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Abstract

BlockSURF (Blockchain-based Secure Update Registration Framework) or SURF in
short is a software framework designed to enable developers to build a blockchain-based
secure update system which distributes trust over a blockchain. The primary objective
of SURF is to create an immutable anchor for each software update registration on a
blockchain and enable a wide spectrum of clients ranging from high-end servers to low-
profile IoT devices to securely verify updates with minimal performance overhead. By
introducing a partially trusted entity which serves client requests and handles blockchain-
related business logic, SURF successfully decouples clients from an underlying blockchain,
making the system blockchain-agnostic.
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Chapter 1

Introduction

Software update systems perform a myriad of tasks. They deliver a multitude of revisions
to end user, such as adding new features, removing outdated programs, providing bug fixes,
and most importantly, fixing security vulnerabilities that have been discovered. Tradition-
ally, software update systems are built as a centralized system such that all end users query
the latest updates from one single server and blindly trust what it gives is the correct infor-
mation [52]. Though convenient, such a centralized trust scheme has caused tremendous
problems over the history of software industry [16, 52]. Hackers with malicious intents
often target update servers because they are the easy subjects which can effectively in-
troduce large-scale attacks once successfully compromised. Although many solutions have
been proposed to solve security problems of software updates [45, 1, 15, 21, 52], there is
one important question which has not been answered: given an adversary has successfully
compromised a software update system and can respond to client requests with arbitrary
data, can a client securely verify updates? If it is possible for clients to determine the
information they received is different from what they expect, clients can maintain secure
states even with the presence of a powerful adversary who can overwhelm the centralized
update system. To answer this question, we propose Blockchain-based Software Update
Registration Framework (BlockSURF or SURF in short) that decentralizes trust using
blockchain technologies.

SURF takes away trust from a centralized entity and places it in a distributed ledger
— blockchain. By introducing a partially trusted intermediary, SURF allows developers
to write software updates to a blockchain via the intermediary and enables clients or end-
users to verify stored updates through the same intermediary. All write operations on the
underlying blockchain should leave verifiable proofs such that allows developers and clients
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to cryptographically verify the integrity of stored updates without placing trust on the
intermediary.

Given a secure blockchain, SURF enables clients to verify updates even if the interme-
diary and its infrastructure are fully compromised. With this strong threat model, SURF
assures the resiliency of clients with the following properties:

• Security: Communications between the intermediary and clients are end-to-end
secure. That is, clients can safely verify update records even in an unreliable, possibly
rogue network. Note that this does not necessarily mean the communication channels
between the intermediary and clients are secure, but the contents delivered from the
intermediary to clients are tamper-free and verifiable by clients.

• Performance: SURF decentralizes trust only and keeps the control centralized to
guarantee the performance. Operations such as update registration or lookup are
comparably fast to existing systems.

• Blockchain-agnostic: SURF is designed to be blockchain-agnostic so that it can
leverage any UTXO-based blockchains (e.g., Bitcoin, Litecoin) as an underlying sys-
tem. It is also possible to use account-based blockchains (e.g., Ethereum, Hyperledger
Fabric) with small modifications.

• Ease of use: SURF is an easy-to-use framework that can be efficiently integrated
with existing update systems.

• Quantum-safe: SURF can adopt post-quantum cryptography to keep the system
safe from powerful adversaries with general quantum computers. SURF can migrate
to a quantum-safe blockchain when the quantum attacks becomes feasible.

The thesis is structured as follows.

Chapter 2 introduces threats and commonly observed attacks toward software update
systems and existing attempts remedying the problems as well as their shortcomings, ne-
cessitating the development of SURF . SURF effectively decentralizes trust and resolves
problems of existing solutions in software update industry; we cover the designs and imple-
mentation details of SURF in Chapter 3. By taking advantage of semi-centralized structure,
SURF provides comparable performance in terms of latency while maintaining clients se-
cure from attacks at constant storage cost; Chapter 4 evaluates security and performance
of SURF as well as the operation cost structure that SURF incurs. Finally, Chapter 5
summarizes the key contributions and concludes the thesis.
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Chapter 2

Background

In this chapter, we explore the attack surfaces of software update systems, how traditional
(centralized) update systems respond to potential threats, and how blockchains can help
build secure software update systems by providing secure naming systems.

