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Highlights

• Reviewed various analytical methods applicable for plates with general

boundary conditions

• Applied finite integral transform to vibration of rotationally-restrained

orthotropic plates

• Proposed a new formulation of finite integral transform

• Discussed numerical issues related to application of finite integral trans-

form method
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Abstract

The exact series solutions of plates with general boundary conditions have

been derived by using various methods such as Fourier series expansion,

improved Fourier series method, improved superposition method and finite

integral transform method. Although the procedures of the methods are dif-

ferent, they are all Fourier-series based analytical methods. In present study,

the foregoing analytical methods are reviewed first. Then, an exact series

solution of vibration of orthotropic thin plate with rotationally restrained

edges is obtained by applying the method of finite integral transform. Al-

though the method of finite integral transform has been applied for vibration

analysis of orthotropic plates, the existing formulation requires of solving a

highly non-linear equation and the accuracy of the corresponding numerical

results can be questionable. For that reason, an alternative formulation is

proposed to resolve the issue. The accuracy and convergence of the proposed

method are studied by comparing the results with other exact solutions as

well as approximate solutions. Discussions are made for the application of

the method of finite integral transform for vibration analysis of orthotropic
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thin plates.

Keywords: Rectangular orthotropic thin plate, Vibration analysis, Finite

integral transform, Rotationally restrained, Rotational fixity factors, Exact

series solution

1. Introduction

Over the last few decades, boundary value problems of beams and plates

with general boundary conditions have been studied extensively. Exact series

solutions have been derived with use of various methods. The first notable

method was proposed by Wang and Lin [1] by applying Fourier series to the

vibration analysis of beams with general boundary conditions. Subsequently,

Wang and Lin [2] extended the use of the Fourier series to obtain exact solu-

tions of several structural mechanics problems with arbitrary boundary con-

ditions by transforming the governing differential equations into integral form

with sinusoidal weighting functions. Hurlebaus et al. [3, 4] broadened the use

of the method by Wang and Lin [1, 2] to calculate an exact series solution for

the free vibration of a completely free orthotropic plate. Other works based

on Fourier series were presented in references [5–8] and a short review can be

found in [9]. In order to remedy the slow convergence problem of the Fourier

series method, Li et al. [10–16] proposed an improved (or modified) Fourier

series method in which the displacement functions comprise a Fourier series

and an auxiliary function (polynomial function or one-dimensional Fourier

series) resulting in remarkable convergence and accuracy.

The method of superposition was thoroughly studied by Gorman [17]. In

this method boundary conditions are decomposed into a set of “build blocks”
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such that analytical solutions can be obtained by means of the generalized

Levy method [18]. Recently, Bhaskar et al. [19–21] simplified the method

of superposition with use of the so-called untruncated infinite Fourier series

instead of conventional Levy-type closed-form expressions to obtain accurate

results.

Besides, another remarkable analytical method is the method of finite in-

tegral transform. Various types of integral transform were employed to obtain

the solutions of a wide variety of boundary value and initial value problems

several decades ago [22–31]. Notably, in recent, the double finite integral

transforms has been adopted to acquire exact series solution of plates with

different complicated boundary conditions with use of various integral ker-

nels, such as fully clamped orthotropic plates by Li et al. [32], free orthotropic

rectangular plates in [33–35], and rectangular cantilever thin plates by Tian

et al. [36]. Zhang and Xu [37] proposed double finite integral transform for

bending of orthotropic plates with edges rotationally restrained. However,

dynamic analysis of a plate with rotationally restrained edges has not been

explored with use of the method of finite integral transform. Furthermore,

the existing formulation [3, 5, 33] for the finite integral transform method

in application to vibration analysis of orthotropic plates involves solving a

highly non-linear equation, which requires quite laborious computation even

for small m and n and consequently numerical results are questionable.

It should be recognised that even though the aforementioned methods

are derived from different mathematical principles with various procedures,

the methods are all Fourier-series based analytical methods. The inversion

formulas of Finite Fourier transforms are exactly Fourier sine/cosine series.
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Accordingly, Fourier series expansion and Finite Fourier-integral transform

are equivalent but the finite integral transform method is more convenient

and automatically involves boundary conditions in the process of conversion.

It also can be found that the improved superposition method proposed by

Bhaskar et al. [19–21] literally adopted the same concept by using Fourier

series expansion to replace conventional Levy-type expressions in the forms

of trigonometric and hyperbolic functions. Nevertheless, the superposition

process requires skillful decomposition of the original boundary value prob-

lems as well as different formulations for each kind of boundary conditions

[14]. Furthermore, in the comparison of the Fourier expansion and Finite

integral transform method, the improved Fourier series methods developed

by Li et al. [10–16] can be quite complicated for some boundary conditions

(except classical cases) such as edges elastically restrained against rotations,

although the solutions provide accurate results with rapid convergence for

arbitrary boundary conditions.

