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Abstract 

As the demand for higher data rates increases, wireless technologies (e.g., satellite communications, 

fifth Generation (5G) wireless communications, and automotive radars) are migrating toward 

millimeter-wave (mm-W) frequencies (30-300 GHz) to utilize the numerous unused spectra available 

over this frequency band. For truly ubiquitous coverage over the globe, high throughput Ka-band 

satellite communication (SATCOM) offers the most optimal and a unique solution for providing 

world-wide information and sensing. Of particular interest is the development of land, or close-to-

land, mobile systems for high data rate communications with continuous coverage for on-the-move 

commercial platforms, including cars, airplanes, ships, and trains. A modular and scalable phased-

array antenna (PAA) architecture wherein the entire phased-array system is made of identical sub-

array modules (building blocks) is the most promising approach to develop cost effective and flexible 

systems for mass market applications. Obviously, such architecture depends on the availability of a 

high-performance antenna element, antenna subarray modules, and beam-forming circuits. These are 

the main topics investigated in this PhD thesis. Two approaches were extensively studied in this PhD 

research to develop intelligent steerable antenna array modules as building blocks for large-scale Ka-

band SATCOM applications.  

The first approach targeted the development of a working prototype for a wide-angle beam-steering 

Ka-band active PAA (APAA). In this approach, two APAA architectures were proposed, designed, 

fabricated, and measured to validate the proposed concepts. Both approaches exhibit wide beam-

steering angles and fast beam-forming capabilities with full control on amplitude and phase of each 

antenna element by utilizing an intelligent beam-forming circuit that was developed at CIARS 

(Centre for Intelligent Antenna and Radio Systems). The first architecture comprises a novel single-

fed CP antenna element integrated with the intelligent beam-forming circuit, to construct a wide 

beam-steering and low-cost CP-APAA. A 4×16 CP-APAA was designed and fabricated using low-

cost printed circuit board (PCB) technology and it was tested over the frequency range (29.5-30 GHz) 

over an angular range of 0o-±40o. The second architecture utilized a highly integrated and wide band 

dually-polarized antenna element as a core component for the realization of a high-performance, 

compact, and polarization-agile Ka-band APAA module. The proposed antenna module was used to 

construct a proof-of-concept 16×16 modular APAA to radiate a high polarization purity pattern over a 

wide beam-steering angles ≥70o.    



 

 v 

The second proposed approach investigated two novel wideband and passive steerable antenna 

concepts as attractive low-cost alternatives suitable for a wide range of emerging mm-W 

communication systems. Such antenna systems are made of passive components, antennas, phase 

shifters, and passive feeding networks to reduce the power consumption, cost, and complexity of 

conventional active electronically steered arrays. In order to build such systems, a high-performance 

antenna and passive phase shifter (invented at CIARS) were integrated to eliminate the necessity for 

costly variable gain amplifiers (VGAs). The first proposed concept is a novel CP passive PAA 

comprised of the proposed single-fed CP antenna integrated with the CIARS phase shifter. The novel 

high-performance passive phase shifter was controlled by a low-profile and low-power consumption 

novel magnetic actuator to overcome the limitation of state-of-the-art passive phased arrays. The 

proposed CP passive PAA was designed, fabricated and tested at Ka-band (29.5-30.5 GHz) over an 

angular range of 0o-±38o. The second concept proposed here is a novel reconfigurable reflectarray 

antenna (RAA) element with a true-time-delay functionality. Its reconfigurability is realized by 

utilizing the proposed phase shifter integrated with an aperture-coupled microstrip patch antenna 

(ACMPA) to receive and re-radiate the electromagnetic energy efficiently. The proposed RAA 

element was designed and tested at Ka-band (27.5-30 GHz). 
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 1 

Chapter 1 

Introduction 

1.1 Introduction 

As the demand for higher data rates increases, wireless technologies (e.g., satellite communications, 

5G, and automotive radar) are migrating toward millimeter-wave (mm-W) frequencies (30-300 GHz) 

to utilize the numerous unused spectra available over this frequency band [1-40]. For truly ubiquitous 

coverage over the globe, high throughput Ka-band satellite communication (SATCOM) offers the 

most optimal and a unique solution for providing world-wide information and sensing. Such a system 

will extend the boundaries of the digital economy to remote areas that terrestrial wireless systems can 

never reach. Of particular interest is the development of land, or close-to-land, mobile systems for 

high data rate communications with continuous coverage for on-the-move commercial platforms, 

including cars, airplanes, ships, and trains [1-2, 4-10, 12-14, 19-23, 31, and 36-39]. Low-profile 

active intelligent antenna systems, such as phased-array antennas (PAAs), are considered to be the 

most promising radio architectures for such applications. PAA systems can offer low-profile, highly 

conformal, and flexible solutions with fast beam-scanning, as compared to reflector antennas or fixed-

beam array antennas [1-2, 5, 21, and 36-37]. These unique features are on high demand for emerging 

Ka-band mobile SATCOMs, for which essential requirements are: low-profile configuration, 

conformal geometry, rapid multi-beam tracking, high gain, very low side-lobe level (SLL), and a high 

purity circularly polarized (CP) radiation pattern over the entire scanning range. The PAA beam 

should be steerable over a wide angular range of ±70 ̊in elevation and 360o in azimuth, over a wide 

frequency range (> 2 GHz) in Ka-band. For commercial satellite mobile terminals, the radiation 

power density should follow a highly stringent standard mask. Usually, a large antenna aperture is 

utilized to increase the gain to overcome the path loss at Ka-band and sustain a robust communication 

link with geostationary earth orbit (GEO) and low earth orbit (LEO) satellites, over the entire range of 

scan angle [1-2,4, 7, 21, 36-37, and 39]. Moreover, highly complex multilayered feeding and 

calibration circuitry are required for such systems. As a result, a PAA that meets mobile SATCOMs 

operational requirements is a highly complex, high performance, and large-scale array antenna 

structure. Existing phased-array technologies [21], despite their obviously superior performance, have 

not yet been implemented in large-scale commercial mobile satellite networks to their high-cost, 

high-profile, and high implementation and manufacturing complexities.  
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1.2 Drawbacks of current Ka-band SATCOM solutions 

Existing relatively low-cost solutions such as reflector antennas [41] and fixed beam antennas with 

mechanical steering [38] are not suitable for satellite on-the-move (SOTM) applications because of 

their high-profile and slow mechanical beam-steering [42]. Digital beam-forming based solutions [21 

and 56] are high-cost, complex, and high-profile compared to analog PAA. On the other hand, 

building a complex and large-scale PAA with printed circuit board (PCB) technology is a challenging 

task for fabrication companies and fabrication errors are inevitable; moreover, such structures 

required high-cost and time-consuming maintenance servicing [43]. Furthermore, it is very difficult 

for such large and complex boards to conform over curved surfaces—this is crucial requirement when 

developing a communication system that will be deployed on moving terminals (e.g., airplanes, cars, 

trains, and ships) with minimal aerodynamic drag. Other challenges associated with current solutions 

are the performances limitations of the building blocks (antennas, phase shifters, amplifiers, and feed 

circuit) of the PAA such as limited operating frequency bandwidth, limited beam-steering range, high 

mutual coupling, high power consumption, amount of heat generated, large size, and 

packaging/integration complexities.      

1.2.1 Limitations of the building blocks 

Electronic beam-scanning capability is the major advantage of active PAAs (APAAs). However, this 

capability requires high-performance building blocks such as antennas, phase shifters, amplifiers, and 

switches. Such components need to be simple, compact, wide band, low-cost, low-power 

consumption, and low loss. Planar antenna technologies typically operate over a limited frequency 

bandwidth of <5%, and as the spacing between the adjacent elements is reduced to ≤0.5λo the mutual 

coupling increases significantly. In the case of low elevation scanning angles and large-scale phased 

arrays, this leads to large impedance variation of the antenna elements. As a result, there is a 

reduction in the overall system efficiency as well as more power consumption and generated heat. 

Furthermore, the antenna element should be simple and have a wide operating frequency band. It 

would be required to demonstrate high cross-polarization (X-pol) discrimination over a wide angular 

beam-width to sustain a high-quality data link and avoid undesired interferences [44-50]. Phase 

shifter is one of the most critical components in the development of a PAA. By controlling the phase 

of each individual phase shifter, the beam of the antenna can be steered towards a specific direction. 

The phase shifter must have low insertion loss (IL) variation over the operating frequency range to 

eliminate the necessity for costly high-performance variable gain amplifiers (VGAs). State-of-the-art 
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phase shifters usually suffer from high IL as well as high IL variation; as a consequence, a high 

dynamic range VGA or attenuator is required to mitigate the phase shifter’s performance [51]. 

1.2.2 Cost and complexity 

The cost and complexity of active feed circuits have seriously limited the deployment of active PAA 

in mass market applications. As a PAA consists of a large number of different components as well as 

large complex PCBs, the cost of such systems has been beyond the reach of customers for 

commercial applications. Furthermore, integrating multiple radio frequency (RF) components within 

a small area is still a challenging task due to cost/complexity of automatized fabrication processes and 

fine feature patterning. However, recent advances in commercial monolithic microwave/mm-W 

integrated circuit (MMIC) technologies [29, 35-37], as well as novel passive device technologies [51 

and 114-115], have created new possibilities for implementing active beam-steering front-ends in a 

highly cost-effective manner. Moreover, the advances in multi-layer PCB fabrication and additive 

manufacturing have contributed hugely to the development of very complicated but cost-effective 

multi-layer fabrication technologies with flexible and solid substrates [52-55]. As a result, the 

development of conformal PAAs that use low-cost technology and fabrication processes for mm-W 

applications are soon becoming affordable.   

1.3 Objectives of this research 

In this section, the main objectives of this research are explained, and their importance is highlighted. 

A modular and scalable PAA architecture wherein the entire phased-array system is made of identical 

sub-array modules (building blocks) is the most promising, flexible, and cost-effective approach to 

develop large-scale phased-array systems for mass market applications. There are four main 

advantages with this approach. i) It is low-cost and can be quickly maintained. ii) A flexible and 

scalable PAA architecture can be developed easily by choosing the optimal array shape without 

redesign of the antenna modules. iii) It can be deployed on flat or curved platforms. iv) Building a 

modular PAA with discrete modules reduces undesired surface wave modes and mutual couplings 

between the antenna modules since the modules do not share the same dielectric substrate and 

ground. Obviously, such architecture depends on the availability of a high-performance antenna 

element, antenna subarray modules, and beam-forming circuits. These are the main topics 

investigated in this PhD thesis. Two approaches were extensively studied in this PhD research to 

develop an intelligent antenna array module as a building block for Ka-band SATCOM systems. 
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Figure 1.1 illustrates the proposed solutions that were developed and investigated in this PhD thesis. 

Figure 1.2 demonstrates CIARS modular and scalable two-way APAA architecture that employs the 

proposed solutions of this PhD research for commercial SATCOM applications.     

1.3.1 A wideband, modular, and scalable mm-W APPA architecture for wide beam-

steering   

The first approach targeted the development of a working prototype for a wide beam-steering Ka-

band active PAA (APAA). In this approach, two APAA architectures were proposed, investigated, 

fabricated, and measured to validate the proposed concepts. The first architecture uses a novel single-

fed CP antenna element integrated with CIARS (Centre for Intelligent Antenna and Radio Systems) 

intelligent beam-forming module, to construct a high-performance CP-APAA for wide beam-steering 

SATCOM system. A 4×16 CP-APAA was designed and fabricated using three-metal layers low-cost 

printed circuit board (PCB) technology as a proof-of-concept. The intelligent beam-forming circuit 

was used to control both the amplitude and the phase of the 64 antenna elements independently. The 

proposed CP-APAA was tested over a wide scanning range from 0o to ±40o in the elevation. 

Furthermore, the SLL of the radiation pattern was successfully controlled by tapering the power level 

over the antenna aperture. Also, it was shown that the same structure can be used to generate multiple 

beams. In one example, two different beams were simultaneously generated with different scan angles 

and unequal power levels. The second architecture utilized a highly integrated and wide band dually-

polarized antenna element as a core component for the realization of a high-performance, compact, 

and polarization-agile Ka-band APAA module to meet the stringent requirements of on-the-move 

SATCOM system. The proposed antenna module was used with CIARS intelligent beam-forming 

circuit to construct a proof-of-concept 16×16 modular APAA. The proof-of-concept was successfully 

measured over a wide frequency band (28-31 GHz) for wide beam-steering angles (0o-60o).              

1.3.2 A novel low-cost mm-W steerable antenna 

The second proposed approach investigated two novel wideband and passive steerable antenna 

concepts as attractive low-cost alternatives suitable for wide range of emerging mm-W 

communication systems. Such antenna systems are made of passive components, antennas, phase 

shifters, and passive feeding networks to reduce the power consumption, cost, and complexity of 

conventional active electronically steered arrays. Furthermore, a single passive steerable antenna 

array made of reciprocal components was investigated to work both as a transmitter element and a 
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receiving element. In order to build such systems, a high-performance antenna and passive phase 

shifter, advanced at CIARS, were developed and integrated to eliminate the necessity for costly 

variable gain amplifiers (VGAs). The first proposed concept is a novel CP passive PAA comprised of 

a single-fed CP antenna integrated with the aforementioned high-performance passive phase shifter. 

The novel high-performance passive phase shifter was controlled by a low-profile and low-power 

consumption novel magnetic actuator to overcome the limitation of state-of-the-art passive phased 

arrays. The proposed CP passive PAA was designed, fabricated and tested at Ka-band. It showed a 

high-performance CP radiation with high cross-polarization discrimination over wide scan angles 

from 0o to ±38o over the frequency band (29.5-30.5 GHz). The second concept proposed here is a 

novel reconfigurable reflectarray antenna (RAA) element with a true-time-delay functionality. Its 

reconfigurability is realized by utilizing the proposed phase shifter integrated with an aperture-

coupled microstrip patch antenna (ACMPA) to receive and re-radiate the electromagnetic energy 

efficiently. The proposed RAA element was designed and tested over the frequency range of 27.5-30 

GHz. Measurements show that a reflection phase of almost 360o can be realized over an 8.7% 

frequency band with a maximum reflection loss of 4.5 dB. 

 

 

Figure 1.1: Thesis flow. 



 

 6 

 

Figure 1.2: CIARS two-way architecture of APAA. 

1.4 Outline of this thesis 

Chapter 2 of this thesis provides theoretical background and a literature review of state-of-the-art 

configurations. The limitations and drawbacks of the available solutions are discussed to highlight the 

importance of this thesis research, which provides new and effective solutions to overcome these 

limitations and drawbacks.   

Chapter 3 introduces a novel single-fed CP antenna with an active reflection coefficient <-10 dB, 

over the elevation (θ), at angular range of 0o-60o in all azimuthal (φ) ranges. Moreover, it shows a 

wide AR beam-width to sustain circular polarization over the elevation (θ) angular range of 0o-40o 

over the entire azimuthal (φ) range (360o). Using a commercial three-metal-layer low-cost PCB 

process, a 4×16 CP-APAA, incorporating the aforementioned CP antenna element, was developed. 

This structure was used as a proof-of-concept for the first approach studied. The proposed CP-APAA 

was tested over a wide scanning range from 0o to ±40o in the elevation. Furthermore, the SLL of the 

radiation pattern was successfully controlled by tapering the power level over the array antenna 

aperture. Also, it was shown that the same structure could generate multiple CP beams. 

Chapter 4 presents a dual-fed and dual-polarized antenna that, once incorporated into CIARS 

intelligent beam-forming module, offered an active reflection coefficient <-10 dB over the elevation 

(θ), at an angular range of 0o-50o in all azimuthal (φ) range (360o). The antenna sub-array was 
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fabricated by an advanced multi-layer PCB technology to realize a modular APAA for Ka-band 

SATCOMs. A proof-of-concept for wide band (3 GHz) and wide beam-steering (≥70o) operation was 

developed and measured. 

Chapter 5 discusses the development of a low-cost and high-performance phase shifter. This phase 

shifter yields a high figure of merit (FOM) that paves the way to develop a high-performance passive 

PAA. Moreover, a low-cost, low-profile, and low power consumption magnetic actuation developed 

at CIARS is presented as a practical solution to control the phase response of the proposed phase 

shifter.   

Chapter 6 provides details of a proposed low-cost, low-profile, and a compact CP passive PAA. 

This passive PAA is presented as a promising solution for mm-W applications. The PAA was 

investigated, fabricated, and successfully tested. The novel CP antenna proposed in chapter 4 

integrated with the high-performance passive phase shifter, developed in Chapter 5, is presented and 

experimentally verified. The proposed CP passive PAA achieves high performance RHCP radiation 

with high cross-polarization discrimination over a wide scanning angle from 0o to ±38o over the 

frequency band (29.5-30.5 GHz). An AR< 3dB is demonstrated over the entire scanning angle. Then, 

a novel reconfigurable RAA element with true-time-delay functionality is presented. The proposed 

RAA element was designed and tested over the frequency range of 27.5-30 GHz. 

Finally, chapter 7 concludes the thesis by summarizing the findings of the research and suggesting 

several directions for future research.  
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Chapter 2 

Background and Literature Review 

2.1 Introduction 

This chapter briefly reviews some basic concepts, techniques, and state-of-the-art technologies 

available in the literatures. The chapter starts with system requirements for Ka-band SATCOMs. A 

simple definition of PAA will be provided along with a brief discussion of recent world-wide efforts 

for applying this technology to SOTM applications, specifically the most promising ones, with an 

emphasis on array antenna concepts that offer beam-steering features with a conformal or low-profile 

configuration. The concept of steerable RAA is also presented below followed by a discussion of 

state-of-the-art methodology in this field. Finally, a review of state-of-the-art phase shifters is 

provided, and their limitations and drawbacks are highlighted.  

2.2 Ka-band SATCOMs 

The proliferation of smart phones, tablets and mobile satellite receivers coupled with an increased 

demand for high quality entertainment, media, and data services for on-the-move terminals (e.g., 

automobiles, trains, ships, airplanes), emphasizes the need for high data-rate communication links. In 

this aspect, Ka-band mobile SATCOMs have received considerable attention. Such communication 

system requires a low-profile robust antenna system to dynamically track the satellite when the 

terminal is moving and maneuvering [1-2,4, 7, 21, 36-37, and 39]. This thesis research focuses on 

investigation and development of a steerable-beam modular antenna system architecture for SOTM 

applications at Ka-band (27.5-31 GHz). Typical applications of a SOTM two-way communication 

system [31] are shown in Figure 2.1. The most fundamental and stringent requirements of SOTM 

systems are [1-2,4, 7, 21, 36-37, 39, 60]: 

• A high effective isotropic radiated power (EIRP) of the order of 48 to 50 dBW, required to 

provide users with a reliable high data rate connectivity.  

• Dual-band operation, 20 GHz downlink and 30 GHz uplink with 500 MHz frequency 

bandwidth. 

• Fulfill Federal Communications Commission (FCC) mask requirement for the radiation 

pattern across the entire scanning range (see Figure 2.2) [56-60]. 
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• Switchable CP with cross-polarization (X-pol) discrimination better than 20 dB for all scan 

angles. 

• Fast beam steering capability covering ±70˚ in elevation, and 360˚ in azimuth. 

• Low profile, conformal and lightweight. 

• High beam pointing accuracy (<0.2o) to prevent interference with the adjacent satellites. 

Addressing the abovementioned requirements is a highly challenging task, and to the best of the 

author’s knowledge, there is no existing commercial products or reported R&D prototype that satisfy 

all of these requirements on APAA. Conventional antennas used in the commercial sector are based 

on mechanically-scanned beam reflectors or hybrid configurations. Low profile SOTM PAAs are still 

the subject of intense research and development efforts world-wide [8]. 

 

Figure 2.1: SOTM two-way communication system [31] © 2018 IEEE. 
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Figure 2.2: FCC spectral mask [60]. 

2.3 Antenna  

2.3.1 Planar antenna  

Planar antennas have been extensively employed for a vast number of applications due to their 

numerous advantages. Lightweight, low profile, mature fabrication technology, ease of integration 

and packaging, and design flexibility are among the most important features that planar antenna 

technology offers [7, 21, 42, 44, and 61-63]. The planar antenna in its basic configuration is 

comprised of two metal layers, namely the radiator and ground, and these metal layers are mounted 

on a dielectric substrate that is used for mechanical support and size reduction. The radiator can be of 

any shape as long as it is designed to radiate the required radiation pattern at the operating frequency. 

However, antenna experts tend to use regular geometries such as rectangles, squares, circles, 

ellipticals, tringles, and annular rings because of the availability of analytical formulations for such 

structures, which makes the antenna design and optimization simple and fast [6]. In general, planar 

antenna feeds are classified into two main types: direct and indirect feed structures. A direct feed 

antenna is realized through direct physical connection between the feed [e.g., transmission line (TL) 

or pin] and the radiator. On the other hand, an indirect feed antenna is realized by electromagnetic 

coupling [e.g., capacitive or inductive] between the feed and the radiator. Microstrip fed and coaxial 

pin fed are examples of direct feed antennas, and proximity fed and aperture-coupled are examples of 
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indirect feed antennas [61]. Among all feed structures, ACMPA (aperture-coupled microstrip patch 

antenna) exhibits better performance—wider operating frequency bandwidth and lower spurious feed 

radiation, and compatibility for MMIC integration [63]. 