2.1 Attack surfaces

The purpose of having a software update system is to enable user devices, which are
likely dispersed geographically, to receive the up-to-date software packages. While software
providers make their best effort to securely deliver updates to users, there are a few pitfalls
that adversaries may exploit in order to compromise update systems and the users relying
on such systems.

2.1.1 Cryptography and implementation weaknesses

Many update systems employ cryptography to protect themselves from attackers. How-
ever, not all cryptographic methods are safe from attacks. For instance, some cryptographic
methods such as MD5 and SHA1 are outdated and known to be vulnerable as they are
no longer collision-free [54, 8]. Surprisingly many systems, which are supposedly security-
sensitive, still use insecure, weak cryptographic methods [52]. This is largely due to the
difficulty of switching from one cryptographic scheme to another. Although many tra-
ditionally preferred cryptographic primitives become obsolete due to recent technological
advances, systems built a long time ago often cannot simply replace the old schemes with
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new secure cryptographic methods as their implementation is tightly coupled with the used
primitives.

2.1.2 Key theft

Although an update system can be fortified with a strong cryptography, the security of a
system entirely relies on a set of cryptographic keys that the system uses. Thus, an update
system that is built upon a single cryptographic key can be easily hacked if the key is
compromised.

One of the methods adversaries use to steal keys is exploiting system vulnerabilities
[36]. For example, attackers may exploit a known software bug of a web server to steal
the root privilege of an update system [27, 28]. After successfully exploiting the known
bug, attackers can freely access to the keys that the update system uses given that the
keys are stored in the disk unencrypted. The chance of such an attack to take place is
surprisingly high. As today’s systems depend on many third party software packages, the
chance of breaking into the system is equal to the chance of breaking into the weakest
one, and it is therefore difficult to assure a system is free from vulnerabilities. Even the
most famous, reputable software packages can contain vulnerabilities. For example, the
Heartbleed attack [11], an exploit using an OpenSSL vulnerability, shocked the developer
communities and industry. The attack, which is now patched, was effective in stealing
the server credentials by allowing attackers to sneak a peak of a partial image of the
server memory. The impact of the attack was phenomenal given that OpenSSL was and
is the most commonly used software in the world. This clearly shows that even the most
prestigious software can be exploited.

Evidently, no software update systems are completely safe from key theft threats which
exploit software vulnerabilities. The likelihood of update systems being compromised due
to key theft consistently increases as the level of sophistication of attacks and the number
of exploits increase.

2.1.3 Naming system vulnerabilities

Generally, an update system uses a client-server architecture which lets clients (i.e., users
or user devices) download updates from a server. The clients are likely located remotely
and, thus, need to connect to the server through a possibly insecure network such as the
Internet. As it is difficult for clients to securely locate and identify the update server over
an insecure network, using a reliable naming system such as a public key infrastructure
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(PKI) is crucial for them to connect to the right server. A weak or vulnerable PKI can lead
a client to falsely believe an adversary-chosen software package is the requested software
package, significantly undermining the integrity of the update system. That is, without a
reliable naming system, any update system will eventually fail [52] as a faulty, vulnerable
naming system can be exploited by an attacker to trick a user to believe a malicious
software package is the software the client requests, leading it to install malicious software
binaries without knowing.

2.2 Traditional security mechanisms

Traditional update systems mostly focused on securing the delivery channel between the
server and the clients and the contents to be delivered on this channel. Existing systems
achieved such properties by leveraging transport layer security (TLS) and digital signature
algorithm (DSA). Although both TLS and DSA work as intended, the risk of key theft
still remains. To address this problem, some studies such as the update framework (TUF)
[52] started focusing on using multiple keys for multiple different roles, making the sys-
tem resilient to key compromises such that unless adversaries compromise many keys the
system’s integrity remains intact.

2.2.1 Transport layer security

TLS is one of the popular methods that is being used for authenticating the communicating
party. Many software update systems use TLS to authenticate the contents (e.g., update
binaries) they are retrieving by verifying the public key certificate of the server they are
connected to [45]. However, the security of such systems is entirely dependent on the
security of a PKI which warrants the integrity of the certificate. As a result, clients
requesting software updates put their trust into a set of trusted root CA certificates,
exposing themselves to the above mentioned PKI risks.

