certain BMPs. 

In general, a minimum subsidy rate of 40% is required to positively affect the implementation of 

reduced tillage. When subsidies are offered, the economic score of implementing the reduced 

tillage is increased, which strongly encourages farmer agents who are highly motivated by the 

economic factors to adopt the reduced tillage solely. However, for those who have distributed 

their preferences toward the economic, environmental, and social factors evenly, SRB and SRBW 

are more preferred than SRT as the relatively low environmental effectiveness of SRT results in a 

lower utility score. Although the implementation costs of the reduced tillage system are 

subsidized, the subsidy rate of 20% is too low to have a strong impact on implementing BMP 

scenarios that contain the reduced tillage. It has demonstrated that the differences in economic 

scores between 0% subsidy and 20% subsidy are smaller than 0.1 in most cases. Furthermore, the 

IRs of SRB and SRBW show small fluctuations when the subsidy rates are lower than 40% due to 

the relatively high level of variances in the outputs of SRB and SRBW. By examining the p-values 

and the variable importance of the BMP scenarios that adopt the reduced tillage, it suggests that 

a subsidy rate that is higher than 80% could facilitate the implementation of the reduced tillage 

more effectively. 

For the no-till system, the results have demonstrated that at least 40% of the implementation 

costs should be subsidized to encourage the adoption of it. Among the three BMP scenarios that 

implement a no-till system, SNT usually has the highest economic benefits following SNBW. 

Although the environmental score of SNT is the least among the three BMP scenarios, the value 

of neighbours’ behaviour for SNT is the greatest in most of cases due to the larger number of 

fields that are potentially suitable for SNT adoption. Accordingly, the implementation rate of SNT 

is higher than SNB. Though the cost of SNBW, which is the sum of expenses of three BMPs, is the 

highest, crop yields that are increased by implementing windbreaks make the BMP scenario that 



 95 

has the second greatest economic score. Moreover, SNBW has an environmental effectiveness that 

is higher than SNB. Consequently, SNBW is more preferred than SNB by farmers. As can be seen 

from Table 4-8, the critical value 0.05 resides between the p-values of the 80% subsidy level and 

100% subsidy level for SNB. Hence, instead of subsidizing 100% of the implementation costs, 

there should exist a percentage of subsidy rate between 80% and 100%, which is enough for 

effectively facilitate the adoption of SNB.  

Simulation results show that the no-till system is preferred by farmer agents, which is equivalent 

to the results obtained from the field survey. The no-till system has the advantage of obtaining 

higher economic and environmental benefits. Therefore, even though 100% of the 

implementation costs are subsidized, the IR of the reduced tillage is still lower than the no-till 

system. However, the reduced tillage would be preferred when a farmer is very familiar with this 

BMP, requiring an extremely high knowledge level, and has assigned a greater preference weight 

to social factors.  

Unfortunately, the results demonstrated that providing subsidies cannot significantly affect the 

implementation of grassed waterways. Though an overall increasing trend can be identified for 

the growth of subsidies, the p-value of the developed LR indicates that the increase in percentage 

of subsidies is not statistically significant. The number of fields adopted with the grassed 

waterway, on average, is 0.87, which means that nearly no farmer would like to adopt the 

grassed waterway. One of the reason is that, the implementation of the grassed waterway is 

highly constrained by the existing drainage pattern. Thus, the value of neighbours’ behaviour for 

the grassed waterway is smaller than the values of other BMPs. According to the values of the 

three evaluated factors (economic, environmental, and social factor), the environmental score of 

the grassed waterway is at a medium level while the economic benefits of the grassed waterway 

are at a medium-high level comparing to other BMPs, the IR of the grassed waterway still 

remains at an extremely low level. Therefore, it suggests that the impacts of social factors have 

greater influence to the implementation of the grassed waterway in the Upper Medway Creek 

subwatershed. When the subsidy rates for the grassed waterway have reached 100%, the 

economic benefits of the grassed waterway become the largest among all of the BMP. However, 

its environmental efficiencies are lower than the windbreak, and its social scores are significantly 



 96 

lower than other BMP scenarios. Accordingly, a small utility score would be acquired for the 

grassed waterway, which makes it become uncompetitive among the eleven BMP scenarios.  

