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Abstract

Quantum computers have the potential to solve several interesting problems in poly-
nomial time for which no polynomial time classical algorithms have been found. However,
one of the major challenges in building quantum devices is that quantum systems are very
sensitive to noise arising from undesired interactions with the environment. Noise can lead
to errors which can corrupt the results of the computation. Quantum error correction is
one way to mitigate the effects of noise arising in quantum devices.

With a plethora of quantum error correcting codes that can be used in various settings,
one of the main challenges of quantum error correction is understanding how well various
codes perform under more realistic noise models that can be observed in experiments.
This thesis proposes a new decoding algorithm which can optimize threshold values of
error correcting codes under different noise models. The algorithm can be applied to
any Markovian noise model. Further, it is shown that for certain noise models, logical
Clifford corrections can further improve a code’s threshold value if the code obeys certain
symmetries.

Since gates and measurements cannot in general be performed with perfect precision,
the operations required to perform quantum error correction can introduce more errors
into the system thus negating the benefits of error correction. Fault-tolerant quantum
computing is a way to perform quantum error correction with imperfect operations while
retaining the ability to suppress errors as long as the noise is below a code’s threshold.
One of the main challenges in performing fault-tolerant error correction is the high resource
requirements that are needed to obtain very low logical noise rates. With the use of flag
qubits, this thesis develops new fault-tolerant error correction protocols that are applicable
to arbitrary distance codes. Various code families are shown to satisfy the requirements
of flag fault-tolerant error correction. We also provide circuits using a constant number of
qubits for these codes. It is shown that the proposed flag fault-tolerant method uses fewer
qubits than previous fault-tolerant error correction protocols.

It is often the case that the noise afflicting a quantum device cannot be fully charac-
terized. Further, even with some knowledge of the noise, it can be very challenging to use
analytic decoding methods to improve the performance of a fault-tolerant scheme. This
thesis presents decoding schemes using several state of the art machine learning techniques
with a focus on fault-tolerant quantum error correction in regimes that are relevant to near
term experiments. It is shown that even in low noise rate regimes and with no knowledge
of the noise, noise can be further suppressed for small distance codes. Limitations of ma-
chine learning decoders as well as the classical resources required to perform active error
correction are discussed.
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In many cases, gate times can be much shorter than typical measurement times of
quantum states. Further, classical decoding of the syndrome information used in quantum
error correction to compute recovery operators can also be much slower than gate times.
For these reasons, schemes where error correction can be implemented in a frame (known
as the Pauli frame) have been developed to avoid active error correction. In this thesis, we
generalize previous Pauli frame schemes and show how Clifford frame error correction can
be implemented with minimal overhead. Clifford frame error correction is necessary if the
logical component of recovery operators were chosen from the Clifford group, but could
also be used in randomized benchmarking schemes.
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measurement using 1-flag circuits whereas rings indicate a decision based on
syndrome outcomes. Note that the syndrome measurement is repeated at
most three times. . . . . . . ... L

(a) A representation of the Steane code where each circle is a qubit, and
there is an X- and a Z-type stabilizer generator for each face. Stabilizer
circuits are specified from that in Fig. 3.1(a) after rotating the lattice such
that the relevant face is on the bottom left. (b) For g = Z,,2,,2,,Z,,, the
flag error set is £(9) = {1, Z43 24, X4sZ0: Zaus Zay Xazs Zaw> Xas Zaas X Zag Zas }
which contains all errors arising from a single fault that causes the stabilizer
measurement circuit C(g) to flag. Since the Steane code is a CSS code,
the X component of an error will be corrected independently allowing us
to consider the Z-part of the flag error set £4(g) = {1, Z,,, Zy,, Z4s Z4, }- As
required, the elements of £;(g) all have distinct syndromes (with satisfied
stabilizers represented by a plus). . . . . .. ... L

Tree diagram for the Flag 2-FTEC protocol. Numbers encircled in red at
the end of the edges indicate which step to implement in the Flag 2-FTEC
Protocol. A dashed line is followed when any of the 2-flag circuits C(g;)
flags. Solid squares indicate a syndrome measurement using 2-flag circuits
whereas rings indicate a decision based on syndrome outcomes. Edges with
different colors indicate the current value of ng;g in the protocol. Note that
the protocol is repeated at most 6 times. . . . . . .. .. ... ... ...

Graphical representation of (a) the 19-qubit 2D color code and (b) the 17-
qubit 2D color code. The X and Z stabilizers of the code are symmetric,
given by the vertices of each plaquette. Both codes have distance-5. . . . .

Mlustration of 2-flag circuits for measuring (a) Z®° requiring only two flag
qubits and (b) Z®® requiring only three flag qubits. Flag qubits are prepared
in the |[+) state, and measurement qubits in the |0) state. . . . ... . ..
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3.7

3.8

3.9

3.10

3.11

The d = 5 rotated surface code. Qubits are represented by white circles,
and X and Z stabilizer generators are represented by red and green faces.
As in the example, any logical X operator has X operators acting on at
least five qubits, with at least one in each row of the lattice, involving an
even number in any green face. In this case, no two stabilizer generators
can have qubits in five rows, and therefore cannot contain an X type logical
operator. The argument is analogous for logical Z operators. . . . . . ..

(a) A 1-flag circuit for measuring the stabilizer ZsZg 710211 212713214715 of
the [15,7,3] Hamming code. However a single fault on the fourth or fifth
CNOT can lead to the error 219413414715 on the data which is a logical fault.
With the CNOT gates permuted as shown in (b), the [15,7, 3] satisfies the
general flag 1-FTEC condition. . . . . . ... .. ... ... ... .....

(a) Mlustration of a w-flag circuit for measuring the operator Z®¥ where
w = 6 using the smallest number of flag qubits. (b) Illustration of a 3-flag
circuit for measuring Z*® using the smallest number of flag qubits. . . . . .

(a) General 1-flag circuit for measuring the stabilizer Z“*. (b) Example of a
2-flag circuit for measuring Z®'2 using our general 2-flag circuit construction.
(¢) An equivalent circuit using fewer flag qubits by reusing a measured flag
qubit and reinitializing it in the |4) state for use in another pair of CNOTy,,

Logical failure rates of the [19,1,5] color code after implementing the flag
2-FTEC protocol presented in Sec. 3.2.2 for the three noise models described
in Sec. 3.1.1. The dashed curves represent the lines p = p, p = p/10 and
p = p/100. The crossing point between p and the curve corresponding to

p919’1’5“)(15) in Eq. 3.3 gives the pseudo-threshold. . . . . . ... ... ...
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3.12 Logical failure rates for various fault-tolerant error correction methods ap-

4.1

4.2

4.3

plied to the [5,1, 3] code, [7,1, 3] Steane code and the [19, 1, 5] color code.
The dashed curves correspond to the lines p = p, p = p/10 and p = p/100.
In (a), (c) and (e), the flag 1-FTEC protocol is applied to the [5,1, 3] and
Steane code and the results are compared with the d = 3 surface code and
Steane error correction applied to the Steane code. In (b), (d) and (f),
the flag 2-FTEC protocol is applied to the [19,1, 5] color code, and the re-
sults are compared with the d = 5 surface code and Steane error correction
applied to the [19, 1, 5] color code. These numerical results suggest the fol-
lowing fault-tolerant experiments of the schemes we consider for extending
the fidelity of a qubit. (1) If 7 < n < 16, only the 5 and 7 qubit codes
with flag 1-FTEC are accessible. However, the performance is much worse
than higher qubit alternatives unless p/p is small. (2) For 17 < n < 34, the
d = 3 surface code seems most promising, unless p/p is small, in which case
flag 2-FTEC with the 19-qubit code should be better. (3) For 35 < n < 48,
Steane EC applied to distance-three codes is better than all other approaches
studied, except for very low p where flag 2-FTEC should be better due to
ability to correct two rather than just one fault. (4) For n > 49, the d=5
surface code is expected to perform better than the other alternatives below
pseudo-threshold. . . . . . . . . ... ...

[lustration of an extended rectangle (exRec) for a logical CNOT gate. The
EC box consists of performing a round of fault-tolerant error correction.
The error correction rounds prior to applying the logical CNOT gate are
referred to as leading-EC’s (LEC) and the error correction rounds after the
CNOT are referred to as trailing-EC’s (TEC). . . . . ... ... ... ...

[lustration of the d = 5 rotated surface code. Data qubits are located at
the white circles and the ancilla qubits used to measure the stabilizers are
located on the black circles of the lattice. Green squares measure the Z
stabilizers and red squares measure X stabilizers. . . . . . ... ... ...

Fig. 4.3a illustrates the circuit used to measure the stabilizer X®* and
Fig. 4.3b illustrates the circuit used to measure the stabilizer Z®*. As can
be seen, a full surface code measurement cycle is implemented in six time
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4.4

4.5

4.6

4.7

4.8

4.9

Circuits for measuring X and Z stabilizers in Steane-EC. The circuit in
Fig. 4.4a measures bit-flip errors whereas the circuit in Fig. 4.4b measures
phase-flip errors. Note that the first block consists of the data qubits en-
coded in a CSS code. The states |[0) and |+) represent logical |0) and |+)
states encoded in the same CSS code used to protect the data. . . . . . . .

Full Steane error correction circuit. Each line represents encoded data qubits
and all CNOT gates and measurements are performed transversally. The
circuits used to prepare the encoded |[+) and |0) are in general not fault-
tolerant. Consequently, extra ”verifier” ancilla states are used to detect
errors arising during the preparation of |[+) and [0). If the verifier states
measure a non-trivial syndrome or the —1 eigenvalue of a logical Pauli is
measured, the ancilla states are rejected and new ancilla states are brought
in until they pass the verification step. . . . . . . .. .. ... ... .. ..

CNOT-exRec for Steane-EC which contains four EC blocks. The CNOT-
exRec limits the pseudo-threshold of the [7,1, 3] and [19, 1, 5] color code due
to the large number of locations and thus makes an ideal circuit to optimize
our decoding algorithm using the neural decoders described in Sec. 4.3.

Knill error correction circuit. As with Steane-EC, all CNOT gates and
measurements are performed transversally. The logical [0) and [+) states
are also encoded using the same code that protects the data. A transversal
CNOT gate is applied between them to form a logical Bell state. The
operator () is used to complete the teleportation protocol of the logical
state as well as to correct errors which were on the original data block.

Full CNOT-exRec circuit using Knill error correction. Each Pauli operator
Q1, 2, Q3 and ()4 is used to correct errors in the initial data blocks as well
as the complete teleportation protocol of the logical Bell measurement.

Schematics of a feedforward network consisting of disjoint X and Z net-
works. There may be none, one or multiple hidden layers with different
activation functions. The output layers correspond to logical I- and X-
errors for the X network and to logical I- and Z-errors for the Z network.
The activation function of the last layer before the error layer is the identity
since in the softmax cross entropy loss function, the activation (by softmax)
is already included. . . . . . . . ...
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4.10

4.11

4.12

4.13
4.14
4.15

Schematics of a network consisting of two disjoint X and Z RNNs. Each
RNN receives the syndromes of leading and trailing EC rounds as inputs for
two epochs of its LSTM unit. The internal state of the first copy is initialized
randomly and the internal state of the last copy is garbage-collected. The
hidden state of the last copy of the LSTM unit is then fully connected to a
hidden layer with user-defined activation function. This hidden unit is then
fully connected to output nodes denoted by 01 and 10 which are respectively
the one-hot encoding of the prediction as to whether an X-recovery or a Z-
recovery operation is needed on the output qubits from the CNOT-exRec.
The loss function is the sum of the loss functions of the two networks. . . .

Schematics of a long-short term memory (LSTM) cell. Without the red
circuits, this neural network is called a simple LSTM unit. The red circuit
is called peepholes. An LSTM cell with peepholes can outperform a simple
LSTM cell in some tasks. There are four hidden layers with user-defined
activation functions in an LSTM unit known as the forget layer (F), input
layer (I), hidden layer (H) and the output layer (O). There are four 2 to
1 logical gates in the unit that depending on the sign written on them
applies an element-wise operation between the vectors fed into the logical
gates. There is also a 1 to 1 logical gate that applies an element-wise tanh
function on its input vector. The internal state of an LSTM unit serves as
the backbone of a sequence of replications of the LSTM unit. The role of
the internal state is to capture temporal features of the sequence of input
data. . . . L

Schematics of a deep neural decoder for the distance-five rotated surface
code. The network consists of two disjoint neural networks contributing
to the same loss function via softmax cross entropy. Each neural network
consists of two layers of 3D CNNs. The first layer consists of a number of
filters, each filter performing a convolution of a 3 x 3 x 3 kernel by the input
syndromes. The second 3D CNN layer uses 4 x 4 x 4 kernels. The colored
boxes demonstrate how each layer is padded in order for the size of the 3D
layers to be preserved. When the kernel dimension is even for instance, the
padding from the top and left are of size 1, and the padding from the bottom
and right are of size 2. . . . . . ...

LU-DND for the distance-three Steane CNOT-exRec. . . . . . . . . . . ..
PE-DND for the distance-three Steane CNOT-exRec. . . . . . . . . . . ..
LU-DND for the distance-three Knill CNOT-exRec. . . . . . . . . . . . ..
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4.16 PE-DND for the distance-three Knill CNOT-exRec. . . . . . . . . . . . .. 117

4.17 LU-DND for the distance-three surface code. . . . . . . . . . ... ... .. 118
4.18 PE-DND for the distance-five surface code. . . . . . . . . . . .. ... ... 118
4.19 LU-DND for the distance-five Steane CNOT-exRec. . . . . . . . . .. ... 119
4.20 PE-DND for the distance-five Steane CNOT-exRec. . . . . . . . . .. ... 119
4.21 LU-DND for the distance-five Knill CNOT-exRec. . . . . . . . ... .. .. 119
4.22 PE-DND for the distance-five Knill CNOT-exRec. . . . . . . .. .. .. .. 119
4.23 LU-DND for the distance-five surface code. . . . . . . . .. ... ... ... 121
4.24 PE-DND for the distance-five surface code. . . . . . . . .. ... ... ... 121

4.25 Quantization of the feedforward neural network with 2 hidden layers, trained
on the Steane EC dataset at a physical error rate of p = 2 x 107%. Each
point is calculated as the average logical error rate obtained from 10 rounds
of training and cross-validating similar to the experiments in Sec. 4.4. . . . 124

4.26 The critical path of a custom inference circuit. Every syndrome bit repre-
sents an input node of the neural network and is multiplied by 8-bit integer
weights. A set of such products are added together and together with an
8-bit bias integer to find the activation on a node of the first hidden layer.
Given S input syndromes, this amounts to the addition of S 4+ 1 integers
which can be done with a tree of 8-bit integer full-adders (Full-Adder Tree
or FAT for short) of depth log(S + 1). After the quantized rectified linear
unit, a similar procedure is iterated for the first hidden layer with the full-
adder tree of depth log(L; + 1) where L; is the number of neurons in the
first hidden layer. This pattern continues for other hidden layers. The MAX
unit compares two 8-bit integers and outputs 0 if the first one is bigger and
1 if the second one is bigger. . . . . . . .. ..o 126
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4.27 A comparison between two training procedures for the CNOT-exRec of the

5.1

2.2

2.3

[19,1,5] color code using Steane-EC units. The orange dots are the results
of training a feedforward network with 2 hidden layers as reported also in
Fig. 4.19. In this case, the DND is trained on a given physical error rate p
and tested on a test dataset for the same physical error rate. We observe
that the logical error rate does not exactly follow a cubic growth since the
training is less successful when the physical error rate is small. The green
line demonstrates the performance of the same DND if trained only for
the largest physical error rate p = 2 x 107® and later on tested on test
datasets from every other physical error rate. As previously explained, such
a training scenario is not possible for real-world experiments, or on physical
realizations of quantum computers. . . . . . ... ..o

Example of extended rectangle (exRec) for implementing the logical gate
G. The leading and trailing EC circuits (LEC and TEC) perform fault-
tolerant error correction for input errors and errors occurring during the
implementation of G. . . . . . .. ...

[lustration of the scheme for propagating Pauli corrections through a T" gate
when error diagnostics are much longer than gate times. (TOP) When prop-
agating the input Pauli P; through a T gate and performing error correction,
the output can be written as C'P, where C'is a logical Clifford gate and P; is
a Pauli matrix. A buffer is introduced to learn the Pauli frame immediately
before applying the T' gate which enables the logical Clifford correction C'
to be known. During the buffer, repeated rounds of error correction are
performed to prevent the accumulation of errors for qubits waiting in mem-
ory. We denote the final Pauli correction arising from the EC rounds as
P;. (BOTTOM) We propagate the correction C'P, through the buffer and
apply a logical Clifford gate CT in order to remove C' thus restoring the Pauli
frame. Although the propagation can map the buffer correction Py — Py,
P, remains Pauli and can be known at a later time. . . . . . . . . .. . ..

Circuit for implementing a 7" gate. The circuit uses the state T'|+) which
is prepared offline and applies a sequence of Clifford gates. The correction
SX is only applied if the Z-basis measurement outcome is -1. . . . . . . .
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5.4

2.5

2.6

B.1

B.2

(a) Propagation of I ® S through a CNOT gate. (b) Propagation of H ® I
through a CNOT gate where Uy = $(I +4Y) ® I + (I —iY) ® X. In both
cases, if instead of correcting the Clifford errors prior to the CNOT gate
we were to keep track of them using a Clifford frame, the corrections would
involve two-qubit gates in addition to the original Clifford corrections. . . .

(a) Propagating input Clifford gates €} @ Cy across a CNOT (part of a
quantum algorithm) leads to two possible outcomes, one in Cj.q (defined in
Eq. 5.7) and the other in Cy,q (defined in Eq. 5.8). (b) Buffers are introduced
to learn if the outcome in Fig. 5.5a belongs to Cyeeq 0 Cpeq. Rounds of error
correction in the buffers introduce the corrections C3® Cj. If the outcome in
Fig. 5.5a belongs to Ch.q, we apply a CNOT correction following the buffers.
The protocol is repeated until the resulting gate belongs to Cyooq. . . . . .

For a fixed value of 1 — p, we plot the value of n such that F(p,n) > q.
We give plots for ¢ = 0.9, ¢ = 0.99 and ¢ = 0.999. Hence, each curve
corresponds to the expected number of T gate corrections that are required
for obtaining a gate in 7® with probability greater than ¢.. . . . . . . . .

[lustration of the general w-flag circuit construction for w = 12. In general,
the circuit requires w — 1 flag qubits and is implemented using 7w — 8
time steps. The circuit consists of two families of CNOTy, gates. For
the first family, with the first set of CNOTy,, gates located before the first
CNOTy,, gate, the partnering CNOTy, gates are divided into three sets
s1, So and s3 which are enclosed in the green, red and blue dashed boxes.
In general, s; and s3 both contain (w — 4)/2 CNOTYy, gates. In sq, the
j’th control qubit is at position w + 2(j + 1) and in s3 it is at position
w+2j+1with j € {1,2,---, (w—4)/2} In s, the control qubits are always
located at the w + 2’th and 2w — 1'th qubits. Lastly, note that qubits are
reused for implementing the second family of CNOTy,, gates. The partnering
CNOTy, gates are located in between the w — 1 and w’th CNOTy,, gates
following an identical pattern as in sp, s and s3 (in s; and s3 the CNOT’s
are implemented in reverse order). . . . . ... ... L

Example of five faults that lead to an error of weight six on the data without
causing a flag when only the first family of CNOTy,, gates are used in the
construction of Fig. B.1 (here w = 10). Errors arising from faults are shown
in blue and the resulting errors after propagating through the CNOT gates
are shown inred. . . . . . . .. ...
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B.3

B.4

B.5

B.6

B.7

[lustration of a pair of CNOTy, gates as well as a segment of CNOTy,,
followed by CNOTy, gate. The first CNOTy, gate belongs to the sequence
of CNOTY, gates that come before the first CNOTy,, gate (see Fig. B.1).

(a) Fault-tolerant Steane error correction circuit for distance-three CSS
codes. Each line represents an encoded qubit. The circuit uses only two en-
coded |0) and |F) ancilla states (encoded in the same error correcting code
which protects the data) to ensure that faults in the preparation circuits of
the ancilla’s don’t spread to the data block. (b) Fault-tolerant Steane error
correction circuit which can be used for any distance-three CSS stabilizer
code encoding the data. There are a total of eight encoded ancilla qubits
instead of four. The dark bold lines represent resting qubits. Note that the
circuit in Fig. B.4b could in some cases be used for higher distance CSS
codes with appropriately chosen circuits for |0) and |+) ancilla states (see

Ref. [0]): « o o o oo

Logical failure rate of the full fault-tolerant Steane error correction approach
of Fig. B.4b and the flag 2-FTEC protocol of Sec. 3.2.2 applied to the
[19,1,5] code. In (a) idle qubits are chosen to fail with a total probability
p = p while in (b) idle qubits fail with probability p = p/100. The intersec-
tion between the dashed curve and solid lines represent the pseudo-threshold
of both error correction schemes. . . . . . . ... ... ... ... ..

(a) The d = 3 surface code, with data qubits represented by white circles.
The X (Z) stabilizer generators are measured with measurement ancillas
(gray) in red (green) faces (b) For perfectg measurements, the graph Gop
used to correct X type errors (here for d = 5) consists of a black node
for each Z-stabilizer, and a black edge for each data qubit in the surface
code. White boundary nodes and blue boundary edges are added. Black
and blue edges are given weight one and zero respectively. In this example,
a two qubit X error has occurred causing three stabilizers to be violated
(red nodes). A boundary node is also highlighted and a minimum weight
correction (red edges) which terminates on highlighted nodes is found. The
algorithm succeeds as the error plus correction is a stabilizer. . . . . . . . .

Circuits for measuring (a) Z-type, and (b) X-type generators. Identity gates
(black rectangles) are inserted in the Z-type stabilizer measurement circuits
to ensure that all measurements are synchronized. Note that unlike in [7],
to be consistent with the other schemes in this chapter, we assume that we
can prepare and measure in both the X and Z basis. . . . .. ... .. ..
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B.8

B.9

Examples of a single fault leading to diagonal edges in G3p. Dark arrows
represent the CNOT sequence. (a) An X error occurs during the third time
step in the CNOT gate acting on the central data qubit. (b) During the fifth
time step of this round, the X error is detected by the Z type measurement
qubit to the top right. (c¢) The X error is not detected by the bottom left
Z type stabilizer until the following round. (d) An XX error occurs on
the third CNOT of an X measurement circuit, which is detected by the Z
measurement to the right. (e) Detection by the left Z stabilizer does not
occur until the next round. (f) The corresponding edges in G3p, green for
(a-c), and blue for (d-e). Here we show two rounds of the graph ignoring
boundary edges. . . . . . . ...

Circuit for measuring the Z stabilizer generators of the [7,1, 3] code using
one flag qubit and three measurement qubits. The circuit is constructed
such that any single fault at a bad location leading to an error of weight
greater than one will cause the circuit to flag. Moreover, any error that
occurs when the circuit flags due to a single fault has a unique syndrome. .

B.10 Logical failure rates of the flag 1-FTEC protocols using two and four ancilla

qubits applied to the [7,1,3] Steane code. . . . . .. ... ... ... ...
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Chapter 1

Brief review of error correction and
fault-tolerance methods

With the advent of quantum algorithms which show that large numbers can be factored into
their primes in polynomial time [3] and searching through large unstructured data sets can
be done with a quadratic speedup over the best classical algorithms [9], quantum computers
hold the promise to be a very powerful computational tool. However, quantum systems are
very sensitive to interactions with their environment which can lead to errors potentially
corrupting the computational data. One method that has been developed to mitigate the
effects of errors is quantum error correction, which provides means to potentially detect
and remove errors when they occur.

Roughly speaking, the threshold of an error correcting code corresponds to the physical
error rate below which the logical failure rate is smaller than the physical error rate (more
details will be provided in the following chapters). As will be seen in the chapters that
follow, fault-tolerant thresholds are on the order of 10~* to 1072, Furthermore, the best
pseudo-thresholds obtained to date (relevant to near term fault-tolerant devices) are closer
to the 10™* range. Even if better fault-tolerant protocols are found, it will be very diffi-
cult to improve upon the current pseudo-thresholds of the most competitive fault-tolerant
protocols. To date, only experiments demonstrating fault-tolerant error detection schemes
have been performed, since the pseudo-thresholds for these schemes can be several orders
of magnitude higher than pseudo-thresholds for fault-tolerant error correction schemes.
Looking forward at the next five to ten years, I believe that the most important break-
throughs will need to occur at the hardware level in order to reduce gate fidelities by one
to two orders of magnitude in order to perform the first fault-tolerant error correction
experiments showing that logical qubits have longer lifetimes than physical qubits.



Asymptotically, the overhead cost of schemes for fault-tolerant quantum computation
can be very large (easily above one billion qubits depending on the algorithm one wants to
implement). Some progress has been made to reduce the overhead, but there are still many
unanswered questions and room for significant improvements at the theoretical level. The
flag qubit methods introduced in this thesis (Chapter 3) are designed to be a step forward
in this direction. Further, flag qubits have many applications other than fault-tolerant error
correction, such as providing the ability to fault-tolerantly prepare magic states using a
very small number of qubits. This in turn could be one method to reduce the overhead of
fault-tolerant quantum computation, but many other methods remain to be explored.

In order to implement error correction protocols, one needs to measure the error syn-
drome which gives partial information on the errors afflicting the system. Given the out-
come of the syndrome measurements, one of the main challenges of error correction is to
efficiently perform the classical processing (decoding) used to find the most likely error that
actually occurred. In Chapter 2, we will focus on new decoding algorithms that achieve
this goal by taking advantage of knowledge about the type of noise present in the quantum
device. Our decoding algorithm is applicable to general Markovian noise channels.

In Sec. 1.1 we will begin by reviewing the stabilizer formalism, which lies at the foun-
dation for all of the error correcting codes presented in this thesis. In Sec. 1.1.1, we will
give an example of a stabilizer code, the 7-qubit Steane code, which can implement all
logical Clifford gates transversally. We will also discuss the idea of transversal gates and
present the Eastin-Knill theorem. In Sec. 1.2 we will introduce fault-tolerant methods to
deal with noisy gates and measurements. New results in fault-tolerant error correction and
fault-tolerant quantum computation will be introduced in Chapter 3 — Chapter 5.

1.1 Review of the stabilizer formalism

First, we begin by defining the n-qubit Pauli group as follows
Definition 1. n-qubit Pauli group

PY = o{l, X,Y, 2}, (1.1)

where X, Y and Z are the single-qubit Pauli matrices, given by

X:(?é),yz<36i>,zz(é_ol). (1.2)

and o € {£1, +i}.



Throughout this thesis we will sometimes make use of the Clifford hierarchy which is
defined as

Definition 2. Clifford hierarchy

P® — (U |UPUt € PF Dy P e P} (1.3)

For example, the Clifford group P can be shown to be generated by
PP = (H;, S;, CNOT;), (1.4)

where the Hadamard and Phase gates are given by

-5 (1)

and the subscripts 2 and j indicate the qubits on which the operators will act.

Next, we define the weight of an error E € PV (wt(FE)) as the number of qubits on
which it has non-trivial support. For instance, if £ = XI1IYY Z, then wt(F) = 4.

Now, an [n, k, d] quantum error correcting code encoding k logical qubits into n physical
qubits and that can correct all errors of weight t = |(d — 1)/2] is the image space H¢ of
the injection & : H5 — He C HY where Hs is the two-dimensional Hilbert space.

Stabilizer codes are defined as quantum error correcting codes Hs which form the
unique subspace of H5 that is fixed by an Abelian stabilizer group S C PY such that for
any s € S and any codeword |c) € H¢, s|c) = |¢). In other words, the codewords are +1
eigenstates of all elements in the stabilizer group.

Any operator s € S can be written as s = g}" - - - g°"7*. The operators g; are called the

stabilizer generators which have the property that they mutually commute (since S is an
Abelian group) and satisfy g? = I. Consequently, we can write S = (g, - g,_1). We also
define N(S) to be the normalizer of the stabilizer group, that is

N(S)={NePWV|NM=MN,VMeS)}. (1.6)

We can thus see that any non-trivial logical operator on codewords belongs to the set
N(S)\S. The distance d of an error correcting code is defined as the lowest weight operator
M € N(S)\S. A more detailed overview of stabilizer codes can be found in [10, 11].

Next we define the notion of stabilizer error correction



[7,1,3] Steane code
91 = 242522y
G2 = Ly L3262y
93 = Z1Z3 2577
gs = Xy X5 X6 X7
g5 = X X3X6X7
g6 = X1 X3X5X7

X =X%7=2%

Table 1.1: Stabilizer generators of the [7,1, 3] Steane code. The last row corresponds to a
representation for the logical X and logical Z operators.

Definition 3. Stabilizer error correction

Given a stabilizer group S = (g1, -+ ,gm), we define the syndrome s(E) to be a bit
string, with i’th bit equal to zero if g; and E commute, and one otherwise. Let E,;,(s) be
a minimal weight correction E where s(E) = s. We say operators E and E' are logically
equivalent, written as E ~ E', iff E' < gE for g € S.

With an error correcting code, the goal of a decoder is to find the most likely error
E afflicting a system for a given syndrome measurement s(E). As will be shown in this
chapter and the next, decoding by applying the minimum weight error compatible with
the measured syndrome s (Emnin(s)) will not always be optimal.

1.1.1 The [7,1,3] Steane code, CSS codes and the Eastin-Knill
theorem

To put the above ideas together, in this section we will introduce the 7,1, 3] Steane code
which is part of a family of Calderbank-Shor-Steane (CSS) codes [12, 13]. CSS codes
have a lot of useful features which we will discuss. Further, as will be shown, the Steane
code can implement all logical gates in the Clifford group transversely. In fact, the Steane
code is the smallest color code. Color codes are a family of codes with useful topological
properties [5, 14, 15] that can implement all logical Clifford gates transversally (see below
for the definition of transversal gates). A more detailed discussion of color codes will be
given in Chapter 3.

The stabilizer generators of the Steane code are given in Table. 1.1. One can verify
that all stabilizer generators commute amongst each other. The codewords for the Steane
code are given by



1
0) = —(|0000000) + [0110011) + |1010101
0) \/2—3(\ )+ | )+ | )

+]1100110) + [0001111) + [0111100) + [1011010) + |1101001)), (1.7)

1
I) = ——=(|1111111) + |1001100) + 0101010
1) \/2—3(| )+ )+ )

+10011001) 4 |1110000) + |1000011) + [0100101) + |0010110)). (1.8)

One can verify that the states in Eq. 1.8 are +1 eigenstates of all operators in Table. 1.1.
One can also verify that any weight-one or weight-two error anti-commutes with at least
one of the stabilizers. However, the operators X; = X1 X, X3 and Z; = Z,75,73 commute
with all the stabilizers and do not belong to the stabilizer group. Thus, the distance of the
Steane code is three. Further, one can verify that X7|0) = [1), X.|1) = |0), Z.|0) = |0)
and Zp|1) = —|1). Thus X and Z, are representatives of the logical X and Z operators.

Next, we give the definition of a transversal operation

Definition 4. Transversal operation

A transversal operation

1. Only applies single-qubit gates to qubits in a codeblock

2. Only interacts the i qubit in one codeblock with the i qubit in a different codeblock
or ancilla block.

Transversal operations have the property that they are inherently fault-tolerant (see
Sec. 1.2 along with Def. 5) making such operations very desirable.

Now, consider the operator H;, = H®" which by Def. 4 is a transversal operation.
Notice that H X, H} = Z;,, H Z H} = X, and that Hpg;H| = g;3 for all i € {1,2,3}.
Thus we see that H®” implements the logical Hadamard gate for the Steane code.

Next consider the operator S®7. We have that S®7Z%7(S®")T = Z®7 and S®7X®T(SET)T =
Y®T = j7X®7 79" — Y, . Further one can verify that S®7 maps stabilizers to elements of
the stabilizer group. Thus we see that S€7 = Sz and not Sy. Conversely, a logical phase
gate could be obtained by applying S;, = (ST)®7.

Lastly, we consider a block-wise transversal CNOT gate. Doing so we have the following
transformations



Xp@l=(Xo) - X" X* = X, ®X; (1.9)
I9X, =(I0X)* T 510X =10 X[ (1.10)
7l =(ZDN - 21 =2,®1 (1.11)
19Z =10 2) =20 z% =Z,8 7, (1.12)

Since the logical X and Z operators under the application of a transversal CNOT transform
the same way as the physical X and Z operators and that elements in the stabilizer group
also map to elements in the stabilizer group on both code blocs, we see that CNOT®”
performs a logical CNOT gate. Hence we conclude that when using the Steane code, all
logical Clifford gates can be implemented transversally.

As mentioned above, the [7,1,3] Steane code is part of a family of CSS codes. CSS
codes are constructed as follows. Let C, be an [n, k,, d,] classical linear code with parity
check matrix H, and C, be an [n, k,,d,] classical linear code with parity check matrix H,
and we will assume that Cj C C,'. Then we can construct a quantum code C' with the
stabilizers given by the matrix (written in binary symplectic form)

_(H, | 0
S_<O |H). (1.13)
In this case C'is a [n, k, d] quantum code with k = k, + k., —n and d > min{d,, d.}. Note
that C’j C (), is required to guarantee that all X-stabilizers commute with all Z-stabilizers.

Further, since the number of stabilizer generators is always n — k for an [n, k, d] quantum
error correcting code, then k =n — (n —k,) — (n — k,) = k, + k., — n.

It turns out that the only codes where transversal CNOT gates performs a logical
CNOT are CSS codes [11].

Coming back to the Steane code, we have seen that all logical Clifford gates can be
implemented transversally. One could then contemplate the existence of a quantum er-
ror correcting code where all logical gates in a universal gate set could be implemented
transversally. The Eastin-Knill theorem [16] shows that this is not possible

Theorem 1. Fastin-Knill theorem

The set of transversal gates for a given quantum error correcting code generates a finite
group. Thus the set cannot be universal for quantum computation.

In Chapter 5, we will briefly discuss non-transversal methods to implement fault-
tolerant logical gates.

"Here O is the dual to Cy, that is the set of strings w € {0,1}" such that w-v =0 for all v € C,.
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1.2 Fault-tolerant quantum error correction

In realistic quantum devices, gate and measurement errors can occur with much higher
probability than idle qubit errors. Furthermore, if our circuits used to implement our error
correction protocols are not chosen carefully, errors arising from a small number of faults
can spread to higher weight errors which could potentially be no longer correctable by the
code used to protect the data. Fault-tolerant quantum error correction schemes have been
devised which guarantee that errors spread in a controlled way such that a small number
of faults will not lead to non-correctable errors. We will give a more rigorous definition of
small in Sec. 1.2.1.

In Sec. 1.2.1, we will review fault-tolerant error correction (EC) schemes with a partic-
ular focus on Shor-EC [17] since the ideas presented there will be useful for understanding
the material that follows. In Chapter 3, we will present a new fault-tolerant error correction
protocol making use of flag-qubits and which is applicable to arbitrary distance codes. As
will be shown, flag qubits allow fault-tolerant error correction schemes to be implemented
using very few qubits making them competitive for near-term fault-tolerant implementa-
tions. Further, since our flag fault-tolerant schemes uses fewer qubits than Shor-EC (more
details will be provided below), our scheme could be useful for large quantum computations
with LDPC codes.

1.2.1 Overview of fault-tolerant error correction using Shor-EC

Before describing any fault-tolerant protocol, it is important to have a rigorous definition
of fault-tolerance. The one that we will use here follows from [11, 18]:

Definition 5. Fault-tolerant error correction

Fort=|(d—1)/2]|, an error correction protocol using a distance-d stabilizer code C' is
t-fault-tolerant if the following two conditions are satisfied:

1. For an input codeword with error of weight s1, if so faults occur during the protocol
with s+ so < t, ideally decoding the output state gives the same codeword as ideally
decoding the input state.

2. For s faults during the protocol with s < t, no matter how many errors are present
in the input state, the output state differs from a codeword by an error of at most
weight s.



Condition 1: == [EC] =22 [EC| = +++ [EC | =
Conditions 1,2 and
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Figure 1.1: An example showing the first fault tolerance condition alone in Def. 5 is not
sufficient to imply a long lifetime. We represent s faults occurring during a round of error
correction with a vertical arrow, and a state a distance r from the desired codeword with a
horizontal arrow with r» above. The first condition alone allows errors to build up over time
as in the top figure, which would quickly lead to a failure. However provided s < (2t+1)/3,
both conditions together ensure that errors in consecutive error correction rounds do not
build up, provided each error correction round introduces no more than s faults, which
could remain true for a long time.

In Def. 5, ideally decoding refers to performing a round of fault-free error correction
(where no additional faults can occur). Note that in what follows we also allow the input
error to be in a superposition of errors of weight at most s;. The first condition in Def. 5
guarantees that for codes which can correct errors of weight at most ¢, if there are at most
s9 faults when the input error is of weight s; with s; + so < ¢, errors can only spread in
such a way that the output state of the error correction (EC) protocol cannot differ from
the input codeword by an error of weight at most ¢. In other words, if the input state
was Ei,|¢0) where wt(Ey,) = s; < t and [¢0) € Hc, then assuming that there are at most
s9 faults during the EC protocol with s; 4+ s5 < ¢, the output codeword is Eout|E> with
Wt (Eout) < t.

The second condition in Def. 5 is less trivial but nonetheless important to control how
errors spread in between different EC rounds (see the example shown below). In this case,
if the input state is given by Ei,[t1)) where the weight of Ej, can be arbitrary, then assuming
there are at most s < ¢ faults during the EC protocol, the output state must be given by
Eout|@) where wt(Eqy) < s and |¢) € He. The key here is that [¢)) does not necessarily
have to be equal to |¢) (|$) can be any codeword).

To give further motivation as to why the second condition of Def. 5 is important,
consider a scenario with s faults introduced during each round of EC, and assume that
t/n < s < (2t+1)/3 for some integer n (see Fig. 1.1). Consider an error correction protocol
in which r input errors and s faults in an EC block leads to an output state with at most



r + s < t errors®. Clearly condition 1 is satisfied.

With the above considerations, an input state F;[)) with wt(E}) < s is taken to E|¢),
with wt(Ey) < 2s by one error correction round with s faults. After the jth round, the
state will be Fj;|¢)) with the first condition implying wt(E;) < j - s provided that j < n.
However, when j > n, the requirement of the first condition is no longer satisfied so we
cannot use it to upper bound wt(E;). Now consider the same scenario but assuming both
conditions hold. The second condition implies that after the first round, the input state
E1|Y) becomes Ej|p) = Es|tb), with wt(ES) < s, and where |¢) is a codeword. Therefore
the codewords are related by: |¢) = (E, Es)|), with logical operator (E, E) having
weight at most 3s, since wt(Esy) + wt(E%) < 3s. However, the minimum non-trivial logical
operator of the code has weight (2¢ + 1) > 3s, implying that |1)) = |¢), and therefore that
wt(E2) = wt(ES) < s. Hence, for the jth round, wt(£;) < s for all j, i.e. the distance
from the codeword is not increased by consecutive error correction rounds with s faults,
provided s < (2t 4 1)/3.

Note that it is possible to have less constrained definitions of fault-tolerance. For
example, see Ref.[19] which uses a more relaxed version of the first condition in Def. 5.
However, in this chapter we will consistently use Def. 5 for all of our fault-tolerant schemes.

Next we will consider the construction of an EC unit which satisfies Def. 5 using the
method of Shor-EC. First, consider the circuit of Fig. 1.2 for measuring the operator
P=P®P®---® P,. If the error E afflicting the encoded data anti-commutes with P,
then the X-basis measurement of the |+) ancilla gives —1 whereas if £ commutes with P
the measurement yields +1. Thus this circuit could in principle be used to measure each
stabilizer generator in order to obtain the error syndrome. Notice however that if a single
fault occurs on any of the two-qubit gates (apart from the last), this can result in an error
of weight greater than one on the encoded data. Hence, the circuit in Fig. 1.2 is clearly
not fault-tolerant. There is also the problem that a single Z error occurring somewhere
on the ancilla qubit can change the parity of the measurement outcome. Hence, if such a
circuit was used to measure all the stabilizer generators, a single fault could result in the
wrong error syndrome.

