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Abstract 

Porous polyamide functionalized by plasma or various coatings has been investigated for oil/water separation. In literature, 

polyamide has rarely been studied for oil removal. This work investigated the performance of bare polyamide 6.6 (nylon 

6.6) in terms of the oil/water separation efficiency and the intrusion pressure, inspiring cost-effective solutions for 

large-scale oil removal in the industry. Both polyamide meshes possessing two-dimensional (2D) one-layer pores and 

nonwoven fabrics with three-dimensional (3D) irregular pores were found to be able to separate oil/water with a high 

efficiency above 98.5%. This finding was attributed to the dual underwater oleophobicity and underoil hydrophobicity of 

these polyamide samples. The roles of 2D and 3D structures in oil/water separation were illustrated, to provide a new 

insight into filter designing. Thanks to its greater intrusion pressure, the 3D netting structure was suggested being more 

beneficial for oil/water separation than the 2D structure. 

 

1. Introduction 

Oil/water separation has been a global environmental challenge because of the production of industrial oily wastewater 

and frequent occurrences of oil spill accidents. For example, the oily wastewater loading at a typical mining site is around 

140kL/day [1]. Mechanical techniques, such as gravity separation, skimming, and flotation, are employed to recover oil in 

industry, which have disadvantages of high cost and low efficiency [2]. Sorbents are also used to remove oil through 

soaking up oil, including natural organic (straw, sawdust), natural inorganic (vermiculite, pumice) and synthetic materials 

(polypropylene), but limited by their low selectivity, low capacity and poor recyclability [3]. Recently, advanced sorbents 

with superoleophilicity and superhydrophobicity, such as P(St-DVB)/Fe3O4 microspheres, have been developed [4,5]. 

Alternatively, metal and polymer meshes/membranes coated by novel materials are used as filters to separate oil and water, 

allowing one to flow through while resisting the other. Those coatings exhibit distinct wettability to water and oil, 1) 

hydrophobicity and oleophilicity simultaneously [6,7], 2) underwater oleophobicity [8-13], or 3) hydrophobicity in oil 

[10], of which the second introduces fouling resistance [11]. In addition, a special filter design using a porous Janus 

membrane, which has a hydrophobic/hydrophilic asymmetry, has drawn much research attention [14,15]. These advanced 

filters are able to separate oil and water with high efficiency, high selectivity and good recyclability at a lab scale. Scaling 

up and cost evaluation are required for industrial applications of the advanced filters.  

One way to realize large-scale oil/water separation in the industry is to use proper economic materials. Polyamide 6.6 

(nylon 6.6) is a commercial material that can be readily used in a large scale. Porous polyamide meshes/membranes 

coated with various materials that have special wettability, such as polydopamine and polydivinylbenzene, have been 

developed for oil removal [16-18]. In addition, polyamide meshes functionalized by atmospheric pressure plasma, 

showing a satisfying underwater oleophobicity, effectively separated oil/water [19]. Recently, spunbond nylon 6,6 

nonwoven fabrics without any treatment were used as first responders for oil spills both in Eucutta and in New Augusta, 

Mississippi, to absorb oil and prevent further contamination [20]. This nonwoven nylon was characterized by its 

manufacturer regarding separating oil from oil-in-water emulsion [20]. It trapped oil within the fabric but allowed water to 

flow through its pores [20].  
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To develop economic polyamide 6.6 for large-scale oil/water separation, knowledge gaps remain, such as why nonwoven 

polyamide 6.6 can effectively separate oil/water, whether polyamide 6.6 meshes are capable of oil removal, and whether 

different porous structures of polyamide influence the oil/water separation. One important property to characterize the 

oil/water separation performance is the intrusion pressure of oil (or water), representing the robustness and the capacity of 

the filter. The intrusion pressure closely relates to the oil (or water) contact angle (CA) of the filter [21], which depends on 

the surface energy and microstructure of the filter [22-24]. Meshes and nonwoven fabrics show different microstructures, 

two-dimensional (2D) one-layer orderly porous structure and three-dimensional (3D) irregular porous structure, 

respectively, which could lead to their different oil removal performances. A systematic study of polyamide 6.6 2D 

meshes and 3D nonwoven fabrics for oil/water separation is hence needed, to address the aforementioned questions and to 

extend the use of polyamide 6.6 in the oil removal industry. In this work, polyamide 6.6 2D meshes and 3D nonwoven 

fabrics were investigated to correlate their microstructures and oil/water separation properties. The oil/water separation 

efficiency and the intrusion pressure were measured and elaborated, to illustrate the effects of the dual underwater 

oleophobicity and underoil hydrophobicity during oil/water separation. The research findings are expected to provide an 

insight into potential applications of cost-effective polyamide 6.6 in the large-scale oil removal industry. 