To effectively motivate farmer agents to adopt the riparian buffer strip, the subsidies should 

cover at least 60% of the implementation expenses. As shown in Figure 4-5-D, the IRs of SRB 

and SRBW are significantly lower than the IRs of SNB and SNBW. This is because, except for the 

BMP expenses of the tillage system, all other parameter values of SRB and SRBW are equal to 

those of SNB and SNBW, respectively. As a result, the economic and environmental benefits of 

BMP scenarios that adopt no-till system (SNB and SNBW) are greater than those that implement 

the reduced tillage (SRB and SRBW). SRB and SRBW will be selected by farmers only when farmer’s 

knowledge level regarding the reduced tillage is evidently higher than the no-till system; also, 

the preference weight of a farmer towards the social factor is relatively high. By checking the 

economic scores, SBS always has the greatest economic returns; while the economic score of SNB 

is the lowest. Nevertheless, the economic scores of SBS, SNB, and SNBW are very close to each 

other when the subsidy rate is equal to or lower than 20%. However, when the subsidy rate is 20% 

or lower, SNBW, which has an environmental score that is more than twice of SBS, and thus 

became the best selection among all the BMP scenarios that implement riparian buffer strips. 

With the increase of the subsidy rate for the riparian buffer strip, the economic benefits of SBS, 

SNB, and SNBW become greater. However, as the original implementation expenses of the riparian 

buffer strip are relatively low and the differences between the upper bound and the lower bound 

(refer to Appendix Table D-1) are small, the subsidies that covers a certain proportion of the 

implementation expenses of the riparian buffer strip are very low. As a result, the impacts of 

adding subsidies to the riparian buffer strip on the implementation of SNB and SNBW would not be 

evident. This has also been proved by the p-values derived from the LR (refer to Table 8). As a 

result, subtle increases (about 1%) have been found for the IRs of SNB and SNBW. For SBS which 

adopts the riparian buffer strip individually, its economic benefits are mainly depending on the 

BMP costs when all of the other economic parameters (e.g. off-farm income, farm income, crop 

costs) are the same as those of other BMP scenarios that implement riparian buffer strips. Hence, 

the growth of subsidies has greater impacts on the IR of SBS. Comparing to the impacts of 

increasing subsidies to the reduced tillage or the no-till system, adding subsidies to riparian 

buffer strips has smaller influences to the implementation of SRB to SNBW since the original 
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implementation expenses of the reduced tillage or the no-till system are greater than the expenses 

of the riparian buffer strip.  

According to the p-value and the variable importance (refer to Table 4-7), a minimum subsidy 

rate of 60% is needed to effectively facilitate the adoption of the WASCoB. The results have 

showed that among the five examined BMPs, the economic and environmental scores for the 

WASCoB are not outstanding; while the social score, specifically the larger value of neighbours’ 

behaviour, for the WASCoB presents a relatively higher level. Comparing to the reduced tillage 

that has the similar environmental effectiveness with the WASCoB, the greater economic 

benefits and social influences of the WASCoB have resulted in a higher IR than that of the 

reduced tillage. However, although economic returns and social scores for the no-till system are 

similar with the WASCoB in the majority of cases, the lower environmental effectiveness of the 

WASCoB makes it less preferred than the no-till by farmers. When 60% of the implementation 

expenses were subsidized, the economic score of the WASCoB becomes larger than that of the 

no-till, and at this point, the IR of the WASCoB has exceeded the no-till at the first time. The 

economic benefits of the WASCoB are relatively low comparing to those of the grassed 

waterway and the riparian buffer strip. Whereas the IR of the WASCoB is still greater than the 

grassed waterway since it contributes to greater values of environmental and social scores.  

According to the results of the sensitivity analysis, increasing farmers’ knowledge level 

regarding a particular BMP is able to facilitate the implementation of this BMP. However, the 

adoption of a BMP could only be improved to a certain extent through increasing knowledge 

level as it is also influenced by other factors such as costs or environmental effectiveness. 

Generally, the effects of the growing subsidies are greater than the increases in the farmers’ 

knowledge because economic factors are given larger preference weights than social factors. 

Nevertheless, for the grassed waterway, social factors have made a greater contribution to the IR. 

