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Abstract	
	

					Rogue	waves	are	 rare	events	with	unusually	 large	wave	amplitudes.	 In	 this	 thesis	 the	
multicanonical	 procedure	 is	 applied	 to	 the	 one-dimensional	 nonlinear	 Schrödinger	
equation	in	conjunction	with	a	high	order	finite	difference	solution	procedure	to	determine	
the	 probability	 distribution	 function	 of	 rogue	 wave	 power	 and	 heights.	 The	 analysis	
demonstrates	a	logarithmic	dependence	of	the	slope	of	the	probability	distribution	function	
on	the	nonlinearity	coefficient	at	large	heights.	The	results	of	the	multicanonical	procedure	
helps	explain	the	mechanism	of	rogue	waves	and	confirms	that	the	nonlinearity	generates	
rogue	waves.	
						Small	deformation	of	an	obstacle	in	fluid	flows	can	in	extreme	cases	result	in	anomalous	
drag	 coefficients.	 A	 multicanonical	 procedure	 is	 applied	 to	 the	 two-dimensional	 Navier-
Stokes	 equation	 in	 conjunction	 with	 the	 lattice	 Boltzmann	 method	 to	 determine	 the	
probability	 distribution	 functions	 of	 the	 drags	 generated	 by	 a	 two-dimensional	
square/rectangular	obstacle	 in	quasi-random	input	 flow	patterns	and	for	random	surface	
roughness.	 The	 results	 demonstrate	 that	 the	 multicanonical	 method	 can	 estimate	 the	
probability	 distribution	 function	 in	 low-probability	 regions	 with	 far	 less	 computational	
effort	than	standard	techniques.	
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Chapter	1	
Introduction	
	
	
					Section	 1.1	 will	 firstly	 briefly	 introduce	 Multicanonical	 Monte	 Carlo,	 as	 an	 efficient	
statistical	 method	 for	 rare	 events.	 With	 such	 novel	 statistical	 method,	 we	 focus	 our	
research	 on	 two	 typical	 rare	 events,	 rogue	 waves	 and	 (extreme)	 drags	 in	 fluid	 flows.	
Sections	 1.2	 and	 1.3	 include	 the	 research	 objects,	 rogue	waves	 and	 drags	 in	 fluid	 flows.	
Multicanonical	 Monte	 Carlo	 is	 developed	 into	 two	 multicanonical	 procedures	 for	 rogue	
wave	probabilities	and	drag	probabilities,	which	is	the	main	topic	of	this	thesis.	Section	1.4	
shows	the	structure	of	this	thesis.	
	
	
1.1	Multicanonical	Monte	Carlo	
					The	 standard/unbiased	 Monte	 Carlo	 procedure	 that	 generate	 probabilities	 from	
unbiased	 random	 samples,	 while	 completely	 general,	 by	 definition	 samples	 high	
probability	 events	 far	 more	 often	 than	 low	 probability	 events.	 Hence	 to	 generate	 the	
probability	density	 function	 (pdf)	 to	 an	 accuracy	of	10−n 	of	 the	peak	value	 typically	10n+2 	
samples	 are	 required.	 Accordingly	 statistically	 unlikely	 but	 physically	 important	
phenomena	such	as	rogue	waves	cannot	be	easily	studied	with	such	methods.	
					Biased	Monte	Carlo	methods	 like	Markov	Chain	Monte	Carlo	 increase	 the	 efficiency	of	
sampling	 in	 low	 probability	 regions.	 	 Ideally	 [1],	 a	Markov	 chain	 is	 generated	 for	which	
transitions	to	smaller	probability	states	are	always	accepted	while	those	to	states	of	larger	
probability	are	only	accepted	with	the	probability:	
	

																																																							min( pdf (last _ state)
pdf (new_ state)

,1) 																																																									(1)	

	
However,	 such	 acceptance	 rules	 are	 somewhat	 numerically	 inefficient	 since	 the	 rejected	
states	are	not	employed	 in	generating	 the	probability	distribution	 functions.	Further,	 the	
probability	distribution	function	or	pdf	in	(1)	is	initially	unknown.	
					Accordingly,	Multicanonical	Monte	 Carlo	was	 introduced	 in	 1991	by	Berg	 and	Neuhus	
who	suggested	an	iterative	pdf	updating	technique	[2]	such	that	the	pdf	in	(1)	is	initialized	
as	 a	 uniform	 distribution	 and	 subsequently	 updated	 after	 each	 iteration.	 This	 greatly	
expands	 the	 area	 of	 configuration	 space	 visited	 by	 the	 Markov	 chain	 and	 therefore	
considerably	decreases	the	sample	size	required	to	obtain	a	smooth	pdf	in	low	probability	
areas.		Therefore,	these	efficient	sampling	techniques	enable	the	analysis	of	the	pdf	in	very	
low	 probability	 areas,	 which	 cannot	 be	 reached	 in	 an	 acceptable	 time	 by	
standard/unbiased	Monte	Carlo.	 	Moreover,	compared	to	Markov	chain	Monte	Carlo,	 it	 is	
not	necessary	to	find	or	guess	a	pdf	in	Multicanonical	Monte	Carlo.	The	updating	technique	
was	further	improved	[3]	and	smoothing	methods	applied	to	improve	the	determination	of	
the	pdfs	 in	very	 low	probability	 areas	 [4].	 	Multicanonical	Monte	Carlo	has	 subsequently	
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been	 applied	 to	 numerous	 fields	 including	 optical	 communication	 [5][6],	 optical	 and	
oceanic	rogue	waves	[7],	and	drag	probability	in	fluid	flows	[8].	
	
1.2	Multicanonical	procedure	for	Rogue	Wave	Probability	
					The	first	topic	of	this	thesis	involves	an	extension	of	the	multicanonical	procedure	to	the	
evaluation	 of	 pdfs	 of	 waves.	 In	 2016,	 my	 supervisor	 and	 I	 developed	 a	 multicanonical	
procedure	for	evaluating	the	pdf	of	rogue	wave	amplitudes.		Rogue	waves,	which	have	been	
extensively	 studied	 in	 e.g.	 optical	 systems	 and	 deep	 ocean	 environments,	 are	 waves	 of	
extreme	 height	 that	 can	 be	 generated	 or	 influenced	 by	 numerous	 physical	 mechanisms,	
such	 as	 odd-order	 dispersion	 and	 nonlinearity.	 [9][10][11]	 In	 our	 research,	 the	
unperturbed	 or	 perturbed	 one-dimensional	 nonlinear	 Schrodinger	 equation	 adequately	
describes	 the	 interaction	between	second	order	dispersion	and	nonlinearity	 that	 leads	 to	
rogue	wave	behavior	in	many	situations	and	will	therefore	be	employed.	The	pdf	of	e.g.	the	
rogue	wave	heights	then	still	depends	on	numerous	parameters	of	the	initial	field	such	as	
its	average	power	and	spectral	half	width	and	is	therefore	difficult	to	quantify.	
					We	accordingly	introduced	a	rapid	algorithm	for	evolving	the	optical	field	based	on	a	4th	
order	 Runge-Kutta	 method	 together	 with	 a	 high-order	 centered	 finite	 difference	
approximation	for	the	dispersion	term	that	is	shown	to	be	generally	more	efficient	than	e.g.	
the	 Fourier	 transform	 based	 Runge-Kutta	 interaction	 procedure	 of	 [12].	 Distribution	
functions	 of	 wave	 heights	 for	 various	 input	 powers	 and	 bandwidths	 are	 evaluated	 by	
employing	both	the	standard/unbiased	Monte	Carlo	and	multicanonical	sampling.	[13]	The	
results	of	these	simulations	suggest	a	simple	logarithmic	parametrization	relating	the	slope	
of	 the	 pdf	 to	 the	 nonlinearity	 coefficient	 in	 the	 rogue	 wave	 region	 as	 well	 as	 a	 greater	
generation	probability	for	rogue	waves	in	the	presence	of	initial	fields	dominated	by	lower	
frequency	 components.	 Additionally,	 the	 multicanonical	 results	 confirm	 that	 under	 the	
proper	 conditions,	 the	 oceanic	 rogue	 wave	 probability	 increases	 as	 the	 nonlinearity	 is	
lowered;	 which	 appears	 partially	 to	 contradict	 the	 accepted	 belief	 that	 nonlinearity	
generates	rogue	waves.		
	
1.3	Multicanonical	procedure	for	Drag	Probability	
					An	 object	 in	 a	 fluid	 flow	 such	 as	 an	 airfoil	 in	 a	 complex	 local	 environment	 is	 often	
deformed	through	fluid-structure	interactions.	[14]	The	resulting	variations	in	the	drag	and	
lift	coefficients	can	then	influence	aircraft	design	parameters.	[14][15]	Such	deformations	
are	generally	either	analyzed	 in	 isolation	[14][15][16]	or	 in	 the	context	of	optimizing	the	
drag	and	lift	coefficients	of	the	affected	structures	[17].	However,	these	analyses	generally	
neglect	 the	 pdf	 of	 the	 deformations	 and	 therefore	 cannot	 predict	 the	 reality	 that	 an	
optimized	 airfoil	 will	 actually	 attain	 various	 drags.	 	 Even	 when	 the	 statistics	 of	 the	
deformations	have	been	considered,	only	high	probability	deformations	were	examined	as	
a	result	of	the	substantial	computational	time	required	to	perform	each	realization.	[18]	
					We	accordingly	present	below	a	multicanonical	procedure	for	evaluating	the	pdf	of	drags	
in	fluid	flows.	Our	research	demonstrates	in	a	simple	test	case	that,	in	a	similar	fashion	to	
the	 oceanic	 rogue	 wave	 model,	 the	 nonlinearity	 of	 the	 two-dimensional	 Navier-Stokes	
equation	combined	with	the	freedom	to	deform	an	object	at	any	set	of	surface	points	gives	
rise	 to	 low	 probability	 fluctuations	with	 unusually	 large	 instantaneous	 drag	 coefficients.	
The	numerical	analysis	integrates	the	highly	efficient	multicanonical	Monte	Carlo	statistical	
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analysis	 procedure,	 with	 a	 lattice	 Boltzmann	 based	 fluid	 model.	 Unlike	 the	
standard/unbiased	Monte	Carlo	procedure,	which	only	generates	pdfs	up	to	probabilities	
given	 by	 the	 reciprocal	 of	 the	 number	 of	 statistical	 samples,	 (Fig.	 6	 in	 [18])	 the	
corresponding	bound	in	the	multicanonical	Monte	Carlo	is	orders	of	magnitude	lower	than	
this	 limit.	 [3][7][13]	 On	 the	 other	 hand,	 since	 the	 multicanonical	 procedure	 employs	 a	
Markov	 chain,	 additional	 care	 must	 be	 taken	 to	 ensure	 that	 the	 relevant	 regions	 of	 the	
sample	space	are	appropriately	visited.	
					In	particular,	the	pdf	of	the	drag	of	a	two-dimensional	square	or	rectangular	obstacle	is	
evaluated,	 unlike	 previous	 research	 that	 primarily	 calculates	 or	measures	 the	 drag	 for	 a	
single	 realization.	 [19][20][21]	 As	 the	 numerous	 computations	 required	 to	 generate	 an	
accurate	distribution	function	require	considerable	resources,	the	physical	parameters	and	
numerical	 methods	 must	 be	 carefully	 selected.	 	 A	 comparatively	 low	 Reynolds	 number	
(~40)	 ensures	 that	 long-time	 fluctuations	 and	 instabilities	 are	 absent,	 and	 hence	 that	 a	
steady	 state	 is	 attained	 after	 a	 manageable	 number	 of	 time	 steps.	 	 The	 fluid	 motion	 is	
simulated	simply	and	efficiently	with	the	lattice	Boltzmann	procedure	together	with	wind	
tunnel/opening	boundary	conditions	[20][21].	The	multicanonical	Monte	Carlo	procedure	
was	 then	 employed	 to	 calculate	 the	 relevant	 pdf	 from	 a	 limited	 number	 of	 samples.	
[3][7][13]	
	
1.4	About	this	thesis	
					In	Chapter	2,	after	the	Multicanonical	Monte	Carlo	is	briefly	introduced	and	discussed	in	
section	2.1	the	standard	models	for	modeling	rogue	waves	and	obstacles	in	fluid	flows	are	
discussed	in	Sections	2.2	and	2.3.	
					In	Chapter	3,	the	procedures	we	developed	to	implement	the	multicanonical	analysis	are	
introduced	together	with	our	propagation	method	in	sections	3.1	and	3.2.	These	techniques	
are	then	further	generalized	in	section	3.3	
					In	Chapter	4,	 the	 results	 of	 the	multicanonical	procedure	 for	 rogue	wave	probabilities	
are	presented.	The	influence	of	nonlinearity	is	demonstrated,	explained,	and	confirmed	by	
standard/unbiased	Monte	Carlo	and	Multicanonical	Monte	Carlo	results	in	sections	4.1-4.4.	
Section	4.5	then	verifies	the	accuracy	of	the	multicanonical	results	while	section	4.6	finally	
discusses	briefly	different	physical	sources	of	nonlinearity.	
					In	 Chapter	 5,	 drag	 probabilities	 in	 fluid	 flows	 are	 included.	 Section	 5.1	 contains	 the	
results	 of	 the	 multicanonical	 procedure.	 Section	 5.2	 shows	 the	 generality	 of	 the	
multicanonical	 procedure.	 Section	 5.3	 verifies	 the	multicanonical	 procedure.	 The	 physics	
behind	the	multicanonical	procedure	is	discussed	in	section	5.4.	
					In	 Chapter	 6,	 sections	 6.1	 and	 6.2	 respectively	 conclude	 the	 discussion	 of	 rogue	wave	
and	 drag	 probabilities	 in	 fluid	 flows	 while	 section	 6.3	 presents	 a	 summary	 of	 our	
Multicanonical	 Monte	 Carlo	 findings	 followed	 by	 section	 6.4,	 which	 discusses	 possible	
further	work	on	the	multicanonical	procedure	for	drag	probabilities.	
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Chapter	2	
Algorithmic	Background	
	
	
						The	multicanonical	Monte	Carlo	procedure	updates	 the	pdfs	after	every	 iteration.	The	
original	and	the	more	recent	updating	methods	are	discussed	here	in	section	2.1	together	
with	a	summary	of	the	Multicanonical	Monte	Carlo	procedure.				
	