In order to deal with the above issues, we first consider the spread of errors arising from
the two-qubit gates. The spread of errors arise from the fact that the two-qubit gates are
not transversal. However, if instead of initializing the ancilla qubit in the |+) state it was
initialized in an n-qubit cat state (when P = P, ® P, ® - --® P,), then the two-qubit gates

2This is the case for FTEC protocols such as Shor, Steane and Knill EC (which will be introduced later
in this thesis) with appropriately verified ancilla states. However the surface code does not satisfy this due
to hook errors but nonetheless still satisfies condition 1 of Def. 5.



Pa

Figure 1.2: Non fault-tolerant circuit for measuring the operator P =P, ® P, ® -+ ® P,.
The data qubit is a +1 eigenstate of P and |+) is the ancilla qubit used to perform the
measurement. The j* two-qubit gate is a controlled P; gate (applies P; if the control qubit
is in the |1) state and applies the identity if the control qubit is in the |0) state).
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Figure 1.3: In Fig. 1.3a, we consider replacing the circuit in Fig. 1.2 (with P = X®%) by
a circuit with an equivalent action but with the |4) ancilla replaced by a four qubit cat
state. In Fig. 1.3b, the cat state is prepared in a fault-tolerant way by measuring pairs of
qubits in the Z basis. If any of the measurements result in a —1 outcome, the cat state is
rejected and the protocol starts anew.
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could be implemented transversally as in Fig. 1.3a. In this case, the circuit has the same
effect as the one in Fig. 1.2. If the transversal X-basis measurement results in an even
parity outcome, then the error afflicting the data qubits must commute with P. Otherwise,
the error anti-commutes with P.

The advantage of using the circuit in Fig. 1.3a is that due to the transversal nature of
of the two-qubit gates, a single fault at one of the two-qubit gate locations can only cause a
data qubit error E with wt(E) < 1. In general, if there are s faults occurring at two-qubit
gate locations, then the resulting data qubit error £ will have weight at most s.

However, there is still the problem that if the cat state is not prepared in a fault-
tolerant way, a single fault arising during the preparation of the cat state could potential
spread to multiple data qubits (even with the transversal implementation of the two-qubit
gates). Several methods have been developed to address this issue. In Ref.[20], the authors
design specialized circuits which makes it possible to identify and remove high-weight errors
occurring during the preparation of the cat state. This method is referred to as ancilla
decoding. Another method is to measure random pairs of qubits in the Z basis as illustrated
in Fig. 1.3b. The pairs can be chosen such that if s faults occur during the preparation of
the cat state leading to an error of weight greater than s, at least one of the measurement
outcomes will be —1 instead of +1. In such a case, the cat state is rejected and the process
restarts until all measurement outcomes are +1. This method will be referred to as ancilla
verification.

Lastly, we must deal with potential Z errors occurring on the ancilla qubits that can
change the parity of the measurement outcome. As mentioned previously, a single Z error
can change the parity of the measurement resulting in the wrong error syndrome. The
key insight is to repeat the syndrome measurement enough times to guarantee that if the
weight of the input error and number of faults during the EC round does not exceed ¢,
then the conditions of Def. 5 will be satisfied.

Suppose that one obtains the same syndrome measurement s (measurement of all sta-
bilizer generators using the circuits in Fig. 1.3) ¢+ 1 times in a row. Since we are assuming
there can be at most ¢ faults, correcting using the measured syndrome will satisfy Def. 5.
To see this, note that if there were measurement errors resulting in the wrong syndrome,
at least one of the measured syndromes would be different (and so one would not obtain
the same syndrome ¢ + 1 times in a row). Further, there could in principle be < ¢ faults
leading to errors which go undetected. However, the syndrome s will include all errors that
were detected by the syndrome measurement, and since the errors are additive (due to the
transversal nature of the circuit), correcting using s will result in a state that differs from
a codeword by an error of weight at most t.
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The last thing we need to address is how many syndrome measurement repetitions are
required to guarantee that the syndrome is repeated ¢+ 1 times in a row. The answer is (¢+
1)? (although in Chapter 3 we will show that & (t2+3t+2) = (“}?) repetitions are sufficient).
To see this, consider the worst case scenario where the same syndrome is repeated t times in
a row without faults and a fault occurs on the ¢t + 1’th syndrome measurement resulting in
a new syndrome outcome. We must then repeat the syndrome measurement an additional
t 4+ 1 times. Suppose that again one obtains the same syndrome outcomes ¢ times in a
row without faults and a fault occurs on the t 4+ 1’th syndrome measurement resulting in
a new error syndrome. Since we are assuming there can be at most ¢ faults (by Def. 5),
this sequence of t consecutive syndromes without faults plus a single fault on the t 4+ 1'th
syndrome measurement can repeat at most ¢ times. Afterwords, by our assumption, there
can be no additional faults. Thus the next ¢+ 1 syndrome measurements are guaranteed to
be identical. Hence the total number of times the syndrome was repeated is t(t+1)+t+1 =

(t+1)2

Putting together all of the ideas presented in this section, we can now outline Shor’s
EC protocol:

Shor-EC Protocol:

1. Use the circuits of Fig. 1.3 to measure all of the stabilizer generators.
2. Repeat the syndrome measurement (¢ + 1)? times in a row.

3. Use the last syndrome that is repeated ¢+ 1 times in a row. If no syndrome
is repeated t 4+ 1 times, use that syndrome that was repeated the most
times.

In practice there can be more than ¢ faults which occur during Shor’s EC protocol. In
such as case, if there were no syndromes that repeated ¢ + 1 times in a row, one would
use the syndrome that is repeated the largest number of times in order to have a complete
protocol. Note that if more than t faults occur, we cannot expect the fault-tolerant protocol
to succeed since there are some errors of weight greater than ¢ that the underlying quantum
error correcting code cannot correct.

We conclude this section with the remark that the number of qubits used in the cat
states of Fig. 1.3 is equal to the weight of the stabilizer that is being measured. In Chapter 3
we will present a new fault-tolerant EC protocol which uses fewer qubits than Shor-EC.
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Chapter 2

Hard decoding algorithm for
optimizing thresholds under general
Markovian noise

The material of this chapter is based on the journal article of Ref. [21], copyrighted by
the American Physical Society. In this work, Joel Wallman and myself were the primary
investigators of the research. We did most of the numerical simulations, developed the
theoretical ideas and I wrote a large portion of the manuscript. Stefanie Beale contributed
to the numerical analysis and all four authors contributed to the analysis of the results
and the editing of the manuscript.

2.1 Introduction and motivation

In Sec. 1.1 we briefly discussed how the error syndrome can be used to remove potential
errors afflicting a quantum system. In this chapter we will consider this problem in great
detail.

Given an error syndrome, a recovery operation is performed in order to correct the
error(s) most likely to have occurred. A decoding algorithm is an algorithm for determining
a good recovery operation for an observed syndrome [22]. Note that decoding is elsewhere
used to refer to the different process of transferring information from logical to physical
qubits.

14



By the Gottesman-Knill theorem [23], Pauli channels can be efficiently simulated on
a classical computer when the underlying quantum circuits contain only gates from the
Clifford group, qubits prepared in computational basis states and measurements that are
performed in the computational basis [21]. Simulating non-Pauli channels in fault-tolerant
architectures is computationally demanding and has been done only for small codes [25,

, 27, 1].  Assuming perfect error correction, that is, perfect preparations of encoded
states and syndrome measurements, Rhan et al. introduced a technique to obtain the
effective noise channel after performing error correction [28]. The technique, based on the
process matrix formalism, is applicable to general completely positive and trace-preserving
(CPTP) noise. Rhan et al. also showed how to efficiently compute threshold values for
concatenated codes under a fixed decoder when each qubit is afflicted by CPTP noise.
However, the recovery protocols were suboptimal, that is, they did not achieve the best
error suppression.

Concatenated codes are formed by encoding each physical qubit of an error correcting
code into another code, and the procedure can be repeated recursively. One could obtain
the optimal recovery operator by measuring the error syndrome of the full concatenated
code. For a code encoding one logical qubit into n physical qubits, the number of syn-
droms grows as 27 for [ levels (¢ is a constant that depends on the code) making it
computationally unfeasible to keep track of all of them [29].

In order to find optimal recovery operators without having to measure the syndromes
of the full concatenated code, soft-decoding algorithms were implemented in Refs. [29, 30]
under the perfect error correction assumptions. In Ref. [29], the entire list of probabilities
for all possible recoveries conditioned on the observed syndrome were retained and passed
on to the next level of concatenation in order to implement the optimal recovery operation.
The method was applied to study thresholds for depolarizing noise. In a message passing
simulation, the total number of syndromes that must be retained grows exponentially with
increasing concatenation levels. Therefore, keeping track of all syndromes is inefficient.

In Ref. [31], again using the perfect error correction assumptions, Darmawan and Poulin
developed a tensor-network algorithm to compute threshold values for the surface code
under arbitrary local noise. The algorithm allowed for the simulation of higher-distance
surface codes compared to work done in Ref. [1] and resulted in competitive threshold values
for the studied noise models. However, the algorithm does not use non-Pauli transversal
gates to its advantage.

In both the soft-decoding and tensor network approaches, the number of syndromes
grows exponentially when increasing the code’s distance. Therefore, rather than consider-
ing all syndrome values, syndromes are sampled from a distribution, leading to statistical
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fluctuations in the reported thresholds. It is possible that certain unsampled syndromes
could change the behavior of the effective noise at the next level in a significant way:.

Hard decoding algorithms apply recovery operations independently at each concatena-
tion level based on the measured syndrome (see Sec. 2.2.5). Syndrome information from
previous levels are not used to update the recovery maps. This will generally result in a sub-
optimal recovery protocol. However, hard decoding has the advantage of being linear in the
number of concatenation levels even when considering all syndrome measurements, mean-
ing that the required computational resources to compute the recovery operation remain
linear even as the code distance increases exponentially with the number of concatenation
levels.

This section focuses on developing a hard decoding algorithm capable of optimizing
threshold values and lowering error rates of an error correcting code compared to tradi-
tional hard decoding schemes. If the code has non-Pauli single-qubit transversal gates, our
algorithm can lead to even further improvements in the computed threshold values and
error rates. We assume that error correction can be done perfectly so that additional errors
are not introduced during the encoding and decoding protocols.

Our hard decoding algorithm is implemented using the process matrix formalism and
can be applied to noise models described by general CPTP maps. The noise behaviour
can change between different concatenation levels, even for depolarizing noise models.
Therefore, for a particular syndrome measurement, the best choice of a recovery operator
can differ from level to level.

We show that our hard decoding algorithm can still lead to reduced error rates even
when applied to noise that differs slightly from the noise used to optimize the recovery
maps. This indicates that our decoding scheme is robust to perturbative deviations from
the assumed noise model.

For codes with transversal Clifford gates, we show that applying a Pauli twirl to a
coherent noise channel results in lower threshold values and higher error rates than those
obtained when applying our hard decoding algorithm to the original channel. However, if
we only optimize over Pauli recovery maps, the Pauli twirl improves the threshold.

This chapter is structured as follows. In Sec. 2.2, we review some preliminary concepts
such as the process matrix formalism and how it is used with stabilizer codes, logical noise
resulting from independent and correlated physical noise, logical noise in concatenated
codes and threshold hypersurfaces for general noise models. In Sec. 2.3 we describe our
hard decoding algorithm for optimizing threshold values of Markovian noise models. In
Sec. 2.4 we describe how to numerically calculate threshold hypersurfaces for both sym-
metric decoders and decoders obtained from our hard decoding algorithm.
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We then present the results of numerical simulations of the 5-qubit code, Steane’s 7-
qubit code, Shor’s 9-qubit code and the surface-17 code. For each code (excluding the
surface-17 code), thresholds and infidelities using our hard decoding optimization protocol
are computed for amplitude-phase damping noise (Sec. 2.5) and coherent noise (Sec. 2.6).
The concept of infidelity is defined in Eq. 2.35. For the same noise models, we consider
level-1 infidelities of the surface-17 code. We also consider thresholds and infidelities for
the 7-qubit code where the noise model was described by two-qubit correlated dephasing
noise (Sec. 2.7). In Sec. 2.8, we compute thresholds of the Steane code for a coherent error
noise channel and its Pauli twirled counterpart (using both logical Clifford corrections and
Pauli only corrections). Lastly, we study the robustness of our decoding algorithm to small
unknown perturbations of a noise channel (Sec. 2.9).

The amplitude-phase damping threshold and infidelity plots can be found in Fig. 2.4.
Applying our optimized hard decoding algorithm can more than double thresholds and
reduce infidelities by more than two orders of magnitude.

For coherent error noise, threshold plots are given in Fig. 2.6 and infidelity plots are
given in Fig. 2.7. For certain rotation axes, our optimized hard decoding algorithm results
in errors that are correctable for all rotation angles. In some regimes, infidelities can be
reduced by several orders of magnitude. For all the aforementioned noise models, the 5-
qubit code consistently achieves higher thresholds and lower error rates compared to the 7
and 9-qubit codes. There is one exception where the Hadamard transform of the 9-qubit
code outperforms the 5-qubit code for amplitude-phase damping noise in a small regime.
For most studied noise models, the 7-qubit code achieves higher threshold values and lower
error rates than the 9-qubit code, with the exception of rotations near the y-axis due to
the asymmetries in the Shor codes stabilizer generators.

The threshold plot comparing a coherent error noise channel to its Pauli twirled coun-
terpart is shown in Fig. 2.9. By performing Clifford corrections, the coherent noise channel
outperforms its Pauli twirled counterpart for all sampled rotation axes. Lastly, plots show-
ing the robustness of our decoding algorithm to small unknown perturbations are shown
in Fig. 2.10. In certain regimes, applying our decoding algorithm results in lower logical
failure rates even if the noise model is not perfectly known.

2.2 Stabilizer codes in the process matrix formalism

We begin by outlining the formalism we use to simulate the performance of concatenated
codes under general CPTP noise. After introducing the process matrix formalism for CPTP
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maps, we give an alternative description of stabilizer codes to the one discussed in Sec. 1.1
which will be convenient for what follows. Afterwords, we will derive expressions for the
process matrix conditioned on observing a specific measurement syndrome for independent
single-qubit noise and for two-qubit correlated noise. We then define thresholds for a noise
model and define some fixed decoders which will be used in the remainder of this section.

For clarity, we always use Roman font for operators acting on C? (e.g., a unitary U),
calligraphic font for a channel acting on the operator space (i.e., a superoperator, e.g.,
U(p) = UpUT) and bold calligraphic font for the matrix representation of a channel (e.g.,
Uu).

2.2.1 Process matrix formalism for noise at the physical level

A CPTP noise channel N acting on a state p can be written in terms of its Kraus operator
decomposition

N(p) =D AipA;, (2.1)

where A}Aj = [ for trace-preserving channels [32, 33]. Alternatively, Eq. 2.1 can be
rewritten as a matrix product using the process matrix formalism. To do so, note that any
matrix M € C¥9 can be expanded as

M =Y MB;, (2.2)

where B = {B;} is a trace-orthonormal basis for the space of density matrices, that is,
Tr(B!B;) = 8;, and M; = Tr(BI M). We exclusively study multi-qubit channels and so set
the B; to be the normalized Pauli matrices, B = o = (I, X,Y, Z)/+/2 for a single qubit,
and B = o®" for n qubits.

We then define a map |.) : C*¢ — C% by setting | B;) = e;, where {e,} is the canonical
unit basis of C%*, and extend the map linearly so that

Tr[BI M]

M) =) M|B;) = : : (2.3)
i Tr[B}, M]

Defining (M| = |M)T, we have (M|N) = Tr(MTN).
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Because quantum channels are linear,

)= ijww»»
= 2PN BB,

(Z IN(BINB,) (3 il B:))
~ Nio) (2.4)

where p; = (Bj|p) are the expansion coefficients of p and we used (B;|B;) = Tr(BJT.Bi) =
d;i. We implicitly defined the matrix representation A of the quantum channel N

2.2.2 Stabilizer codes

We now give more details of stabilizer codes which will provide the necessary links for de-
coding using the process matrix formalism. In this chapter, we only consider the stabilizer
codes in Tab. 2.1, and so set k = 1.

We assume that states in Hs can be encoded in H¢ by an encoding map £ and decoded
back to Hs by the adjoint map £T. We consider the case where the encoding and decoding
protocols can be done perfectly without introducing additional errors, so that i) = a|0) +
B]1) is encoded to |¢) = a|0) 4+ B[1) € He and

E(pin) = Bpin B (2.5)

with B = [0)(0] + |1)(1] and some abuse of notation. Since (1/|S|)>", Sk acts as the
projector onto the codespace (|S] is the total number of elements in the stabilizer group)
and representing T as the logical version of 7 ( 7 € o), we define

E, =&(r Z ST, (2.6)
SES

so that E, implements 7 in Hs and vanishes elsewhere.

We also assume that syndrome measurements and recovery maps R are perfect, so that
the only errors are due to a noise process N acting on H. More details about fault-tolerant
encoding and measurements can be found in, for example, Refs. [6, 11, 34, 35, 30].
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Suppose a physical Pauli error E occurs on a system in the encoded state W) € He.
Measuring the stabilizer generators yields the syndrome | = [yl .. .[,_; where

o 1 lf{EagZ}:Oa

[A,B] = AB—BA and {A, B} = AB+ BA. Let Q, be the set of physical Pauli errors that
give the syndrome [, which are all of size |Q;| = 22"/2"% = 2"**_ 'When the syndrome [ is
measured, a recovery operator ; € (); is chosen and applied to the state E W}, returning it
to the code space. If RjE € S, then the correct state is recovered and the error is removed.
Otherwise, R;E[) will differ from [¢) by a logical Pauli operator [11]. The desired outcome
of decoding is to find a set of recovery operators which result in the highest probability of
recovering the original input state under a given noise model.

(2.7)

As an example, the stabilizer generators for the 3-qubit code protecting against bit-flip
errors are S| = Z1Z5 and Sy = Z9Z5. It can be verified that the errors X; and X,X3
produce the syndrome [ = 10 so that Q19 = {Xi, X2 X3}. Therefore, if the measured
syndrome is [ = 10, one can either choose X; or Xy X3 to implement the recovery. The
particular choice can influence the fidelity of the encoded qubit. For instance, for uncor-
related noise models where single-weight errors are more likely, the better choice for the
recovery operator would be Rjy = X;.

2.2.3 Effective process matrix at the logical level

The process of encoding, applying the physical noise A/ to the encoded state, implement-
ing the appropriate recovery maps for the measured syndrome [ and decoding yields the
effective single-qubit channel

GIN,R)=EoRoNo&, (2.8)

where R, includes the measurement update and the recovery map R; € (J;. We now outline
how this effective channel can be represented in the process matrix formalism, mostly

following Ref. [28] with a straightforward generalization to consider individual syndromes.
The states before encoding and after decoding, p;, and poy: respectively, are related by
[Pout) = GN, Bi)lpin), (2.9)
where the process matrix representation of G(R;) is
GN, R) =Y IGN, Ri) (o)) o] (2.10)
oco
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5-qubit code | Steane code | Z-Shor code | Surface-17 code
XZ7ZXI 11127727 ZZIIIIIII ZI1ZIIIII
IXZ7ZX 1271177 ZIZITIIIT |VA/AV/ARNI
XIXZZ 2171717 [TIZZII1T 11271771
ZXIXZ ITIXXXX ITIZIZIII ITIIIZI1Z
IXXIIXX ITIII1ZZ1 XXIXXIIII
XIXIXIX IIII1Z1Z IXXIIIIII
XXXXXXIII ITIIXXIXX
ITIXXXXXX ITIITIXXT
<CTF/37X7Z> <H75> <X7Z> <X72>

Table 2.1: Stabilizer generators (top) and the group -Z of single-qubit transversal logical
operations (bottom) for the 5-qubit code [I], Steane’s 7-qubit code [2], Shor’s 9-qubit
code [3], and the surface-17 code [1], where H and S are the Hadamard and phase gates
respectively, Cy/3 = explit(X +Y + Z)/3v/3] o« SH, and (.) denotes the group generated
by the argument. We also consider the X-Shor code, obtained from the Z-Shor code by
mapping X <> Z. For each code, the logical operators are X; = X®" and Z; = Z®".
We only consider the surface-17 code at the first level, as surface codes are not scaled up
by concatenation. The surface-17 code is so named as it consists of 9 data qubits and 8
ancilla measurement qubits, and is equivalent to the other 2-D configuration with 9 data
qubits in Ref. [1] under the assumption of perfect measurements.

by Eq. 2.4. The entries of the process matrix are

(oG, Ri)(7))
(E(0)[Rio N(E;))
<<EU|RZ © N(ET)>>

goT(N; Rl)

(2.11)

By the Born rule, the probability of the syndrome [ occurring is p(l) = Tr(2N (pim))
where the projection operator for the syndrome [ is

Py = H 1([ + (=1)'g;). (2.12)

DO |

Note that from Eq. 2.6, E, = £,7. With the corresponding recovery operator R;, the
transformation on the process matrix can be obtained by implementing the von Neumann-
Liiders update rule [37] resulting in
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G (N 1) =~ (B RPN (E) 7))
_ %«9} RIE, RN (E,)) (2.13)

~—

=

=

Following Ref. [28], Eq. 2.13 can be further simplified by noting that RlTEURl is a map
from the space projected by & to itself and vanishes elsewhere so that Q”ITRITEURZ P =
RlTEURl. Defining

DY = RIE,R), (2.14)
we arrive at

1
Gor(N, Iy) = M«D((TZ)W(ET)»- (2.15)
In the remainder of this section we will assume that the noise is uncorrelated, so that

it takes the form N = NU @ ... @ N where N'® is the process matrix for the physical
noise acting on qubit 7. As in Eq. 2.2, we can expand F, and DY as

E. = Z Y yHl ® oo @ L (2.16)
Mz‘GB
DY =" BRI ®... 0w, (2.17)
ViGB

where B C B only has support over products of the stabilizer group and logical operators
from Eq. 2.6. For an operator of the form U = +pu; ® ... ® p, and using the notation
of Ref. [28], we define the function ¢(U) = 3 ® ... ® p, and a(U) € {0,1} such that
U = (=1)*@¢(U). Substituting Eq. 2.6 into Eq. 2.16 gives

1 a(ST
—(—1)"057), (2.18)

The « coefficient takes into account the overall sign of the product between elements
in the stabilizer group and logical operators (for example, the code with XX and ZZ
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stabilizers also has (XX)(ZZ) = —YY as a stabilizer). The factor of n — comes from
choosing a trace-orthonormal basis.

The f coefficient can be obtained by substituting Eq. 2.6 into Eq. 2.14, commuting R;
to the left, using RlTRl = [ and setting the result equal to Eq. 2.17. Defining n(A, B) = £1
for AB = +=BA, we obtain

B4 (s (1) = 5,50 (L, Sk)n(1, 7). (2.19)

Therefore, for a particular error syndrome [, picking different recovery operators from the
set er will, in general, yield different values for the coefficient 5. This will, in turn, result
in different effective noise dynamics. Closed form expressions for o and S are given in
Appendix. A.1.

Substituting Eq. 2.17 into Eq. 2.15, we obtain

go—T(N Rl Z B{V Rl O({H } HNVZIM (220)
{Nz} {vi}

where the sum is over all elements in the stabilizer group and N z(/l)u = Tr[piND ().

The effective noise channel can be obtained by averaging Eq. 2.20 over all syndrome
measurements. Summing over all syndromes, we define Bf{’w} =), B?w}(Rl)’ we have

Gor(N) = megww, R)

- Z B{”z}a{uz HNV”AZ (221)
{Mz} {Vz}

and we will refer to G as the effective process matrix for the noise channel A'. Note that
the normalization factor 1/p(l) that appears when implementing the von Neumann-Liiders
update rule gets cancelled when averaging over all syndrome measurements. For simplicity,
and in the remaining sections, when referring to process matrices for individual syndrome
measurements as in Eq. 2.20, we will omit the normalization factor.

When considering concatenated codes, it will prove useful to define the coding map Q¢
for a code C as
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QN =5 GN)=EToRoN &, (2.22)

where the matrix representation of G is obtained from Eq. 2.21. Note that in Eq. 2.22, R
includes the measurement update and recovery map averaged over all syndrome measure-
ments. The coding map relates the effective noise dynamics at the logical level resulting
from the error correction protocol to the noise dynamics occurring at the physical level.

2.2.4 Process matrix for two-qubit correlated noise

In this section we also consider noise models where nearest-neighbor two-qubit correlations
occur. More specifically, we will consider a noise channel of the form

N™) = N0

Z Ha (07) + N (0°), (2.23)

where N corresponds to local uncorrelated noise and with probability ps, /\/}E?Ll(p‘@") =

Z;Zi1p%" Z i1 Z; applies phase-flip operators to qubits j and j + 1. For noise models of
this form, the process matrix describing the effective noise is given by

Gor(N) = Gor (N2 +

n—1 n
o T 2 =)
Z ﬁ{w}@{m}(z H ZV]MJ V]+1M+1IWW+

{”i}»{yi} j=1 ’L%{j,j—}—l}
n—1
1125250, T, (2.24)
=2

where Z(p) = ZpZ in keeping with our standard notation for channels. The contribution
from correlated noise appears in the second term of Eq. 2.24.

2.2.5 Effective noise channels for concatenated codes
Concatenation is the process of encoding each of the n physical qubits encoded in an

inner code (] into an outer code Cs. One can go to arbitrary levels of concatenation by
recursively applying this procedure.
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More formally, we consider an m-qubit code C°* with encoding map £°% which will
form the outer code, and an n-qubit code C*™ with encoding map £ which will form the
inner code. The logical qubit pq is first encoded using C°*, and afterwards each of the m
qubits are encoded using the code C". The composite encoding map is given by

£ = (EMm)®mogont, (2.25)

Throughout this section we will implement a hard decoding scheme, which applies a recov-
ery operation independently at each concatenation level [11]. Each code block is thereby
corrected based on the inner code. The entire register is then corrected based on the outer
code. We denote the mn-qubit code with the effective encoding map € by C*(C™). The
procedure for choosing a decoding map for a given noise model described by a CPTP map
will be addressed in Sec. 2.3.

Let G describe the effective dynamics of C™ where the physical noise dynamics are
described by N. To obtain the effective noise dynamics of G for the code C°(C™), we
assume that all n-qubit blocks evolve according to N so that the mn-qubit code evolves
according to (assuming uncorrelated noise)

N = N&™, (2.26)

For convenience, we define 572 = £ToR so that 572 includes both the recovery and decoding
step. In Ref. [28], it was shown that with the above assumptions G is given by

G = (ENHgt o g™ o £ou, (2.27)

From Eq. 2.22, the above equation can be written as
g~ _ Qoout(g> _ Qcout(chn<N)) (228)

For uncorrelated noise, we conclude that the effective channel for the code C“(C™) can
be computed in the same way that lead to Eq. 2.21 by replacing NV with G for the code
C°“. The concatenated code C°/(C™) can then be described by the composition of maps

QOO — QO™ o O (2.29)

The above equation can be easily generalized to the concatenation of codes in the set
{C1,Cs, ..., C,} yielding the map

QCl(CQ(Cn)) — ch o QCQ 0...0 an (230)
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For the particular case where the same code C; = C (i € {1,2,...,t}) is used at ¢ levels of
concatenation, we define

g(t)(N) _ 901(02(~--Ct))(_/\[)_ (2.31)

For correlated noise, we cannot in general write the map for the code C°“'(C™) as a
composition of maps for the code C°% and C"*. However, in this section we will assume that
when the code is concatenated, no correlations occur between different code blocks. Only
qubits within each code block undergo correlated noise described by Eq. 2.23. The noise
dynamics for each code block of the code C°** will thus be described by the effective noise
dynamics of Eq. 2.24 and the analysis leading to Eq. 2.30 will also apply in this case. This
situation could be realized if the physical qubits in each lowest-level code are contained
in individual nodes of a distributed quantum computer and is a good approximation if
correlations decay exponentially with the separation between physical qubits.

2.2.6 Thresholds for noise models

A fixed noise process N is correctable by a concatenated code C' if successive levels of
concatenation eventually remove the error completely for arbitrary input states, that is, if

lim GON) =1, (2.32)

where G (N) is as defined in Eq. 2.31 and I, is the 4 x 4 identity matrix."

A threshold for a code is defined relative to an m-parameter noise model, that is, a
family A4~ = {N, : p € [0,1]™} of noise processes such that Ny = Z. The .4 -threshold for
a code C'is the hypersurface of the largest volume in [0, 1] containing only correctable
noise processes and the origin, with the faces of [0, 1]™ removed.

The typical behavior of the diagonal components of the process matrix for a 1-parameter
noise model is illustrated in Fig. 2.1. The diagonal components converge to one (zero) below
(above) threshold, while the off-diagonal components converge to zero.

2.2.7 Specific decoders

The effective noise acting on a logical qubit is highly dependent upon both the physical
noise processes and the choice of recovery operators for each syndrome (cf. Eq. 2.21).

IFormally, we could also require the error rate to decrease doubly-exponentially when quantified by an
appropriate metric [33], however, we do not verify this requirement.
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Figure 2.1: Representative plot of the smallest diagonal component G, , of the process
matrix for a noise model parametrized by p. As functions of p, the diagonal components
of the process matrix approach a step-function as the number of concatenation levels
approaches infinity. The threshold is the smallest value p;, such that lim; .., G ) N =14
for all p < py.

One decoder that will be very useful is the symmetric decoder; this decoder associates
the measured syndrome with the error that acts on the fewest number of qubits and is
consistent with the syndrome. If multiple errors acting on equal numbers of qubits are
consistent with a syndrome, one is chosen arbitrarily and used each time that syndrome
occurs. However the particular choice could affect the threshold value.

The symmetric decoder for the [5, 1, 3] code, for example, associates each syndrome to a
unique weight-one Pauli operator. Therefore, all weight-one Pauli operators are corrected.
However, one could choose a different decoder for the 5-qubit code. If we consider a noise
model where only X-errors occur, a decoder could be chosen which corrects all weight-one
and weight-two Pauli X errors. However, this decoder would not be able to correct any Y
or Z type Pauli errors. More details will be provided in Sec. 2.5 and Sec. 2.6.

2.3 Hard decoding algorithm for optimizing error-correcting
codes

We now present our optimized hard decoding algorithm that determines the choice of
recovery operators at each level of concatenation. The goal of the algorithm is to correct
the effective noise, that is, to map it to the identity channel Z as quickly as possible. More
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formally, let € be a pre-metric on the space of CPTP maps, that is, a function such that
e(N, M) > 0 with equality if and only if N'= M and e(N, M) = (M, N) for all CPTP
maps N and M (this is a pre-metric as € does not have to satisfy the triangle inequality).
The function e(N) := e(N,Z) defines an ‘error rate’.

We will set 1 —e(N) to be the average gate fidelity to the identity. This choice signifi-
cantly reduces the amount of computational resources required to find the optimal recovery
maps. The choice of ¢ may affect the performance of the decoder, however, we defer an
investigation of this to future work.

Our hard decoding optimization algorithm selects recovery operations with the goal
of minimizing the logical error rate after the recovery operations have been applied. The
flowchart given in Fig. 2.2 applies the hard decoding algorithm to a channel A and de-
termines whether the effective noise will converge to the identity with concatenation. In
Fig. 2.2, M is a general CPTP map, R, is a (not necessarily unique) set of recovery
operators for symmetric decoding (see Sec. 2.2.7), G(M, k) are the distinct elements of
{G(M,R) : R € Ryym}, m(k) is the number of instances of G(M, k), and L, is a set of

transversal logical operators. The optimized physical recovery maps are
R — T(LHR (2.33)

for all R € Rgym, where g = m(k)G(M, R) and T(L}) denotes the transversal implemen-
tation of L;. As we discuss in Sec. 2.4, the choice for LI] may not be unique. The action
of Eq. 2.33 is equivalent to finding the set £, = {L, : g € ¥4 (M)} of transversal logical
operators that minimize

(Y Ly9) (2.34)

gE€Y (M)

There are 2" ! syndromes, however, step 2 produces only 4, 7, 12, and 67 distinct
process matrices for the [5,1, 3], Steane, Shor, and surface-17 codes respectively, indepen-
dently of the physical noise model. Therefore considering only the distinct G(M, k) in
step 2 reduces the memory and computational requirements by a factor between 4 and 20
for the codes considered in this section. We could also improve performance by setting
the off-diagonal terms to zero when they are sufficiently small and recalculating ¢ (M) for
Pauli channels M. Removing the off-diagonal terms corresponds to performing a Pauli
twirl by applying a uniformly-random Pauli operator P to each physical qubit before the
noise acts and then applying a logical P at the ¢ concatenation level. However, this step
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Compute {G(M,R) : R € Rsym};
set t = 1and GON) = V.

l

-
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Compute 4 (M) = {m(k)G(M,k)}

|

Find a set {L, : g € ¥(M) such
that Ly = Min[e(3_ e a1y £99)]-

Set

g(i)(N): Z Lyg

geg (M)
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Is GO —gt-1 < ¢

M = GON),
t —>t+1
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no
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{ N is correctable J

29

{ N is uncorrectable

Figure 2.2: Method for selection of recovery operations for a fixed code C' and noise channel
N. The iterative step that calculates the process matrix at level ¢, G(N), is equivalent
to setting the recovery maps to Ry = T(L;)R for all R € Ry, where m(k)G(M, R) =g
and T(L;) denotes the transversal implementation of L;. This set may not be unique; see
Sec. 2.3.2 for specific examples of when this can occur. We use the [, norm, that is, the
maximum of the absolute values of the entries of a matrix, to test whether the process
matrix has converged. However, any matrix norm can be used instead.



complicates the algorithm and was not necessary to obtain the results of this section (it
typically sped up computations by a factor between 2 and 10).

As we will discuss in Sec. 2.8, the use of a code’s non-Pauli transversal gates (note that
for any stabilizer code the logical Pauli operators are always transversal) can significantly
increase the code’s performance. This improvement is obtained when a syndrome mea-
surement results in a logical non-Pauli error with high probability, which can occur even
when significantly below threshold. This suggests that using highly symmetric stabilizer
codes may provide better performance even at low error rates (in addition to also making
non-trivial fault-tolerant computations more viable).

The resources required to find the set of recovery maps which optimally correct a noise
model AV are efficient in the number of concatenation levels required because our algorithm
is independent of the observed syndromes from previous concatenation levels. The largest
contribution to the complexity of our scheme comes from computing the § matrix for each
syndrome measurement. From Eq. 2.19, there are 3 x 2! operations required to compute
a [ matrix for a particular syndrome value. The factor of 3 comes from computing the
commutation relations (encoded by 1) between R; and the code’s logical Pauli operators
(R; always commutes with the identity) and the factor of 2"~! comes from verifying the
commutation relations between R; and all elements in the stabilizer group. As there are
271 possible syndrome values, 3 x 22"~1 operations are required to compute all the S
matrices.

2.3.1 Infidelity-optimized decoding

The average gate infidelity to the identity (hereafter simply the infidelity),

) = 1= [ dw NNl (239

is a commonly-used error pre-metric on the space of CPTP maps where the integral is over
all pure states according to the unitarily-invariant Fubini-Study metric. The infidelity can
be written as

4 -
r(N) = T”V (2.36)
in the process matrix formalism for a single qubit [38]. The infidelity is particularly conve-

nient for our algorithm because the trace is a linear function of the channel. Consequently,
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to find a set {L, : g € 4(M)} that minimizes 5<deg¢(M) ng) it is sufficient to maximize

Tr Ly (2.37)

independently for each g € ¥(M), rather than considering all |4 (M)|#! possibilities.

2.3.2 Resolving ties

There is one important caveat in the implementation of our hard decoding algorithm,
namely, there may be multiple sets {L, : g € ¢(M)} that minimize the error in ¢ (de%(M) [,gg> .

For example, consider the Steane code with Uy(p) = ngUeJr and Uy = cos O, +1sin6X.

Then the only two matrices from step 2 of our algorithm for any value of 6 € [—7, 7] are
7cos(80) + 25
Ra0) = "Ny,
7 sin?(46
R.»(0) = %u_gg (2.38)

for the trivial syndrome and the syndromes that detect X errors respectively, where

(3 cos(40) + cos(80) + 10) tan®(20)
—3 cos(46) + cos(80) + 10 )
= 14(6° + 6°) + O(0"). (2.39)

o= arctan<

Similar expressions hold for other values of § with different signs.

For this example, using all transversal gates significantly improves the recovery, as, for
example, Uy /4 (the phase gate around the X-axis) is a transversal gate and so R.o(m/12)
can be perfectly recovered. Furthermore, there are two logical gates, namely Uy and Uy 4,
that maximize Eq. 2.37 for ¢ = R.,2(7m/24), and so the choice is ambiguous. When con-
fronted with such ambiguities, we choose the first logical operator that maximizes Eq. 2.37
(in particular, the identity if it is one of the options). As we will discuss further in Sec. 2.5,
this ambiguity due to the ordering of logical operators does arise in practical examples
without “fine-tuning” any parameters and it can impact performance.
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2.4 Numerically calculating threshold hypersurfaces

We now describe our numerical method for calculating threshold hypersurfaces under sym-
metric (Sec. 2.2.7) and infidelity-optimized decoders (Sec. 2.3). For convenience, we regard
a noise channel N as correctable if there exists some level of concatenation ¢ such that
Tr G > 4 —¢, or, equivalently, the infidelity of G®) is at most & /6. The value of £ was set
to 0.01.

2.4.1 Symmetric threshold hypersurfaces

The subset of correctable errors for a given noise model is not generically connected. For
this reason, a binary search between p = 0 and p = 1, where p is the noise parameter,
is insufficient when calculating a threshold value because this method may miss some
uncorrectable regimes. To calculate psym (), a threshold value of p (with ¢ fixed) when
a symmetric decoder is applied at each level of concatenation, we initialized p = 0 and
incremented by 0.05 until the noise with p = p, was uncorrectable, then implemented a
binary search between p = p, — 0.05 and p = p,. To find a threshold hypersurface for a
noise model with multiple parameters, we iteratively apply this procedure while varying ¢
over a dense mesh.

2.4.2 Threshold hypersurfaces for our infidelity-optimized de-
coder

To calculate threshold values of a code C' afflicted by a general CPTP map using our
hard decoding algorithm, we follow the procedure illustrated in Fig. 2.3. Here ¢(p) is the
minimum number of concatenation levels required to correct N,,.

2.5 Thresholds and infidelities for amplitude-phase damp-
ing

In the remainder of this section, we show that our hard decoding algorithm leads to sig-
nificant improvements in threshold values and, in some cases, decreases the infidelity by
several orders of magnitude relative to the symmetric decoder. We will also show that
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( Compute the distinct )
G(M,R;) and set
L P = DPin < DPopt,thres- )

l

(. R
Calculate Let p —
. t
limy o0 Q,Sp)t(Np). p + dp.

Is t(p — op) >

t(p) ) 2t (psym,thres ) ?

Estimate the W
threshold by

DPopt,thres = P — 5p- J

Figure 2.3: Method for lower-bounding the threshold for a one-parameter noise model N,
where ¢(p) is the minimum number of concatenation levels required to correct N,. We
begin by setting pin, = Psym,thres and op = 0.01, then repeating with the new lower bound
and op = 0.001 and finally op = 0.0001. To find the threshold hypersurface for an m-

parameter noise model, repeat this procedure for A, while iterating through a mesh of
points, q.
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the performance of our decoder is robust to perturbations in the noise, so that it can be
implemented using the necessarily imperfect knowledge of the noise in an experiment.

In this section we consider a physical noise model consisting of both amplitude and
phase damping processes. The amplitude damping channel acts on a two-level system at
zero temperature. If the system is in the excited state, then a transition to the ground
state occurs with probability p. If the system starts in the ground state, it will remain in
the ground state indefinitely. A physical example of this scenario would be the spontaneous
emission of a photon in a two-level atom. The Kraus operators for the amplitude damping

channel are [33]
o (1 0 o (0 p
Asp = ( 0 VI=p ) , Aup = ( R (2.40)

We point out that Eq. 2.40 can be generalized to take into account non-zero temperature
effects. In this case, when the system is in the ground state, there is a non-zero probability
of making a transition to the excited state. In Ref. [39], the performance of the 5-qubit code,
Steane code and non-additive quantum codes was estimated for the generalized amplitude
damping channel. However, the methods used did not allow for an exact analysis. In
the remainder of this section we will only consider the amplitude-damping channel at zero
temperature.