Accordingly, increasing farmers’ knowledge level has a greater influence on encouraging the 

adoption of the grassed waterway. According to the model results, the no-till system and 

WASCoB present the greatest opportunity for increased adoption by adding subsidies; while the 

windbreak and WASCoB show the highest potential of increased adoption after implementing 

education programs. Under these circumstances, it is recommended that both educational 

activities and financial incentives could be provided simultaneously for BMPs to encourage the 
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implementation of BMPs, specifically the adoption of the grassed waterway. To effectively 

increase the adopting of BMPs, subsidy rates of 80%, 40%, 60% and 60% are recommended for 

the reduced-tillage, no-till, riparian buffer strip and WASCoB, respectively. The subsidy 

programs are highly recommended for the no-till system and WASCoB, and the educational 

activities are especially recommended for the windbreak, WASCoB, as well as the grassed 

waterway.  

5.4 Limitations and Improvements 

Three major limitations and constrains could be identified in this study. The first limitation is 

limited number of field survey responses. Only five responses were obtained from the field 

survey, which may not fully generalize the agriculture-related dynamics that are occurring in the 

Upper Medway Creek subwatershed. First, instead of simulating all of the potential BMP 

combinations, only those mentioned in the five survey responses have been included in this study. 

Therefore, BMP scenario alternatives examined in this study, which are highly related to agent 

decision-making processes, may not include all of the BMP scenarios that are implemented in 

the Upper Medway Creek region. Similarly, the crop rotations assigned to each field in the 

model may not correspond to those that are actually followed by farmers in reality due to the 

lack of field survey data. Only three major land-cover change patterns identified in Section 4.2 

have been included in this study. Classes such as Barley and Beans have been excluded, which 

reduces the diversity of the crop rotations implemented in the Upper Medway Creek region. 

Consequently, the performance of the developed model in representing the BMP implementation 

and crop rotations in the real world can be degraded. Additionally, the preference weights for the 

economic, environmental, and social factors have been randomly generated from a normal 

distribution because of the inadequate data on how farmers distribute their preferences to the 

three factors. As Brown and Robinson (2006) has noted, randomly drawing agents’ preferences 

on each factor from a uniform distribution would lead to results with higher variation though it 

has been proven to be useful to represent the simplified reality. 

One of the primary limitations of the developed ABM is the stochastic elements included in the 

model. To simulate the dynamics in farmer decision-making processes which involve complex 

interactions between agents and their environment, quantitative and qualitative data of massive 
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size is required. However, gathering all of the required data, which are further used to 

parameterize the model, with high level of details would be impractical (Valbuena et al., 2010; 

Filatova et al., 2013). In the developed ABM, data of the costs, the farm/off-farm income, as well 

as the environmental effectiveness of BMPs are very limited. The majority of the data used to 

parameterize the model are not particular to the Upper Medway Creek region. To make sure that 

data used in the model are capable to cover all possible situations that could happen in the region, 

the values of economic and environmental parameters have been randomly generated from the 

possible ranges based on previous literatures or government archives. Furthermore, due to the 

lack of cadastral data for the Upper Medway Creek subeatershed, the land manager of each 

agricultural field has been determined by randomly selecting from the forty farmers in the study 

area. This could be unrealistic since farmers tend to manage contiguous fields rather than fields 

separated from each other, which could result from random determination. Accordingly, 

uncertainties could be brought into the model, which results in a sensitive model performance 

(Filatova et al., 2013).  

Finally, the model faces a challenge of validation. In the view of previous literature (e.g. Filatova 

et al., 2013, Valbuena et al., 2010, and Parker et al., 2003), proving that the model is robust and 

it has the capacity to replicate the real-world is a major challenge identified for the ABM. For 

this study, several steps have been conducted to assess the model performance. First, many 

replication runs were performed to the developed ABM to determine the model’s internal 

validity. The value of CV was calculated to indicate the consistency and variability in the model 

in regard to the randomness. To test the credibility of the model, the results from running the 

model 100 times were compared to those obtained from a random generator. A sensitivity 

analysis was also performed, which instead of testing the robustness of the model, it aims to 

investigate how changing a parameter may affect the model outputs. However, none of these 

methods can evaluate whether the developed ABM can provide an accurate representation of 

reality or whether it is acceptable for its intended purpose. This could be difficult for this study 

because of three reasons. First, empirical data or historical data about the BMP adoption rate in 

the upper Medway Creek subwatershed is unavailable. Therefore, we don’t have reference data 

to compare with the model outputs. Second, no similar research or other method has been 

conducted to the upper Medway Creek subwatershed, which add challenges to use the 
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comparison to other model validation method. Third, the conceptual validation cannot be 

performed to this study either as there is a lack of experts.  