					To	analyze	rogue	waves,	the	Nonlinear	Schrödinger	Equation	is	often	employed	to	model	
wave	propagation.	 	 	The	dependence	of	output	parameters	on	the	properties	of	the	initial	
conditions	 can	 then	 be	 studied	 by	 combining	 several	 wave	 components	 with	 adjustable	
relative	phases.	Since	optical	and	oceanic	waves	obey	the	same	propagation	equation,	we	
are	 led	 to	a	universal	multicanonical	procedure	 that	predicts	 rogue	wave	probabilities	 in	
both	cases.	The	details	of	the	modeling	method	are	presented	in	section	2.2.	
	
						To	compute	drags	in	fluid	flows,	the	Lattice	Boltzmann	Model	is	employed	to	model	the	
fluid	 motion	 while	 the	 momentum	 exchange	 method	 is	 applied	 to	 determine	 the	 drag	
coefficient.	Section	2.3	briefly	introduces	this	model.	
	
	
2.1	Multicanonical	Monte	Carlo	
2.1.1	General	Multicanonical	Monte	Carlo	procedure	
					The	Multicanonical	Monte	Carlo	procedure	 is	based	on	 the	Markov	Chain	Monte	Carlo	
method.	A	pdf	of	the	variable	of	interest,	 pdf i=0 ,	is	first	initialized	as	a	uniform	distribution	
over	 all	 possible	 states	 of	 the	observed	variable.	 Starting	 from	a	 random	realization	of	 a	
Markov	 chain	 the	 multicanonical	 procedure	 perturb	 the	 states	 of	 the	 chain	 by	 directly	
perturbing	the	like	boundary	or	initial	conditions	of	the	observed	variable.	
					In	the	first	iteration,	the	procedure	obtains	a	certain	number	of	samples	by	an	unbiased	
Markov	 Chain	 Monte	 Carlo	 calculation,	 in	 which pdf i=0 	is	 used	 as	 the	 pdf	 in	 (1).	
Additionally,	 if	 the	pdf	 is	partially	known,	 pdf i=0 	can	also	be	a	combination	of	 the	known	

part	and	the	unknown	part,	where	 pdf 0 (unknown state) =
(1− pdf 0 (known state)∑ )

Number of known states
.	During	

the	 initial	 iteration,	 all	 sampled	 states	 are	 collected	 into	 a	 histogram,	Hi=0 ,	 where	 the	
probabilities	 are	 given	by	 (1).	 At	 the	 end	 of	 the	 initial	 iteration,	 pdf 0 	will	 be	 updated	 to	
pdf i=1and	 pdf 1 	will	be	used	as	the	pdf	in	(1)	in	the	next	iteration.	All	iterations	repeat	the	
above	procedure	until	the	target	distribution,	 pdf i>1 ,	 is	attained	and	 pdf i 	is	the	result	for	
the	desired	pdf.	In	1991,	Berg	and	Neuhaus	gave	a	simple	pdf	updating	method	as:	
	

																																																			 pdf
i (n) = cn pdf

i−1(n)Hi (n) 																																																								(2)	
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where	 i	 is	 the	 iteration	 order,	 n	 is	 the	 histogram	 bin	 number	 and	Hi is	 the	 histogram	
generated	 in	 the	 ith	 iteration.	 The	 normalization	 constant	 c	 insures	 that	 the	 histogram	
elements	 sum	 to	 unity.	 [2]	 In	 1998,	 Berg	 improved	his	method	by	 introducing	 recursive	
weight	estimates.	The	pdf	is	updated	by	the	following	formulas.	[3]	
	

																																			
pdf i (n) = pdf i (n−1)

pdf i−1(n−1)
pdf i−1(n)( Hi (n)

Hi (n−1)
)G

i (n) 																																					(3)	

																																																										

Gi (n) = gi (n)
gl (n)

l=1

i
∑

																																																																	(4)	

																																																			
gl (n) = Hl (n−1)Hl (n)

Hl (n−1)+Hl (n)
																																																												(5)	

	
					However,	 for	 this	procedure	to	be	compatible	with	 the	above	pdf	updating	methods	 in	
low	probability	areas,	all	state	changes	must	be	constrained	along	a	well-defined	Markov	
Chain.	 This	 requires	 that	 the	 perturbations	 of	 the	 relevant	 output	 variables	 should	 be	
sufficiently	 small.	 (See	 Section	 2.1.2.2).	 	 Further,	 the	 state	 changes	 should	 (ideally)	 tend	
towards	 lower	 probability	 areas.	 The	 acceptance	 rule	 (1)	with	 the	 initial	 pdf	 directs	 the	
transitions	 towards	 lower	 probability	 areas.	 In	 this	 manner,	 after	 the	 first	 Monte-Carlo	
iteration,	 increasingly	 lower	 probability	 areas	 are	 sampled.	 However,	 in	 this	 thesis	 we	
observe	that	the	acceptance	rule	causes	the	Markov	chain	to	evolve	towards	less	sampled	
areas	that	are	not	necessarily	equivalent	to	low	probability	areas.	This	results	in	systematic	
errors	 that	 lead	 to	 local	 errors	 in	 the	 pdfs.	 For	 example,	 the	 first	 initial	 condition	might	
result	a	state	in	a	low	probability	area.	At	the	same	time,	the	small	perturbations	will	push	
the	 states	 out	 of	 the	 low	 probability	 area	 slowly	 even	 with	 the	 acceptance	 rule	 (1).	 	 In	
calculating	 the	 probabilities	 of	 rogue	 wave	 amplitudes,	 this	 can	 lead	 to	 oversampling	
certain	 low	probability	areas	yielding	an	artificially	 large	value	of	 the	probabilities	 in	 the	
tail	regions.	
					Finally,	 for	 small	numbers	of	 samples	 the	 fluctuations	 in	 the	 low	probability	areas	are	
large.		Here	Eq.	(2)	diverges	if	the	bins	of	H	are	initially	empty	but	acquire	samples	during	
an	iteration.		However	in	Eq.	(3),	the	adjacent	bin	is	included	in	the	updating,	reducing	the	
likelihood	of	an	empty	bin	and	smoothing	 the	resulting	pdf.	Such	a	smoothing	procedure	
involving	averaging	over	a	number	of	adjacent	bins,	which	was	introduced	in	[4],	resulted	
in	 significant	 improvements	 compared	 to	 Berg’s	 original	 method.	 [4]	 However,	 this	
improvement	 results	 from	 a	 theoretical	 approximation	 to	 the	weights	 and	 the	 increased	
smoothness	 only	 appears	 as	 a	 side	 effect.	 Further,	 the	 treatment	 of	 the	 smoothing	
mechanism	in	[4]	lacks	a	theoretical	analysis.		Here	we	advance	the	conjecture	that	the	pdfs	
can	be	optimally	obtained	if	the	sampling	method	is	sufficiently	efficient	that	the	updating	
method	can	function	as	intended.		Simply	ensuring	the	smoothness	of	the	pdf	by	averaging	
over	adjacent	bins	itself	leads	to	systematic	errors	and	may	not	function	properly	for	pdfs	
with	large	second	order	derivatives.	
	
2.1.2	Multicanonical	Monte	Carlo	Techniques	
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					While	 Multicanonical	 Monte	 Carlo	 yields	 the	 pdf	 for	 probabilities	 far	 lower	 than	 the	
reciprocals	of	 the	 sample	 sizes,	 the	 results	 fluctuate	 far	more	 than	 those	of	 the	 standard	
Monte-Carlo	method.		Hence	techniques	such	as	setting	the	values	of	unsampled	histogram	
bins	to	unity,	the	determination	of	the	optimal	perturbation	size	and	acceptance	rate	in	the	
Markov	 chain,	 varying	 the	 sample	 sizes	 of	 the	 iterations,	 and	 the	 optimization	 of	 the	
endpoint	criterion	can	significantly	improve	the	multicanonical	results.	
	
2.1.2.1	Initialization	of	H	
					Normally,	 the	values	of	H	are	 initially	set	 to	unity	so	that	empty	bins	do	not	 invalidate	
the	 updating	 procedure.	 	 This	 enhances	 the	 applicability	 of	 the	 procedure	 to	 regions	 of	
small	pdf	in	which	the	histogram	bins	are	sparsely	sampled	in	a	single	iteration,	but	at	the	
cost	of	systematic	errors.		Indeed,	in	the	calculations	of	this	thesis,	these	systematic	errors	
only	 vanished	 when	 the	 bin	 was	 instead	 initialized	 to	 zero.	 However	 such	 a	 procedure	
requires	 that	 each	 steps	 in	 the	Markov	 chain	only	 slightly	 affects	 the	output	 variables	of	
interest.		Such	a	condition	is	however	unfortunately	found	here	to	be	violated	in	a	system	
close	 to	 chaos.	 	However,	 if	 the	 computational	 resources	are	 sufficient	 to	allow	a	 sample	
size	 that	 far	 exceeds	 the	 total	 number	 of	 bins,	 the	 errors	 are	 small	 when	 the	 bins	 are	
initialized	to	unity,	which	is	therefore	suggested	when	analyzing	systems	close	to	chaos.	
	
2.1.2.2	Optimal	perturbation	size	and	acceptance	rate	
						The	 size	 of	 the	 perturbations	 between	 successive	 states	 of	 the	 Markov	 chain	 is	 of	
particular	 importance	 for	 small	 sample	 sizes.	 	 In	 particular,	 for	 the	 Markov	 chain	 to	 be	
meaningful,	the	perturbation	cannot	be	excessively	large,	but	if	the	perturbation	is	instead	
too	small	all	samples	may	 fall	 into	a	 limited	region	 leading	 in	most	cases	 to	a	completely	
incorrect	pdf.	To	find	the	optimal	step	size	however	requires	in	general	an	empirical	study	
of	 the	effects	of	varying	 the	 input	parameters.	Similarly,	 since	 the	number	of	 realizations	
that	 fall	 into	 previously	 unsampled	 regions	 decreases	 with	 iteration	 number,	 the	
acceptance	rate	is	often	monitored	and	the	perturbation	size	adjusted	accordingly	to	insure	
that	a	nearly	constant	fraction	of	proposals	are	accepted.		Unfortunately	to	our	knowledge	
no	theoretical	studies	of	the	optimal	acceptance	rate	appear	to	exist	and	any	optimization	
procedure	 would	 therefore	 again	 be	 empirical.	 	 Additionally,	 adjusting	 the	 step	 size	
generally	proves	difficult	for	a	small	number	of	iterations.	
	
2.1.2.3	Iteration	sample	sizes	
					The	 density	 of	 realizations	 in	 the	 rare	 probability	 regions	 can	 also	 be	 enhanced	 by	
increasing	 the	 number	 of	 samples	 in	 successive	 iterations.	 However	 a	 sufficiently	 large	
sample	size	is	still	required	in	the	first	iteration.	
	
2.1.2.4	Stopping	criterion	
					There	 are	 two	 widely	 employed	 stopping	 criteria	 for	 the	 Multicanonical	 Monte	 Carlo	
method.	 	One	of	 these	ends	 the	 iteration	when	 the	 intermediate	histogram	 is	constant	 to	
within	 a	 certain	 factor.	 The	 second	 procedure	 does	 not	 terminate	 the	 entire	 calculation	
until	the	pdf	agrees	with	that	of	the	previous	iteration	to	a	certain	accuracy.	
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					While	the	multicanonical	method	provides	a	simple	procedure	for	determining	the	pdf	in	
rare	probability	regions,	it	is	important	to	note	that	the	accuracy	of	the	result	is	not	simply	
established.		As	well,	unlike	in	for	example	transition	matrix	formulations,	no	information	
is	obtained	from	rejected	states,	which	affects	the	overall	efficiency	of	the	method	[22].			
	
2.2	Modeling	of	wave	propagation	
2.2.1	Physical	model	of	rogue	waves	
					Rogue	 wave	 propagation	 is	 commonly	 modeled	 with	 the	 one-dimensional	 nonlinear	
Schrodinger	equation	in	which	the	time	and	space	variables	are	scaled	differently	in	optical	
and	 ocean	 contexts.	 It	 should	 be	 remarked	 that	 although	 the	 nonlinear	 Schrodinger	
equation	coincides	Schrodinger	equation	in	quantum	physics	in	form,	it	represents	a	wave	
propagation	influenced	by	the	effects	of	dispersion	and	nonlinearity,	which	has	the	totally	
different	 physics	meaning	 from	 Schrodinger	 equation’s	 in	 quantum	physics.	 In	 optics,	 in	
terms	of	the	complex	field	 A(z,t) ,	which	is	periodic	over	the	computational	window	(CW)	
length,	 this	 equation,	 which	 preserves	 the	 power	 2A 	integrated	 over	 the	 computational	
window,	is	given	by	[14]	
	

																																															 ∂A
∂z

= i 1
2
∂2A
∂t2

+β3
∂3A
∂t3

+ iγ A 2 A 																																																					(6)	

	
where	the	distance,	time	and	computational	window	variables	are	given	in	Table.	1.	 	The	
nonlinear	 Schrodinger	 equation	 is	 then	 obtained	 by	 setting	 the	 third	 order	 dispersion	
coefficient,	β3 ,	to	0.	
	