Phase damping arises when a phase kick exp(i67) is applied to a qubit with a random
angle #. When 6 is sampled from a Gaussian distribution, then the Kraus operators are

o (1 0 O 0 0

where A characterizes the width of the distribution of 6. The phase damping channel
is also equivalent to the phase-flip channel, that is, applying a Z with probability a =

(1+vI=—N)/2.

Combining the amplitude and phase damping channel, we consider the amplitude-phase
damping channel given by

Napp(p) = Npp(Nap(p)) = Nap(Npep(p)).- (2.42)

As the amplitude-phase damping channel contains two parameters (p and ), the threshold
hypersurface will be a curve below which the process matrix is correctable.

The threshold curves and infidelity at the first and third concatenation levels for the
[5,1,3], Steane, and Shor codes are illustrated in Fig. 2.4 and Fig. 2.5. The infidelities
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Figure 2.4: Threshold curves for the amplitude-phase damping channel under the [5, 1, 3],
Steane code and the X and Z Shor code. The symmetrized and optimized curves overlap
when the optimized decoder is the symmetric decoder, however, there are many regimes
where the optimized decoder improves the threshold. For the [5, 1, 3] code, thresholds using
the optimized decoder increase by as much as a factor of 2.14 relative to the symmetric
decoder. The curves for the fixed symmetric decoders are all smooth, whereas the curves
for the optimized decoders have kinks corresponding to points where the decoder changes
to exploit asymmetries in the noise.
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Figure 2.5: Infidelity curves r as functions of the dephasing parameter A at the first (a),
(c) and third (b), (d) concatenation level for the amplitude-phase damping channel under
the [5,1,3] and Steane codes. The amplitude damping rate is fixed at p = 0.17 (a), (b)
and p = 0.01 (c), (d). The symmetrized and optimized curves overlap when the optimized
decoder is the symmetric decoder, however, there are many regimes where the optimized
decoder improves the infidelity. For the [5,1,3] code, infidelities are lowered by as much
as 2 orders of magnitude. The curves for the fixed symmetric decoders are all smooth,
whereas the curves for the optimized decoders have kinks corresponding to points where
the decoder changes to exploit asymmetries in the noise. All codes also exhibit improved
performance for large values of p relative to A, that is, when the noise is primarily amplitude
damping.
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for the Shor and surface-17 codes are not shown since they behave similarly to the Steane
code. The [5,1,3] code generally outperforms all other codes in terms of logical infidelity
and thresholds under both optimized and symmetric decoders, except in an intermediate
regime where the optimized decoder exploits the asymmetry in the stabilizers of the X-Shor
code.

The optimized decoder coincides with the symmetric decoder for each code in some
parameter regimes, although only when p = 0 for the Steane and Shor codes. However,
the optimized decoder often differs significantly from the symmetric decoder, resulting in
substantially improved logical infidelities and thresholds. The optimized decoder changes
in different parameter regimes to exploit asymmetries in the noise, producing the kinks in
the curves in Fig. 2.4 and Fig. 2.5. The amplitude-phase damping channel is highly biased
towards Z errors for small values of p relative to A. The optimized decoder exploits this for
the [5,1, 3] code by only correcting Z errors for ¢ levels of concatenation until the noise is
approximately symmetric, and then switching to the symmetric decoder, with ¢ increasing
as p approaches zero. The X-Shor code also performs better in this regime as it has more
X-type stabilizers that detect Z-type errors.

The optimized decoder also results in improved thresholds and logical infidelities for
high amplitude damping rates for all codes. The noise is significantly different from Pauli
noise in this regime and so decoders constructed under the assumption of Pauli noise will be
less likely to identify the correct error compared to decoders optimized for amplitude-phase
damping.

As discussed in Sec. 2.3.2, multiple sets {L, : g € 4(M)} maximize Eq. 2.37 for the
Steane code with amplitude-phase damping and large values of A. For example, setting
A = 0.1431 and choosing the first recovery operator that maximizes Eq. 2.37 gives a
threshold of py, = 0.1032. However, searching all tuples {L, : ¢ € ¥¢(M)} that maximize
Eq. 2.37 (where the degeneracy only occurs at the first level) for the same value of \ gives
a higher threshold of py, = 0.1150.

2.6 Thresholds for coherent errors

In this section we illustrate the behavior of coherent errors under error correction. We con-
sider a coherent error noise model where every qubit undergoes a rotation by an unknown
angle 6 about an axis of rotation n. The coherent noise channel can thus be written as

Noo(p) = € pe= 7, (2.43)
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Figure 2.6: Contour plots representing hypersurfaces of the threshold value of 6 for rota-
tions around the axis n = (sin ¢ cos, sin ¢sin~y, cos ¢) for (a) the [5,1,3] code, (c) the
Steane code and (e) the Shor code using the symmetric decoder and (b) the [5,1, 3] code,
(d) the Steane code and (f) the Shor code using optimized decoding. The optimized decoder
uses transversal gates to improve the threshold, particularly when the rotation is around
an eigenbasis of a transversal Clifford gate (see Table. 2.1). In particular, the [5,1,3]
code has a transversal 7/3 rotation around n¢c = (1,1,1)/v3 (i.e., v = 7/4, ¢ = 7/3),
which enables the optimized decoder to correct arbitrary rotations around axes close to
ne, illustrated by the white circular regions in (b). For Steane’s code, the lightest colored
regions in (d) corresponds to threshold angles 6y, ~ 0.46 compared to 6y, ~ 0.24 in (c), an
improvement by almost a factor of 2. The Shor code has no transversal non-Pauli gates
and so the improvements from the optimized decoder are not as substantial. However, for
rotations near the y-axis, the Shor code outperforms the Steane code by a factor of at most
2.3.
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Figure 2.7: In (a), (b) and (c) infidelities r of the [5,1,3] code, Shor code and Steane
code are plotted at the first and third levels for a rotation about the z-axis. In (a), the
optimized infidelity curves are peaked at the code’s threshold value 6y, = w/4. In (b),
the peaks of the optimized infidelity curves are centred slightly above the code’s threshold
value 0y, = 0.3396. However, the optimized level-3 infidelity curve intersects the optimized
level-1 curve at the threshold value as expected. In (c), the optimized level-1 and level-3
infidelity curves intersect at the threshold value 6y, = 0.3692. The peaks of the infidelity
curves occur at § = 7/4 due to the codes symmetry. In (d), infidelity plots of the surface-
17 at the first concatenation level are shown for a rotation about the y-axis, z-axis and
the (1,1,1)/+/3 axis. It can be seen that the infidelity is lowest for rotations about the
y-axis. In all 4 plots, it can be seen that applying our hard decoding algorithm reduces
the infidelities by, in some cases, orders of magnitude compared to the symmetric decoder.
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where 1 = (sin ¢ cos 7y, sin ¢ sin 7y, cos ¢). We obtain the threshold hypersurface for the noise
model

N ={Nyy~:0€]0,2n],7,¢ € 0,7}, (2.44)

by fixing v and ¢ and obtaining the threshold for 6.

The threshold hypersurfaces for the [5, 1, 3], Steane, and Shor codes are illustrated as
contour plots in Fig. 2.6. The infidelities at the first and third concatenation levels for
[5,1, 3], Steane, Shor, and surface-17 (1st level only) codes are plotted in Fig. 2.7.

Unlike with amplitude-phase damping noise, the optimized decoder strictly outperforms
the symmetric decoder for all rotation axes. With the exception of the Shor code, the
threshold hypersurfaces are relatively flat under symmetric decoding, that is, the threshold
rotation angle is relatively independent of the rotation axis. The optimized decoder breaks
this, giving larger threshold angles for different axes, particularly for rotations about an
eigenbasis of the transversal Clifford gates listed in Table. 2.1. In particular, the [5,1, 3]
code can correct any rotation about axes 7 that are close to (4, +, +)/v/3. The Steane
code can correct any rotation about the Pauli axes except for angles close to odd integer
multiples of /4. The performance of the Shor code is generally only modestly improved
by the optimized decoder, largely because the Shor code has no transversal non-Pauli
gates. However, the optimized decoder is able to exploit the asymmetries in the stabilizer
generators to increase the threshold for rotations near the y axis by more than a factor of
3.

The improved threshold angles are reflected in the orders-of-magnitude reduction in the
logical infidelities in Fig. 2.7. The infidelities are periodic because transversal gates can
be used to counteract the unitary noise. However, as discussed in Sec. 2.8, the transversal
gates are useful even when the action of the noise on the codespace is far from a transversal
gate. For the [5,1,3], Steane and Z-Shor codes, the infidelities are the infidelity at the
first and third concatenation levels for rotations about the x axis, while for the surface-17
code the infidelities are at the first level for rotations about the x, y and \%(1, 1,1) axes.
For the [5, 1, 3], Steane and Shor codes, the threshold values of § correspond exactly to the
cross-over points between the level-1 and level-3 curves. At the third level, the infidelity is
greatly suppressed below threshold and increased above threshold. The optimized infidelity
curves are lower (in some cases by several orders of magnitude) than the infidelities arising

by applying the symmetric decoder at all levels.

For the [5,1,3] code, the only uncorrectable values of 6 are odd integer multiples of
m/4. The surface-17 code has a higher threshold against Y errors than against X (or Z)
errors. The surface-17 code treats X and Z errors symmetrically. However, since the X
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Figure 2.8: (a) Threshold curves and (b) infidelities r at the first and third concatenation
level (with fixed p = 0.003) for the [7,1,3] code. Two-qubit correlated dephasing occurs
with probability ¢ and depolarizing noise occurs with probability 1 — ¢, with a depolarizing
noise parameter p (see Eq. 2.45 and Eq. 2.46). For small values of p, the Z errors arising
from the two-qubit correlations dominate the noise. Applying our optimized hard decod-
ing algorithm in this regime yields a threshold of ¢y = 0.0232. The contribution from
depolarizing noise increases with p until the noise is predominantly depolarizing. In this
regime, the optimized decoder implements the standard CSS decoder at all levels. When
q = 0, the noise is purely depolarizing and p;, = 0.0908. For all values of p, the threshold
¢:n obtained by implementing our optimized decoder is larger than the threshold obtained
by implementing the symmetric decoder. The level-1 and level-3 infidelity curves intersect
near the respective thresholds for p = 0.003, namely, ¢;, = 0.0153 and ¢, = 0.0220 for the
symmetric and optimized decoders respectively.

and Z stabilizer generators have support on different qubits, error rates resulting from Y
errors will differ from error rates resulting from X and Z errors.

The optimized decoding algorithm gives the greatest improvements for codes with
transversal non-Pauli gates, namely, the [5,1, 3] and Steane codes.

2.7 Correlated noise channel

In this section, we study the effect of correlated noise on the logical noise in Steane’s
code. The correlated noise we consider consists of local depolarizing noise and two-qubit
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correlated dephasing errors to all adjacent pairs. The composite noise channel maps an
n-qubit state p

N(p) = (L= @)D" () + 7 >~ 23, 1 (p), (2.45)

where j +, 1 =7+ 1if j < n and 1 otherwise (that is, we consider the qubits to be in a
ring),

Dy(7) = (L= p)7 + L (XTX + Y7Y + Z72) (2.46)

is the depolarizing channel acting on a single-qubit state 7, and Z; ;1+.1(p) = Z;Z;11pZ;+1Z;
applies phase-flip operators to qubits j and j + 1. The logical process matrix can be
computed for the noise model in Eq. 2.45 by Eq. 2.24.

The threshold and infidelity at the first and third concatenation levels of Steane’s code
are illustrated in Fig. 2.8. In the small p regime, the noise is dominated by the two-qubit
correlated dephasing contribution. The optimized decoder corrects a larger amount of Z
errors at the first few levels by breaking the symmetry in the syndrome measurements.
At higher levels, the decoder corrects in a more symmetric fashion in order to remove
the remaining Pauli errors. This improved performance is also illustrated in the reduced
optimized logical infidelities shown in Fig. 2.8 (b) as a function of ¢ with p = 0.003.

There is an intermediate regime where the local depolarizing noise contribution becomes
more relevant, leading to a decrease in the threshold value for ¢q. However, the optimized
threshold is still noticeably larger than the symmetric decoder threshold. Finally, when the
local depolarizing noise is the dominant source of noise, our optimization algorithm chooses
recovery maps consistent with the standard CSS decoder. The standard CSS decoder yields
a slightly larger p threshold value compared to the symmetric decoder when ¢ = 0.

2.8 The effect of Pauli twirling on thresholds and the
benefits of using transversal operations

In Sec. 2.5, Sec. 2.6 and Sec. 2.7, we showed that our hard decoding optimization algorithm
could improve threshold values by more than a factor of 2 for amplitude-phase damping
noise. For coherent noise there where certain rotation axes where the noise was correctable
for arbitrary rotation angles. Infidelities were reduced by orders of magnitudes in certain
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regimes. The amplitude-phase damping and coherent noise models are both non-Pauli.
Performing a Pauli twirl on a noise channel A/ (that is, conjugating it by a uniformly
random Pauli channel) maps it to a channel 7(N') that is a Pauli channel and so has a
diagonal matrix representation with respect to the Pauli basis [0, 27]. In [27, 20], the
effective noise at the first level for the amplitude damping channel was found to be in good
agreement to a Pauli twirled approximation of the channel.

0.6
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05 - Twirl
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0,1 m

e
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Figure 2.9: Threshold curves for unitary rotations about (i2 sin ¢, \/LE sin ¢, cos ¢) by an
angle 6 under three different decoding schemes for the Steane code. For all values of ¢,
an improvement by as much as a factor of 1.7 in the threshold 6, obtained by using
our algorithm optimizing over all transversal Clifford gates can be observed relative to
optimizing over all Pauli gates. The Pauli-twirl reduces (increases) the threshold when
optimizing over all transversal Clifford (Pauli) gates for all values of ¢.

However, we now show that performing a Pauli twirl on coherent noise and using the
Steane code can either reduce or increase threshold values, depending on the particular
recovery protocol. We also illustrate the improvements obtained by using all transversal
gates in the decoding algorithm, instead of just the Pauli gates. Threshold curves for rota-
tions about (\% sin ¢, \/Lﬁ sin ¢, cos ¢) by an angle 6 under three different decoding schemes
for the Steane code are presented in Fig. 2.9. The three schemes we consider are : 1) our
optimized decoding algorithm applied to the twirled noise; 2) our optimized decoding algo-
rithm applied to the bare noise using all transversal gates; and 3) our optimized decoding
algorithm applied to the bare noise using only transversal Pauli gates. Using transversal
Clifford gates in our recovery protocol gives the largest threshold values for all values of ¢
and so Pauli twirling reduces the threshold. However, if only transversal Pauli operators
are used, Pauli twirling increases the threshold for all values of ¢.

The curves in Fig. 2.9 also demonstrate that the threshold can increase by at most
a factor of 1.7 when optimizing over all transversal gates for coherent noise compared to
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optimizing over all transversal gates for the twirled channel. This advantage arises for two
reasons. First, for a known noise model, a transversal gate can be applied to map it to
another noise model that may be closer to the identity. Second, syndrome measurements
may map coherent errors closer to a non-Pauli unitary. However, both these benefits
are lost when the noise is twirled because both the physical noise and the noise for each
syndrome is Pauli noise, which is generally far from any non-Pauli unitary.

2.9 Sensitivity and robustness of our hard decoding
optimization algorithm to perturbations of the
noise model

In Sec. 2.3, we presented a hard decoding algorithm for optimizing threshold values of an
error correcting code for arbitrary CPTP maps. Our algorithm can therefore be applied to
non-Pauli channels, including more realistic noise models that could be present in current
experiments. However, the noise afflicting an experimental system is only ever approxi-
mately known. Nevertheless, we now demonstrate that applying the decoder obtained by
our algorithm for a fixed noise channel N to a perturbed noise model N, retains, in some
cases, improvements in error suppression relative to the symmetric decoder.

To study perturbations about a noise channel, let A" = {N, : p € [0,1]} be a 1-
parameter noise model and

Nuy(p) = [1 = F@IN, + fF(p)UpU! (2.47)

where U is a random unitary and f : [0, 1] — [0, 1] is a function such that f(p) < [N, —Z]||
for any suitable norm (e.g., the diamond norm). (The generalization to multi-parameter
noise families is straightforward.)

We applied our algorithm to N, and Ny, giving the effective process matrices G(N,)
and G(Ny,) respectively. We then applied the symmetric decoder and the decoder opti-
mized for ./\/p to the perturbed noise /\/'U7p to obtain the process matrices Gy gym and Q~U
respectively. The infidelities of these process matrices (at the first concatenation level) are
plotted in Fig. 2.10 (a) for the [5,1, 3] code with coherent noise and f(#) = sin®#/10 and in
Fig. 2.10 (b) for the Steane code with amplitude-phase damping, p = 0.2 and f(\) = A/10.
For both plots we averaged the values over 100 uniformly random unitaries. These results
demonstrate that the significant improvements obtained using the optimized decoder are,
in most studied cases, robust to perturbations in the noise.
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Figure 2.10: Averaged infidelity plots over 100 random unitary operators U of the effective
process matrices G(N,), G(Nuyp), Gu.sym and Gy. The figure in (a) is obtained using the
[5,1,3] code for coherent errors using random rotation axes for each random unitary. The
perturbation was chosen to have the form f(#) = sin?#/10. The figure in (b) is obtained
using the Steane code for the amplitude-phase damping channel. The perturbation was
chosen to have the form f(A) = A/10. In (a), the inset plot shows all infidelities on a
log-log scale in the regime where 6 is small. As can be seen from the figure, in the regime
where 6 2> 0.185, the optimized recovery maps for the unperturbed channel yield a lower
infidelity when applied to the perturbed channel than that from applying the symmetric
decoder. For smaller rotation angles, the infidelity from Gy is slightly larger than the
infidelity arising from Gy sym. The two differ by at most a factor of 7 in the small 0
limit. The infidelity obtained by applying the hard decoding optimization algorithm to the
unperturbed channel is lowest for all sampled values of 6. In (b), it can be observed that
applying the decoder chosen by our optimization algorithm for the unperturbed channel
to the perturbed channel results in a lower infidelity than applying the symmetric decoder
to the perturbed channel, for all sampled values of A. This indicates that our decoding
scheme is very robust to small perturbations of the amplitude-phase damping channel.

The one exception we observed is for coherent noise in the [5,1, 3] code for § < 0.185,
where the infidelity obtained using the optimized decoder for the unperturbed channel is
larger than that obtained using the symmetric decoder by a factor of at most 7.
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2.10 Summary and outlook

In this section, we presented an optimized hard decoding algorithm for arbitrary local
Markovian noise and numerical techniques to characterize thresholds for noise models.
Block-wise two-qubit correlated noise was also considered. Using the analytical tools of
Sec. 2.2, we provide numerical results in Sec. 2.5 to Sec. 2.9 which shows substantial
improvements obtained by our algorithms compared to a fixed decoder for a variety of noise
models, including coherent errors, correlated dephasing and amplitude-phase damping,
and codes, namely, the [5,1,3], Steane, Shor and surface-17 codes. For coherent noise,
our optimized decoding algorithm allowed, in some cases, the noise to be corrected for all
sampled rotation angles and reduced infidelities at a fixed concatenation level by orders of
magnitude.

Our hard decoding algorithm is scalable and efficiently optimizes the recovery opera-
tions independently at each concatenation level while taking advantage of a code’s transver-
sal gates. At a given concatenation level, all syndrome measurements are considered rather
than being sampled from a distribution, so that the performance is exactly characterized
rather than containing statistical (and state-dependent) uncertainties.

In contrast to hard decoding, message-passing algorithms [29] can increase thresholds
for Pauli noise, in some cases nearing the hashing bound subject to sampling uncertainties.
Large codes can also be studied using tensor networks [31], although this requires a tensor-
network description of the code and is exponential in the code distance. An interesting
and important open problem is to combine the current techniques with those of Refs. [29,

| to either reduce statistical uncertainties in message-passing algorithms by exploiting
symmetries in the code or to treat larger, non-concatenated code families.

Further, we showed that performing a Pauli twirl can increase or decrease the threshold

depending on the code and noise properties. In [25], the Pauli twirl was found to have little
impact on the performance of amplitude damping, which is known to be “close” to Pauli
noise (that is, exhibit similar worst-case errors) [11]. We conjecture that Pauli twirling will

generally reduce thresholds for codes that have many transversal gates, but may improve
performance for codes with fewer transversal gates.

Lastly, we considered the robustness of our hard decoding optimization algorithm to
noise channels that were not perfectly known. We showed that by optimizing our decoder
for a channel that was slightly perturbed by a random unitary operator from the actual
channel acting on the qubits, it was still possible to obtain improved error rates over the
symmetric decoder. However, there are some circumstances where the optimized decoder,
while still being robust, is outperformed by the symmetric decoder. Determining the
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robustness of decoders is an open problem that will be especially relevant when decoders
are used for experimental systems with incompletely characterized noise.

In Refs. [25, 20], the process matrix formalism was used to obtain pseudo-thresholds
for the Steane code using the standard CSS decoder. Measurement errors were taken into
account, resulting in more accurate pseudo-threshold values. Our methods were developed
assuming that the encoding and decoding operations were perfect. The next step in our
work will be to generalize our results to include measurement and state-preparation errors.
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Chapter 3

Flag fault-tolerant error correction
with arbitrary distance codes

The material of this chapter is based on the journal article of Ref. [12], copyrighted by the
Verein zur Férderung des Open Access Publizierens in den Quantenwissenschaften. In this
work, myself and Michael Beverland were the investigators of the research. I had the idea
for the project, developed most of the framework and theoretical ideas as well as perform all
numerical simulations. Both authors contributed to the final scheme which was developed
to realize the research goal of the project. Additionally, both authors contributed to writing
the manuscript and editing the work for publication.

3.1 Introduction and formalism

There are three general approaches of fault-tolerant error correction applicable to a wide
range of stabilizer codes due to Shor [17] (see Sec. 1.2.1), Steane [13], and Knill [11] (we
will give detailed descriptions of Steane and Knill-EC in Sec. 4.2.2 and Sec. 4.2.3). There
are also a number of promising code-specific FTEC schemes, most notably the surface code
with a minimum weight matching error correction scheme [15, 46, 7]. This approach gives
very competitive fault-tolerant thresholds and only requires geometrically local measure-
ments (the best fault-tolerance thresholds are obtained from Knill error correction using
concatenated error-detecting codes for post-selected ancilla creation). A high threshold
[17, 47, 48, 19] implies that relatively imperfect hardware could be used to reliably imple-
ment long quantum computations. Despite this, the hardware and overhead requirements
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for the surface code are sufficiently demanding that it remains extremely challenging to
implement in the lab.

Fortunately, there are reasons to believe that there could be better alternatives to
the surface code. For example, dramatically improved thresholds could be possible using
concatenated codes if they enjoyed the same level of optimization as the surface code has
in recent years [29, 50]. Another enticing alternative is to find and use efficiently-decodable
low density parity check (LDPC) codes with high rate [51, 52, 53] in a low-overhead FTEC
protocol [54]. For these and other reasons, it is important to have general FTEC schemes
applicable to a wide range of codes and to develop new schemes.

Shor EC can be applied to any stabilizer code, but typically requires more syndrome
measurement repetitions than Steane and Knill EC. Furthermore, all weight-w stabilizer
generators are measured sequentially using w-qubit verified cat states. On the other hand,
Steane EC has higher thresholds than Shor EC and has the advantage that all Clifford
gates are applied transversally during the protocol. However, Steane EC is only applicable
to CSS [12, 13] codes and uses a verified logical |[4) state encoded in the same code to
simultaneously obtain all X-type syndromes, using transversal measurement (similarly for
Z). Knill EC can also be applied to any stabilizer code but requires two additional ancilla
code blocks (encoded in the same code that protects the data) prepared in a logical Bell
state. The Bell state teleports the encoded information to one of the ancilla code blocks
and the extra information from the transversal Bell measurement gives the error syndrome.
Knill EC typically achieves higher thresholds than Shor and Steane EC but often uses more
qubits [55, 56]. It is noteworthy that for large LDPC codes, in which low weight generators
are required to be fault-tolerantly measured, Shor EC is much more favourable than Steane
or Knill EC. Many improvements in these schemes have been made. For example, in [20],
ancilla decoding was introduced to correct errors arising during state preparation in Shor
and Steane EC rather than simply rejecting all states which fail the verification procedure.

In this chapter, we build on a number of recent papers [57, 58, 59] that demonstrate
flag error correction for particular distance-three and error detecting codes and present a
general protocol for arbitrary distance codes. Flag error correction uses extra ancilla qubits
to detect potentially problematic high weight errors that arise during the measurement of
a stabilizer. We provide a set of requirements for a stabilizer code (along with the circuits
used to measure the stabilizers) which, if satisfied, can be used for flag error correction.
We are primarily concerned with extending the lifetime of encoded information using fault-
tolerant error correction and defer the study of implementing gates fault-tolerantly to future
work. Our approach can be applied to a broad class of codes (including but not limited to
surface codes, color codes and quantum Reed-Muller codes). Of the three general schemes
described above, flag EC has most in common with Shor EC. Further, flag EC does not
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require verified state preparation, and for all codes considered to date, requires fewer ancilla
qubits. Lastly, we note that in order to satisfy the fault-tolerant error correction definition
presented in Sec. 1.2.1, our protocol applied to distance-three codes differs from [57].

We foresee a number of potential applications of these results. Firstly we believe it
is advantageous to have new EC schemes with different properties that can be used in
various settings. Secondly, flag EC involves small qubit overhead, hence possibly the
schemes presented here and in other flag approaches [57, 58, 59] will find applications in
early qubit-limited experiments. Thirdly, we expect the flag EC protocol presented here
could potentially be useful for LDPC codes as described in [51].

In Sec. 3.2.1 we provide important definitions and introduce flag FTEC for distance-
three and -five codes. In Sec. 3.3 we apply the protocol to two examples: the [19,1, 5]
and [17,1,5] color codes, which importantly have a variety of different weight stabilizers.
The general flag FTEC protocol for arbitrary distance codes is given in Sec. 3.4.1. A proof
that the general protocol satisfies the fault-tolerance criteria is given in Appendix. B.1. In
Sec. 3.4.2 we provide examples of codes that satisfy the conditions that we required for flag
FTEC. Flag circuit constructions for measuring stabilizers of the codes in Sec. 3.4.2 are
given in Sec. 3.5. We also provide a candidate circuit construction for measuring arbitrary
weight stabilizers in Appendix. B.3. In Sec. 3.6, we analyze numerically a number of flag
EC schemes and compare with other FTEC schemes under various types of circuit level
noise. We find that flag EC schemes, which have large numbers of idle qubit locations,
behave best in error models in which idle qubit errors occur with a lower probability than
CNOT errors. The remainder of this section is devoted to some definitions and noise
model/simulation methods.

3.1.1 Definitions, noise model and pseudo-threshold calculations

We first start with a definition that will be used several times in this section,

Definition 6. Weight-t Pauli operators

& ={E € P,|w(E) < t}, (3.1)

where P, is the n-qubit Pauli group.

In Sec. 3.6, we perform a full circuit level noise analysis of various error correction
protocols. Unless otherwise stated, we use the following depolarizing noise model:
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1. With probability p, each two-qubit gate is followed by a two-qubit Pauli error drawn
uniformly and independently from {I, X,Y, Z}®*\ {I ® I}.

2. With probability 22, the preparation of the [0) state is replaced by [1) = X|0).
Si‘rni;arly, with probability %, the preparation of the |4) state is replaced by |—) =
Z|+).

3. With probability %, any single qubit measurement has its outcome flipped.

4. Lastly, with probability p, each resting qubit location is followed by a Pauli error
drawn uniformly and independently from {X,Y, Z}.

Some error correction schemes that we analyze contain a significant number of idle
qubit locations. Consequently, most schemes will be analyzed using three ratios (p = p,
p = p/10 and p = p/100) to highlight the impact of idle qubit locations on the logical
failure rate.

The two-qubit gates we consider are: CNOT, XNOT= H;(CNOT)H;, and CZ= Hy(CNOT)H,.

Logical failure rates are estimated using an N-run Monte Carlo simulation. During a
particular run, errors are added at each location following the noise model described above.
Once the error locations are fixed, the errors are propagated through a fault-tolerant error
correction circuit and a recovery operation is applied. After performing a correction, the
output is ideally decoded to verify if a logical fault occurred. For an error correction
protocol implemented using a stabilizer code C' and a fixed value of p, we define the logical

failure rate )
: Nai p
pO(p) = Jim Mo lP) (32)

N—o0

where Nfﬁ) (p) is the number of times a logical X or logical Z error occurred during the

N rounds. In practice we take N sufficiently large to estimate p(LC) (p), and provide error

bars [60, 30].

In this section we are concerned with evaluating the performance of FTEC protocols
(i.e. we do not consider performing logical gates fault-tolerantly). We define the pseudo-
threshold of an error correction protocol to be the value of p such that

B(p) = p (). (3.3)

Note that it is important to have p on the left of Eq. 3.3 instead of p since we want an
encoded qubit to have a lower logical failure rate than an unencoded idle qubit. From the
above noise model, a resting qubit will fail with probability p.
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3.2 Flag error correction for small distance codes

In this and the next section, we present a t-fault-tolerant flag error correction protocol
with distance-(2t + 1) codes satisfying a certain condition. Our approach extends that
introduced by Chao and Reichardt [57] for distance three codes, which we first review
using our terminology below. We then present the protocol for distance five CSS codes
which contains most of the main ideas of the general case (which is provided in Sec. 3.4).
Lastly, in Sec. 3.3 we provide examples of how the protocol is applied to the [19, 1,5] and
[17,1,5] color codes.

3.2.1 Definitions and Flag 1-FTEC with distance-3 codes

In what follows, we use the term location to refer to a gate, state preparation, measurement
or idle qubit where a fault may occur. Note also that a two-qubit Pauli error P; ® P, arising
at a two-qubit gate location counts as a single fault.

It is well known that with only a single measurement ancilla, a single fault in a blue
CNOT of the stabilizer measurement circuit shown in Fig. 3.1a can result in a multi-weight
error on the data block. This could cause a distance-3 code to fail, or more generally could
cause a distance-d code to fail due to fewer than (d — 1)/2 total faults. We therefore say
the blue CNOTs are bad according to the following definition:

Definition 7. Bad locations

A circuit location in which a single fault can result in a Pauli error E on the data block
with wt(E) > 2 will be referred to as a bad location.

As shown in Fig. 3.1b, the circuit can be modified by including an additional ancilla
(flag) qubit, and two extra CNOT gates. This modification leaves the bad locations and
the fault-free action of the circuit unchanged. However, any single fault leading to an error
E with wt(F) > 2 will also cause the measurement outcome of the flag qubit to flip [57].
The following definitions will be useful:

Definition 8. Flags and measurements

Consider a circuit for measuring a stabilizer generator that includes at least one flag
ancilla. The ancilla used to infer the stabilizer outcome s referred to as the measurement
qubit. We say the circuit has flagged if the eigenvalue of a flag qubit is measured as —1. If
the eigenvalue of a measurement qubit is measured as —1, we will say that the measurement

qubit flipped.
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Figure 3.1: Circuits for measuring the operator ZZZZ (can be converted to any Pauli
by single qubit Cliffords). (a) Non-fault-tolerant circuit. A single fault /Z occurring on
the third CNOT (from the left) results in the error 1/ZZ on the data block. (b) Flag
version of Fig. 3.1a. An ancilla (flag) qubit prepared in |+) and two extra CNOT gates
signals when a weight two data error is caused by a single fault. Subsequent rounds of
error correction may identify which error occurred. Consider an IZ error on the second
CNOT, in the non-flag circuit this would result in a weight two error, but in this case, this
fault causes the circuit to flag. (c) An alternative flag circuit with lower depth than (b).
All bad locations are illustrated in blue.
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The purpose of flag qubits is to signal when high weight data qubit errors result from
few fault locations during a stabilizer measurement. Two key definitions are:

Definition 9. t-flag circuit

A circuit' C(P) which, when fault-free, implements a projective measurement of a
weight-w Pauli P without flagging is a t-flag circuit if the following holds: For any set
of v <t faults in C(P) resulting in an error E with min(wt(E), wt(EP)) > v, the circuit
flags.

Note that a t-flag circuit for measuring a weight-t stabilizer P is also a k-flag circuit
for any k£ > t. In Sec. 3.5 we give constructions for some t-flag circuits.

Definition 10. Flag error set

Let E(g;) be the set of all errors caused by one fault which caused the circuit C(g;) to
flag.

Note that the flag error set can contain the identity (for instance, when only a mea-
surement error occurs) as well as weight one errors.

Suppose all errors in a flag error set £(g) for a 1-flag circuit C'(g) have distinct syn-
dromes. As C(g) is a 1-flag circuit, a single fault that leads to an error of weight greater
than one will cause the circuit C(g) to flag. Moreover, when a flag has occurred due to
at most one fault, a complete set of fault-free stabilizer measurements will infer the re-
sulting element of the flag error set which has been applied to the data qubits. In fact,
one would only require distinct syndromes for errors in the flag error set that are logically
inequivalent, as defined in Def. 3 (see Sec. 3).

As an example, consider the 1-flag circuit in Fig. 3.1b. A single fault at any of the
blue CNOT gates can lead to an error Ej, with wt(Ep) < 2 on the data. The set £(Z%%)
contains all errors FEj, which resulted from a fault at a blue CNOT gate causing the circuit
C(Z%%) of Fig. 3.1b to flag, i.e., E(9) = {1, Zys 241 X2 Zas Zoans Zan Xans Zass XasZans Yas Zan }
with qubits ¢; to qq.

With the above definitions, we can construct a fault-tolerant flag error correction pro-
tocol for d = 3 stabilizer codes satisfying the following condition.

Definition 11. Flag 1-FTEC condition:

1To avoid confusing the notation of C'(P) that represents a circuit and C that represents a code space,
we always include the measured Pauli in parenthesis unless clear from context.
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__ Syndrome 1
= 1

measurement .
flag
O — Decision based on flags :
and syndrome outcomes
@ _ Apply case ¢ of the flag 1-
FTEC protocol

Figure 3.2: Tree diagram illustrating the possible paths of the Flag 1-FTEC Protocol.
Numbers enclosed in red circles at the end of the edges indicate which step to implement
in the Flag 1-FTEC Protocol. A dashed line is followed when any of the 1-flag circuits C'(g;)
flags. Solid squares indicate a syndrome measurement using 1-flag circuits whereas rings
indicate a decision based on syndrome outcomes. Note that the syndrome measurement is
repeated at most three times.

Consider a stabilizer code S = (g1, g2, - - , g») and 1-flag circuits {C(g1),C(g2),- - ,C(gr)}-
For every generator g;, all pairs of elements E, E' € E(g;) satisfy s(E) # s(E') or E ~ E.

In other words, we require that any two errors that arise when a circuit C(g;) flags due
to a single fault must be either distinguishable or logically equivalent. For the following
protocol to satisfy the FTEC conditions in Def. 5, one can assume there is at most 1 fault.
If the Flag 1-FTEC condition is satisfied, the protocol is implemented as follows:

Flag 1-FTEC Protocol:
Repeat the syndrome measurement using flag circuits until one of the following
is satisfied:

1. If the syndrome s is repeated twice in a row and there were no flags, apply
the correction Fp,($).

2. If there were no flags and the syndromes s; and sy from two consecutive
rounds differ, repeat the syndrome measurement using non-flag circuits
yielding syndrome s. Apply the correction Epi,(s).

3. If a circuit C(g;) flags, stop and repeat the syndrome measurement using
non-flag circuits yielding syndrome s. If there is an element E € &(g;)
which satisfies s(F) = s, then apply E, otherwise apply Eyin(s).

A tree diagram for the flag 1-FTEC Protocol is illustrated in Fig. 3.2. We now outline
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Figure 3.3: (a) A representation of the Steane code where each circle is a qubit, and there is
an X- and a Z-type stabilizer generator for each face. Stabilizer circuits are specified from
that in Fig. 3.1(a) after rotating the lattice such that the relevant face is on the bottom left.
(b) For g = Z,,Z4,Z4,Z,,, the flag error set is £(9) = {1, Zy 2o, X2 Zas Zgur Zay Xas» L
X3 Zgsr X3 Zgs Zg, b which contains all errors arising from a single fault that causes the
stabilizer measurement circuit C(g) to flag. Since the Steane code is a CSS code, the X
component of an error will be corrected independently allowing us to consider the Z-part
of the flag error set £4(9) = {1, Zy,, Zgy, Z4s 24, - As required, the elements of £4(g) all
have distinct syndromes (with satisfied stabilizers represented by a plus).

the proof that the flag 1-FTEC protocol satisfies the fault-tolerance criteria of Def. 5 (a
more rigorous proof of the general case is presented in Appendix. B.1). To show that Flag
1-FTEC Protocol satisfies the criteria of Def. 5, we can assume there is at most one fault
during the protocol. If a single fault occurs in either the first or second round leading to a
flag, repeating the syndrome measurement will correctly diagnose the error. If there are no
flags and a fault occurs which causes the syndromes in the first two rounds to change, then
the syndrome during the third round will correctly diagnose the error. There could also be
a fault during either the first or second round that goes undetected. But since there were
no flags it cannot spread to an error of weight-2. In this case applying a minimum weight
correction based on the measured syndrome of the second round will guarantee that the
output codeword differs from a valid codeword by an error of weight at most one. Note
that the above argument applies irrespective of any errors on the input state, hence the
second criteria of Def. 5 is satisfied. It is worth pointing out that up to three repetitions
are required in order to guarantee that the second criteria of Def. 5 is satisfied (unless the
code has the property that all states are at most a weight-one error away from a valid
codeword, as in Ref. [57]).

The Steane code is an example which satisfies the Flag 1-FTEC condition with a simple
choice of circuits. To verify this, the representation of the Steane code given in Fig. 3.3b
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is useful. There is an X- and a Z-type stabilizer generator supported on the four qubits
of each of the three faces. First let us specify all six stabilizer measurement circuits.
The circuit that measures Z,,Z,, 2,2, is specified by taking qubits ¢, g2, g3, and ¢4
to be the four data qubits in descending order in the 1-flag circuit in Fig. 3.1b. The
other two Z-stabilizer measurement circuits are obtained by first rotating Fig. 3.3b by
120° and 240° and then using Fig. 3.1b. The X-stabilizer circuit for each face is the
same as the Z-stabilizer circuit for that face, replacing CNOT gates acting on data qubits
by XNOT gates. The Z component of the flag error set of the circuit in Fig. 3.1b is
E1(Zy ZyyZgZyy) = {1,2Z4,, 24y, 24, Zg,}. As can be seen from Fig. 3.3b, each of these
has a distinct syndrome, thus the measurement circuit for 7, Z,,7,,Z,, satisfies the flag
1-FTEC condition, as do the remaining five measurement circuits by symmetry.

3.2.2 Flag 2-FTEC with distance-5 codes

Before explicitly describing the conditions and protocol, we discuss some of the complica-
tions that arise for codes with d > 3.

For distance-5 codes, we must ensure that if two faults occur during the error correction
protocol, the output state will differ from a codeword by an error of at most weight-two.
For instance, if two faults occur in a circuit for measuring a stabilizer of weight greater
than four, the resulting error E on the data should satisfy wt(E) < 2 unless there is a flag.
In other words, all stabilizer generators should be measured using 2-flag circuits.

In another case, two faults could occur during the measurement of different stabilizer
generators g; and g;. If two bad locations fail and are both flagged, and assuming there are
no more faults, the measured syndrome will correspond to the product of the error caused
in each circuit (which could have weight greater than two). Consequently, one should
modify Def. 10 of the flag error set to include these types of errors. One then decodes
based on the pair of errors that resulted in the measured syndrome, provided logically
inequivalent errors have distinct syndromes.

Before stating the protocol, we extend some of the definitions given above.

Consider a stabilizer code S = (g1, 92, -, g,) and t-flag circuits C(g;) for measuring
the generator g;.