2.2.2 Digital signature algorithm

Software update systems employ DSAs to make sure that the contents of the software
update have not been tampered. Many dependency management systems use this technique
to enable clients to check the authenticity of dependencies or packages they download
[15, 1]. Clients obtain the public key of the software update system they are communicating
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with either out-of-band or through a TLS channel. For instance, a client who has already
established a secure communication channel using SSL/TLS can retrieve the public key
from the server and use the key to verify the data that follows after using insecure channels.
Alternatively, some implementations hardcode the public key in the clients to avoid the
key exchange; such methods, however, significantly undermine the ability to revoke keys
in case the paired secret key is compromised.

2.2.3 Multiple Role-Based Keys

TUF is a software update system that relies on multiple role-based keys [52]. Instead of
using a single signing key, TUF uses multiple keys for different roles in the system. In
this case, adversaries must compromise all keys or a combination of keys to effectively
compromise the system and lead clients to install malicious software. According to TUF,
compromising many keys is not only difficult but also necessitates a time window that an
attacker has to undergo. TUF expects the software update systems can leverage such time
window to detect and respond to the attack in a timely manner.

2.3 Decentralized Security Solutions

Centralization is one of the critical factors which impairs the security of a software up-
date system. In a traditional centralized system, the update server is the only source of
information for clients to retrieve and verify update records. That is, clients can only
authenticate the retrieved data based on the proofs or cryptographic keys provided by the
update server. Considering the high probability that update systems, or more precisely
the keys used to sign the updates, can be compromised, trusting a centralized server can
be extremely dangerous.

Alternatively, one can decentralize trust by distributing data or the proof of data au-
thenticity across multiple servers and use them to verify updates. This way, even if the
centralized server fails, clients can still verify the updates based on the replicated data.

2.3.1 Blockchain

A blockchain is a continuously growing list of records, called blocks, which are linked and
secured using cryptography. Each block in a blockchain stores a cryptographic hash of
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a previous block, making the blockchain resilient to modification or forgery as altering a
record in a block changes the hash of the block which consequently requires modifying all
subsequent blocks.

Blockchains are ideal for building a secure append only ledger that is easy to distribute
across a network of participants. Although not all blockchains are decentralized, we as-
sume that the blockchains referred to here employ a suitable consensus algorithm, such
as HashCash-like proof-of-work (PoW) [18] algorithms including Nakamoto consensus [46].
The latter is designed to allow numerous participants to agree on a block each time new
records are added to the chain. Once configured with an appropriate consensus algorithm,
a blockchain can replicate blocks and maintain the same state across the network of par-
ticipants, functioning as a secure, decentralized, append-only ledger.

We believe blockchain technologies are suitable to decentralize and securely store the
proofs of software update records. For example, Bitcoin, one of the most popular blockchain
cryptocurrencies in the world, is the largest blockchain network with a hash rate 53,994,000
TH/s1 [3] and more than 9,500 full nodes2 [9]; that is, any data written to Bitcoin will
be captured in a block and replicated to more than 9,500 nodes, and, to revert a block,
an adversary must have more than 50% of the network hash power. Generally, anything
written in a Bitcoin block is considered irrevocable and immutable unless the block is in
the wrong branch. The same property holds for all blockchains with a similar replication
factor and hashing power. If we store the proofs of update records such as cryptographic
hashes in a sufficiently large blockchain, clients can leverage such proofs to authenticate
update data retrieved from an update server.

2.3.2 Software Update Systems Using Blockchain

A few works leveraged blockchain technologies to build a secure update system. Nikitin et
al. developed CHAINIAC [49], a system for software update transparency with a decentral-
ized validation process. Software developers publish a new update by creating a hash tree
over a software package and the corresponding binaries. Developers then sign the tree root
and submit the signed roots along with the package release to co-signing witness servers
known as co-thority. The witnesses requires (1) a threshold of valid developer signatures
and (2) a valid mapping between source and binary to approve the package for release.
The witness servers will collectively sign the approved release.

1As of Aug 12, 2018. The network hash rate is a cumulative hash power of all miners.
2As of Aug 12, 2018. A Bitcoin full node is a node which has replicated all blocks from the genesis

block to the latest block. A full node is not necessarily a miner.
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To maintain the history of releases of a package, CHANIAC employs skipchains, novel
data structures combining skiplists and blockchains. Skipchains allow clients to efficiently
navigate arbitrarily long update timelines, both forward (new releases) and backward (past
releases).