To overcome these limitations and challenges, several improvements could be achieved in the 

future work. First, a detailed field survey has to be conducted to collect more accurate data and 

provide a more comprehensive understanding of how famers make agricultural decisions in the 

real world. To get more responses, reward (e.g. gift card) may be offered to survey participants. 

Responses from the field survey can be used as information and data for constructing the model. 

(Brown and Robinson, 2006). Moreover, more factors (e.g. precipitation, carbon allowances, 

direct farmer communication) and more BMPs (e.g. manure applications) could be assessed in 

the model. During the simulation, some estimations could be made to economic factors based on 

the available data (e.g. input costs of a crop may increase along with the rising fuel price for 

machinery). The adaptive process can also be considered in the future modelling effort. In this 

way, a more precise representation of agricultural decision-making processes can be provided.  

To reduce the uncertainties generated by stochastic elements in the model, opinions from a group 

of experts and stakeholders about how to parameterize the model should be incorporated into the 

model (Valbuena et al., 2010). Additionally, the developed ABM may be combined with 

hydrological model such as the SWAT (e.g. Kent, 2014). On the one hand, the hydrological 

model is able to provide a more accurate estimate of the environmental effectiveness for different 

BMPs implemented in the study area. According to Ng et al. (2011), the hydrological model with 

sufficient input data can produce an accuracy estimation of nutrient and pollutant loads and crop 

yields for varied BMPs. These estimates can be used as inputs in the developed ABM to improve 

the model performance. On the other hand, it allows a simulation of the impact of famers’ 

decision-making dynamics on the water quality and therefore, better understanding the 

relationship between the BMP implementation and water quality and identifying appropriate 

conservation strategies. Model validation can be improved using two methods. First, if experts 

can be involved in this research, the face validity technique, which evaluates whether the model 

behaves reasonably by asking experts, can be applied to increases the diversity of the model 

validation. Second, another ABM can be developed using a heuristic decision tree method of 

which results could be compared with those obtained from this study.  
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5.5 Chapter Summary 

In summary, according to the coefficient of variance, the developed ABM is robust in simulating 

farmers’ decision-making on BMP application within the Upper Medway Creek subwatershed. 

The sensitivity analysis indicates that the increasing subsidies and farmers’ knowledge level to a 

BMP can positively affect the implementation of that BMP in general. For each BMP, different 

proportion of implementation costs needs to be subsidized to effectively encourage the BMP 

adoption. Comparing to the knowledge level, subsidies make greater contribution to motivating 

farmers to adopt the BMP. Three major limitations and challenges have been identified for this 

study: 1) lack of survey data; 2) randomness in the developed ABM; 3) model validation. Future 

work such as combining the optimizing decision-making structure with the heuristic structure or 

incorporate expert opinions can be conducted to improve the model performance. 
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Chapter 6 Conclusion 

In Canada, water quality plays a critical role in the agriculture system. However, water quality 

can be negatively impacted by inappropriate agricultural activities. The application of pesticides, 

manure and fertilizers has led to an increasing amount of chemicals, nutrients and other 

pollutants in the surface runoff that is transported to surface water bodies causing problems such 

as eutrophication. The Medway Creek subwatershed, which has been suffering from a severe 

surface water quality problem for several years, has been identified as a region that requires 

environmental improvements (UTRCA, n.d. c). In order to maintain good water quality and 

develop a sustainable agricultural system, strategies and policies have been suggested by the 

local government and conservation authorities to encourage the implementations of different 

agricultural BMPs. In the agri-environment system, farmers who are heterogeneous with regard 

to their demographic characteristics, property size, preferences, and perception of public policies 

play an essential role in making BMP decisions. Hence, understanding how BMP decisions are 

made under different internal and external factors is significant for simulating human-natural 

systems and establishing sustainable development strategies and policies. 

To simulate and understand the dynamics of farmer’s decision-making on the BMP adoption 

under different socio-economic and environmental situations in the Upper Medway Creek 

subwatershed, an ABM has been developed using the optimizing decision-making structure. A 

weighted sum function was used to evaluate the influences of economic, environmental and 

social factors on farmers’ decision-making. Results from the model pre-test was compared to 

those obtained from a random generator to examine how does the developed ABM perform 

against the random generator. The sensitivity analysis has been performed to the developed 

ABM using the OFAT method to examine the impacts of different potential interventions, 

including government subsidies or educational activities, on farmers’ decision-making in certain 

BMP adoption.  