 

2. Experimental  

2.1 Materials 

Polyamide 6.6 (nylon 6.6) meshes were purchased from Component Supply, Tennessee. Polyamide 6.6 nonwoven fabrics 

(thermal bonded, PBN-II®, Type 30) were provided by Cerex Advanced Fabrics, Florida. Heavy mineral oil, dopamine 

hydrochloride (DA), TEOS, chloroform, oil red, methyl orange, and ammonia solution (concentration 28-30%) were 

bought from Sigma-Aldrich, Canada.   

2.2 Oil/water separation 

In oil/water separation experiments, a piece of polyamide 6.6 (7cm×7cm) or seven layers of stacked polyamide 6.6 

meshes were fixed under a tube with a clamp (see supporting information fig. S1) to form a filter. Water was fed into the 

tube to prewet the polyamide 6.6. Then a mixture of heavy mineral oil dyed with oil red and water (1:1, 20ml) was poured 

into the tube. The filtrated water was collected to evaluate the separation efficiency η, defined by (1-C1)×100%, where C1 

is the oil concentration in water after the separation. C1 was measured by UV-Vis spectrometer (the details are in the 

supporting information). The water flux (v) was calculated by the equation of v=V/St, where V is the volume of the 

collected water, S is the surface area of the filter and t is the time used for collecting the water. The intrusion pressure 

(Pintru) of oil was measured by keeping adding oil into the tube till the maximum height (hmax), when oil started to 

penetrate the polyamide 6.6, according to Pintru= ρoil g hmax. For separating water and chloroform that is heavier than water 

(1;1, 20ml), the polyamide 6.6 was prewetted by heavy mineral oil (not by chloroform that is vaporized fast and cannot 

keep the polyamide 6.6 wet). The separated chloroform was collected for the evaluation of the separation efficiency η, 

which was defined by (1-C2)×100%, where C2 is the water concentration in the filtrated chloroform (supporting 

information). And the intrusion pressure of water was calculated by Pintru= ρwater g hmax. 

2.3 Characterization 

The morphologies and microstructures of the samples were observed by using an Atomic Force Microscopy (AFM, 

MultimodeTM SPM, Digital Instruments) in a tap mode and a SEM (Zeiss ULTRA Plus). CAs including water contact 

angle (WCA), oil contact angle in water (O/W) and water contact angle in oil (W/O) were measured using a lab-made 

contact angle meter, set up by a syringe needle, a side-view microscope, and a camera.  

 

3. Results and Discussion 

Polyamide 6.6 meshes with a pore size of 25, 64, 85, 112, and 155µm, denoted as mesh_25, mesh_64, mesh_85, 

mesh_112, and mesh_155, and nonwoven fabrics with a density of 1, 2, 3 and 4 ounces per square yard, expressed as 

nonwoven_1, nonwoven_2, nonwoven_3, and nonwoven_4, were investigated in this work. The diameter of the yarn/wire 

and the open area (pore area/total area) of the meshes were shown in supporting information table S1. 



  

Microstructures of mesh_64 and nonwoven_4 are shown in fig. 1, as examples of polyamide 6.6 meshes and nonwoven 

fabrics. The meshes presented one layer of ordered square pores (2D), while the nonwoven fabrics had layered irregular 

pores (3D) whose size was difficult to be determined due to the irregularity. With the increase of the density of the 

nonwoven fabric, the average pore size gets smaller under the optical microscope. The densest nonwoven polyamide 6.6 

in this work, nonwoven_4, was considered to have an average size of 68±33μm [20]. Once the polyamide 6.6 samples 

were prewetted by water or oil, they were able to separate mixtures of water and oil (fig. 2-a-b) due to their underwater 

oleophobicity and underoil hydrophobicity proved by their O/W and W/O (fig. 2-c-d). The error bars here and in the 

following figures were the standard deviations.  