Typically, an ACMPA consists of three metal layers and two dielectric substrates, as shown in Figure 

2.3. The top metal layer is a microstrip patch, the middle metal layer is a common ground with 

aperture coupling slot, and the bottom metal layer is a TL that couples the electromagnetic field to the 

microstrip patch through the aperture slot. The ACMPA gives more degrees of freedom to efficiently 

design both the patch and the TL since two dielectric substrates are employed in its realization. The 

antenna’s substrate usually has a low dielectric constant (εr =1-4) chosen to achieve higher radiation 

efficiency and wider frequency bandwidth. The feed’s substrate usually has a high dielectric constant 

(εr =4-12) to miniaturize the TL dimensions and confine the propagating electromagnetic field locally 

[61]. The microstrip patch usually is a half-guided wave length (λg/2) resonator that generates the 

dominant resonance mode and can be easily excited with a simple feed structure. The aperture slot 

behaves as an impedance transformer with a transformation ratio of n:1 to match the patch impedance 

to the TL feed. The feed line usually has a 50Ω characteristic impedance for ease of integration with 

MMICs. An open stub with a quarter-wave length (λg/4) is connected to the 50Ω TL for impedance 

matching [63]. 

 

Figure 2.3: ACMPA typical structure [63] © 1989 IEEE. 
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An ACMPA can be used to generate a linearly polarized (LP) or CP pattern [63-64]. ACMPAs 

have been reported in the literature with single or dual feeds for CP antenna realization. A Single-fed 

CP aperture-coupled antenna is a simple structure and requires less beam-forming components than 

the dual-fed antenna. However, single feed antenna shows a narrower impedance and axial ratio (AR) 

bandwidths compared with dual feed version. Dual-fed antenna also has the capacity for polarization 

switchability and polarization purity enhancement. In a single-fed aperture-coupled antenna, CP can 

be generated by modifying the microstrip patch or the slot to generate two orthogonal degenerate 

modes with the same amplitude and a 90o phase difference. The microstrip patch can be modified to 

generate a CP pattern either by adding or subtracting a perturber located at 45o from the feed point, 

and an analytical formulation has been developed in the literature to calculate the required size of the 

perturber for some typical patch antennas [62]. On the other hand, the aperture slot can be modified in 

such a way that the microstrip patch is excited with two orthogonal modes to generate the CP pattern 

[65].  

2.3.2 CP (circularly polarized) antenna 

To generate a CP pattern, two electrical-field (E-field) components are required with the same 

amplitude and a 90o phase difference between them. Despite its design complexity compared to LP 

antenna, CP is used in SATCOMs due to its immunity to Faraday rotation, mitigation of multipath 

propagation, and insensitivity to transmitter and receiver misalignment [66-68]. The E-field (𝐸⃗ (𝑥, 𝑦) ) 

in the polarization plane can be decomposed into two components [69] x-component (𝐸𝑥𝑜(𝑥, 𝑦)𝑒𝑗∅1) 

and y-component (𝐸𝑦𝑜(𝑥, 𝑦)𝑒𝑗∅2)  

𝐸⃗ (𝑥, 𝑦) = 𝑥 𝐸𝑥𝑜(𝑥, 𝑦)𝑒𝑗∅1 + 𝑦 𝐸𝑦𝑜(𝑥, 𝑦)𝑒𝑗∅2                                                    (2.1) 

In order to generate a CP pattern, the following condition must be satisfied |𝐸𝑥𝑜|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |𝐸𝑦𝑜|⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and ∆∅ =

∅1 − ∅2 = ±(
1

2
+ 2𝑛)𝜋 where n=0,1,2, … positive for right hand circular polarization (RHCP) and 

negative for left hand circular polarization (LHCP). 

Axial ratio (AR), which is the ratio of the major axis to the minor axis in the polarization ellipse as 

shown in Figure 2.4,  is a figure of merit to evaluate the polarization purity and it can be calculated by 

equation (2.2): 

𝐴𝑅 =
𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠

𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠
=

𝑂𝐴

𝑂𝐵
                                                                                      (2.2) 
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where 

𝑂𝐴 = [
1

2
{𝐸𝑥𝑜

2 + 𝐸𝑦𝑜
2 + [𝐸𝑥𝑜

4 + 𝐸𝑦𝑜
4 + 2 × 𝐸𝑥𝑜

2 𝐸𝑦𝑜
2 cos⁡(2∆∅)]

1/2
}]

1/2

           (2.3) 

and 

𝑂𝐵 = [
1

2
{𝐸𝑥𝑜

2 + 𝐸𝑦𝑜
2 − [𝐸𝑥𝑜

4 + 𝐸𝑦𝑜
4 + 2 × 𝐸𝑥𝑜

2 𝐸𝑦𝑜
2 cos⁡(2∆∅)]

1/2
}]

1/2

           (2.4) 

 

Figure 2.4: Polarization ellipse [69] © 2005 WILLEY. 

Typically, if an antenna generates a radiation pattern with AR ≤3 dB, it is considered a CP antenna. 

Generating a wideband CP pattern is a challenging task since the antenna must be designed with two 

constraints that are good return loss |S11|< -10 dB and good AR < 3dB compared with LP antenna, 

which usually needs to satisfy only the return loss (RL) condition. Moreover, in PAAs the problem 

complexity increases as the antenna should also sustain the |S11| and AR levels over a wide angular 

range. The RL problem arises from the array environment affects due to mutual coupling and surface 

waves; furthermore, sustaining two orthogonal modes with the same amplitude and a 90o phase 

difference over a wide angular beamwidth is an extremely difficult problem due to the fact that the 

radiation patterns of these two orthogonal-modes are not the same. Therefore, although in one 

direction, usually boresight (optical axis), the antenna radiates a perfect CP, as the observation angle 

devatas from the perfect CP angle the radiated electric fields from these two modes become different. 

In addition, the CP-PAA needs to operate over a wide frequency bandwidth with good polarization 

purity, wide elevation angular beamwidth, and over the entire azimuthal angular range [32 and 70-72] 

As a result, designing a wide band CP PAA for wide scanning angle is highly complex and 

challenging problem, and there are very few works with very limited capabilities, which have been 
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reported in the literature. Single-fed CP-PAAs are relatively simple, but they exhibit very limited 

operating frequency bandwidth and scanning range [32, 70-73].                      

2.3.3 Phased-array concept 

A PAA is a multi-antenna system in which the radiation pattern can be shaped to have a maximum in 

a particular or certain number of desired direction and much less radiation in undesired directions. 

The direction of phased array maximum radiation can be electronically steered, obviating the need for 

any mechanical rotation. PAAs with RF beam-forming commonly consist of four building blocks: 

antenna elements, passive feed circuit, active or passive beam-control devices including amplitude 

and phase shifters, beam-forming control system incorporating digital processors. They can be 

classified into two types: active and passive phased arrays as shown in Figure 2.5. As can be seen in 

the figure, an APAA allows full control of the aperture field (phase and amplitude) since each antenna 

element excitation is controlled by variable gain power amplifier and phase shifter on the transmitter 

(Tx) side, and a low noise amplifier with gain control and phase shifter on the receiver (Rx) side. 

However, this configuration is complex, expensive, large, and power hungry due to the large number 

of active components. Furthermore, separate Tx and Rx apertures are a must for wide scanning 

applications. A passive PAA can overcome these drawbacks to a significant extent if a high-

performance passive phase shifter and feeding network can be developed. Moreover, it allows to the 

possibility of sharing the antenna and phase shifter between the Tx and Rx sides and leads to a more 

compact and low-cost system realization, a highly desirable feature for small platforms such as 

airplanes and vehicles [74-75]. 

 

Figure 2.5: Active and passive PAA structures [75] © 1999 IEEE. 
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Figure 2.6 shows N radiating antenna elements with different orientation and radiation 

pattern/polarization arbitrarily located in the space. Each antenna element is excited by a complex 

number (e.g., wi). Assume that the complex vector pattern of the antenna element number i with a 

unity excitation amplitude to be ),( if


. The complex vector pattern ),( if


 determines the 

radiation pattern and polarization of the ith element in the far zone. The electric field, )(0 rE


of the 

element number “0”, which can be referred to as the reference element, located at the origin, 

evaluated at a point r


 in the far-field can be found by equation (2.5) [76]. 
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where 𝑘𝑜 =
2𝜋

𝜆
, denotes the wave constant. The distance from the ith antenna element, located at ir


, 

to the desired far-field point (𝑃), i.e. ir


, is given by 
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−−        [Paraxial approximation]                 (2.6)  

where 𝑟̂ is the unit vector along r


. Therefore, the far field from the ith element can be approximated 

as: 
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Where in the far-field region, where irr


  , the magnitude of irr


− in the denominator of 

spherical wave factor can be safely replaced by the length of r . Therefore, based on Superposition 

Principle the total [76] the total electric field, )(rE


, radiated from an ensemble of dissimilar antenna 

elements with different orientation is the vector sum of the electric fields radiated by individual 

antenna elements, and is given by: 
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This is a generalized expression for the far-field from an ensemble of arbitrary antenna elements. If 

the array is made of identical antenna elements, which are also identically oriented, which means that

Niffi ,...,1,0);,(),( == 


, then the expression (2.7) reduces to a simpler and more common 

array factor equation: 
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Equation (2.8), known as the principle of pattern multiplication, consists of a product of two terms: 

the element pattern given in (2.5) and a summation called array factor (AF), which equals to 

𝐴𝐹(𝜃, ∅) = ∑ 𝑤𝑖𝑒
𝑗𝑘𝑜𝑟̂.𝑟𝑖𝑁

𝑖=1                                (2.9) 

 

Figure 2.6: Array antenna concept [132]. 

AF is a function of the array geometry and the elements excitation. As can been seen from equation 

(2.9) the radiated beam of the antenna array can be steered to any point by changing the excitation 

phases. This property is known as electronically scanning or electronic beam-steering, and such 

systems are known as phased-array antennas PAAs. Phase shifters or delay lines are used to adjust the 

excitation phase of each antenna element in order to steer the array’s beam towards the desired 

direction. 

2.3.4  Reflectarray antenna (RAA) 

A RAA inherits the advantages of a reflector antenna as a high-gain aperture system. It may require 

only a simple feed placed at a distance from the RAA to excite the aperture surface with the required 

amplitude and phase distribution; thereby, eliminating the complex and lossy feed circuit required by 

a conventional antenna array. Moreover, the feed source can be designed to provide the proper 

excitation distribution of the RAA surface, so the RAA can radiate either a shaped beam or a multi-

beam pattern to prescribed directions simultaneously. On the other hand, similar to the antenna array 

concept, the RAA aperture consists of multiple small antenna elements in a planar or a conformal 
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configuration and is both lightweight and low profile compared to bulky reflector antennas. Different 

mechanisms can be used to adjust the spatial phase (the phase of incident wave emitted from the feed 

structure at the location of each individual surface element) so that a collimated beam can be re-

radiated from the RAA aperture. Such mechanisms are classified mainly into two categories, namely 

fixed and steerable beams [7 and 77-81]. 

Figure 2.7 illustrates a general steerable RAA, whose radiation characteristics are analyzed below. 

Let us assume that the radiation beam is steered to an angle of ( )ss  , . A steerable RAA consists of 

a tunable phase-surface that is illuminated by a feed set at an appropriate distance. The phase-surface 

is constructed with an array of small antenna elements. The elements are excited by the 

electromagnetic fields emanating from the feed and then, by complex-weighting the induced signals, 

the re-radiated signals constructively added in the desired direction. In this structure, a steerable RAA 

has a general aperture shape represented by a contour which can be square, rectangular, circular, 

elliptical, or a curved (defined as a function of x and y). The feed has an arbitrary polarization and 

location and its main beam direction is focused toward a point on the aperture defined by S [82].  

 

Figure 2.7: Configuration of general steerable RAA and its re-radiation mechanism [82] © 2016 

IEEE. 

2.4 Literature review 

2.4.1 Active phased-array antenna 

A demonstrated Ka-band modular 8×8 array element realized using low temperature cofired 

ceramic (LTCC) technology is briefly described in this subsection. IMST, in cooperation 

with the Technical University of Hamburg, DLR and Astrium, began to develop digitally 
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beam-forming Rx/Tx frontend systems in 2001. They have demonstrated a number of 

versions so far; the first three prototypes being designed under the SANTANA project. Their 

most recent product has been successfully measured [83], showing an electrically-controlled 

scanning response up to 60˚. This antenna system is an APAA with digitally beam-forming 

architecture as demonstrated in Figure 2.8. 

 

Figure 2.8: Development flow of a Tx 8×8 SANTANA RF-module (LTCC) [83] © 2013 IEEE. 

The structure is a very complex frontend module consisting of 17 layers which include antenna 

elements, hybrid feeding structure, calibration network, active RF circuits, local oscillator (LO) 

distribution network, IF feeding network power, DC supply, and liquid cooling system making the 

large-scale fabrication and implementation of such system extremely difficult and costly. 

2.4.2 Passive phased-array antennas 

A wideband passive PAA can offer an attractive low-cost alternative for a wide range of emerging 

mm-W communication systems [24, and 84-90]. Such antenna systems are made of passive 

components (antennas, phase shifters, and passive feeding networks), as shown in Figure 2.9, to 

reduce the power consumption, cost, and complexity of the system. Furthermore, a single passive 

PAA made of reciprocal components can be utilized as both transmitter and receiver. In order to build 

such a system, a high-performance antenna and phase shifter must be developed and integrated. The 

antenna element should be simple and have a wide operating frequency band. Moreover, it would be 

required to demonstrate high cross-polarization discrimination over a wide angular beamwidth to 

sustain a high-quality data link and avoid undesired interferences. In addition, the phase shifter must 
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have low IL variation over the operating frequency range to eliminate the necessity for costly VGAs. 

The phase shifter needs to provide a continuous phase shift of 360o, so the beam can be steered to any 

direction in space precisely and quickly.             

A wideband phase shifter that uses a relatively low dielectric tapered slab to perturb the 

propagating electromagnetic wave in a TL is reported in [24 and 84-90]. This phase shifter was 

incorporated into a linear antenna array to develop a wideband passive PAA. A piezoelectric 

transducer (PET) was used to control this phase shifter. However, the passive PAAs presented in [24 

and 84-90] have several drawbacks and limitations. A large dielectric slab (>λo) is required to realize 

a 360o phase shift. Therefore, the inter-element spacing will be >>0.5λo in one plane of the two-

dimensional (2-D) PAA, which leads to the appearance of a grating lobe when the beam is steered in 

that particular plane. Furthermore, this method is limited to only linear (1-D) phase-array 

configurations. The PET requires a high voltage to operate, necessitating a high voltage power supply 

be a component of a large PAA. The PETs used in these structures are bulky. Furthermore, no 

packaging structure has been presented to date that protects such systems against environmental 

effects. In references [24 and 84-90], since a single tapered dielectric slab has been used to control the 

phase state of the antenna elements, the beam of these phased arrays can only be steered in one 

direction off-boresight. This is the main drawback of such structures. To steer the beam in two 

directions, a second complementary dielectric slab must be incorporated adding further complexity 

and increasing the size of the phased array. This type of PAA is prone to large pointing errors due to 

warpage of the PCB. Any local surface defect can affect the progressive phase state of that specific 

antenna element and there is no way to correct this phase error. This lack of independence can lead to 

serious difficulties in phase calibration. It should be noted that none of the reported configurations 

have been presented in a low-profile and packaged form. Moreover, to the best of the author’s 

knowledge, a CP passive PAA has not been presented in the literature employing this beam-scanning 

technique.  
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Figure 2.9: Typical passive phased array based on TL loading with dielectric slab [24] © 2017 IEEE. 

2.4.3 Reconfigurable reflectarray antennas 

A steerable RA is in high demand for a vast number of commercial systems such as SATCOM, 

wireless communication (e.g., 5G for base stations), space systems, sensors, and radar. In particular, 

the use of emerging mm-W frequencies appears to offer an attractive solution for an increasing 

number of ultra-high data rate communication and sensing systems. Given this backdrop, a simple 

and reconfigurable RAA UC is the core element necessary for the realization of such systems [79-81]. 

A number of reconfigurable RAA elements have been presented in the literature [91-93] that aim to 

provide a large tunable reflection phase. An RAA element operating at 5.4 GHz has been presented in 

[91] by loading two square-shaped rings with tunable varactor diodes. The reported element exhibits a 

tunable reflection phase range of 380o and a maximum reflection loss of 3.5 dB; however, it has a 

limited frequency bandwidth of 2.4% and its reflection loss is relatively high even at such a low 

operating frequency. A tunable high impedance surface has been developed in [92] to realize a 
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reconfigurable RAA element at 60 GHz. This element not only exhibits a very narrow frequency 

bandwidth but also it achieves a reflection phase of only 200o, while its reflection loss is 12 dB. 

Similarly, a tunable BST material has been used in [93] to capacitively load a patch antenna as a 

building element to develop a reconfigurable reflectarray which operates in the Ka-band. The above 

element suffers from a very high reflection loss, in the order of 16 dB. Furthermore, the reflection 

loss varies rapidly with the biasing voltage and leads to an increase of the SLL of the reflectarray, as 

may be seen in [94].  

2.4.4 Phase shifter 

The phase shifter is one of the most critical elements in a phased array system. It is the bottleneck in 

terms of reducing the cost and complexity of such systems and significantly affects the performance 

of the overall system. There are many factors that are used to evaluate a phase shifter. Phase shift 

variation range, IL, IL variation, size, cost, speed, integration, bandwidth, passivity, and high-power 

handling are the most crucial characteristics that should be considered in the choice of phase shifter 

[75 and 95]. Phase shifters are typically divided into analog and digital types. Despite their main 

attractive feature, namely their accurately predictable phase shift, digital phase shifters are a suitable 

choice only for applications that require discrete phase shift and for which power consumption is not 

a concern.  

The most desirable characteristics of a phase shifter, particularly for large phased array applications 

include low IL, low IL variation, wide operating frequency band, compact size, and reciprocity. Such 

phase shifters are key elements for realizing a low cost, low power consumption, and low complexity 

PAA. In particular, for a mm-W phased array system with (0.5λo x 0.5λo) cell size, it is quite 

important that the phase shifter has a small enough footprint that it can be placed directly underneath 

the antenna element and share the power amplifiers and low noise amplifiers among a group of 

antennas. Furthermore, these characteristics enable antennas and phase shifters to be shared between 

the Tx and Rx, thereby greatly reducing the cost, power consumption, complexity, and size of the 

PAA [75 and 96]. Therefore, a low cost, compact, and integrated phase shifter with low IL and 

minimal IL variation is essential for high performance telecommunication phased array systems.  

Micro-electro mechanical systems (MEMS)-based phase shifters are mainly of the digital type. 

Analog MEMS phase shifters are large and show a low FOM (figure of merit) [96-99]. Passive type 

MMIC phase shifters suffer from high IL, limited resolution and limited operating bandwidths [100-

104]. An alternative approach is to use tunable dielectric-based phase shifters such as ferroelectrics 



 

 22 

[105-108], and liquid crystal (LC) [109-111]. These materials have dielectric properties that change 

when exposed to an electric field, causing a phase change. All the aforementioned phase shifters can 

potentially be low cost and compatible with planar circuits. However, they show low FOM 

performance (< 50◦/dB) especially at the frequency bands of interest. Additionally, ferroelectric-

based phase shifters show a poor return loss over the operating frequency bandwidth [108], and phase 

shifters based on common LC materials suffer from slow response to the applied electric field [109]. 

Adding a perturber to the top of a planar TL and using mechanical actuators to change the phase shift 

[95 and 112-115] is the basis of another type of continuous phase shifter. Among these, elastomer-

based phase shifters require a very high biasing voltage [112] and the device occupies a large area. A 

metallic perturber, used in [95], generates a large phase shift variation and reduces the size of the 

device. However, the IL rapidly increases with frequency. Furthermore, the measured IL variation is 

substantially high. In [113-114], a low dielectric slab is used to tune the phase of a planar TL, but the 

length of the device should be sufficiently large to achieve the required phase shift. Also, the IL 

increases with frequency. Similarly, phase shifters using a magneto-dielectric disturber suffer from 

large size and high IL at high frequencies [115]. 

As a highly promising response to these challenges, a novel low loss phase shifter based on very 

high dielectric constant materials [e.g., barium lanthanide tetratitanates (BLT) ceramics] was reported 

in [116-117] (Figure 2.10). Based on this new concept, low IL and compact phase shifters with 

minimal IL variation have been developed in CIARS. The phase shifter consists of a coplanar 

waveguide (CPW) on a high resistivity silicon (HRS) substrate loaded by a BLT rectangular slab. By 

changing the gap between the CPW and BLT, the propagation constant of the CPW mode is perturbed 

causing a substantial change in phase. Among the proposed designs [116], the CPW-serpentine line 

loaded with BLT slab is more compact and offers higher phase shift (~369˚ at 30 GHz) than other 

approaches. However, it suffers from impedance mismatches that limit the operating frequency 

bandwidth, especially when it is loaded by a BLT slab with a high dielectric constant (ɛr; > 100). To 

solve this problem, the BLT slab is tapered from both ends to minimize reflections [117]. Although, 

this technique is successful in enhancing the operating bandwidth (more than 20 GHz), it degrades the 

phase shifter’s dynamic range and increases the complexity of the fabrication process. Moreover, due 

to the use of nonstandard fabrication methods the proposed designs in [116-117] might not be suitable 

for high volume low cost phased array systems. 
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Figure 2.10: CIARS BLT-based phase shifting concept [116] © 2014 IEEE. 