In the present study, with use of the method of finite integral trans-

form, the eigenfrequencies and mode shapes are derived for a rectangu-

lar orthotropic thin plate with rotationally restrained edges. An alterna-

tive formulation is proposed to obtain the natural frequencies by solving an

eigenvalue problem instead of a highly non-linear equation. Moreover, the

forced vibration of the plate is investigated by the method of finite integral

transform.Numerical examples are presented to validate the proposed method

by comparing the results with those from different methods. Secondly, sev-

eral issues arising from numerical calculations will be discussed while apply-

ing finite integral transforms for the flexure and vibration of the plates with
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rotationally restrained edges. In addition, brief comparisons and discussions

will be presented for existing exact analytical methods.

2. Vibration of rectangular orthotropic plates with rotationally re-

strained edges

While a number of studies have been devoted to investigations of vibration

of plates with uniform or non-uniform elastic boundary restraints [12, 38–

46], most of the studies use approximate methods such as the Rayleigh-Ritz

method which is inconvenient comparing to the method of finite integral

transform [2]. Moreover, it would also be the first time to examine whether

the method of finite integral transform can be applied to plates with different

boundary conditions other than completely free conditions reported in [3],

whereas its universal application was questioned by Li et al. [14].

2.1. Free vibration

Consider an orthotropic rectangular thin plate with length a, width b

and thickness h, as shown in Fig. 1. The plate is assumed to be rigidly

supported against transverse displacement around all the edges and the edges

are elastically restrained against rotation. The elastic restraints are assumed

to be proportional to the rotations, and the restraint stiffness may have any

value in the range between simply supported (i.e., perfectly hinged) and

fully clamped (i.e., completely fixed) conditions. Although the stiffness of

such restraints may vary from point to point, the values are assumed to be

uniform along a given boundary for the sake of simplicity.
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Figure 1: Orthotropic plate with four edges elastically restrained

The governing equation of the free vibration is [47]

Dx
∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
+ ρh

∂2w

∂t2
= 0 (1)

in which ρ is the density of the plate; Dx and Dy are the flexural rigidity

in the x -direction and y-direction, respectively; Dxy = Gxyh
3/12 is torsional

rigidity; and H = D1 + 2Dxy is effective torsional rigidity, in which D1 =

νxDy = νyDx is defined in terms of the Poisson’s ratios νx and νy of the plate,

respectively.

The displacement function w(x, y, t) can be expressed as the product of

two functions, one involving only the coordinates x and y, called a mode

shape function W (x, y), and the other involving the variable time T(t). An

analysis involving separation of variables shows that the function T(t) varies
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sinusoidally with time (either sin or cosine). Denoting the frequency of sinu-

soidal oscillations by ω, the displacement function can be expressed as

w(x, y, t) = W (x, y)eiωt (2)

Substituting Equation (2) into Eq. (1), it can be obtained

Dx
∂4W

∂x4
+ 2H

∂4W

∂x2∂y2
+Dy

∂4W

∂y4
− ω2ρhW = 0 (3)

Denoting partial differentiation by a comma, the boundary conditions may

be written as

w = 0, Mx = −Dx (w,xx +νyw,yy ) = −Rx0w,x at x = 0 (4a)

w = 0, Mx = −Dx (w,xx +νyw,yy ) = Rxaw,x at x = a (4b)

w = 0, My = −Dy (w,yy +νxw,xx ) = −Ry0w,y at y = 0 (4c)

w = 0, My = −Dy (w,yy +νxw,xx ) = Rybw,y at y = b (4d)

The pair of the double finite sine transforms is defined as [48]

¯̄W (m,n) =

∫ a

0

∫ b

0

W (x, y) sinαmx sin βnydxdy (5a)

W (x, y) =
4

ab

∞∑

m=1

∞∑

n=1

¯̄W (m,n) sinαmx sin βny (5b)

where

αm =
mπ

a
, βn =

nπ

b
(m = 1, 2, 3, ..., n = 1, 2, 3, ...) (6)

Taking double finite sine transforms on both sides of Eq. (3), it gives

∫ a

0

∫ b

0

∇4
oW (x, y) sinαmx sin βnydxdy − ω2ρh ¯̄W (m,n) = 0 (7)
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where

∇4
o = Dx

∂4

∂x4
+ 2H

∂4

∂x2∂y2
+Dy

∂4

∂y4
(8)

Using integration by parts and considering the boundary conditions of Eqs. (4),

the double finite sine transforms of the fourth derivatives in Eq. (7) can be

obtained [49]:

∫ a

0

∫ b

0

W,xxxx sinαmx sin βnydxdy = α4
m

¯̄W (m,n)

− αm
[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

(9a)

∫ a

0

∫ b

0

W,xxyy sinαmx sin βnydxdy = α2
mβ

2
n

¯̄W (m,n) (9b)

∫ a

0

∫ b

0

W,yyyy sinαmx sin βnydxdy = β4
n

¯̄W (m,n)

− βn
[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]

(9c)

where coefficients W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0) and W̄ ,yy (m, b) are

determined from the finite-sine transformed boundary conditions at the four
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edges by

W̄ ,xx (0, n) =

∫ b

0

W,xx (0, y) sin βnydy (10a)

W̄ ,xx (a, n) =

∫ b

0

W,xx (a, y) sin βnydy (10b)

W̄ ,yy (m, 0) =

∫ a

0

W,xx (x, 0) sin βnxdx (10c)

W̄ ,yy (m, b) =

∫ a

0

W,xx (x, b) sin βnxdx (10d)

Taking finite sine transform on both sides of Eqs. (4), it yields

W̄ ,xx (0, n) =
Rx0

Dx

W̄ ,x (0, n) (11a)

W̄ ,xx (a, n) = −Rxa

Dx

W̄ ,x (a, n) (11b)

W̄ ,yy (m, 0) =
Ry0

Dy

W̄ ,y (m, 0) (11c)

W̄ ,yy (m, b) = −Ryb

Dy

W̄ ,y (m, b) (11d)

Substituting Eq. (9) into Eq. (7), the following is obtained

¯̄W (m,n) =
1

Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}

(12)

where

Ωmn = Dxα
4
m + 2Hα2

mβ
2
n +Dyβ

4
n (13)

Taking the inverse finite sine transform of Eq. (12) with respect to the spatial
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variable x and y, separately, it can be obtained

W̄ (x, n) =
2

a

∞∑

m=1

¯̄W (m,n) sinαmx (14a)

W̄ (m, y) =
2

b

∞∑

n=1

¯̄W (m,n) sin βny (14b)

Using Stokes’s transformation and taking the derivative of Eq. (14a) with

respect to x and Eq. (14b) to y, respectively, it yields

W̄ ,x (x, n) =
2

a

∞∑

m=1

αm
¯̄W (m,n) cosαmx (15a)

W̄ ,y (m, y) =
2

b

∞∑

n=1

βn
¯̄W (m,n) cos βny (15b)

Applying Eqs. (11) and Eqs. (12), four infinite systems of equations with

respect to W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0), and W̄ ,yy (m, b) can be ob-

tained.
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W̄ ,xx (0, n) =
2

a

Rx0

Dx

∞∑

m=1

αm
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}

(16a)

W̄ ,xx (a, n) = −2

a

Rxa

Dx

∞∑

m=1

(−1)mαm
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}

(16b)

W̄ ,yy (m, 0) =
2

b

Ry0

Dy

∞∑

n=1

βn
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}

(16c)

W̄ ,yy (m, b) = −2

b

Ryb

Dy

∞∑

n=1

(−1)nβn
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}

(16d)

For each combination of m and n, Eqs. (16) produce 2m + 2n equations

with 2m + 2n unknown variables. Non-trivial solutions requires the deter-

minant of the coefficient matrix to vanish. Then, the eigenfrequencies of the

12
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plate can be calculated as well as the associated vibration modes. This ap-

proach was also reported in references [3, 5, 33]. However, such a procedure

involves solving a highly non-linear equation, which requires quite labori-

ous computation even for small m and n. This problem cannot be remedied

through reducing the 2m+2n equations to m+n equations by using the sym-

metry conditions of modes in the case with symmetric boundary conditions,

i.e., Rx0 = Rxa and Ry0 = Ryb. For the purpose of illustration, consider the

doubly symmetric modes of a clamped plate, from which it can be obtained

0 =
∞∑

m=1

αm
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}
(17a)

0 =
∞∑

m=1

(−1)mαm
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}
(17b)

0 =
∞∑

n=1

βn
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}
(17c)

0 =
∞∑

n=1

(−1)nβn
Ωmn − ω2ρh

{
αmDx

[
(−1)mW̄ ,xx (a, n)− W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b)− W̄ ,yy (m, 0)

]}
(17d)
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Using the symmetric boundary conditions, it can be found that

W̄ ,xx (a, n) = W̄ ,xx (0, n)

W̄ ,yy (m, b) = W̄ ,yy (m, 0)
(18)

Thus, terms with even m or n in Eqs. (17) will vanish. After that, Eqs. (17)

turn into

∞∑

m=1,3,...

α2
mDx

Ωmn − ω2ρh
W̄ ,xx (a, n) +

∞∑

m=1,3,...