After twenty per-test runs, relative low variations have been found in the results, which indicates 

that the developed ABM is robust in simulating farmers’ decision-making on BMP applications 

within the Upper Medway Creek subwatershed. Results of the sensitivity analysis demonstrate 

that both providing subsidies and improving knowledge level of BMPs could encourage the 
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implementation of certain BMP in general. While a threshold has to be met to effectively 

facilitate the implementation of BMPs. Compared to educational activities, subsidies make a 

greater contribution to motivating farmers to adopt the BMP. However, an exception has 

occurred to the grassed waterway, where results indicate that increasing farmers’ knowledge 

levels have greater impacts than offering subsidies. Therefore, strategies that combine 

educational activities with financial incentives are more recommended for encouraging the 

implementation of BMPs, especially the grassed waterway. According to the sensitivity analysis, 

a subsidy rate, which indicates the proportion of implementation costs to be subsidized to 

effectively encourage the BMP adoption, has been suggested for every BMP except for the 

windbreak. For reduced-tillage, no-till, riparian buffer strip and WASCoB, the subsidy rates are 

80%, 40%, 60% and 60%, respectively. While increasing the subsidies cannot significantly 

facilitate the adoption of the grassed waterway. Results of the sensitivity analysis for the 

windbreak suggest a subsidy rate of 75% which is identical to the amount of subsidies provided 

by the existing windbreak cost-share program. Thus, subsidy rates for BMPs suggested by this 

study can be considered as supportive information for further explorations.  

Several limitations and challenges have been identified for this study. First, the lack of survey 

data limits the performance of the model in simulating the farmers’ decision-making and 

therefore, reduces the accuracy and reliability of the model results. The second limitation is 

caused by the random elements included in the developed ABM. The stochastic elements 

increase the uncertainties in the outputs, which results in a model with high sensitivities. Finally, 

the model faces a challenge of validation. Because the data about the BMP adoption rate in the 

real world is scarce, it is difficult to evaluate the capacity of the developed ABM in representing 

and replicating the reality. Under these circumstances, future research should be implemented 

focusing on designing field surveys that investigate more details related to the model parameters. 

Strategies such as rewarding participants may be applied to encourage farmers to participate in 

the survey. Responses from the field survey can be used as information and data for constructing 

the model (Brown and Robinson, 2006). Future developments could also be carried out by 

exploring more factors (e.g. precipitation, carbon allowances, direct farmer communication) and 

more BMPs (e.g. manure applications) in the model to simulate farmers’ decision-making more 

precisely. To reduce the uncertainties generated by stochastic elements, researchers may also 

consult with stakeholders expertized in agriculture and socio-economic field when 
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parameterizing the model. Additionally, the ABM may be combined with hydrological models in 

the future to estimate the environmental effectiveness (e.g. soil erosion rate, sediment reduction) 

of each BMP. In such a way, more accurate environmental feedbacks of implementing BMPs can 

be used as inputs, which improves the performance of the developed ABM. 

In conclusion, the developed ABM is able to provide a robust simulation of local farmers’ 

decision-making processes on the BMP adoption based on economic, environmental and social 

factors. It is able to produce encouraging outcomes of different potential interventions in a timely 

manner accounting for the heterogeneities and dynamic interactions among farmers and their 

environment. Although ABMs have been developed by previous studies to model and analyse 

the farmer decision-making on BMP adoptions under different social-environmental factors (e.g. 