2.5 Conclusion 

This investigation shows that the design and realization of a CP Ka-band antenna system for SOTM 

communications has received significant attention during recent years. Specifically, to the best of 

author’s knowledge, a low profile and fully electronically steered beam antenna that fulfills the 

standard FCC mask requirement and frequency bandwidth over a wide angular scan range has not 

been demonstrated to date by any company or research team. Accordingly, there is a huge demand for 

a high performance, low cost, and simple CP PAA and steerable RAA with electronically-steerable 

beam functionality for SOTM operating at Ka-band frequencies. In the following chapters, the results 

of investigation of a number of enabling technologies for a new modular architecture for high 

performance but affordable phased-array systems for emerging KA-band SOTM applications will be 

presented. Although the proposed concepts are general, as a particular example, a number of new 

designs for high performance antenna elements with wide angular beamwidth capabilities and wide 

operating bandwidth as suitable antenna elements for Ka-band SATCOM system will be proposed, 

analyzed, and tested. Then the proposed antenna elements will be utilized to construct working 

prototype antenna sub-array modules and will be integrated with CIAR novel phase-shifter 

technology and multi-layer active array platform for CP Ka-band steerable antenna arrays for SOTM 

applications.           
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Chapter 3 

Ka-band Single-fed CP APAA for Wide Beam-steering  

3.1 Introduction  

The objective of this chapter is to develop and analyze a mm-W planar antenna element that is 

suitable for large-scale wide beam-steering PAA systems. The proposed antenna element was 

developed based on an ACMPA fed by a grounded coplanar waveguide (GCPW) transmission line 

(TL) and is intended to be directly integrated with different beam-steering networks. The antenna 

element was proposed as a candidate to build a proof-of-concept prototype Ka-band CP steerable 

PAA for SOTM applications. The single-fed CP antenna is comprised of a multimode slot resonator 

(MSR) to excite an elliptical microstrip patch (EMP) with a CP field. A simple design procedure was 

developed for the proposed antenna concept and a full-wave numerical simulation tool based on finite 

elements method (FEM) from ANSYS corporation was used to validate the proposed antenna. The 

antenna element was then utilized to construct a 4×4 CP fixed-beam antenna array module to validate 

the proposed antenna. The modularity concept was studied by implementing a 16×16 antenna array 

based on the 4×4 module as a proof-of-concept of a low-cost, simple, and modular Ka-band CP 

antenna array. 

A 4×16 CP-APAA was designed and fabricated using a three-metal-layer low-cost PCB technology 

as a proof-of-concept for the proposed antenna. The developed antenna array was used in CIARS 

active 4×16 active array platform containing eight-channel MMIC to control both the amplitude and 

phase of each individual antenna element in a 64-element array. The proposed CP-APAA was tested 

over a wide scanning range from 0o to ±40o in the elevation. Furthermore, the SLL of the radiation 

pattern was successfully controlled by tapering the power level over the antenna aperture. It was 

demonstrated that the developed array can generate multiple beams simultaneously at different 

scanning angles with arbitrary radiated power levels.   

3.2 Proposed single-fed aperture-coupled CP antenna I 

3.2.1 Proposed concept 

A CP PAA with a wide scanning angle requires an antenna element with a wide angular AR< 3 dB 

beam-width. In addition, the inter-element separation must be ≤λo/2 to avoid the grating lobe effect. A 

novel CP antenna element based on an ACMPA was proposed for Ka-band applications. The 
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proposed structure employs a new slot resonator to degenerate two orthogonal modes; these modes 

are then coupled to an elliptical shaped microstrip patch to radiate a CP pattern. In order to directly 

integrate the proposed antenna with different beam-forming circuits, a GCPW TL was utilized as a 

feed line. The first prototype of the proposed antenna concept was developed on 4000 series 

RT/duriod material from ROGERS corporation, a low-cost material and preferred by fabrication 

facilities.  

A proposed new aperture slot is the core component, its shape initially developed by modifying an 

annular square ring resonator (ASRR). A single mode ASRR can be designed to resonate at a 

frequency fn based on equation (4.1) [118]. 

𝑓𝑛 =
𝑛𝑐

4(𝐿1−𝑠)√𝜀𝑒𝑓𝑓
…    𝑛 = 1,2,3…                 (3.1) 

Where c is the speed of light in mm/s, L1 is the length of the ASRR arms in mm, S is width of the 

ASRR arms in mm, and εeff is the effective permittivity of the dielectric substrate. Figure 3.1 shows 

the configuration of the ASRR. It was developed on a substrate of RO3003 with εr=3. Using the 

equation (3.1), the arm’s length and width were calculated for the resonator to operate at 30 GHz. The 

ASRR was designed and simulated in full-wave simulator to validate the obtained dimensions based 

on weak excitation [119]. Figure 3.2a shows the RL of the simulated ASRR; it resonates at 30.15 

GHz. The small shift in frequency is attributed to the effect of the feed line and the resonance can be 

tuned easily. The ASRR generates a single mode Y-polarized standing wave as shown in Figure 3.2b.   

 

Figure 3.1: ASRR configuration. 
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(a)                                                        (b) 

Figure 3.2: Resonance response of ASRR: (a) S11 (dB) and (b) the average electrical field (V/m). 

Dual orthogonal modes can be degenerated if an asymmetry is imposed on the ASRR. This can be 

achieved by utilizing a perturbation mechanism [118-119]. By modifying one of the corners of the 

ASRR, dual-mode orthogonal resonances can be realized with resonance frequencies of fe<fn, and fo
 

>fn respectively, resulting in a dual-mode ASRR (DM-ASRR). By optimizing the shape and size of 

this perturber, the amplitudes of the two resonances (fe, and fo) can be adjusted to be equal at fo and 

the phase difference to equal 90o. This is the condition under which a CP pattern is generated with an 

AR of 0 dB in the boresight [118]; however, the frequency bandwidth of such a structure is usually 

narrow (< 2.5%) [122]. In this research, the perturbation was achieved by bending one of the corners 

of the ASRR so that dual orthogonal modes are realized as shown in Figure 3.3a. Full-wave 

simulation was used to optimize the lengths of the perturber’s arms to generate a CP pattern at 30 

GHz. The first resonance occurs at 29.55 GHz and the second resonance appears at 30.56 GHz, as 

shown in Figure 3.3b.  
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(a)                                                        (b) 

Figure 3.3: (a) DM-ASRR configuration, (b) S11 (dB). 

For this specific structure, the first resonance (fe) appears at φ=+45o (lower than fn as the length> L1; 

shown in Figure 3.4a black arrow), and the second resonance (fo) appears at φ=-45o (higher than fn as 

the length < L1; shown in Figure 3.4b black arrow). As a result, with this configuration a CP wave can 

be generated at 30.05 GHz.   

   

(a)                                                        (b) 

Figure 3.4: Average electrical field (V/m) response of DM-ASRR: (a) at fe, (b) at fo. 

A slot-type DM-ASRR was developed by utilizing the electromagnetic duality theorem. The 

resulting slot was used to modify the aperture slot shape of an ACMPA as a method to excite the 

microstrip patch with two orthogonal modes with the same amplitude and a 90o phase difference at 

the center of the operating frequency bandwidth. The shape of the microstrip patch was chosen to 

have asymmetrical length and width shapes (e.g., rectangular, elliptical, and diamond), so it could be 

coupled with the degenerated modes of the slot ASRR. As a result, the proposed antenna consists of 
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two main radiators (a slot-type DM-ASRR as a driven element, and an elliptical patch as a parasitic 

radiator), both of which can be used to generate a CP pattern [118, and 120]. The advantages of the 

proposed concept include the widening of the AR frequency bandwidth of the ASRR to > 5% through 

employing a stacked radiators concept [121] and improving the AR angular beam-width of the 

ACMPA to > 100o in elevation (θ).     

3.2.2 Design of the proposed Ka-band CP antenna I                      

The antenna structure consists of three metal layers (M1, M2, and M3) as shown in Figure 3.5a. An 

EMP was etched on the top substrate with a major axis of 2R1 and a minor axis of 2R2, values chosen 

to achieve a wide impedance bandwidth. The middle metal layer forms the ground plane and contains 

the proposed slot-type DM-ASRR. The slot ring has six arms with lengths labeled (Ls1-Ls6) and a slot 

gap of S. With this slot configuration, two orthogonal modes can be generated over the slot gap. The 

length of the arms Ls1 = Ls2 were chosen to ensure the square ring slot has an electrical length of nλ at 

the resonance frequency, and the arms Ls3, Ls4, Ls5, and Ls6 were chosen to excite two orthogonal 

modes with a 90o phase difference. The slot is coupled to a GCPW line that was etched at the 

backside of the bottom substrate through a series transverse slot. The ground size of the antenna 

element is 5×5mm2(0.5λo×0.5λo) at 30 GHz. RO4003 substrate (ɛr=3.55, tanδ=0.0027) was used to 

design the radiating patch and RO4360G2 substrate (ɛr=6.15, tanδ=0.0038) was used to design the 

GCPW feed line. In addition, RO4450F substrate (ɛr=3.52, tanδ=0.004) was used to bond the two 

substrates. The DM-ASRR was designed based on design equations (3.2) and (3.3).  

𝐿𝑠1 = 𝐿𝑠2 = 0.5𝜆𝑔1                               (3.2) 

And 

𝐿𝑠3 = 𝐿𝑠4 = 𝐿𝑠5 = 𝐿𝑠6 = 0.25𝜆𝑔1         (3.3) 

Where λg1 is the guided wavelength of the DM-ASRR. The GCPW line width Wf and gap width Sf are 

calculated for 50 Ω characteristic impedance and the transverse slot has a length of 1.525 mm. An 

electrical vias wall was employed between the grounds of the GCPW line and the DM-ASRR to 

suppress the spurious radiation of the feeding network, surface waves, and to reduce the mutual 

coupling between the adjacent antenna elements. Mutual coupling is one of the major problems in 

steerable antenna arrays, especially for wide angle beam-steering where the antenna impedance 

usually deteriorates significantly [44, and 50].  

The major and minor axes of the EMP were optimized for better radiation and coupling. The major 

axis (2R1) and minor axis (2R2) can initially be set based on the closed-form equations derived in 
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[115]. The elliptical patch has two dominant resonance modes: TM11
o,e odd and even. The resonance 

frequency of these modes can be calculated from equations (3.4)- (3.8) [122]. 

𝑓11
𝑜,𝑒 =

15

𝜋𝑒𝑅1𝑒𝑓𝑓
√

𝑞11
𝑜,𝑒

𝜀𝑟
                                                                                   (3.4) 

Where 𝑓11
𝑜,𝑒

are the dual resonant frequencies, R1eff is the effective major radius due to fringing field, 

𝑞11
𝑜,𝑒

 is the approximate zeros of Mathieu function for dominant (TM11
o,e), and e is the ellipse 

eccentricity. 

𝑒 = √1 − (
𝑅2

𝑅1
)
2
                                                                                                      (3.5) 

 

𝑞11
𝑜 = −0.0063𝑒 + 0.38316𝑒2 − 1.1351𝑒3 + 5.2229𝑒4⁡⁡⁡⁡⁡                                  (3.6) 

 

𝑞11
𝑒 = −0.0049𝑒 + 3.7888𝑒2 − 0.7278𝑒3 + 2.314𝑒4                                            (3.7) 

 

𝑅1𝑒𝑓𝑓 = [𝑅1 +
ℎ𝑅1

0.3525𝜋𝜀𝑟
{𝑙𝑛 (

𝑅1

2ℎ
) + (1.41𝜀𝑟 + 1.77) ∙ +

ℎ

𝑅1
(0.268𝜀𝑟 + 1.65)}]

1/2
  (3.8) 

 

 

(a) 
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(b) 

Figure 3.5: Proposed CP antenna structure: (a) metal layers, (b) 3-D exploded view. 

3.2.3 Simulation results 

A full-wave simulator was used to analyze and optimize the antenna parameters. An extensive 

parametric study was conducted on the antenna’s parameters to examine their impacts on the overall 

antenna’s performance. It was found that the slot arms Ls3-Ls6, and the eccentricity of the elliptical 

patch, e, are the most critical parameters affecting the purity of the circular polarization pattern over a 

wide angular beam-width. The major axis 2R1, the slot arms Ls1, Ls2, the feeding point, and the length 

of the transverse slot Lsf were found to be mainly responsible for the impedance bandwidth. The 

antenna parameters were optimized by using the HFSS optimization tool, the goal being to achieve 

the optimum AR and impedance matching over the operating frequency band (i.e., 29-31 GHz). The 

optimized parameters of the antenna are shown in Table 3.1. Using state-of-the-art multi-layer 

fabrication technology, high quality planar antennas and feed circuits can be realized with a 

dimensional accuracy better than 20μm. Extensive full-wave sensitivity analyses (Figure 3.6) were 

conducted on the proposed antenna with ±25 μm variation from the nominal values of some critical 

design parameters (e.g., R1, R2, Ls1, Ls3, S, Lsf, and Lstub). Simulation results revealed that the proposed 

antenna is less sensitive to parameter variation within the range of the fabrication tolerances. 
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(a)                                                        (b) 

Figure 3.6: Sensitivity analysis of proposed antenna element: (a) S11 (dB) and (b) AR (dB). 

The simulation results show an impedance bandwidth (S11 <-10 dB) of almost 8 GHz centered at 30 

GHz. The two resonances of the elliptical patch appeared at 28 GHz and 32.75 GHz, as shown in 

Figure 3.7a. The proposed antenna shows an AR< 3dB bandwidth of 1.8 GHz (6 %) centered at 30 

GHz at the boresight, and an AR bandwidth of 1.3 GHz over an angular beam-width from -70o to 

+70o off-boresight, as shown in Figure 3.7b. These results demonstrate that the antenna satisfies most 

of the stringent Ka-band system requirements in terms of the RL, size, and AR and angular beam-

widths. It has a 5 dBic gain over the operating frequency, with an almost symmetrical pattern over the 

azimuth angles (ϕ); moreover, it shows an X-pol discrimination better than 35 dB at 30 GHz, as 

shown in Figure 3.8. 

Table 3.1: Optimized Parameters of CP Antenna (mm). 

Parameter R1 R2 Ls1 Ls2 Ls3 Ls4 Ls5 

Dimension 1.345 1.06 2.13 2.13 1.07 1.07 1.07 

Parameter Ls6 S Lsf Lstub h1 h2 h3 

Dimension 1.07 0.14 1.525 0.8 0.203 0.203 0.508 
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(a)                                                        (b) 

Figure 3.7: Simulated RL and axial ratio: (a) S11 (dB), (b) AR (dB) for ϕ=0o, 45o, and 90o; and θ =0o 

and ±70o. 

 

Figure 3.8: Simulated radiation patterns at 29.5, 30, and 30.5 GHz for ϕ=0o, 45o, and 90o. 

The element radiation pattern azimuthal symmetry is essential for a phased-array with full 360o 

azimuthal scan range. The other main challenge in wide-scan-angle phased-arrays is the variation of 

the antenna active impedance versus scan angle, particularly in active phased-array configurations 

where the delivered power from the semiconductor amplifying devices strongly depends on the 

antenna’s active impedance, as reported in [49-50]. As a result, the antenna element has to show a 

symmetrical CP radiation pattern with a minimal impedance variation as the scan angle varies with 

high X-pol discrimination over the operating frequency band. Extensive full-wave simulation and 

design optimization was performed to realize the aforementioned characteristics to their full extent. 
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All the simulations were carried out under periodic boundary conditions (PBCs) (infinite array 

environment) to evaluate the performance of the proposed antenna in a large array environment for 

different scanning angles (see Figure 3.9). The mutual coupling effects were fully taken into 

consideration. The antenna was simulated over the SOTM frequency band of 29.5-30 GHz. 

 

 

Figure 3.9: Simulation setup of antenna in infinite array boundaries. 

The antenna was simulated over the scanning range 0-90o and azimuth range 0o, 45o, and 90o. The 

antenna showed a wide active impedance of< -10 dB in φ =0o over the scanning angle θs=0-60o, φ 

=45o over the scanning angle θs=~0-60o, and φ =90o over the scanning angle θs=0-50o, as shown in 

Figure 3.10 (a-c) respectively. 

 

(a)      
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(b)  

 

(c) 

Figure 3.10: Simulated RL (S11) versus scanning angle at: (a) phi=0o, (b) phi=45o, and (c) phi=90o. 

The antenna shows an AR < 3 dB in the φ =0o over the scanning angle θs=0-30o, φ =45o over the 

scanning angle θs=0-50o, and φ =90o over the scanning angle θs=0-50o, as shown in Figure 3.11(a-c) 

respectively.     

   

(a)    
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(b)  

 

(c) 

Figure 3.11: Simulated AR versus scanning angle at: (a) phi=0o, (b) phi=45o, and (c) phi=90o. 

In addition, the proposed antenna realizes an RHCP radiation pattern with very high X-pol (LHCP) 

discrimination (>50 dB at the boresight) at 29.9 GHz, as shown in Figure 3.12. The simulation results 

show that the antenna is a good building block for low-cost large-scale mm-W CP PAA applications, 

such as SATCOM, as will be discussed later in Section 3.4. 
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Figure 3.12: Simulated radiation pattern (dBic). 

3.3 Proposed single-fed aperture-coupled CP antenna II 

3.3.1 Single-fed aperture coupled CP antenna II 

Utilizing a mechanism similar to that adopted in Section 3.2, the perturbed slot ASRR can be 

modified further with another perturber at one of the corners to excite another dual orthogonal mode 

centered at fn2 with resonance frequencies of fe
2 and fo

2. Accordingly, a quad mode resonator can be 

developed to widen the CP frequency bandwidth in order to cover the entire operating frequency of 

the SATCOMs (27.5 GHz -30 GHz). The new quad-mode resonator is shown in Figure 3.13. The 

second orthogonal modes are excited when an open circuit gap is imposed on the DM-ASRR at -45o. 

By proposer optimization of the open circuit cut and the ASRR arms, the generated four resonances 

can be adjusted. A full-wave simulator was used to study the proposed concept. If a 0.2 mm gap cut 

of the DM-ASRR, four resonance are generated at 27.85 GHz, 28.4 GHz, 30.4 GHz, and 30.5 GHz, 

as shown in Figure 3.14. This concept was used with the proposed CP antenna element to increase 

the AR< 3 dB bandwidth.          
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Figure 3.13: Quad mode-ASRR concept. 

 

Figure 3.14: Simulated S11 of proposed quad mode-ASRR. 

In order to generate a similar sense of CP pattern to that generated by the first two orthogonal modes, 

the location of the open circuit was chosen to be -45o. This method was applied on the proposed CP 

ACMPA to validate the concept. The new antenna is shown in Figure 3.15. A short circuit (width of 

0.185 mm) and bending were used to modify the slot ASRR so that a quad-mode resonator could be 

obtained, and an elliptical cut (major radius of 0.325 mm) was used on the EMP to enhance the 

reflection frequency bandwidth. The resultant antenna was simulated in PBCs and optimized with 

full-wave simulator over the frequency bandwidth of 27-31 GHz.  
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Figure 3.15: Proposed Ka-band CP antenna II 

To realize high circular polarization purity, the four resonance modes were chosen to be close to each 

other so that the proposed structure realizes an AR< 1dB over a wide frequency band (28.6-30.3 

GHz) as shown in Figure 3.16. 

 

Figure 3.16: Simulated AR (dB). 

The optimized antenna was simulated in PBCs over the frequency band 27-31 GHz in θs=0o-80o and 

in φ=0o,45o, and 90o. Simulation results show that the proposed antenna concept yields a wide 

frequency band (28-30.4 GHz) and |S11| < -10dB over the θs=0-60o in all azimuth angles (φ=0o,45o, 

and 90o), as depicted in Figure 3.17(a-c). To the best of author’s knowledge, the presented 

performance is superior when compared to state-of-the-art single-fed CP antennas. Moreover, the 

antenna element shows an AR < 3dB θs=0o-30o and in φ=0o, θs=0-30o and in φ=0o, respectively, as 

shown in Figure 3.18(a-c).    
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(a)    

                                                   

(b)  

 

(c) 

Figure 3.17: Simulated RL (S11) versus scanning angle at: (a) phi=0o, (b) phi=45o, and (c) phi=90o. 
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(a) 

 

(b)  

 

(c) 

Figure 3.18: Simulated AR versus scanning angle at: (a) phi=0o, (b) phi=45o, and (c) phi=90o. 
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3.3.2 4×4 CP antenna subarray module 

The antenna element proposed in Section 3.2 was used as a building block to construct a 4×4 fixed-

beam CP antenna array module. The antenna module was implemented in a 20×20 mm2 area with 

elements spacing of 5 mm (0.5λo at 30 GHz). A corporate feeding network was used to excite the 

antenna element with uniform excitation, and a mini-connector with a diameter of 2 mm was used to 

feed the antenna module. The module was simulated with HFSS and the optimized structure, shown 

in Figure 3.19, was fabricated using a low-cost PCB technology. The fabricated antenna module is 

shown in Figure 3.20. A PNA-X from Keysight Technologies was employed to measure the RL of 

the fabricated antenna modules. Measurements showed that the proposed antenna module operates 

over a very wide frequency bandwidth with measured |S11| < -10 dB over the frequency 27-31 GHz 

(~13.8% bandwidth). Furthermore, there is good agreement between the measured and simulated S11, 

as shown in Figure 3.21. The small discrepancy seen between the measured and simulated S11 results 

is attributed to fabrication that allowed the two frequency resonances to shift apart from each other. 

The measured S11 bandwidth is wider than the simulated bandwidth with a marginal |S11| < -10 dB, 

over the frequency band between the two resonance frequencies, especially at 28.5 GHz.  

 

Figure 3.19: Proposed 4×4 antenna module. 
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          (a)                                                            (b)  

Figure 3.20: Fabricated 4×4 antenna module: (a) top view, (b) bottom view. 

 

Figure 3.21: Measured and simulated S11 (dB). 