αmβnDy

Ωmn − ω2ρh
W̄ ,yy (m, b) = 0

(19a)

∞∑

n=1,3,...

αmβnDx

Ωmn − ω2ρh
W̄ ,xx (a, n) +

∞∑

n=1,3,...

β2
nDy

Ωmn − ω2ρh
W̄ ,yy (m, b) = 0 (19b)

It can be observed that even for the simplified Eqs. (19), it is still required

to solve the highly non-linear equation. The infinite series of first term in

Eq. (19a) or the second term in Eq. (19b) can be summed without much

difficulty in the case of isotropic plate as it will benefit the numerical com-

putation. However, sum of the infinite series will be complex for orthotropic

plates. In addition, it can also be recognised that Eqs. (19) are coinciden-

tally identical to Eqs. (16) in reference [21] in which the improved super-

position method is applied for isotropic plate. This verifies that the finite

integral transform method is essentially the same as the improved superpo-

sition method.

Alternatively, instead of solving non-linear equations, Li et al. [10, 14]

proposed a simple procedure to obtain the natural frequency. This proce-

dure can also be applied herein for the method of finite integral transform.
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Combining Eqs. (11) and Eqs. (15), it yields

W̄ ,xx (0, n) =
2

a

Rx0

Dx

∞∑

m=1

αm
¯̄W (m,n) (20a)

W̄ ,xx (a, n) = −2

a

Rxa

Dx

∞∑

m=1

(−1)mαm
¯̄W (m,n) (20b)

W̄ ,yy (m, 0) =
2

b

Ry0

Dy

∞∑

n=1

βn
¯̄W (m,n) (20c)

W̄ ,yy (m, b) = −2

b

Ryb

Dy

∞∑

n=1

(−1)nβn
¯̄W (m,n) (20d)

Substituting Eqs. (20) into Eq. (12) produces

Ωmn
¯̄W (m,n) +

2αm
a

∞∑

i=1

[
(−1)i+mRxa +Rx0

]
αi

¯̄W (i, n)

+
2βn
b

∞∑

j=1

[
(−1)j+nRyb +Ry0

]
βj

¯̄W (m, j)− ω2ρh ¯̄W (m,n) = 0

(21)

where

αi =
iπ

a
, βj =

jπ

b
(i = 1, 2, 3, ..., j = 1, 2, 3, ...) (22)

In order to reflect the relative stiffness of the plate and the rotational

elastic restraints, a rotational fixity factor r was introduced by Zhang and

Xu [37] to define elastic restraints along edges and can be expressed as

rx0 =
1

1 + 3
Dx

Rx0a

(23a)

rxa =
1

1 + 3
Dx

Rxaa

(23b)

15
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Thus, it can be obtained

Rx0a

Dx

=
3rx0

1− rx0

(24a)

Rxaa

Dx

=
3rxa

1− rxa
(24b)

Similarly, it also has

Ry0b

Dy

=
3ry0

1− ry0

(25a)

Rybb

Dy

=
3ryb

1− ryb
(25b)

Substituting Eqs. (24) and Eqs. (25) into Eq. (21), it yields

Ωmn
¯̄W (m,n) +

2αmDx

a2

∞∑

i=1

[
(−1)i+m

3rxa
1− rxa

+
3rx0

1− rx0

]
αi

¯̄W (i, n)

+
2βnDy

b2

∞∑

j=1

[
(−1)j+n

3ryb
1− ryb

+
3ry0

1− ry0

]
βj

¯̄W (m, j)− ω2ρh ¯̄W (m,n) = 0

(26)

Eq. (26) can be conveniently expressed in the following matrix form:

AW = ω2ρhW (27)

where W = [ ¯̄W (1, 1), ¯̄W (1, 2)... ¯̄W (1, N), ¯̄W (2, 1)... ¯̄W (2, N)... ¯̄W (M,N)] and

A is the corresponding coefficient matrix which can be obtained from Eq. (26).

It is assumed that all the series expansions are truncated to finite number

M for m and N for n while the upper limit of summation may be theoret-

ically specified as infinity. It can be observed that Eq. (27) is a standard

characteristic equation for a matrix and the corresponding eigenfrequencies

ω can be conveniently determined. As a result, a complicated highly non-

linear problem of Eqs. (16) is now converted to a simple eigenvalue problem

16
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of Eq. (27). For any obtained eigenfrequency, the corresponding eigenvector

can be directly determined by substituting the eigenfrequency into Eq. (27).

Subsequently, the corresponding mode shape can be derived by substituting

the eigenvector of ¯̄W (m,n) into Eq. (5b) for each ω.