					In	ocean	contexts	 for	which	 third	order	dispersion	 is	 typically	neglected,	 the	scaling	 is	
instead	 performed	 as	 in	 Table.	 1	 according	 to	 [15],	 where	 0ω 	represents	 the	 carrier	
frequency,	 2

0 0 /k gω= 	is	the	wavenumber,	 	is	the	half	width	of	the	frequency	spectrum	
of	 the	 field	and	 the	scale	 factor	 is	given	 in	 terms	of	 the	oceanic	signal	duration	(OCD)	by	

/ ( )CW OCDυ ω= ⋅Δ ,		
	
Table.	1:	Parameter	Scaling	
	
	

Scaled	 z ,	 'z 	 Unit	
of	z	

Scaled	 t ,	
't 	

Unit	
of	t	

Scaled	 A ,	 'A 	 Unit	
of	 A 	

Optical	 11
1.04

km z− ⋅ 	
km	 11

2
ps t− ⋅ 	

ps	
152 1

5 10
W A

γ
− ⋅ 	 W 	

Oceanic	 2

0
0

2k zυ ω
ω

⎛ ⎞⋅Δ
⋅⎜ ⎟

⎝ ⎠ 	

m	 tυ ω⋅Δ ⋅
	

s	 k0ω0

υΔω 2γ
⋅ A
	

m	

	
					In	the	optical	calculations,	the	propagation	length	and	signal	duration	are	set	to	7.69km	
and	102.4ps.	Different	values	of	the	initial	power	are	modeled	by	appropriately	scaling	γ .	
In	the	oceanic	case,	the	propagation	length	and	oceanic	signal	duration	equal	3.46km	and	

ωΔ
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480s.	 In	 both	 cases,	 the	 propagation	 length	 and	 signal	 duration	 correspond	 to	 a	 scaled	
propagation	 length	 ' 8z = 	while	 the	 computational	 window	 widths	 't 	is	 set	 to	 51.2,	 the	
integral	of	 2'A 	over	the	computational	window	equals	256	and	the	third	order	dispersion	
term	is	omitted.	
	
2.2.2	Initialization	and	measurement	
					In	 the	 optical	 context,	we	 first	 elucidate	 several	 general	 properties	 of	 the	 distribution	
function	by	considering	an	initial	field	described	by	the	sum	of	ten	monochromatic	waves	
according	to	
	

																																																

10

1

5( 0, ) 10 cos( )
52 n n

n
A z t W tγ

ω ϕ
=

= = +∑ 																																			(7)	

																																																	

20

11

5( 0, ) 10 cos( )
52 n n

n
A z t W tγ

ω ϕ
=

= = +∑ 																																		(8)		

	

with	 frequencies,	ωn =
2π
CW

⋅n .	 We	 then	 employ	 the	 multicanonical	 procedure	 in	 [18]	 to	

determine	the	pdf	of	the	scaled	wave	power	at	a	fixed	point	in	the	computational	window,	
2| ( 8, 0) |A z t= = 	or	the	pdf	of	the	maximum	of	the	scaled	wave	power	in	the	computational	

window,	 2max | ( 8, ) |t CW A z t∈ = ,	 after	 a	 propagation	 distance	 of	 8z = 	scaled	 distance	 units.			
The	Markov	chain	in	these	calculations	is	composed	of	the	10	(9	in	calculations	that	employ	
periodic	boundary	conditions)	phase	variables	of	(7).	 	The	magnitude	of	the	variations	 in	
the	phase	variables	between	successive	iterations	is	chosen	such	that	the	results	are	both	
in	optimal	agreement	with	those	of	the	standard/unbiased	Monte	Carlo	method	in	the	high	
probability	region	and	are	nearly	invariant	when	this	magnitude	is	changed	slightly	in	the	
low	 probability	 regions.	 To	 attain	 a	 statistically	 invariant	 steady-state	 distribution,	 the	
nonlinear	Schrodinger	equation	was	employed	 to	propagate	 the	 field	beyond	 five	 soliton	
periods	(2.5π )	[23]	and	the	wave	power	was	then	sampled	at	 8z = ,	following	a	procedure	
often	applied	in	oceanic	propagation.	
	
					In	oceanic	propagation,	we	 instead	employ	 the	 Joint	North	Sea	Wave	Project	spectrum	
(JNSWP)	((2)	in	[24],	p160)	to	construct	an	field	with	the	energy	spectrum	
	

																																			

2
14 exp
22 4 5 5( ) (2 ) exp

4

peak

peak

f f
f

peak

fE f g f
f

σ
α π χ

⎡ ⎤⎛ ⎞−− ⎢ ⎥− ⎜ ⎟
⎜ ⎟⎢ ⎥⎝ ⎠− − ⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

																		(9)		

	
where	 0.0081α = ,	

29.832g m s−= ⋅ ,	 f 	represents	 the	 frequency	 scaled	 according	 to	

' ff
υ ω

=
⋅Δ

	with	 ωΔ 	the	 half	 width	 at	 half	 the	 maximum	 value	 ( )peakE f 	of	 (9),	 and	
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0.1peakf Hz= ,	 0.07σ = 	for	 peakf f≤ 	and	 0.09 	otherwise	 and	 χ 	denotes	 a	 scalar	 constant	
that	determines	the	value	of	 ωΔ 	according	to	the	formulas	in	[10].		Expressing	the	surface	
elevation	as	
	
																																																		ξ (z,t) = Re A(z,t) ⋅exp(i2π f peakt)⎡⎣ ⎤⎦ 																																								(10)																																																																																																																																																																																												

	
the	initial	surface	elevation	is	given	by	[10]		
	

																				

500

1
500

1

(0, ) : Re (0, ) exp( 2 )

2 ( ) cos(2 )

2 ( ) cos(2 )exp( 2 )exp( 2 )

peak

n n n
n

n n n peak peak
n

t A t i f t

E f f f t

E f f f t i f t i f t

ξ π

π ϕ

π ϕ π π

=

=

⎡ ⎤= ⋅⎣ ⎦

= Δ +

= Δ + −

∑

∑

	

which	yields	for	the	corresponding	field	
	

																										

500

1
(0, ) 2 ( ) cos(2 )exp( 2 )n n n peak

n
A t E f f f t i f tπ ϕ π

=

= Δ + −∑ 																											(11)	

		

with	 1f
OCD

Δ = 		 and	 phase	 terms	 nϕ 	that	 are	 randomly	 distributed	 in	[0, 2 ]π .	 	 Note	 that	

since	 the	 nonlinear	 Schrödinger	 equation	 conserves	 the	 energy	 over	 the	 oceanic	 signal	
duration	 and	 ( )E f α∝ ,	 changing	 γ 	in	 (6)	 is	 equivalent	 to	 varying	α ,	 which	 enters	
implicitly	in	(11).

		
In	 the	calculations	of	oceanic	waves,	each	 field	realization	 is	propagated	8	units	 in	 z 	and	
the	 quantity	 ( 8, ) Re ( 8, ) exp( 2 )peakz t A z t i f tξ π⎡ ⎤= = = ⋅⎣ ⎦ 	is	 evaluated.	 	 The	 wave	 height	 is	
defined	 as	 the	maximum	magnitude	 of	 the	wave	 displacement,	 c.f.	Fig.	 3.2	 in	 [24].	 	 If	 a	
given	point	in	the	computational	window	is	specified,	its	“relative	wave	height”	is	defined	
as	 the	 difference	 in	 magnitude	 of	 the	 field	 at	 this	 point	 and	 the	 smaller	 of	 the	 minima	
situated	immediately	to	the	left	and	the	right	of	the	point.		A	rogue	wave	corresponds	to	a	
wave	 with	 a	 height	 larger	 than	 2.2	 times	 the	 significant	 wave	 height,	 which	 is	 given	 in	
terms	of	the	energy	spectrum	 ( )E f 	by	[24]	
	

																							significant wave height ≈ 4.0 E( f )df∫ ≈ 4.0 E( fn )Δf
n=1

500

∑ 																					(12)	

	
so	 that	 the	 square	 of	 the	 scaled	 minimum	 rogue	 wave	 height,	 defined	 as	 2.2	 times	 of	
significant	wave	 height,	 varies	 as	 the	 scaled	wave	 energy.	 	 Since	 nonlinearity	 affects	 the	
field	spectrum,	the	magnitude	of	the	significant	wave	height	depends	on	the	computational	
parameters.			With	these	conventions,	the	percentage	of	rogue	waves,	the	pdf	of	the	square	
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of	 the	scaled	wave	heights,	 the	pdf	of	 the	maximum	of	 the	square	of	scaled	wave	heights	
and	the	pdf	of	the	relative	wave	heights	at	a	specified	position	can	be	determined.	
	
					In	oceanic	wave	 contexts,	 from	Fig.	 1	 of	 [24]	 increasing	 χ 	both	 lowers	 ωΔ 	and	 raises	
the	total	energy	integrated	over	the	oceanic	signal	duration.		However,	when	 χ 	is	specified	
within	an	interval	such	as	 3,8⎡⎣ ⎤⎦ 	in	[24],	as	υ ω⋅Δ 	is	held	constant,	the	definitions	in	Table.	

1	insure	that	the	energy	within	the	oceanic	signal	duration	does	not	vary	with	 χ .	Since	the	
percentage	of	rogue	waves	is	obtained	from	the	surface	elevations	over	the	same	oceanic	
signal	duration	after	a	fixed	propagation	length,	the	percentage	of	rogue	waves,	the	pdf	of	
the	square	of	the	wave	heights	and	the	pdf	of	the	square	of	the	maximum	wave	heights	are	
obtained	from	samples	with	equal	energies	over	the	oceanic	signal	duration	but	different	
ωΔ .	 As	υ ω⋅Δ 	is	 also	 held	 constant	 when	 examining	 the	 effect	 of	 varying	γ ,	 the	 initial	

conditions	for	the	percentage	of	rogue	waves,	the	pdf	of	the	squares	of	the	wave	height	and	
the	pdf	of	the	squares	of	the	maximum	wave	heights	in	such	calculations	possess	the	same	
ωΔ 	but	different	energy	over	the	oceanic	signal	duration.	

	
2.3	Modeling	of	obstacles	in	fluid	flows	
						 The	lattice	Boltzmann	method	represents	a	fluid	by	a	continuous	particle	
distribution	function	that	is	defined	[20]	on	a	discrete	set	of	constant	velocities,	 ci ,	lattice	
points,	x ,	and	times,	 t ,	
	

fi (x,t) := f (c i ,x,t) 																																																																(13)	
	
such	that	the	fluid	density	is	given	by	
	

																																																						
ρ x,t( ) = fi x,t( )

i
∑ 																																																																	(14)	

	
The	research	here	employs	the	D2Q9	velocity	set	in	a	two-dimensional	space,	normalized	
according	to	[25][26][27]	for	which	the	sound	speed	 cs =1/ 3 	is	given	by	
	

																								
ci ∈ (1,0),(1,1),(0,1),(−1,1),(−1,0),(−1,−1),(0,−1),(1,−1),(0,0){ } 																(15)	

	
The	particle	distribution	function	is	then	evolved	in	time	according	to	
	

																																														 fi (x + c it,t +Δt) = fi (x,t)+Ωi 																																																					(16)	
	
which	can	be	implemented	as	two	separate	numerical	steps	that	conceptually	correspond	
to	particle	collision	and	propagation.	The	nonlinear	BGK	collision	operator	implements	the	
first	of	these	steps	according	to	
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Ωi = −

1
τ

fi (x, t)− fi
eq (x, t)( ) 																																																							(17)	

																													
fi
eq (x,t) = ρωi 1+3(c i ⋅u)+

9
2
(c i ⋅u)2 −

3
2
(u ⋅u)

⎡

⎣
⎢

⎤

⎦
⎥ 																																						(18)	

with	weights		

																																								

1 1 1 1 1 1 1 1 4, , , , , , , ,
9 36 9 36 9 36 9 36 9iω
⎧ ⎫∈⎨ ⎬
⎩ ⎭

																																																(19)	

	
(18)	 and	 (19)	 are	 derived	 from	 the	Hermite	 series	 expansion	 of	 the	Maxwell-Boltzmann	
distribution	 function	 for	 a	 system	 with	 velocity	u 	by	 neglecting	 terms	 of	 greater	 than	
second	 order	 and	 applying	 an	 appropriate	 finite	 difference	 stencil.	 	 This	 procedure	
conserves	mass,	momentum	and	energy.	[27]	The	kinematic	viscosity	in	this	model	equals	
	

																																																													υ = cs
2 τ −1/ 2( ) 																																																																	(20)	

	
Accordingly,	the	particle	distribution	function	after	collision	is	given	by	
	

																																									
fi
*(x, t) = fi (x, t)−

1
τ

fi (x, t)− fi
eq (x, t)( ) 																																											(21)	

	
after	which	the	distribution	functions	are	evolved	in	time	according	to	(16)	
	

																																																					 fi (x+ cit, t +Δt) = fi
*(x, t) 																																																							(22)	

	
The	longitudinal	x-component	of	the	drag,	which	replaces	the	wave	height	in	[7]	as	

the	 relevant	 physical	 quantity,	 is	 evaluated	with	 the	momentum	 exchange	method	 [19],	
namely	

	

Drag = fi (x,t +Δt)
i∈{1,2,8}
∑ − f j (x,t +Δt)

j∈{5,6,4}
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− fk (x,t)

 k∈{1,2,8}
∑ − fl (x,t)

l∈{5,6,4}
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x ∈ obstacle surface

									(23)	

	
The	steady	state	drag	was	computed	from	the	above	sums	after	the	waves	reflected	from	
the	 boundary	 points	 were	 attenuated	 which	 occurs	 after	 a	 certain	 propagation	 time,	 as	
evident	 from	Figs.	 4	 and	6.	 In	 all	 the	 above	 formulas,	 normalized	units	 are	 employed	 in	
accordance	with	the	standard	lattice	Boltzmann	prescription.	[26]	
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Chapter	3	
Numerical	Methods	
	
	
						To	 provide	 samples	 sufficiently	 efficiently	 to	 enable	 Multicanonical	 Monte	 Carlo	
analyses	 of	 fluctuations	 in	 fluid	motion,	 in	 the	 first	 section	 of	 this	 chapter	 the	 RKHD	 is	
described	 and	 tested.	 The	 multicanonical	 procedure	 here	 applies	 to	 both	 optical	 and	
oceanic	 rogue	 wave	 probabilities	 as	 a	 result	 of	 the	 similarity	 between	 optical	 wave	
propagation	and	oceanic	wave	propagation.		
	