Kent, 2014; Ng et al., 2011), the number of examined BMPs in these studies is very limited, in 

most of the cases, does not exceed three BMPs. Moreover, BMPs simulated in previous research 

are different from those evaluated in this study. Considering all facts mentioned previously, the 

developed ABM is capable of serving as a guide for future modelling efforts of the WP3 of the 

AWF project in simulating modelling human-environmental dynamics in agricultural land use 

and BMP adoption. It provides a proof of concept for assessing the impacts of different socio-

economic and environmental factors on farmers decision-making process of the adoption of 

BMP. As a framework, the ABM built in this study could be tuned to provide a more accurate 

simulation of farmer decision-making. Results presented in this study could be fit into a 

hydrological model, specifically the SWAT, to explore changes in the water quality. They can 

also help better understand the dynamics of farmer’s decision-making on BMP applications, 

offer supportive data for policymakers to encourage BMP implementation effectively, as well as 

insights to develop appropriate strategies for water quality preservation.  
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Appendix A Base Map of the Upper Medway Creek Subwatershed 

 
   Data Source: UTRCA 

Figure A-1 Image of the Upper Medway Creek subwatershed 
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Appendix B Average Working Hours and Wages of Off-farm Job 

Table B-1 Proportion of operators’ average weekly hours of off-farm work 

Avg. Weekly Off-farm Work Hours Percent of Operators 

More than 40 hours 18 

30 to 40 hours 13.7 

20 to 29 hours 6.5 

Less than 20 hours 8.6 

Data Source: Statistics Canada (2012) 
 

 

 

Table B-2 Ontario minimum general wage (in $/hour) 

 2015 2016 2017 2018 2019 

Minimum Wage (CAD) 11.25 11.40 11.60 14.00 15.00 

Data Source: Government of Canada (n.d.) 
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Appendix C Costs, Market Price, and Yields of Field Crops 

Table C-1 Annual costs of each field crop in 2017 (in $/acre) 

 Total Inputs Total Machinery Other Costs Total Costs 

Corn 241.25 124.65 137.3 503.2 

Soybean 139.95 111.75 38.2 289.9 

Winter Wheat 198.70 118.6 18.1 335.4 

Hay 144.65 102.57 15.8 263.02 

Data Source: OMAFRA (2016) 
 

Table C-2 Annual average yields of each field crop from 2012 to 2017 

 2012 2013 2014 2015 2016 2017 

Winter Wheat 2.13 2.18 2.10 2.13 2.47 2.38 

Corn 3.89 4.09 4.09 4.33 4.03 4.24 

Soybean 1.31 1.25 1.24 1.27 1.25 1.24 

Hay 2 2.5 2.6 2.7 2.4 2.8 

Data Source: OMAFRA (2018 a.) 
 

Table C-3 Annual average market price of each field crop from 2008 to 2015 

Crop 2008 2009 2010 2011 2012 2013 2014 2015 

Corn 188.40 165.60 210.00 246.40 264.40 236.00 186.80 182.00 

Soybean 418.52 392.22 411.11 452.22 521.11 507.78 515.56 441.11 

Winter Wheat 173.70 159.63 194.44 232.96 275.56 238.15 235.93 293.70 

Hay 117.30 118.10 126.90 136.60 221.48 192.89 150.61 138.89 

Data Source: OMAFRA (2018 b.) 
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Appendix D Costs and Environmental Effectiveness of BMPs 

Table D-1 Range of annual costs of each BMP 

BMP Name Annual Costs ($/Acre of Field) Source 

Conventional Tillage $50/acre - $83/acre OMAFRA (2016) 

Reduced Tillage 97% of conventional tillage costs Kansas (1989) 

No-till 93% of conventional tillage costs Kansas (1989) 

Grassed Waterway $1.57/acre - $44.46/acre Kansas (1989) 
Tourte et al. (2003) 

Buffer Strip $6.32/acre - $18.98/acre Mtibaa et al. (2018) 

WASCoB $26.3/acre - $78.8/acre Kansas (1989) 
UTRCA (n.d. a) 

Windbreak (Planting) $961 - $2819.25/km Roberts (2017) 
Kansas (1989) 

 

Table D-2 Environmental Efficiencies of each BMP 

BMP Name P Loss 
(%) 

Sediment 
Control (%) 

Soil/Wind 
Erosion (%) Source 

Conventional 
Tillage NA NA NA NA 

Reduced Tillage 25 - 50 NA 30 - 60 Kansas (1989) 

No-till 50 - 80 NA 60 - 80 Kansas (1989) 

Grassed 
Waterway 40 - 50 60 - 80 NA Kansas (1989) 

Buffer Strip 24 - 85 53 – 97 NA Hawes and Smith (2005) 

WASCoB 25 - 50 60 - 95 NA Kansas (1989) 

Windbreak NA 17 - 34 62 - 95 López et al. (2017) 
Dafa-Alla and Al-Amin (2011) 

 

 