2.2. Numerical results and comparison

Several representative examples are presented in this section to validate

the foregoing proposed analytical procedure. The numerical results are ob-

tained by using built-in eigs function in MATLABr software package. For

the sake of convenience, the numbers of double series items are chosen to be

same and denoted by N (i.e., m, n = 1, 2, 3, ..., N) and four edges have the

same values of the rotational fixity factors (i.e., rx0 = rxa = ry0 = ryb = r).

The results are theoretically exact when N →∞ while convergent solutions

with satisfactory accuracy can be acquired by a finite number of items.

First of all, the convergence of the fundamental frequency is shown in

Fig. 2 for the case of an a square isotropic plate with four edges rotationally

restrained with r = 0.999. Given the fact that flexural solutions of rotational

fixity factor r = 0.999 are excellently agreed with results of fully clamped

plates in [37], the fundamental frequency of plate with r = 0.999 is compared

with fundamental frequency of a fully clamped plate. The exact value of the

fundamental frequency parameter is 35.985 from Li et al. [14] with use of

improved Fourier series method. It can be observed from Fig. 2 that the

parameter converges to the exact value quite slowly. Since the computation

time becomes awfully long when N > 150 on a standard PC, the values

are examined by truncating the series up to N = 150. From the results of

convergence study, N is taken to be 100 for all numerical results presented in
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present study. Figs. 3 illustrate the first six mode shapes of a square isotropic

plate with r = 0.25. Figs. 4 show the influence of rotational stiffness on the

mode shapes of plate. Square isotropic plates with four different rotational

fixity factors (0, 0.25, 0.5 and 0.999) are examined. The results indicate that

the rotational stiffness may alter the mode shapes (Figs. 4).
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Figure 2: Convergence of the fundamental frequency parameter Ω = ωa2
√
ρh/D of a

square isotropic plate with r = 0.999

The next example is about a square isotropic plate with four edges ro-

tationally restrained. Various rotational fixity factors from 0.0323 to 0.997

are studied and showed in Table. 1. The present results are compared with

those of Mukhopadhyay [43] and Li et al. [14]. The difference of present

results and those of Mukhopadhyay [43] are calculated with respect to the

exact solutions of Li et al. [14], separately. It can be found that the pro-

posed method provides better predictions than that of Mukhopadhyay [43]

and differs from the exact solutions of Li et al. [14] by less than 0.9 percent.
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(a) First mode (b) Second mode

(c) Third mode (d) Fourth mode

(e) Fifth mode (f) Sixth mode

Figure 3: First six mode shapes of a square isotropic plate with r = 0.25
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r=0

r=0.25

r=0.5

r=0.999

(a) Third mode

r=0

r=0.25

r=0.5

r=0.999

(b) Fourth mode

Figure 4: The effect of rotational restraints on the mode shapes of a square isotropic plate

with rotational restrained edges
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Furthermore, the frequencies obtained from the proposed method are more

accurate when the rotational restraint is flexible, say when r < 0.25. Thus,

it can be concluded that the larger value of rotational fixity factors, the more

time consuming to achieve high degree of accuracy.

Then, rectangular orthotropic plates with three edges simply supported

(rx0 = rxa = ryb = 0) and one edge rotationally restrained are considered.

The effect of aspect ratios and rotational fixity factors are investigated. The

fundamental frequency parameters are tabulated in Table. 2 and compared

with results of Laura et al. [41] with the material properties as Dx/H =

Dy/H = 0.5. Comparisons in Table. 2 indicate well agreements in the results

with difference less than 0.8 percent.

At last, Table 3 shows the first five frequency parameters (i.e., Ω =

ρhω2a2b2/(π4H)) for a square clamped orthotropic thin plate with elastic

constants of Dx/H = 1.543 and Dy/H = 4.810. The rotational fixity factor

r = 0.9999 was adopted to simulate the clamped plate by using the present

method. The present predictions were compared with those by Dickinson

[50] and excellent agreement can be observed.

3. Discussion and remarks

Vibration analysis of rectangular orthotropic plates with rotationally re-

strained edges has been studied by means of the double finite sine transforms

in preceding sections. It can be observed that the method of finite Fourier-

integral transform is essentially the same as Fourier series expansion of Wang

and Lin [1, 2] and improved superposition method of Bhaskar et al. [19–

21]. Comparing with these equivalent methods, the method of finite integral
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rotationally restrained