					To	study	the	effect	of	the	surface	boundary	on	the	drag	the	boundary	conditions	of	the	
Lattice	Boltzmann	model	 introduced	in	Chapter	2	are	perturbed	in	Section	3.2	to	provide	
random	 samples	 of	 different	 drags	 to	 the	 Multicanonical	 Monte	 Carlo	 analysis.	 The	
independence	of	the	results	on	the	numerical	grid	is	also	verified	in	this	section.	
	
	
3.1	Multicanonical	procedure	for	rogue	wave	probability	
3.1.1	Improved	Wave	propagation	method:	RKHD	
					The	nonlinear	Schrodinger	equation	is	often	solved	with	FFT	(Pseudo-spectral)	methods,	
[9][10][12]	 for	 which	 the	 derivatives	 in	 the	 nth	 order	 dispersion	 term	 are	 evaluated	
according	to	
	

																																																																
∂nA
∂t n

≈ FFT −1 (iω)n FFT A(z,t)⎡⎣ ⎤⎦{ } 																												(24)	
																																																																																																																																																																					
However,	 while	 (24)	 can	 be	 employed	 to	 reduce	 the	 error	 in	 t 	for	 periodic	 fields	 to	
machine	 precision,	 the	 small	 step	 length	 Δz 	required,	 especially	 in	 the	 case	 of	 large	
nonlinearity,	can	result	in	unacceptably	long	computation	times	for	an	insufficient	number	
of	transverse	grid	points.		Therefore,	a	lth	order	O(Δt2l ) 	central	difference	approximation	
	

																																																										
2 6

12
22 2

6

1 1 1 ( ) ( )
2! 2!

j

j n j
j

A c A t O t
t t

=

+
=−

∂
= + Δ

∂ Δ ∑ 																								(25)	

	
is	 instead	 employed	 below,	 where	 the	 ijc 	are	 constant	 coefficients	 obtained	 from	 the	

Mathematica	 codes	 in	 [25].	 	 For	 N=1024	 and	 l=6,	 0.05CWt
N

Δ = =
	
yielding	 an	

12 16( 2.44 10 )O t −Δ ≈ × 	error,	 comparable	 to	 the	accuracy	of	 the	FFT	method.	 	A	 single	 time	
step	 then	 requires	 ( (2 1) 1024 13)O N l⋅ + = ⋅ 	real	 operations	 with	 the	 central	 difference	
method	 and	 2(2 log ( ) 1024 20)O N N = ⋅ 	complex	 operations	 for	 the	 FFT	 procedure.	 	 The	 z 	
propagation	 is	 performed	 with	 the	 4( )O zΔ 	Runge-Kutta	 method	 without	 the	 interaction	
representation	of	[12]	according	to	the	standard	formula.	
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k(z,A) = i ⋅ 1
2!
1
Δt2

c2 j A(tn+ j )
j=−6

j=6

∑ + iγ | A |2 A

k1 = k(zn ,A(zn ))

k2 = k(zn +
Δz
2
,A(zn )+

Δz
2
k1)

k3 = k(zn +
Δz
2
,A(zn )+

Δz
2
k2 )

k4 = k(zn +Δz,A(zn )+ hk3)

A(zn+1) = A(zn )+
Δz
6
(k1 + 2k2 + 2k3 + k4 ) 																																				(26)																																																																																																																																							

where	 	is	set	to	a	value	slightly	below	the	stability	limit,	which	varies	as	 ( )t αΔ 	where	α 	
denotes	the	dispersion	order.	[26,	p.96]				Since	most	of	our	calculations	require	a	number	
of	 transverse	grid	points,	N,	between	1024	and	1440,	our	 comparisons	of	 the	RKHD	and	
RKIP	are	further	performed	with	N	in	this	range.	
					To	illustrate,	in	Fig.	1,	we	calculate	the	error		
	

																																									
| A(z = 80, tn ) |

2 − | A_ exact(z = 80, tn ) |
2

0

1023

∑
Maxn∈[0,1023]{| A_ exact(z = 80, tn ) |

2}
																																			(27)	

	
for	5th	and	7th	order	accurate	procedures	and	a	second-order	soliton	input	field	with	 .	
Here	the	stability	limit	for	N=1024,	namely	 	0.00195122,	coincides	with	the	rightmost	
points	 of	 the	 curves	 of	 RKHD	while	 the	 computation	was	 performed	 for	 40,000,	 41,000,	
50,000,	100,000	and	200,000	propagation	steps.	
	

Δz

γ =1
Δz ≤
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Figure.	1:	The	accuracy	of	the	RKHD	and	RKIP	methods.	
	
					Evidently,	 the	RKHD	method	displays	 the	 greatest	 efficiency,	 as	 for	 7l = 	and	 0.03tΔ = 	
the	magnitude	of	the	error	of	the	central	difference	approximation	already	attains	machine	
precision	 while	 for	 long	 propagation	 distances	 the	 procedure	 is	 both	 more	 stable	 and	
accurate	than	the	RKIP.			Hence	while	the	RKHD	accurately	propagates	a	fifth	order	soliton	

610 	steps	 corresponding	 to	 40	 soliton	 periods	 (20π )	 with	 0.025tΔ = 	in	 83s,	 performing	
the	identical	calculation	with	the	RKIP	requires	157s	and	diverges	when	z	~	25.		However,	
to	evolve	input	fields	with	wider	frequency	spectra	the	transverse	grid	point	spacing	must	
be	reduced.	
	
					The	oceanic	excitation	(11)	possesses	far	higher	frequencies	than	the	lowest	20	periodic	
frequencies	in	the	computational	window	that	enter	into	(7)	and	(8).		Consequently,	in	our	
calculations,	when	 8χ = 	and	 0.15γ = ,	the	RKIP	requires	a	minimum	of	2048	grid	points	to	
achieve	acceptable	accuracy	while	 the	RKHD	attains	a	 similar	 level	of	precision	 for	1440	
grid	points.		However,	the	RKHD	generally	is	found	to	be	less	efficient	for	higher	frequency	
excitations.	
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Figure.	2:			The	field	obtained	after	propagating	(11)	with	equal	phases	with	the	RKIP	and	RKHD.		
	
					Below,	 the	 RKIP	 is	 first	 employed	 with	 (11)	 for	 equal	 phases	 as	 the	 initial	 field	 and	
subsequently	 the	 RKHD	 parameters	 that	 produce	 a	 result	 of	 equivalent	 accuracy	 are	
determined,	 c.f.	Fig.	 2	 which	 plots	 the	 field	 after	 40000	 propagation	 steps	 of	 length	 for	

0.15γ = 	and	 8χ = 	for	both	methods	where	the	minimum	rogue	wave	height	equals	34.6m	
(Hence	in	this	state,	any	wave	whose	wave	height	larger	than	34.6m	is	a	rogue	wave.	i.e.	the	
wave	 near	 oceanic	 signal	 duration	 =	 -120s).	 	 Evidently	 in	 this	 calculation	 the	 RKHD	
performs	better	than	the	RKIP	as	fast	Fourier	transforms	are	absent	in	the	RKHD	and	hence	
a	1440	points	grid	yields	equivalent	precision	to	a	2048	points	RKIP	implementation.	
	
3.1.2	Modifications	for	the	multicanonical	procedure	
					A	slight	modification	of	the	standard	multicanonical	method	of	e.g.	[13]	will	be	employed	
to	determine	the	pdf	of	rogue	waves.	 	 In	particular,	 if	 the	magnitude,	ε ,	of	the	parameter	
change	between	the	Markov	chains	associated	with	two	successive	realizations	is	too	small,	
states	 in	 a	 restricted	 region	 of	 phase	 space	 are	 oversampled	while	 as	ε→∞ 	the	method	
reverts	 to	 the	standard	Monte-Carlo	approach,	 limiting	the	probability	region	that	can	be	
sampled.	 	As	well,	for	large	γ 	the	probability	of	high	energy	fluctuations	increases	so	that	
additional	 realizations	 are	 required	 to	 evenly	 sample	 the	histogram	bins.	 	 Increasing	 the	
bin	width	ameliorates	this	problem	at	the	cost	of	additional	truncation	error.	[13]	Hence	in	
the	calculations	here,	ε 	is	adjusted	after	each	 iteration	with	 the	objective	of	achieving	an	
acceptance	 rate	 of	≈ 30% for	 the	 subsequent	 iteration.	 Further,	 in	 the	 lowest	 probability	
regions,	 to	avoid	unsampled	histogram	bins	which	can	 lead	 to	a	 fictitious	 increase	 in	 the	
pdf	at	the	edges	of	the	distribution	that	is	not	removed	by	further	iterations,	the	number	of	
realizations	at	 large	 iteration	number	is	 increased	and	unity	 is	added	to	the	 intermediate	
histogram	elements	during	the	calculation	in	[13]	(except	where	noted).	
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3.2	Multicanonical	procedure	for	drag	probability	
3.2.1	Multicanonical	procedure	
					To	 decrease	 the	 computation	 time	 required	 to	 accumulate	 a	 sufficient	 number	 of	
statistical	samples,	the	multicanonical	Monte	Carlo	biased	sampling	procedure	is	employed.	
In	the	same	manner	as	 in	the	previous	analysis	of	 the	pdf	of	oceanic	rogue	wave	heights,	
variations	of	 the	 input	 fluid	velocities	are	 incorporated	by	superimposing	multiple	waves	
with	a	fixed	spectrum	of	frequencies	but	with	random	amplitudes	and	phases.	[23]	Shape	
fluctuations	of	 the	obstacle	 are	modeled	by	displacing	 its	boundary	outward	by	one	grid	
point	over	a	varying	number	of	surface	points.	
					The	multicanonical	procedure	 is,	however,	only	acceptably	accurate	 if	 the	variations	of	
the	 input	 conditions	 or	 the	 surface	 profile	 over	 a	 single	 Markov	 step	 as	 well	 as	 the	
histogram	bin	size	satisfy	certain	constraints.		The	magnitude	of	the	variation	must	ensure	
that	the	average	difference	in	the	results	of	two	successive	Markov	chain	realizations	varies	
smoothly	and	constitutes	a	significant	fraction	of	the	histogram	bin	size.		Since	the	largest	
final	state	changes	generally	occur	for	the	lowest	probability	states,	the	initial	or	boundary	
conditions	that	generate	the	lowest	probability	states	were	first	inferred.	Subsequently,	the	
perturbation	size	was	set	such	that	 for	 these	states	a	Markov	step	resulted	 in	an	average	
displacement	of	1-3	histogram	bins,	as	discussed	further	 in	conjunction	with	Figs.19	and	
20.	
					The	pdf	bin	size	must	both	be	larger	than	the	intrinsic	accuracy	of	the	lattice	Boltzmann	
method	which	 here	 determines	 the	 drag	 to	≈ 10!!	and	must	 ensure	 that	 the	 number	 of	
samples	 varies	 relatively	 smoothly	 between	 adjacent	 bins.	 	 Excessive	 bin	 sizes	 however	
decrease	the	number	of	 transitions	among	the	bins	and	hence	degrade	efficiency.	 	Here	a	
representative	calculation	was	repeated	for	several	bin	widths	after	which	a	size	of	0.005	
was	selected	for	the	calculations,	which	employed	33677	and	47219	Markov	steps.	
	
					The	 drag	 calculations	 were	 performed	 on	 an	 evenly	 spaced	50×60 	point	 (x,y)	 grid.	 A	
constant	speed	left	boundary	and	a	unit	density	right	boundary	implemented	according	to	
the	 procedure	 of	 Zou	 and	 He	 [21]	 were	 employed	 along	 the	 x-direction	 while	 periodic	
boundary	conditions	were	implemented	in	the	y-	direction	and	the	bounce	back	condition	
was	 applied	 to	 obstacle	 points.	 [26][27]	 The	 relaxation	 time	τ = 0.6 ,	 and	 the	 particle	
distribution	functions	were	initially	set	to	 ( , ) 1 9if t =x ,	at	each	fluid	point,	corresponding	to	
unit	density	and	zero	velocity,	together	with fi (x,t) = 0 	at	each	obstacle	point.		
	