Definition 12. Flag error set

Let £,(giy» -+ i) be the set of all errors caused by precisely m faults spread amongst
the circuits C(gi,), C(9i,), -+, C(gs,) which all flagged.
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Note that there could be more than one fault in a single circuit C(g;, ). Examples of
flag error sets are given in Tab. 3.1 where only contributions from Z errors are included
(since the considered code is a CSS code). We also define a general ¢-fault correction set:

5 {E € gm(giu e 79%) X gt—m
E™(9iy, -+ 9i,,5) = such that s(E) = s} (3.4)
{Fmin(s)} if above set empty.

By E € &.(9i,, " +9i,) X E—m, we are considering the set consisting of products
between errors caused by k flags and any error of weight ¢ — m.

As will be seen below, the correction set will form a critical part of the protocol by
specifying the correction applied based on the measured syndrome and flag outcomes over
multiple syndrome measurement rounds. In the case where k t-flag circuits flagged caused
by k < m <t faults, the correction applied to the data block will correspond to an element
of &n(giys -+, 9ip) X E—m if the measured syndrome corresponds to an element in this set
(there could also be t — m faults which did not give rise to a flag). However in practice,
there could be more than ¢ faults and so the measured syndrome may not be consistent
with any element of the set £,(gi,, -+ , 9i.) X Et—m- In this case, and for the error correction
protocol to satisfy the second criteria of Def. 5, the correction will correspond to Epyin(s).
These features are all included in the set Etm(gil, e Gigs )

Definition 13. Flag 2-FTEC condition:

Consider a stabilizer code S = (g1, g2, - , gr) and 2-flag circuits {C(g1),C(g2),- - ,C(gr)}-
For any choice of generators {g;,g;}:

1. E, E e gg(gi,gj) = S(E) 7£ S(E,) or B ~ E/,
2. E\E € &(gi) U (E1(gi) x &1) = s(E) # s(E') or E ~ E'.

In order to state the protocol, we define an update rule given a sequence of syndrome
measurements using t-flag circuits for the counters? ngig and ngame as follows:

2ngig tracks the minimum number of faults that could have caused the observed syndrome outcomes.
For example, if the sequence s1, s3, s3 was measured, ng;g would increase by one since a single measurement
fault could give rise to the given sequence (for example, this could be caused by a single CNOT failure
which resulted in a data qubit and measurement error). However for the sequence s1, s2, S1, S2, naig would
increase by two.
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Flag 2-FTEC protocol — update rules:
Given a sequence of consecutive syndrome measurement outcomes s; and sp1:

1. If ngir didn’t increase in the previous round, and s # Sp 1, increase ngig
by one.

2. If a flag occurs, reset ngume to zero.

3. If sp = sp41, increase Ngame by one.

For the following protocol to satisfy Def. 5, one can assume there are at most 2 faults.
If the Flag 2-FTEC condition is satisfied, the protocol is implemented as follows:

Flag 2-FTEC protocol — corrections:

Set ngig = 0 and ngame = 0.

Repeat the syndrome measurement using flag circuits until one of the following
is satisfied:

1. The same syndrome s is repeated 3 — ngir times in a row and there were
no flags, apply the correction E(s).

2. There were no flags and ngg = 2. Repeat the syndrome measurement using
non-flag circuits yielding syndrome s. Apply the correction Epi,($).

3. Some set of two circuits C'(g;) and C(g;) have flagged. Repeat the syn-
drome measurement using non-flag circuits yielding syndrome s. Apply
any correction from the set F3(g;, g;, s).

4. Any circuit C(g;) has flagged and ngigz = 1. Repeat the syndrome measure-
ment using non-flag circuits yielding syndrome s. Apply any correction
from the set E}(g;, s).

5. Any circuit C(g;) has flagged and ngig = 0 and ngame = 1. Use the mea-
sured syndrome s from the last round. Apply any correction from the set
Ey(gi,5) U E3(gi, ).

Note that when computing the update rules, if a flag occurs during the j’th round of
syndrome measurements, the syndrome is not recorded for that round since all stabilizers
must be measured. Thus when computing ngg and ngme using consecutive syndromes s
and si;1, we are assuming that no flags occurred during rounds k and k + 1.
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Figure 3.4: Tree diagram for the Flag 2-FTEC protocol.
the end of the edges indicate which step to implement in the Flag 2-FTEC Protocol. A
dashed line is followed when any of the 2-flag circuits C(g;) flags. Solid squares indicate
a syndrome measurement using 2-flag circuits whereas rings indicate a decision based on
syndrome outcomes. Edges with different colors indicate the current value of ngg in the

Numb

protocol. Note that the protocol is repeated at most 6 times.
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Figure 3.5: Graphical representation of (a) the 19-qubit 2D color code and (b) the 17-qubit
2D color code. The X and Z stabilizers of the code are symmetric, given by the vertices
of each plaquette. Both codes have distance-5.

In each case of the protocol, the correction sets correspond to those data errors which
could arise from up to two faults which are consistent with the conditions of the case. As
the elements are logically equivalent (by Eq. 3.4 and Def. 13), which element is applied is
unimportant.

The general protocol for codes of arbitrary distance is given in Sec. 3.4.

3.3 Examples of flag 2-FTEC applied to d =5 codes

In this section we give examples of the flag 2-FTEC protocol applied to the 2-dimensional
[19,1,5] and [17, 1, 5] color codes, (see Fig. 3.5a and Fig. 3.5b). We first find 2-flag circuits
for all generators (weight-4 and -6 for the 19-qubit code and weight-4 and -8 for the 17-qubit
code). We also show that the flag 2-FTEC condition is satisfied for both codes.

For a 2-flag circuit, two faults leading to an error of weight greater or equal to 3 (up to
multiplication by the stabilizer) must always cause at least one of the flag qubits to flag.
As shown in Sec. 3.5, a 2-flag circuit satisfying these properties can always be constructed
using at most four flag qubits. We show 2-flag circuits for measuring weight six and eight
generators in Fig. 3.6.

In Sec. 3.4.2, it will be shown that the family of color codes with a hexagonal lattice
satisfy a sufficient condition which guarantees that the flag 2-FTEC condition is satisfied.
However, there are codes that do not satisfy the sufficient condition but which nonetheless
satisfy the 2-Flag FTEC condition. For the 19-qubit and 17-qubit color codes, we verified
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Weight-4 measurement | Weight-6 measurement
1-fault 2-faults 1-fault 2-faults
1,7, 1,71,7 1,71,7¢ 1,7,,7,
Zy 23,24 AVA: Zs3, 24,25, 26
Z3Zy AVA Zs5Zg AVANAVA
A AVAYA: AYAAYS
ZayZy AVANAYA
ZyZg,Z3 24
232,242
AVANAYAL
AVAYAWAVAYA
ZyZi5Ze, 2324 2
2324 26,2325 L
AVAYA:

Table 3.1: Z part of the flag error set of Def. 12 for flag circuits used to measure the
stabilizers gy = 2122737, and g3 = 71727374757 (we removed errors equivalent up to
the stabilizer being measured).

that the flag 2-FTEC condition was satisfied by enumerating all errors one would have for
a generic code. In particular, in the case where the 2-flag circuits C'(g;) and C(g,) flag, the
resulting errors belonging to the set ;(g;, g;) must be logically equivalent or have distinct
syndromes (which we verified to be true). If a single circuit C(g;) flags, there could either
have been two faults in the circuit or a single fault along with another error that did not
cause a flag. If the same syndrome is measured twice in a row after a flag, then errors in
the set £2(g;) U (E1(g;) x £1) must be logically equivalent or have distinct syndromes (which
we verified). If there is a flag but two different syndromes are measured in a row, errors
belonging to the set £ (g;) x & must be logically equivalent or have distinct syndromes
(as was already checked). The flag error sets (see Def. 12) for the 19-qubit code can be
obtained using the Pauli’s shown in Tab. 3.1.

Given that the flag 2-FTEC condition is satisfied, the flag 2-FTEC protocol can be
implemented following the steps of Sec. 3.2.2 and the tree diagram illustrated in Sec. 3.4.
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Figure 3.6: Illustration of 2-flag circuits for measuring (a) Z% requiring only two flag
qubits and (b) Z®® requiring only three flag qubits. Flag qubits are prepared in the |+)
state, and measurement qubits in the |0) state.
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3.4 Flag error correction protocol for arbitrary dis-
tance codes

In this section we first provide the general flag ¢-FTEC protocol. We then give a sufficient
condition for stabilizer codes that allow us to easily prove that flag FTEC can be applied
to a number of infinite code families. We show that the families of surface codes, hexagonal
lattice color codes and quantum Reed-Muller codes satisfy the sufficient condition. General
t-flag circuit constructions which are applicable to the code families described in this section
will be given in Sec. 3.5.

3.4.1 Conditions and protocol

In what follows we generalize the fault-tolerant error correction protocol presented in
Sec. 3.2.2 to stabilizer codes of arbitrary distance.

Definition 14. Flag t-FTEC condition:

Consider a stabilizer code S = (g1, g2, - - , 9 and t-flag circuits {C(g1), C(g2),--- ,C(gr)}-
For any set of m stabilizer generators {gi,, - , i, } such that 1 < m < t, every pair of
elements E, E' € Uz;gl E—i(Giy, -+, i) X & either satisfy s(E) # s(E') or E ~ E'.

The above conditions ensure that if there are at most t = | (d—1)/2] faults, the protocol
described below will satisfy the fault-tolerance conditions of Def. 5.

In order to state the protocol, we define an update rule given a sequence of syndrome
measurements using t-flag circuits for the counters ngg and ngme as follows (see also
Sec. 3.2.2 and the associated footnote):

Flag t-FTEC protocol — update rules:
Given a sequence of consecutive syndrome measurement outcomes s; and sp1:

1. If ngg didn’t increase in the previous round, and s # s 1, increase ngig by one.

2. If a flag occurs, reset ngume to zero.

3. If sp = spy1, increase Ngame by one.
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Flag t-FTEC protocol — corrections:

Set ngig = 0 and ngme = 0.
Repeat the syndrome measurement using flag circuits until one of the following is satisfied:

1.

The same syndrome s is repeated t — ngg + 1 times in a row and there are no flags,
apply the correction Eyin(s).

. There were no flags and ng;gx = t. Repeat the syndrome measurement using non-flag

circuits yielding the syndrome s. Apply the correction Epn(s).

Some set of ¢ circuits {C(g;,),---,C(gi,)} have flagged. Repeat the syndrome mea-
surement using non-flag circuits yielding syndrome s. Apply any correction from the
set Ef(gua “ s Gy S)‘

Some set of m circuits {C(g;,),- -+ ,C(g;,,)} have flagged with 1 < m < t and nqgg =
t —m. Repeat the syndrome measurement using non-flag circuits yielding syndrome s.
Apply any correction from the set Ei*(gi, -, i, S)-

5. Some set of m circuits {C(g;,),- -, C(g;,,)} have flagged with 1 <m < t; ngg <t—m
and nsame =t —m — naig + 1. Use the syndrome s obtained during the last round and
apply any correction from the set U;;gl_"‘“ﬁ' By (g s giS).

In each case of the protocol, the correction sets correspond to those data errors which
could arise from up to ¢ faults which are consistent with the conditions of the case. As
the elements are logically equivalent (by Eq. 3.4 and Def. 14), which element is applied is
unimportant.

For the protocol to satisfy the fault-tolerance criteria, the syndrome measurement needs
to be repeated a minimum of ¢ + 1 times. In the scenario where the most syndrome
measurement rounds are performed, ¢ identical syndromes are obtained before a fault causes
the t+1’th syndrome to change (in which case ng;r would increase by one). Afterwords, one
measures the same syndrome ¢t — 1 times in a row until another fault causes the syndrome
to change. This continues until all of the ¢ possible faults have been exhausted. At this
stage, nqir = t so an extra syndrome measurement round will be performed using non-flag
circuits. Thus the maximum number of syndrome measurement rounds n,,., is given by

t—1
. 1
nmaX:Z(t_]>+t+1:§(t2+3t+2> (35)
7=0

Recall that in Sec. 1.2.1 when discussing Shor-EC, we required (¢ + 1)? syndrome measure-
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ment repetitions. However, our scheme presented in this section requires fewer syndrome
measurement repetitions and does not require the preparation and verification of a w-qubit
cat state when measuring a stabilizer of weight-w. 3

For codes that satisfy the flag t-FTEC condition, we also show in Appendix. B.2 how
to fault-tolerantly prepare and measure logical states using the flag ¢-FTEC protocol.

3.4.2 Sufficient condition and satisfying code families

The general flag t-FTEC condition can be difficult to verify for a given code since it depends
on precisely which t-flag circuits are used. A sufficient (but not necessary) condition that
implies the flag --FTEC condition is as follows:

Sufficient flag -FTEC condition:

Given a stabilizer code with distance d > 1, and S = (g1, 92, - , gr), We require that
for all v = 0,1,...¢, all choices @Q;_, of 2(t — v) qubits, and all subsets of v stabilizer
generators {g;,,...,6i,} C {91, ,gr}, there is no logical operator [ € N(S)\ S such that

supp(l) C supp(gs,) U -+ - Usupp(gs,) U Qi—v, (3.6)

where N(S) is the normalizer of the stabilizer group.

If this condition holds, then the flag t-FTEC condition is implied for any choice of t-flag
circuits {O(gl)’ C(92)7 e 70(9’/‘)}

To prove this, we must show that it implies that none of the sets appearing in the
t-FTEC condition contain elements that differ by a logical operator. Consider the set
U;;gl E—i(Giy, -+, 9i,) x & for some set of m stabilizer generators {g;,, - ,¢;,} with
1 <m <t. An error F from this set will have support in the union of the support of the
m stabilizer generators {g;,, - , ¢, }, along with up to t —m other single qubits. Another
error £ from this set will have support in the union of support of the same m stabilizer
generators {g;,, - , g, }, along with up to t —m other potentially different single qubits.
If the sufficient condition holds, then supp(EE’) cannot contain a logical operator.

The sufficient flag t-FTEC condition is straightforward to verify for a number of code
families with a lot of structure in their stabilizer generators and logical operators. We
briefly provide a few examples.

30ne could also define update rules analogous to those for nqig and neume when implementing Shor-EC
which would only require at most %(t2 + 3t + 2) syndrome measurement repetitions as in the flag t-FTEC
protocol.
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Figure 3.7: The d = 5 rotated surface code. Qubits are represented by white circles, and
X and Z stabilizer generators are represented by red and green faces. As in the example,
any logical X operator has X operators acting on at least five qubits, with at least one in
each row of the lattice, involving an even number in any green face. In this case, no two
stabilizer generators can have qubits in five rows, and therefore cannot contain an X type
logical operator. The argument is analogous for logical Z operators.

Surface codes flag t-FTEC:

The rotated surface code [1, 45, 61, 62] family [d? 1,d] for all odd d = 2t + 1 (see
Fig. 3.7) satisfies the flag t-FTEC condition using any 4-flag circuits.

Firstly, by performing an exhaustive search, we verified that the circuit of Fig. 3.1b is
a 4-flag circuit.

As a CSS code, we can restrict our attention to purely X-type and Z-type logical
operators. An X type logical operator must have at least one qubit in each of the 2t + 1
rows of the lattice shown. However, each stabilizer only contains qubits in two different
rows. Therefore, with v stabilizer generators, at most 2v of the rows could have support.
With an additional 2(¢ — v) qubits, at most 2t rows can be covered, which is fewer than
the number of rows, and therefore no logical X operator is supported on the union of the
support of v stabilizers and 2(t—v) qubits. An analogous argument holds for Z-type logical
operators, therefore the sufficient t-FTEC condition is satisfied.

Color codes flag t-FTEC:

Here we show that any distance d = (2t + 1) self-dual CSS code with at most weight-
6 stabilizer generators satisfies the flag --FTEC condition using any 6-flag circuits (see
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Fig. 3.9a for an example). Examples include the hexagonal color code [5] family [(3d? +
1)/4,1,d] (see Fig. 3.5a).

As a self-dual CSS code, X and Z type stabilizer generators are identically supported
and we can consider a pure X-type logical operator without loss of generality.

Consider an X type logical operator [ such that

supp(l) C supp(gi,) U - - - Usupp(gi,) U Q¢—v, (3.7)

for some set of v stabilizer generators {g;,,..., 9.} C {91, -, 9} along with 2(t —v) other
qubits @Q;—,. Restricted to the support of any of the v stabilizers g;, |, must have weight
0, 2, 4, or 6 (otherwise it would anti-commute with the corresponding Z type stabilizer). If
the restricted weight is 4 or 6, we can produce an equivalent lower weight logical operator
I' = g¢;l, which still satisfies Eq. 3.7. Repeating this procedure until the weight of the
logical operator can no longer be reduced yields a logical operator [,,;, which has weight
either 0 or 2 when restricted to the support of any of the v stabilizer generators. The total
weight of [, is then at most 2v+2(t —v) = 2¢, which is less than the distance of the code,
giving a contradiction which therefore implies that [ could not have been a logical operator.
An analogous argument holds for Z-type logical operators, therefore the sufficient t-FTEC
condition is satisfied.

This proof can be easily extended to show that any distance d = (2t + 1) self-dual
CSS code with at most weight-2v stabilizer generators for some integer v satisfies the flag
t'-FTEC condition using any (v — 1)-flag circuits, where t' = t/|v/2].

Quantum Reed-Muller codes flag 1-FTEC:

The [n = 2™ — 1,k = 1,d = 3] quantum Reed-Muller code family for every integer
m > 3 satisfies the flag 1-FTEC condition using any 1-flag circuits for the standard choice
of generators.

We use the following facts about the Quantum Reed-Muller code family (see Ap-
pendix. B.4 and Ref. [63] for proofs of these facts): (1) The code is CSS, allowing us
to restrict to pure X type and pure Z type logical operators, (2) all pure X or Z type
logical operators have odd support, (3) every X-type stabilizer generator has the same
support as some Z-type stabilizer generator, and (4) every Z-type stabilizer generator is
contained within the support of an X type generator.

We only need to prove the sufficient condition for v = 0,1 in this case. For v = 0, no
two qubits can support a logical operator, as any logical operator has weight at least three.
For v = 1, assume the support of an X-type stabilizer generator contains a logical operator
[. That logical operator [ cannot be Z type or it would anti-commute with the X-stabilizer
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Figure 3.8: (a) A 1-flag circuit for measuring the stabilizer ZgsZg710Z11 212213214715 of
the [15,7,3] Hamming code. However a single fault on the fourth or fiftth CNOT can lead
to the error 719713714715 on the data which is a logical fault. With the CNOT gates
permuted as shown in (b), the [15,7, 3] satisfies the general flag 1-FTEC condition.

due to its odd support. However, by fact (3), there is a Z type stabilizer with the same
support as the X type stabilizer, therefore implying [ cannot be X type either. Therefore,
by contradiction we conclude that no logical operator can be contained in the support of
an X stabilizer generator. Since every other stabilizer generator is contained within the
support of an X-type stabilizer generator, a logical operator cannot be contained in the
support of any stabilizer generator.

Note that the Hamming code family has a stabilizer group which is a proper subgroup
of that of the quantum Reed-Muller codes described here. The X-type generators of each
Hamming code are the same as for a quantum Reed-Muller code, and the Hamming codes
are self-dual CSS codes. It is clear that the sufficient condition cannot be applied to the
Hamming code since it has even-weight Z-type logical operators (which are stabilizers for
the quantum Reed-Muller code) supported within the support of some stabilizer generators.

Codes which satisfy the flag t-FTEC condition but not the sufficient flag
t-FTEC condition:

Note that there are codes which satisfy the general flag t-FTEC condition but not the
sufficient condition presented in this section. An example of such a code is the [5, 1, 3] code
(see Tab. 2.1 for the codes stabilizer generators and logical operators). Another example
includes the Hamming codes as was explained in the discussion on quantum Reed-Muller
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Figure 3.9: (a) [lustration of a w-flag circuit for measuring the operator Z®* where w = 6
using the smallest number of flag qubits. (b) Illustration of a 3-flag circuit for measuring
Z®8 using the smallest number of flag qubits.

codes. For instance, consider the [15,7,3] Hamming code. Using the 1-flag circuit shown
in Fig. 3.8a, the [15,7, 3] will not satisfy the general flag 1-FTEC condition since a single
fault can lead to a logical error on the data. As was shown in Ref. [57], by permuting the
CNOT gates resulting in the circuit illustrated in Fig. 3.8b, the flag 1-FTEC condition is
satisfied. A larger family of codes which satisfy the general flag t-FTEC condition but not
the sufficient condition was shown in Ref. [6].

3.5 Circuits

In Sec. 3.4.2 we showed that the family of surface codes, color codes with a hexagonal
lattice and quantum Reed-Muller codes satisfied a sufficient condition allowing them to
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be used in the flag --FTEC protocol. Along with the general 1-flag circuit construction of
Fig. 3.10a, the 6-flag circuit for measuring Z%% of Fig. 3.9a can be used as t-flag circuits
for all of the codes in Sec. 3.4.2. Note that the circuit in Fig. 3.1b (which is a special case
of Fig. 3.10a when w = 4) is a 4-flag circuit which is used for measuring Z*.

Before describing general 1- and 2-flag circuit constructions, we give the following two
definitions which we will frequently use: Any CNOT that couples a data qubit to the
measurement qubit will be referred to as CNOT,, and any CNOT coupling a measurement
qubit to a flag qubit will be referred to as CNOTy,,. In both cases the target qubit will
always be the measurement qubit.

1- and 2-flag circuits for weight w stabilizer measurements:

We provide 1- and 2-flag circuit constructions for measuring a weight-w stabilizer. The
1-flag circuit requires a single flag qubit, and the 2-flag circuit requires at most four flag
qubits.

Without loss of generality, in proving that the circuit constructions described below
are 1- and 2-flag circuits, we can assume that all faults occurred on CNOT gates. This is
because any set of v faults (including those at idle, preparation or measurement locations)
will have the same output Pauli operator and flag measurement results as some set of at
most v faults on CNOT gates (since every qubit is involved in at least one CNOT).

As was shown in Ref. [77], Fig. 3.10a illustrates a general 1-flag circuit construction
for measuring the stabilizer Z®¥ which requires only two CNOTYy, gates. To see that the
first construction is a 1-flag circuit, note that an IZ error occurring on any CNOT will
give rise to a flag unless it occurs on the first or last CNOTy,, gates or the last CNOTy,
gate. However, such a fault on any of these three gates can give rise to an error of weight
at most one (after multiplying by the stabilizer Z®"). One can also verify that if there are
no faults, the circuit in Fig. 3.10a implements a projective measurement of Z®% without
flagging. Following the approach in Ref. [65], one simply needs to check that the circuit
preserves the stabilizer group generated by Z%* and X on each ancilla prepared in the |+)
state and Z on each ancilla prepared in the |0) state. By using pairs of CNOTy, gates,
this construction satisfies the requirement.

We now give a general 2-flag circuit construction for measuring Z%* for arbitrary w (see
Fig. 3.10b for an example). The circuit consists of pairs of CNOTy, gates each connected
to a different flag qubit prepared in the |+) state and measured in the X basis. The general
2-flag circuit construction involves the following placement of w/2 — 1 pairs of CNOTy,
gates:

1. Place a CNOTy, pair between the first and second last CNOTy,, gates.
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Figure 3.10: (a) General 1-flag circuit for measuring the stabilizer Z®". (b) Example of
a 2-flag circuit for measuring Z®'? using our general 2-flag circuit construction. (c) An

equivalent circuit using fewer flag qubits by reusing a measured flag qubit and reinitializing
it in the |+) state for use in another pair of CNOTy, gates.
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2. Place a CNOTYy, pair between the second and last CNOTy,, gates.

3. After the second CNOTy, gate, place the first CNOTy, gate of the remaining pairs
after every two CNOTy,, gates. The second CNOTy, gate of a pair is placed after
every three CNOTy,, gates.

As shown in Fig. 3.10c, it is possible to reuse some flag qubits to measure multiple pairs of
CNOTy, gates at the cost of introducing extra time steps into the circuit. For this reason,
at most four flag qubits will be needed, however, if w < 8 then w/2 — 1 flag qubits are
sufficient.

We now show that the above construction satisfies the requirements of a 2-flag circuit.
If one CNOT gate fails, by an argument analogous to that used for the 1-flag circuit, there
will be a flag or an error of at most weight-one on the data. If the first pair of CNOTg,
gates fail causing no flag qubits to flag, after multiplying the data qubits by Z®¥, the
resulting error E, will have wt(F,) < 2. For any other pair of CNOTy, gates that fail
causing an error of weight greater than two on the data, by construction there will always
be another CNOTYy,, gate between the two that fail which will propagate a Z error to a
flag qubit causing it to flag. Similarly, if pairs of CNOTy, gates fail resulting in the data
error E, with wt(E,) > 2, by construction there will always be an odd number of Z errors
propagating to a flag qubit due to the CNOTg, gates in between the CNOTy,, gates that
failed causing a flag qubit to flag. The same argument applies if a failure occurs between

a CNOTg4, and CNOTy, gate.

Lastly, a proposed general w-flag circuit construction for arbitrary w is provided in
Appendix B.3.

Use of flag information:

As seen in Fig. 3.9a, Fig. 3.9b, Fig. 3.10b and Fig. 3.10c, in general ¢-flag circuits require
more than one flag qubit. Apart from their use in satisfying the t-flag circuit properties,
the extra flag qubits could be used to reduce the size of the flag error sets (defined in
Def. 12) when verifying the Flag t-FTEC condition of Sec. 3.4. To do so, we first define f,
where f is a bit string of length u (here w is the number of flag qubits) with f; = 1 if the
i’th flag qubit flagged and 0 otherwise. In this case, the correction set of Eq. 3.4 can be
modified to include flag information as follows:
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Ezn(gim"' 7gika3afi17"' 7fzk) =

{E € gm(gila 5 iy fiu e 7flk) X St—m
such that s(E) = s} (3.8)
{Emin(s)} if above set empty:.,

where £,,(giy, -+, iy, firs -+ - [i,) 1s the new flag error set containing only errors caused by
precisely m faults spread amongst the circuits C(g;, ), C(giy), - - - , C(g;,) which each gave
rise to the flag outcomes f;,, -+, fi,.

Hence only errors which result from the measured flag outcome would be stored in the
correction set. With enough flag qubits, this could potentially broaden the family of codes
which satisfy the Flag t-FTEC condition.

3.6 Circuit level noise analysis

The purpose of this section is to demonstrate explicitly the flag 2-FTEC protocol, and to
identify parameter regimes in which flag FTEC presented both here and in other works
offers advantages over other existing FTEC schemes. We first analyze the logical failure
rates of the [19, 1, 5] color code and compute its pseudo-threshold for the three choices of
p. We then compare logical failure rates of several fault-tolerant error correction schemes
applied to distance-three and distance-five stabilizer codes. The stabilizers for all of the
studied codes are given in Tab. 2.1 and Tab. B.3. Logical failure rates are computed using
the full circuit level noise model and simulation methods described in Sec. 3.1.1.

3.6.1 Numerical analysis of the [19,1,5] color code

The full circuit-level noise analysis of the flag 2-FTEC protocol applied to the [19, 1, 5] color
code was performed using the stabilizer measurement circuits of Fig. 3.1b and Fig. 3.6a.

In the weight-six stabilizer measurement circuit of Fig. 3.6a, there are 10 CNOT gates,
three measurement and state-preparation locations, and 230 resting qubit locations. When
measuring all stabilizer generators using non-flag circuits, there are 42 CNOT and 42
XNOT gates, 18 measurement and state-preparation locations, and 2196 resting qubit
locations. Consequently, we expect the error suppression capabilities of the flag EC scheme
to depend strongly on the number of idle qubit locations.

74



three-qubit flag EC ‘ pseudo-threshold

[19,1,5] and p=p | ppsendo = (1.14 +0.02) x 107°
[19,1,5] and p = &5 | ppseudo = (6.70 £ 0.07) x 1075
[19,1,5] and p = Ppseudo = (7.74 4 0.16) x 1077

e
100
Table 3.2: Table containing pseudo-threshold values for the flag 2-FTEC protocol applied
to the [19,1, 5] color code for p = p, p = p/10 and p = p/100.

® Three — qubit p
Three — qubit p/10 >
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Figure 3.11: Logical failure rates of the [19,1,5] color code after implementing the flag
2-FTEC protocol presented in Sec. 3.2.2 for the three noise models described in Sec. 3.1.1.
The dashed curves represent the lines p = p, p = p/10 and p = p/100. The crossing point

between p and the curve corresponding to pglg’l’ﬂ) (p) in Eq. 3.3 gives the pseudo-threshold.

Pseudo-thresholds of the [19,1,5] code were obtained using the methods of Sec. 3.1.1.
Recall that for extending the lifetime of a qubit (when idle qubit locations fail with proba-
bility p), the probability of failure after implementing an FTEC protocol should be smaller
than p. We calculated the pseudo-threshold using Eq. 3.3 for the three cases were idle
qubits failed with probability p = p, p = p/10 and p = p/100. The results are shown in
Tab. 3.2.

The logical failure rates for the three noise models are shown in Fig. 3.11. It can be
seen that when the probability of error on a resting qubit decreases from p to p/10, the
pseudo-threshold improves by nearly a factor of six showing the strong dependence of the
scheme on the probability of failure of idle qubits.
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Figure 3.12: Logical failure rates for various fault-tolerant error correction methods applied
to the [5,1,3] code, [7,1,3] Steane code and the [19, 1, 5] color code. The dashed curves
correspond to the lines p = p, p = p/10 and p = p/100. In (a), (c) and (e), the flag 1-FTEC
protocol is applied to the [5,1,3] and Steane code and the results are compared with the
d = 3 surface code and Steane error correction applied to the Steane code. In (b), (d) and
(f), the flag 2-FTEC protocol is applied to the [19,1,5] color code, and the results are
compared with the d = 5 surface code and Steane error correction applied to the [19, 1, 5]
color code. These numerical results suggest the following fault-tolerant experiments of the
schemes we consider for extending the fidelity of a qubit. (1) If 7 < n < 16, only the 5
and 7 qubit codes with flag 1-FTEC are accessible. However, the performance is much
worse than higher qubit alternatives unless p/p is small. (2) For 17 < n < 34, the d = 3
surface code seems most promising, unless p/p is small, in which case flag 2-FTEC with
the 19-qubit code should be better. (3) For 35 < n < 48, Steane EC applied to distance-
three codes is better than all other approaches studied, except for very low p where flag
2-FTEC should be better due to ability to correct two rather than just one fault. (4) For
n > 49, the d=5 surface code is expected to perform better than the other alternatives
below pseudo-threshold.
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3.6.2 Comparison of flag 1- and 2-FTEC with other FTEC schemes

The most promising schemes for testing fault-tolerance in near term quantum devices are
those which achieve high pseudo-thresholds while maintaining a low qubit overhead. The
flag FTEC protocol presented in this section uses fewer qubits compared to other well
known fault-tolerance schemes but typically has increased circuit depth. In this section
we apply the flag FTEC protocol of Sec. 3.2.1 and Sec. 3.2.2 to the [5,1,3], [7,1,3] and
[19,1,5] codes. We compare logical failure rates for three values of p with Steane error
correction applied to the [7,1,3] and [19,1,5] codes and with the d = 3 and d = 5
rotated surface code. More details on Steane error correction and surface codes relevant
for this section are provided in Appendix. B.5 and Appendix. B.6. Steane error correction
is also discussed in detail in Sec. 4.2.2. Note that recent work by Goto has provided
optimizations to prepare Steane ancillas [06]. However, our numerical results for Steane-
EC were produced using the methods presented in Appendix. B.5.

Results of the logical failure rates for p = p, p = p/10 and p = p/100 are shown
in Fig. 3.12. Various pseudo-thresholds and required time-steps for the considered fault-
tolerant error correction methods are given in Tab. 3.3 and Tab. 3.4.

The circuits for measuring the stabilizers of the 5-qubit code were similar to the ones
used in Fig. 3.1b (for an X Pauli replace the CNOT by an XNOT). For flag-FTEC methods,
it can be seen that the [5, 1, 3] code always achieves lower logical failure rates compared to
the [7,1, 3] code. However, when p = p, both the d = 3 surface code as well as Steane-EC
achieves lower logical failure rates (with Steane-EC achieving the best performance). For
p = p/10, flag-EC applied to the [5, 1, 3] code achieves nearly identical logical failure rates
compared to the d = 3 surface code. For p = p/100, flag 1-FTEC applied to the [5,1, 3]
code achieves lower logical failure rates than the d = 3 surface code but still has higher
logical failure rates compared to Steane-EC.

We also note that the pseudo-threshold increases when p goes from p to p/10 for both
the [5,1,3] and [7,1,3] codes when implemented using the flag 1-FTEC protocol. This
is primarily due to the large circuit depth in flag-EC protocols since idle qubits locations
significantly outnumber other gate locations. For the surface code, the opposite behaviour
is observed. As was shown in [7], CNOT gate failures have the largest impact on the pseudo-
threshold of the surface code. Thus, when idle qubits have lower failure probability, lower
physical error rates will be required in order to achieve better logical failure rates. For
instance, if idle qubits never failed, then performing error correction would be guaranteed
to increase the probability of failure due to the non-zero failure probability of other types
of locations (CNOT, measurements and state-preparation). Lastly, the pseudo-threshold
for Steane-EC also decreases with lower idle qubit failure rates, but the change in pseudo-
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FTEC scheme Noise model | Number of qubits | Time steps (Tiime) Pseudo-threshold
Flag-EC [5,1, 3] p=p 7 64 < Tiime < 88 | Ppsendo = 7-09 x 107°
Flag-EC [7,1, 3] 9 72 < Thime < 108 | Ppsendo = 3.39 x 107°

d = 3 Surface code 17 > 18 Ppseudo = 3.29 x 1074
Steane-EC [7,1, 3] > 35 15 Ppsendo = 6.29 x 1074
Flag-EC [5, 1, 3] p=p/10 7 64 < Tiime < 88 | Ppseudo = 1.11 x 107%
Flag-EC [7,1, 3] 9 72 < Tiime < 108 | Ppsendo = 8.68 x 107°
d = 3 Surface code 17 > 18 Ppsendo = 1.04 x 1074
Steane-EC [7,1, 3] > 35 15 Ppseudo = 3.08 X 1074
Flag-EC [5, 1, 3] p = p/100 7 64 < Tiime < 88 | Ppseudo = 2.32 x 1072
Flag-EC [7,1, 3] 9 72 < Tiime < 108 | Ppsendo = 1.41 x 1070
d = 3 Surface code 17 > 18 Ppseudo = 1.37 X 107°
Steane-EC [7,1, 3] > 35 15 Ppsendo = 3.84 X 1077

Table 3.3: Distance-three pseudo-threshold results for various FTEC protocols and noise
models applied to the [5,1,3], [7,1,3] and d = 3 rotated surface code. We also include
the number of time steps required to implement the protocols.

threshold is not as large as the surface code. This is primarily due to the fact that all
CNOT gates are applied transversally in Steane-EC, so that the pseudo-threshold is not as
sensitive to CNOT errors compared to the surface code. Furthermore, most high-weight
errors arising during the state-preparation of the logical ancilla’s will be detected (see
Appendix. B.5). Hence, idle qubit errors play a larger role than in the surface code, but
Steane-EC has fewer idle qubit locations compared to flag-EC (see Tab. 3.3 for the circuit
depths of all schemes).

Although Steane-EC achieves the lowest logical failure rates compared to the other
fault-tolerant error correction schemes, it requires a minimum of 35 qubits (more details
are provided in Appendix. B.5). In contrast, the d = 3 surface code requires 17 qubits, and
flag 1-FTEC applied to the [5, 1, 3] code requires only 7 qubits. Therefore, if the probability
of idle qubit errors is much lower than gate, state preparation and measurement errors,
flag-F'TEC methods could be good candidates for early fault-tolerant experiments.

It is important to keep in mind that for the flag 1-FTEC protocol applied to the
distance-three codes considered in this section, the same ancilla qubits are used to measure
all stabilizers. A more parallelized version of flag-FTEC applied to the [7, 1, 3] code using
four ancilla qubits instead of two is considered in Appendix. B.7.

In computing the number of time steps required by the flag t-FTEC protocols, a lower
bound is given in the case where there are no flags and the same syndrome is repeated
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FTEC scheme Noise model | Number of qubits | Time steps (Ttime) Pseudo-threshold
Flag-EC [19, 1, 5] p=0p 22 504 < Tiime < 960 | ppseudo = 1.14 X 1077
d = 5 Surface code 49 > 18 Ppsendo = 9.41 x 1074
Steane-EC [19, 1, 5] > 95 15 Ppseudo = 1.18 x 1073
Flag-EC [19, 1, 5] p=p/10 22 504 < Tiime < 960 | Ppseudo = 6.70 x 107°
d = 5 Surface code 49 > 18 Ppseudo = 1.38 X 10~
Steane-EC [19, 1, 5] > 95 15 Ppseudo = 4.42 x 1074
Flag-EC [19, 1, 5] p=p/100 22 504 < Tiime < 960 | ppseudo = 7.74 X 1077
d = 5 Surface code 49 > 18 Ppsendo = 2.63 x 107*
Steane-EC [19, 1, 5] > 95 15 Ppseudo = .60 X 1077

Table 3.4: Distance-five pseudo-threshold results for various FTEC protocols and noise
models applied to the [19,1, 5] color code and d = 5 rotated surface code. We also include
the number of time steps required to implement the protocols.

t+1 times. In Sec. 3.4 it was shown that the full syndrome measurement for flag-FTEC is
repeated at most 3 (t* 4 3t +2) times where ¢ = [(d —1)/2]. An upper bound on the total
number of required time steps is thus obtained from a worst case scenario where syndrome
measurements are repeated %(t2 + 3t + 2) times.

For distance-five codes, the first thing to notice from Fig. 3.12 is that the slopes of the
logical failure rate curves of flag-EC applied to the [19,1,5] code and d = 5 surface code
are different from the slopes of Steane-EC applied to the [19,1,5] code. In particular,
pL = cp® + O(p*) for flag-EC and the surface code whereas p, = ¢;p? + cop® + O(p*) for
Steane-EC (¢, ¢; and ¢ are constants that depend on the code and FTEC method). The
reason that Steane-EC has non-zero O(p?) contributions to the logical failure rates is that
there are instances where errors occurring at two different locations can lead to a logical
fault. Consequently, the Steane-EC method that was used is not strictly fault-tolerant
according to Def. 5. In Appendix. B.5, more details on the fault tolerant properties of
Steane-EC are provided and a fully fault-tolerant implementation of Steane-EC is analyzed
(at the cost of using more qubits).

For d = 5, the surface code achieves significantly lower logical failure rates compared
to all other distance 5 schemes but uses 49 qubits instead of 22 for the [19,1,5] code.
Furthermore, due the differences in the slopes of the flag-2 FTEC protocol compared with
Steane-EC applied to the [19, 1, 5] code, there is a regime where flag-2 FTEC achieves lower
logical failure rates compared to Steane-EC. For p = p/100, it can be seen in Fig. 3.12
that this regime occurs when p < 1074, We also note that the pseudo-threshold of flag-
EC applied to the [19, 1,5] color code increases for all noise models whereas the pseudo-
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threshold decreases for the other FTEC schemes. Again, this is due to the fact that flag-EC
has a larger circuit depth compared to the other FTEC methods and is thus more sensitive
to idle qubit errors.

Comparing the flag 2-FTEC protocol (applied to the [19,1,5] color code) to all the

= 3 schemes that were considered in this section, due to the higher distance of the 19-

qubit code, there will always be a parameter regime where the 19-qubit color code acheives

lower logical failure rates than both the d = 3 surface code and Steane-EC applied to the

[7,1,3] code. In the case where p = p/100 and with p < 1.5 x 1074, using flag error

correction with only 22 qubits outperforms Steane error correction (which uses a minimum
of 35 qubits) and the d = 3 rotated surface code (which uses 17 qubits).

Note the considerable number of time steps involved in a round of flag-EC, particularly
in the d = 5 case (see Tab. 3.4). For many applications, this is a major drawback, for
example for quantum computation when the time of an error correction round dictates the
time of a logical gate. However there are some cases in which having a larger number of
time-steps in an EC round while holding the logical error rate fixed is advantageous as it
corresponds to a longer physical lifetime of the encoded information. Such schemes could
be useful for example in demonstrating that encoded logical quantum information can be
stored for longer time scales in the lab using repeated rounds of FTEC.