r Ka/D
Ω = ωa2

√
ρh/D

1 2 3 4 5 6

0.0323 0.1 Ref. [43] 19.839 48.894 49.629 79.04 95.678 99.211

Present 19.936 49.546 49.546 79.155 98.895 98.895

0.25 1 Ref. [14] 21.5 51.187 51.187 80.816 100.58 100.59

Ref. [43] 20.511 49.116 50.927 79.851 95.777 100.727

(%) −4.60a -4.05 -0.51 -1.19 -4.78 0.14

Present 21.505 51.195 51.195 80.831 100.587 100.594

(%) 0.02b 0.02 0.02 0.02 0.01 0.00

0.7692 10 Ref. [14] 28.501 60.215 60.215 90.808 111.19 111.41

Present 28.583 60.337 60.337 90.957 111.352 111.578

(%) 0.29b 0.20 0.20 0.16 0.15 0.15

0.8696 20 Ref. [14] 31.08 64.31 64.31 95.85 116.8 117.2

Ref. [43] 31.111 64.342 64.861 95.85 117.029 118.214

(%) 0.10a 0.05 0.86 0.00 0.20 0.87

Present 31.219 64.535 64.535 96.112 117.181 117.566

(%) 0.45b 0.35 0.35 0.27 0.33 0.31

0.9709 100 Ref. [14] 34.671 70.78 70.78 104.45 127.02 127.61

Ref. [43] 34.753 69.319 70.929 103.377 120.047 127.616

(%) 0.24a -2.06 0.21 -1.03 -5.49 0.00

Present 34.918 71.259 71.259 105.128 127.845 128.439

(%) 0.71b 0.68 0.68 0.65 0.65 0.65

0.997 1000 Ref. [14] 35.842 73.103 73.103 107.79 131.06 131.68

Present 36.134 73.694 73.694 108.658 132.129 132.756

(%) 0.81b 0.81 0.81 0.81 0.82 0.82

note: a–percentage difference of results between [43] and [14]

b–percentage difference of results between the present study and [14]

Ka/D–rotational stiffness coefficient defined in Ref. [14]
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three edges simply supported (rx0 = rxa = ryb = 0) and one edge rotationally restrained

ry0

k3
Ry0b

Dy
ry0

Ω1 = ω1a2
√
ρh/Dx

b/a=0.5 b/a=1 b/a=1.5

Ref. [41] Present (%) Ref. [41] Present (%) Ref. [41] Present (%)

0 0 0 56.5685 56.6966 0.23 24.1831 24.1755 -0.03 16.9706 17.0242 0.32

0.5 1 0.25 58.8313 59.1302 0.51 24.4659 24.5448 0.32 17.0963 17.1301 0.20

5 10 0.7692 67.8823 68.0681 0.27 26.1630 26.1534 -0.04 17.7248 17.6557 -0.39

∞ ∞ 0.9999 75.2362 75.7808 0.72 28.0014 27.9691 -0.12 18.5419 18.4179 -0.67

note: k3–rotational stiffness coefficient defined in Ref. [41]

Table 3: Frequency parameter Ω = ρhω2a2b2/(π4H) for a square clamped orthotropic

plates with elastic constants of Dx/H = 1.543 and Dy/H = 4.810

Mode Frequency parameters

No. Ref. [50] Present (r = 0.9999) difference (%)

1 35.71192 36.29327 1.63

2 96.42569 97.99261 1.63

3 207.0308 210.3881 1.62

4 280.6901 285.3147 1.65

5 290.9267 295.6540 1.62
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transform is more convenient and can be routinely applied to more complex

boundary value problems by choosing different integral kernels. However,

due to the issue of slow convergence, these so-called theoretical-exact se-

ries solutions normally produce approximate results for vibration analysis of

plates. The larger value of rotational fixity factors, the more time consum-

ing to achieve high degree of accuracy. The improved Fourier series method

developed by Li et al. [12, 14] can be applied to improve the convergence and

as well as the accuracy.

3.1. Formulation

The method of finite integral transform presented in this study is straight-

forward in concept and systematic in formulation. First, the governing dif-

ferential equation is converted into an algebraic equation in terms of the

integral form of solution by applying appropriate integral kernel. The initial

or boundary conditions will be accounted for automatically in the process

of conversion. The resulting algebraic equation can be solved without much

difficulty. If the algebraic equation involves some variables which are un-

known, the boundary conditions can be applied to determined the variables

eventually. Through this procedure, a system of linear algebraic equations

will be obtained for unknown variables. Once the integral form of solution

is known, the original function can be derived by using the inverse integral

transform [51].

As discussed in Section 2.1, two different formulations can be generated.