When polyamide 6.6 was prewetted by water, it allowed water to drip through its pores but blocked the heavy mineral oil 

by oil/water interfacial tension (figure 2-a). To separate water and chloroform that is heavier than water, polyamide 6.6 

was prewetted by oil, which allowed chloroform to penetrate but resisted water (figure 2-b). The separation process was 

driven by gravity. As shown in fig. 3, the separation efficiencies of all the polyamide 6.6 samples were higher than 98.5%, 

the efficiency of polyamide 6.6 prewetted by water was slightly higher than that prewetted by oil, and the efficiency had 

the trend to decrease with increasing the pore size of the mesh (with decreasing the density of the nonwoven). Fig. 4 

shows the intrusion pressures of oil and water for all polyamide 6.6 samples. The intrusion pressure increased with the 

decrease of the pore size of polyamide 6.6 mesh and with the increase of the density of the nonwoven fabric. Especially, 

as shown in fig. 4-a, when several (7) layers of meshes were stacked together to be tested, the intrusion pressure was one 

or two times higher than that of one mesh. However, the water flux (fig. S6) that represents the separation speed declined 

with decreasing the pore size of polyamide 6.6, and was particularly slow for the densest nonwoven_4 and stacked 

meshes_25. An optimal balance between the intrusion pressure (the separation capacity and the robustness) and the water 

flux (the separation speed) would be required for practical applications.  

 

 

Fig. 1. Scanning Electron Microscope (SEM) images of top and side views of as-purchased polyamide 6.6 mesh_64 (a, b) 

and nonwoven_4 (c, d). The mesh has a 2D ordered pore structure (a, b) and the nonwoven has 3D disordered pores (c, d).  

 



   

Fig. 2. Polyamide 6.6 mesh_64 prewetted by water (a) or by heavy mineral oil (b) successfully separated water and oil, so 

did the other polyamide 6.6 samples. Heavy mineral oil contact angle in water (O/W) and water contact angle in heavy 

mineral oil (W/O) of polyamide 6.6 meshes (c) and nonwoven fabrics (d). The insets in fig. (c) and (d) are images of 

contact angles of mesh_64 and nonwoven_2.   

 

 

Fig. 3. The separation efficiencies of polyamide 6.6 meshes (a) and nonwoven fabrics (b) prewetted by water or oil. The 

solid and dotted lines are the trend lines for the efficiency of polyamide 6.6 prewetted by water and oil, respectively.  

 



   

Fig. 4. The experimental intrusion pressures of heavy mineral oil and of water for polyamide 6.6 meshes (a) and 

nonwoven fabrics (b). Oil intrusion means the intrusion pressure of heavy mineral oil for polyamide 6.6 prewetted by 

water. Water intrusion represents the intrusion pressure of water for polyamide 6.6 prewetted by heavy mineral oil.  

 

The mesh and nonwoven were modified by using the same method to verify whether the improvement of the intrusion 

pressure would be the same or different for the 2D and 3D samples. Surface coating [25] and plasma treatment were used 

to improve the intrusion pressure of oil for polyamide 6.6 mesh_64 and nonwoven_2. The details of the treatment 

procedures are presented in the supporting information. The method to enhance the intrusion pressure of water wasn’t 

investigated here, as most types of oil is lighter than water and to separate those oil from water polyamide 6.6 prewetted 

by water should be used. The theoretical intrusion pressure of oil (or of water) for a filter is given in equation (1), where 

γow is oil/water interfacial tension, θO/W (or θW/O) is the value of O/W (or W/O) and d is the pore size [21, 26-28]. 

        
           

 
 (or         

           

 
)                                                  (1) 

Therefore, the intrusion pressure of oil could be improved by increasing the O/W, which is determined by the surface 

chemistry and the roughness of the filter [22-24]. For a perfect surface without any roughness, the relation of O/W and 

WCA follows equation (2), where θw is the value of WCA and γo (or γw)is the surface tension of oil (or water) [22,29].  