A planar near-field (PNF) measurement system from NSI was utilized to measure the radiation 

characteristics (radiation pattern, AR, and directivity) of the fabricated module. The measured and 

simulated radiation patterns in the X-Z plane over the frequencies 27.6, 28.6, 29.6, and 30.6 GHz are 

shown in Figure 3.22. The antenna module shows an RHCP [Co-polarized (Co-pol)] pattern with a 

small LHCP [cross-polarized (X-pol)] component, and the realized X-pol discrimination (difference 

between the Co-pol and X-pol at boresight) is 16 dB, 42 dB, 18.5 dB, and 20 dB at the frequencies 

27.6 GHz, 28.6 GHz, 29.6 GHz, and 30.6 GHz, respectively. As can be seen in Figure 3.22, the 
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measured RHCP and LHCP patterns match the simulated patterns very well, and both follow the 

simulated patterns over the entire measurement range.              

 

Figure 3.22: Measured and simulated radiation pattern (dBic). 

Furthermore, the AR of the proposed antenna module was measured to validate the proposed 

concept as a novel structure to radiate a wide-band CP pattern. The measured and simulated AR are 

shown in Figure 3.23a. The proposed antenna module exhibits a measured AR <3 dB over the 

frequency range of 27.5-30.7 GHz (~11% bandwidth); such wide-band CP performance generated 

from a single-fed planar microstrip antenna array is one of the highest to be reported. The proposed 

antenna module shows a maximum measured directivity of 17 dB at 30.6 GHz and a minimum 

measured directivity of 15.7 dB at 27.5 GHz, within the frequency band of AR< 3 dB (27.5-30.7) 

GHz. The measured directivity (Figure 3.23b) showed good agreement with the simulated result with 

some discrepancy attributed to fabrication error. 

  

          (a)                                                                               (b)  

Figure 3.23: Measured and simulated (a) AR (dB) and (b) directivity (dBic). 
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3.3.3 16×16 CP modular fixed-beam antenna array 

Finally, the proposed antenna module was employed to build a 16×16 antenna array that consists of 

16 antenna modules arranged in a square-shaped grid in order to evaluate the modularity concept. The 

developed array is shown in Figure 3.24a. A 1×16 substrate integrated waveguide (SIW)-based 

power splitter was utilized to excite the 16 antenna modules so that it mimicked the final 

configuration of a modular and scalable active phased array fed with hybrid feed networks. The 

simulation results for the 4×4 antenna module was used with AF to estimate the performance of the 

proposed 16×16 antenna array to reduce the simulation resources and computation time. The 16×16 

array showed a measured |S11| < -10 dB over the frequency band of 28.2-30.5 GHz (~8% bandwidth). 

The reduction in the S11 bandwidth is mainly attributed to the limited bandwidth of the SIW power 

splitter, which dominates over the bandwidth of the antenna modules. To validate this claim, the 

measured S11 of the SIW power splitter is plotted in Figure 3.25. As can be seen from the figure, the 

measured S11 of the SIW power splitter matches the measured S11 of the 16×16 antenna array. 

The PNF measurement system was used to validate the simulated radiation characteristics of the 

proposed modular 16×16 antenna array. The radiation measurement setup is depicted in Figure 

3.24b. The radiation pattern of the proposed modular 16×16 antenna array for different frequencies, 

compared to the simulated results of the single module multiplied by the AF, is plotted in Figure 

3.26. Despite the mechanical misalignments and the amplitude and phase variations generated by the 

SIW power splitter, the modular 16×16 antenna array showed very symmetrical RHCP and LHCP 

components. Very good agreement was seen between the measurement and simulation results for the 

majority of the measurement frequency range. The measured X-pol discrimination is 13 dB at 27.6 

GHz, 27.5 dB at 28.6 GHz, 18 dB at 29.6 GHz, and 19 dB at 30.6 GHz, respectively. 
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          (a)                                                                               (b)  

Figure 3.24: (a) Modular 16×16 antenna array, (b) PNF measurement system. 

 

Figure 3.25: Measured S11 (dB) of modular 16×16 antenna array and SIW power splitter. 

Moreover, measurements show that an AR<3 dB (Figure 3.27a) was realized over the frequency 

band of 27.8-30.7 GHz (~10% bandwidth). The measured AR matches the simulated AR very well, 

and the reduction in the frequency band is attributed mainly to the phase and amplitude variation of 

the SIW power splitter. The amplitude variation imposes a nonuniform excitation on the modular 

16×16 antenna array; as a consequence, the measured directivity reduces compared to the simulated 

result as shown in Figure 3.27b. The directivity reduction is a valid justification to conclude that the 

antenna modules were not excited uniformly; the highest directivity is realized with uniform 

excitation of the antenna element of the array. The maximum measured directivity is 28.7 dB, 

achieved at 30.6 GHz.     
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Figure 3.26: Measured and simulated radiation patterns (dBic). 

   

          (a)                                                                               (b)  

Figure 3.27: Measured and simulated (a) AR (dB), (b) directivity (dBic). 

3.4 Ka-band single-fed CP APAA  

3.4.1 Antenna array structure and measurement setup 

In Ka-band mobile SATCOM applications, the radiation pattern of the Tx APAA must meet very 

stringent radiation mask requirements [56-59] in terms of SLL, polarization purity, and pointing 

accuracy when the main beam is steered to a certain scan angle. As a result, full control of the 

magnitude and phase over the entire antenna array aperture is required. The antenna designed in this 

research was used in CIARS 4×16 active phased-array platform, as shown in Figure 3.28, where the 

phase and amplitude of each channel can be controlled. 
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          (a)                                                                               (b)  

Figure 3.28: Fabricated 4×16 Ka-band CP-APPA: (a) top view (antenna side) and (b) bottom view 

(MMIC chip side). 

The PNF measurement system from NSI was used to test the radiation characteristics of the APAA 

for different steering angles (0o-±40o) at two different frequencies 29.5 GHz and 30 GHz. The 

steering angle was limited to ±40o due to the appearance of grating lobe beyond these angles. Figure 

3.29 depicts the PNF measurement setup for this test. Measurement results were compared with the 

simulation results for validation. AF tool from ANYSYS was used to calculate the radiation pattern 

and the AR of the proposed 4×16 APAA. In all simulations, the elements were assumed to be excited 

by the same input power.  

 

Figure 3.29: PNF measurement setup. 
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3.4.2 Antenna array measurement and simulations 

The measured and simulated radiation patterns at 29.5 GHz and 30GHz for three different elevation 

angles are plotted in Figure 3.30a-Figure 3.30c. Measurements show that the APPA is capable of 

radiating RHCP power and its radiation pattern (main beam) can be steered over the elevation range 

from -40o to +40 o in Y-Z plane. The measured radiation patterns match well with the simulated 

patters in all cases with minimal discrepancies. The antenna shows a low pointing error of less than 

1.5o at all steering angles, a characteristic that is highly desired for SATCOM applications. The 

discrepancies between the measured and simulated results could be attributed to three main factors. 

First, measurements are bounded the finite ground size as compared to the infinite ground imposed in 

the AF simulation. Second, the presence of the absorber close to the antenna under test (AUT), used 

to reduce the scattering/radiation effects of the RF cables. Third, fabrication errors and the dielectric 

constant uncertainties. 

 

(a) 

 

(b) 
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(c) 

Figure 3.30: Measured and simulated radiation pattern in Y-Z plan at: (a) θs=-30o, (b) θs=0o, and (c) 

θs=30o. 

The normalized RHCP radiation pattern at 30 GHz is shown in Figure 3.31a. It can be seen that the 

antenna shows a high pointing accuracy at different steering angles with an SLL of less than -10 dB 

in all steering angles. Furthermore, the APPA shows a good X-pol (LHCP) discrimination of better 

than 20 dB over the elevation range of θs=±20o, as shown in Figure 3.31b.  

 

(a) 
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(b) 

Figure 3.31: Measured normalized radiation pattern in Y-Z plan at 30 GHz: (a) RHCP (Co-pol) and 

(b) LHCP (X-pol). 

The AR was measured over the scanning angle range and compared to simulated results. The 

APPA shows a measured AR < 4 dB in all steering angles at both frequencies 29.5 GHz and 30 GHz. 

The best AR level (0.17dB) was achieved at 30 GHz in the boresight direction. The measured AR 

follows the trend of the simulated AR at most of the steering angles, despite some mismatch at 40o, as 

shown in Figure 3.32.  

 

Figure 3.32: Measured and simulated AR at 29.5 GHz and 30 GHz. 

Table 3.2 summarizes the measured and simulated results of the CP-APAA at 30 GHz for different 

steering angles. As can be seen from the figure, the main beam was steered very accurately towards 

the required angles with small pointing errors of less than 1.5o. Also, the 1st SLL remains at 10 dB 

over the same scanning range. Furthermore, the proposed CP-APAA shows an RHCP with good AR 

level, especially in the elevation range ±20o. The measured results correlate with those form AF 

simulation very well in most cases.  
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Table 3.2: Summary of Results at 30 GHz. 

Pointing 

angle(θs
o) 

1st SLL (dB) 
X-Pol 

discrimination (dB) 
AR (dB) 

AF Meas. AF Meas. AF Meas. AF Meas. 

-40 -38.5 12.78 10.04 16.83 19.35 2.52 1.88 

-30 -29.9 12.91 10.02 22.1 16.1 1.37 2.74 

-20 -19.6 13.06 12.25 35.47 24.15 0.3 1.08 

-10 -9.77 13.17 10.1 32.72 30 0.4 0.55 

0 0 13.28 11.33 33.25 40 0.38 0.17 

10 9.5 13.17 11.11 37.11 27.2 0.24 0.76 

20 19.4 13.06 11.75 31.14 19.85 0.48 1.77 

30 29.83 12.91 9.9 29.19 16.15 0.6 2.73 

40 39.5 12.8 10.51 22.73 14 1.27 3.51 

 

To steer the beam of an array in a certain direction θs, and ϕs with appropriate aperture tapering is 

required for SLL control. the excitation phase and amplitude of each antenna element can be adjusted 

based on equation (3.9). 

𝐼𝑛 = 𝑒−𝑗𝑘𝑜(𝑠𝑖𝑛𝜃𝑠𝑐𝑜𝑠𝜑𝑠𝑥𝑛+𝑠𝑖𝑛𝜃𝑠𝑠𝑖𝑛𝜑𝑠𝑦𝑛+𝑐𝑜𝑠𝜃𝑠𝑧𝑛)𝑒−𝛼(𝑥𝑛
2+𝑦𝑛

2)                         (3.9) 
 

Where In is the complex excitation of each element located at the location of (xn, yn, zn). For a 

periodic planar array, one can simply write the antenna’s location as (xnm=npx, ynm=mpy, znm=0) where 

(px,py) is the lattice vector of the periodic array and it is assumed that the array is located on the Z=0 

plane. 

Figure 33.33a shows the measured boresight RHCP radiation pattern of the 4×16 array when the 

tapering amplitude was reduced exponentially from the center to the edge of the array by 0 dB, 5 dB, 

and 11 dB, respectively. As the tapering increases from 0-dB to 11-dB, the SLL level drops from 13-

dB to 25-dB. This capability is a highly desirable feature for SATCOM applications where the SLL 

must be kept below the standard mask. Moreover, as can be seen in Figure 33.33b, the X-pol 

component (LHCP) remained below -30 dB in all cases.  

The CP-APPA can form a two-beam CP radiation pattern by splitting the RF-power between two 

radiation directions. Recently emerging LEO SATCOM applications [123] would require such a 

capacity. The CIARS multi-beam algorithm applied to the active beam-formers generated two beams. 
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Figure 3.34 demonstrates the measured radiation pattern of the 4×16 APAA when a complex 

excitation was applied to each antenna element to generate two different CP beams at -30o and +20o 

instantaneously, for two different power levels radiated at each beam. A similar approach can be 

extended to simultaneously radiate more than two beams that have similar or different radiated power 

levels. 

 

       (a)                                                        (b) 

Figure 33.33: Measured radiation pattern at 30 GHz for three different tapering cases (a) RHCP 

pattern, (b) LHCP pattern. 

 

Figure 3.34: Measured multi-beam radiation pattern at 30 GHz. 

3.5 Conclusion 

A novel single-fed CP antenna concept was presented in this chapter. A wideband CP was realized by 

loading a multimode ring resonator with an elliptical microstrip patch antenna. Full-wave simulations 

show that the proposed antenna attained a wide scanning S11 < -10 dB and AR< 3dB. The antenna 
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element was used to develop a modular fixed-beam CP antenna array that was measured over a wide 

frequency band with excellent CP radiation pattern despite limitations imposed by the feed network 

and mechanical misalignment. The proposed antenna concept is an excellent candidate to develop a 

wide band and low-cost CP PAA with single sense of polarization for limited elevation scanning of 

±40o off-boresight over entire azimuthal range. The developed antenna was used in CIARS 4×16 

active phased-array platform and was successfully characterized. The measured results verified the 

design concepts proposed in this Chapter. The proposed antenna structure was designed in low-cost 

PCB technology and appears to be an excellent low-profile candidate to fulfill the rapidly growing 

demands for emerging Ka-band land, and close to land, SOTM applications. The active phased-array 

generated a high quality steerable RHCP beam over the frequency band of 29.5-30 GHz. The beam 

was steered over the elevation range of 0o-±40o with high X-pol discrimination and very low pointing 

errors in most of the measured cases. The CIARS active phased-array using the proposed antenna 

elements is a promising candidate for SATCOM applications, with an excellent control over the SLL, 

one of the most critical requirements for a ground terminal transmitted beam. Furthermore, multiple 

beam-forming was also demonstrated. Such functionality is highly desirable for emerging LEO 

SATCOM applications. To the best of the author’s knowledge, no simple single-fed CP-APAA has 

been presented in the literature showing similar performance comparable with that of the proposed 

CP antenna concept. 
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Chapter 4 

An Integrated Dual-Polarized Modular Active Phased-Array Antenna 

for Emerging Ka-Band SATCOMs 

4.1 Introduction 

The objective of this chapter is to develop a Ka-band dual-polarized highly integrated antenna 

element that will be used as a building block to construct a modular APAA system as an ultimate 

solution for SOTM applications. The proposed antenna is a dual-fed ACMPA developed with several 

metal layers (< 1.8 mm thickness). The top metal layers were used to build a wideband dual-fed 

ACMPA that can be used for wide beam-steering ≥ 70o over the entire azimuthal plane. The bottom 

layers are employed to integrate the corporate feed network, the DC biasing lines, and the control 

lines of the beam-forming MMIC. The proposed antenna element and sub-array meet all the stringent 

requirements of SOTM (Section 2.2) as it can be used to radiate any polarization [LP, vertical or 

horizontal (VLP; HLP) or CP, (left or right handed (LHCP; RHCP)]. It was designed on a 5×5 mm2 

area to avoid the grating lobe at the highest operating frequency (30 GHz) when the beam is steered 

to (> 70o). The antenna element has a wide operating frequency band ≥ 2 GHz, low mutual coupling, 

and achieved a RL < -10 dB over a wide steering angle of up to 60o by employing an electrical via 

wall. Finally, high isolation between the two feeds allows the proposed element to generate very high 

CP purity with low X-pol. 

Subsequently, the proposed 4×4 antenna sub-array was used in CIARS APAA module with 20×20 

mm2 area. The module including passive and active beam-forming devices was fabricated and 

successfully tested. This module was employed in modular Ka-band 16×16-antenna array, as a 

working prototype for Ka-band large-scale wideband polarization-agile APAA with wide beam-

steering.     

4.2 Dual-fed dual-polarized Ka-band antenna element 

4.2.1 Antenna concept 

The proposed antenna element was designed based on a dual-fed ACMPA concept [124]. The main 

radiator is a circular shaped microstrip patch with a radius of R, and it is fed with two orthogonal strip 

lines through two U-shaped aperture slots to realize a wideband operating frequency. This 
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configuration allows for the generation of symmetrical radiation characteristics with minimal spurious 

radiation. A metallic square ring with vertical electrical via walls was used to reduce mutual coupling 

and to suppress undesired surface waves; hence, the proposed antenna operates over a wide beam-

steering angular range. Ground islands with optimized shapes were employed to enhance the isolation 

between the two strip feed lines to achieve a flat isolation response over the operating frequency 

band. Consequently, high polarization purity can be achieved. A GCPW line was utilized to directly 

connect the antenna’s feed to two of the RF channels of the beam-forming MMIC, and a vertical 

coaxial substrate integrated line was used as the transition between the GCPW line and the strip line, 

so the effects of the corporate feed network, control line, and DC biasing lines on the antenna feeds 

are minimal. The proposed antenna structure is shown in Figure 4.1. High performance dielectric 

material with εr=3 and dielectric loss of tanδ=0.0017 was used to develop the proposed antenna 

element, and state-of-the-art PCB fabrication technology with every layer via lamination was used to 

fabricate a working prototype.  

 

Figure 4.1: Proposed dual-polarized ACMPA element. 

4.2.2 Design and simulation results 

The antenna design started with the required performance characteristics and the available PCB 

technology. The radius of the circular microstrip patch was initially calculated by simple analytical 

formulations (4.1) -(4.4) [61].  
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𝑅 =
𝐹

{1+
2ℎ

𝜋𝜀𝑟𝐹
[𝑙𝑛(

𝜋𝐹

2ℎ
)+1.7726]}

1
2

    (4.1) 

𝐹 =
8.791×109

𝑓𝑟√𝜀𝑟
                                            (4.2) 

Equation (2.1) does not take into consideration the fringing effect. Since fringing makes the patch 

electrically larger, the effective radius of patch is used and is given by 

                         𝑅𝑒 = 𝑅 {1 +
2ℎ

𝜋𝜀𝑟𝑅
[𝑙𝑛 (

𝜋𝑅

2ℎ
) + 1.7726]}

1

2
                              (4.3)       

Hence, the resonant frequency for the dominant mode TMz
110 is given by 

                        (𝑓𝑟)110 =
1.8412𝑣𝑜

2𝜋𝑅𝑒√𝜀𝑟
                                                             (4.4) 

Where R is the radius of the circular patch, Re is the effective patch radius due to fringing field, h is 

thickness of the patch substrate, εr is the permittivity of the patch substrate, and fr is the dominant 

resonance frequency of the circular patch. 

The length of the aperture slots was initially set to a half-guided wavelength (λg/2), and strip TLs 

with quarter-guided wavelength (λg/4) open-ended stubs were used to excite the two orthogonal 

modes. Full-wave simulation was used to optimize the dimensions of the proposed antenna and took 

into consideration the thicknesses of the metallic layers and the dielectric substrates after fabrication. 

The square metallic ring and the vertical electrical via walls were mounted in the design, and design 

tuning was performed on the antenna parameters to maintain the antenna performance. After 

extracting the final design parameters, the GCPW-strip transition was designed for 50Ω characteristic 

impedance to include the footprint of the MMIC output channels. The optimized transition was 

integrated with the antenna structure; the feed network circuit, control lines, and DC biasing lines 

were mounted in the design to ensure they imposed minimal impacts on the feed transition. The 

proposed antenna was designed with a 5x5mm2 ground size (0.5λox0.5λo) at 30 GHz. 

The optimized antenna element was simulated with periodic boundary conditions over the 

frequency range of 29-31 GHz for different scanning angles in θ and φ. At the boresight, the antenna 

shows a RL |S11| and | S22| of < -10 dB over 2 GHz (6.7% bandwidth) frequency band and the best 

simulated results appeared at 29.75 GHz with |S11|=-37 dB and | S22|=-33 dB. The difference between 

the two values is attributed to a small asymmetry in the locations of the U-shaped slots. This 

difference can be reduced by tuning the length of the open stub of the second port. Furthermore, the 
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simulated isolation factor |S12| between the two feed ports was <-21.5 dB over the operating 

frequency. This is attributed to the via walls and the ground shape on the strip line layer and, 

interestingly, it stays almost flat. The simulated S-parameters are shown in Figure 4.2.          

 

Figure 4.2: Simulated S-parameters (dB). 

The proposed antenna element can be used to generate any sense of polarization; by controlling the 

excitation phase and the amplitude applied to the feeding ports VLP, HLP, LHCP, and RHCP can be 

easily realized with high polarization purity. When the two ports were excited with the same 

amplitude and a ±90o phase difference, a high purity CP (RH/LH) pattern was radiated from the 

proposed antenna element over the operating frequency band, and the realized AR was < 0.6 dB. The 

best achieved AR (0.1 dB) was achieved at 30 GHz, as shown in Figure 4.3a. The simulated radiation 

pattern at 30 GHz is shown in Figure 4.3b. The proposed antenna element radiates an RHCP pattern 

with an excellent X-pol discrimination of 44.5 dB and gain of 4.65 dBic at the boresight.  

To evaluate the performance and the symmetry of the proposed antenna element, given its role as a 

critical building block in SOTM beam-steering applications. The element was simulated over the 

operating frequency band for an elevation angular range of θs=0o-70o and over the azimuthal angular 

values of φ=0o, 45o, and 90o. High symmetry was observed between the two ports for all simulated 

cases. This symmetry is an advantage for the proposed antenna element as it can help to reduce the 

calibration time, very critical and time-consuming process in SOTM antenna systems.    
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(a)                                                                      (b) 

Figure 4.3: Simulated (a) AR (dB), and (b) radiation pattern (dBic). 

The antenna showed an |S11| of < -10 dB over the frequency range of 29.2-30 GHz for the scanning 

range of θs=0o-50o in φ=0o and 45o, and an | S11| of <-10 dB for the scanning range of θs=0o-40o in 

φ=90o. Similarly, the simulated |S22| was < -10 dB over the frequency range of 29.2-30 GHz for the 

scanning range of θs=0o-50o in φ=90o and 45o, and | S22| was <-10 dB over the scanning range of 

θs=0o-40o in φ=0o. The results are shown in Figure 4.4a and Figure 4.4b. The attained port isolation 

was |S21| < -20 dB over the frequency band of 29.-30.4 GHz for the scanning ranges of θs=0o-70o in 

φ=0o and 90o; however, it reduced to < -10 dB for θs=0o-50o in φ=45o, as shown in Figure 4.4c.  