					To	illustrate	the	efficiency	and	accuracy	of	our	computational	procedure,	the	pdf	of	the	
drag	is	calculated	below	for	two	types	of	perturbations.		The	first	of	these,	illustrated	in	Fig.	
3,	 superimposes	 the	 lowest	 four	 periodic	 sinusoidal	 plane	waves	 along	 the	 input	 axis	 at	

x =1 	according	 to	 ux (x =1, y ∈{1,2,...60}) = 0.05 sin(2πn
60

y +ϕn )
n=1

4

∑ ,	 where	 ϕn∈{1,2,3,4} 	are	

random	but	uniformly	distributed	phases	over	[0,2π ) .	The	drag	was	then	evaluated	over	a	
centered	 square	 obstacle	 extending	 over	10 points ×  10 points 	and	 located	 twenty	 grid	
points	 downstream	 from	 the	 left	 boundary.	 	 	 The	 multicanonical	 procedure	 was	
implemented	by	perturbing	a	randomly	selected	phase	at	the	beginning	of	each	realization	
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in	exactly	the	same	manner	as	in	[7]	while	the	drag	was	evaluated	after	each	phase	change	
by	 performing	 10,000	 lattice	 Boltzmann	 time	 steps	 in	 order	 to	 arrive	 at	 a	 steady-state	
quantity,	as	illustrated	in	Fig.	4.		The	procedure	in	[26]	was	employed	to	verify	the	validity	
of	the	above	parameter	choices.		
	
					In	 the	second	calculation,	depicted	 in	Fig.	 5,	 the	 input	velocity	was	set	 to	0.12	but	 the	
upper	and	lower	surfaces	of	the	obstacle	were	modified	between	successive	multicanonical	
realizations	by	converting	a	randomly	selected	grid	point	directly	above	the	surface	from	a	
fluid	to	an	obstacle	or	an	obstacle	to	a	fluid	point.	The	dimension	of	the	initial	obstacle	in	
this	calculation	equals	Nx × Ny = 20×10 	grid	points	and	is	situated	fifteen	points	away	from	
the	inlet.	The	drag	after	each	step	in	the	Markov	chain	was	associated	with	the	steady-state	
value	 after	 20,000	 lattice	 Boltzmann	 time	 steps,	 c.f.	 Fig.	 6.	 These	 problem	 and	
computational	grid	parameters	are	motivated	by	the	standard	test	calculations	of	e.g.	[27].		
Further,	 for	a	 larger	number	of	grid	points	 the	normalized	 time	required	 to	generate	 the	
steady	state	value	of	the	drag	is	greatly	increased.	For	example	for	98×120 	grid	points	and	
an	obstacle	of	size	40×20 ,	a	steady	state	distribution	is	only	obtained	after	at	 least	~105 	
normalized	time	units.	
	

	
Figure.	 3	The	steady	state	achieved	after	20,000	 time	steps	 for	a	particular	 realization	of	 the	sum	of	 four-
plane-wave	input	velocity	perturbation.	The	contour	lines	indicate	fluid	velocities	while	the	arrows	indicate	
the	flow	direction.	
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Figure.	 4	 The	 drag	 as	 a	 function	 of	 time	 for	 the	 calculation	 of	 Fig.	 3.	 Since	 in	 this	 case	 the	 transient	
oscillations	associated	with	 the	 initial	conditions	are	effectively	absent	after	10,000	time	steps,	drag	values	
are	computed	after	this	number	of	time	steps.	
	

	
Figure.	5	As	in	Fig.	3	but	for	30,000	time	steps	for	a	particular	realization	of	a	distorted	rectangular	obstacle.	
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Figure.	6	As	in	Fig.	4	but	for	the	realization	of	Fig.	5.	 	Since	the	required	steady	state	value	is	only	attained	
after	20,000	time	steps,	here	drag	values	are	computed	after	this	number	of	time	steps.	
	
3.2.2	Generalization	of	modeling	
					A	 disadvantage	 of	 the	 small	 computational	 grid	 dimension,	 however,	 is	 that	 the	
proximity	of	the	boundary	to	the	obstacle	slightly	increases	the	computed	drag	coefficient.		
Further,	the	Zou	and	He	boundary	conditions	possess	an	effective	width	of	one	grid	point	
spacing	and	therefore	are	less	effective	if	the	distance	between	grid	point	is	reduced.	
					To	illustrate	the	above,	the	drag	of	the	unperturbed	obstacle	was	computed	for	grid	sizes	
of	 50×60 ,	 98×120 	and	 146×180 .	 After	 correcting	 the	 latter	 two	 calculations	 by	
subtracting	 0.0332	 to	 account	 for	 the	 influence	 of	 the	 boundary	 in	 the	 smallest	50×60 	
computational	window,	the	drag	values	agree	for	the	different	resolutions	to	within	1% 	as	
evident	 from	Table.2.	 If	 the	space	 from	the	 inlet	and	outlet	boundaries	 to	 the	obstacle	 is	
doubled	the	boundary	effect	correction	value	becomes	0.0143	indicating	that	the	difference	
in	 resolution	 contributes	0.0023 / 0.2291≈1.00% 	to	 the	 difference	 in	 the	 drag.	 Based	 on	
these	considerations,	a	50×60 	point	grid	is	employed	in	the	subsequent	calculations.	Since	
increasing	 the	 resolution	 corresponds	 to	 reducing	 the	 time	 step	 for	 a	 fixed	 Reynolds	
number,	resolution	independence	is	equivalent	to	temporal	convergence	in	this	model.	
	
Table.	2	
Resolution	 Obstacle	 Inlet	 to	

Obstacle	
Distance	

Obstacle	
to	
Outlet	
Distance	

Drag	 in	
the	
steady	
state	

Boundary	
Effect	
Correction	

Corrected	
Drag	

50×60 	 20×10 	 14	 14	 0.2628	 0.0332	 0.2628	
98×120 	 40×20 	 28	 28	 0.2296	 0.2628	
146×180 	 60×30 	 42	 42	 0.2291	 0.2623	
78×60 	 20×10 	 28	 28	 0.2126	 0.0143	 0.2126	
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154×120 	 40×20 	 56	 56	 0.1983	 0.2126	
230×180 	 60×30 	 84	 84	 0.1974	 0.2119	
Difference	of	drags	caused	by	difference	of	
Resolutions	

0.0332/2-0.0143	=	0.0023		
~1.00% 	
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Chapter	4	
Nonlinearity	and	Oceanic	Rogue	Waves	
	
	
					In	this	chapter,	we	first	demonstrate	both	quantitatively	and	qualitatively	in	Sections	4.1	
and	4.2	that	 in	both	optical	and	oceanic	contexts,	nonlinearity	and	 lower-frequency	wave	
components	 lead	 to	 the	amplification	of	 rogue	waves.	Here	 the	standard	unbiased	Monte	
Carlo	 procedure	 is	 insufficient	 to	 demonstrate	 the	 full	 range	 of	 rogue	 wave	 properties.		
Subsequently	the	Multicanonical	Monte	Carlo	procedure	of	Chapters	2	and	3	are	applied	in	
Sections	 4.3	 and	 4.4,	 to	 verify	 the	 qualitative	 discussions	 and	 Monte-Carlo	 analyses	 of	
Sections	4.1	and	4.2.	Here	the	multicanonical	pdfs	include	waves	that	are	much	higher	and	
rarer	 than	 the	 typically	 examined	 rogue	 waves.	 Since	 many	 theoretical	 probability	
predictions	 are	 inaccurate	 in	 such	 low	 probability	 areas,	 section	 4.5	 justifies	 the	
multicanonical	 results	 by	 comparing	 to	 those	 of	 the	 standard/unbiased	 Monte	 Carlo	
method.		Finally	in	Section	4.6	the	multicanonical	procedure	is	employed	to	analyze	some	
unusual	rogue	wave	behavior	associated	with	nonlinear	effects.		
	
	
4.1	Monte	Carlo	analysis	of	wave	power	

	
Figure.	7:	The	pdf	of	the	scaled	wave	power	for	initial	excitations	consisting	of	sums	of	periodic	waves	with	
random	phases	for	two	values	of	the	nonlinearity	parameter.		
	
					Considering	first	a	40,000	Monte-Carlo	evaluation	of	the	pdf	of	the	rogue	wave	height	at	
0t = 	and	 the	 excitation	 of	 (7),	 a	 scaled	 propagation	 distance,	 8,	 and	 a	 computational	

window,	 51.2,	 in	 which	 the	 phases	 are	 chosen	 randomly	 in	 each	 realization,	 a	
representative	result	for	the	pdf	of	scaled	wave	power	after	propagation	is	displayed	in	Fig.	
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7.	 	 The	 RKHD	 is	 employed	 with	 250	 propagation	 steps	 and	 256	 grid	 points	 for	 0γ = 	
(triangle	markers)	and	2640	propagation	steps	and	800	grid	points	for	 0.08γ = 	(diamond	
markers).	 	As	expected,	 larger	values	of	 the	nonlinearity	coefficient	yield	a	greater	 rogue	
wave	probability	while	for	probabilities	in	the	interval	[ ]0.001,0.01 	the	logarithm	of	the	pdf	
depends	 nearly	 linearly	 on	 the	 logarithm	 of	 the	 wave	 height.	 In	 this	 region,	 for	
γ ∈ 0.001,0.2⎡⎣ ⎤⎦ ,	 a	 least	 squares	 fit	 to	 a	 straight	 line	 yields	 a	 correlation	 coefficient	
2 0.9662r ≥ ,	 with	 a	 slope	 designated	R1 	below;	 that	 is,	 the	 probability	 of	 a	 given	 scaled	
wave	 power,	 P ,	 varies	 approximately	 as	 11.9265 RP⋅ 	with	 1 2.121R = − 	where	 the	
correlation	coefficient	 2 0.9853r = 	for	the	curve	fit	displayed	in	Fig.	7.	
	

	
Figure.	8:	The	slope	of	the	pdf	as	a	function	of	the	nonlinear	coefficient,	γ 	for	the	RKHD	parameters	given	in	
Table.	3.	
	
Table.	3	
(0.01)γ 	 0	 0.1	 0.3	 0.5	 0.8	 1	 2	 3	 6	 8	 10	 12.5	 15	 17	 20	

Number	 of	
propagation	
steps	

250	 2560	 2640	 4000	 8000	 8000	 16000	 32000	

Number	 of	
grid	points	

256	 768	 800	 1000	 1440	 1440	 2000	 4000	
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					For	 [ ]0.001,0.2γ ∈ ,	Fig.	8	shows	the	result	of	100,000	standard/unbiased	Monte	Carlo	
realizations	for	 0.15γ ≤ 	and	for	40,000	realizations	for	 0.15γ > .		The	curve	can	be	
approximately	described	as	
	
																																																								 1( ) 0.5494log( ) 0.8937R γ γ= − 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	(28)		
	
with	 2 0.9434r = .	Note	 that	 for	 large	scaled	wave	power,	 the	probability	 increases	with	γ 	
while	the	opposite	holds	for	small	scaled	wave	power.	
	

	
Figure.	9:	The	pdf	of	the	scaled	wave	power	for	low	and	high	frequency	excitations.		
	
					Fig.	 9	 compares	 the	 pdf	 generated	 from	 the	 fields	 resulting	 from	 propagating	 40,000	
realizations	of	the	low	and	high	frequency	initial	fields	in	(7)	and	(8)	a	scaled	propagation	
distance	 of	 8	 units	with	 the	 RKHD	 for	 0.125γ = ,	 8000	 propagation	 steps	 and	 1440	 grid	
points	 (similar	 results	 apply	 for	γ 	in	 the	 range	[0.01,0.15]).	 This	 result	 demonstrates	 the	
decreased	strong	self-focusing	and	hence	rogue	wave	probability	for	initial	fields	composed	
of	numerous	high	frequency	waves.	
	
					While	the	pdf	of	the	scaled	maximum	wave	power	is	more	affected	by	nonlinearity	than	
the	pdf	of	the	scaled	wave	power	result	above,	as	evident	from	Fig.	10,	which	is	obtained	
from	the	lower	frequency	excitation	of	(7)	and	40,000	realizations,	this	is	accompanied	by	a	
far	 larger	 variation	 among	 the	 probabilities	 in	 the	 rogue	 wave	 region.	 As	 well,	 larger	
nonlinearities	are	seen	to	generate	higher	power	rogue	waves.	
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Figure.	 10:	The	pdf	of	 the	scaled	maximum	wave	power	according	to	 the	maximum	wave	power	metric	as	
generated	with	the	RKHD	in	Table.	4.	
	
Table.	4	
γ 	 0.01	 0.03	 0.08	 0.15	
Number	 of	
propagation	
steps	

250	 2640	 8000	

Number	 of	
grid	points	

256	 800	 1440	

	
4.2	Monte	Carlo	analysis	of	oceanic	wave	

					The	 results	 of	 40,000	 Monte	 Carlo	 realizations	 of	 oceanic	 model	 are	 summarized	 in	
Table.	 5,	which	 show	 the	 percentage	 of	 rogue	waves	 for	 different	 values	 of	 χ 	and	γ .	 In	
these	calculations,	 the	heights	of	 62.8 10≈ × 	waves	 in	 the	propagated	 field	were	employed	
to	calculate	the	percentage	of	rogue	waves	for	each	pair	of	γ 	and	 χ .	
	
Table.	5:	Percentage	of	rogue	waves	for	each	pair	of	values	( ,γ χ ).	
Percentage	
of	 rogue	
wave	
( 210 %− )	

χ 	 3	 4	 5	 6	 7	 8	

γ 	
0.03	 0.42355	 0.61880	 0.90383	 1.29244	 1.67242	 1.98333	
0.05	 0.15055	 0.22206	 0.30267	 0.39242	 0.47631	 0.45888	
0.08	 1.12078	 1.48125	 1.89231	 2.19624	 2.50104	 2.69048	
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Figure.	 11:	The	percentage	of	rogue	waves	 for	different	 χ 	and	γ 	in	(9)	 	 for	a	scaled	propagation	distance	
equal	to	8,	and	a	computational	window	of		51.2	where	the	RKHD	is	employed	with	8000	propagation	steps	
and	1440	grid	points.	
	