                  
          

  
      

  

                                                                 (2)  

Equation (2) indicates that θO/W increases with the decrease of θw. In addition, the CA is affected by the surface roughness 

according to Wenzel (            ) or Cassie (                  ) models, where θ is measured or apparent 

CA on the real rough surface, θY is Young CA on the ideal flat surface, r is the ratio of the actual over the projected surface 

area and f is the fraction of solid surface in contact with the droplet [22,24,30-33]. The O/W of polyamide 6.6 that is larger 

than 90
0
 could increase with the increase of roughness. Therefore, in order to increase O/W and improve the intrusion 

pressure for polyamide 6.6, we used two modification strategies, coating superhydrophilic polydopamine/tetraethyl 

orthosilicate (PDA/TEOS) on the polyamide 6.6 surface and etching the polyamide 6.6 surface by using oxygen plasma to 

create a large roughness. 

Microstructures of as-purchased, PDA/TEOS coated, plasma treated polyamide 6.6 mesh_64 and nonwoven_2 are shown 

in fig. 5 and fig. S7, respectively. The as-purchase polyamide 6.6 had a smooth surface, PDA/TEOS particles were 

successfully coated on the surface and a rough surface was achieved by using plasma treatment. Due to the 

superhydrophilicity of PDA/TEOS, WCA of the coated polyamide 6.6 was zero comparing to ~90
0
 of the original mesh 

and ~65
0
 of the original nonwoven fabric (fig. 5-d and fig. S7-d). The surface roughness of the mesh_64 samples was 

determined by AFM analysis as shown in fig. 6 and table S2. Both the coated (Ra=88.2±7.9nm, r=1.28±0.08) and plasma 

treated (Ra=206.9±84.6nm, r=1.44±0.07) meshes had a large roughness, much larger than the original mesh (Ra=13.9±1.5 



  

nm, r= 1.07±0.02). Then the coating process brought in the modified surface chemistry as well as the rougher surface. 

Consequently, as shown in fig. 7, compared to the original polyamide 6.6, both the coated and plasma treated samples 

showed increased O/W and improved intrusion pressure of oil, where the improvement caused by the coating process was 

slightly larger than that resulted from the plasma treatment.  

 

 

Fig. 5. SEM images of as-purchased (a), PDA/TEOS coated (b) and plasma treated (c) polyamide 6.6 mesh_64. Water 

contact angle in air of as-purchased and PDA/TEOS coated mesh_64 (d). 

  
Fig. 6. AFM images of the surfaces of as-purchased (a), PDA/TEOS coated (b) and plasma treated (c) polyamide 6.6 

mesh_64. The grooves on the plasma treated polyamide 6.6 mesh_64 were not homogeneous, consistent with fig. 5-c, and 

thus three representative AFM images are given in fig. 6-c.  

 

 



  

Fig. 7. The oil contact angle in water (O/W) (a) and the experimental intrusion pressures of oil for original, PDA/TEOS 

coated and plasma treated polyamide 6.6 mesh_64 (hollow symbols) and nonwoven_2 (solid symbols). The red star 

symbols are the intrusion pressures for stacked layers of meshes_64.  

 

It is worth noting that for the mesh and nonwoven fabric, the same modification methods resulted in a similar increase of 

O/W from ~130
0
-135

0
 to ~150

0
-160

0 
(fig. 7-a), but quite different degrees of improvement of intrusion pressure, from 

~0.5kPa to ~1.1kPa (doubled) for the mesh and from ~0.9kPa to ~1.1kPa (30% higher) for the nonwoven (fig. 7-b). For 

the stacked meshes_64, the average intrusion pressure was enhanced from ~1.38kPa to ~1.75kPa after the surface 

modification, also around 30% higher like the nonwoven (fig. 7-b). The different degrees of intrusion pressure 

improvement for the mesh and the nonwoven (or the stacked meshes) were caused by their respective 2D and 3D pore 

structures, which could lead to different contact modes of oil and water within the pores.  

Schematics of the contact of oil and water within a pore of the polyamide 6.6 samples under the intrusion pressure were 

depicted in fig. 8. Layers of stacked meshes had irregular 3D pores like the nonwoven. The irregular pore structure was 

simplified to be a regular 3D one in the schematic. To determine the intrusion pressure of oil by equation (1) for the 

nonwoven and stacked meshes, the O/W is supposed to be that on a row of wires, which was assumed to be similar with 

the measured O/W on the nonwoven and mesh surfaces (θnonwoven_O/W and θmesh_O/W) that are composed of rows of wires. 