For the case investigated in present research, the first formulation leads to

Eq. (12) and then four infinite systems of equations, Eqs. (16), with respect

to W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0), and W̄ ,yy (m, b). For each combina-
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tion of m and n, Eqs. (16) produce 2m+2n equations with 2m+2n unknown

variables. As a results, frequencies can be acquired by solving a highly non-

linear equation representing the determinant of the coefficient matrix with

dimensions of (2m+ 2n)× (2m+ 2n). This approach was employed by refer-

ences [3, 33]. However, the number of terms used in the numerical evaluations

(size of the matrix) and the numerical method are not reported in [3]. Zhong

and Yin [33] computed the eigenfrequencies and corresponding mode shapes

by truncating the series up to 13 terms. It would be quite difficult to solve the

non-linearly equation resulted from the determinant to obtain the frequency

when the large values of m and n are selected. The other operation results in

Eq. (21) or Eq. (26) by expressing W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0) , and

W̄ ,yy (m, b) in terms of ¯̄W (m,n) and substituting them into Eq. (12). A sys-

tems of linear equation about ¯̄W (m,n) with dimensions of (m×n)× (m×n)

is derived. Natural frequencies can be easily obtained by determining the

eigenvalues of the coefficient matrix. As shown in Section 2.2, the numerical

results can be calculated by choosing m = n = 150 without much difficulty.

It can be concluded that the second formulation is more efficient to the first

one for the case of free vibration analysis for either one-dimensional elements

or two-dimensional elements.

Nevertheless, for the flexural analysis investigated by Zhang and Xu [37],

the first formulation leads to the coefficient matrix with dimensions of (2m+

2n) × (2m + 2n) but the second one gives that of (m × n) × (m × n). In

the view of computational efficiency, the first formulation is more efficient

for flexural analysis.
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3.2. Convergence

Convergence study has been conducted for free vibration analysis of a

square isotropic plate with four edges rotationally restrained with r = 0.999

in Section 2.2 by use of MATLAB program carried out on a desktop computer

equipped with a 3.40 GHz Intel Core i7-2600 processor and 8 GB of memory.

Similarly, the rate of convergence was examined for flexural analysis of plates

with four edges rotationally restrained by Zhang and Xu [37]. It was observed

that the results were converged slowly. However, for flexural analysis, the

numerical results can be easily obtained for the series up to 2000 terms

so that the exact solutions can be acquired. On the other hand, overflow

problems were occurred shortly when m and n were greater than 200 on

the computer programm carried out for the free vibration analysis in this

research. Therefore, only approximate values are obtained by applying the

method of finite integral transform on the free vibration analysis whereas the

exact solutions will be theoretically determined by using infinite series.

However, the convergence of the solutions is extensively accelerated by

adopting the improved Fourier series methods developed by Li et al. [10–

16] through introducing the supplementary terms to Fourier series. Highly

accurate results can be obtained by setting M = N = 6 as reported in [12].

Moreover, this improvement seems to be unnecessary for flexural analysis of

beams or plates with arbitrary boundary conditions because the issue of the

convergence is not significant for the flexural analysis.

3.3. Untruncated and truncated

For numerical calculations, the series solution has to be truncated to

a finite number of terms. However, as pointed out in [37], the coefficient
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matrix will be singular when applying this method for fully clamped plates

(i.e., C-C-C-C); therefore, the infinite summations should be first evaluated

without truncation. This might be because that the infinite summations are

the counterparts of the derivatives of the closed-form Levy-type expressions

[21]. Nevertheless, there is no issue of singularity for applying the proposed

method on the plates with edges rotationally restrained. Alternatively, for

the fully clamped plates, it can be treated as the limiting cases by specifying

the rotational fixity factor to be either 0.999 or 0.9999.

3.4. Broad applicability

The broad generality of the method of finite integral transform in solving

plate flexural problems was summarized by Li et al. [34]. It is important

that the appropriate integral transform kernels should be selected based on

the boundary conditions. Accordingly, the accuracy and convergence will be

improved. Li [10, 52] proved that the cosine series expansion would converge

faster than its sine counterpart for beams with arbitrary elastic restraints

but the convergence speed of the sine series solution will be greatly increased

when beams is simply supported with only rotational restraints. This might

explain why the kernels, sinαmx sin βny, are applied in this research for or-

thotropic plate with rotationally restrained edges. Similarly, Hurlebaus et

al. [3, 4] employed cosαmx cos βny for free orthotropic plates.

In general, the sinusoidal kernel (i.e., sinαmx) is taken for edges sim-

ply supported, clamped or rotationally restrained (i.e., elastically restrained

against rotation). The cosinusoidal kernel (i.e., cosαmx) is recommended

for edges free or translational restrained (i.e., elastically restrained against

translation). Alternatively, if a pair of opposite edges, one is fully clamped or
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simply supported and the other is free, a half-sinusoidal kernel (i.e., sin αm

2
x)

can be chosen [34]. The half-sinusoidal kernel is also defined as the modified

finite sine transformation as demonstrated by Churchill [53].