					Fig.	11,	which	displays	the	percentage	of	rogue	waves	for	each	pair	of	values	 χ 	and	γ ,	
demonstrates	that	the	percentage	of	rogue	wave	increases	with	 χ 	(except	for	the	isolated	
cases	 0.05, 7,8γ χ= = ,	which	will	be	analyzed	in	detail	in	section	4.6).	[10]	To	understand	
this	behavior,	note	that	since	the	scaled	energy	in	the	computational	window	is	constant,	as	
the	amplitudes	of	wave	components	whose	 frequencies	are	near	or	below	 peakf ,	 (the	 low	
frequency	 area	 in	 our	 model)	 increase	 with χ ,	 the	 power	 in	 the	 remaining	 wave	
components	is	simultaneously	reduced.		Therefore,	in	agreement	with	Fig.	9,	where	initial	
fields	 composed	 of	 numerous	 low	 frequency	 waves	 generate	 a	 larger	 fraction	 of	 rogue	
waves,	the	probability	of	large	amplitude	waves	is	enhanced,	yielding	the	result	of	Fig.	11.	
	
4.3	Optical	Multicanonical	Results	
					The	multicanonical	 procedure	 is	 next	 employed	 to	 extend	 the	 results	 of	 section	4.1	 to	
higher	rogue	wave	powers.		Evidently,	although	the	nonlinearity	enhances	the	rogue	wave	
probability	to	a	greater	extent	at	 large	powers,	the	general	trends	are	similar	in	high	and	
low	probability	regions.		However,	as	is	also	apparent	from	the	Multicanonical	Monte	Carlo	
calculations	 with	 the	 parameters	 in	 Table.	 6	 as	 displayed	 in	 Fig.	 12,	 the	 rogue	 wave	

0.10	 0.86236	 1.12474	 1.30619	 1.58069	 1.77161	 2.04224	
0.125	 1.40155	 1.73159	 1.95333	 2.29704	 2.39546	 2.64244	
0.15	 1.30462	 1.67669	 1.82511	 2.02752	 2.13966	 2.28798	
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probability	 becomes	 increasingly	 independent	 of	 γ 	as	 0.1γ → .	 Additionally,	 the	
parameters	 in	Table.	 6	 insure	 that	 the	 pdfs	 generated	 by	 the	 standard/unbiased	Monte	
Carlo	and	multicanonical	procedures	coincide	for	probabilities	larger	than	10−4 −10−5 .	
	

	
Figure.	12:	The	pdf	of	the	scaled	wave	power	for	unit	bins	where	(7)	is	applied	in	the	first	realization.	
	
Table.	6	
γ 	 Number	

of	
iterations	

Realization	
number	 of	 nth	
iteration	

Initial	
ε ,	

0ε 	

ε of	nth	iteration,	 nε 	 Initial	
bin	
value	

Number	 of	
propagation	
steps	

Number	
of	 grid	
points	Acceptance	

rate	 in	 (n-
1)th	
iteration	 <	
0.3	

Acceptance	
rate	 in	 (n-
1)th	
iteration	 >	
0.3	

0.01	 4	 110,000 1.36n−⋅ 	 0.2	 1
11.05 nε

−
−⋅ 	 11.05 nε −⋅ 	 1	 250	 256	

0.03	

0.05	 1000	 500	

0.10	 0.1	 4000	 1000	

	
4.4	Oceanic	Multicanonical	Results	
					In	 examining	 the	pdf	of	 ocean	waves,	 the	wave	height	 at	 a	 specified	 fixed	point	 in	 the	
computational	window	can	conveniently	be	quantified	as	the	relative	wave	height	defined	
in	Chapter	3.	Fig.	 13	 presents	 the	multicanonical	 results	 for	 the	pdf	of	 the	 relative	wave	
heights	at	t=0	for	six	values	of	the	nonlinearity	parameterγ ,	again	confirming	the	marked	
dependence	of	the	rogue	wave	probability	on	nonlinearity.	 	As	indicated	in	Chapter	3,	the	
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parameters	 of	 Table.	 7	 additionally	 yield	 standard/unbiased	 Monte	 Carlo	 and	
Multicanonical	 Monte	 Carlo	 pdfs	 that	 effectively	 match	 in	 the	 region	 for	 which	 the	
calculated	 probability	 exceeds	10−4 −10−5 .	 The	 multicanonical	 method	 determines	 the	
distributions	for	wave	heights	considerably	greater	than	the	square	root	of	the	average	of	
the	minimum	squared	rogue	wave	height.	The	results	of	Fig.	13	were	calculated	with	a	bin	
width	equal	to	0.1,	the	updating	schedule	for	ε 	and	number	of	realizations	of	Table.	7	with	
4	iterations	and 8χ = .		In	Fig.	13	several	values	of	γ 	between	0.03	and	0.15	are	considered.	
The	discontinuity	at	zero	relative	wave	height	results	 from	the	definition	of	 this	quantity	
and	has	been	verified	through	a	standard	Monte-Carlo	calculation.	
	
					The	 height	 of	 a	 random	 sea	 wave	 can	 also	 be	 described	 by	 the	 scaled	 square	 of	 the	
maximum	wave	height	 in	 the	 computational	window.	 	 The	pdf	 of	 this	 quantity,	 obtained	
with	 four	 25,000-sample	 iterations	with	 0.15γ = ,	 c.f.	Table.	 7,	 is	 shown	 in	Fig.	 14.	 The	
position,	195,	 of	 the	 labeled	vertical	 axis	 coincides	with	 the	 average	of	 the	 square	of	 the	
minimum	scaled	rogue	wave	height.	It	should	be	remarked	here	that	the	parameters	for	the	
pdf	of	 the	squared	maximum	wave	height	are	 inappropriate	 for	generating	the	pdf	of	 the	
relative	wave	height.	In	particular,	since	the	relative	wave	height	is	determined	by	the	local	
behavior	 of	 the	 wave,	 a	 large	 number	 of	 intermediate	 histogram	 bins	 near	 the	 tail	 may	
remain	unsampled	yielding	a	 fictitious	 increase	 in	the	pdf.	 	This	additionally	explains	our	
choice	of	the	alternate	set	of	parameters	in	the	majority	of	our	Multicanonical	Monte	Carlo	
calculations.	
	
Table.	7:	Parameters	of	Multicanonical	Monte	Carlo	in	Fig.	13	and	Fig.14	
γ 	 Number	

of	
iterations	

Realization	
number	 of	 nth	
iteration	

Initial	
ε ,	

0ε 	

ε of	nth	iteration,	 nε 	 Initial	
bin	
value	

Number	 of	
propagation	
steps	

Number	
of	 grid	
points	Acceptance	

rate	 in	 (n-
1)th	
iteration	 <	
0.3	

Acceptance	
rate	 in	 (n-
1)th	
iteration	 >	
0.3	

0.03,	
0.05,	
0.08,	
0.10,	
0.125	
0.15	

4	 110,000 1.36n−⋅ 	 0.1	 1
11.05 nε

−
−⋅ 	 11.05 nε −⋅ 	 1	 8000	 1440	

0.15	 25000	 0	
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Figure.	13:	The	pdf	of	the	relative	wave	height	with	bin	width	
0 0

2
0.1

k
υ ω γ

ω
Δ

⋅ 	,	where	(11)	is	applied	in	the	

first	realization	with 8χ = and	the	multicanonical	procedure	is	employed	with	the	parameters	of	Table.	7.	
	

	
Figure.	14:	The	pdf	of	the	relative	wave	height	with	unit	bin	width.	(11)	is	applied	in	the	first	realization	with	

8χ = 	and	 0.15γ = 	and	 the	Multicanonical	Monte	Carlo	parameters	of	Table.	 7.	The	vertical	axis	crosses	
the	horizontal	axis	at	195,	the	average	of	the	square	of	the	minimum	scaled	rogue	wave	height.	
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4.5	Remark	on	the	multicanonical	results	
					Since	the	Multicanonical	Monte	Carlo	results	cannot	be	compared	directly	to	theoretical	
results	 in	sections	4.3	and	4.4,	 the	method	can	only	be	verified	by	a	comparison	with	the	
standard	unbiased	Monte	Carlo	technique	as	in	Fig.	13.		For	γ = 0.15 	these	procedures	are	
in	good	agreement.	Indeed,	for	such	problems	in	which	analytic	solutions	are	not	available,	
the	 unbiased	Monte	 Carlo	 results	 are	 generally	 treated	 as	 experimental	 data	 [9][11][28]	
[29].		In	fact,	as	mentioned	in	[28],	the	theoretical	determination	of	the	pdf	of	wave	heights	
has	 not	 been	 solved	 yet	 for	 nonlinear	 propagation	 as	 for	 example,	 [29]	 reports	 that	
theoretical	results	for	the	wave	envelopes	is	“somewhat	poor,	particularly	in	the	presence	
of	relatively	strong	instability”	and	mentions	with	reference	to	Figs	2	and	4	in	[29]	that	the	
analytic	 solutions	 are	 particularly	 accurate	 in	 low	 probability	 regions.	 Since	 in	 order	 to	
increase	the	occurrence	of	rogue	waves,	the	methods	of	this	thesis	are	generally	applied	to	
highly	nonlinear	waves	with	a	probability	of	occurrence	lower	than	10-4	our	results	cannot	
be	 reliably	 compared	 to	 analytic	 solutions.	 	 As	 well,	 in	 the	 linear	 case,	 the	 Rayleigh	
distribution	 requires	 that	 the	 wave	 height	 equal	 twice	 the	 wave	 crest.	 Otherwise	 the	
Rayleigh	 distribution	 generally	 overestimates	 the	 wave	 heights	 of	 large	 waves.	 [30].	
Additionally	since	many	linear	propagation	problems	can	be	efficiently	analyzed	with	the	
FFT,	a	comparison	with	the	Monte	Carlo	results	is	not	particularly	meaningful	in	the	linear	
regime.							
	
4.6	Effects	of	nonlinearity	
					While	 recording	 the	 heights	 of	 62.8 10≈ × 	waves	 generated	 from	40,000	 realizations	 in	
the	 absence	 of	 nonlinearity	 ( 0γ = , 8χ = )	 yielded	 only	 7	 rogue	 waves	 events,	 with	
nonlinearity	present,	thousands	of	rogue	waves	were	generated	as	evident	from	Table.	5.		
This	 clearly	 confirms	 the	 significance	 of	 nonlinearity	 in	 rogue	 wave	 generation.	 	 An	
identical	conclusion	can	be	drawn	from	the	discussion	of	wave	power	in	sections	4.1	and	
4.3.	 	 Additionally,	 in	 Fig.	 11,	 the	 percentage	 of	 rogue	 waves	 is	 unexpectedly	 smaller	 at	

0.05γ = 	than	 at	 0.03γ = .	 	 An	 analysis	 of	 the	 percentage	 of	 rogue	waves	 for	 0.05γ = 	and	
different	values	of	 χ 	is	presented	in	Fig.	15,	which	is	computed	with	the	RKHD	for	a	scaled	
propagation	distance	of	8,	8000	propagation	steps,	1440	grid	points	and	a	computational	
window	of	 51.2.	 	 This	 figure	 indicates	 that	 the	probability	 of	 rogue	waves	does	not	 vary	
monotonically	with	γ 	but	rather	experiences	a	minimum	for	 0.05γ ≈ .		Because	of	the	small	
value	of	the	probability	at	this	minimum,	the	results	for	the	percentage	of	rogue	waves	at	

7,8χ = 	are	susceptible	to	error,	which	presumably	explains	the	anomalous	results	of	Fig.	
11.	
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Figure.	 15:	The	percentage	of	 rogue	waves	 for	different	 χ 	and	γ 	in	 (9)	 for	 a	 scaled	propagation	distance	
equal	 to	8	and	a	computational	window	of	51.2	where	the	RKHD	is	employed	with	8000	propagation	steps	
and	1440	grid	points.	
	
Further	 studies	 show	 a	 similar	 trend	 for	 excitations	with	 varying	minimum	 rogue	wave	
height	and	 χ 	values	as	illustrated	by	the	pdf	of	the	scaled	wave	height,	Fig.	16,	for	 0.03γ = 	
and	 0.05γ = .		This	figure	employs	(11)	to	generate	the	first	realization,	and	 110,000 1.36n−⋅
samples	for	the	nth	iteration	together	with	the	acceptance	rate	of	Fig.	12.		The	vertical	axis	
is	positioned	at	a	scaled	relative	wave	height	of	13,	which	is	the	square	root	of	the	average	
of	 the	minimum	rogue	wave	height	 square	 for	 0.03γ = .	 	Further	 studies	 indicate	 that	 the	
average	of	the	square	of	the	scaled	minimum	rogue	wave	height	attains	a	minimum	(~170)	
at	 0.03γ = 	and	a	maximum	(~205)	at	 0.05γ = .		Fig.	16	demonstrates	that	this	unexpected	
behavior	 still	 exists	 even	 if	 the	 scaled	minimum	 rogue	 wave	 heights	 are	 both	 set	 to	 an	
identical	 value,	 here	 13.	As	 the	multicanonical	 procedure	 additionally	 extends	 the	 pdf	 of	
relative	 wave	 height	 to	 the	 rare	 probability	 region	 in	 Fig.	 16	 this	 behavior	 cannot	 be	
attributed	to	undersampling.	
	