It is significant that skipchains leverage the structural advantage of blockchains and
resolve the limitation of traditional blockchain design by introducing forward signature
pointers. However, although CHAINIAC has decoupled the validation process by intro-
ducing the witness servers, the outcomes— skipchains containing validated update releases
— are stored in a single datastore. While it may be possible to decentralize skipchains
by spreading the blocks over multiple nodes which form a private blockchain, the level of
security and decentralization provided by such a private blockchain is limited compared to
existing large blockchains such as Bitcoin and Ethereum.

2.3.3 Blockchain-based naming systems

Building a software update system is, in fact, analogous to building a naming system that
keeps records of software package releases. Software package names must be bound to
cryptographic identities (e.g., public keys) in a trustworthy way, and all changes to a name
(i.e., software release) must be made under the authorization of the name owner (i.e.,
the person or the organization that controls the private key paired with the public key
registered to the name) and be securely auditable by anyone who wishes to look up the
name and accompanying changes. This is what a naming system is supposed to do. Thus,
if we have a secure naming system, we can use it to build a secure software update system.

Unfortunately, building a secure naming system has proved to be difficult. An ideal
secure naming system should keep names secure, distributed, and human-readable. How-
ever, Zooko’s triangle [39] illustrated that simultaneously achieving all three properties is
infeasible. Most traditional systems, like hierarchical PKIs used in TLS and S/MIME, gave
up the distributed property and achieved security and human-meaningfulness by introduc-
ing trusted third parties, such as certificate authorities (CAs) or key servers. Although
such centralized systems repeatedly caused problems due to compromised or incompetent
trusted parties [29, 48], Zooko’s triangle seemed to imply that there could be no better
alternatives.
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Namecoin

The advent of blockchains effectively ended Zooko’s triangle. Though the first blockchain,
Bitcoin [46], was initially conceived only as a cryptocurrency for financial purposes, its
first ever fork, Namecoin [14], pioneered the idea of building a secure naming system by
encoding name-value pairs inside a blockchain. The blockchain is used as an append-
only global log of state transitions to provide consensus on the mapping of names to
cryptographic identities without trusting any third party; any changes to name-value pairs
are broadcast in new blocks and appended to the globally replicated log. Several newer
blockchain naming system designs, such as Certcoin [34], follow the same general design.

However, though Namecoin-like designs bring significant security improvements, they
also face many new challenges. In Namecoin-like systems, all nodes in the network must
synchronize and validate a complete copy of the blockchain. This requires anyone who
wishes to look up names in a secure fashion to afford large, linearly-increasing storage
costs, directly impacting the usability of the system. Another problem of Namecoin-like
systems is security. Inherently, without a massive user-base, blockchains employing PoW
algorithms are vulnerable to the 51% attack [58]. As Namecoin-like systems generally
have significantly fewer miners compared to popular, big blockchains, the likelihood of
51% attack taking place is higher than that in Bitcoin or Ethereum [17]. Finally, adding
any new features to a Namecoin-like system is very difficult, as the network participants
must all agree to run a newer version of the protocol within a short period to maintain the
distributed consensus.

Blockstack

Newer blockchain-based PKIs such as Blockstack [17] do attempt to mitigate the issues
observed in Namecoin by introduing virtual chains. However, although Blockstack makes
it easier to deploy new features and reduces the amount of data that needs to be replicated
to all participants by moving most of the data away from the underlying blockchain, it
still fails to eliminate the requirement for verifying large amounts of blockchain data, and
continues to be much less flexible in enforcing rules for namespaces compared to centralized
solutions.

CONIKS-based approaches

EthIKS [24] is based on CONIKS, a transparency-based PKI combining a centralized key
server with semi-decentralized auditors and monitors to reliably detect malicious behavior
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by the key server, rather than proactively prevent them from happening [42]. EthIKS
inherits the benefits of CONIKS centralization in maintaining the namespace and leverages
Ethereum smart contract to guarantee self-consistency of the system, keeping names secure
with the same level of security Ethereum offers. However, EthIKS, though not requiring
its own blockchain, is tightly coupled to the Ethereum blockchain in using its platform-
specific Turing-complete smart contracts and built-in key-value storage system, making
the concept practically impossible to generalize to other blockchains.