3.7 Summary and outlook

Building on definitions and a new flag FTEC protocol applied to distance-three and -five
codes presented in Sec. 3.2, in Sec. 3.4.1 we presented a general flag FTEC protocol, which
we called flag t-FTEC, and which is applicable to stabilizer codes of distance d = 2t + 1
that satisfy the flag t-FTEC condition. The protocol makes use of flag ancilla qubits which
signal when v faults lead to errors of weight greater than v on the data when performing
stabilizer measurements. In Sec. 3.3 and Sec. 3.5 we gave explicit circuit constructions,
including those needed for distance 3 and 5 codes measuring stabilizers of weight 4, 6 and
8. In Sec. 3.4.2 we gave a sufficient condition for codes to satisfy the requirements for flag
t-FTEC. Quantum Reed-Muller codes, Surface codes and hexagonal lattice color codes
were shown to be families of codes that satisfy the sufficient condition.

The flag t-FTEC protocol could be useful for fault-tolerant experiments performed in
near term quantum devices since it tends to use fewer qubits than other FTEC schemes
such as Steane, Knill and Shor EC. In Sec. 3.6.2 we provided numerical evidence that with
only 22 qubits, the flag 2-FTEC protocol applied to the [19,1,5] color code can achieve
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lower logical failure rates than other codes using similar numbers of qubits such as the
rotated distance-3 surface code and Steane-EC applied to the Steane code.

A clear direction of future work would be to find optimal general constructions of t-flag
circuits for stabilizers of arbitrary weight that improve upon the general construction given
in Appendix. B.3. Of particular interest would be circuits using few flag qubits and CNOT
gates while minimizing the probability of false-positives (i.e. when the circuit flags without
a high-weight error occurring). Finding other families of stabilizer codes which satisfy the
sufficient or more general condition for flag t-FTEC would also be of great interest. One
could also envisage hybrid schemes combining flag EC with other FTEC approaches.

Another direction of future research would be to find general circuit constructions for
simultaneously measuring multiple stabilizers while minimizing the number of required
ancilla qubits. Further, we believe performing a rigorous numerical analysis to understand
the impact of more compact circuit constructions on the codes threshold is of great interest.

Lastly, the decoding complexity (i.e. generating the flag error set lookup tables) is
limited by the decoding complexity of the code. In some cases, for example concatenated
codes, it may be possible to exploit some structure to generate the flag error sets more effi-
ciently. In the case of concatenated codes, the decoding complexity would be reduced to the
decoding complexity of the codes used at every level. Finding other scalable constructions
for efficient decoding schemes using flag error correction remains an open problem.
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Chapter 4

Deep neural decoders for near term
fault-tolerant experiments

The material of this section is based on the journal article of Ref.[67], copyrighted by 2018
IOP Publishing. Both authors contributed equally to the work. I developed the main ideas
for the project and performed all the simulations to generate the training set data. Pooya
Ronagh performed the machine learning experiments and discussed the classical resources
required to implement the techniques. Both authors contributed equally to the writing
and editing of the manuscript.

4.1 Introduction and Motivation

Recently, significant progress has been made in building small quantum devices with enough
qubits allowing them to be potential candidates for several quantum information experi-
ments [08, 69, 70, 71]. Fault-tolerant quantum computing is one such avenue that has so
far had a very limited experimental analysis [72].

In recent years, several fault-tolerant protocols for both error correction and universal
quantum computation have been proposed, each with their own trade-offs [7, 12, 13, 55,

, D7, 08, A2, 7419, 75,63, 76, 77, 59]. In Chapter 2 we developed new hard decoding
algorithms which that can adapt to known noise models in order to achieve better error
correcting capabilities. In [31, 78], tensor network algorithms were used for simulating the
surface code and obtaining efficient decoders for general noise features. However, the above
schemes are not adapted to fault-tolerant protocols where gate and measurement errors
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plays a significant role. Furthermore, some knowledge of the noise is required in order for
the decoding protocols to achieve good performance. This can be a significant drawback
since it is often very difficult to fully characterize the noise in realistic quantum devices.

The above challenges motivate alternative methods for finding efficient decoders which
can offer improvements over more standard methods such as minimum weight perfect
matching for topological codes [79, 80] and message passing for concatenated codes [29].
One interesting idea is using deep neural networks for constructing decoders which are
both efficient and can tolerate large noise rates. The hope is that even if the underlying
noise model is completely unknown, with enough experimental data, deep neural networks
could learn the probability density functions of the different possible errors corresponding
to the sequences of measured syndromes.

The first work in which machine learning was used for decoding was in a paper by
Torlai and Melko [%1]. In this chapter, a Boltzmann machine was trained to correct phase-
flip errors of a 2-dimensional toric code. Krastanov and Jiang obtained a neural network
decoder applicable to general stabilizer codes and applied it to the 2-D toric code obtain-
ing a higher code-capacity threshold than previous results [$2]. Varsamopoulos, Criger
and Bertels used a feed-forward neural network to decode the surface code [23]. They
also applied their decoding scheme to the distance three surface code under a full circuit
level noise model. Baireuther, O’Brien, Tarasinski and Beenakker used a recurrent neural
network that could be trained with experimental data [34]. They applied their decoding
scheme to compare the lifetime of qubits encoded in a distance-three surface code. The
analysis was based on a full circuit level noise model, albeit with a modified CNOT gate
error model. Breuckmann and Ni [85] gave a scalable neural decoder applicable to higher
dimensional codes by taking advantage of the fact that these codes have local decoders. To
our knowledge, these methods could not be applied to codes of dimensions less than four.
After our work was released, Maskara, Kubica and Jochym-O’Connor used neural-network
decoders to study the code capacity thresholds of color codes [30].

Despite the numerous works in using neural networks for decoding, there are still several
open questions that remain:

1. What are the fastest possible decoders that can be achieved using neural networks
and how does the decoding time compare to gate times in realistic quantum devices?

2. Can neural networks still offer good performance beyond distance three codes in a
full circuit level noise model regime? If so, what are the limitations?

3. How well do neural networks perform near and below typical thresholds of fault-
tolerant schemes under full circuit level noise models?
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In this chapter we aim to address the above questions. We apply a plethora of neural
network methods to analyze several fault-tolerant error correction schemes such as the
surface code as well as the CNOT-exRec gate using Steane error correction (EC) and
Knill-EC, and consider both distance-three and distance-five codes. We chose the CNOT-
exRec circuit since (in most cases) it limits the threshold of the underlying code when used
with Steane and Knill-EC units [18]. Our analysis is done using the full circuit level noise
mode of Sec. 3.1.1. Furthermore our methods are designed to work with experimental data;
i.e. no knowledge of the underlying noise model is required.

Lastly, we provide a rigorous analysis of the decoding times of the neural network
decoders and compare our results with expected gate delays in future superconducting
quantum devices. We suspect that even though inference from a trained neural network is
a simple procedure comprising only of matrix multiplications and arithmetic operations,
state-of-the-art parallel processing and high performance computing techniques would need
to be employed in order for the inference to provide a reliable decoder given the anticipated
gate times in future quantum devices.

The deep neural decoders (DND) we design in this chapter assist a baseline decoder.
For the baseline decoders, we will use both lookup table and naive decoding schemes which
will be described in Sec. 4.2. The goal of the deep neural decoder is to determine whether
to add logical corrections to the corrections provided by the baseline decoders. Although
the lookup table decoder is limited to small codes, the naive decoder can efficiently be
implemented for arbitrary distance codes.

We stress that to offer a proper analysis of the performance of neural network decoders,
the neural network should be trained for all considered physical error rates. We believe
that from an experimental point of view, it is not realistic to apply a network trained
for large physical error rates to lower rate noise regimes. The reason is simply that the
network will be trained based on the hardware that is provided by the experimentalist. If
the experimentalist tunes the device to make it noisier so that fewer non-trivial training
samples are provided to the neural network, the decoder could be fine tuned to a different
noise model than what was present in the original device. As will be shown, training
neural networks at low error rates is a difficult task for machine learning and definitely an
interesting challenge.

Our goal has been to write this chapter in such a way that makes it accessible to both
quantum information scientists and machine learning experts. The chapter is structured
as follows.

In Sec. 4.2.1, we review the rotated surface code and provide a new decoding algorithm
that is particularly well adapted for deep neural decoders. In Sec. 4.2.2 and Sec. 4.2.3, we
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review the Steane and Knill fault-tolerant error correction methods. In Sec. 4.2.4 we give
a description of the naive decoder and in Sec. 4.2.5 we discuss the decoding complexity of
both the lookup table and naive decoders.

Sec. 4.3 focuses on the deep neural decoders constructed, trained and analyzed in this
chapter. In Sec. 4.3.1 we give an overview of deep learning by using the application of
error decoding as a working example. We introduce three widely used architectures for
deep neural networks: (1) simple feedforward networks with fully connected hidden layers,
(2) recurrent neural networks, and (3) convolutional neural networks. We introduce hy-
perparameter tuning as a commonly used technique in machine learning and an important
research tool for machine learning experts. In Sec. 4.3.2 and Sec. 4.3.3 we introduce the
deep neural network architectures we designed for decoding the CNOT-exRec circuits in
the case of Steane- and Knill-EC, and for multiple rounds of EC in the case of the rotated
surface code.

In Sec. 4.4 we provide our numerical results by simulating the above circuits under a
full circuit level depolarizing noise channel, and feeding the results as training and test
datasets for various deep neural decoders.

Finally, in Sec. 4.5 we address the question of practical applicability of deep neural
decoders in their inference mode for fault-tolerant quantum error correction. We will
address several hardware and software considerations and recommend a new development
in machine learning known as network quantization as a suitable technology for decoding
quantum error correcting codes.

4.2 Fault-tolerant protocols

In this section we will describe the fault-tolerant protocols considered in this chapter. The
surface code will be described in Sec. 4.2.1 while Steane and Knill error correction will
be described in Sec. 4.2.2 and Sec. 4.2.3. For each protocol, we will also describe the
baseline decoder used prior to implementing a deep neural decoder (DND). Since we are
focusing on near term fault-tolerant experiments, we will first describe decoding schemes
using lookup tables which can be implemented extremely quickly for small distance codes.
In Sec. 4.4 we will show that the lookup table decoding schemes provide very competitive
pseudo-thresholds. With existing computing resources and the code families considered
in this chapter, the proposed decoders can be used for distances d < 7. For example,
the distance-nine color code would require 8.8 exabytes of memory to store the lookup
table. Lastly, in Sec. 4.2.4 we will describe a naive decoder which is scalable and can be
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Figure 4.1: lustration of an extended rectangle (exRec) for a logical CNOT gate. The EC
box consists of performing a round of fault-tolerant error correction. The error correction
rounds prior to applying the logical CNOT gate are referred to as leading-EC’s (LEC) and
the error correction rounds after the CNOT are referred to as trailing-EC’s (TEC).

implemented efficiently while achieving competitive logical failure rates when paired with
a deep neural decoder.

In this chapter, we will be considering the noise model of Sec. 3.1.1 and all our fault-
tolerant protocols will be chosen to satisfy Def. 5.

Since we are focusing on small distance codes which could potentially be implemented
in near term fault-tolerant experiments, when comparing the performance of fault-tolerant
error correction protocols, we need to consider a full extended rectangle (exRec) which
consists of leading and trailing error correction rounds in between logical gates. Note that
this also applies to topological codes. An example of an exRec is given in Fig. 4.1. We
refer the reader to [18, 31] for further details on exRec’s.

4.2.1 Rotated surface code

In this section we focus on the rotated surface code [45, 46, 7, 61, 4, 62] first introduced in
Sec. 3.4.2. We remind the reader that rotated surface code is a [d?, 1, d] stabilizer code with
qubits arranged on a 2-dimensional lattice as shown in Fig. 4.2. Any logical X operator
has X operators acting on at least d qubits with one X operator in each row of the lattice
involving an even number of green faces. Similarly, any logical Z operator has Z operators
acting on at least d qubits with one Z operator in every column of the lattice involving an
even number of red faces.

It is possible to measure all the stabilizer generators by performing only nearest neighbor
interactions between the data qubits and neighboring ancilla qubits. The circuits used to
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Figure 4.2: Illustration of the d = 5 rotated surface code. Data qubits are located at the
white circles and the ancilla qubits used to measure the stabilizers are located on the black
circles of the lattice. Green squares measure the Z stabilizers and red squares measure X
stabilizers.
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Figure 4.3: Fig. 4.3a illustrates the circuit used to measure the stabilizer X®* and Fig. 4.3b
illustrates the circuit used to measure the stabilizer Z%*. As can be seen, a full surface
code measurement cycle is implemented in six time steps.
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measure both X and Z stabilizers are shown in Fig. 4.3. Note that all stabilizer generators
are of weight two or four regardless of the size of the lattice.

Several decoding protocols have been devised for topological codes. Ideally, we would
like decoders which have extremely fast decoding times to prevent errors from accumulating
in hardware during the classical processing time while also having very high thresholds.
The most common algorithm for decoding topological codes is Edmond’s perfect matching
algorithm (PMA) [79]. Although the best known thresholds for topological codes under
circuit level noise have been achieved using a slightly modified version of PMA [80], the
decoding algorithm has a worst case complexity of O(n?). Recent progress has shown
that minimum weight perfect matching can be performed in O(1) time on average given
constant computing resources per unit area on a 2D quantum computer [87]. With a
single processing element and given n detection events, the runtime can be made O(n)
[38]. Renormalization group (RG) decoders have been devised that can achieve O(logn)
decoding times under parallelization [89, 90, 91]. However such decoders typically have
lower thresholds than PMA. Wootton and Loss [92] use a Markov chain Monte Carlo
method to obtain near optimal code capacity noise thresholds of the surface code at the
cost of slower decoding times compared to other schemes. Recently, Delfosse and Nickerson
[93] have devised a near linear time decoder for topological codes that achieves thresholds
slightly lower than PMA for the 2-dimensional toric code.

Here we construct a decoder for the surface code which has extremely fast decoding
times and achieves high pseudo-thresholds which will serve as a core for our deep neural
decoder construction of Sec. 4.3. Our decoder will be based on a lookup table construction
which could be used for distances d < 7. Before describing the construction of the lookup
table, we point out that a single fault on the second or third CNOT gates in Fig. 4.3a and
Fig. 4.3b can propagate to a data qubit error of weight-two (see also Appendix. B.6 for
more details). Thus for a surface code that can correct t = 2d + 1 errors, a correction E’
for an error E resulting from ¢ faults, with £’ ~ E, must be used when the syndrome s(F)
is measured. In other words, the minimum weight correction must not always be used for
errors that result from faults occurring at the CNOT gates mentioned above.

With the above in mind, the lookup table is constructed a follows. For every 1 <
m < 271 use the lowest weight error E' ~ E such that converting the bit string s(E)
to decimal results in m. If F is an error that results from v < t = 2d + 1 faults with
wt(FE) > t, then use E' ~ E instead of the lowest weight error corresponding to the
syndrome s(FE). Note that for this method to work, all errors E with wt(F) < t must have
distinct syndromes from errors £’ that arise from v < ¢ faults with wt(E’) > t. However
this will always be the case for surface codes with the CNOT ordering chosen in Fig. 4.3.
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Note that with the above construction, after measuring the syndrome s, decoding simply
consists of converting s to decimal (say m) and correcting by choosing the error on the
m’th row of the lookup table. However, this method is not scalable since the number of
syndromes scales exponentially with the code distance.

Lastly, the decoding scheme as currently stated is not fault-tolerant. The reason is that
if syndromes are measured only once, in some cases it would be impossible to distinguish
data qubit errors from measurement errors. For instance, a measurement error occurring
when measuring the green triangle of the upper left corner of Fig. 4.2 would result in the
same syndrome as an X error on the first data qubit. However, with a simple modification,
the surface code decoder can be made fault-tolerant. For distance 3 codes, the syndrome is
measured three times and we decode using the majority syndrome. If there are no majority
syndromes, the syndrome from the last round is used to decode. For instance, suppose that
the syndromes sy, so, s5 were obtained, then the syndrome s, would be used to decode with
the lookup table. If all three syndromes s;, s, s3 were different, then s3 would be used to
decode with the lookup table. This decoder was shown to be fault-tolerant in Ref. [94].

For higher distance codes, we use the following scheme which is derived from the pro-
tocol presented in Sec. 3.4. First, we define the counter ngg (used for keeping track of the
minimum number of faults which causes changes in consecutive syndrome measurements)
as follows

Decoding protocol — update rules:
Given a sequence of consecutive syndrome measurement outcomes s and sgy1:

1. If ngig did not increase in the previous round, and s # S 1, increase ngig by
one.

We also define E(s) to be the correction obtained from either the lookup table decoder
or naive decoder (described in section Sec. 4.2.4) using the syndrome s. With the above
definition of ngyg, the decoding protocol for a code that can correct any error E with
wt(E) <t = L@J is implemented as
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Decoding protocol — corrections:

Set nais = 0.

Repeat the syndrome measurement.

Update ngig according to the update rule above.

1. If at anytime ngg = t, repeat the syndrome measurement yielding the syn-
drome s. Apply the correction E(s).

2. If the same syndrome s is repeated t — ngiz + 1 times in a row, apply the
correction E(s).

Note that in the above protocol, the number of times the syndrome is repeated is non-
deterministic. The minimum number of syndrome measurement repetitions is ¢ + 1 while
in Sec. 3.4 we showed that the maximum number of syndrome measurement repetitions
is 5(t* 4+ 3t + 2). Further, a proof that the above protocol satisfies both fault-tolerance
criteria in Def. 5 is given in Appendix. B.1.

4.2.2 Steane error correction

Steane error correction [13] takes advantage of properties of CSS codes (reviewed in Sec. 1.1.1)
to measure the X and Z stabilizers using transversal CNOT gates. To see this, consider
the circuit in Fig. 4.4a. The transversal CNOT gate between the encoded data block [t))
and ancilla [+) acts trivially (i.e. CNOT|[¢)|F) = |¥)[+)). However, any X errors af-
flicting the data block would then be copied to the ancilla state. Furthermore, CSS codes
have the property that by performing a transversal measurement of the codeword |+) in
the absence of errors, the result will be a codeword of C; chosen uniformly at random.
If X errors are present on the codeword |+), then the transversal measurement will yield
the classical codeword e + f + g. Here, (e|0) (written in binary symplectic form) are the
X errors on the data qubits, (f|0) are the X errors that arise during the preparation of
the |[+) state and (g|0) are bit-flip errors that arise during the transversal measurement.
Applying the correction X.X;X, on the data would result in an X error of weight f + g.
An analogous argument can be made for Z errors using the circuit of Fig. 4.4b (note that
in this case we measure in the X-basis which maps €y — Cy and Z — X).

The circuits used to prepared the encoded |+) and |0) states are in general not fault-
tolerant. In the case of [+), low weight errors can spread to high-weight X errors (which can
change the outcome of the measurement) and Z errors (which can propagate to the data
block due to the transversal CNOT gates). However, by preparing extra “verifier” states
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Figure 4.4: Circuits for measuring X and Z stabilizers in Steane-EC. The circuit in Fig. 4.4a
measures bit-flip errors whereas the circuit in Fig. 4.4b measures phase-flip errors. Note
that the first block consists of the data qubits encoded in a CSS code. The states |0) and
|+) represent logical |0) and |+) states encoded in the same CSS code used to protect the
data.

encoded in |[+) and coupling these states to the original [+) ancilla as shown in Fig. 4.5,
high weight X and Z errors arising from the ancilla can be detected. Furthermore, after
a classical error correction step, the eigenvalue of X and Z can be measured. Therefore if
a non-trivial syndrome is measured in the verifier states or the —1 eigenvalue of a logical
operator is measured, the ancilla qubits are rejected and new ancilla qubits are brought in
to start the process anew.

We would like to point out that instead of verifying the ancilla qubits for errors and
rejecting them when a non-trivial syndrome is measured, it is also possible to replace the
verification circuit with a decoding circuit. By performing appropriate measurements on
the ancilla qubits and making use of Pauli frames [55, 95, 96|, any errors arising from
t-faults in the ancilla circuits can be identified and corrected [20] (note that DiVincenzo
and Aliferis provided circuits for Steane’s [7,1,3] code so that t = 1). However in this
chapter we will focus on ancilla verification methods.

It can be shown that the Steane-EC circuit of Fig. 4.5 satisfies both fault-tolerant
conditions of Def. 5 for distance-three codes [I1]. It is possible to use the same ancilla
verification circuits in some circumstances for higher distance codes by carefully choosing
different circuits for preparing the logical |0) and |[+) states (see [] for some examples). For
the analysis performed in this chapter, we chose appropriate |0) and |+) states such that
the decoding schemes are fault-tolerant using the ancilla verification circuits in Fig. 4.5.
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Figure 4.5: Full Steane error correction circuit. Each line represents encoded data qubits
and all CNOT gates and measurements are performed transversally. The circuits used to
prepare the encoded |[+) and [0) are in general not fault-tolerant. Consequently, extra
"verifier” ancilla states are used to detect errors arising during the preparation of |[+) and
|0). If the verifier states measure a non-trivial syndrome or the —1 eigenvalue of a logical
Pauli is measured, the ancilla states are rejected and new ancilla states are brought in until
they pass the verification step.
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Figure 4.6: CNOT-exRec for Steane-EC which contains four EC blocks. The CNOT-exRec
limits the pseudo-threshold of the 7,1, 3] and [19, 1, 5] color code due to the large number
of locations and thus makes an ideal circuit to optimize our decoding algorithm using the
neural decoders described in Sec. 4.3.

We would like to add that although the order in which transversal measurements to correct
bit-flip and phase-flip errors does not affect the fault-tolerant properties of Steane-EC, it
does create an asymmetry in the X and Z logical failure rates [0, 35, 36]. For instance,
an X error arising on the target qubit of the logical CNOT used to detect phase errors
would be copied to the |+) ancilla. However a Z error arising on the target of this CNOT
or control of the CNOT used to correct bit-flip errors would not be copied to any of the
ancilla qubits.

When analyzing both Steane and Knill-EC schemes using neural decoders, the under-
lying quantum error correcting codes will be the [7,1,3] Steane code and the [19,1, 5]
color code (see Fig. 3.3 and Fig. 3.5a for a description of these codes). To obtain a
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Figure 4.7: Knill error correction circuit. As with Steane-EC, all CNOT gates and mea-
surements are performed transversally. The logical |0) and |+) states are also encoded
using the same code that protects the data. A transversal CNOT gate is applied between
them to form a logical Bell state. The operator @) is used to complete the teleportation
protocol of the logical state as well as to correct errors which were on the original data

block.

pseudo-threshold for both of these codes, we will consider the CNOT-exRec since it is the
logical gate with the largest number of locations and thus will limit the performance of
both codes [18] (here we are considering the universal gate set generated by (CNOT, T, H)
where T = diag(1, e"/*) and H is the Hadamard gate [97]). The full CNOT-exRec circuit
for Steane-EC is shown in Fig. 4.6. Note that the large number of CNOT gates will result
in a lot of correlated errors which adds a further motivation to consider several neural
network techniques to optimize the decoding performance.

4.2.3 Knill error correction

Steane error correction described in Sec. 4.2.2 only applies to stabilizer codes which are
CSS codes. Further, the protocol requires two transversal CNOT gates between the data
and ancilla qubits. In this section we will give an overview of Knill error correction [73, 5]
which is applicable to any stabilizer code. As will be shown, Knill-EC only requires a single
transversal CNOT gate between the data qubits and ancilla qubits.

Consider a Pauli operator P acting on the data block of the circuit in Fig. 4.7. Consider
the same Pauli P (but with a possibly different sign) acting on the first ancilla block of the
logical Bell pair. P can be any Pauli but in the argument that follows we will be interested
in cases where P € N(S§). Taking into account the sign of P and writing it as a product
of X and Z, we have that
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(1) P = iP P2 (1) Py Py (4.1)
The function ¢(Px, Pz) = 0 if Px and P; commute and one otherwise. The phase i¢("x:12)
comes from the Y operators in P and (—1)% indicates the sign of the Pauli where i = 0
for the data block and ¢ = 1 for the ancilla block.

Applying the transversal CNOT’s between the ancilla and data block performs the
following transformations

()P ® I — PP (—1) Py P, @ Py, (4.2)
(-1 @ P — i P2)(—1)" P, @ Py Py,

and therefore
(~1)* P @ P = (~1) e Py @ Py, (4.4)

From Eq. 4.4, we can deduce that a subsequent measurement of X on each physical data
qubit and measurement of Z on each physical qubit in the first ancilla block lets us deduce
the eigenvalue of P (since ¢(Px, Pyz) is known, we learn by + by).

Since the above arguments apply to any Pauli, if P is a stabilizer we learn sy + s
where sq is the syndrome of the data block and s; is the error syndrome of the first ancilla
block. Furthermore, the measurements also allow us to deduce the eigenvalues of the
logical Pauli’s X; ® X; and Z; ® Z; for every logical qubit i. This means that in addition
to error correction we can also perform the logical Bell measurement required to teleport
the encoded data to the second ancilla block.

Note that pre-existing errors on the data or ancilla block can change the eigenvalue of
the logical operator P ® P without changing the codeword that would be deduced using
an ideal decoder. For instance, if Ej; is the error on the data block and E, the error on the
ancilla block with wt(E,) + wt(E,) < t, then if (—1)° is the eigenvalue of P ® P, we would
instead measure (—1)" where b’ = b+ ¢(Ey, P) + ¢(E,, P). The same set of measurements
also lets us deduce the syndrome s(Ey) + s(E,) = s(E4E,). But since wt(EyE, < t), from
s(EqFE,) we deduce the error £’ = E,E;M where M € S. Hence once E’ is deduced, we
also get the correct eigenvalue of P ® P thus obtaining the correct outcome for the logical
Bell measurement.

There could also be faults in the CNOT’s and measurements when performing Knill-
EC. We can combine the errors from the CNOT’s and measurements into the Pauli G on
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Figure 4.8: Full CNOT-exRec circuit using Knill error correction. Each Pauli operator
Q1,Q2, Q3 and ()4 is used to correct errors in the initial data blocks as well as the complete
teleportation protocol of the logical Bell measurement.

the data block and F' on the ancilla block where the weight of GF' is less than or equal to
the number faults at the CNOT and measurement locations. Given the basis in which the
measurements are performed, we can assume that G consists only of Z errors and F' of X

errors. Consequently, for a full circuit level noise model, the final measured syndrome is
s(EqE,GF).

As in Steane-EC, the circuits for preparing the logical |0) and |[+) states are not fault-
tolerant and can result in high weight errors on the data. However, if the error correcting
code is a CSS code, then we can use the same ancilla verification method presented in
Sec. 4.2.2 to make the full Knill-EC protocol fault-tolerant. In Fig. 4.8 we show the full
CNOT-exRec circuit using Knill-EC. Note that for each EC unit, there is an extra idle
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qubit location compared to Steane-EC.

Lastly, we point out that another motivation for using Knill-EC is its ability to handle
leakage errors. A leakage error occurs when the state of a two-level system, which is part
of a higher dimensional subspace, transitions outside of the subspace. In Ref. [98], it was
shown how leakage faults can be reduced to a regular fault (which acts only on the qubit
subspace) with the use of Leakage-Reduction Units (LRU’s). One of the most natural ways
to implement LRU’s is through quantum teleportation [99]. Since Knill-EC teleports the
data block to the ancilla block, unlike in Steane-EC, LRU’s don’t need to be inserted on
the input data block. However, LRU’s still need to be inserted after the preparation of
every |0) and |+) states.

4.2.4 Naive decoder

Since the lookup table decoder scheme presented in previous sections is not scalable, it
would be desirable to have a scalable and fast decoding scheme that can achieve competitive
thresholds when paired with a deep neural decoder. In this section we provide a detailed
description of a naive decoder which can replace the lookup table scheme in all of the above
protocols.

We first note that the recovery operator R, for a measured syndrome s can be written
as [29, 8]

Ry = L(s)T(5)G(s) (4.5)

which we will refer to as the LTS decomposition of E. In Eq. 4.5, £(s) is a product of
logical operators (operators in N(S)\ S), G(s) is a product of stabilizers (operators in S)
and 7T (s) is a product of pure errors. Pure errors form an abelian group with the property
that 7; appears in 7 (s) if and only if the i’th syndrome bit is 1 (i.e. [T},7;] = 0 and
[T, gx] = 6 where gy is the k’th stabilizer generator). Thus pure errors can be obtained
from Gaussian elimination. Note that the choice of operators in G(s) will not affect the
outcome of the recovered state. Consequently, given a measured syndrome s, decoding can
be viewed as finding the most likely logical operator in L(s).

For a measured syndrome s, a naive decoding scheme is to always choose the recov-
ery operator R; = T (s) which is clearly suboptimal. However, for such a decoder, the
decoding complexity results simply from performing the matrix multiplication s 7" where
S = (81,82, ,Sp_x) is the syndrome written as a 1 X (n — k) vector and T"is a (n — k) x n
matrix where the j'th row corresponds to 7. The goal of all neural networks considered
in Sec. 4.3 will then be to find the most likely operator L£(s) from the input syndrome I.
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The set of stabilizer generators, logical operators and pure errors for all the codes
considered in this chapter are provided in Tab. 4.1. Lastly, we point out that a version of
the above decoding scheme was implemented in [33] for the distance-three surface code.

4.2.5 Lookup table and naive decoder complexity

From a complexity theoretic point of view, read-out of an entry of an array or a hash table
requires constant time. In hash tables, a hash function is calculated to find the address
of the entry inquired. The hash function calculation takes the same processing steps for
any entry, making this calculation O(1). In the case of an array, the key point is that
the array is a sequential block of the memory with a known initial pointer. Accessing any
entry requires calculating its address in the memory by adding its index to the address of
the beginning of the array. Therefore, calculating the address of an entry in an array also
takes O(1).

It remains to understand that accessing any location in the memory given its address
is also O(1) as far as the working of the memory hardware is concerned. This is the
assumption behind random access memory (RAM) where accessing the memory comprises
of a constant time operation performed by the multiplexing and demultiplexing circuitry
of the RAM. This is in contrast with direct-access memories (e.g. hard disks, magnetic
tapes, etc) in which the time required to read and write data depends on their physical
locations on the device and the lag resulting from disk rotation and arm movement.

Given the explanation above, a decoder that relies solely on accessing recovery operators
from an array operates in O(1) time. This includes the lookup table and the inference
mapping method of Sec. 4.5.2 below.

For the naive decoder of Sec. 4.2.4, we may also assume that the table of all pure errors
(denoted as T in Sec. 4.2.4) is stored in a random access memory. However, the algorithm
for generating a recovery from the naive decoder is more complicated than only accessing
an element of 1. With n qubits and n — k syndromes, for every occurrence of 1 in the
syndrome string, we access an element of 7. The elements accessed in this procedure have
to be added together. With parallelization, we may assume that a tree adder is used which,
at every stage, adds two of the selected pure error strings to each other. Addition of every
two pure error strings is performed modulo 2 which is simply the XOR of the two strings,
which takes O(1) time assuming parallel resources. The entire procedure therefore has a
time complexity of O((n — k)log(n — k)), again assuming parallel digital resources.
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[7,1,3] Steane code [9, 1, 3] (Surface-17) code [19, 1, 5] color code [25,1, 5] (Surface-49) code
ggi = Xy X5XeX7 9§m)(:)X1X2X4X5 g(:; = X1 X2X3Xy (39:(1') = X1XoXeX7
gy ' = XoX3XeX7 g5 0 = X7Xg gy B = X1 X3X5X7 g5 - = X11X12X16X17
ggm) = X1 X3X5X7 g3m) = X2X3 (m) = X5 X7XgX11X12X13 géz) = X21Xa2
g(z) = Z4Z5Z¢Z7 giw) = X5XeXgX9g (T) = X1 X2X5X6XgXg f;m) = X2X3
g%z) = ZoZ3Ze¢Z7 9§Z) =Z12Z4 (T) = X6X9X16X19 g( ") = X7 XgX12X13
QEZ) = Z1Z3Z52Z7 987 = 22232526 ( o = X16X17X18X19 é ") — X17X18X02Xo3
ggz) = ZyZsZrZg (T) = XgX9X10X11X16X17 ( ) = X3X4XsXg
giz) = ZeZy 9( ®) = X10X11X12X15 é o X13X14X18X19
991‘) = X12X13X14X15 91_(; <) — = X23X24
%z = Z1Z2Z32Z4 ggo) X4X5
922) = Z1Z3Zs5Z7 (1]> = X9X10X14X15
ggz) = Z5Z7ZgZ112127Z13 g1y = X19X20X24X25
g(z) = Z1Z2Z5ZcZgZy ( ) = 2,26
g(z) = ZeZ9Zi6Z19 (é ) = Z2Z3Z7Zg
g( ) = Z16Z17Z18Z19 932) = Z4Z5Z9Z10
( " = ZgZgZi0Z411Z16 217 g%z) = ZeZ7Z112Z12
% = Z10Z11Z12Z15 952) = ZgZ9Z132%14
QQZ) = Z12Z13Z14Z15 g(z) = Zi10Z15
972) = Z11Z16
g%: = Z12Z13Z17218
g% = Z142152%19%20
g%é) = Z16Z17%21 %22
9121) = Z182192Z23%Z24
982 = 250205
™ = x, ™ = x, T = X, ™ = X,
)~ X (™ = x4 (w) = X3X, (") = Xy
Tz”’ =X 7™ = x4 Té” = X13X14 ") = X5
T3 = 732, () = X (" = X5X7 (") = x3X;
) — Z5%7 IS 7 = X18X19 ) _ X5Xo
Tzz) = ZgZ7 7§ = z; T(’) XeXoX17 7 _ X5X10
T§* 5 =732, ) X6 Xo T8 = X3X7X1;
T( 9 Ze 7" = X6XoX10 7% = X15X24
Tg(m = X6X9X10X15 T{*) = X5X10X15
Tl(z) = Z2Z52Z7 Tm) X17X18X24
() = 2,2, T = Xy
Téz) = Z13Z14 Tl(g) X5X10X15X20
78 = Z52, 7 = 74
T( ?) = 218219 Z) = Zi6
(z) = ZeZ9Z162182Z19 T(Z) = Z21
T8 = Z6 2o T( 2 = 2,24
T8 = 252725 211 T( # = Z12216
Tgx> = ZeZ9oZ11212 T( ?) = 751 Z2s
T(Z) = Z8Z127%16
T(Z = Z19%25
T<z = Z21Z227%23
T(z) = Z4ZgZ127Z16
? = Z14Z19Z25
Tl(g) = Zss
X =X®T 7, =297 | X, = X3X5X7,Z1, = 212529 X, = Xx®19 7z, — 7®I9 X = X5X0X13X17X21,21, = Z1Z7Z13Z19 %25

Table 4.1: Table containing a list of the stabilizer generators (second row), pure errors
(third row) and logical operators (fourth row) for all the codes considered in this article.
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4.3 Deep neural decoders

In most quantum devices, fully characterizing the noise model afflicting the system can be a
significant challenge. Furthermore, for circuit level noise models which cannot be described
by Pauli channels, efficient simulations of a code’s performance in a fault-tolerant imple-
mentation cannot be performed without making certain approximations (a few exceptions
for repetition codes can be found in [100]). However, large codes are often required to
achieve low failure rates such that long quantum computations can be performed reliably.
These considerations motivate fast decoding schemes which can adapt to unknown noise
models encountered in experimental settings.

Recall from Sec. 4.2.4 that decoding can be viewed as finding the most likely operator
L € L(s) given a measured syndrome s. Since all codes considered in this chapter encode
a single logical qubit, the recovery operator for a measured syndrome s can be written as

Ry = X0 Z28C) ()G (s) (4.6)

where X and Z are the codes logical X and Z operators and b;(s),ba(s) € Zs. In
Chapter 2, our hard decoding algorithm applicable to general Markovian channels was
presented for finding the coefficients by (s) and by(s) which optimized the performance of
error correcting codes. However, the algorithm required knowledge of the noise channel
and could not be directly applied to circuit level noise thus adding further motivation for
a neural network decoding implementation.

In practice, the deep learning schemes described in this section can be trained as follows.
First, to obtain the training set, the data qubits are fault-tolerantly prepared in a known
logical |0) or |+) state followed by a round of fault-tolerant error correction (using either
the lookup table or naive decoders). The encoded data is then measured in the logical Z
or X basis yielding a -1 eigenvalue if a logical X or Z error occurred. The training set
is constructed by repeating this sequence several times both for states prepared in |0) or
|+). For each experiment, all syndromes are recorded as well as the outcome of the logical
measurement. Given the most likely error £ with syndrome s(E) = s (in general E will
not be known), the neural network must then find the vector b = (b;(s), b2(s)) such that
le ® Z? ®)R,E € 8 where Ry was the original recovery operator obtained from either the
lookup table or naive decoders described in Sec. 4.2.

Once the neural network is trained, to use it in the inference mode (as explained in
Section 4.5.2), a query to the network simply consists of taking as input all the measured
syndromes and returning as output the vector b. For Steane and Knill EC, the syndromes
are simply the outcomes of the transversal X and Z measurements in the leading and
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trailing EC blocks. For the surface code, the syndromes are the outcomes of the ancilla
measurements obtained from each EC round until the protocols presented in Sec. 4.2.1
terminate.

Lastly, we note that a similar protocol was used in [34] which also used the outcome of
the final measurement on the data qubits to decode. However by using our method, once
the neural network is trained, it only takes as input the measured syndromes in an EC
round to compute the most likely b.

4.3.1 Deep learning

Here we explain the generic framework of our deep learning experiments. We refer the
reader to [L01] for an introduction to deep learning and to [102] for machine learning
methods in classification tasks.

Let D C D be a data set. In our case, D = S x B is the set of all pairs of syndromes and
error labels. Every element in D and D is therefore a pair (s,e) of measured syndromes
s € S and error labels e € B. The error labels can be different depending on how we model
the learning problem. For instance, every e € B can be a bit string carrying a prescription

of recovery operators:
B = {[’ X, Y, Z}#physical qubits'

There is however a major drawback in modelling the errors in the above fashion. For
deep learning purposes the elements e € B are represented in their 1-hot encoding, i.e.
a bit string consisting of only a single 1, and zeros everywhere else. The 1-hot encoding
therefore needs |E| bits of memory allocated to itself which by the definitions above, grows
exponentially in either the number of physical qubits.

Our solution for overcoming this exponentially growing model is to take advantage of the
decomposition (Eq. 4.6) of the recovery operator and only predict vectors b = (by(¢), by(¢))
as explained earlier. In other words, the elements of B contain information about the
logical errors remaining from the application of another auxiliary encoding scheme:

B = {I, X, }/7 Z}#logical qubits.
The objective function. As customary in machine learning, the occurrences x = (s, b) €
D are viewed as statistics gathered from a conditional probability distribution function

p(z) = P(b|s) defined over S x E. The goal is then to approximate p by another distri-
bution p,, which is easy to compute from a set of real-valued parameters w. The training
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phase in machine learning consists of optimizing the parameter vector w such that p,, is a
good approximation of p. The optimization problem to solve is therefore

min - A(p, pw)- (4.7)

Here A is some notion of distance in the space of probability distribution functions which,
when applied to machine learning, is also called the loss function. In our case, the distance
is the softmaz cross entropy as explained here. The softmax function with respect to p is
given via

eP(x)

) = s~

p(z)
xEDe()

(4.8)

From this definition, it is obvious that no normalization of the dataset D is needed since
softmax already results in a probability distribution function. The cross entropy function

H(my,my) = H(my) + Dgp(m|m) = Zm ) log 7o () (4.9)

is then applied after softmax. This turns (4.7) into

min h(w) = H(p(p), p(pu). (4.10)

w

Optimization of the softmax cross-entropy is a common practice in classification problems.