Due to their irregular pore structures, the pore size was not homogeneous and difficult to be determined, and then the 

theoretical intrusion pressure could not be calculated. However, comparing to the original samples, the enhancement of 

the theoretical intrusion pressure for the modified ones was supposed to be proportional to the increase of cosθnonwoven_O/W 

or cosθmesh_O/W, which was measured to be ~1.35 (cos162
0
/cos135

0 
= -0.951/-0.706), 1.27 (cos154

0
/cos135

0 
= 

-0.898/-0.706), 1.37 (cos155
0
/cos131

0 
= -0.906/-0.66) and 1.34 (cos153

0
/cos131

0 
= -0.89/-0.66) for the coated nonwoven, 

plasma treated nonwoven, coated stacked meshes and plasma treated stacked meshes, respectively, as indicated in fig. 7-a. 

Therefore, the theoretical improvement of the intrusion pressure, 27%-37% for the modified nonwoven and stacked 

meshes, was roughly consistent with the measured improvement, around 30% as shown in fig. 7-b (solid and star 

symbols).   

For the 2D mesh, the O/W on a wire (θwire_O/W) should be used to determine the intrusion pressure, not the measured O/W 

on the mesh surface (the wire was woven to the mesh). The CAs on a wire and on a mesh were depicted in fig. 8-c, as the 

topography affects the CA. The O/W on the wire was difficult to be measured but could be calculated by the measured 

O/W on the mesh according to equation (3), where R is the radius of the wire and d is the pore size of the mesh [23,24]. 

            
 

  
 

 

                                                                           (3) 

Thus the O/W on a wire of the original, coated and plasma treated meshes was calculated to be 111
0
, 132

0
 and 129

0
, 

respectively. The W/O on a wire of the original mesh was 105
0
. By using the calculated O/W (or W/O) on the wire, the 

theoretical intrusion pressure for the polyamide 6.6 mesh was determined by equation (1), which fits very well with the 

measured data shown in fig. 9. Comparing to the as-purchased mesh_64, the cosθwire_O/W of the coated and plasma treated 

mesh was almost twice as large (cos132
0
/cos111

0
=-0.668/-0.357=1.87 and cos129

0
/cos111

0
=-0.628/-0.357=1.78). Thus the 

theoretical intrusion pressure for the mesh was around doubled after the modifications, consistent with the measured 

results in fig. 7-b (hollow symbols). Comparing to one mesh, the stacked meshes had smaller or equal irregular pores and 

the intrusion pressure determined by the measured O/W on the mesh (~135
0
) was doubled or even tripled (

           

  
 

           

  
     

  

  
, where d1 and d2 are the pore sizes of the stacked meshes and of the mesh), consistent with the 

experimental data in fig. 4-a. That means a 3D netting structure of polyamide 6.6 is beneficial for the use of oil/water 

separation than a 2D mesh structure in terms of the intrusion pressure.  

Researchers have developed novel coatings on meshes or membranes for applications of oil/water separation [27,34]. 

They also coated flat surfaces such as silicon wafers and used the CAs on the coated flat surfaces to calculate theoretical 



  

intrusion pressures for the coated meshes according to equation (1) [27]. The measured and calculated intrusion pressures 

were fitted well. Because of the same coating procedures, the topography and the CA on the coated flat surface should be 

the same as those on the coated wire. Our method to determine the theoretical intrusion pressure of a mesh using the CA 

on the wire, which is calculated by the measured CA on the mesh, is also valuable, especially for the as-purchased meshes, 

since it is difficult to duplicate a flat surface that has the same texture with the wire surface.  

 

 

Fig. 8. Side views of the mesh (a), the nonwoven fabric (d) and the stacked meshes (e), schematics of the contact of oil 

and water under the intrusion pressure within a pore of the mesh (b), the nonwoven fabric or the stacked meshes (f), the 

contact angles on a wire and on a mesh (c).   

 

   

Fig. 9. Comparison of the measured and calculated intrusion pressures for the polyamide 6.6 meshes. The left five points 

on the X axis are original polyamide 6.6 samples and the right two points that are highlighted by red are modified 

polyamide 6.6 samples. The theoretical values were calculated by using the contact angle on the wire (θwire).  