  

(a) 
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 (b) 

 

(c) 

Figure 4.4: Simulated S-parameters (dB) versus scanning angle (𝜽𝒔
𝒐) at (a) S11, (b) S22, and (c) S12. 

4.3 Modular dual-polarized Ka-band APAA 

4.3.1 4×4 antenna module 

The antenna array developed in Section 4.2 was used in CIARS active 4×4 antenna sub-array module 

(16 dual-fed elements) for a Ka-band SOTM PAA. A one-to-four strip line-based power splitter is 

used to distribute the RF signal uniformly to excite four beam-forming MMIC, where each MMIC 
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will feed four antenna elements with controllable amplitude and phase. A mini RF connector with a 2 

mm diameter was used to feed the one-to-four power splitter at the center of the 4×4 antenna module 

through a vertical transition. The 4×4 antenna module has an area of 20x20 mm2. The top and bottom 

views of the 4×4 active phased-array modules are shown in Figure 4.5. This antenna module is 

compact, has wide beam-steering capabilities, and polarization-agile. It can be used for mass 

production of any size of customized large-scale APAA for emerging mm-W applications. 

 

(a)                                                        (b) 

Figure 4.5: 4×4 active phased array module uses the antenna array developed in this research(a) top 

view, (b) bottom view. 

4.3.2 Modular 16×16 wideband APAA 

As a proof-of-concept, the 4×4 active phased-array antenna module was utilized to build a 16×16 

APAA. A 1×16 SIW based power splitter was used as a backbone in the proposed antenna array, 

where the 16 antenna modules were connected in a square grid and a metallic fixture was used in the 

assembly as shown in Figure 4.6. The assembled structure was tested under varying scenarios in an 

anechoic chamber using a planar near-field (PNF) measurement system; however, for brevity only 

RHCP cases are reported here to illustrate the antenna array polarization performance. For the 

purposes of comparison and validation of the measurement results, the 4×4 antenna module was 

simulated with a full-wave simulator for the boresight case and the results were multiplied by AF to 

calculate the expected performance of the 16×16 APAA as if the 16×16 antennas were excited 

uniformly with the same amplitude and phase. This comparison will help to validate the advantages 

of the modularity concept as the best solution for large-scale antenna arrays. It is worth mentioning 

that for simplicity the antenna under test (AUT) was calibrated in the boresight at 30 GHz only, and 

the antenna elements were assumed to be matched over the entire scan range.                
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Figure 4.6: 16×16 modular APAA and its measurement setup. 

4.3.3 Measurement and simulation results 

The dual-polarized 16×16 APAA, which uses the antenna elements and 4×4 sub-arrays developed in 

this research, was tested over the frequency range of 28-31 GHz for four scanning angles in the X-Z 

plane (See Figure 4.6), and it was calibrated at the boresight at 30 GHz to radiate a RHCP pattern. 

The first measurement was carried out for the boresight, where all ports were excited with the same 

amplitude and a 90o phase difference between the vertical port and the horizontal ports based on the 

measured data of the MMIC chip. Measurements show that the AUT radiates a symmetrical and very 

high purity RHCP pattern over the measurement frequency band in both X-Z and Y-Z planes. The 

best realized X-pol discrimination of 41 dB was achieved at 30 GHz; to be expected as the AUT was 

calibrated at this frequency. Furthermore, the antenna element shows the best AR at 30 GHz. This 

level of polarization purity is an exceptional result when compared to others reported to date at this 

frequency range and array size, and from modular based structures. The realized cross-polarization 

values at 28 GHz, 29 GHz, and 31 GHz were 29.3 dB, 32.3 dB, and 34 dB, respectively. The 

measured 1st SLL were -10.84 dB, -11.1 dB, -11.5 dB, and -9.9 dB sequentially over the measurement 

frequency band as shown in Figure 4.7. The measured results match those generated by simulation 

very well over the operating frequency band. The measured RHCP and LHCP components mimic 

almost all the simulated nulls and have an almost identical shape for both X-Z and Y-Z planes, as 

illustrated in Figure 4.7, and Figure 4.8, despite the impurities resulting from the feed circuit, MMIC 

channels, and mechanical misalignments.              
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Figure 4.7: Measured and simulated radiation pattern of modular 16×16 active phased array in X-Z 

plane (boresight). 

 

Figure 4.8: Measured and simulated radiation pattern of the modular 16×16 active phased array in Y-

Z plane (boresight). 

Similarly, the measured AR (depicted in Figure 4.9) resembles the simulated AR with very good 

agreement over the frequency band of 28-31 GHz. At 30 GHz, the AUT showed a very low measured 

AR of 0.15 dB only. For further validation, the directivity of the AUT was measured and compared 

with the AF simulation results. The measured and simulated directivities are shown in Figure 4.10, A 

measured directivity at 30 GHz of 28.72 dB was realized compared to the 29.1 dB simulated 
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directivity. Therefore, less than a 0.4 dB difference between the measured and simulated directivity 

was observed; a minimal difference if we take into consideration all of the measurement, assembly, 

and feed circuit impurities.   

 

Figure 4.9: Measured and simulated AR (dB). 

 

 

Figure 4.10: Measured and simulated directivity (dBic.) 

The second measurement was performed at a scanning angle of 30o in the X-Z plane, based on the 

calibration data that was obtained at the boresight. As can be seen from Figure 4.11, the AUT 

sustained a good AR level and 1st SLL across the entire operating frequency band. The achieved X-

pol discrimination and 1st SLL at 28 GHz, 29 GHz, 30 GHz, and 31 GHz were 19.04 dB and -11.02 

dB; 20.17 dB and -11.14 dB; 21.8 dB and -11.6 dB; and 23.6 dB and -11.5 dB respectively.   
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Figure 4.11: Measured and simulated radiation pattern of the modular 16×16 active phased array in 

X-Z plane (θs=30o). 

In addition, the AUT was steered to wide scanning angles (θs=50o and 60o) over the operating 

frequency 28-31 GHz without calibration. It shows an excellent and well-shaped Co-pol component 

(RHCP) in both cases, especially at 30 GHz. However, the X-pol component deteriorates as the 

scanning angle increases—expected behavior given the impedance variation of the second feed 

component (Y polarized) as shown in Figure 4.12 and Figure 4.13. Nevertheless, this performance 

degradation can be easily eliminated if a higher power is injected to the second feed of the antenna 

elements that is 3 dB higher than the amplitude of the first port (X polarized). To validate this 

explanation, a full-wave simulation was performed on the antenna element in PBC’s. As the power 

level of the second port increased by 3 dB compared to the first port, the antenna array retained its 

polarization purity with an X-pol discrimination of > 40 dB at 30 GHz when steered to θs=60o, as 

shown in Figure 4.14.       
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Figure 4.12: Measured and simulated radiation pattern of the modular 16×16 APAA in X-Z plane 

(θs=50o). 

 

Figure 4.13: Measured and simulated radiation pattern of the modular 16×16 APAA in X-Z plane 

(θs=60o). 
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Figure 4.14: Simulated radiation pattern of the modular 16×16 APAA in X-Z plane (θs=60o) after 

excitation correction. 

4.4 Conclusion 

Successful test results of CIARS modular 4×4 and 16×16 active modular phased-array architectures, 

using the dual polarized antenna elements and sub-arrays developed in this research verified the 

validity of the proposed antenna element/sub-array concepts for wideband and wide beam-steering 

CP Ka-band applications. The proposed antenna design ideas were validated both in measurement 

and simulation. Despite the impurities of the feeding network, MMIC channels, and mechanical 

misalignment, the proposed antenna was steered over a wide scanning angular range of θs=0o-60o 

with well-shaped RHCP components over a 3 GHz frequency band centered at 29.5 GHz. The 

achieved results were obtained with a single calibration test at a single frequency; however, the 

superiority of the proposed concept over state-of-the-art calibrated complex APAAs [21] has been 

demonstrated. 
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Chapter 5 

A Low-cost and low loss Ka-band phase shifter  

5.1 Introduction 

This chapter reports analysis, simulation, optimization, and design refinement of the new CIARS 

BLT phase-shifter to be integrated with a large-scale mm-W PAAs. I also investigated new packaging 

technology for this new phase-shifter and explored downsizing and broad-banding techniques, which 

significantly facilitate its integration into the array beam-forming network. For demonstration, the 

phase-shifter was designed for Ka-band. The proposed phase shifter is an extension of the initial 

phase shifting concept proposed in [116-117]. It is comprised of a grounded CPW (GCPW) TL 

loaded with a high dielectric constant slab, and a mechanical actuator that precisely controls the 

height of the air gap between the slab and the line. In this way, a tunable phase shifter is realized with 

low IL and high FOM. In order to develop a low-cost, low power consumption, high phase shifting 

range, and low IL phase shifter, different dielectric constant slabs (ranging between εr=42-100) were 

investigated as part of this research. The goal was to determine an effective method to increase the 

realized phase shifting range within a small footprint and low IL. In an attempt to reduce the profile 

of the phase shifter as well as its power consumption, two different mechanical actuators were 

employed, piezoelectric transducer (PET) and a magnetic actuator. Moreover, three different GCPW 

line configurations were utilized throughout this research as a means to miniaturize the phase shifter.      

5.2 Proposed phase shifting concept 

The BLT phase shifter consists of a high dielectric constant slab placed on top of a GCPW line with a 

mechanical actuator controlling the height of the airgap (hgap), as shown in Figure 5.1. Because of its 

extremely high dielectric constant (42-250), the dielectric slab plays the role of a perfect magnetic 

conductor (PMC) medium and is almost impenetrable for the propagating mode. The propagation 

mode is mainly guided in the airgap between the GCPW line [effectively a perfect electrical 

conductor (PEC)], and the extremely high dielectric constant slab [effectively a PMC medium]. The 

propagation constant of this PEC-PMC waveguide is essentially changed as a function of the airgap 

height [116-117 and 125]. The propagation mechanism of this new wave-guiding structure was fully 

analyzed in [116]. The interesting aspect of the proposed phase shifter is that its operation is based on 

travelling wave delay—essentially the length of the phase shifter divided by the speed of 

electromagnetic wave in the wave guiding region. The choice of the GCPW configuration for high 
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performance antenna arrays was made because the phase shifter and active devices (if needed) can be 

integrated on one side, and the other side (bottom ground) can be used as a ground plane to reduce the 

interference between the feed circuit and the radiating antennas. As the airgap height varies, there is 

an increase in the input and the output RL mismatch (particularly at smaller airgap heights) due to the 

change of the characteristic impedance of the phase shifting component. In this research, a simple, 

wideband, and effective matching method based on optimization of the width of the gap and/or the 

line width of the GCPW segment under the dielectric slab is presented. The intention is to 

significantly reduce the RL mismatch of the phase shifter over the operating frequency band. A 

highly desirable feature of this new phase shifter is that the same device can be used for both receiver 

and transmitter without significant deterioration of the performance since the phase shifter is a 

reciprocal device with almost linear phase-frequency response. This feature is necessary for 

interleaved arrays, where the cost and complexity of the feed circuit and the phase shifter integration 

are important issues. Moreover, this phase shifter is directly integrated within the feeding network 

with no extra wire bonding or ball grid array interconnections. The main advantages of this new phase 

shifter include:  

1. Small IL due to the fact that the wave is propagating mainly in the air gap.  

2. For the same reason, the IL has minimal variation over the phase shifting range.  

3. Relatively small footprint in terms of wavelength since a high dielectric slab is used.  

4. Small actuation range (≤50 μm) required to attain the required phase shift range, making the 

proposed phase shifting concept low-profile.   

 

Figure 5.1: Phase shifter structure labelled with design parameters: Wf=0.14 mm, S1=0.03 mm, S2=0.1 

mm, and Ws=1 mm. 
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5.2.1 Phase shifter analysis  

Since the phase shifter will be integrated under the antenna element that has a 5×5 mm2 area at 30 

GHz, this area should house both the new phase shifter and parts of the feed circuit. The antenna 

element area size is the upper bound for the phase shifter; however, efforts are made to make the 

phase shifter smaller than this limit to facilitate circuit assembly and packaging. On the other hand, 

the lower bound on the size of the phase shifter is limited by the required phase variation (i.e., ≥360o). 

The characteristics of the optimized phase shifter can be obtained based on the area assigned for the 

phase shifter, maximum phase variation, and dielectric permittivity of the dielectric slab. The design 

steps can be summarized as follows: 

1. Trace width and gap of the 50 Ω GCPW line are calculated at the operating frequency.  

2. Length of the dielectric slab calculated to achieve ≥360o phase shift variation based on 

equations (3.1)- (3.4).  

3. Full-wave simulation conducted to evaluate the performance of the phase shifter.  

4. GCPW line routed under the dielectric slab within the assigned physical area to facilitate 

maximum physical length of the GCPW line within assigned area to maximize the achievable 

phase shift range (e.g., meander line or slow-wave line).  

5. GCPW is modified under the dielectric slab to improve the impedance matching of the 

proposed phase shifter due to the effect of the dielectric slab’s proximity to the GCPW line.  

6. Prototype fabricated and measured to validate simulated results.     

In order to provide a simple and fast design procedure to predict the phase response of the proposed 

phase shifter based on its physical dimensions and the actuation range, a simple empirical design 

formula was developed as part of this research. This formula can be used to calculate the required 

dielectric constant, the actuation range, and the length of the phase shifter that provides the required 

phase shifting range. Using the proposed design formula, designers can estimate the performance of 

the phase shifter with an error < 3% without using intensive full-wave simulations. The proposed 

formula has been developed based on perturbation theory following the work presented in [113]. By 

employing a curve fitting based on power series, the design formula in [113] is modified to predict 

the phase response as a function of the dielectric length, dielectric constant, operating frequency, and 

the airgap size. The phase shifter response Δφ (Ls, εr, f, and hgap) can be calculate based on equation 

(5.1). 
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∆∅(𝐿𝑠, 𝜀𝑟, 𝑓, ℎ𝑔𝑎𝑝) =
2𝜋

𝜆𝑔
𝐿𝑠𝑘                          (5.1) 

where  

𝜆𝑔 =
𝜆𝑜

√𝜀𝑟
                                                         (5.2) 

𝜆𝑜 =
𝑐

𝑓
                                                            (5.3) 

𝑘 = d + 𝑎ℎ𝑔𝑎𝑝
𝑏                                                (5.4) 

 

where ∆ϕ in degrees is the phase response of the phase shifter, 𝜆𝑔 is the guided wave length inside 

the dielectric slab in mm, 𝐿𝑠 is the length of the dielectric slab in mm, and k is the proportionality 

constant relating the gap size of the phase shifter with the realized phase shift. The guided wave 

length is calculated based on equations (5.2) and (5.3), where 𝜆𝑜 is the free space wave length (the 

ratio of the speed of light in mm/s to the operating frequency in GHz), and 𝜀𝑟 is the dielectric 

constant of the dielectric slab. The proportionality constant k can be calculated based on 

equation (3.4), using curve fitting to extract the constants (a, b, and d) by one full-wave 

simulation over four gap values. It was found that the exact values of these constants are a=-

41.32, b=-0.1381, and d=43.1. The width and thickness of the dielectric slab were found to 

have minimal effects, as compared to those of its length (𝐿𝑠) and dielectric constant (𝜀𝑟). 

Intensive full-wave simulations were conducted to evaluate the accuracy of the developed 

design formula for different design parameters. In these simulations the dielectric slab 

thickness was chosen to maximize the phase shift variation with minimum IL over the 

operating frequency (hs =0.13λg), and the dielectric slab width was chosen to be 1 mm. 

The dielectric slab’s permittivity (𝜀𝑟) was varied between 40-100, and the length (𝐿𝑠) was 

varied between 2-6 mm. The air gap between the dielectric slab and the GCPW line was 

varied between 1-10 μm, and the operating frequency was varied between 20-40 GHz. The 

simulated and calculated phase responses for different cases are shown in Figure 5.2. The 

empirical formula predicted the phase response of the proposed phase shifter versus gap for 

all abovementioned test cases accurately. The difference between the predicted phase 

responses from equation (5.1) and the full simulations are due to the small amount of the 

field leaked from the propagation channel.     
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.2: Simulated and calculated phase responses for different test cases: (a) εrBLT=40, (a) 

εrBLT=60, (a) εrBLT=80, and (a) εrBLT=100. 

5.3 Meander line-based phase shifter I   

A meander line-based GCPW line loaded with a high dielectric ceramic slab (εr=42) was developed 

as part of research to realize a wideband phase shifter. As a proof of concept, a PET was used to 

control the airgap height (hgap). The GCPW line was designed on RT/duroid 6002, having a dielectric 
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permittivity εr=2.94, tanδ=0.0012, and 35 µm copper thickness. The sidewalls of the substrate were 

plated to ensure an electrical connection between the top and bottom grounds of the GCPW line. The 

other advantage of using a low dielectric constant substrate in the proposed design is that it creates a 

high contrast between the GCPW substrate and the dielectric slab. This contrast makes the phase shift 

more sensitive to the air gap variation, thereby increasing the dynamic range of the phase shifter. The 

GCPW line was designed and optimized to operate over the required frequency band (19-31 GHz). 

The GCPW line can be divided into two parts, a 50 Ω GCPW line with a width of Wf and a spacing of 

S1 at the input and output ports, and a middle phase shifting segment with a width of Wf and a gap of 

S2. The space size (S2) was optimized to achieve a low reflection coefficient over the operating 

frequency bands, overcoming the impedance mismatch in [116]. For the purpose of demonstration, 

the phase shifter was designed for two-way Ka-band satellite-communication (down link from19 GHz 

to 21 GHz and uplink from 28.5 to 30.50 GHz). No geometry scaling or matching/transition 

techniques are required over the entire tuning range in both operating frequency bands.  

To house a full range phase shifter within a compact area (in the range of 2.1 mm × 3 mm), as is 

required for a Ka-band phased array with antenna footprint of about 5×5 mm2, the GCPW line was 

designed in meander line configuration. This configuration achieves a longer physical length and; 

therefore, a larger phase shift within a smaller area (Wp × Lp), and it can be easily fabricated with a 

low-cost fabrication process. The dielectric constant and the dimensions of the ceramic slab were 

chosen to optimize the size, dynamic range, and input and output RLes. For the sample design, a low-

cost ceramic material was chosen with a dielectric constant of (εr=42), a low loss-tangent (0.005), 

high thermal stability, and low surface roughness. This material is an appropriate choice for high 

performance miniaturized phase shifters. The ceramic dielectric slab has a length of Ls, a width of Ws, 

and a thickness of hs. The optimized design parameters of the proposed phase shifter are shown in 

Figure 5.3. 
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Figure 5.3: Proposed phase shifter structure labelled with design parameters: h= 0.5 mm, Wf=0.14 

mm, S1=0.03 mm, S2=0.1 mm, Lp=1.7 mm, Wp=2.6 mm, Ls=2.1, Ws=3 mm, and hs=0.2 mm. 

5.3.1 Sensitivity analysis  

Full-wave simulations were conducted to study the sensitivity of the proposed phase shifter, shown in 

Figure 5.4-Figure 5.6. A ±5% variation in the dielectric permittivity of the ceramic slab at 30 GHz, 

resulted in a ±3.2% variation of the maximum achievable phase variation. The proposed phase shifter 

shows a ±1.8% IL (S21) variation and a ±1.5% frequency shift of RL (S11). Figure 5.4 illustrates the 

effect of the ceramic slab’s dielectric permittivity variation on the phase and S-parameters.  

 

Figure 5.4: Effect of dielectric permittivity variation on phase and S-parameters. 

Similarly, at 30 GHz a ±10% variation of the dielectric slab’s thickness resulted in a ±1.6% 

variation of the maximum achievable phase variation and a ±2.7% S21 variation. Figure 5.5 depicts 

the effects of slab thickness variation on the phase and S-parameters.  
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Figure 5.5: Effect of slab thickness variation on phase and S-parameters. 

Furthermore, misalignment between the ceramic slab and the GCPW line appears to be the most 

critical case among other variations. A ± 100 μm (~±5%) misalignment between the BLT slab and the 

centre of the GCPW line (X and Y) leads to a 13% increase in the IL of the proposed phase shifter at 

30 GHz with a small deterioration of the S11. However, the maximum achievable phase shift is 

reduced by only 2o. Figure 5.6 shows the phase shifter performance with misalignment effect on both 

phase and S-parameters. 

 

Figure 5.6: Phase shifter performance with misalignment effect on both phase and S-parameters. 

PET tolerance variation directly affects the airgap range, in turn impact the accuracy of the phase 

shifter state. Surface roughness [116] is another important factor that limits the operation of the 

proposed phase shifter. However, an accurate surface model of the GCPW line and ceramic slab were 

not available for sensitivity analysis with respect to the surface roughness. Based on the sensitivity 

analyses, the proposed phase shifter demonstrated low sensitivity to the fabrication and material 
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tolerances. The IL was highly affected by the misalignment of the dielectric slab. On the other hand, 

the phase accuracy under room temperature conditions is limited mainly by the accuracy and 

repeatability of the actuator. 