Catena [56] is an approach that embeds CONIKS name records in an UTXO(unspent
transaction output)-based blockchain such as Bitcoin and forms a list-like data structure
called transaction chain, enabling clients to traverse name records without the need for
scanning all blocks. Though it inherits all good properties of CONIKS while bootstrapping
trust onto a blockchain in a less dependent way, Catena is still a passive security solution
which requires auditors and whistleblowing, remaining short in terms of decentralized
trust. It is apparent that a new naming system, achieving fully decentralized trust over a
blockchain and providing a secure thin client while maintaining blockchain neutral property,
is still needed.

Conifer

Conifer [32] is a recent blockchain-based naming system that solves the problems iden-
tified in all predecessors by providing a secure thin client with fully decentralized trust
in a blockchain neutral way. By introducing the concept of name administrator (NA), a
minimally trusted entity with centralized control, Conifer provides a comparable perfor-
mance to that of centralized naming systems while keeping trust fully decentralized over
any public blockchain.

The basic idea of Conifer is to separate control and trust. All name bindings are
stored in an NA controlled datastore, but the metadata of the bindings are stored in an
underlying blockchain. This way, clients who wish to query names and relevant changes
from the NA can validate the received data using the proofs stored in the blockchain.
A reference implementation of Conifer using Bitcoin successfully demonstrated all of the
properties mentioned above. As Conifer allows to implement various policy enforcements,
it is possible to build an application on top of Conifer which requires a secure naming
system.
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2.3.4 Need for SURF

Traditional software update systems tend to protect themselves by protecting the commu-
nication channels and providing cryptographic signatures of the updates. However, it is
evident that they all collapse once the keys get compromised. Although TUF remedies
this problem by requiring multiple keys and separating roles, the update system itself and
trust are still centralized.

CHAINIAC opens up a new possibility for building a decentralized software update
system by distributing trust over multiple co-thority nodes, a group of witnesses co-signing
updates. However, it is still possible to compromise most of the co-thority nodes at once
given that adversaries have sufficient resources since the degree of decentralization is far
less than that of existing public blockchains such as Bitcoin.

Blockstack and CONIKS-based approaches attempted to solve the problems of existing
blockchain solutions by reducing the amount of data to be verified or by introducing the
concept of auditors. However, they either lack thin-client support or locked in a specific
platform, hindering their adoption.

Clearly, there is a need for a highly decentralized software update system which can
leverage any blockchain and enable a wide range of clients to query and validate the history
of software releases even if the system is completely compromised. SURF aims to achieve
this, i.e., providing a secure update system, by leveraging Bitforest [31], a successor of
Conifer which improves usability and namespace management by introducing a novel data
structure index tree.
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Chapter 3

SURF

In this chapter, we discuss (i) the security model that SURF aims to achieve, (ii) security
assumptions of SURF, (iii) high-level descriptions on how SURF-based update systems
maintain software package updates and create verifiable update records called operations,
and (iv) how SURF clients securely authenticate operations. We also discuss post-quantum
cryptography integration to improve the security of SURF against attacks leveraging quan-
tum computers. We finally describe Tofino, our Bitcoin-based SURF reference implemen-
tation and discuss SURF can be ported to Ethereum to showcase its blockchain-agnostic
ability.
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3.1 Security Model

It is often difficult to measure the security of a system or define a set of criteria that a
system needs to satisfy to be considered secure. However, it is important to explicitly
define what makes a secure system with precise requirements. To answer this question,
SURF inherits the security model of Bitforest [32, 31] and defines a secure software update
system as an instance satisfying the following attributes: identity retention and policy
enforcement. Because update systems are analogous to naming systems in maintaining
software names and changes (i.e., updates), an update system holding the same set of
properties which makes a naming system secure can also be considered secure.

• Identity Retention: Identity retention is the inability for anybody to impersonate
an identity already registered to somebody else [35]. It is a property enforcing that
any bindings in the namespace can be changed given the authorization by the name
owner, and preventing adversaries from deceiving clients to accept forged bindings
that disagree with the authentic binding registered to a name.

• Policy Enforcement: Policy enforcement, in general, refers to the external enforce-
ment of system- or service-specific policies governing how names are registered. An
example of policy enforcement is identity-based certification where having a name in a
namespace requires real-world evidence such as business registration. The possibility
of implementing flexible policy enforcement is a key element for building a software
update system as different businesses require different external security policies.