	 31	

	
	Figure.	 16:	 The	pdf	 of	 relative	wave	height	 for	 8, 0.03,0.05χ γ= = 	and	 a	bin	width	of	 0.1.	The	 vertical	
axis	crosses	 the	horizontal	axis	at	13,	 	 the	square	root	of	 the	average	of	 the	square	of	 the	minimum	scaled	
rogue	wave	height	for	γ = 0.03 .	
	
The	 origin	 of	 the	 anomalous	 features	 becomes	 apparent	 from	 the	 frequency	 spectrum	
displayed	in	Fig.	17	and	Fig.	18	of	the	propagated	field,	 ( ) ( )peakRe , exp 2A z t f tπ⎡ ⎤

⎣ ⎦ ,	obtained	

after	 scaled	propagation	distances	of	8,	40,	 and	80	when	 (11)	 together	with	a	 set	of	500	
random	phases	 is	employed	as	 the	 initial	 condition.	 	 In	 this	 figure	 the	soliton	period	and	
total	scaled	energy	equal	0.5π 	and	256,	respectively	while	 0.03γ = ,	 8χ = ,	 tΔ =	0.025	and	
zΔ is	set	slightly	below	the	stability	limit.	
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Figure.	17:	The	propagated	field	spectrum	for	 0.03γ = .	
	

	
Figure.	18:	The	propagated	field	spectrum	for	 0.05γ = .	
	
As	 can	be	 seen	 in	Fig.	 17	 at	 a	 propagation	distance	 of	 8	 normalized	units,	 for	 0.03γ = 	a	
maximum	is	present	near	0.1Hz	that	is	absent	at	longer	propagation	distances	as	well	as	in	
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the	 0.5γ = 	spectrum	of	Fig.	18.		At	the	longer	distances,	the	spectra	broaden	such	that	the	
average	 width	 is	 larger	 at	 higher	γ .	 	 As	 well,	 the	 width	 is	 greater	 for	 0.03γ = 	than	 for	

0.05γ = ,	 yielding	 an	 increased	 rogue	wave	probability.	 	 	Hence,	 the	 apparent	 anomalous	
result	 for	the	percentage	of	rogue	waves	at	 0.03γ = 	in	Fig.	 17	can	be	associated	with	the	
small	propagation	length.			
	
					Furthermore,	 as	 evident	 for	 example	 in	 Fig.	 15,	 the	 rogue	 wave	 pdf	 varies	 relatively	
slowly	 with	 the	 nonlinear	 coefficient	 for	 0.08γ > .	 	 More	 generally,	 the	 pdf	 of	 the	 wave	
height	often	 initially	 increases	with	γ 	but	then	diminishes	past	a	certain	“crossing	point”.		
As	 a	 result,	 for	 waves	 with	 heights	 below	 the	 value	 associated	 with	 the	 crossing	 point,	
rogue	waves	are	suppressed	at	larger	γ .		In	[11]	this	effect	is	attributed	to	both	a	nonlinear	
broadening	of	the	frequency	spectrum,	which	yields	larger	probabilities	for	highly	peaked	
excitations	and	 to	 the	 low	 frequency	 flattened	pulses	resulting	 from	the	redistribution	of	
energy	over	 the	 computational	window	according	 to	 the	Matthew	effect:	 the	 less	will	 be	
less	and	the	more	will	be	more.	
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Chapter	5	
Drag	Probabilities		
	
	
					In	 this	chapter,	we	examine	 the	predictions	 for	 the	drag	probabilities	 in	 the	context	of	
the	 model	 of	 Chapters	 2	 and	 3,	 focusing	 on	 the	 drag	 probabilities	 associated	 with	 a	
perturbed	obstacle.	In	section	5.1	we	calculate	the	pdf	of	the	drag	in	very	rare	probability	
areas	 and	 follow	 this	 in	 section	 5.2	 with	 a	 study	 of	 the	 drag	 probabilities	 of	 a	 noise-
perturbed	 inlet	 and	 a	 moving	 obstacle.	 These	 results	 are	 then	 shown	 to	 be	 in	 good	
agreement	with	those	of	the	standard	unbiased	Monte	Carlo	method.						While	as	in	Chapter	
4,	these	results	cannot	be	obtained	analytically,	they	are	confirmed	through	a	comparison	
to	an	 “induction”	method	 for	 the	exact	probability	of	 the	 smallest	drags	 in	 section	5.3	as	
well	 as	 to	 physical	 arguments	 in	 section	 5.4,	 where	 the	 relationship	 between	 different	
surface	 configurations	 of	 the	 obstacle	 and	 the	 value	 of	 drags	 is	 discussed	 for	 the	
configurations	associated	with	the	highest	and	lowest	pdfs.	
	
	
5.1	Results	of	the	multicanonical	procedure	

	
Figure.	 19	 The	 pdfs	 of	 the	 drag	 for	 the	 case	 of	 a	 constant	 input	 flow	 velocity	 perturbed	 by	 a	 sum	 of	 4	
sinusoidal	 waves	 with	 randomly	 generated	 phases	 obtained	 with	 the	 standard	 Monte-Carlo	 method	
(diamonds)	 and	 three	 iterations	 with	 a	 total	 of	 33677	 realizations	 of	 the	multicanonical	 procedure	 (solid	
line).			
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Figure.	 20	 As	 in	Fig.	 19	 but	 for	 an	 obstacle	with	 a	 randomly	 perturbed	 surface	 after	 four	multicanonical	
Monte	Carlo	iterations	with	a	total	of	47219	realizations.	
	
					The	 pdfs	 obtained	when	 the	multicanonical	method	 is	 applied	 to	 the	 drags	 associated	
with	perturbing	first	the	left	boundary	velocity	and	then	the	obstacle	surface	are	displayed	
in	Figs.	19	and	20,	respectively	for	a	histogram	bin	width	of	5×10−3 .	The	results	of	Fig.	19	
were	calculated	with	a	total	of	33677	realizations	for	both	the	standard	(diamond	markers)	
and	three	iterations	of	the	multicanonical	procedure	(solid	lines)	while	Fig.	20	employed	a	
total	 of	 47219	 realizations	 and	 four	 multicanonical	 iterations.	 While	 the	 multicanonical	
procedure	effectively	coincides	with	the	Monte-Carlo	results	in	the	large	probability	region,	
the	pdfs	 of	Fig.	 20	 are	 in	 significantly	better	 agreement,	 extend	 to	 lower	 values	 and	are	
generally	 smoother	 than	 those	 of	Fig.	 19.	 The	 loss	 of	 accuracy	 in	Fig.	 19	 is	most	 likely	
associated	with	 the	discretization	error	arising	 from	the	highest	 frequency	component	of	
the	 input	 field	(the	fourth	 lowest	plane	wave).	Further,	since	the	momentum	of	the	 input	
field	varies	with	the	relative	phases	of	the	sinusoidal	components	of	the	input	field,	a	small	
change	in	the	phase	coefficient	significantly	affects	the	drag	and	hence	the	pdf.		This	effect,	
which	 is	more	pronounced	 for	 small	numbers	of	 grid	points,	 substantially	 contributes	 to	
the	observed	error	in	the	multicanonical	result	at	high	drag	values.	
					Perturbing	 the	obstacle	 shape	at	 a	 single	grid	point	however	only	 slightly	 changes	 the	
drag	coefficient,	insuring	the	accuracy	of	the	multicanonical	procedure.		As	well,	in	the	high	
probability	 region	 of	 Fig.	 19,	 the	 four	 components	 of	 the	 input	 field	 possess	 differing	
phases	while	the	front	end	of	the	obstacle	is	not	located	at	the	maximum	or	minimum	of	the	
incoming	wave.	Hence	a	small	phase	change	here	does	not	substantially	alter	the	drag.	
	
5.2	Generality	of	the	multicanonical	procedure	
     To show the generality of the multicanonical	procedure, we insert a 10×10  obstacle into a 
flow with an inlet velocity given by Uinlet = (0.12+ noise ~ uniform[−0.01,0.01]) x̂ . The model’s 
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resolution is 50×40 . The result is shown in the following figure. 
 

 
Figure.	 21	The	pdfs	of	 the	drag	 for	a	constant	 input	 flow	velocity	perturbed	by	noise	as	obtained	with	 the	
standard	 Monte	 Carlo	 method	 (diamonds)	 and	 three	 iterations	 with	 a	 total	 of	 16551	 realizations	 of	 the	
multicanonical	procedure	(solid	line).	
	
This result demonstrates the efficiency of the multicanonical procedure for noisy inputs.. The 
result is consistent with earlier studies of Multicanonical Monte Carlo to various systems 
affected by noise. [31] 
	
     We also examined the case of a moving obstacle. For example, we considered the case that 
the inlet and obstacle velocities are offset by Uinlet = 0.14x̂  and UObstacle = 0.05x̂ . For a 66×60  
point grid with the same surface perturbations as above the results, which are given in the figure 
below demonstrate the applicability of the multicanonical method to this case. In fact, the 
fundamental property that ensures the applicability of the multicanonical procedure is the 
requirement that small changes in the initial/boundary conditions yield small changes of the final 
result that are sufficiently often accepted by the transition rule..  
 

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
Drag

10-8

10-6

10-4

10-2

100

Pr
ob

ab
ili

ty
MCMC vs. MC

MCMC result
MC result



	 37	

  
Figure.	 22	The	pdfs	of	 the	drag	 for	 a	 constant	 input	 flow	velocity	and	a	moving	obstacle	with	a	 randomly	
perturbed	surface	as	computed	with	the	standard	Monte	Carlo	method	(diamonds)	and	three	iterations	with	
a	total	of	47219	realizations	of	the	multicanonical	procedure	(solid	line).	
	
5.3	Verification	
					The	multicanonical	results	for	the	perturbed	obstacle	can	be	interpreted	in	the	context	
of	 the	 drag,	D0 = 0.263 ,	 of	 the	 unperturbed	 obstacle	 with	 a	 length	 of	 10	 points	 in	 the	
transverse,	y-direction	and	the	corresponding	drag,	D1 = 0.332 ,	for	the	12	transverse	point	
rectangular	 obstacle	 obtained	 once	 all	 fluid	 points	 above	 and	 below	 the	 obstacle	 are	
converted	 to	 solid	 points.	 	 While	 the	 lower	 bound	 of	 the	 drag	 does	 not	 fall	 below	D0 ,	
presumably	since	enlarging	the	surface	by	a	small	number	of	grid	points	does	not	lead	to	a	
sufficiently	 streamlined	 profile,	 the	 corrugated,	 large	 area	 surface	 that	 emerges	 when	 a	
large	number	of	nonadjacent	fluid	points	are	converted	to	solid	points	can	generate	a	drag	
greater	than	D1 .		Thus	in	Fig.	22	the	multicanonical	pdf	extends	from	a	drag	value	of	0.266	
which	 falls	 into	 the	 histogram	 bin	 bL ∈ 0.265, 0.270( ] ,	 and	 occurs	 with	 a	 probability	 of	
approximately	 4.33×10−10 	to	 a	 value	 of	 0.333	 in	 bU = 0.330, 0.335( ] 	with	 a	 probability	
≈1.28×10−2 .			
					To	confirm	the	physical	picture	presented	in	the	preceding	paragraph,	Figs.	23	and	24	
display	 the	 lowest	 and	 highest	 drag	 configurations	 generated	 by	 the	 multicanonical	
method.	 	 The	 first	 of	 these	 figures	differs	 only	 at	 a	 single	 edge	point	 from	 the	minimum	
drag	unperturbed	state	and	is	associated	with	a	drag	value	that	falls	into	the	histogram	bin	
(0.260,0.265] .	 	This	suggests	that	for	the	small	drag	values	closest	to	the	origin	of	Fig.	22,	
the	drag	 is	strongly	dependent	on	the	surface	geometry,	which	 in	 turn	enables	 the	direct	
verification	 of	 the	 multicanonical	 pdf	 of	 the	 bin	bL .	 That	 is,	 when	 the	 number	 of	 fluid	
points,	n ,	 along	 the	 surface	 that	 have	 been	 converted	 to	 material	 points	 is	 small,	 an	
additional	 material	 point	 significantly	 increases	 the	 drag.	 Hence,	 all	 configurations	 with	
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n+1 	surface	points	and	drags	in	bL ,	can	be	found	by	adding	an	additional	surface	point	to	
the	known	configurations	with	n 	surface	points	with	drags	in	this	bin.		Starting	from	 n =1 ,	
the	 464	 configurations	 enumerated	 in	 Table.	 8	 with	 6n ≤ 	were	 found	 to	 possess	 drag	
values	 in	bL ,	while	 for	n > 6 	all	computed	drags	were	 larger	than	0.270.	That	 is,	a	total	of	
464	 configurations	 possess	 drags	 in	bL 	in	 the	 model	 compared	 to	 the	2

40 configurations	
that	are	associated	with	the	40	grid	points	above	and	below	the	obstacle	surface.		Since	the	
probability	 of	 a	 given	 configuration	 therefore	 equals	2−40 ,	 the	 probability	 of	 obtaining	 a	
drag	in	bL 	exceeds	that	of	the	single	lowest	drag	state,	2

−40 ≈ 9.09×10−13 ,	by	a	factor	of	464.			
The	 value,	 4.22×10−10 ,	 nearly	 coincides	 with	 the	 multicanonical	 prediction,	 4.33×10−10 ,	
verifying	the	accuracy	of	the	multicanonical	algorithm	in	the	 low	probability	region.	Note	
that	the	rapid	decrease	in	the	number	of	configurations	in	bL 	as	the	number	of	additional	
surface	points	increases	again	indicates	the	large	influence	of	surface	geometry	on	the	drag	
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Table.	8	
Total	 Number	 of	
Additional	 Surface	
Points,	n	