The neural network. A neural network is a directed graph equipped with a random
variable assigned to each of its nodes. The elements of the parameter vector w are assigned
either to an edge of the graph or a node of the graph (in the former case they are called
weights and in the latter case they are called biases). The role of the neural network in
solving (4.10) is to facilitate a gradient descent direction for the vector w in (4.10). This
is achieved by imposing the random variables of each node to be a function of the random
variables with incoming edges to the former one. The common choice for such a functional
relationship is an affine transformation composed with a nonlinear function (called the
activation function) with an easy to compute derivative. Given every node v of the neural

network, we define:
= a, (Z Wy Xy + wv> . (4.11)

uU—v

The simplest activation function is of course the identity. Historically, the sigmoid function
o(x) = H% was the most commonly used activation function and is motivated by its ap-
pearance in training restricted Boltzmann machines. By performing a change of variables,
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one obtains the trigonometric activation function tanh(z). These activation functions can
cause the learning rate to slow down due to vanishing gradients in the early layers of deep
neural networks, and this is the motivation for other proposed activation functions such as
the rectified linear unit relu(z). Design and analysis of activation functions is an important
step in machine learning [103, 104, 105].

The first and last layers of the network are known as the wvisible layers and respectively
correspond to the input and output data (in our case the tuples (s, b) € S x B as explained
above). Successive applications of Eq. 4.11 restricts the conditional distribution p,(b|s)
into a highly nonlinear function f(w,s,b), for which the derivatives with respect to the
parameters w are easy to compute via the chain rule. We may therefore devise a gradient
descent method for solving Eq. 4.10 by successive choices of descent directions starting
from the deep layers and iterating towards the input nodes. In machine learning, this
process is known as back-propagation.

Remark. The softmax function (Eq. 4.8) is in other words the activation function between
the last two layers of the neural network.

Layouts. Although deep learning restricts the approximation of p,(bl|s) to functions of
the form f(w,s,b) as explained above, the latter has tremendous representation power,
specially given the freedom in choice of the layout of the neural network. Designing efficient
layouts for various applications is an artful and challenging area of research in machine
learning. In this chapter, we discuss three such layouts and justify their usage for the
purposes of our deep neural decoding.

Feedforward neural network. By this we mean a multi-layer neural network consisting of
consecutive layers, each layer fully connected to the next one. Therefore, the underlying
undirected subgraph of the neural network consisting of the neurons of two consecutive
layers is a complete bipartite graph. In the case that the neural network only consists of
the input and output layers (with no hidden layers), the network is a generalization of
logistic regression (known as the softmax regression method).

Recurrent neural network (RNN). RNNs have performed incredibly well in speech recogni-
tion and natural language processing tasks [100, , , ]. The network is designed to
resemble a temporal sequence of input data, with each input layer connecting to the rest
of the network at a corresponding temporal epoch. The hidden cell of the network could
be as simple as a single feedforward layer or more complicated. Much of the success of
RNNs is based on peculiar designs of the hidden cell such as the Long-Short Term Memory
(LSTM) unit as proposed in [110].
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Convolutional neural network (CNN). CNNs have been successfully used in image pro-
cessing tasks [ 11, ]. The network is designed to take advantage of local properties of
an image by probing a kernel across the input image and calculating the cross-correlation
of the kernel vector with the image. By applying multiple kernels, a layer of features is
constructed. The features can then be post-processed via downsizing (called maz-pooling)
or by yet other feedforward neural networks.

In sections 4.3.2 and 4.3.3, we present further details about applications of these neural
networks to the error-decoding task.

Stochastic gradient descent. Since the cross-entropy in Eq. 4.9 is calculated by a
weighted sum over all events x € D, it is impractical to exactly calculate it or its derivatives
as needed for backpropagation. Instead, one may choose only a single sample z = (s, b) as
a representative of the entire D in every iteration. Of course, this is a poor approximation
of the true gradient but one hopes that the occurrences of the samples according to the
true distribution would allow for the descent method to ‘average out’ over many iterations.
This method is known as stochastic gradient descent (SGD) or online learning. We refer
the reader to [113] and [114] and the references therein for proofs of convergences and con-
vergence rates of online learning. In practice, a middle ground between passing through
the entire dataset and sampling a single example is observed to perform better for machine
learning tasks [103]: we fix a batch size and in every iteration average over a batch of the
samples of this size. We call this approach batch gradient descent (also called mini-batch
gradient descent for better contrast). The result is an update rule for the parameter vector
of the form w1 < w; + Ay where A, is calculated as

Ay = —n Vi,

for some step size 7, where V;_; = thfjl(wt,l) to simplify the notation. Here h is an
approximation of h in (4.10) by the partial sum over the training batch. Finding a good
schedule for 7, can be a challenging engineering task that will be addressed in Sec. 4.3.1.
Depending on the optimization landscape, SGD might require extremely large numbers of
iterations for convergence. One way to improve the convergence rate of SGD is to add a
momentum term [115]:

Ay =pA1 — V.

On the other hand, it is convenient to have the schedule of 7, be determined through the
training by a heuristic algorithm that adapts to the frequency of every event. The method
AdaGrad was developed to allow much larger updates for infrequent samples [110]:

At = —dlag <ZL_|_5) Vt_l.
ti
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Here ¥;; is the sum of the squares of all previous values of the i-th entry of the gradient.
The quantity ¢ is a small (e.g. 107®) smoothening factor in order to avoid dividing by zero.
The denominator in this formula is called the root mean squared (RMS). An important
advantage of AdaGrad is the fact that the freedom in the choice of the step-size schedule
is restricted to choosing one parameter 7, which is called the learning rate.

Finally RMSProp is an improvement on AdaGrad in order to slow down the aggressive
vanishing rate of the gradients in AdaGrad [117]. This is achieved by adding a momentum
term to the root mean squared:

diag(3,) = pdiag(Z,_1) + (1 — p)V,_1 VL .

Hyperparameter tuning. From the above exposition, it is apparent that a machine
learning framework involves many algorithms and design choices. The performance of the
framework depends on optimal and consistent choices of the free parameters of each piece,
the hyperparameters. For example, while a learning rate of 1073 might be customary for
a small dataset such as that of MNIST digit recognition, it might be a good choice for a
small feedforward network and a bad choice for the RNN used in our problem scenario. In
our case, the hyperparameters include the decay rate, the learning rate, the momentum in
RMSProp, the number of hidden nodes in each layer of the network, the number of hidden
layers and filters, and some categorical variables such as the activation function of each
layer, the choice of having peepholes or not in the RNN.

It would be desirable if a metaheuristic can find appropriate choices of hyperparameters.
The challenges are

1. Costly function evaluation: the only way to know if a set of hyperparameters is
appropriate for the deep learning framework, is to run the deep learning algorithm
with these parameters;

2. Lack of a gradient-based solution: the solution of the deep learning framework does
not have a known functional dependence on the hyperparameters. Therefore, the
metaheuristic has no knowledge of a steepest descent direction.

It is therefore required for the metaheuristic to be (1) sample efficient and (2) gradient-free.
Having a good metaheuristic as such is extremely desirable, since:

1. The performance of the ML framework might be more sensitive to some parameters
than to others. It is desirable for the metaheuristic to identify this.
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2. Compatibility of the parameters: leaving the hypertuning job to a researcher can
lead to search in very specific regimes of hyperparameters that are expected to be
good choices individually but not in combination.

3. Objectivity of the result: a researcher might spend more time tuning the parameters
of their proposal than on a competing algorithm. If the same metaheuristic is used
to tune various networks, such as feedforward networks, RNNs and CNNs, the result
would be a reliable comparison between all suggestions.

Bayesian optimization. Bayesian optimization [1 18] is a nonlinear optimization algorithm
that associates a surrogate model to its objective function and modifies it at every function
evaluation. It then uses this surrogate model to decide which point to explore next for a
better objective value [119]. Bayesian optimization is a good candidate for hypertuning as it
is sample efficient and can perform well for multi-modal functions without a closed formula.
A disadvantage of Bayesian optimization to keep in mind is that it relies on design choices
and parameters of its own that can affect its performance in a hyperparameter search.

4.3.2 Steane and Knill EC deep neural decoder for the CNOT-
exRec

The simplest deep neural decoder for any dataset is a feedforward network with none or
many hidden layers, each layer fully connected to the next one. The input layer receives
the bit strings of X and Z syndromes. And the output layer corresponds to the X and
Z recovery operators on the physical qubits of the code. Since multiple physical qubits
might be used to encode a single logical operator, a better choice is for the output layer
to encode whether an auxiliary (but efficient) decoding scheme is causing logical faults or
not. The goal would be to predict such logical faults by the deep neural decoder and when
the deep neural decoder predicts such a fault, we will impose a logical Pauli operator after
the recovery suggested by the auxiliary decoder. The 1-hot encoding in two bits, 10 and
01, respectively stand for I and X for the X-errors, and it stands for [ and Z for the Z
erTors.

From our early experiments it became apparent that it is beneficial to half separate X
and Z neural networks that share a loss function, that is the sum of the soft-max cross
entropies of the two networks. Fig. 4.9 shows the schematics of such a feedforward network.

The CNOT-exRec RNN. In the case of the CNOT-exRec, the leading EC rounds have
temporal precedence to the trailing EC rounds. Therefore a plausible design choice for
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Figure 4.9: Schematics of a feedforward network consisting of disjoint X and Z networks.
There may be none, one or multiple hidden layers with different activation functions. The
output layers correspond to logical /- and X-errors for the X network and to logical I- and
Z-errors for the Z network. The activation function of the last layer before the error layer
is the identity since in the softmax cross entropy loss function, the activation (by softmax)
is already included.
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Figure 4.10: Schematics of a network consisting of two disjoint X and Z RNNs. FEach
RNN receives the syndromes of leading and trailing EC rounds as inputs for two epochs
of its LSTM unit. The internal state of the first copy is initialized randomly and the
internal state of the last copy is garbage-collected. The hidden state of the last copy of the
LSTM unit is then fully connected to a hidden layer with user-defined activation function.
This hidden unit is then fully connected to output nodes denoted by 01 and 10 which
are respectively the one-hot encoding of the prediction as to whether an X-recovery or
a Z-recovery operation is needed on the output qubits from the CNOT-exRec. The loss
function is the sum of the loss functions of the two networks.
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Figure 4.11: Schematics of a long-short term memory (LSTM) cell. Without the red cir-
cuits, this neural network is called a simple LSTM unit. The red circuit is called peepholes.
An LSTM cell with peepholes can outperform a simple LSTM cell in some tasks. There
are four hidden layers with user-defined activation functions in an LSTM unit known as
the forget layer (F), input layer (I), hidden layer (H) and the output layer (O). There are
four 2 to 1 logical gates in the unit that depending on the sign written on them applies an
element-wise operation between the vectors fed into the logical gates. There is also a 1 to
1 logical gate that applies an element-wise tanh function on its input vector. The internal
state of an LSTM unit serves as the backbone of a sequence of replications of the LSTM
unit. The role of the internal state is to capture temporal features of the sequence of input
data.

the deep neural decoder would be to employ an RNN with two iterations on the hidden
cell. In the first iteration, the syndrome data from the leading EC rounds are provided
and in the second iteration the syndrome data from the trailing EC rounds are provided.
A demonstration of this network is given in Fig. 4.10.

The hidden cell of the RNN may be an LSTM, or an LSTM with peepholes as shown in
Fig. 4.11. An LSTM cell consists of an internal state which is a vector in charge of carrying
temporal information through the unrolling of the LSTM cell in time epochs. There are
4 hidden layers. The layer H is the ‘actual’ hidden layer including the input data of the
current epoch with the previous hidden layer from the previous epoch. The activation
of H is usually tanh. The ‘input’ layer I is responsible for learning to be a bottleneck
on how important the new input is, and the ‘forget’ layer F' is responsible for creating a
bottleneck on how much to forget about the previous epochs. Finally the ‘output’ layer O
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is responsible for creating a bottleneck on how much data is passed through from the new
internal state to the new hidden layer. The peepholes in Fig. 4.11 allow the internal state
to also contribute in the hidden layers F', I and O.

4.3.3 Surface code deep neural decoder

Other than the multi-layer feedforward network of Fig. 4.9, there are two other reasonable
designs for a deep neural network when applied to the surface code.

The surface code RNN. In the fault-tolerant scheme of the rotated surface code, mul-
tiple rounds of error correction are done in a sequence as explained in Sec. 4.2.1. It is
therefore encouraging to consider an RNN with inputs as syndromes of the consecutive EC
rounds. The network looks similar to that of Fig. 4.10 except that the number of epochs
is equal to the maximum number of EC rounds. In particular, the fault tolerant scheme
for the distance-three rotated surface code consists of three EC rounds. In the case of the
distance-five surface code, the maximum number of EC rounds through the algorithm of
Sec. 4.2.1 is six. If the rounds of EC stop earlier, then the temporal input sequence of
syndrome strings is padded by repeating the last syndrome string. As an example, if after
three rounds the fault tolerant scheme terminates, then the input syndromes of epochs
three to six of the RNN are all identical and equal to the third syndrome string.

The surface code CNN. The errors, syndromes and recovery operators of the surface
code are locally affected by each other. It is therefore suggestive to treat the syndromes of
the surface code as a 2-dimensional array, the same way pixels of an image are treated in
image processing tasks. The multiple rounds of EC would account for a sequence of such
images, an animation. Therefore a 3-dimensional CNN appears to be appropriate. This
means that the kernels of the convolutions are also 3-dimensional, probing the animation
along the two axes of each image and also along the third axis representing time.

Through our test-driven design, it became obvious that treating the X and Z syndromes
as channels of the same 3-dimensional input animation is not a good choice. Instead, the
X and Z syndromes should be treated as disjoint inputs of disjoint networks which in
the end contribute to the same loss function. Notice that in the case of the distance-five
rotated surface code, the X network receives a 3D input of dimensions 3 x 4 x 6 and the
Z network receives a 3D input of dimensions 4 x 3 x 6. To create edge features, the inputs
were padded outwards symmetrically, i.e. with the same binary values as their adjacent
bits. This changes the input dimensions to 4 x 5 x 6 and 5 x 4 x 6 respectively for the X
and Z animations. Via similar experiments, we realized that two convolutional layers do
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Figure 4.12: Schematics of a deep neural decoder for the distance-five rotated surface code.
The network consists of two disjoint neural networks contributing to the same loss function
via softmax cross entropy. Each neural network consists of two layers of 3D CNNs. The
first layer consists of a number of filters, each filter performing a convolution of a 3 x 3 x 3
kernel by the input syndromes. The second 3D CNN layer uses 4 x 4 x 4 kernels. The
colored boxes demonstrate how each layer is padded in order for the size of the 3D layers
to be preserved. When the kernel dimension is even for instance, the padding from the top
and left are of size 1, and the padding from the bottom and right are of size 2.

a better job in capturing patterns in the syndromes data. The first convolutional layer is
probed by a 3 x 3 x 3 kernel, and the second layer is probed by a 4 x 4 x 4 kernel. After
convolutional layers, a fully connected feedforward layer with dropouts and relu activations
is applied to the extracted features and then the softmax cross-entropy is measured. The
schematic of such a neural network is depicted in Fig. 4.12.

4.4 Numerical experiments

In the experimental results reported in this section, multiple data sets were generated by
various choices of physical error rates ranging between p = 1.0 x 107 to p = 2.0 x 1073.
Every data set consisted of simulating the circuit-level depolarizing channel (see Sec. 3.1.1
for a detailed description of the noise model) for the corresponding circuit, and included
the syndrome and resulting error bit strings in the data set. Note that the error strings are
only used as part of the simulation to compute the vector b of logical faults. In an actual
experiment, b would be given directly (see the discussion above Sec. 4.3.1). We excluded
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the cases where both the syndrome and error strings were all zeros. The simulation was
continued until a target number of non-zero training samples were gathered. The target
size of the training data set was chosen as 2 x 10° for distance-three codes, and 2 x 107 for
distance-five codes.

Hypertuning was performed with the help of BayesOpt [119]. In every hypertuning
experiment, each query consisted of a full round of training the deep learning network
on 90% of the entire dataset and cross-validating on the remaining 10%. It is important
to add randomness to the selection of the training and cross-validating data sets so that
the hyperparameters do not get tuned for a fixed choice of data entries. To this aim, we
uniformly randomly choose an initial element in the entire data set, take the 90% of the
dataset starting from that initial element (in a cyclic fashion) as the training set, and the
following 10% as the test dataset.

The cross-entropy of the test set is returned as the final outcome of one query made by
the hypertuning engine. For all hypertuning experiments, 10 initial queries were performed
via Latin hypercube sampling. After the initial queries, 50 iterations of hypertuning were
performed.

For each fault-tolerant error correction scheme, hypertuning was performed on only a
single data set (i.e. only for one of the physical error rates). A more meticulous investiga-
tion may consist of hypertuning for each individual physical error rate separately but we
avoided that, since we empirically observed that the results are independent of the choice
of hypertuning data set. At any rate, the data chosen for distance-three codes was the one
corresponding to p = 4 x 10~%. For the distance-five rotated surface code, p = 6.0 x 10~*
and for the 19-qubit color code using Steane and Knill-EC, p = 1.0 x 10~ were chosen for
hypertuning.

Hyperparameters chosen from this step were used identically for training all other
data sets. For every data set (i.e. every choice of physical fault rate p), the deep learning
experiment was run 10 times and in the diagrams reported below the average and standard
deviations are reported as points and error bars. In every one of the 10 runs, the training
was done on 90% of a data set, and cross validation was done on the remaining 10%.
All the machine learning experiments were implemented in Python 2.7 using TensorFlow
1.4[120] on top of CUDA 9.0 running installed on TitanXp and TitanV GPUs produced
by NVIDIA[I121].

All experiments are reported in Fig. 4.13-Fig. 4.24. Before continuing with detailed
information on each experiment, we refer the reader to Tab. 4.2 where we provide the
largest ratios of the pseudo-thresholds obtained using a neural network decoder to pseudo-
thresholds obtained from the bare lookup table decoders of each fault-tolerant protocol
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considered in this chapter.

FTEC Lookup DND Ratio
d = 3 Steane ph =210 X 107* | py, =3.98 x 107* | 1.90
d = 5 Steane pen =143 %1072 | py, =217 x 1073 | 1.52
d = 3 Knill pn =176 X 107% | py, =222 x107* | 1.26
d =5 Knill pen =134 x107% | py, = 1.54 x 1072 | 1.15
d = 3 Surface code | py, = 2.57 x 1074 | pyp, = 3.18 x 1074 | 1.24
d = 5 Surface code | pyp = 5.82 x 1074 | poy = 7.11 x 107* | 1.22

Table 4.2: Pseudo-thresholds for the 6 fault-tolerant error correction protocols considered
in the experiments. The second column corresponds to the highest pseudo-thresholds
obtained from a bare lookup table decoder whereas the third column gives the highest
pseudo-thresholds using neural network decoders. The last column corresponds to the
ratio between the pseudo-thresholds obtained from the best neural network decoders and
the lookup table decoders.

parameter | lower bound | upper bound
decay rate 0.0 1.0 — 10790
momentum | 0.0 1.0 —10760
learning rate | 107> 1070

initial std 10730 10-10

num hiddens | 100 1000

Table 4.3: Bayesian optimization parameters for the CNOT-exRec of the [7,1,3] code
using Steane and Knill-EC and the distance-three rotated surface code. Here the decay
rate, momentum and learning rate pertain to the parameters of RMSProp. The row ‘initial
std’ refers to the standard deviation of the initial weights in the neural networks, the mean
of the weights was set to zero. The initial biases of the neural networks were set to zero.
The row ‘num hiddens’ refers to the number of hidden nodes in the layers of neural network.
This parameter is optimized for each layer of the neural network independently (e.g. for a
feedforward network consisting of 3 hidden layers, there are 3 numbers of hidden nodes to
be tuned). For an RNN this number indicates the number of hidden nodes in every one of
the 4 hidden layers of the LSTM unit (all of the same size).

Steane-EC CNOT-exRec for the [7, 1, 3] code. The considered continuous and integer
hyperparameters are given in Tab. 4.3.

We also tuned over the categorical parameters of Tab. 4.4. The categorical parameters
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parameter \ values
activation functions relu, tanh, sigmoid, identity
numbers of hidden layers | 0, 1, 2, ...

Table 4.4: Categorical hyperparameters. Optimizations over activation functions was only
performed for the distance-three Steane code. Since rectified linear units showed better
results, we committed to this choice for all other error correction schemes. However, for
the second categorical hyperparameter (the numbers of hidden layers), the search was
performed for all error correction schemes separately and was stopped at the numbers of
hidden layers where the improvements in the results discontinued.

are tuned via grid-search. We observed that for all choices of neural networks (feedforward
networks with various numbers of hidden layers and recurrent neural networks with or
without peepholes), the rectified linear unit in the hidden layers and identity for the last
layer resulted in the best performance. We accepted this choice of activation functions in
all other experiments without repeating a grid-search.

Fig. 4.13 and Fig. 4.14 compare the performance of the feedforward and RNN decoders
that respectively use the lookup table and naive-decoder as their underlying decoders,
respectively referred to as LU-based deep neural decoders (LU-DND) and PE-based deep
neural decoders (PE-DND). We use PE since naive-decoders correct by applying pure
errors. We observe that softmax regression (i.e. zero hidden layers) is enough to get
results on par with the lookup table method in the LU-based training method, this was
not the case in the PE-based method. The RNNs perform well but they are outperformed
by two-hidden-layer feedforward networks. Additional hidden layers improve the results in
deep learning. However, since this is an expense for a cross-entropy optimization in higher
dimensions, the training of deeper networks is significantly more challenging. This trade-
off is the reason the feedforward networks improve up to two hidden layers, but passing
to three and higher numbers of hidden layers gave worse results (not reported in these
diagrams).

We finally observe that PE-DND with even a single hidden layer feedforward network
is almost on par with the LU-DND with two hidden layers. This is an impressive result
given the fact that a table of pure errors grows linearly in the number of syndromes, but
a lookup table grows exponentially. We believe this is a result of the fact that logical
faults are much more likely to occur when using recovery operators which only consist of
products of pure-errors, the training sets are less sparse and therefore deep learning is able
to capture more patterns for the classification task at hand.
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Knill-EC CNOT-exRec for the [7,1, 3] code. The hypertuning of continuous variables
was done using the same bounds as in Tab. 4.3. Fig. 4.15 and Fig. 4.16 respectively show the
results of LU-DND and PE-DND methods. The best results were obtained by feedforward

networks with respectively 3 and 2 hidden layers, in both cases slightly outperforming
RNNs.

Distance-three rotated surface code. Similar to the previous distance-three codes, we
compared using RNNs with feedforward networks with multiple hidden layers. We observed
that the feedfoward network with a single hidden layer achieves the best performance and
RNNs do not improve the results. Also consistent with the distance-three CNOT- exRec
results, the PE-based DND can perform as well as the LU-based one (and slightly improves
upon it). Results of these experiments are reported in Fig. 4.17 and Fig. 4.18.

Steane-EC CNOT-exRec for the [19,1,5] code. As the size of the input and output
layers of DNNs grow, the ranges of the optimal hyperparameters change. For the distance-
five Steane exRec circuit applied to the [19, 1, 5] color code, the considered hyperparameter
ranges (allowing smaller orders of magnitudes for the initial weight standard deviations and
much smaller learning rates) are given in Tab. 4.5.

parameter | lower bound | upper bound
decay rate 0.0 1.0 —10790
momentum | 0.0 1.0 — 10760
learning rate | 10770 10739

initial std 1050 1030

num hiddens | 100 1000

Table 4.5: Bayesian optimization parameters for d = 5 Steane and Knill CNOT-exRecs.
Given the larger size of the training sets and longer input strings, for these datasets, smaller
orders of magnitudes for the initial weight standard deviations and much smaller learning
rates were explored.

Fig. 4.19 and Fig. 4.20 show that the PE-DNDs has a slightly harder time with pattern
recognition compared to the LU-DNDs. Nevertheless, both methods significantly improve
the pseudo-thresholds of the distance-five Steane-EC scheme, with no advantage obtained
from using an RNN over a 2-hidden layer feedforward network. In both experiments, the
3-hidden layer feedforward networks also did not result any improvements.

Knill-EC CNOT-exRec for the [19,1,5] code. The hyperparameter ranges used for
hypertuning were similar to those obtained for the Steane-EC CNOT-exRec applied to

115



the [19,1,5] code. Given the effectiveness of the 2-hidden layer feedforward network, this
feedforward neural network was chosen for the Knill exRec d = 5 experiment. We see a

similar improvement on the pseudo-threshold of the error correction scheme using either
of LU-DND and PE-DND.

Distance-five rotated surface code. For rotated surface codes, we only considered
numerical simulations using one EC rather than the full exRec. This choice was made to
be consistent with previous analyses of the surface codes performance.

The hyperparameter ranges used for hypertuning the feedforward neural networks were
chosen according to Tab. 4.6.

parameter | lower bound | upper bound
decay rate 0.0 1.0 — 10799
momentum | 0.0 1.0 — 10769
learning rate | 10760 10729

initial std 1060 10720

num hiddens | 100 1000

Table 4.6: Bayesian optimization parameters for the distance-five rotated surface code.
The parameter search is in a slightly tighter domain than in the case of the distance-five
Knill and Steane CNOT-exRecs in view of the empirical initial tests performed.

As explained in the previous section, a CNN engineered appropriately could be a viable
layout design for large surface codes. Besides previous hyperparameters, we now also need
to tune the number of filters, and drop-out rate. A summary of the settings for Bayesian
optimization are given in Tab. 4.7.

We compare the PE-based and LU-based feedforward networks with the CNN proposed
in Sec. 4.3.3. Fig. 4.23 and Fig. 4.24 show that feedforward networks with 2 hidden layers
result in significant improvements both using the PE-based and LU-based DNDs. The
3D-CNN is slightly improving the results of the feedforward network in PE-DND but is
only slightly better than the lookup table based method in the LU-DND case. The best
overall performance is obtained by using a feedfoward network with 2 hidden layers for the
LU-DND. A slightly less performant result can also be obtained if the PE-DND method
is used in conjunction with either of the 2-hidden layer feedforward network or the 3D
convolutional neural network.
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In Fig. 4.13-Fig. 4.16 each data point has the height on the vertical axis being the average
of 10 logical fault rates collected for each physical fault rate p specified on the horizontal
axis. Error bars represent the standard deviation from these average values. For each DND-
based decoder, the curve-fitting method used is a non-linear least square fitting between
the average logical fault rates as a function of the physical fault rates, and a quadratic

monomial.
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Figure 4.17: LU-DND for the distance- Figure 4.18: PE-DND for the distance-five
three surface code. surface code.

In Fig. 4.17-Fig. 4.18 each data point has the height on the vertical axis being the average
of 10 logical fault rates collected for each physical fault rate p specified on the horizontal
axis. Error bars represent the standard deviation from these average values. For each DND-
based decoder, the curve-fitting method used is a non-linear least square fitting between
the average logical fault rates as a function of the physical fault rates, and a quadratic
monomial.
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Figure 4.21: LU-DND for the distance-five Figure 4.22: PE-DND for the distance-five
Knill CNOT-exRec. Knill CNOT-exRec.

In Fig. 4.19-Fig. 4.22 data points, averages and error bars are obtaines in a similar fashion
to Fig. 4.13-Fig. 4.18. The curve-fitting method is also a non-linear least square method,
this time fitting a cubic monomial through the data points.
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parameter | lower bound | upper bound
decay rate 0.0 1.0 — 10790
momentum | 0.0 1.0 — 10760
learning rate | 10760 10720

initial std 10760 10-290

num hiddens | 100 1000

keep rate 0.0 1.0

num filters 5 10

Table 4.7: Bayesian optimization parameters for a 3-dimensional CNN. The filters were
fixed to be 3x3x 3 and 4 x4 x4 but their quantities were tuned. Since CNNs are larger and
deeper than other networks considered in this chapter, they are more prone to vanishing
gradients. Therefore it is beneficial to consider drop-outs in the hidden layer after feature
extraction. The hyperparameter corresponding to drop-outs is ‘keep rate’ allowing more
drop-outs when it is smaller.

4.5 Performance analysis

In this section we consider the efficiency of the deep neural decoders in comparison to the
lookup table decoders described in Sec. 4.2.1 and Sec. 4.2.2. The size of a lookup table
grows exponentially in the number of syndromes therefore making lookup table based
decoding intractable as the codes grow. However, it is important to note that as long as
the size of the lookup table allows for storage of the entire table in memory, as described
in Sec. 4.2.5, the lookup from an array or a hash table happens effectively in O(1) time.
Therefore a lookup table based decoding scheme would be the most efficient decoder by far.
A similar approach to a lookup table decoder is possible by making an inference mapping
from all the possible input strings of a trained neural decoder. This method is discussed
in Sec. 4.5.1. For larger codes, neither a lookup table decoder, nor an inference mapping
decoder is an option due to exponentially growing memory usage.

More complicated decoders such as minimum weight perfect matching can be extremely
inefficient solutions for decoding despite polynomial asymptotic complexity. With gates
operating at 100Mhz (that is 10ns gate times) [122], which is much faster than the state
of the art!, the simplest quantum algorithms foreseen to run on near term devices would

n fact, existing prototypes of quantum computers have much longer gate delays. Typical gate times
in a superconducting system are 130ns for single-qubit and 250 — 450ns for 2-qubit gates. For a trapped-
ion system, gate times are even longer, reaching 20us for single-qubit gates and 250us for 2-qubit gates

[123, 124].
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Figure 4.23: LU-DND for the distance-five Figure 4.24: PE-DND for the distance-five
surface code. surface code.

In Fig. 4.23-Fig. 4.24 data points, averages and error bars are obtaines in a similar fashion
to Fig. 4.13-Fig. 4.18. The curve-fitting method is also a non-linear least square method,
this time fitting a cubic monomial through the data points.

require days of runtime on the system [125]. With the above gate times, the CNOT-exRec
using Steane and Knill EC units as well as the multiple rounds of EC for surface codes
would take as small as a hundred nanoseconds. In order to perform active error correction,
we require classical decoding times to be implemented on (at worst) a comparable time
scale as the EC units, and therefore merely a complexity theoretic analysis of a decoding
algorithm is not enough for making it a viable solution. Alternatively, given a trained DND,
inference of new recovery operations from it is a simple algorithm requiring a sequence of
highly parallelizable matrix multiplications. We will discuss this approach in Sec. 4.5.2
and Sec. 4.5.3.

4.5.1 Inference mapping from a neural decoder

For codes of arbitrary size, the most time-performant way to use a deep neural decoder
is to create an array of all inputs and outputs of the DNN in the test mode (i.e. an
inference map which stores all possible syndromes obtained from an EC unit and assigns
each combination to a recovery operator?). This is possible for distance-three fault-tolerant

2For the CNOT-exRec, the inference map would map syndromes from all four EC units to a recovery
operator. For the surface code, the inference map would map syndromes measured in each round to a

121



EC schemes such as Steane, Knill and surface codes (as well as other topological schemes
such as those used for color codes). For all these codes, the memory required to store the
inference map is 2.10 megabytes. This method is not feasible for larger distance codes. For
the Knill and Steane-EC schemes applied to the [19, 1, 5] color code, the memory required
is 590 exabytes and for the distance-five rotated surface code it is 2.79 x 10%* exabytes.

4.5.2 Fast inference from a trained neural network

An advantage of a deep neural decoder is that the complications of decoding are to be
dealt with in the training mode of the neural network. The trained network is then used
to suggest recovery operations. The usage of the neural network in this passive step,
i.e. without further training, is called the inference mode. Once the neural network is
trained, usage of it in the inference mode requires only a sequence of few simple arithmetic
operations between the assigned value of its input nodes and the trained weights. This
makes inference an extremely simple algorithm and therefore a great candidate for usage
as a decoder while the quantum algorithm is proceeding.

However, even for an algorithm as simple as inference, further hardware and software
optimization is required. For example, [23] predicts that on an FPGA (field-programmable
gate array) every inference from a single layer feedforward network would take as long as
800ns. This is with the optimistic assumption that float-point arithmetic (in 32 and 64-
bit precision) takes 2.5 to 5 nanoseconds and only considering a single layer feedforward
network.

In this section, we consider alternative optimization techniques for fast inference. We
will consider a feedforward network with two hidden layers given their promising perfor-
mance in our experiments.

Network quantization. Fortunately, quantum error correction is not the only place
where fast inference is critical. Search engines, voice and speech recognition, image recogni-
tion, image tagging, and many more applications of machine learning are nowadays critical
functions of smart phones and many other digital devices. As the usage grows, the need for
efficient inference from the trained models of these applications grow. It is also convenient
to move such inference procedures to the usage platforms (e.g. the users smart phones and
other digital devices) than merely a cloud based inference via a data centre. Recent efforts
in high performance computing has focused on fabricating ASICs (Application Specific
Integrated Circuits) specifically for inference from neural networks. Google’s TPU (Tensor

recovery operator.
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Processing Unit) [120] is being used for inference in Google Search, Google Photos and in
DeepMind’s AlphaGo against one of the the world’s top Go player, Lee Sedol.

It is claimed that the reduction in precision of a trained neural network from 32-
bit float point precision in weights, biases, and arithmetic operations, to only 8-bit fixed
point preserves the quality of inference from trained models [127]. This procedure is called
network quantization. There is no mathematical reason to believe that the inference quality
should hold up under network quantization. However, the intuitive explanation has been
that although the training mode is very sensitive to small variations of parameters and
hyperparameters, and fluctuations of the high precision weights of the network in individual
iterations of training is very small, the resulting trained network is in principle robust to
noise in data and weights.

The challenge in our case is that in quantum error correction, the input data is already
at the lowest possible precision (each neuron attains 0 or 1, therefore only using a single
bit). Furthermore, an error in the input neurons results in moving from one input syndrome
to a completely different one (for instance, as opposed to moving from a high resolution
picture to a low resolution, or poorly communicated one in an image processing task). We
therefore see the need to experimentally verify whether network quantization is a viable
approach to high-performance inference from a DND.

Fig. 4.25 demonstrates an experiment to validate network quantization on a trained
DND. Using 32-bit float-point precision, the results of Fig. 4.13 show that the trained
DND improves the logical failure rate from 1.95 x 10~* obtained by lookup table methods
to 9.45 x 1075 obtained by the LU-DND with 2 hidden layers. We observe that this
improvement is preserved by the quantized networks with 8 bits and even 7 bits of precision
using fix-point arithmetic.

We now explain how the quantized network for this experiment was constructed. Let us
assume the available precision is up to k bits. First, the weights and biases of the network
are rescaled and rounded to nearest integers such that the resulting parameters are all
integers between —2F~! +1 and 2¥~! stored as signed k-bit integers. Each individual input
neuron only requires a single bit since they store zeros and ones. But we also require that
the result of feedforward obtained by multiplications and additions and stored in the hidden
layers is also a k-bit signed integer. Unlike float-point arithmetic, fixed point arithmetic
operations can and often overflow. The result of multiplication of two k-bit fixed-point
integers can span 2k bits in the worst case. Therefore the results of each hidden layer has
to be shifted to a number of significant digits and the rightmost insignificant digits have
to be forgotten. For instance, in the case of the CNOT-exRec with Steane EC units, each
input layer has 12 bits, which get multiplied by 12 signed integers each with k-bit fixed point
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Figure 4.25: Quantization of the feedforward neural network with 2 hidden layers, trained
on the Steane EC dataset at a physical error rate of p = 2 x 10~%. Each point is calculated
as the average logical error rate obtained from 10 rounds of training and cross-validating
similar to the experiments in Sec. 4.4.

precision. A bias with k-bit fixed point precision is then added to the result. We therefore
need at most k+ [log,(13)]-bits to store the result. Therefore the rightmost [log,(13)] bits
have to be forgotten. If the weights of the trained neural network are symmetric around
zero, it is likely that only a shift to the right by 2 bits is needed in this case. Similarly, if
each hidden layer has L nodes, the largest shift needed would be [log,(L + 1)]| but most
likely [logy(L + 1)] — 1 shifts suffices. In the experiment of Fig. 4.25, each hidden layer
had 1000 nodes and the feedforward results were truncated in their rightmost 9 digits.

4.5.3 Classical arithmetic performance

In the previous section we showed that 8-bit fixed point arithmetic is all that is needed for
high quality inference from the trained deep neural decoder. We now consider a customized
digital circuit for the inference task and estimate how fast the arithmetic processing units
of this circuit have to be in order for the inference to be of practical use for active quantum
error correction.

The runtime of a digital circuit is estimated by considering the time that is required for
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the electric signal to travel through the critical path of the logical circuit [128], the path
with the longest sequence of serial digital operations.

Fig. 4.26 shows the critical path of a circuit customized to carry inference in a feed-
forward network with 2 hidden layers. Since the input neurons represent syndrome bits,
multiplying them with the first set of weights can be done with parallel AND between the
syndrome bit and the weight bits. The rectified linear unit is efficient since it only requires
a NAND between the sign of the 8-bit signed integer with the other 7 bits of it. The most
expensive units in this circuit are the 8 x 8 multipliers and adders. Every 8 x 8 multiplier
gives a 16-bit fixed point integer which is then shifted 8-bits to the right by ignoring the
first 8-bits. The total time delay tror of this path in the circuit is

H
tror = tanp+ [log(S+1)] tapp +tmax + Z(tNOT +tanp +tnurr + [log(L; +1) [tapp),
=1

(4.12)

where H is the number of hidden layers and L; is the number of neurons in the i-th hidden
layer. From a complexity theoretic point of view this is promising since it shows that the
cost of inference is logarithmic in the number of syndromes and the size of hidden layers,
and linear in the number of hidden layers. For a feedforward network with two hidden
layers and at most 1000 neurons in each hidden layer,

troT = 3tanp + 2tNOT + 2tMULT + tmax + (“Og(S—Fl)]—i—QO)tADD (413)

Since the adders contribute the most in the above time delay, let us give an upper bound
on how fast the adder units need to be in order for the total time delay to be comparable
to the runtime of the fault-tolerant quantum error correction protocols considered in this
chapter.

In Tab. 4.8 we compute upper bounds on the adder units for the fault-tolerant error
correction protocols considered in this chapter. We emphasize that this estimation is by the
optimistic assumption that all independent arithmetic operations are done in parallel. In
reality, this is not possible due to limitations in area and power consumption of the ASIC.
Also, considering that multiple rounds of inference have to happen, a pipeline architecture
should be considered for independent batches of inference on the ASIC. Lastly, the time
for a multiplier unit and the comparator are ignored since (if all independent jobs are
done in parallel) there are only two serial multipliers in the critical path. With all of these
considerations, the last row of this table should be interpreted as an optimistic allowed time
for the adder units and that the actual adder delays should be well below these numbers.
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Figure 4.26: The critical path of a custom inference circuit. Every syndrome bit represents
an input node of the neural network and is multiplied by 8-bit integer weights. A set
of such products are added together and together with an 8-bit bias integer to find the
activation on a node of the first hidden layer. Given S input syndromes, this amounts to
the addition of S + 1 integers which can be done with a tree of 8-bit integer full-adders
(Full-Adder Tree or FAT for short) of depth log(S+1). After the quantized rectified linear
unit, a similar procedure is iterated for the first hidden layer with the full-adder tree of
depth log(L; + 1) where L, is the number of neurons in the first hidden layer. This pattern
continues for other hidden layers. The MAX unit compares two 8-bit integers and outputs
0 if the first one is bigger and 1 if the second one is bigger.
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FTEC FTEC | Syn | Num Adder
Circuit Depth | Size | Adders | Leniency
d = 3 Steane 6 12 24 2.5ns
d = 5 Steane 6 36 26 2.3ns
d = 3 Knill 8 12 24 3.3ns
d =5 Knill 8 36 26 3.1ns
d = 3 Surface code 18 12 24 7.5ns
d = 5 Surface code 36 72 27 13.3ns

Table 4.8: FTEC depth is the depth of the FTEC circuit. For Steane and Knill EC, this is
the depth of the CNOT-exRec circuit (excluding the ancilla verification steps) and in the
surface code, it is the depth of the circuit for multiple rounds of syndrome measurement
(note that for the distance 5 surface code we considered the worst case of 6 syndrome
measurement rounds). The syndrome size is only that of one of X and Z since the inference
for X and Z logical errors can happen in parallel and independently. The adder time
leniency is calculated based on 10ns quantum gate delays. Therefore, it is the depth of the
FTEC multiplied by 10ns and divided by the number of adders.