5.3.2 Fabrication process 

The GCPW line was fabricated by using an LPKF laser machine and the sides were coated with 

copper to avoid parallel plate modes. Laser machining is a fast, low cost, chemical-free, and mask-

free process that offers a very precise fabrication capability (accuracy better than 2 μm). Since laser 

fabrication is a non-contact process, the surface of the GCPW line is not damaged or scratched. The 

fabricated sample is shown in Figure 5.7a. A smooth surface is crucial for the proposed phase shifting 

mechanism. The power and the movement speeds of the laser beam were adjusted to etch the cladding 

copper completely while providing vertical walls for the traces. In addition to the GCPW line, the 

laser machine was also used to make high precision cuts on the ceramic dielectric slab. Since the 

amount of phase shift depends on the gap between the ceramic slab and the GCPW line, the surface 

roughness of both pieces has to be minimized. In particular, the first few microns of spacing exhibit 

the largest phase variation with respect to airgap height as shown in equation (5.1).  

A potentially low cost and compact PET (AE0203D08F form NEC Cooperation) [126] was used to 

precisely change the airgap height between the GCPW line and the dielectric slab. This transducer 

generates a 0-9.1 μm continuous displacement by applying 0-150 V DC voltage to its poles. This 

amount of displacement is sufficient for the proposed phase shifter to achieve more than a 360̊ phase 

shift variation at 30 GHz. The PET is capable of moving lighter loads at frequencies of more than 10 

kHz. In the proposed phase shifter, the PET can reach its nominal displacement within 30 µs. An 

aluminum fixture was designed and fabricated to hold the phase shifter substrate and to support the 

PET. The proposed phase shifter prototype structure including the aluminum fixture is demonstrated 

in Figure 5.7b. 
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Figure 5.7: Fabricated GCPW line and system fixture. 

5.3.3 Measurement and simulation results 

The measurement setup is shown in Figure 5.8. it consists of a 50 GHz programable network analyzer 

(PNA)-X from Keysight Technologies, an aluminum fixture to support the GCPW substrate and the 

PET, a DC power supply from Keysight, and probes with 500 μm pitch. The assembly procedure was 

as the follows. First, the transducer was attached to the fixture arm and the height of the arm was 

adjusted through the adjusting screw to achieve the minimum gap between the GCPW substrate and 

the ceramic slab. In the second step, the GCPW substrate was fixed to the base of the fixture and 

centered underneath the PET. Then, a 100 V DC was applied to the PET to expand the transducer to 

its recommended maximum length. Finally, the ceramic slab was inserted between the PET and the 

phase shifter substrate and an adhesive material was used to fix the slab to the PET. 

Extensive full-wave simulations were performed in order to optimize the dimensions of the GCPW 

line and the dielectric slab. The optimal design was fabricated and tested at room temperature. The 

measured S-parameters of the phase shifter over the downlink band when 35 V was applied to the 

PET are presented in Figure 5.9a. Measurements show a RL (S11) < -20 dB with IL (S21) > -0.66 dB 

over the frequency band. A good agreement between the experimental results and simulation results 

was observed. Similarly, Figure 5.9b shows a comparison between measurement and simulation 

results over the uplink band. The phase shifter exhibits an S11 < -13 dB with an average S21 > -2.38 

dB over the uplink frequency band. There are some discrepancies between the measurement and 

simulation results. This is mainly due to slab misalignment with the GCPW line. However, the 

measurement results still match the simulation trends and are sufficiently accurate. 
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Figure 5.8: Phase shifter measurement setup.  

 

Figure 5.9: Comparison of measured and simulated S-parameters for phase shifter with control 

voltage 35 V. 

Figure 5.10a and Figure 5.10b show the phase shift range (with respect to zero applied voltage) 

versus control voltage at 20 GHz and 30 GHz respectively. Good agreement between measurement 

and simulation results was observed over the whole range of the control voltage variation except for 

small discrepancies at a few points. These discrepancies are mainly due to the fact that in the 

simulations the control voltage was represented by its equivalent actuation displacement based on the 
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datasheet of the PET as well as to the misalignment between the ceramic slab and the GCPW line. 

The proposed phase shifter showed a 170o phase variation at 20 GHz and 270.5o at 30GHz. The 

realized phase variation was limited in this experiment due to the surface roughness of the ceramic 

slab and the PCB substrate, and by the limited actuation displacement ~ (0-7) μm when the applied 

voltage varied between 0-100 V.    

 

Figure 5.10: Comparison of phase delay versus control voltage measurement and simulation: (a) 20 

GHz, (b) 30 GHz. 

Figure 5.11a shows the measured S-parameters of the phase shifter over the downlink (20 GHz) 

band for different actuation voltages. An S11 < -17 dB with low average IL (S21) ~ -0.53 dB and low 

average IL variation (ΔS21) ± 0.22 dB was observed over the entire phase shift range, as shown in Fig. 

11a. Furthermore, the measured average phase shift variation of 170 ̊ is achieved when the control 

voltage varies between 0-100 V at the downlink band, as shown in Figure 5.11b (phase state at 0 V 

considered as reference point). 
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Figure 5.11: Downlink measurement results with different control voltages. 

Similarly, the phase shifter was tested over the uplink frequency band (30 GHz) where it exhibited 

a good S11 of < -10 dB over the entire phase shift range, with an average S21= -2.35 dB and average 

ΔS21 of < ± 0.35 dB over the frequency band, as shown in Figure 5.12a. Additionally, a measured 

average phase shift variation of 260̊ was achieved, when the control voltage varied between 0-100 V, 

as shown in. Figure 5.12b (phase state at 0 V considered as reference point).  

 

Figure 5.12: Uplink measurement results with different control voltages. 

5.4 Phase shifter based on meander line and high dielectric constant slab 

A larger phase shift can be achieved by increasing the length of the GCPW line ceramic slab, the 

height of the PET (to increase the dynamic range of the airgap height), and/or by using a higher 
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dielectric permittivity slab. The first two methods are not preferred for this particular application due 

to the size limitations. Accordingly, a high dielectric constant slab made of BLT (BaLn2Ti4O12) with 

a dielectric constant of εr=60 was used to improve the phase shifting range of the proposed phase 

shifter with the same GCPW line structure and the PET as in Section 3.3. This phase shifter prototype 

was designed and tested at the Ka-band frequency range 28-31 GHz. The operating frequency 

bandwidth of the following phase shifter prototypes are limited to Ka-band (28-31 GHz) since these 

phase shifters will be integrated with proposed CP antenna element that was introduced in Section 

3.2. The GCPW line, was designed and fabricated on a low-cost substrate (RO4360G2); it has a 

dielectric constant of εr=6.15, and a dielectric loss tanδ=0.0038, as shown in Figure 5.13. The GCPW 

line has a substrate thickness of h1=0.203mm, width of W=16mm, and length of L=25.4mm. The 50 Ω 

GCPW line has a line width of Wf=0.28mm and a gap width of gf=0.1mm. Step impedance matching 

was implemented by reducing the width of the GCPW line (Wf) under the dielectric slab from 2.8 mm 

to 0.11 mm in order to improve the input and output impedance matching. A tapered GCPW line 

transition was used at both the input and output of the phase shifter circuit to match the phase shifter 

line to the 2.9 mm RF coaxial connector to test the circuit easily with a PNA. Plated vias were utilized 

here to confine the propagated electromagnetic wave close to the slots; therefore, more perturbation 

can be achieved. A BLT dielectric slab with a dielectric constant of εr=60 and tanδ=0.005 at 30 GHz 

was used in this prototype to increase the maximum phase shift. It has a width of WBLT=3mm, a length 

of LBLT=3mm, and a thickness of hBLT=0.25mm. Furthermore, a PET of a size (w×l×h) =3×3×11mm3, 

was used to vary the airgap hgap from 2 μm to 11μm. 

   

Figure 5.13: Phase shifter circuit. 
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5.4.1 Simulation results 

A full-wave simulator was utilized when designing and optimizing the phase shifter circuit. 

Simulation results illustrate an |S11|<-10 dB over the operating frequency band 28-31 GHz when the 

hgap varies between 2μm to 11μm. Moreover, |S21| has an average of -1.25dB with ±0.75 dB variation. 

Simulated S-parameters are demonstrated in Figure 5.14. The maximum realized phase shift range 

was 400o with ±2o variation over the operating frequency band as depicted in Figure 5.15. As a result, 

the proposed phase shifter shows a very high FOM= 200o/dB. The FOM (Δo/dB) is the ratio of the 

maximum phase shift achieved to the maximum IL of the phase shifter [111]. 

 

Figure 5.14: Simulated S-parameters (dB). 

 

Figure 5.15: Simulated phase (Deg.). 
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5.4.2 Fabrication and experimental results 

The fabricated GCPW line is shown in Figure 5.16. The proposed phase shifter was assembled and 

tested with a 50 GHz PNA from Keysight Technologies. The test setup is shown in Figure 5.17. An 

aluminum-based fixture is used to hold the PET over the GCPW line, and an adhesive material was 

used to attach the BLT slab to the PET. 

 

Figure 5.16: Fabricated GCPW line. 

 

Figure 5.17: Phase shifter measurement setup. 

The proposed phase shifter was tested over the frequency range 28-31 GHz.  Measured S-

parameters show good agreement with simulation results, as shown in Figure 5.18, except for some 

discrepancies (mainly due to misalignment between the BLT slab and GCPW line). However, the 

phase shifter demonstrated an |S11|<-10 dB over the entire operating frequency band and an average 
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|S21|=-1.5 dB with less than ±1 dB variation. Figure 5.19 illustrates the measured phase variation 

versus frequency as the applied voltage to the PET varies between 0V-150V (< 5o phase steps) to 

show that the proposed phase shifter capable to realize a fine phase resolution, which is a desired 

feature in high performance phased-array antenna applications. The maximum phase shift realized 

with this prototype was 306o and 365o at 28 GHz and 31 GHz, respectively, as shown in Figure 5.20. 

Accordingly, the realized FOM at 28 GHz and 31 GHz was 180o/dB and 146o/dB respectively. Such a 

high FOM proves the exceptional performance of the proposed phase shifting concept when 

compared to existing phase shifters operating at Ka-band frequencies.  

 

Figure 5.18: Measured S-parameters (dB). 

 

Figure 5.19: Measured phase response versus frequency with fine phase resolution. 
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Figure 5.20: Measured phase response versus control voltage. 

The phase shifter test was repeated several times with at least a one-hour interval between each 

consecutive measurement for different applied voltages under the room temperature condition. It was 

found that the phase shifter’s S21 has a highly stable magnitude and phase over the operating 

frequency band. The S21 repeatability test shows a maximum absolute uncertainty of less than 0.045 

dB in all cases, and the phase repeatability test shows a maximum absolute error of less than 0.3o in 

all cases as shown in Figure 5.21. 

 

Figure 5.21: Repeatability test results. 
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5.5 Low-profile millimeter-wave phase shifter 

5.5.1 Low-profile magnetic actuator 

One of the most challenging aspects of loading a TL with a dielectric slab phase shifting concept, is 

the height of the actuator and the high driving voltage. Conventional actuation methods like PET are 

not the best options due to two drawbacks. First, the height of the PET usually increases linearly with 

the required displacement (e.g., a 10 μm displacement requires a PET with a height of 1 cm), making 

the phase shifter a bulky structure. Second, a typical PET requires a high DC control voltage (in the 

order of 100 V), which leads to a complex and costly implementation of the proposed phase shifter. 

To overcome these limitations, a high-performance, low-cost, and low-profile actuation mechanism 

was developed in CIARS. The proposed actuation mechanism consists of an integrated miniaturized 

permanent magnet made from materials with high magnetization such as samarium-cobalt (SmCo) 

and a planar magnetic coil. A magnetic actuation mechanism is seen as one of the best solutions to 

develop a low profile, low power consumption, and cost-effective solution to overcome the 

limitations of conventional actuation methods [127]. The proposed magnetic actuator utilizes the 

repulsion and attraction forces occurring between the permanent magnet and the planar magnetic coil 

to move the BLT slab with high precision and in the most repeatable manner. The BLT slab was 

attached to a flexible polyimide membrane supported by two beams to keep the BLT slab in its proper 

position during actuation. The polyimide membrane has a 50μm thickness, a beam width of 

Wb=200μm, a gap of Gb=200μm, a 2×4mm2 base on which the BLT slab will be attached, and a 

1.1mm opening to hold the SmCo magnet, as shown in Figure 5.22a. A very thin SmCo magnet 

(typically considered to have thicknesses and diameters <1 mm), was placed on top of the polyimide 

membrane. A tunable current source was employed to control the current of the magnetic coil thus 

generating an adjustable and reversible magnetic force. The magnetic coil was implemented on an 

FR4 PCB substrate with a spiral shape. A typical design has a line width of Wl=100μm, a gap 

between turns of Gl=50μm, and 14 turns, as shown in Figure 5.22b. According to Biot-Savart law, the 

magnetic field strength H(z) generated by the magnetic coil is given by [127]: 

𝐻(𝑧) = ∑
𝐼[𝑅+(𝑖−1)𝐺𝑙]

{[𝑅+(𝑖−1)𝐺𝑙]
2+𝑧2}

3
2⁄

𝑛
𝑖=1      (5.5) 

Where z is the normal distance between the magnetic coil and the SmCo magnet, I is the supplied 

DC current passing through the planar coil, and R is the radius of the inner ring of the planar coil. The 

normal magnetic force generated can be obtained from basic Lorenz force equation [127]: 
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𝐹𝑧 = 𝐵𝑟𝐴𝑆𝑚𝐶𝑜 ∫
𝜕𝐻(𝑧)

𝜕𝑧
𝑑𝑧

𝑧+ℎ𝑆𝑚𝐶𝑜

𝑧
                            (5.6) 

Where 𝐹𝑧 is the normal magnetic force, 𝐵𝑟, 𝐴𝑆𝑚𝐶𝑜, ℎ𝑆𝑚𝐶𝑜 are the remanence, the area, and the height 

of the SmCo magnet respectively, and 
𝜕𝐻(𝑧)

𝜕𝑧
 is the gradient of the magnetic field generated by the 

magnetic coil. The normal displacement of the polyimide membrane is linearly dependent on the 

generated magnetic force, which can be calculated using the expression [127]: 

𝑑𝑧 = 𝑐
𝑙𝑚
2 ⁡𝐹𝑧⁡

ℎ𝑚
2 (

12⁡(1−𝑣2)

𝐸ℎ𝑚
2 )                                           (5.7) 

Where 𝑐 is a constant depends on the boundary conditions of the outer edges and the membrane 

shape,  𝑙𝑚 and ℎ𝑚 are the length and thickness of the polyimide membrane respectively, 𝐸 is the 

Young’s modulus of the polyimide material, and 𝑣 is the Poisson’s ratio.     

A 3-D printed polymer-based structure was used as a low-cost package to support the components 

of the proposed phase shifter and provide protection against environmental effects. The total height of 

the new actuator and its 3-D packaging was less than 2mm, compared to a height of 12mm for the 

PET actuator used in Section (5.3 and 5.4). The proposed actuator required only ±40mA to elevate the 

BLT slab 50μm from the GCPW line surface; this is five times the displacement of a typical PET. 

 
(a)                                                         (b) 

Figure 5.22: Proposed polyimide membrane and planar electromagnetic coil: (a) top view of 

polyimide membrane, (b) top view of planar magnetic coil. 
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5.5.2 Phased shifter with magnetic actuator and 3-D printed packaging 

Based on the new BLT phase-shifter concept, a new low-profile and high-performance phase shifter 

was designed and optimized in this research to overcome the height and power consumption 

drawbacks of the phase shifters presented in Sections (5.3 and 5.4). It consists of a straight GCPW 

line, a high dielectric slab, a magnetic actuator, and a 3-D printed packaging structure. The straight 

GCPW line was designed on a RO4360G2 dielectric substrate with an εr=6.15, a dielectric loss of 

tanδ=0.0038, and a thickness of h1=0.2032mm with a 50 Ω impedance at the input/output. The 

dielectric slab was BLT with a length of LBLT=4 mm, a width of WBLT=1.5 mm, a height of hBLT=0.2 

mm, an εr=100, and a dielectric loss of tanδ=0.01 [116]. The BLT slab was placed on top of the 

GCPW line, and the magnetic actuator was utilized to control its position. This allows a tunable and 

continuous phase to be realized. An exploded view of this phase shifter is shown in Figure 5.23.  

5.5.3 Simulation results 

The GCPW line, shown in Figure 5.24, has a line width of Wf1= 0.28mm and a gap size of Sf =0.11mm 

at the input and output of the phase shifter. The existence of the BLT slab reduces the GCPW line 

impedance, so impedance matching is introduced on the GCPW part below the BLT slab. Impedance 

matching was realized by decreasing the width of the GCPW line from 0.28mm to Wf2 =0.11mm; 

therefore, the proposed phase shifter shows a RL of <-10 dB for all phase states over the operating 

frequency band. 

 

Figure 5.23: Exploded 3-D view of phase shifter with magnetic actuator and 3-D printed enclosure.  
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Figure 5.24: Proposed phase shifter circuit top view. 

The proposed phase shifter architecture has a wide operating bandwidth as was demonstrated in 

[116-117]; however, this prototype was designed and tested over the operating frequency band (i.e., 

29-31 GHz centered at 30 GHz), and its optimized dimensions are listed in Table 5.1.  

Table 5.1: Optimized parameters of phase shifter (mm) 

Parameter Wf1 Sf LBLT WBLT hBLT 

Dimension 0.28 0.11 4 1.5 0.2 

Parameter Wf2 dv Sv h1  

Dimension 0.11 0.203 0.5 0.203  

 

Simulations were performed to optimize the phase shifter and to calculate the actuation height 

required to realize a >360o phase shift. Simulations showed that to realize such a phase shift, the 

airgap hgap should vary between 1μm and 45μm as shown in Figure 5.25a. A small hgap contributes 

more significantly to the phase shift than a larger gap. Moreover, the proposed phase shifter 

demonstrated a |S11| <-10 dB over the operating frequency band (29-31 GHz) for all hgap values. 

Similarly, it achieved a very low |S21| for the same frequency bandwidth. The simulation results 

showed an average |S21| of -0.95 dB at 30 GHz with an exceptionally low |S21| variation of less than 

±0.5 dB over the entire range of phase shift. The simulated S-parameters are shown in Figure 5.25b. 
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(a) 

 
(b) 

Figure 5.25: Simulated results for proposed phase shifter for different hgap: (a) phase versus hgap; (b) 

S-parameters versus frequency. 

5.5.4 Measurement results 

The proposed phase shifter was fabricated and tested using a PNA from Keysight Technologies. 

Measurements were taken over the frequency band 29-31 GHz. Figure 5.26 shows the fabricated 

phase shifter. S-parameter measurements of the proposed phase shifter demonstrated linear phase-

frequency behavior with a maximum phase shift of 285o at 30 GHz when a 100-mA was applied to 

the magnetic actuator. The fact that the power consumption during the experiment was higher than 

the theoretical value is mainly due to the extra losses introduced by the interconnecting DC power 

lines between the magnetic coil and the current source. However, this extra power consumption can 

be easily eliminated by integrating the current source on top of the magnetic coil. Moreover, the 
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proposed phase shifter was designed to achieve a 360o phase shift at 30 GHz, but measurements 

showed a maximum phase shift of 285o, as illustrated in Figure 5.27a. This discrepancy occurred 

because during simulation it was assumed that the airgap height hgap could be reduced to 1μm in order 

to realize the required 360o phase shift. This was not possible to achieve with the fabricated prototype 

mainly due to the surface roughness of the fabricated GCPW line. 

 
 

Figure 5.26: Fabricated phase shifter circuit and actuator components. 

Measurement results indicate an |S11| <-10 dB over the operating frequency bandwidth for different 

hgap states, meaning the measured |S11| is quite similar to the simulated result. In addition, the 

measurements demonstrate very low |S21| especially at 30 GHz. They show an average |S21| of -1 dB 

with an extremely low measured |S21| variation of ±0.2 dB around the center frequency (30 GHz). The 

measured |S21| is one of the best reported to date in the literature [See Table 5.3]. Figure 5.27b 

presents the measured S-parameters versus frequency for the proposed phase shifter at different 

applied current states. Table 5.3 compares the performance of the phase shifter presented here with 

state-of-the-art phase shifters that use similar phase shifting mechanisms. 
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(a) 

 

(b) 

Figure 5.27: Measured results for proposed phase shifter with different applied currents: (a) 

normalized phase versus applied current; (b) S-parameters versus frequency. 

5.6 A Slow-wave based GCPW line phase shifter 

To increase the phase shifting range of the proposed low-profile phase shifter (Section 5.5), a slow-

wave (SW-GCPW) line was incorporated into the phase shifter design to realize a longer electrical 

length within a relatively small physical length. A BLT slab (εr =100) was placed on top of the 

proposed SW-GCPW line to tune the phase. The proposed structure employs the same actuation and 

packaging structures as those presented in Section (5.5).    
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5.6.1 SW-GCPW line 

A periodic structure is used to generate a slow electromagnetic wave in a guiding medium; thereby, it 

can be used to increase the electrical length of a TL within the same physical length [128]. In this 

research a periodic capacitive loading of a GCPW line was used to create an SW structure as a 

method to reduce the length of the proposed phase shifter. The top view of the proposed SW-GCPW 

is shown in Figure 5.28. RO4360G2 (εr=6.15, tanδ=0.0038, and thickness h=0.203 mm) was used as 

a dielectric substrate to design the proposed SW-GCPW line. The signal and ground of the CPW line 

was modified to create a comb shape to realize a capacitive loading, leading to a change in the phase 

velocity of the propagating guided mode. The periodicity (P) of loading was chosen to be 0.4 mm and 

the width of the comb fingers was chosen to be W1=1 mm. The SW-GCPW was tapered at the input 

and output with two-step impedances that have widths of W2=0.8 mm and W3=0.6 mm respectively, 

to improve the impedance matching of the proposed GCPW line over the operating frequency band 

(20-30 GHz). The input and output of the SW-GCPW line were connected to a 50 Ω GCPW line (line 

width of Wf1=0.28mm and gap width of S=0.11 mm). Fencing vias with a diameter of dv=0.203 mm 

and a spacing between vias of Sv=0.403 mm, were utilized to connect the top and bottom grounds. 