Number	 of	
Configurations	
with	Drags	in	bL 	

Number	 of	
Possible	
Configurations	

Conditional	
Probability	 of	
Drags	in	bL 	

1	 32	 	
	
	

40
n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 	

8×10−1 	
2	 242	 3.10×10−1 	
3	 50	 5.06×10−3 	
4	 108	 1.18×10−3 	
5	 28	 4.03×10−5 	
6	 4	 1.04×10−6 	
7	 0	 0 	
>7	 0	 0 	
	
5.4	Configurations	and	Drags	
					The	multicanonical	 result	 for	 the	maximum	drag	 configuration	 is	 displayed	 in	Fig.	 24	
and	as	predicted	displays	a	high	 level	of	 corrugation,	which	enhances	 the	 frictional	 force	
relative	to	that	of	a	simple	enlarged	rectangle.		Note	further	that	the	magnitude	of	the	slope	
of	 the	 pdf	 for	 small	 drags	 is	 far	 larger	 than	 that	 on	 the	 large	 drag	 side	 of	 the	 maxima,	
consistent	 with	 the	 considerably	 greater	 magnitude	 at	 low	 Reynolds	 number	 of	 the	
pressure-induced	drag	compared	to	the	frictional	drag.	[32]	The	number	of	realizations	is	
additionally	limited	for	low	drag	values,	as	only	a	single	state	exists	with	the	minimum	drag	
while	numerous	highly	corrugated	states	contribute	with	nearly	similar	drag	values	at	the	
upper	end	of	the	pdf	curve	as	a	result	of	the	relatively	small	frictional	force.			
					As	expected,	the	drag	is	reduced	for	streamlined	objects	that	are	enlarged	near	the	front	
and	 back	 faces	 compared	 to	 the	 central	 region.	 	 Thus,	 the	 two	 configurations	with	 large	
drags	in	Figs.	24	and	25	are	enlarged	near	the	front	and	back	while	differing	in	geometry	
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near	 the	middle	of	 the	obstacle.	However,	 for	 configurations	with	narrow	 front	and	back	
regions	and	therefore	small	drag,	such	as	in	Fig.	5,	the	geometry	near	the	center	of	the	top	
and	bottom	facets	can	considerably	affect	the	drag,	as	evident	through	a	comparison	with	
Fig.	 24	 which	 possesses	 a	 much	 smaller	 drag	 coefficient	 despite	 its	 nearly	 identical	
geometry	near	the	middle	of	the	obstacle.		Here	the	large	number	of	dissimilar	states	that	
contribute	to	the	same	histogram	bin	for	large	drags	precludes	a	direct	verification	of	the	
multicanonical	probability	in	contrast	to	the	small	drag	case.		The	above	results	also	clearly	
indicate	that	for	an	identical	sample	size	and	therefore	calculation	time	the	multicanonical	
procedure	 both	 reproduces	 the	 standard/unbiased	 Monte	 Carlo	 results	 in	 the	 high	
probability	 region	 and	 extends	 the	 dynamic	 range	 of	 the	 method	 by	 several	 orders	 of	
magnitude. 
	

	
Figure.	 23	 The	 steady	 state	 velocity	 profile	 generated	 by	 the	minimum	 drag	 realization	 obtained	 for	 the	
perturbed	rectangular	obstacle	with	the	multicanonical	Monte	Carlo	procedure.		
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Figure.	24	As	in	Fig.	23	but	for	the	maximum	drag	realization.	
	

	
Figure.	25	As	in	Fig.	23	but	for	a	realization	with	a	drag	close	to	the	maximum	value.	
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Chapter	6	
Conclusions	
	
	
6.1	RKHD,	Multicanonical	Monte	Carlo,	and	Nonlinearity	
					In	 this	 thesis	we	 have	 advanced	 several	methods	 for	 improving	 the	 analysis	 of	 rogue	
wave	probabilities.	The	propagation	algorithm	for	the	Nonlinear	Schrödinger	Equation	was	
first	 improved	by	 introducing	the	RKHD.	 	Next,	 the	multicanonical	procedure	enables	 the	
pdfs	of	wave	power	and	wave	heights	 to	be	evaluated	highly	efficiently.	Accordingly,	 the	
pdfs	 of	 the	wave	heights	 can	be	 evaluated	even	 in	probability	 regions	 that	 are	 far	 lower	
than	 those	 commonly	 associated	with	 the	 appearance	 of	 rogue	waves.	 	 Additionally,	 we	
advanced	a	finite	difference	based	Runge-Kutta	procedure	that	was	found	to	be	more	rapid	
than	 standard	 FFT	 based	 Runge-Kutta	 interaction	 procedures,	 especially	 for	 large	
propagation	distances	and	high	soliton	orders.		This	should	enable	the	evaluation	of	fields	
after	very	long-range	propagation	distances	or	times.	
					Here	we	found	that	the	generation	probability	for	rogue	waves	is	greater	in	the	presence	
of	 low	 frequency	 initial	 fields	 than	 if	 only	 high	 frequency	 components	 are	 present.	 This	
conclusion	is	clearly	consistent	with	both	ideal	model	and	the	oceanic	model.	As	well,	we	
observed	 a	 logarithmic	 dependence	 of	 the	 slope	 of	 the	 pdf	 for	 large	 heights	 on	 the	
nonlinearity	 coefficient,	 which	 shows	 that	 the	 contribution	 of	 nonlinearity	 to	 the	
generation	 of	 high	 power	waves	 decreases	with	 increasing	 nonlinearity	 coefficient.	 This	
phenomenon	is	predicted	by	both	of	the	ideal	model	and	the	oceanic	model.		
					Last	but	not	 the	 least,	we	confirmed	 the	applicability	of	Multicanonical	Monte	Carlo	 in	
oceanic	contexts.	As	mentioned	 at	 the	 end	 of	 [10],	 for	 more	 realistic	 models,	 the	
procedure	that	we	employed	to	generate	Figs.	13	and	14	could	be	applied	to	determine	the	
probabilities	that	a	wave	with	a	much	higher	amplitude	than	the	commonly	accepted	cutoff	
amplitude	 of	 rogue	 waves	 appears	 at	 a	 certain	 distance	 from	 the	 observer.	 This	 is	 a	
significant	quantity	for	oceanic	platform	designs.	
	
6.2	Suitability	of	the	multicanonical	procedure	for	drag	probabilities	
					While	 the	 calculations	 of	 the	 multicanonical	 procedure	 principally	 demonstrate	 the	
efficiency	 of	 the	 multicanonical	 algorithm	 in	 combination	 with	 the	 lattice	 Boltzmann	
procedure,	 that	 the	 probabilities	 of	 statistically	 unlikely	 but	 physically	 significant	
configurations	 can	 be	 rapidly	 determined	 in	 this	 fashion	 suggests	 numerous	 practical	
applications.		For	example,	the	deformations	of	a	wing	resulting	from	local	environmental	
changes	 that	 yield	 an	 unacceptably	 large	 drag	 would	 be	 difficult	 to	 characterize	
experimentally	 because	 of	 the	 large	 number	 of	 possible	 configurations.	 However,	 a	
multicanonical	 simulation	 could	 isolate	 such	 cases	within	 a	 relatively	 limited	 amount	 of	
computation	time	if	the	underlying	requirements	of	the	procedure	are	satisfied.	
	
6.3	Comments	on	Multicanonical	Monte	Carlo	
	
					Although	sampling	the	high	probability	areas	does	not	 lead	to	a	substantial	 increase	in	
the	 relative	 accuracy,	 it	 does	 increase	 the	 overall	 quality	 of	 the	 result.	 However,	 in	
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Multicanonical	Monte	Carlo,	when	a	new	state	 is	rejected,	 the	previous	state	will	become	
the	new	state,	so	that	the	transition	does	not	contribute	to	the	quality	of	the	pdf.		Since	the	
optimal	acceptance	rate	is	typically	approximated	by	a	number	close	to	25%,	roughly	¾	of	
the	transitions	are	only	required	to	drive	the	Markov	chain	toward	low	probability	regions	
but	 do	 not	 simultaneously	 contribute	 to	 the	 accuracy	 of	 the	 pdf.	 This	 issue	 can	 be	
addressed	by	 constructing	 a	 transition	matrix	 as	demonstrated	 in	 [22]	but	 at	 the	 cost	 of	
program	complexity	and	memory	utilization.	
	
					According	to	[33],	the	accuracy	of	all	Markov	Chain	Monte	Carlo	calculations	should	be	
established	by	joint	distribution	tests.	Since	the	sampling	method	employed	by	the	MMC	is	
identical	to	that	of	the	Markov	Chain	Monte	Carlo	a	joint	distribution	test	could	similarly	be	
of	value	in	every	application	of	Multicanonical	Monte	Carlo.	
	
					Smoothing	 the	 histogram	 by	 including	 contributions	 from	 a	 few	 adjacent	 bins	 can	
improve	 the	 result	 substantially	 if	 the	 second	 derivatives	 of	 the	 exact	 pdf	 are	 large	 as	
demonstrated	 by	 Eq.(4)	 of	 [13].	 In	 the	 original	 implementation	 of	 this	 idea	 by	 Berg,	
however,	while	pdfs	with	large	second	order	derivatives	are	improved,	the	procedure	was		
limited	to	two	adjacent	bins	and	therefore	does	not	demonstrate	the	full	applicability	of	the	
procedure.		As	well,	such	procedures	lead	to	flattened	tails	but	do	not	improve	the	overall	
sampling	 efficiency	 and	 hence	 the	 efficiency	 of	 the	 sampling	 method	 cannot	 be	 reliably	
estimated.		Consequently	such	procedures	were	not	considered	in	this	thesis.	
	
					Our	 Multicanonical	 Monte	 Carlo	 calculations	 are	 affected	 by	 a	 fundamental	 difficulty.		
While	in	problems	with	known	pdfs	such	as	analytic	pdfs	the	Multicanonical	Monte	Carlo	is	
highly	 efficient,	 if	 the	 pdfs	 are	 unknown,	 the	 Multicanonical	 Monte	 Carlo	 procedure	
requires	the	techniques	in	Chapter	2	to	generate	reliable	results	that	however	often	exhibit	
fluctuations	 in	 their	 tail	 regions.	 However,	 problems	 for	 which	 the	 pdf	 is	 unknown	
correspond	to	the	most	important	applications	the	Multicanonical	Monte	Carlo	procedure.	
Accordingly,	 the	 issue	 of	 how	 to	 determine	 the	 accuracy	 of	 Multicanonical	 Monte	 Carlo	
results	constitutes	a	fundamental	 issue.	Firstly,	when	the	pdfs	are	unknown,	the	accuracy	
of	 the	Multicanonical	 Monte	 Carlo	 calculation	 is	 difficult	 to	 determine.	 	 Additionally	 the	
computation	time	may	be	insufficient	to	enable	the	sampling	of	low	probability	regions	by	
the	standard/unbiased	Monte	Carlo	that	can	serve	as	a	reference	calculation.	Hence,	most	
applications	of	Multicanonical	Monte	Carlo	cannot	be	tested	directly.	However,	alternative	
methods	of	verification	can	be	constructed	if	the	pdf	can	be	derived	in	regions	of	very	low	
probability.	
	
					It	is	further	possible	to	improve	the	computational	efficiency	in	some	cases	by	restricting	
the	sampling	to	regions	of	physical	interest.	[34]	This	is	done	by	unconditionally	rejecting	
states	in	high	probability	regions.	 	This	leads	to	a	conditional	pdf	which	although	was	the	
quantity	of	interest	in	e.g.	[34]	can	also	be	combined	with	sampling	results	in	other	regions	
to	generate	the	full	pdf.	[35]	Along	these	lines, I	attempted	to	generate	conditional	pdfs	by	
rejecting	states	from	areas	in	which	the	pdfs	obtained	in	two	successive	iterations	were	in	
good	agreement.	These	conditional	probabilities	were	then	combined	to	generate	 the	 full	
pdf.	While	 this	 procedure	more	 efficiently	 directs	 the	Markov	 chain	 into	 regions	 of	 low	
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probability	and	low	accuracy,	I	found	that	the	small	errors	in	the	conditional	probabilities	
degraded	the	overall	result	for	the	pdf.	
	
6.4	Proposals	for	future	work	
					The	 Lattice	 Boltzmann	model	 of	 Chapter	 2	 and	 Chapter	 3	 can	 only	 be	 applied	 to	 low	
Reynolds	 number	 flows.	 	 Hence	 the	 drags	 computed	 in	 Chapter	 5	 pertain	 to	 Reynolds	
number	 of	 approximately	 40	 Reynolds	 corresponding	 to	 laminar	 flows.	 To	 adapt	 our	
method	to	for	example	aerodynamically	interesting	problems,	the	Reynolds	number	should	
be	increased	to	at	least	103 	in	order	to	generate	transient	or	turbulent	flows.	Unfortunately,	
two	challenges	appear	when	we	extend	the	multicanonical	procedure	to	the	prediction	of	
drag	probability	associated	high	Reynolds	number	flows	for	more	complex	systems	such	as	
realistic	 airfoils.	 In	 particular,	 displacing	 a	 small	 surface	 region	 significantly	 alters	 the	
computed	drag	and	hence	degrades	the	accuracy	of	the	multicanonical	method.	However,	if	
appropriate	 methods	 can	 be	 found	 for	 implementing	 the	 boundary	 condition	 and	 the	
Lattice	 Boltzmann	 formalism	 and	 that	 also	 ensure	 Markov	 Chain	 transitions	 yield	 small	
changes	in	the	output	variables	of	interest,	the	methods	of	this	thesis	could	be	extended	as	
well	to	high	Reynolds	number	flows.		
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