 

The dual underwater oleophobic and underoil hydrophobic properties of the wire, the mesh and the nonwoven resulted 

from a metastable Cassie state. For an ideal surface, O/W and W/O add up to 180
0
. A roughness could even enhance the 

lyophilicity or the lyophobicity according to Wenzel or Cassie models in a stable state. However, a metastable Cassie state 

that resulted from proper topography and chemical composition offers access to dual underwater oleophobicity and 

underoil hydrophobicity [22]. To reach the metastable Cassie regime by designing a surface topography, such as micro 

grooves or pillars, the lyophilic surface could transform to be lyophobic [22,24,33,35-37]. Metastable states are likely to 



  

correspond to a minimum local free energy [24,38,39]. By applying a force above a threshold, the droplet could penetrate 

into the micro grooves of the surface and the metastable Cassie state (lyophobic) could be turned to Wenzel (lyophilic) 

[28,33,37], which corresponds to the minimum global energy. Fig. 10 shows the apparent CAs verses Young CAs in the 

stable Wenzel/Cassie and metastable Cassie regimes [28,33,39,40]. Ideal polyamide 6.6 surfaces could be oleophilic in 

water (θo/w on a nylon membrane = 88.7
0
) [12], which was transformed to underwater oleophobicity on the rough 

polyamide 6.6 wire (fig. 6-a: there were grooves on the wire surface) according to the metastable Cassie mode. Therefore, 

the wire of the polyamide 6.6 sample had the dual underwater oleophobicity (111
0
) and underoil hydrophobicity (105

0
) 

due to the combined effects of its surface composition and roughness. The meshes and the nonwoven fabrics showed even 

higher underwater oleophobicity (~130
0
-145

0
) and underoil hydrophobicity (~130

0
-145

0
) due to their two levels of 

roughness: (1) the rough topography on the wires and (2) the uneven surfaces formed when wires are woven to the meshes 

or bonded to the nonwoven.  

 

 
Fig. 10. (a) Relationship between the apparent contact angles θ on structured surfaces and the Young contact angles θY on 

ideal surfaces in different wetting modes: Cassie_1 regime - The droplet does not penetrate into the surface texture and 

cosθ = f(1+ cosθY) −1 [28,33,39]; Wenzel regime - The drop fills the grooves of the surface and cosθ = rcosθY [28,33,39]; 

Cassie_2 state - A drop and a film of the liquid invade the solid texture and cosθ = f(-1+ cosθY) +1, where f is the fraction 

of the solid in contact with the drop [40], and cosθ1 and cosθ2 are determined by the surface texture and defined by 
   

   
  

and 
   

   
, respectively. For general surfaces with textures, f may depend on θY and cosθ may not a linear function of cosθY 

[24]. (b): The energy at a metastable Cassie state is locally lowest while the stable mode corresponds to the globally 

minimum energy.  

 

4. Conclusions 

This work provides insight into using cost-effective polyamide 6.6 for oil/water separation or as first responders in 

occurrences of oil spills. Even though polyamide functionalized by various coatings has been developed for oil/water 

separation, unmodified polyamide has been rarely studied. We verified that two types of polyamide 6.6 filters, which were 

meshes with a 2D porous structure and 3D nonwoven fabrics, were both able to separate oil/water with a high efficiency 

of >98.5%, and found out the reason to be the dual underwater oleophobicity and underoil hydrophobicity. For oil/water 

separation, different CAs at the oil/water/polyamide interface determined the intrusion pressures of 2D and 3D polyamide 

6.6. The effective CAs were found to be the CA on the wire surface (not the CA on the mesh surface) for the 2D mesh (the 



  

wire is woven to the mesh) and the CA on the nonwoven surface for the 3D nonwoven, respectively. A 3D netting 

structure was more beneficial for oil/water separation than a 2D structure in terms of the intrusion pressure. 
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Highlights 

 Unmodified polyamide 6.6, rarely studied for oil removal, separated oil/water 

 2D mesh and 3D nonwoven polyamide were systematically studied for oil removal 

 Roles of 2D and 3D porous structures in intrusion pressures were illustrated 

 Different contact angles determined intrusion pressures of 2D mesh and 3D nonwoven 

 3D netting was beneficial for oil/water separation in terms of intrusion pressures  
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