In particular we conclude that in order to perform active error correction with the
methods summarized in Tab. 4.8 on a quantum computer with 10ns gate delays, the classi-
cal control unit of the quantum computer has to comprise of arithmetic units that are fast
enough to perform arithmetic operations well below the time limits reported in the last
column of this table. In hardware engineering, there are many approaches to implemen-
tation of arithmetic and logical units [129]. Without going into the details of the circuit
designs we mention that the adder leniencies in Tab. 4.8 are in reach of high performance
VLSI [130, 131], but could be challenging to achieve using FPGAs [132, 133, 131].

4.5.4 Limitations of deep neural decoders

We interpret the results of this section to suggest that, once implemented on a high per-
formance computing platform, inference can be computed efficiently from a trained deep
neural decoder. Further, the results of Sec. 4.4 show that with a large enough training
set, neural network decoders achieve lower logical failure rates compared to the lookup
table schemes presented in this chapter. However, this does not imply that deep neural
decoders are scalable. As the size of the codes grow, training the neural decoders becomes
much more daunting. This is due to the fact that deep learning classifiers are not viable
solutions for sparse classification problems. As the codes become better and/or physical
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error rates become smaller, the training samples become more and more sparse, providing
less and less effective training samples for the neural network. Without nontrivial training
samples, the neural networks learn “zeros” rather than capturing significant patterns in
the data set.

As evidence for the effect of sparsity of the dataset on successful training of the deep
neural decoding we refer the reader to an experiment reported in Fig. 4.27. In this exper-
iment, the DND is trained on the dataset corresponding to the highest physical fault rate
p = 2x 1072, The same trained DND is used to cross-validate on test datasets for all other
physical fault rates. We observe that this DND is more successful in recovery inference for
smaller physical error rates, even though it is trained on a “wrong” dataset. It is important
to note that this experiment does not provide an improved method for training a neural
network for error correction on a physical realization of a quantum processor. Firstly, in
any manufactured quantum device the error model will not be entirely known (and is not
necessarily close to a theoretic noise model such as the depolarizing channel). And sec-
ondly, the error of the device cannot be intensified intentionally for the purpose of training
a deep neural decoder, to be later used on a less noisy device.

4.6 Summary and outlook

To summarize, in this chapter we considered multiple fault-tolerant schemes and using
several neural network architectures to train decoders in a full circuit-level noise framework.
Although our analysis was done for Pauli channels, we expect that for non-Pauli noise
models, the improvements could be even more significant than what was observed in our
work. Evidence of this can be found from the results obtained in Chapter 2.

From a machine learning point of view, we applied state-of-the-art techniques used in
training neural networks. While considering many network designs, we used the same hy-
perparameter tuning methodology to achieve unbiased and reliable results. Consequently,
we successfully observed a clear advantage in using deep networks in comparison with
single hidden layer networks and regression methods. On the other hand, we provided
clear evidence of the realistic limitations of deep learning in low noise rate regimes. In
particular, scaling the neural network to large distance codes appears to be a significant
challenge. For large scale quantum computations, decoders that work less well than neural
decoders trained on small distance codes but which are scalable would clearly be the better
option. Lastly, we gave a rigorous account of the digital hardware resources needed for
inference and runtime analysis of the critical path of the customized digital circuitry for
high performance inference.
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Figure 4.27: A comparison between two training procedures for the CNOT-exRec of the
[19,1,5] color code using Steane-EC units. The orange dots are the results of training a
feedforward network with 2 hidden layers as reported also in Fig. 4.19. In this case, the
DND is trained on a given physical error rate p and tested on a test dataset for the same
physical error rate. We observe that the logical error rate does not exactly follow a cubic
growth since the training is less successful when the physical error rate is small. The green
line demonstrates the performance of the same DND if trained only for the largest physical
error rate p = 2 x 1072 and later on tested on test datasets from every other physical
error rate. As previously explained, such a training scenario is not possible for real-world
experiments, or on physical realizations of quantum computers.
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There remain many interesting future directions for designing improved and efficient
decoders which work well in fault-tolerant regimes. One such avenue would be to tailor
machine learning algorithms specifically designed for decoding tasks. In particular, finding
machine learning algorithms which work well with sparse data would be of critical im-
portance. It would also be interesting to apply the methods introduced in this work to
actual quantum devices that are currently being developed. It most certainly will be the
case that fault-tolerant designs will be tailored to a particular quantum architecture. This
would lead to further areas in which machine learning could be extremely useful for finding
improved decoders.
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Chapter 5

Fault-tolerant quantum computing in
the Pauli or Clifford frame with slow
error diagnostics

The material of this section is based on the journal article of Ref.[06], copyrighted by the
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften. I was
the primary investigator of the research which was initiated by David Poulin. I wrote
the majority of the manuscript and Pavithran Iyer wrote the appendix. All three authors
contributed in the editing of the manuscript.

5.1 Introduction and Motivation

In this chapter, we are concerned with the impact of slow error diagnostics on fault-
tolerance schemes. There are several origins for this concern. First, in certain solid-
state and ion-trap qubit architectures, measurement times can be between 10 to 1000
times slower than gate times [135, , , , , , ]. Thus, on the natural
operating time-scale of the quantum computer, there is a long delay between an error
event and its detection. Second, processing the measurement data to diagnose an error—
i.e., decoding—can be computationally demanding. For instance in Chapter 4, we saw that
even with optimistic assumptions, performing active error correction could be a significant
challenge. Thus, there can be an additional delay between the data acquisition and the
error identification. At first glance, these delays might cause the error probability to build
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up between logical gates, thus effectively decreasing the fault-tolerance threshold. But as
we will see, this is not necessarily the case.

One of the key tricks to cope with slow error diagnostics is the use of error frames [55].
While the basic idea of error correction is to diagnose and correct errors, it can often be
more efficient to keep track of the correction in classical software instead of performing
active error correction. In particular, this saves us from performing additional gates on
the system, thus removing potential sources of errors. In most quantum error-correction
schemes, the correction consists of a Pauli operator, i.e., tensor products of the identity [
and the three Pauli matrices X, Y, and Z. Thus, at any given time, the computation is
operated in a random but known Pauli frame: its state at time t is Py (t)) for some Pauli
operator P and where [¢(t)) denotes the ideal state at time t. When error-diagnostics are
slow, the system will unavoidably evolve in an unknown error frame for some time.

The problem of slow measurements in solid-state systems was addressed by DiVincenzo
and Aliferis [20] in the context of concatenated codes. In addition to error diagnostics,
concatenated schemes require measurements to prepare certain ancilla states used to fault-
tolerantly extract the error syndrome and to inject magic states to complete a universal
gate set. DiVincenzo and Aliferis’ scheme hinges on the fact that the logical gate rate
decreases exponentially with the number of concatenation levels; thus, at a sufficiently
high level, measurement and gate times become commensurate. To concretely realize this
simple observation, they combine a number of known and new techniques including ancilla
correction, high-level state injection, and Pauli frames.

One limitation of this solution is that it only applies to concatenated codes realizing a
universal gate set through magic state injection. This leaves out for instance surface codes
[7] or concatenated codes with alternate universal gate constructions [19, 63, 74, 75, 76, 77].
In particular, they inject noisy magic-states directly at high concatenation levels, thus
losing the benefit of low-level correction. In addition, when decoding times are very slow,
this solution could wastefully use additional layers of concatenation with the sole purpose
of slowing down the logical gates. Another drawback of their scheme is that it requires
active error correction to ensure that high-level corrections are always trivial.

In this article, we introduce an alternative scheme to cope with slow error diagnostics
which applies broadly to all codes and universal gate constructions. Like the DiVincenzo
and Aliferis scheme, the key idea will be to slow-down the logical gate rate to learn the
error frame before it propagates to the rest of the computation. This is simply achieved
by spacing out gates in the logical circuit and thus circumvents the unnecessary additional
qubit overhead associated to extra concatenation layers. Our scheme does not require
active error correction, it is entirely realized in an error frame. In addition, our scheme is

132



compatible with a more general form of error correction which uses Clifford frames, where
at any given time ¢, the state of the computer is C|¢(t)) where C' is a tensor-product of
single-qubit Clifford group elements. Note that details of the Pauli frame scheme are given
in Sec. 5.2 whereas details of the Clifford frame scheme are given in Sec. 5.3.

Regarding slow measurements, it is important to distinguish two time scales. First,
the time ¢; it takes for the outcome of a measurement to become accessible to the outside
world. For instance, t; could be caused by various amplification stages of the measurement,
and we refer to it as a measurement latency. Second, the measurement repetition time t,
is the minimum time between consecutive measurements of a given qubit. In principle,
t, can be made as small as the two-qubit gate time, provided that a large pool of fresh
qubits are accessible. Indeed, it is possible to measure a qubit by performing a CNOT
to an ancillary qubit initially prepared in the state |0) and then measuring this ancillary
qubit. While the ancillary qubit may be held back by measurement latencies for a time ¢,
before it can be reset and used again, other fresh qubits can be brought in to perform more
measurements in the meantime. The scheme we present here and the one presented in [20]
are designed to cope with measurement latencies t;, but both require small .. Indeed, the
accuracy threshold is a function of the error rate per gate time (including measurement
gates). Thus, increasing the measurement repetition time ¢, relative to the decoherence
rate will unavoidably yield a lower threshold.

While the DiVincenzo and Aliferis scheme was motivated by slow measurements, most
of it applies directly to the case of slow decoding. Our scheme too is oblivious to the origin
of slow error diagnostics. We emphasize that slow decoding is a very serious concern.
For instance, numerical simulations used to estimate the threshold or overhead of the
surface code are computationally dominated by the decoding algorithm and require intense
computational resources. Depending on the code distance and error rate, a single decoding
cycle can take well above 1us [1412] on a standard processor, considerably slower than the
natural GHz gate rate in the solid state.

As explained in Ref. [95], if the rate of the classical syndrome processing (decoding)
is smaller than the rate at which the syndrome is generated, an exponential slow down
would occur during the computation. However, just as measurements with long latencies
can be handled with a supply of additional fresh measurement qubits, slow decoding can
be handled with a supply of parallel classical computers so that the overall decoding rate
matches the syndrome creation rate. Thus, in this article, slow error diagnostics is used to
designate latencies in measurements and/or decoding.

Finally, to our knowledge, a theory of Clifford frames for fault-tolerant quantum com-
putation has not been worked out before. By enabling them, our scheme offers a greater
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flexibility for error correction, thus potentially correcting previously non-correctable error
models, or increasing the threshold of other noise models as was seen in Chapter 2. More
generally, the possibility of fault-tolerantly computing in a Clifford frame opens up the door
to new fault-tolerant protocols, e.g., using new codes or new hardware that have a different
set of native fault-tolerant gates. For instance, Clifford frames were used as an accessory in
measurement-based quantum computation with Majorana fermions [113]. Lastly, the pos-
sibility of computing in a Clifford frame could have applications to randomized compiling
[144] which introduces random frames to de-correlate physical errors.

In Sec. 5.2 we will focus on quantum computation in the Pauli frame and present our
scheme. In Sec. 5.3 we will introduce quantum computing in the Clifford frame and discuss
the primary challenges. The remaining sections (Sec. 5.3.1 and Sec. 5.3.2) will provide the
details for how to overcome these challenges.

5.2 Pauli frame

Recall that in Sec. 1.1, we defined PY to be the n-qubit Pauli group and the Clifford
hierarchy was defined by P = {U:UPU' € PHY wpe 73,21)}.

In physical implementations where measurement times are much longer than gate times
or when error decoding is slow, if one were to perform active error correction, a large number
of errors could potentially build up in memory during the readout times of the measure-
ment. However, for circuits containing only Clifford gates, all Pauli recovery operators can
be tracked in classical software without ever exiting the Pauli group. Indeed, suppose that
at some given time during the computation, the state of the computer is in some Pauli
frame defined by P—i.e., the state of the computer is P|¢) where [¢) is the ideal state
(here P can be any element of 73,(11), not necessarily a logical Pauli operator). If we then
apply a Clifford gate U € 73,(12) (again, not necessarily a logical gate), then the state will
be UP|y) = P'U) where P’ is another Pauli operator. We thus see that the effect of U
is to correctly transform the perfect state |¢)) and to change the Pauli frame P in some
known way. Moreover, updating the Pauli frame P’ = UPUT can be done efficiently, with
complexity O(n?) [23]. This shows that as long as we only apply Clifford gates, there is
no need to actively error-correct, we can instead efficiently keep track of the Pauli frame
in classical software [55].

In concatenated codes for instance, error correction is performed in between the appli-
cation of gates to ensure that errors don’t accumulate in an uncontrolled fashion. A gate
location in a quantum algorithm is thus replaced by an extended rectangle, where error
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Figure 5.1: Example of extended rectangle (exRec) for implementing the logical gate G.
The leading and trailing EC circuits (LEC and TEC) perform fault-tolerant error correction
for input errors and errors occurring during the implementation of G.

correction is performed both before and after the application of the gate [18]. The leading
error correction circuit in an extended rectangle is used to correct input errors that could
have occurred prior to the application of the gate. The trailing error correction circuits
correct errors that can occur during the application of the gate (see Fig. 5.1). Each error
correction circuit will multiply the current Pauli frame by a Pauli operator (the correction).

Since Clifford gates can be efficiently simulated on a classical computer, non-Clifford
gates are needed for universal quantum computation. Universal quantum computation
can be achieved for instance using gates from the Clifford group combined with the T' =
diag(1,e™/*) € 731(3) gate [97]. In general, Pauli operators will not remain in the Pauli-group
when conjugated by non-Clifford gates and so the Pauli frame cannot simply propagate
through them.

Consider the application of a logical T" gate in a quantum algorithm. Since measurement
times are much longer than gate times, the Pauli frame right before the application of a
T gate can only be known at a later time. Furthermore, by definition of the Clifford
hierarchy, Pauli operators are mapped to Clifford operators under conjugation by T" € 771(3)
gates. Therefore, the output correction after applying a logical T" gate can be outside the
Pauli frame.

In order to overcome these obstacles, we note that if error correction is performed
immediately after the application of the T" gate, the output correction can be written as a
logical Clifford gate C' times a Pauli matrix (a proof is presented in Appendix. C).

If we were to keep track of the logical Clifford correction C'in classical software, it could
propagate through the next T gate, resulting in a correction involving even more 1" gates.
It could also propagate through a logical two-qubit gate (such as a CNOT) resulting in a
two-qubit correction (the exact transformation rules are derived in Sec. 5.3). The two-qubit
corrections could then propagate through other gates in the quantum algorithm leading
to a generic Clifford correction. To prevent these scenarios from occurring, a buffer can
be inserted right before the next logical two-qubit gate or T gate part of the quantum
algorithm. The role of the buffer is to learn what the Pauli frame was right before the
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Figure 5.2: Illustration of the scheme for propagating Pauli corrections through a 7' gate
when error diagnostics are much longer than gate times. (TOP) When propagating the
input Pauli P, through a 7" gate and performing error correction, the output can be written
as C'P, where C' is a logical Clifford gate and P, is a Pauli matrix. A buffer is introduced
to learn the Pauli frame immediately before applying the T" gate which enables the logical
Clifford correction C' to be known. During the buffer, repeated rounds of error correction
are performed to prevent the accumulation of errors for qubits waiting in memory. We
denote the final Pauli correction arising from the EC rounds as P;. (BOTTOM) We
propagate the correction C'P, through the buffer and apply a logical Clifford gate CT in
order to remove C' thus restoring the Pauli frame. Although the propagation can map the
buffer correction P; — P,, P, remains Pauli and can be known at a later time.

application of the previous logical T" gate. During the buffer, repeated rounds of error
correction are performed to prevent the accumulation of a large number of errors. There
could be leftover Pauli corrections arising from error correction rounds which would only
be known at a later time. However, by propagating the logical Clifford correction through
the buffer, the Pauli corrections would remain Pauli.

Once the logical Clifford correction is propagated through the buffer, we apply a logical
CT thus restoring the Pauli frame. The protocol guarantees that only Pauli corrections
would be propagated through the next logical T" or two-qubit gates. An illustration of
the scheme is outlined in Fig. 5.2. As in [20], the proposed approach also effectively slows
down gate times making them comparable to measurement times'. However, buffers are
only introduced when necessary and without having to increase the size of the code.

We conclude this section by noting that in [20, 95], the Pauli frame scheme was described
in the context of concatenated codes where T' gates are implemented using state injection
as shown in Fig. 5.3. In these schemes, a buffer is included to learn what the logical Pauli
frame was before applying the SX correction in order to correctly interpret the outcome of

!Note that the buffer increases the overall time for implementing a non-Clifford gate. However, this
impacts the overall running time of the quantum algorithm only by a constant factor.
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Figure 5.3: Circuit for implementing a T' gate. The circuit uses the state T|+) which is
prepared offline and applies a sequence of Clifford gates. The correction SX is only applied
if the Z-basis measurement outcome is -1.

the Z-basis measurement. For instance, if a logical Pauli X occurred on the data prior to
implementing the T" gate, the Clifford correction SX would be applied if the measurement
outcome was +1 instead of —1 (see the caption of Fig. 5.3). Further, as was described in
[20], additional layers of concatenation are required to prevent the build up of errors in the
presence of quantum measurements with a long latency.

While it builds on the same general ideas, the Pauli frame scheme presented in this
section is not restricted to a particular implementation of the 7' gate (for instance, it
also directly applies to codes which can implement a logical T' gate transversely) nor to
concatenated schemes. In fact, our scheme slightly differs from [20, 95] even in the case
where the T gate is applied using state injection. Indeed, one does not wait to learn
what the frame was before determining whether to apply the logical SX correction (the
Z-basis measurement outcome is always interpreted in the same way). The entire state
injection circuit is completed before the Pauli frame (prior to the application of the state
injection circuit) is known. Once it becomes known, one would know if the wrong logical
SX correction was applied and any remaining logical Clifford errors would be removed.
So in particular, there is no need to introduce additional coding layers to slow-down the
logical gate rate during this waiting time. While this is a fairly minor distinction, it does
enable us to generalize to any other coding schemes and implementations of the T' gate, a
feature which has not been addressed prior to our work.

5.3 Clifford frame

As was shown in Sec. 2.6, including Clifford corrections as part of the recovery protocol
for error correcting codes that can implement logical Clifford gates transversely can signif-
icantly improve the code’s threshold for certain noise models. In particular, for coherent

in-o —in-o

noise channels (N (p) = ™7 pe where n = (ng,ny,n,) with ||n|| = 1), we showed
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that in some regimes the 5-qubit code can tolerate an arbitrary amount of coherent noise
when Clifford corrections are used, while Pauli corrections have a finite threshold.

In this section, we extend the protocol used to cope with slow error-diagnostics to the
case where error correction uses Clifford gates. When performing error correction on a set
of encoded qubits with a stabilizer code, if one measures a non-trivial syndrome value [,
a recovery map R; is applied to the data block. The recovery map can always be written
in the form R, = £(I)T (1)G(1) where G(I) € P{" is a product of stabilizer generators, £(1)
is a product of logical operators and T () € PV s a product of pure errors [29], see also
Appendix. C. Pure errors form an abelian group of operators that commute with all of
the code’s logical operators and all but one of the codes stabilizer generators. The logical
operators L£(I) are chosen to maximize the probability of recovering the correct codeword
— this is the decoding problem. The operators in the set £(I) are not necessarily restricted
to logical Pauli operators as they can be extended to include all logical operators that can
be applied fault-tolerantly.

As was done in Chapter 2, it is natural to restrict £(I) to gates that can be applied
transversally on the code. In particular, we will consider logical corrections in (731(2))‘8”, the
group generated by n-fold tensor products of single-qubit Clifford operators. This latter
group is generated by P\* = (H, S). The order of the group is |P\”| = 24 (ignoring global
phases). For the n-qubit case, PP = (H;,S;,CNOT};) where the indices 4, indicate
which qubits to apply the Clifford gates (see Eq. 1.4). We remind the reader that 2-D
color codes [70] admit transversal realizations of all gates in 731(2) and the 5-qubit code
admits transversal realizations of logical gates in the set generated by (SH, X, 7).

For concatenated codes, we restrict the discussion to the case where logical Clifford
corrections are performed at the last concatenation level only. If Clifford corrections were
performed at every level, one would need to wait for the measurement outcomes of every
level and actively perform Clifford corrections. This is because a level-k logical Clifford
correction does not generally commute with the level-(k 4+ 1) syndrome measurements.
The goal of defining a Clifford frame is to avoid actively correcting since the corrections
themselves can introduce more errors into the computation.

We now derive the transformation rules for Clifford operators propagating through
CNOT gates. Two-qubit controlled unitary gates C-Uis|a)|b) = |a)U?|b), where the first
qubit is the control and the second qubit is the target, can be written as

1 1
C—U12:§(I+Z)®[+§(I—Z)®U. (5.1)
Note that from this definition CNOT5 = C-X;5. Using Eq. 5.1, it is straightforward to
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Figure 5.4: (a) Propagation of I ® S through a CNOT gate. (b) Propagation of H ® I
through a CNOT gate where Uy = 2(I+4Y)® I+ 1(I —iY) ® X. In both cases, if instead
of correcting the Clifford errors prior to the CNOT gate we were to keep track of them
using a Clifford frame, the corrections would involve two-qubit gates in addition to the
original Clifford corrections.

show the following relations

(S®@I1)C-X13 = C-X15(S @ 1), (5.2)
(I ®8)C-X15 = C-Yi5(I ® 9), (5.3)
(I ® H)C-X15=C-Z;,(I ® H), (5.4)
(H® I)C-X15, =Ux(H® 1), (5.5)

where we defined Ux = 3+ X)® I + 1{(I - X) ® X.

From Fig. 5.4 and Eq. 5.2 to Eq. 5.5, it can be seen that propagating Clifford correc-
tions through CNOT gates can result in both single and two-qubit Clifford corrections.
By keeping track of logical Clifford corrections in classical software, these could grow due
to other CNOT gates resulting in a generic Clifford correction. Furthermore, when prop-
agating Clifford corrections through non-Clifford gates (such as the T' gate), the output
can potentially be outside of the Clifford hierarchy. These could then propagate through
the remainder of the logical circuit resulting in a unitary gate correction expressed as a
product of several T' gates.

5.3.1 Clifford propagation through CNOT gates

We first address the propagation of logical Clifford corrections (expressed in tensor product
form) through CNOT gates. The goal is to prevent a two-qubit correction from spreading
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Figure 5.5: (a) Propagating input Clifford gates C; ®C5 across a CNOT (part of a quantum
algorithm) leads to two possible outcomes, one in Cyooq (defined in Eq. 5.7) and the other
in Cpeq (defined in Eq. 5.8). (b) Buffers are introduced to learn if the outcome in Fig. 5.5a
belongs to Cyooq 0r Cpeq. Rounds of error correction in the buffers introduce the corrections
C3®Cy. If the outcome in Fig. 5.5a belongs to Chuq, we apply a CNOT correction following
the buffers. The protocol is repeated until the resulting gate belongs to Cyepq.

to multiple code blocks in order to avoid performing a generic Clifford correction. After
the application of a logical CNOT gate (as part of a quantum algorithm), we can place a
buffer before the next logical two-qubit gate (or non-Clifford gate) in order to determine
what the Clifford frame was right before the application of the logical CNOT. Note that
during the application of the buffer, repeated rounds of error correction are performed to
prevent the build-up of a large number of errors, producing additional Clifford gates.

From Eq. 5.2 to Eq. 5.5, upon propagating the input Clifford gates C; ® C5 through a
logical CNOT gate part of a quantum algorithm using a Clifford frame, two outcomes are
possible. In the first case, we can have

C-X12(C1 ® Cy) = (C] @ C3)C-X12, (5.6)
for some Clifford gates C] and CY. In particular, we define
Cood = (C1 @ C2)C-X75. (5.7)

If Eq. 5.6 is not satisfied for C; ® Cs, then the output will belong to the set (g defined
to be

C(bad = P§2) \ Ogood; (58)
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where 7352) is the two-qubit Clifford group. Performing a computer search, we found that
out of the 24% = 576 possible input Clifford gates (expressed in tensor product form), 64
will satisfy Eq. 5.6.

After the application of the CNOT gate part of the quantum algorithm, the buffers
will introduce the Clifford corrections C5 ® Cy arising from the repeated rounds of error
correction. Once the Clifford frame prior to applying the CNOT gate is known, we will
be able to determine if the output from the propagation of the Clifford frame belongs to
Cgood 0T Chrqaq. If it belongs to Cyoq, then no further operations are required. In the case
where it belongs to Ch.q, we perform a logical CNOT correction after the buffer. A second
set of buffers is introduced to determine if the resulting gate belongs to Cyoeq 01 Cpaq. We
can repeat this process recursively until the resulting gate belongs to Cyeq-

Assuming the input Clifford gates and buffer Clifford corrections are chosen uniformly
at random, we performed a simulation to estimate the transition probability from Chy.q —
Clyood- Performing 5 x 10° simulations, we found that the Cpuqg — Cyooa transition occurs
with probability % Thus, when computing in a random Clifford frame, each logical CNOT
requires on average 12 4 1 logical CNOTs.

Lastly, we point out that for noise models where the Clifford corrections arising from
the buffer are biased towards the Pauli gates, it would be more advantageous to apply
C’I ® C’;r (where Cy and Cy are the input Clifford gates in Fig. 5.5a) after the following
initial CNOT correction. More specifically, if the probability of acquiring a non-trivial
Clifford correction in the buffer is €, then the Cypoq — Cyooq transition probability becomes
11— 5%.

5.3.2 Clifford propagation through 7' gates

We now address the propagation of Clifford corrections through a logical T" gate, which
is a non-Clifford gate. When applying a logical T' gate in a quantum algorithm, we could
also place a buffer before the next logical gate part of the quantum algorithm to learn
the Clifford frame immediately before applying the T' gate. If the output correction is
non-Clifford, we can perform appropriate corrections in order to restore the Clifford frame.
If successful, this would guarantee that the input correction to the next gate would belong
to the Clifford group.

Suppose the input to the logical T" gate is a Clifford correction C1, so the resulting
gate is T'C;. On the one hand, if TC; = C|T for some Clifford C—or equivalently
TCT' € P{Q)—then no further operations are necessary. Only gates in the set generated
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by C; € (S, X) satisfy this property. In fact, if C; € (S, X), then TC,TT € (S, X). Thus,
we define

C_=(S5,X), and C, =P\ C_. (5.9)

Note that |C_| = 8 while |C}| = 24 — 8 = 16. Once we learn that the input Clifford
correction (' to the logical T' gate belongs to C'_, then no further operations are necessary
to restore the Clifford frame. If the buffer Clifford operations are uniformly distributed
over the Clifford group, this occurs with probability %

On the other hand, when we learn that the input Clifford correction C; to the logical
T gate belongs to C',, we apply another logical 7" in the hope to restore the Clifford frame.
Since an additional Clifford gate C'y was accumulated during the buffer, the resulting gate
is TCoTCy. When Cy € C_, then TCoTCy = CoT2C, € P, since T? = S is a Clifford
transformation. At this stage, we have returned to a Clifford frame, but have removed the
desired logical T' gate: we are thus back at our starting point and can try anew.

Once again, whenever the Clifford corrections occurring during the buffer are biased to
the Pauli group (e.g., when the probability of an error is low), before applying another T
gate correction to restore the algorithm 7" gate, we should apply the Clifford transformation
(éQS C1)T. In this way, we would increase the probability of being in a state of the form CT
where C' € C_ (thus restoring the Clifford frame). To take this possibility into account,
we will henceforth assume that the Clifford corrections arising from the buffer belong to
C_ with probability 1 — p and to C'y with probability p.

Define 7O = 731(2) to be the set of single-qubit Clifford gates, and define

k
T® = [(1C;) where C; € C,. (5.10)

j=1

Every time we learn that the previous buffer Clifford was in C'y, we apply a T gate and
wait for another buffer. Since this buffer will belong to C'_ with probability 1 — p and to
C, with probability p, each step of the above protocol can be seen as a step in a random
walk over the sets 7 with transition 7 — T*+1) occurring with probability p and
transition 7® — T*=D occurring with probability 1 — p. Every time 7 is reached,
there is a probability 1 — p that a logical T" gate is successfully realized at the next step.
To summarize, when attempting to implement a logical T' gate starting in a Clifford
frame T, we either succeed with probability 1 — p or end up applying a 7 gate with
probability p. In the latter case, we enter a random walk over £k € N, and our goal is
to return to £k = 0. This clearly requires an odd number of steps. The one-step process
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1 — 0 occurs with probability 1 — p. The three step process 1 — 2 — 1 — 0 occurs with
probability p(1 — p)?. Generalizing to t = 2j + 1 time steps, where j € N, the number of
paths that lead to a gate in 7@ is given by the jth Catalan number K; = ]ﬁ(ij) [145].
Therefore, the probability of returning to a gate in 7@ after t = 2 + 1 time steps is given
by

1 27\ . .
&ﬁlzjiq(j)wu—pV“. (5.11)

Using the generating function for the Catalan number c(z) = > . K2/ = (1 —
V1 —4x)/(2z), the total probability that the random walk terminates is given by

]_ _
S P = min{—p,l}. (5.12)

k>0 p

If p > 1/2, then with finite probability the random walk will not terminate whereas if
p < 1/2, the random walk is guaranteed to terminate. This means that we must choose
Clifford gates from C_ with probability greater than 1/2. The latter condition can be
satisfied in cases where Clifford corrections arising from the buffer are biased towards gates
belonging to C'_, or in particular if they are biased towards Pauli gates or the identity.
When the buffers are chosen uniformly over the Clifford group, then p = 16/24 = 2/3 > 1/2
so with some finite probability the procedure will not terminate.

We conclude this section by calculating the probability of obtaining a gate in 7 within
n time steps, which we define as F'(p, n). This quantity gives the number of expected T' gate
corrections that need to be applied in order to restore the Clifford frame after propagation
through a logical T' gate. The probability F(p,n) is obtained by summing Eq. 5.11 with a
cut-off of n time-steps. The result is given by

F(p,n) = ZPQk—H
k=0

=1-f(p,n), (5.13)

where

f@mJ—l_p(%n+U>@ﬂ—pW”W

240\ n+1
3
X 2F1(1,§—|—n;3+n;4p(1—p)), (5.14)
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Figure 5.6: For a fixed value of 1 —p, we plot the value of n such that F(p,n) > q. We give
plots for ¢ = 0.9, ¢ = 0.99 and ¢ = 0.999. Hence, each curve corresponds to the expected
number of 7' gate corrections that are required for obtaining a gate in 7@ with probability
greater than q.

and 2 F(a,b;c; z) is the Hypergeometric function defined in [116]. Plots of Eq. 5.13 are
given in Fig. 5.6.

We now obtain an upper bound on the number of time steps n that are necessary to
restore the Clifford frame with probability ¢ = 1 — ¢. In other words, we would like to
obtain an upper bound on n such that F(p,n) > 1 — . We first obtain a lower bound for
the function f(p,n) by using the following inequalities

n+1
2n+ 1)\ _ (200 +1)
(nﬂ)?(m) =7 (5.15)
SRS i34 dp(l - p) > 2p 1. (5.16)

Inserting Eq. 5.15 and Eq. 5.16 into Eq. 5.13, we obtain
(1-p)2p+1)

F <1-— 2p(1 — p)|™*L. 1
) < 1= S22 D ) (.17)
Setting F'(p,n) > 1 — &, we obtain
I9(1 — n+1
2p(1 — p)] < £ (5.18)
n+2 (1-p(@2p+1)
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For n > 1, we have 1/(n +2) > (3)"™, so Eq. 5.18 becomes
€

T (1-pp+1)

which shows that n ~ |loge|—the T' gate overhead for restoring the Clifford frame scales

logarithmically in €.

>]n+1

[p(1—p (5.19)

We now consider regimes where the noise is below the fault-tolerance threshold of a code
(say p < 1072 as is required for the surface code [7]). In such regimes, corrections based
on syndrome measurement outcomes will be significantly biased towards the identity, or
more generally towards Pauli operators. More specifically, suppose that for a given noise
model and code, a Pauli correction leads to a logical error rate dp. Applying Clifford
corrections can only improve this logical error rate to dc < Jdp since they include Pauli
corrections. But in a Clifford correction scheme, non-Pauli corrections are only used when
Pauli corrections are not optimal, which occurs at a rate 0 p, which is small below threshold.
Consequently, in the case where a correction from Cy,q was applied, the expected number
of T' gate corrections to return to the Clifford frame (as shown in Fig. 5.6) would be very
close to one since p < dp. Thus, we conclude that the Clifford gates can be used with the
scheme proposed here at a negligible cost.

We conclude this section by mentioning that Clifford frames are also useful in random-
ized benchmarking schemes where random Clifford gates are applied to transform a given
noise channel into an effective depolarizing channel [144, , |. In these schemes, once
the random Clifford gates have been applied, they must be propagated in classical soft-
ware through a sequence of logical gates that are part of the quantum circuit of interest
(which typically includes Clifford and 7' gates) and conjugate Clifford gates are subse-
quently applied after the Clifford frame has been restored. The techniques presented in
this section can be used to restore the Clifford frame after propagation through the logical
gates and could thus be an attractive approach for performing randomized benchmarking
using Clifford gates. Note that if only random Pauli operators were used, the noise would
be transformed to a Pauli channel (but not in general a depolarizing channel).

5.4 Summary and outlook

In this chapter, we considered performing fault-tolerant quantum computation when mea-
surement times and/or decoding times are much slower than gate times.

This was realized by providing a new scheme for performing error correction using the
Pauli frame by placing buffers after the application of a non-Clifford gate. We showed that

145



the Pauli frame can always be restored by applying logical Clifford corrections prior to the
application of the next two-qubit or non-Clifford gate part of a quantum algorithm.

Given that logical Clifford corrections can significantly increase a code’s threshold value
(from Ref. [21] and Chapter 2), in the remainder of this chapter, we showed how to perform
fault-tolerant error correction in the Clifford frame. We performed an in-depth study of
the propagation of logical Clifford corrections through logical CNOT and 7" gates, and the
same idea can be generalized to other universal gate sets.

For the propagation through CNOT gates, we placed buffers at strategic locations to
ensure that the output Clifford corrections could be expressed in tensor product form. To
achieve this, we found that on average 12 logical CNOT corrections would be required when
Clifford corrections arising from buffers are chosen uniformly at random. This ensures that
two-qubit Clifford corrections would not propagate through the remainder of the circuit
yielding a generic Clifford correction.

We also used buffers to keep track of the Clifford corrections propagating through 7T
gates. We showed that in certain conditions, by applying enough 7' gate corrections, the
Clifford frame could be restored with probability arbitrarily close to 1. Furthermore, to
restore the Clifford frame with probability at least 1 — ¢, we showed that the number of T’
gate corrections scales as log (1/¢).

While we have shown that Clifford corrections can produce a higher error threshold, the
impact and applicability of Clifford corrections remains largely unexplored. Our original
motivation for the current work was to determine if one of the key tricks used in FT
schemes — Pauli frames — could be generalized to Clifford corrections. Having found that
it can indeed be generalized at a negligible cost below threshold, we pave the way to future
investigations of Clifford corrections.
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Chapter 6

Conclusion

With many quantum technologies reaching a level of maturity where quantum error cor-
rection and fault-tolerance can begin to make an impact, it is important to have schemes
which can cope with constraints imposed by particular architectures. For instance, some
architectures might place limitations on the number of qubits that can be made available,
the number of times ancilla qubits can be repeatedly measured could be limited, some
gates could only be implemented via nearest neighbor interactions, measurement latencies
(the time for the measurement outcome to be made available to the outside world) could
be much slower than single and two-qubit gate times and much more. In this thesis, we
present new schemes to address some of the mentioned constraints with the main goal of
making quantum error correction fault-tolerance as accessible as possible in both near and
long term implementations.

In Chapter. 2 we provided a new decoding algorithm which adapts to general Markovian
noise models allowing for higher threshold values compared to more standard decoders. In
particular, when applied to concatenated codes, the infidelity can be computed efficiently
as a function of the number of concatenated levels allowing for exact solutions to a code’s
threshold value. We applied our decoding algorithm to study the performance of various
codes under combined amplitude and phase-damping channels, coherent error channels
and correlated noise channels. An interesting feature of our algorithm was the ability to
study how non-Pauli recovery operators (and for codes which can implement non-Pauli
transversal gates) could further suppress the logical noise rate in certain regimes. For
instance, it was shown that when using the 5-qubit code under coherent noise, errors can
be exponentially suppressed for certain rotation axes regardless of the rotation angle about
the axis. Lastly, we showed that in many cases, our algorithm could still give enhanced
performance when the underlying noise model was not perfectly known. We believe that
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our work provides new insights into the error correcting capabilities of quantum error
correcting codes. Further, we show that adapting a decoder to more realistic noise models
can substantially improve a code’s performance providing further motivation for tailoring
decoders to noise observed in experimental settings.

Performing fault-tolerant error correction using flag qubits was first introduced by Chao
and Reichardt [57] with applications to distance-three perfect codes (or perfect CSS codes).
The idea of flag qubits is to catch high weight errors arising from fewer faults in the syn-
drome extraction circuits. Further, flag qubits allow fault-tolerant error correction proto-
cols to be implemented with very small qubit overhead. Using flag qubits, in Chapter 3
we developed a new fault-tolerant error correction protocol which can be applied to arbi-
trary distance codes. There are several reasons why such generalizations are important.
For instance, it was shown that fault-tolerant error correction using Shor error correction
(reviewed in Sec. 1.2.1) combined with LDPC (low density parity check) codes satisfying
certain properties can achieve constant overhead [51]. However, our new fault-tolerant error
correction protocol uses fewer qubits than Shor error correction and does not require the
verification of ancilla qubits. Additionally, we showed how fault-tolerant error correction
could be performed using fewer syndrome measurement repetitions compared to previous
methods used in Shor error correction. We gave a sufficient condition which makes it easier
to verify if a code family satisfies the condition for our flag-fault-tolerant error correction
scheme. We proved that the family of surface codes, color codes with a hexagonal lattice
and quantum Reed-Muller codes satisfy the sufficient condition and provided syndrome ex-
traction circuits for each code family. Lastly, we believe our protocol could be suitable for
early fault-tolerant experiments which only have access to a very small number of qubits.

The decoding schemes presented in Chapter 2 required some knowledge of the noise
model afflicting the quantum system and assumed that gates and measurements could
be implemented perfectly. In realistic quantum devices, fully characterizing the noise
model can be a significant challenge. Furthermore, gates and measurements can introduce
additional errors into the system. In Chapter 4, we used state of the art machine learning
techniques to find improved decoders in low noise rate fault-tolerant regimes which could
be relevant for early fault-tolerant experiments. Our techniques require no knowledge of
the noise model and we showed how they could be implemented in the lab. The fault-
tolerant error correction schemes considered were the surface code as well as Steane and
Knill error correction. For both distance-three and five codes, we showed improvements
in the pseudo-thresholds that were obtained under the same depolarizing noise channel as
the one used in Chapter 3. We believe that even bigger improvements could be obtained
if more realistic noise models were considered. We further gave estimates of the classical
resources that would be required in order to perform active error correction. However,
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neural decoders do have significant limitations. First, training a neural network becomes
much harder (and requires more experiments) as the physical noise rate becomes smaller.
The reason is that the machine learning techniques developed so far do not work well with
sparse data. In particular, we believe that it is unrealistic to train a neural-network at
large noise rates and apply the trained network to lower noise rates since in reality, the
neural-network would be trained with the device given by the experimentalist. Another
issue is that in order to achieve good performance, the size of the training set needs to
grow significantly for higher distance codes. Hence we believe that neural decoders could
be relevant in early fault-tolerant experiments, but large scale quantum computations will
require methods that are scalable. Nevertheless, we believe important decoding insights
could be obtained with trained neural networks applied to small distance codes and could
help guide more scalable solutions.