Table 5.2 shows the parameters of the proposed SW-GCPW line that was optimized by employing a 

full-wave simulator from ANSYS. Simulations showed that the proposed SW-GCPW line exhibits an 

IL |S21| comparable to the conventional GCPW line. The conventional line had the same physical 

length and a RL |S11| better than -20 dB over the operating frequency band as shown in Figure 5.29 

(top). Furthermore, in the modified SW-GCPW, a 1.7 times delay enhancement was achieved as 

compared to the conventional GCPW as illustrated in Figure 5.29 (bottom).  

 

Figure 5.28: Top view of proposed SW-GCPW line. 
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Table 5.2: Dimensions of proposed SW-GCPW line (mm). 

parameter L P W1 W2 W3 Wf1 S 

dimension 3.6 0.4 1 0.8 0.6 0.28 0.11 

parameter W Ls2 Wf1 Wf2 dv Sv h1 

dimension 1.5 2.42 0.28 0.1 0.203 0.403 0.203 

 

 

Figure 5.29: Simulation results for GCPW line and proposed SW-GCPW line: (top) S-parameters 

(dB); (bottom) phase of the S21 (Deg.). 

5.6.2 Phase shifter circuit and simulation results 

The BLT slab had a dielectric constant of εr =100 and loss tangent of tanδ=0.01. The BLT dimensions 

were (length) LBLT=3.6 mm, (width) WBLT=2 mm, and (thickness) hBLT=0.2 mm. With these 

dimensions, a variable airgap hgap (spacing between the BLT and the GCPW line) of between 1 μm to 

50 μm is needed to obtain more than 360o phase shift at 30 GHz. The top and side views of the 

proposed phase shifter are shown in (a)                                                         (b) 

Figure 5.30. The proposed phase shifter was simulated over the frequency range 28.5-30.5 GHz. For 

practical considerations, the airgap height (hgap) was varied over the range of 4-54 μm. To 

demonstrate the advantage of the proposed SW-GCPW over the conventional GCPW line, a similar 

phase shifter structure with the SW was replaced by a conventional GCPW line was designed and 

simulated. As can be seen in Figure 5.31, the SW-GCPW based phase shifter exhibits a phase shifting 

range of 0o-313o at 29.5 GHz—almost twice of that is realized by the GCPW based phase shifter (0o-
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162o) at the same operating frequency. The simulated S-parameters of the proposed phase shifter are 

plotted in (a)                                                         (b) 

Figure 5.32. The simulated RL |S11| was better than -10 dB over the operating frequency for all hgap 

values except in one case at 28.5 GHz. The maximum IL |S21| of -1.7 dB appeared at 28.5 GHz when 

hgap was set to 4 μm; the best |S21| (-0.9 dB) was achieved at the same frequency when hgap was set to 

54 μm. The proposed phase shifter shows a very high FOM with the worst case of 173.4o/dB at 28.5 

GHz due to impedance mismatch; the best simulated FOM of 240.6o/dB was realized at 30 GHz.        

 
(a)                                                         (b) 

Figure 5.30: Proposed phase shifter circuit (a) top view, (b) side view. 

 

Figure 5.31: Simulated phase responses for GCPW and proposed SW-GCPW-based phase shifters at 

29.5 GHz. 
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(a)                                                         (b) 

Figure 5.32: Simulation results for proposed phase shifter with different hgap heights (a) S11 (dB), (b) 

S21 (dB). 

The proposed actuator in packaged form exhibits < 2 mm height, making it an excellent candidate to 

be utilized in such a phase shifting mechanism. The cross section of the new phase shifter is 

illustrated in Figure 5.33. 

 

Figure 5.33: Cross-section of the new low-profile magnetically actuated BLT phase shifter. 

5.6.3 Fabricated phase shifter prototype and measurement results 

The components of the proposed phase shifter were fabricated and assembled. A Keysight PNA-X 

was employed to measure its characteristics. The fabricated phase shifter and its characterization 

setup are shown in Figure 5.34. Measurements were performed over the operating frequency band 

(28.5-30.5 GHz). The current of the planar magnetic coil was varied from 0-260 mA, to ensure an 
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attractive magnetic force between the planar magnetic coil and the permanent magnet was generated. 

As a result, a tunable phase shift was realized.     

 

Figure 5.34: Fabricated phase shifter circuit and its measurement setup. 

The measured normalized phase response of the proposed phase shifter is shown in Figure 5.35. 

As can be seen, the SW-GCPW based phase shifter exhibits a measured phase shifting range of 0o-

311o at 29.5 GHz, which matches the simulated results. The measured |S11| and |S21| of the proposed 

phase shifter are depicted in Figure 5.36. The measured |S11| was better than -10 dB over the 

operating frequency for all phase shift states. The maximum |S21| of -1.65 dB was observed at 29.5 

GHz when the current was set to 0 mA; the best |S21| (-1.05 dB) was achieved at the same frequency 

when the current was set to 260 mA, corresponding to a large hgap. As a result, the proposed phase 

shifter shows a very high FOM of 188.5o/dB at 29.5 GHz. 
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Figure 5.35: Measured normalized phase response of new phase shifter. 

 
   (a)                                                   (b) 

Figure 5.36: Measured results for new phase shifter with different current values: (a) S11 (dB), (b) S21 

(dB) for different current values. 

5.7 Summary of the results and conclusions 

In this chapter, design, and optimization of a high-performance phase shifter structure based on new 

BLT phase-shifting technology was reported. The new phase-shifter was implemented in a low-cost 

standard two-layer PCB technology and extensively tested and characterized. The new phase shifter 

enables the realization of a low-cost mm-W passive phased array as will be presented in chapter 6—a 

structure in high demand for numerous emerging mm-W applications. 
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The new phase shifter demonstrated a continuous monotonic linear phase-gap response. It operates 

over a wide frequency range with high FOM and excellent RL |S11| and IL |S21| performance over the 

entire range of the phase shift. The phase-shifter uses a new low-profile, low cost, and low power 

consumption actuating mechanism. The new actuation mechanism, based on magnetic force, has 

overcome the limitations of other actuation mechanisms for such high-performance phase shifting [95 

and 113-117]. A comparison of the proposed phase shifter with state-of-the-art phase shifters 

developed by other technologies is shown in Table 5.3. The proposed phase shifter shows a better 

performance compared to state-of-the-art devices as it realized a higher FOM with lower power 

consumption.  

Table 5.3: Comparison of state-of-the-art continuous-type phase shifters. 

Ref. [99] [109] [108] [113] [115] 
This  

work 

This  

work 

Material MEMS LC Ferroelectric 
Low dielectric 

perturber 

Magneto 

dielectric 

perturber 

GCPW 

Section 5.5 

SWGCPW 

Section 5.6 

f (GHz) 75 30 32 9.7 20 30 29.5 

∆Ømax (
o) 32 60 372.3 132 384 285 311 

|ILmax|  

(dB) 
5 6 7.3 2.31 4.5 1.20 1.65 

FOM 

∆Ømax/|ILmax| 
6.4 10 51 57 85.3 237.5 188.5 

Area (mm2) 6x30 14.6x5 1x1.2 73x32 12x4 2x4 2x3.6 

Voltage (dc) 0-40 0-100 0-30 0-100 0-50 0.1Vx(±0.1A) 0.1Vx0.26A 
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Chapter 6 

A Low-cost Ka-band Passive and Steerable Antenna Array  

6.1 Introduction 

This chapter investigates enabling technologies, and develop a proof-of-concept prototype, for a low-

cost and low-profile compact steerable passive antenna array concept for mm-W applications (Ka-

band systems specifically). First, the phase shifter presented in Section 5.2 is integrated with the 

novel CP antenna element introduced in Section 3.2 to develop a proof-of-concept 1×4 Ka-band CP 

passive PAA. First, the CP antenna elements are loaded with a right triangle-shaped BLT slab, and a 

mechanical actuator is used to control the air gap height as a simple conventional passive PAA. Its 

beam was steered over the scanning range of 0o- 25o at 30 GHz, when the air gap between the slab 

and the TLs was varied from 60μm to 8μm. A more sophisticated passive PAA with low-profile is 

then developed by employing the magnetic actuation mechanism presented in Section 5.5. The 

realized passive PAA radiates a CP pattern and is steered up to ±38o off-boresight with high radiation 

efficiency (~ 60% at 30 GHz). Finally, the phase shifting mechanism was utilized to develop a novel 

wideband mm-W reconfigurable RAA element with 360o reflection phase as an excellent building 

block for a large-scale steerable mm-W RAAs.      

6.2 CP passive PAA with micro-positioner  

As a proof-of-concept, a 1×4 CP sub-array was developed to operate at 30 GHz in order to steer the 

beam to different angles. As shown in Figure 6.1, the systems consists of four CP antenna elements 

with 5 mm inter element spacing; a BLT right triangle slab with εr=100 and dimensions of L=6mm 

(length), W= 11mm (width), h=0.25mm (thickness); and a GCPW corporate feeding network. The 

BLT slab was used to impose a linear progressive phase on three antenna elements and the fourth 

element was used as a reference. Such structure allows to steer the beam from the boresight up to 90o 

off-boresight only. Figure 6.2 shows the fabricated sample. A full-wave analysis was performed to 

optimize the BLT slab size and shape in order to guarantee a linear progressive phase realization. The 

simulation results show good beam-steering capabilities at the operating frequency band 29-31 GHz. 
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Figure 6.1: Proposed 1×4 CP passive PAA. 

 

Figure 6.2: Fabricated 1×4 CP passive PAA. 

To test this particular type of array, a micrometer positioner was used to control the height of the air 

gap between the BLT slab and GCPW TLs, as shown in Figure 6.3. The proposed CP passive PAA 

was tested with a PNA-X to evaluate its RL for three different gap cases and the results were 

compared with simulation results. The following three air gap heights were tested case1 (far from the 

TLs; ~60μm), case2 (moderate distance; ~24μm), and case3 (very close to the TLs; ~8μm).  
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Figure 6.3: Measurement setup for 1×4 CP passive PAA. 

The measured and simulated RLs are shown in Figure 6.4. Good agreement between the results can 

be observed, despite the fact that the effects of connector loss and the presence of the micrometer 

positioner and fixing screws were not included in the simulation. Both measurement and simulation 

results show a 2 GHz RL |S11| ≤-10 dB for all cases.  

 

Figure 6.4: Measured and simulated S11 of 1×4 CP passive PAA. 

Additionally, antenna radiation pattern measurement was performed on the proposed structure for the 

same aforementioned cases. Measured antenna patterns (Figure 6.5) agree with simulated patterns for 

all cases. There are small discrepancies between the results over the SLL because the simulation did 

not include the effects of connector loss, micrometer positioner, and fixing screws. The antenna beam 

was steered up to 25o from the boresight with an excellent Co-pol beam and good AR levels (~1.5 
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dB) for all three cases. It should be noted that the limited beam-steering capabilities of this structure 

is mainly due to two factors. First, a straight GCPW TL was used for the phase shifter circuit instead 

of an electrically longer TL (e.g., meander or slow-wave). Second, a better surface finish on both the 

GCPW TLs and BLT slab (given the BLT slab is used as a single large block instead of a small slab 

for each antenna element), would have allowed for smaller air gap heights (<8μm; equivalent to 

higher phase shift). These were the main limiting factors of wide-angle beam-steering for this 

particular structure. 

 

Figure 6.5: Measured and simulated radiation patterns of 1×4 CP passive PAA with micrometer 

positioner. 

6.3 1×4 mm-W CP passive PAA 

To enhance the array’s beam-steering capabilities and to reduce the array’s profile, the phase shifter 

described in Section 5.5 and the CP antenna from Section 3.2 were integrated to construct a proof-of-

concept low-profile 1×4 CP passive PAA to operate at Ka-band frequency range 29-31 GHz. The 

design consisted of four CP antenna elements arranged in a linear grid, four phase shifters, and a 

corporate feeding network. In the proposed structure, since each antenna element has a phase shifter 

that can be controlled independently, the beam can be steered in two directions off-boresight. The 

proposed phase-shifting mechanism is not only able to compensate for substrate warpage but also for 

other inevitable mechanical and fabrication errors. Therefore, accurate and flexible beam-scanning 

can be achieved over the angles ranging from -90o to +90o in elevation—an advantageous feature of 
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the proposed passive PAA over existing solutions [24, and 84-90]. The proposed array was fabricated 

on a 4000 series three-layer PCB from Rogers Corp. A 5mm (λo/2) inter-element spacing was used. 

The proposed passive PAA was simulated for different scanning angles over the frequency band of 

interest. 

6.3.1 Measurement and simulation results  

A PNA was used to measure the RL (S11) of the fabricated CP passive PAA. The antenna shows an 

|S11| <-10 dB over the operating frequency band for all steering angles with small variations as shown 

in Figure 6.6. The PNF measurement system from NSI was used to measure the radiation 

characteristics of the passive PAA. The measurement setup is illustrated in Figure 6.7b. A look-up 

table was extracted for each phase shifter by employing the PNF system probe. The probe was placed 

very close to each antenna element; by varying the current source the phase range could be obtained 

for each individual antenna element. The extracted data were saved as a look-up table. The theoretical 

basis of this calibration method is introduced in [129]. The look-up tables were loaded to a computer 

and the AF theory was used to calculate the required progressive phase to steer the beam of the AUT 

towards different elevation angles. The maximum realized phase shift was 320o, when a 100mA 

current was applied to the magnetic coils. 

 

Figure 6.6: Measured RL at different steering angles. 
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(a) 

 

(b) 

Figure 6.7: Measurement setup: (a) fabricated CP passive PAA, (b) PNF measurement setup. 

 

The passive PAA was tested over the frequency band of 29-31 GHz. Measurement results were 

compared to simulation results for three different steering angles at 30 GHz. An RHCP beam was 

realized with high X-pol discrimination. Measurements showed a 20 dB X-pol discrimination at 

boresight; agreeing with simulation predictions. Furthermore, a SLL < 11 dB was found by both 

measurement and simulation. In addition, the measured results agree with those found through 

simulation for the ±25o steering angles, as shown in Figure 6.8. For completeness, the PNF system was 

used to measure the directivity and gain of the AUT. The standard method consists of two steps: a) 

measuring the directivity from the scanned data, and b) using a standard gain horn antenna to 

calibrate the PNF system. The antenna gain is then obtained from the measured directivity and the 

standard gain measurement.  



 

 106 

 

(a)                              (b)                            (c) 

Figure 6.8:Measured and simulated radiation patterns at 30 GHz for different steering angles: (a) -25o, 

(b) 0o, and (c) +25o. 

The maximum measured gain was 7.4 dBi with a 0.5 dB variation. The maximum measured 

directivity was 9.75 dBi with a 0.5 dB variation over the operating frequency band for the boresight 

case. A good correlation was observed between the measured and simulated gains, and between the 

measured and simulated directivities, as shown in Figure 6.9a. The passive PAA shows a measured 

radiation efficiency of 60% at 30 GHz—exceptional performance for a passive PAA system. To the 

best of the author’s knowledge, no similar performance has been reported in the literature. The 

measured and simulated radiation efficiencies are depicted in Figure 6.9b. 

 

(a)                                                (b) 

Figure 6.9: Measured and simulated: (a) gain and directivity, (b) radiation efficiency. 
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6.3.2 Measurement summary  

The developed CP passive PAA was tested for different steering angles in elevation to validate its 

performance and capabilities. The main beam was steered towards the angles 0o, ±10o, ±15o, ±25o, 

and ±38o, and it demonstrated an RHCP beam with a low pointing error (<2o) in all cases over the 

frequency bandwidth 29.5-30.5 GHz with an AR < 3dB. Figure 6.10 (a-e) illustrates the measured 

RHCP and LHCP components of the proposed CP passive PAA. It can be observed that the main 

beam was properly formed at all steering angles. The proposed PAA maintains good CP and high X-

pol discrimination over a 1 GHz frequency band centered at 30 GHz, with excellent beam pointing 

and acceptable SLLs. The proposed passive phased array demonstrates a gain variation of about ~ 

1dB at 30 GHz, for different steering angles. This gain variation is due to the scanning loss. 

Theoretically, the SLLs for any ±θs should be the same. However, due to the limited number of 

calibration points, the phase shifters’ characterization in this initial stage of research was not very 

accurate and most of the calibration data (over the entire phase shift range) were obtained by 

interpolation over a limited number of measurements. This inaccuracy led to asymmetry in the 

measured gain and SLLs. Table 6.1 summarizes the radiation characteristics of the proposed passive 

PAA at 30 GHz for different scanning angles.  

Finally, an extensive comparison between the presented CP passive PAA and state-of-the-art 

passive PAAs is shown in Table 6.2. This comparison focuses on aspects that are the most critical 

factors in designing an efficient and low-cost passive PAA suitable for implementation in a large-

scale system. As can be seen form the table, CP passive PAA exhibits the best performances 

compared to the-state-of-the-art passive PAAs in terms of size, beam-steering capabilities, and 

radiation efficiency.   

    

(a) 
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(b) 

   

(c) 

    

(d) 
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(e) 

Figure 6.10: Measured RHCP (Co-Pol) and LHCP (X-Pol) patterns at 29.5, 30, 30.5 GHz: (a) -38o, 

(b) -15o, (c) 0o, (d) +15o, and (e) +38o. 

Table 6.1: Summary of 1×4 CP Passive PAA measurement results. 

29.5 GHz 

 -38o -25o -15o -10o 0o 10o 15o 25o 38o 

X-Pol 

discrimination 

(dB) 

22 16 16.3 18.6 19 19 18.8 15.8 19.3 

1st SLL (dB) 6 9.7 8.7 9.6 11.9 10.6 7.6 7 4.4 

30 GHz 

X-Pol 

discrimination 

(dB) 

23 22.5 20.4 18.4 20.33 22 18.4 17.9 15.85 

1st SLL (dB) 7 10.9 7.2 9 11.75 11.9 7.6 7.6 3.7 

30.5 GHz 

X-Pol 

discrimination 

(dB) 

19.4 15 18.7 18.3 23 20.7 20.2 16 20.7 

1st SLL (dB) 8.35 16.5 6 9.7 12.1 13.5 8 7.8 3.8 
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Figure 6.11: Measured gain at different steering angles. 

Table 6.2: Comparison of state-of-the-art passive PAAs. 

Criteria [24] [84] [86] [88] [89] 
This 

work 

Frequency 

(GHz) 
60 16 33 30 15 30 

Scanning 

coverage 
1-D 1-D 1-D 1-D 1-D 1-D 

Measured 

scanning 

-1.6o-

+2.9o 
0-30o 

-21o-

+24o 

-17o-

+19o 
0-25o 

-38o-

+38o 

Polarization LP LP LP LP LP CP 

Measured 

Gain (dBi) 
15 - - - 8 7.15 

Efficiency 

% 
39.9 - - - - 60 

Profile High High High High High Low 

Array 

size 
1×16 1×4 1×8 1×8 1×4 1×4 

Voltage 

range (V) 
0-100 0-60 0-50 0-40 0-60 0-0.1 

Actuation PET PET PET PET PET 
Magnetic 

actuator 

Packaged No No No No No Yes 
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6.4 Tunable Ka-band RAA element 

6.4.1 Introduction 

A new reconfigurable RAA with true-time-delay functionality was developed. Its reconfigurability 

was realized by loading a GCPW line with a high dielectric constant slab. A mechanical actuator was 

employed in the proof-of-concept prototype to precisely control the reflection phase of the unit cell 

(UC). An ACMPA was used to receive and re-radiate the electromagnetic energy efficiently. It was 

designed using a low-cost PCBs process so that a low-cost and high-performance large-scale steerable 

RAA could be developed for mm-W applications. The proposed UC was designed and tested over the 

frequency range of 27.5-30 GHz. Measurements show that a reflection phase of almost 360o could be 

realized, over an 8.7% frequency band, with a maximum reflection loss of 4.5 dB.  

6.4.2 Geometry and design concept 

A conventional ACMPA was used as a reflecting element with tunable reflection phase capability. It 

consisted of a rectangular microstrip patch, an aperture slot, and a GCPW feed line. A series slot was 

connected to the GCPW line to provide strong coupling between the feed line and the aperture to 

excite the radiating patch. A high dielectric slab was placed on a portion of the GCPW. This slab was 

of a sufficient length to realize more than 360o reflection phase over the entire operating frequency 

band. The reflection was generated by a short circuit at the end of the GCPW line. This type of 

GCPW reflective termination minimizes the spurious emission and reflection loss. The amount of 

phase shift that can be achieved in this configuration was found to be double that of the traveling-

wave type of phase shifter presented in Chapter 5. This is because the electromagnetic wave will pass 

through the phase shifting region, beneath the dielectric slab, twice. A precise mechanical actuator 

can be used to adjust the gap between the dielectric slab and the GCPW line to vary the delay, and 

thereby properly adjust the reflection phase. MEMS, PET, micrometer positioner, and magnetic 

actuator are possible candidates for use as actuators to realize the desired phase tunability.  