4. Conclusion

The method of finite integral transform has been applied to free vibration

of a rectangular orthotropic plate with rotationally restrained edges. An al-

ternative formulation is proposed to obtain the natural frequencies by solving

an eigenvalue problem instead of a highly non-linear equation. Consequently,

the dynamic properties can be determined without much difficulty. Numer-

ical examples validate the present method by comparing the results with

different exact solutions and approximate solutions. Several issues in numer-

ical calculations have been noted for applying Finite integral transform. The

convergence, accuracy and broad applicability were also discussed. It can

be concluded that this unified and systematic method has a general applica-

bility but only provides approximate values for vibration analysis of plates

due to slow convergence. In addition, various exact analytical methods for

beams and plates with general boundary conditions have been reviewed such

as Fourier series expansion, improved Fourier series method, improved su-

perposition method and finite integral transform method. Brief comparisons

and discussions are summarized for these exact analytical methods. Although

the present research focuses on the investigation of orthotropic plates, con-

clusions obtained from the research are also applicable for that of isotropic

plates.
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Appendix A. Orthogonality properties

Consider two different modes of free vibrations of the plate (satisfying

the same boundary conditions), namely Wij(x, y) and Wmn(x, y) with the

corresponding eigenvalues λij and λmn. The modes satisfy the differential

equations

∇4
oWij − λ4

ijWij = 0 (A.1a)

∇4
oWmn − λ4

mnWmn = 0 (A.1b)

in which λ4
ij = ρhω2

ij and λ4
mn = ρhω2

mn. By multiplying Eq. (A.1a) with Wmn

and Eq. (A.1b) with Wij, taking the difference and integrating the result over

the area of the plate, it obtains

(λ4
ij − λ4

mn)

∫ a

0

∫ b

0

WijWmndxdy =

∫ a

0

∫ b

0

(
Wij∇4

oWmn −Wmn∇4
oWij

)
dxdy

(A.2)

The right hand side of Eq. (A.2) can be written as
∫ a

0

∫ b

0

(
Wij∇4

oWmn −Wmn∇4
oWij

)
dxdy

=

∫ a

0

∫ b

0

Dx

[
Wij

∂4Wmn

∂x4
−Wmn

∂4Wij

∂x4

]
+H

[
Wij

∂4Wmn

∂x2∂y2
−Wmn

∂4Wij

∂x2∂y2

]
dxdy

+

∫ a

0

∫ b

0

Dy

[
Wij

∂4Wmn

∂y4
−Wmn

∂4Wij

∂y4

]
+H

[
Wij

∂4Wmn

∂x2∂y2
−Wmn

∂4Wij

∂x2∂y2

]
dxdy

(A.3)
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Integrate the first and second term of the right hand side of Eq. (A.3) by

parts twice with respect to x and y, respectively; and rearrange the terms.

Then, it can be obtained

∫ a

0

∫ b

0

Wij∇4
o

(
Wmn −Wmn∇4

oWij

)
dxdy

=

∫ a

0

{(
Dy

∂2Wij

∂y2
+D1

∂2Wij

∂x2

)
∂Wmn

∂y
−
(
Dy

∂2Wmn

∂y2
+D1

∂2Wmn

∂x2

)
∂Wij

∂y

+

(
Dy

∂3Wmn

∂y3
+ (D1 + 4Dxy)

∂3Wmn

∂y∂x2

)
Wij −

(
Dy

∂3Wij

∂y3
+ (D1 + 4Dxy)

∂3Wij

∂y∂x2

)
Wmn

}∣∣∣∣∣

b

0

dx

+

∫ b

0

{(
Dx

∂2Wij

∂x2
+D1

∂2Wij

∂y2

)
∂Wmn

∂x
−
(
Dx

∂2Wmn

∂x2
+D1

∂2Wmn

∂y2

)
∂Wij

∂x

+

(
Dx

∂3Wmn

∂x3
+ (D1 + 4Dxy)

∂3Wmn

∂x∂y2

)
Wij −

(
Dx

∂3Wij

∂x3
+ (D1 + 4Dxy)

∂3Wij

∂x∂y2

)
Wmn

}∣∣∣∣∣

a

0

dy

− 4Dxy

[
Wij

∂2Wmn

∂x∂y
−Wmn

∂2Wij

∂x∂y

] ∣∣∣∣∣

a,b

0,0

(A.4)

Eq. (A.4) shows that the right hand side of Equation (A.2) will be zero for

a plate having any combination of boundary conditions of simply supported,

clamped, free, or rotationally restrained. Since λij 6= λmn, Eq. (A.2) is

satisfied only if

∫ a

0

∫ b

0

WijWmndxdy = 0, (i 6= m, j 6= n) (A.5)

The eigenfunctions of the free vibrations of plates are orthogonal; and their

coefficients can also be chosen to satisfy the condition

∫ a

0

∫ b

0

W 2
ijdxdy = 1 (A.6)
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