In Chapter 5 we considered the problem of slow error diagnostics, which incorporates
both long measurement latencies as well as slow classical decoding times of error syndromes.
The problem of slow error diagnostics has been considered previously in the context of Pauli
frames [14, 20]. We first provided a generalization of the previous methods which apply
regardless of how non-Clifford gates are implemented and to any family of stabilizer codes.
In scenarios where non-Pauli recovery operators are used, one cannot use Pauli frames to
keep track of errors in classical software. Motivated by the improved thresholds obtained
via non-Pauli recover operators shown in Chapter 2, we developed a theory of Clifford
frame error correction and proved that it can be implemented with negligible overhead in
fault-tolerant noise rate regimes. Further, we believe our scheme can have applications in
other areas such as randomized benchmarking and where Clifford frames are used as an
accessory in measurement-based quantum computing.
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Appendix A

Quantum error correction appendix

A.1 Obtaining the a and [ coefficients in closed form

In this section we provide an alternative derivation of the a and [ coefficients found in
Eq. 2.18 and Eq. 2.19. The latter coefficients will be given in terms of the symplectic vector
representation of Pauli operators. For the bit strings a = (as,...,a,) and b = (by, ..., b,),
we will write

Z@)Xb)=(Z2"®.. Z) (X" ®...@ X"). (A1)

Since the a coefficient is related to the overall sign of the operator S,7 (see Eq. 2.6
and Eq. 2.17), the goal is to obtain an expression relating the overall sign of S,7T to its
symplectic vector representation. An operator Sy € S can always be written as a product
of the codes stabilizer generators so that

Sk = Gj, - - - Gjp» (A.2)
where
95 = Z(a;,) X (bj,)- (A.3)
Defining
a=aj +...+aj (mod?2) (A.4)
b="0b, +...+0b;, (mod2), (A.5)



we commute all the Z operators in Eq. A.2 to the left, allowing us to write Sy as in Eq. A.1
S = (—1)f @nrmaiibinebin) 7(7) X (b). (A.6)

The overall sign can be obtained from the function f, which is given by

k=1 k
f(ajl,...,ajk;bjl,...,bjk):Z Z bjaj,. (A.7)
I=1 t=I+1
Writing the logical Pauli operator 7 as
7= Z(1,) X (1), (A.8)
S, T can then be written as
ST = (—1)F(@nmasibin "“’bjk)JrB'TZZ(E + )X b+ 7). (A.9)
For any pu; € {I,X,Y, Z}, we can write p; in terms of X and Z Pauli operators:
pj = (—i)%% 7% X", (A.10)
allowing us to write
Z@+ )X b+ 1) =i@ ) @ @ . (A.11)

It is important to note that the dot product in the factor of ¢ is not added modulo 2.
Using Eq. A.11, we have

SpT = (_1)f(aj1""’ajk;bjl""7bjk)+E'T2/L’(E+TZ)'(E+TZ)M1 Q... fin. (A.12)

Since the «a coefficient takes into account the overall sign of the product between elements
in the stabilizer group and the logical operators, we have

1

a;(sk?) — _2£_1 (_1)f(aj1,...,ajk§bj1,...,bjk)+5'7zi(a+Tz)-(5+Tz)’ <A13)
2

where the normalization factor arises from choosing a trace orthonormal basis in the sum

of F,.

Given a recovery map R; for the syndrome measurement [, we can write it in terms of
its symplectic vector representation as

From Eq. 2.15 and Eq. 2.17, the 3 coefficient corresponding to the recovery map R; can be
obtained by commuting R; to the left of 5,7 and using RITRZ = I. Doing so, we find that

Bisem (B1) = as,z (— 1) Crmror@n), (A.15)
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Appendix B

Fault-tolerant error correction
appendices

B.1 Proof that the flag -FTEC protocol satisfies the
fault-tolerance criteria of Def. 5

Consider the flag t-FTEC protocol described in Sec. 3.4.1.

Claim 1. If the flag t-FTEC condition is satisfied, then both fault-tolerance criteria of
Def. 5 will be satisfied.

Proof. First note that the protocol always terminates. As was shown in the arguments
leading to Eq. 3.5 presented in Sec. 3.4.1, the maximum number of syndrome measurement
rounds is $(t* + 3t + 2).

To prove fault-tolerance, in what follows we assume that there are at most t-faults
during the protocol. Also, we define a benign fault to be a fault that either leaves all
syndrome measurements in the protocol unchanged.

By repeating the syndrome measurement using t-flag circuits, the following cases ex-
haust all possible errors for the occurrence of at most t faults.

Case 1: The same syndrome is measured t — ngy+ 1 times in a row and there are no
flags.

At any time during the protocol, if there are no flags, there can be at most t — ngg
remaining faults that occur (since it is guaranteed that there were at least nq faults).
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Therefore, if the same syndrome was measured t — ngg + 1 times in a row, at least one
round (say r) had to have been fault-free yielding the correct syndrome corresponding to
the data qubit errors present at that time. Applying Epn,(s) will remove those errors.
Furthermore, since all syndrome measurements are identical and there are no flags, there
can be at most t — ng;g errors which are introduced on the data blocks from faults during
the t — ngig + 1 syndrome measurement rounds (excluding round r). Since none of the
errors change the syndrome, after applying the correction, the output state can differ from
the input codeword by an error of weight at most ¢t — ngiz (if the total number of faults and
input errors was t). For input states afflicted by an error of arbitrary weight, the output
state will differ from a valid codeword (but not necessarily the input codeword) by an error
of weight at most ¢t — ng;g. Thus both conditions of Def. 5 are satisfied.

Case 2: There are no flags and ngg = t.

The only way that ngg = t is if there were t-faults that each changed the syndrome
measurement outcome. Further since there were no flags, an error F afflicting the data
qubits must satisfy wt(£) < ¢t. Thus repeating the syndrome measurement using non-flag
circuits will correctly identify and remove the error in the case where the number of input
errors and faults is ¢ or project the system back to the code space (to a possibly different
codeword) if there were ¢ faults and the input state was afflicted by an error of arbitrary
weight .

Case 3: A set of t circuits {C(gi,),- -+ ,C(9:,)} flagged.

Since t circuits {C(g;,), -+ ,C(g;,)} flagged, then no other faults can occur during the
protocol. Hence, when repeating the syndrome measurement using non-flag circuits, the
measured syndrome will correspond to an error E, € E!(gi,,---g,,s). Since from the flag
t-FTEC condition all elements of Ef (9iy, - 9i,, s) are logically equivalent, the product of
errors resulting from the flag circuits {C(g;,), -+, C(g;,)} will be corrected.

Note that for an input error Ej, of arbitrary weight and since the final round must be
error free, applying a correction a correction from the set Ef(g;,,- - g;,, s) is guaranteed to
return the system to the codespace. Thus both conditions of Def. 5 are satisfied.

Case 4: The m circuits {C(gi,), -+ ,C(gi,)} flagged with 1 <m < t, ngg=1t—m.

Here we can assume that at any point during the protocol and after the j'th flag, the
syndrome never repeated more than t — 7 — ngig times. Otherwise case 5 of the protocol
would already have occurred.

As m circuits {C(g), -+ ,C(gi,,)} have flagged and ngg = t — m, then there can
be no more faults. The final syndrome measurement using non-flag circuits will yield
a syndrome corresponding to an error in the set EJ*(gi,,- - gi,,,s) (and all elements are
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logically equivalent from the flag t-FTEC condition). Applying a recovery operator chosen
from this set will thus remove the errors afflicting the data. If the input state differs from
a valid codeword by an error of arbitrary weight, by definition of E™(gi,,---gi,,s) the
output state will be a valid codeword.

Case 5: The m circuits {C(gs,), -+ ,C(gi,,)} flagged with 1 < m <t, nggme =t —m —
Ny + 1.

Given that m circuits {C(g;,), -+ ,C(g;,,)} flagged, there are r remaining faults that
don’t result in a flag with ngy < r <t —m. In this case, after the m’th flag, the syn-
drome measurement was repeated using t-flag circuits ¢ — m — ngig + 1 times in a row
and all syndromes were the same. It is thus guaranteed that at least one of the syn-
drome measurements s was fault-free and correctly identified the errors arising from the
flags and errors causing the syndrome to change giving ngg (along with some error F
which did not cause the circuits to flag with wt(E) < t — m — ngg). Consequently, if
there are no errors on the input state, the overall error on the data will be FE, with E, €
U;;g’_”diff BT (g oo g s). Since all elements in U;:él_"d“* BT (g g s)
are logically equivalent from the flag -FTEC condition, by choosing a correction from this
set, the output state can differ from the input codeword by an error of at most weight
t—m — Nqiff-

If there is an input error of arbitrary weight, then again one of the t — m — ngg + 1
rounds will have the correct syndrome s. The actual state of the data qubits after the
protocol can differ from the state which had the correct syndrome by an error of weight
at most t — m — ngqig. Therefore applying any correction with syndrome s will return the
system to the code space up to an error of weight at most t — m — ngg.

]

B.2 Fault-tolerant state preparation and measurement
using flag t-FTEC

In this section we show how to fault-tolerantly prepare a logical |0) state and how to
perform fault-tolerant measurements for codes that satisfy the flag t--FTEC condition of
Sec. 3.4. Note that there are several methods that can be used for doing so. Here we follow
a procedure similar to that shown in [l 1] when performing Shor EC. However, compared
to Shor EC, the flag t-FTEC protocol requires fewer qubits. Furthermore, postselection is
not necessary.
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Consider an n-qubit stabilizer code C' with stabilizer group S = (g1, - , gn—k) that can
correct up to t errors. Notice that the encoded |0) state is a +1 eigenstate of the logical
Z operator and all of the codes stabilizer generators. For k encoded qubits, |0) would be
+1 eigenstate of {Z,,--- Z;} and all of the codes stabilizers. For notational simplicity, in
what follows we assume k = 1.

The state |0) is a stabilizer state completely specified by the full stabilizer generators
of S and Z. We can think of S’ = (g1, -gn,l,Z) as a stabilizer code with zero encoded
qubits and a 2° = 1 dimensional Hilbert space. Thus any state which is a +1 eigenstate of
all operators in 8’ will correspond to the encoded |0) state.

Now, suppose we prepare |0);, using a non-fault-tolerant encoding and perform a round
of flag t-FTEC using the extended stabilizers (g1, - g,_1, Z). Then by the second criteria
of Def. 5, the output state \ﬁ)out is guaranteed to be a valid codeword with at most ¢
single-qubit errors. But for the extended stabilizers (g, - - g,_1, Z) there is only one valid
codeword which corresponds to the encoded |0) state. In fact, by the second criteria of
Def. 5, any n-qubit input state prepared using non-fault-tolerant circuits is guaranteed to

be an encoded |0) state if there are no more than ¢ faults in the EC round.

We point out that the flag t-FTEC condition of Sec. 3.4.1 is trivially satisfied for &’
since the codes logical operators are now stabilizers. In other words, if two errors belong
to the set Etm(gil, -+, i, S), then their product will always be a stabilizer. Therefore, the
flag t-FTEC protocol can always be applied for the code S’.

To summarize, the encoded |0) state can be prepared by first preparing any n-qubit
state using non-fault-tolerant circuits followed by applying a round of flag t-FTEC using

the extended stabilizers (g1, - - g,_1, Z). This guarantees that the output state will be the
encoded |0) state with at most ¢ single-qubit errors.

Now suppose we want to measure the eigenvalue of a logical operator P where P is a
Pauli. If C' is a CSS code and the logical operator being measured is X or Z, one could
measure the eigenvalue by performing the measurement transversally. So suppose C' is not
a CSS code. From [I 1] we require that performing a measurement with s faults on an input
state with r errors (r + s < t) is equivalent to correcting the r errors and performing the
measurement perfectly. The protocol for fault-tolerantly measuring the eigenvalue of P is
described as follows:

1. Perform flag t-FTEC.
2. Use a t-flag circuit to measure the eigenvalue of P.

3. Repeat steps 1 and 2 2t + 1 times and take the majority of the eigenvalue of P.
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Step 1 is used to remove input errors to the measurement procedure. However during
error correction, a fault can occur which could cause a new error on the data. Thus by
repeating the measurement without performing error correction, the wrong state would
be measured each time if there were no more faults. But repeating the syndrome 2t + 1
times, it is guaranteed that at least t + 1 of the syndrome measurements had no faults and
that the correct eigenvalue of P was measured. Thus taking the majority of the measured
eigenvalues will give the correct answer.

Note that during the fault-tolerant measurement procedure, if there is a flag either
during the error correction round or during the measurement of P, when error correction
is performed one corrects based on the possible set of errors resulting from the flag.

B.3 Candidate general w-flag circuit construction

In this section we provide a candidate general w-flag circuit construction for measuring the
stabilizer Z®*. Although we do not provide a rigorous proof that our construction results
in a w-flag circuit, we give several arguments as evidence that it satisfies all the criteria of
a w-flag circuit. An illustration of the circuit construction (for w = 12) is given in Fig. B.1
and the description for how the circuit is constructed for arbitrary w is provided in the
caption.

In what follows, we can restrict our attention to the case in which all v faults occur on
CNOT gates in the circuit. The effect on the measurement outcomes and data qubits due
to a set of v faults that include faults at idle and measurement locations can always occur
due to at most v faults at CNOT locations only (as every qubit is involved in at least one
CNOT). Moreover, we can assume that for CNOTy, gates, the faults belong to the set
{I1Z,Z1,77} since X errors would never propagate to the data or affect the measurement
outcome of a flag qubit. For CNOTy,, gates, we can assume that faults belong to the set
{XZ XI}. We only consider Z errors on the target qubit of a CNOTy,, for the same
reason that was given for CNOTy,, gates. For the control qubit, an X error guarantees that
the weight of the data qubit error increases even after the application of a satbilizer (since
we are measuring Z").

We will use the following useful terminology: we say that a single-qubit Pauli at a
time step in the circuit propagates to a qubit at a particular time-step if it would do so in
the fault-free circuit. Given a single-qubit Pauli at a time step in the circuit, we say that
another qubit is affected by the Pauli if it propagates to that qubit in any time step.
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Figure B.1: Illustration of the general w-flag circuit construction for w = 12. In general,
the circuit requires w — 1 flag qubits and is implemented using 7w — 8 time steps. The
circuit consists of two families of CNOTy, gates. For the first family, with the first set
of CNOTy, gates located before the first CNOTy,, gate, the partnering CNOTy,, gates
are divided into three sets s, sy and s3 which are enclosed in the green, red and blue
dashed boxes. In general, s; and s3 both contain (w — 4)/2 CNOTYy, gates. In s, the
j’th control qubit is at position w + 2(j + 1) and in s3 it is at position w + 25 + 1 with
je{1,2,--- ,(w—4)/2} In sy, the control qubits are always located at the w + 2’th and
2w — 1'th qubits. Lastly, note that qubits are reused for implementing the second family of
CNOTy, gates. The partnering CNOTy, gates are located in between the w — 1 and w’th
CNOTg, gates following an identical pattern as in s, so and s3 (in s; and s3 the CNOT’s
are implemented in reverse order).
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We now provide arguments for why the circuit is a w-flag circuit. First, note that every
CNOTy, gate comes as part of a pair with the measurement qubit being the target qubit.
This ensures that when the circuit is fault-free, it implements a projective measurement
of Z®" without flagging. Next, notice that apart from the last two CNOTy,, gates, each
CNOTy,, gate is followed by two CNOTg, gates, one with its partnering CNOT4, located
before the first CNOTq,, and the other partner is located in between the last two CNOTy,,
gates. Thus if there is a single Z error on the measurement qubit which propagates to any
of the data qubits, the circuit will flag.

In all circuits considered in this section, sg will correspond to the sequence of CNOTy,
gates that come before the first CNOTy,, gate. First consider the shorter circuit construc-
tion using only the first family of CNOTy, gates from the construction in Fig. B.1 (see the
example in Fig. B.2). We can separate the set of all locations into subsets including two
CNOTYyy, gates and one CNOTYy,, gate as shown in Fig. B.3 (apart from the last CNOTqy, ).
This circuit segment can increase the weight of the data error by at most one. There are
four cases with inputs on the measurement qubit before the first CNOTy,, and CNOTy,,
being {(1,1),(1,2),(Z,1),(Z,Z)}. Note that if the following property held for each seg-
ment, then the circuit would be w-flag: for all inputs to the segment, if the weight of the
data error increases and there are no faults in the segment, the segment flags. Unfortu-
nately, for the input (Z, Z), this is not the case. Both input Z must come from at least
two faults.

Note that if v faults results in a data qubit error of weight greater than v without
causing the circuit in Fig. B.2 to flag, there must be either an IZ fault followed by no
fault in a consecutive pair of CNOTy,, gates belonging to so or a ZZ fault followed by two
CNOTy, gates that don’t fail in so.

Moreover, a poor choice of ordering of the CNOTy,, gates in s;, s9 and s3 can result in
four faults causing a weight 5 + 1 error on the data without causing the circuit to flag.
Therefore, the ordering of the CNOTy,, gates in the sets sq, s5 and s3 is chosen such that
most Z errors in sy that first propagate to flag qubits connected to gates in s;, will then
propagate to flag qubits in s3 and vice-versa. Typically, if a Z error propagates through
multiple CNOTy,,, gates in s;, then unless CNOTy,, gates in s3 fail, the flag qubits affected
by the Z error would flag. Furthermore, the total number of required failures for gates
in s3 to cancel the Z errors will typically be equal to the number of times the Z error
propagated to the data.

There are however cases which don’t flag in which v faults in the circuit construction
presented in Fig. B.2 lead to more than v errors on the data qubit, such as the example
given in the figure. All such problematic cases that we found had a Z error on the target
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Figure B.2: Example of five faults that lead to an error of weight six on the data without
causing a flag when only the first family of CNOTy, gates are used in the construction
of Fig. B.1 (here w = 10). Errors arising from faults are shown in blue and the resulting
errors after propagating through the CNOT gates are shown in red.
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Figure B.3: Illustration of a pair of CNOTy, gates as well as a segment of CNOT g, followed
by CNOTy, gate. The first CNOTg, gate belongs to the sequence of CNOTy,, gates that
come before the first CNOTq,, gate (see Fig. B.1).

qubit in one of the last few CNOTy, gates in sg, followed by a Z error on the target
qubit in one of the first few CNOTy,, gates in s;. Then further Z errors occur throughout
the remainder of the circuit which propagate to the data while preventing the flag qubits
affected by the previous errors from flagging. Further, a Z error on the control qubit of
the second CNOTy, in s, cancels the Z which propagates to the flag qubit coupled to that
CNOTy, gate.

This particular problematic fault pattern would lead to flags if it occurred within the
full circuit construction of Fig. B.1 (if the additional locations of the larger circuit do not
fail). As this was the only type of problematic fault pattern that we found, one would hope
that all problematic fault patterns are rendered non problematic provided no additional
locations fail. Since the additional CNOTy, gates always occur immediately after one of
the original CNOTy,, gates (or after the last CNOTy, gate), as far as the flag properties
of the original circuit are concerned, no new problematic fault patterns are introduced.

We conclude this section by noting that our candidate general w-flag circuit construction
requires w — 1 flag qubits and is implemented in 7w — 8 time steps. This is clearly not
optimal in general since for example, as shown in Fig. 3.9a, a w-flag circuit was found (for
w = 6) which requires only three flag qubits instead of five and the circuit is implemented
in 14 time steps instead of 34. It is thus still an open problem to find optimal w-flag
circuits for arbitrary w.

B.4 Quantum Reed-Muller codes

In this section we first describe how to construct the family of quantum Reed-Muller codes
QRM(m) with code parameters [2" — 1,k = 1,d = 3] following Ref. [63]. We then show
that the family of QRM(m) codes satisfy the sufficient flag 1-FTEC condition of Sec. 3.4.2.
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Reed-Muller codes of order m (RM(1,m)) are defined recursively from the following
generator matrices: First, RM(1,1) has generator matrix

Glz(éi), (B.1)

and RM(1, m + 1) has generator matrix

Gn Gn
Gm+1 = ( 0 1 ) ) (BQ)

where 0 and 1 are vectors of zeros and ones in Eq. B.2. The dual of RM(1,m + 1) is given
by the higher order Reed-Muller code RM(m — 2, m). In general, the generator matrices
for higher-order Reed-Muller codes RM(r, m) are given by

Hr,m Hr,m
Hypir = ( o ) | (B.3)
with
1 1
Hyy = Hiy = ( - ) , (B.4)

The X stabilizer generators of QRM(m) are derived from shortened Reed-Muller codes
where the first row and column of GG,,, are deleted. We define the resulting generator matrix
as G,,. The Z stabilizer generators are obtained by deleting the first row and column of
H,,_9,,. Similarly, we define the resulting generator matrix as ﬁm_gym.

As was shown in [63], rows(G,,,) C rows(H,,_2,,) and each row has weight 21, There-
fore, all the X-type stabilizer generators of QRM(m) have corresponding Z-type stabilizers.
By construction, the remaining rows of Hm_zm will have weight 272, Furthermore, every
weight 22 row has support contained within some weight 2™~! row of the generator ma-
trix Fm_gym. Therefore, every Z-type stabilizer generator has support within the support
of an X generator.
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FTEC scheme Noise model | Number of qubits | Time steps (Ttime) Pseudo-threshold

Full Steane-EC p=p > 171 15 Ppseudo = 3.50 X 1073

Full Steane-EC p=p/100 > 171 15 Ppsendo = 1.05 x 1073
Flag-EC [19,1, 5] p=0p 22 504 < Tiime < 960 | ppsendo = 1.14 x 1077
Flag-EC [19,1,5] | p = p/100 22 504 < Tiime < 960 | ppsendo = 7.74 x 1077

Table B.1: Pseudo-threshold results for the Full Steane and flag 2-FTEC protocol applied
to the [19,1,5] code. Since the Steane error correction protocol is non-deterministic, the
number of qubits will depend on how many times the encoded states are rejected. For low
error rates, the states are accepted with high probability so that the average number of
qubits is &= 171. Our three qubit flag error correction protocol requires at most six rounds
of syndrome measurements, with each round using flag circuits requiring 168 time steps
and the round using non-flag circuits requiring 120 time steps. However, for low noise
rates, the average number of time steps will be close to 504 (since at least three rounds are
required for the protocol to be fault-tolerant).

B.5 Implementation of Steane error correction

In this section we describe how to implement Steane error correction and discuss its fault-
tolerant properties. We also provide a comparison of a version of Steane error correction
with flag 2-FTEC protocol described in Sec. 3.2.2 applied to the [19,1, 5] code.

Steane error correction is a fault-tolerant scheme that applies to the Calderbank-Shor-
Steane (CSS) family of stabilizer codes [13]. In Steane error correction, the idea is to use
encoded [0) and |F) = (|0) + |I))/v/2 ancilla states to perform the syndrome extraction.
The ancilla’s are encoded in the same error correcting code that is used to protect the
data. The X stabilizer generators are measured by preparing the encoded |0) state and
performing transversal CNOT gates between the ancilla and the data, with the ancilla
acting as the control qubits and the data acting as the target qubits. After applying the
transversal CNOT gates, the syndrome is obtained by measuring |0) transversally in the X-
basis. The code construction for CSS codes is what guarantees that the correct syndrome
is obtained after applying a transversal measurement (see [11] for more details).

Similarly, the Z-stabilizer generators are measured by preparing the encoded |+), ap-
plying CNOT gates transversally between the ancilla and the data with the data acting
as the control qubits and the ancilla’s acting as the target qubits. The syndrome is then
obtained by measuring |+) transversally in the Z-basis.

The above protocol as stated is not sufficient in order to be fault-tolerant. The reason

177



— Y,
0) —p  — EIX
— oD
b 0 ——~=],
0) —
|0/ @X ‘6) — @X
0)—D—1=, 0 —b—=],
F) D D[R] [ ———y {7,
|¢>_.X |1>H4X
" PO,
A——1=],

Figure B.4: (a) Fault-tolerant Steane error correction circuit for distance-three CSS codes.
Each line represents an encoded qubit. The circuit uses only two encoded |0) and |+)
ancilla states (encoded in the same error correcting code which protects the data) to ensure
that faults in the preparation circuits of the ancilla’s don’t spread to the data block. (b)
Fault-tolerant Steane error correction circuit which can be used for any distance-three
CSS stabilizer code encoding the data. There are a total of eight encoded ancilla qubits
instead of four. The dark bold lines represent resting qubits. Note that the circuit in
Fig. B.4b could in some cases be used for higher distance CSS codes with appropriately
chosen circuits for |0) and |+) ancilla states (see Ref. [0]).
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Figure B.5: Logical failure rate of the full fault-tolerant Steane error correction approach
of Fig. B.4b and the flag 2-FTEC protocol of Sec. 3.2.2 applied to the [19,1,5] code. In
(a) idle qubits are chosen to fail with a total probability p = p while in (b) idle qubits
fail with probability p = p/100. The intersection between the dashed curve and solid lines
represent the pseudo-threshold of both error correction schemes.

is that in general the circuits for preparing the encoded |0) and |[+) are not fault-tolerant
in the sense that a single error can spread to a multi-weight error which could then spread
to the data block when applying the transversal CNOT gates. To make the protocol fault-
tolerant, extra |0) and |+) ancilla states (which we call verifier qubits) are needed to check
for multi-weight errors at the output of the ancilla states.

For the |0) ancilla, multiple X errors can spread to the data if left unchecked. Therefore,
another encoded |0) ancilla is prepared and a transversal CNOT gate is applied between
the two states with the ancilla acting as the control and the verifier state acting as target.
Anytime X errors are detected the state is rejected and the error correction protocol starts
over. Further, if the verifier qubit measures a —1 eigenvalue of the logical Z operator, the
ancilla qubit is also rejected. A similar technique is used for verifying the |+) state (see
Fig. B.4a).

For the [7,1,3] Steane code, an error £ = Z;Z; can always be written as £ = Z 7,
where Z is the logical Z operator (this is not true for general CSS codes). But [0) is a +1
eigenstate of Z. Therefore, we don’t need to worry about Z errors of weight greater than
one occurring during the preparation of the |0) state.

In Ref. [18] it was shown that unlike for the [7,1,3] code, for general CSS codes, the
encoded ancilla states need to be verified for both X and Z errors in order for Steane error
correction to satisfy the fault-tolerant properties of Def. 5. We show the general distance-
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three fault-tolerant scheme in Fig. B.4b. Note that the circuit in Fig. B.4a will only satisfy
the fault-tolerant criteria of Def. 5 for perfect distance-three CSS codes (see [15] for more
details).

In Sec. 3.6.2 we computed logical failure rates for Steane error correction applied to
the [19,1,5] code using the circuit of figure Fig. B.4a in order to minimize the number
of physical qubits. However, since the [19,1, 5] code is not a perfect CSS code, only the
circuit in Fig. B.4b satisfies all the criteria of Def. 5. This explains why the leading order
contributions to the logical failure was of the form pr, = c1p* + cop® + O(p*) instead of
pL = cp® + O(p*) (which would be the case for a distance-5 code).

In Fig. B.5 we applied Steane error correction using the circuit of Fig. B.4b to achieve
the full error correcting capabilities of the [19,1,5] code. We used methods presented in
[6, 36] in order to obtain the encoded |0) state (since the [19, 1,5] code is self-dual, the |+)
state is obtain by interchanging all physical |0) and |4) states and reversing the direction
of the CNOT gates). Note that not all [0) and |+) circuits had the same sequence of CNOT
gates. This was to ensure that a single fault in two different preparation circuits, i.e. for
|0) and for |+), would not lead to uncorrectable X or Z errors that would go undetected
by the verifier ancillas and at the same time propagate to the data block. The results are
compared with the flag 2-FTEC protocol of Sec. 3.2.2 applied to the [19, 1, 5] for the noise
models where idle qubits fail with probability p = p and p = p/100. In both cases the
logical failure rates have a leading order p® contribution (which is determined from finding
the best fit curve to the data). The pseudo-threshold results are given in Tab. B.1.

As can be seen, the full Steane-EC protocol using the circuit of Fig. B.4b achieves
significantly lower logical failure rates compared to Steane-EC using the circuit in Fig. B.4a
at the cost of using a minimum of 171 qubits compared to a minimum of 95 qubits. In
contrast, the flag 2-FTEC scheme of Sec. 3.2.2 has a pseudo-threshold that is one to two
orders of magnitude lower than than the full Steane-EC scheme but requires only 22 qubits.

B.6 Implementation of Surface code error correction

We consider the rotated surface code [61, 1, 15, 16, 7, 62] as shown in Fig. B.6a, which
has n = d? data qubits for distance d. Although we are concerned with error correction
under the circuit level noise model described in Sec. 3.1.1, it is useful to build intuition
by first considering the idealized noise model in which stabilizer measurements are perfect,
and single qubit X errors occur with probability 2p/3 (Z errors can be treated in the same
way). An X type error E occurs with probability O(p**#)), and has syndrome s(E).
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Figure B.6: (a) The d = 3 surface code, with data qubits represented by white circles. The
X (Z) stabilizer generators are measured with measurement ancillas (gray) in red (green)
faces (b) For perfectg measurements, the graph Gop used to correct X type errors (here for
d = 5) consists of a black node for each Z-stabilizer, and a black edge for each data qubit
in the surface code. White boundary nodes and blue boundary edges are added. Black and
blue edges are given weight one and zero respectively. In this example, a two qubit X error
has occurred causing three stabilizers to be violated (red nodes). A boundary node is also
highlighted and a minimum weight correction (red edges) which terminates on highlighted
nodes is found. The algorithm succeeds as the error plus correction is a stabilizer.
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Figure B.7: Circuits for measuring (a) Z-type, and (b) X-type generators. Identity gates
(black rectangles) are inserted in the Z-type stabilizer measurement circuits to ensure that
all measurements are synchronized. Note that unlike in [7], to be consistent with the other

schemes in this chapter, we assume that we can prepare and measure in both the X and
Z basis.

The minimum weight X-type correction can be found efficiently for the surface code
in terms of the graph Gyp shown in Fig. B.6b. The graph Gap has a bulk node (black
circle) for each Z stabilizer generator, and a bulk edge (black) for each data qubit. A
bulk edge coming from a bulk node corresponds to the edge’s data qubit being in the
support of the node’s stabilizer. The graph also contains boundary nodes (white boxes)
and boundary edges (blue), which do not correspond to stabilizers or data qubits. Each
bulk and boundary edge is assigned weight one and zero respectively. The minimum
weight decoder is then implemented as follows. After the error E is applied, the nodes
corresponding to unsatisfied stabilizers are highlighted. If an odd number of stabilizers
was unsatisfied, one of the boundary nodes is also highlighted. Highlighted nodes are then
efficiently paired together by the minimum weight connections in the graph, by Edmonds’
algorithm [79, |. The correction C'is applied to the edges in the connection. Note that
any single O(p) fault in this noise model corresponds to a weight one edge on the graph.

For circuit noise, we introduce a measurement qubit for each stabilizer generator, as
represented by gray circles in Fig. B.6a, and circuits must be specified to implement the
measurements, such as those in Fig. B.7. The performance of the code is sensitive to the
choice of circuit [1], for example a poor choice could allow a single fault to cause a logical
failure for d = 3 for any choice of decoder.

To implement the decoder, first construct a new three dimensional graph Gsp by stack-
ing d copies of the planar graph Gyp that was shown in Fig. B.6b, and adding new bulk
(boudnary) edges to connect bulk (boudnary) nodes in neighboring layers. We also add
additional diagonal edges such that any single O(p) fault in the measurement circuits cor-
responds to a weight-one edge in G3p (see Fig. B.8). For simplicity, we do not involve

182



round: 1, step: 3 round: 1, step: 5 round: 2, step: 2

round: 1

N P e W AMNA
O O O O O OO0 O O (d)
(a) (b) ()
o CBoundzO

(e) ®

Figure B.8: Examples of a single fault leading to diagonal edges in G3p. Dark arrows
represent the CNOT sequence. (a) An X error occurs during the third time step in the
CNOT gate acting on the central data qubit. (b) During the fifth time step of this round,
the X error is detected by the Z type measurement qubit to the top right. (c¢) The X error
is not detected by the bottom left Z type stabilizer until the following round. (d) An XX
error occurs on the third CNOT of an X measurement circuit, which is detected by the Z
measurement to the right. (e) Detection by the left Z stabilizer does not occur until the
next round. (f) The corresponding edges in G3p, green for (a-c), and blue for (d-e). Here
we show two rounds of the graph ignoring boundary edges.

further possible optimizations such as setting edge weights based on precise probabilities
and including X-Z correlations [50].

All simulations of the surface code are performed using the circuit noise model in
Sec. 3.1.1, with the graph Gsp described above as follows (to correct X errors):

1. Data acquisition: Stabilizer outcomes are stored over d rounds of noisy error correc-
tion, followed by one round of perfect error correction. The net error E applied over
all d rounds is recorded.

2. Highlight nodes: Nodes in the graph G3p are highlighted if the corresponding Z-type
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FTEC scheme ‘ Noise model ‘ Number of qubits ‘ Time steps (Tiime) ‘ Pseudo-threshold

Flag-EC [7, 1, 3] p=p 9 36 < Tyime < 108 | Ppseudo = 3.39 x 1077
Flag-EC [7,1,3] 11 34 < Time < 104 | Ppeendo = 2.97 X 1077

Table B.2: Pseudo-thresholds and circuit depth for flag-EC protocols using two and four
ancilla qubits applied to the [7,1,3] code. The results are presented for the noise models
where p = p and p = p/100.

stabilizer outcome changes in two consecutive rounds. *

3. Minimum weight matching: Find a minimal edge set forming paths that terminate
on highlighted nodes. Highlight the edge set.

4. Vertical collapse: The highlighted edges in G3p are mapped edges in the planar graph
Gsp, and are then added modulo 2.

5. Correction: The X-type correction C'x is applied to highlighted edges in Gp.

The Z correction Cy is found analogously. Finally, if the residual Pauli R = ECxC7y is a
logical operator, we say the protocol succeeded, otherwise we say it failed.

'For an odd number of highlighted vertices, highlight the boundary vertex.
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B.7 Compact implementation of flag error correction

0)-D-D1+- D+ DD D (=],
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X

Figure B.9: Circuit for measuring the Z stabilizer generators of the [7,1, 3] code using one
flag qubit and three measurement qubits. The circuit is constructed such that any single
fault at a bad location leading to an error of weight greater than one will cause the circuit
to flag. Moreover, any error that occurs when the circuit flags due to a single fault has a
unique syndrome.

In [57], it was shown that by using extra ancilla qubits in the flag-EC protocol, it is possible
to measure multiple stabilizer generators during one measurement cycle which could reduce
the circuit depth. Note that for the Steane code, measuring the Z stabilizers using Fig. 3.1b
requires only one extra time step. In this section we compare logical failure rates of the
[7,1,3] code using the flag-EC method of Sec. 3.2.1 which requires only two ancilla qubits
and a flag-EC method which uses four ancilla qubits but that can measure all Z stabilizer
generators in one cycle (see Fig. B.9). All X stabilizers are measured in a separate cycle.

Logical failure rates for p = p are shown in Fig. B.10. Pseudo-thresholds and the
number of time steps required to implement the protocols are given in Tab. B.2. Note
that measuring stabilizers using two ancilla’s requires at most two extra time steps. Fur-
thermore, the extra ancilla’s for measuring multiple stabilizers result in more idle qubit
locations compared to using only two ancilla qubits. With the added locations for errors to
be introduced, the flag error correction protocol using only two ancilla’s achieves a higher
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Figure B.10: Logical failure rates of the flag 1-FTEC protocols using two and four ancilla
qubits applied to the [7,1, 3] Steane code.

pseudo-threshold compared to the protocol using more ancilla’s. Thus assuming that reini-
tializing qubits can be done without introducing many errors into the system, FTEC using
fewer qubits could achieve lower logical failure rates compared to certain schemes using
more qubits.

B.8 Stabilizer generators for the distance-five color
codes

In Tab. B.3 we provide stabilizer generators for the [19,1,5] and [17, 1, 5] color codes.
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[19,1,5] code

[17,1,5] code

AVAYAYAY
AVAYAVAS
ACYALYAVVAES
AVAYAYAVAYAY
AVAVATYATY
AT AVOATYALY
20211412205,

X1 X0 X3Xy

X1 X3X5X7
X12X13X14 X5
X1 X X5 X6 X5 Xy
X X9 X16X19
X16X17X18X19
X10X11X12 X715

AVAVACYASRATIAYS
AVAYAYARVALIAE:
X5 X7 X X11X12X3
XgXogXi10X11 X16X17

1Ly L3 Zy, X1 XoX3Xy
2 Z3ZsZs, X1X3X5X¢
ZsZeZyZho, X5XeZ9Z1o
Ly ZgZ1 Zig, XqXsX11 X1
29210213214, X9X10X13X14
ZnZoZisZie, X11X12X15X16
Zg 2216217, XgX12X16X17
YAVAVAVAVACYASRAYYAL
X3 Xy X6 X7 X10X11 X714 X5

X = X°97 = 77

X = X7 7= 77

Table B.3: Stabilizer generators for the d = 5 ([19,1,5] code) and d = 5 (17,1, 5] code)

family of color codes [5].
operators.
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Appendix C

Error correction for input Clifford
errors

In this appendix we will explain why a generic n—qubit Clifford error on an encoded state
transforms into a logical Clifford operation and a physical Pauli operation, upon doing
stabilizer measurements.

Before proceeding, we provide a few definitions. Let p be an encoded state of a stabilizer
code with stabilizer §, that undergoes an error described by some CPTP map &, i.e,
p +— E(p). Let Il denote the projector onto the code space and consequently II; denote
the projector onto the syndrome space of s. Let T, be a Pauli operation that takes a state
from the syndrome s subspace to the code space, i.e, Il = T, - Il - Ts. Upon measuring the
stabilizer generators to obtain a syndrome s and applying the corresponding 7T operation,
the noisy state can be projected back to the code space,

£(p) — TuIL, £(p) LT, . (C.1)

Since the resulting state is in the codespace, it can be decoded back to a single qubit state
¢, given by

¢ =Y Tr(T.I, E(p) LT, - P,) Pa (C.2)

Let us denote the combined effect of the encoder, noise model, the projection to code
space and the decoder by a quantum channel called the effective projection. The effective
projection can be seen as acting directly on p to result in ¢ [152].
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However, in order to extract the (single qubit or logical) CPTP map defining the ef-
fective projection channel, we must make use of another tool, an isomorphism between
channels and states, called the Choi-Jamitowski isomorphism [153, ]. Under this iso-
morphism, a single qubit CPTP channel £ is mapped to a unique bipartite quantum state
J (&) called the Choi matriz corresponding to &, in the following manner.

€)=Y E(R) @ P (C3)

Furthermore, when the quantum channel is expressed as a process matrix A, where A, ; =
Tr (E(P;) - Pj), where P;, P; € {I,X,Y, Z} are Pauli matrices, it follows that

Nij=Te (J(€) (P Pl)) . (C.4)

Lastly, note that when £(p) = C-p-C" where C is a Clifford operation, the corresponding
process matrix A(E) is given by
AE)yj=Tr(C-P,-C"- P)
=Tr (Poy - ) = 0003 (C.5)
where o is a permutation of {1,2, 3,4} that depends on the Clifford operation. Hence the
process matrix of a Clifford channel is a permutation matrix.

We now have all the necessary ingredients to prove our claim. Note that if p in Eq. C.1
is the Bell state and & acts on one half of the encoded Bell state, then using Eq. C.3, we
know that ¢ in Eq. C.2 is simply the Choi matrix corresponding to the effective projection
channel. From Eq. C.4, it follows that the process matrix for the effective projection
channel, denoted by A, is given by

ALY = Tr (TLIL, E(TL - P) TLTLIT, P;)
=Tr (E(Ho - By) -1, - PJ)

= Z Z e\
! k

PZGﬁq','S Pker -S

= Z Z ckélya(k) (CG)
l k

PZEPZ'-S Pker .S

where ¢, € {+1,—1} and in the last step, we have used the fact that A is the process
matrix of a Clifford operation, Eq. C.5. That AM is also a permutation matrix follows
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from two properties — (i) Every row of A has a unique non-zero column and (ii) every
column of A has a unique non-zero row. We will show (i) explicitly in what follows, the
proof for (ii) is almost identical. Suppose that there are two columns j’ and j” such that
Aijs # 0 and A;jv # 0. Along with Eq. C.6, it implies that there exists Py € Py - S and
Py € Py - S such that O0(k') = OLo(k)- Hence, it must be that o(k') = o(k”), in other
words, j' = j".

Hence the effective projection channel is indeed a Clifford operation, in other words,
any n—qubit Clifford operation on the physical qubits can be promoted to a logical Clifford
operation and a physical Pauli error (T in Eq. C.1), by a syndrome measurement.
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