    The design steps of the proposed UC proceed from the initial analysis of system requirements (e.g., 

operating frequency band, radiation pattern, and polarization) can be summarized as follows: (i) 

selection of optimal configuration for the UC and integrated phase-shifting element (including 

actuation mechanism), and selection of low-loss and low-cost substrates for both the antenna and 

phase shifter; (ii) design and optimization of the antenna element for efficient radiation and desired 

polarization; (iii) design of the phase-shifting element based on equation (3.1); (iv) integration of the 
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phase-shifting element with the antenna; and (v) co-optimization of the antenna and the phase-shifting 

elements using a full-wave simulator to obtain the maximum tunable reflection phase range and 

minimum reflection loss.  

    The geometry of the ACMPA used for this proof-of-concept UC is shown in Figure 6.12. The 

antenna was designed to operate over the frequency band of 27.5 GHz to 30 GHz. RO4360G2 (εr = 

6.15, thickness of h1=0.203 mm) and RO4003 (εr = 3.55, thickness of h3=0.508 mm) were used as 

low-cost PCB materials to realize the GCPW line and the rectangular microstrip patch, respectively, 

and RO4450F (εr = 3.52, thickness of h2=0.203 mm) was used to laminate the two substrates. 

 
(a) 

 

(b) 

Figure 6.12: ACMPA: (a) 3-D schematic view (b) metal layers. 

6.4.3 Analysis and simulation results 

Extensive full-wave simulations were performed to design and optimize the antenna to realize 

sufficient operational bandwidth, proper polarization performance, and radiation characteristics. The 

optimized antenna parameters are shown in Table 6.3. A 17 μm copper was used for all three metal 

layers in this simulation, to incorporate both the metallic and dielectric loss. Simulations show that a 
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wideband RL (|S11|<-10 dB) was achieved when the antenna operated over the frequency band of 26 

GHz to 30.5 GHz (~16%). It realized an |S11| ≤ -15 dB over the frequency range 26.5-29.75 GHz, as 

shown in Figure 6.13a. Furthermore, the simulated antenna showed a linearly polarized radiation 

pattern with high X-pol discrimination, (> 40 dB), good symmetry over ϕ =0o and 90o at the center 

frequency, and a gain of 5.9 dB. Figure 6.13b depicts the simulated radiation pattern of the aperture-

coupled antenna at 28.5 GHz. Consequently, the antenna element can be used to develop a high 

performance reflectarray UC. 

Table 6.3: Dimensions of ACMPA (mm). 

parameter Py Px Lp Wp Ws 

dimension 6 6 2.27 1.98 0.22 

parameter Ls1 Ls2 Wf1 Wf2 Sv 

dimension 2.1 2.42 0.28 0.1 0.2 

parameter dv Xv h1 
h2 h3 

dimension 0.2 0.2 0.203 0.203 0.508 

 

 

    

(a)                                                (b) 

Figure 6.13: Simulation results of ACMPA: (a) RL (dB), (b) radiation pattern (dBi) at 28.5 GHz. 

    After designing of the ACMPA is completed, the next step is to integrate the phase-shifting 

element with the antenna element and co-optimize the structure. With this approach, more than 360o 

reconfigurable phase shifting can be easily achieved over a wide operating frequency band with 

minimal gain variation. This is highly desirable characteristic for wideband large-scale steerable mm-

W RAAs. A convenient choice for dielectric slab is to use BLT material with an εr =165 and 

tanδ=0.01. For the proposed design reported, the optimal BLT dimensions were (length) LBLT=3.3 mm, 

(width) WBLT=2 mm, and (thickness) hBLT=0.2 mm. With these dimensions, a variable airgap (spacing 
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between the BLT and GCPW line) with a maximum range of 11 μm is required to obtain a 360o phase 

shift. To match the impedance of the phase shifting section to the aperture-coupled antenna, the width 

of the GCPW line below the BLT slab is reduced from Wf1= 0.28 mm to Wf2= 0.11 mm, so that the 

propagating wave under the phase shifter would not experience any additional scattering or reflection. 

The antenna, integrated with the BLT phase shifter, is shown in Figure 6.14. Variation in the airgap 

(hgap) affects the reflection coefficient of the antenna element due to the perturbation generated by the 

BLT slab in the GCPW transmission mode. However, within the operating frequency band 27.5-30 

GHz the |S11| was kept below -10 dB as the gap varied between 2-13 μm. Figure 6.15 shows the 

effect of the BLT slab on the input reflection coefficient of the antenna element for different gap 

sizes. Furthermore, the impact of the BLT slab on the radiation pattern of the antenna element was 

studied to ensure the antenna would be able to receive and re-radiate the electromagnetic wave 

efficiently. The simulated radiation pattern in the upper hemisphere of the antenna element integrated 

with the BLT slab is demonstrated in Figure 6.16. As can be seen from the figure, the Co-Pol 

component shows minimal variation, but the X-pol component shows a noticeable change as the gap 

is varied.  

 

Figure 6.14: ACMPA integrated with BLT phase shifter. 
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Figure 6.15: Simulated S11 (dB) of ACMPA. 

 

Figure 6.16: Simulated Co-pol and X-pol components at 29 GHz for different hgap values. 

    Finally, the antenna element with BLT phase shifter was simulated as a RAA UC using PBCs. The 

end of the GCPW line was short circuited to ground so that the incident wave would be reflected back 

and re-radiated. The simulation setup of the UC inside the PBC is shown in Figure 6.17. The UC 

was simulated over the frequency band of 27.5-30 GHz with an hgap variation range of 2-13μm. This 

gap variation range is the displacement range of a typical 1 cm PET. Simulations showed that when 

the UC was excited by a normal incident transverse electric (TE) wave and the hgap was varied over 

the range of 2-13μm, a reflection phase ranges of 395o and 391o were realized at 27.5 GHz and 30 

GHz, respectively. Furthermore, maximum reflection losses of 3.2 dB and 2.2 dB were observed, 
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with variations in the reflection loss of 2.5 dB and 1.15 dB, at 27.5 GHz and 30 GHz, respectively. 

Figure 6.18a depicts the simulated reflection phase (S11
o) versus hgap size at different frequencies. 

The UC shows a minimal variation of phase over the frequency band; hence, a flat gain performance 

can be realized from a reflectarray made of the proposed element. The simulated reflection loss of the 

UC is shown in Figure 6.18b. 

 

Figure 6.17: UC simulation setup. 

   
(a)                                                (b) 

Figure 6.18: Simulation results for RAA UC: (a) reflection phase (degrees), (b) reflection loss (dB). 

    The simulations reported in Figure 6.19 illustrate the operation of the proposed UC when it is 

excited by a normally incident plane wave (y-polarized electric field) with the proper polarization. It 
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can be seen from this figure that the incident wave is coupled to the GCPW line through the patch-

slot. It then propagates over the GCPW line, experiencing different propagation delays based on the 

location of the BLT slab in relation to the GCPW line. The wave is reflected by the short circuit at the 

end of the GCPW. The reflected wave is re-radiated to space with the reflection phase determined by 

the gap size hgap. The simulations were performed for three different values of hgap. As hgap becomes 

smaller, the electric length of the GCPW line increases; hence, a tunable true-time-delay reflectarray 

can be realized by using this concept.    

 

Figure 6.19: Simulated electric field (V/m) inside GCPW substrate at different hgap sizes at 28.75 

GHz. 

6.4.4 Fabrication and measurement results 

A common practice when designing an RAA is to evaluate the antenna UC experimentally to validate 

its design performance before using it to realize a large antenna array. The measurement setup 

consists of a standard metallic rectangular waveguide fed by a coaxial cable and a metallic 

rectangular waveguide transition (Figure 6.20) to host the antenna UC. The antenna UC is embedded 

inside the waveguide transition to include the mutual coupling effects (based on infinite image theory 

[84]). A TE10 wave is excited inside the metallic waveguide; this can be modeled by the two plane-

wave incidents on the transverse walls of the waveguide. The incident angle can be calculated based 

on the equation (6.1): 

                                                              𝑠𝑖𝑛𝜃 =
𝜆𝑜

𝜆𝑐
                                           (6.1) 

Where θ is the incident angle, λo is the free space wavelength at the operating frequency, and λc is the 

cut-off wavelength of the propagating mode. The Ka-band WR-28 metallic rectangular waveguide 

operates in the frequency range of 26.5 to 40 GHz, and has dimensions of WWR-28 =7.112 mm and 
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LWR28 =3.556 mm. It was used as a measurement sensor. A metallic rectangular transition 

(dimensions of W1=W2=WWR-28 and L1=LWR-28, L2= 5mm and d=20 mm) was designed and 

optimized by full-wave simulator to be connected to the WR-28, to be terminated by the antenna UC 

as shown in Figure 6.20.  

 

Figure 6.20: Ka-band metallic rectangular waveguide transition. 

    The proposed reflectarray UC was fabricated by using a low-cost PCB process. substrates. A 

rectangular annular metal ring was etched on the top layer and connected to the ground with plated 

vias to mimic the infinite array condition. The top and bottom views of the fabricated UC are shown 

in Figure 6.21. A WR-28 metallic waveguide-coaxial transition was used to test the fabricated UC. 

Furthermore, a commercial PET with dimensions of L, W, h = 3×3×11 mm3 (can generate up to 11μm 

normal displacement range), was used as an actuation mechanism in this proof-of-concept prototype. 

A PNA-X from Keysight Technologies was employed to measure the reflection phase and reflection 

loss over the operating frequency band. The measurement setup is shown in Figure 6.22.  

 
(a)                                                (b) 

Figure 6.21: Fabricated RAA UC: (a) top view, (b) bottom view. 

    The proposed RAA UC was measured for different hgap sizes. The measured reflection phase is 

presented in Figure 6.23a for the frequency range of 27.5-30 GHz. The figure shows that the 

reflection phases correlates quite well with the simulated results shown in Figure 6.18a. The 

measured reflection phase ranges are 0o-357o and 0o-340o at 27.5 GHz and 30 GHz, respectively. In 

addition, Figure 6.23b shows that the maximum measured reflection losses were 4.6 dB and 3.4 dB, 

with variations of 4 dB and 2.5 dB, at 27.5 GHz and 30 GHz respectively. The discrepancies between 
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the measurement and simulation (Figure 6.18b) results are attributed to two main factors. First, there 

is a misalignment between the BLT slab and the GCPW line (the main source of the discrepancies as 

described in Subsection 5.3.1). Second, there are fabrication errors and uncertainties of the dielectric 

constant. Table 6.4 compares the performance of the proposed UC with state-of-the-art 

reconfigurable RAA elements. The proposed UC exhibits the widest operating frequency band, while 

realizing a reflection phase of almost 360o. 

 

Figure 6.22: Measurement setup for RAA UC. 

   
(a)                                                       (b) 

Figure 6.23: Measurement results for proposed RAA UC: (a) reflection phase (degrees), (b) reflection 

loss (dB). 
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Table 6.4: Comparison of proposed RAA UC versus legacy reconfigurable RAA elements. 

Ref [91] [92] [93] This work 

Frequency (GHz) 5.4 58.14 30 27.5 

Maximum reflection 

phase (Deg.) 
380 200.6 298 357 

Maximum reflection 

loss (dB) 
3.5 12 16 4.5 

Bandwidth (%) 2.4 <1 5.7 8.7 

 

6.5 Conclusion  

The process of developing and successfully fabricating a novel Ka-band CP passive PAA was 

presented, along with measurement results. To the best of the author’s knowledge, it is the first time 

that a multi-antenna module, employing a BLT-based phase shifter, has been introduced for a CP 

passive PAA with full electronic control of each individual antenna element. The proposed system 

was implemented using a low-cost PCB technology. A low-profile and efficient magnetic actuator, 

developed at CIARS, was utilized to control the phase shifter. A wide scanning angle was achieved 

with high precision. Given these results, the presented module is an excellent candidate for large-

scale mm-W PAA systems with full electronic beam-control capabilities toward any azimuth and 

elevation.  

Finally, the design, analysis, and measurement of a new broadband reconfigurable RAA UC were 

presented and the proposed design was fabricated to operate in the Ka-band. A true-time-delay 

reflection mechanism was realized by placing a rectangular slab with a high dielectric constant on top 

of a GCPW line coupled to a patch antenna through a slot. A waveguide simulator was used to 

characterize the proposed UC and a PET was employed to control the reflection phase. A measured 

reflection phase range of 357o was realized at 27.5 GHz with a maximum reflection loss of 4.5 dB; 

hence, it is believed that the performance of the proposed design is superior to that of legacy 

reconfigurable RAA element designs reported to date for this frequency range. The measured results 

agree well with those from simulations. Finally, the developed structure and its fabrication method 

use a low-cost standard PCB process making it a simple and highly cost-effective solution for large-

scale high-performance mm-W RAAs with wide angle beam-steering capabilities.  
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusions 

This chapter presents an overall summary of the thesis chapters and contributions made by this PhD 

thesis. A list of the journal and conference papers disseminating findings from this research is 

included in Appendix A. 

The currently available solutions (e.g., reflector antenna, fixed beam array antennas with 

mechanical steering, digital beam-forming-based PAAs) are not the optimal for SOTM applications 

due to the high-profile and slow response of mechanical steering systems and the high-cost and 

complexity of digital beam-forming PAAs. On the other hand, it has been shown that the available 

passive phased arrays suffer from limited beam-steering capabilities because of the size and 

configuration of the phase shifters. In addition, state-of-the-art passive phased arrays utilize a bulky 

PET to steer the radiation beam of the phased array, and to the best of the author’s knowledge, no CP 

passive phased array has been reported in the literature to date. Available reconfigurable RAA 

elements are limited in operating bandwidth as well as exhibit high reflection losses at mm-W 

frequencies.  

In chapter 3, a novel single-fed wideband (> 2GHz) CP antenna was proposed based on the 

ACMPA concept on low-cost PCB technology. The proposed antenna generates a CP radiation 

pattern by exciting multi modes from a multimode slot resonator that is loaded by an elliptical 

microstrip patch antenna. A GCPW line was utilized to excite the aperture slot making the proposed 

antenna suitable for direct integration with the beam-forming systems and reducing mutual coupling 

and surface wave effects, particularly for wide-beam steering CP PAAs. The proposed antenna’s 

performance showed low sensitivity to relatively large PCB fabrication errors. A 4×4 fixed beam 

subarray module was successfully designed, fabricated, and measured to validate the proposed 

wideband CP performance. Furthermore, as a proof-of-concept, 16 of these modules were mounted 

on a 1×16 power splitter in a square grid in order to study the modularity concept. Despite all of the 

mechanical and excitation discrepancies, measured results from the modular structure matched very 

well with the AF simulated results in terms of AR, radiation pattern, and directivity without needing 

to introduce any phase or amplitude corrections.   
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The proposed CP antenna was used in a 4×16 APAA operating at Ka-band. The radiation pattern of 

the 4×16 APAA was experimentally steered up to ±40o off-boresight with good AR (< 4dB) level 

over the frequency range of 29.5-30 GHz without any calibration at off-boresight steering angles. 

Moreover, to show the excellent capabilities of the proposed antenna for SOTM applications, CIARS 

intelligent beam-forming circuit was used to perform an amplitude tapering and complex excitations 

to control the SLL and to generate a multi beam pattern, respectively. 

To develop a fully working prototype system that meets all the stringent SOTM requirements 

(Section 2.2) for wideband SOTM communications, a highly integrated and low-profile 4×4 sub-

array, to be used in CIARS intelligent beam-forming module, was proposed in chapter 4. The 

intelligent sub-array module comprises a 4×4 dual-polarized antenna elements, their feed circuits, and 

active beam-forming MMICs integrated in multi-layer high performance PCB technology. Each 4×4 

antenna sub-array was designed on a 2×2 cm2 area with 0.5λo (at 30 GHz) inter-element spacing to 

avoid grating lobes. The proposed antenna element sustained 2 GHz Sii < -10 dB centered at 30 GHz 

and the isolation between the two polarizations was Sij < -20 dB at the boresight.  

Using the aforementioned 4×4 intelligent module, a 16×16 APAA was fabricated and measured. 

Measurements show that the beam can be easily steered toward 60o off-boresight over a 3 GHz 

frequency bandwidth (28-31 GHz) with high pointing accuracy, and high CP purity was sustained up 

to 30o without calibration. Simulation results showed that if the amplitudes of the two orthogonal 

polarizations are adjusted properly, very high CP purity can be realized with the aforementioned 

APAA for wide beam-steering angles. 

As a promising wideband, low-cost, and high-performance mm-W phase shifting mechanism, a 

high dielectric constant slab on top of a GCPW line was employed to develop a passive phased-array 

in chapter 6. The CIARS phase shifter is an excellent candidate to be employed in the development of 

a low-cost, compact, and steerable passive phased array. A simple empirical equation was developed 

to design the phase shifter quickly and accurately. The proposed design equation can be used to 

analyze the required phase response based on the effective permittivity of the dielectric slab and 

length to determine the required actuation range at the operating frequency without using a time 

consuming full-wave simulator. Four different phase shifter configurations were designed, fabricated 

and tested on low-cost PCB technology to operate at the Ka-band. Measurement results show that a 

high FOM (> 180o/dB) was realized by the phase shifting approach with low IL variation < 1 dB over 

the operating frequency band (29-31 GHz); the first time such results were reported.  
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I had significant contribution to a novel low-cost and low-profile (< 2mm) magnetic actuator, 

invented in CIARS, for precise control the phase shifter response, replacing the traditional bulky and 

high-cost piezoelectric actuator. The magnetic actuator was successfully tested with two different 

phase shifter structures. 

The low-profile phase shifter presented in chapter 5, and the single-fed CP antenna presented in 

chapter 3, were integrated together to construct a novel high performance 1×4 CP passive PAA in 

chapter 6. It was designed, fabricated, and measured over a 1 GHz frequency bandwidth (29.5-30.5 

GHz) with large beam-steering off-boresight (±38o) and high CP purity. The proposed CP passive 

PAA showed a high radiation efficiency with low-power consumption (40 mW)—such performance 

is superior to reported state-of-the-art passive PAAs. 

Finally, as an attractive alternative solution, a reconfigurable RAA was explored in the second half 

of the chapter 6. The RAA element operated over a wide frequency bandwidth (≥ 2.5 GHz) with large 

reflection phase and relatively low reflection loss at Ka-band. It consists of an ACMPA integrated 

with the BLT phase shifter. A proof-of-concept the UC was designed, fabricated, and measured 

successfully. It showed a maximum reflection loss of 4.5 dB and reflection phase of 357o. Compared 

to the legacy reconfigurable RAA reported in the literature, the proposed RAA shows a higher 

operating frequency bandwidth (8.7%) with lower reflection loss at Ka-band.        

7.2 Future work 

In an effort to develop modular and scalable architecture for mm-W beam-forming antenna systems 

that overcome the limitations and drawbacks of currently available solutions, four new antenna 

element and array concepts were proposed as part of this PhD thesis. These concepts were 

successfully verified by their incorporation into CIARS array configurations: single-fed CP APAA, 

dual-fed APAA, CP passive PAA, and reconfigurable RAA. 

Simulation and measurement results show that the proposed concepts exhibit remarkable 

performance; however, there are several opportunities for future research and continuation of this 

PhD research to further enhance and mature the proposed concepts, such as: 

1) The CIARS low-profile magnetic actuator consists of many layers. Rapidly growing 3-D 

printed additive manufacturing technology offers the opportunity to integrate the actuator 

body as well as the packaging enclosure in a sophisticated and optimized structure; 

thereby, an easy assembly and predictable actuator could be developed for large-scale 
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passive PAAs. On the other hand, the current source of the planar magnetic coil could be 

integrated with the PCB of the planar coil to further reduce the power consumption and 

improve the integration. Moreover, repeatability test in different environment conditions 

and analysis of the mutual interaction among the magnetic actuators in an array form are 

necessary to evaluate the proposed magnetic actuation concept in more realistic scenarios. 

2) The single-fed CP antenna introduced in this research shows a good active impedance 

performance for wide steering angles (> 50o) over the entire azimuthal range, but the AR > 

3 dB was limited to θs=30o in the azimuthal angle of (ϕs=0o). The scanning angle should 

be extended for larger steering angles by further optimization and extension of the via 

walls to the antenna substrate. Moreover, multi-layer PCB integration could be used to 

implement an APAA module based on the proposed wideband CP antenna concept as a 

low-cost building block for SOTM systems. On the other hand, a dual CP antenna (e.g., 

work presented by author [130]), could be utilized to develop a switchable RHCP/LHCP 

APAA module as a building block for SOTM systems with full polarization functionality 

as a low-cost and simple alternative solution.      

3) The CIARS 4×4 intelligent APAA architecture using the proposed dual-fed antenna is an 

excellent candidate to construct a working prototype that meets all the requirements of a 

SOTM system. However, further enhancement is required to overcome mutual coupling 

effects at ≥70o; in other words, to ensure less variation can be seen by the active feed 

network. Such an improvement could be achieved by utilizing some electromagnetic band 

gap techniques. Moreover, a large-scale APAA (> 1k elements) would need to be 

implemented to test the proposed concept in a realistic environment with wideband 

modulated single. 

4) The current CP passive PAA using the proposed CP antenna element showed a high-

performance beam-steering capability with low-cost technology. An extension of this 

research is urgently needed to develop a planar CP passive PAA that takes into 

consideration the suggestions regarding the phase shifter made in point one above.  

5) An initial high-performance reconfigurable RAA element, using BLT phase shifter, was 

presented in this research. A steerable passive RAA could be developed by utilizing the 

proposed UC in combination with an improved phase shifter based on the suggestions 

made in point one above. Utilizing the CP antenna that was proposed in chapter 4 to 
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develop a CP reconfigurable RAA is another important aspect should be considered in the 

future. Moreover, another direction that could be followed would be to utilize a dual-band 

antenna (e.g., work presented by author [131]), could be utilized to develop a Tx/Rx 

passive RAA. Such a contribution is seen as an excellent research opportunity. 
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