Simply put, identity retention enforces that only name owner can make changes to a
name, and policy enforcement ensures that only the service provider or the system admin-
istrator can make changes to the system such as adding new names and making changes
to names. From the security point of view, preserving identity retention is far more crit-
ical than providing policy enforcement as violations of identity retention can result in a
severe problem as it compromises the foundation of secure communication. In the mean-
time, providing well-defined policy enforcement attracts businesses and developers as it
helps them to implement proper policies that can screen potentially malicious users based
on external properties such as real-world identities. Such two properties may not sound
compatible at first glance. Nonetheless, it is possible to enable strong policy enforcement
while establishing secure identity retention by leveraging digital signatures. Bitforest has
achieved both identity retention and policy enforcement via public key cryptography, pro-
viding an efficient method to implement a secure naming system. SURF extends Bitforest

13



and inherits its security model. By providing a concrete implementation of Bitforest with
modifications such as lightweight client supports and quantum resistance, SURF aims to
achieve a secure, practical software update for wide-range of computing devices.

3.2 Architecture

Figure 3.1: SURF architecture and stakeholders

The goal of SURF is to allow developers to build a software update system imple-
menting the SURF security model given the presence of powerful adversaries defined by
the threat model in Section 3.3. Figure 3.1 illustrates relationships among SURF compo-
nents: developer, server, and client. In SURF, there are two types of users: developers
and clients; developers register software packages and add updates via a SURF server;
clients request proofs for software updates to verify the requested updates. SURF server is
the one, as an intermediary between users and the underlying blockchain, delegating user
requests (e.g., developer requests to add a new software update, client requests to verify
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software updates). The following bullets describe the roles and expected behaviours of
SURF components.

• Developers submit either (i) the metadata of an original software package or (ii)
the metadata of an update binary. We call the metadata of an original software
registration and the metadata of an update binary revision. A valid registration
creates a placeholder for a list called an update chain in the SURF server; revisions
can be added to the corresponding update chain. Note that SURF does not host
update binaries; developers and manufacturers can upload binaries to their preferred
repositories such as Github, SourceForge, or their own infrastructure.

• SURF server or server runs Bitforest, a blockchain-based PKI that can securely map
a name to a cryptographic identity. SURF leverages Bitforest to manage registrations
for developers and adds revisions to update chains. Only the registration owner (i.e.,
developer) can add revisions to his or her registrations; the ability to add revisions
must be proven by cryptographic proofs verifiable by developer submitted public
keys. Secure hashes of submitted registrations and revisions will be embedded in
blockchain transactions and broadcast to a blockchain.

• SURF client or client can be thought of as an end-user software using SURF client
library or Software Development Kit (SDK) which defines the SURF protocol and
provides APIs allowing end-users or devices to subscribe, fetch, and verify software
updates. Clients obtain registrations and revisions along with cryptographic proofs
submitted to the SURF server and verify them using the hashes embedded in a
blockchain. Blockchain transactions are considered immutable and so are the em-
bedded data; clients can reproduce hashes of obtained data and compare them with
embedded hashes.

In summary, blockchain in SURF acts as a decentralized, append-only ledger containing
secure hashes of registrations and revisions. SURF server embeds hashes of software regis-
trations and revisions in blockchain transactions and broadcast to blockchain nodes. Once
the transactions are confirmed in blocks, the embedded hashes become distributed and
immutable. The information required for retrieving update related transactions, such as
transaction IDs and block heights, must be kept by the server. Clients obtain registrations
and revisions and verify them by reproducing and comparing hashes with the blockchain
embedded hashes.
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3.3 Threat Model

Before we dive into the details, we need to define an explicit threat model that SURF
assumes. SURF is designed to function in an unreliable, possibly adverse network. That
is, it is entirely possible for an active adversary to control the network and return falsified
information. For example, a hostile Internet Service Provider (ISP) may respond to client
requests with malicious software pretending that it is the legitimate software update. While
SURF provides end-to-end secure communication to defeat such threats, there are few
assumptions it makes to provide proposed security guarantees.

• Trusted bootstraping: SURF server has data store (e.g., database) containing
software updates where each element in the data store corresponds to a blockchain
transaction. Given a SURF server, we assume that clients connecting to the server
can securely obtain the unique identifier of the server, which is the transaction ID of
the first element of the data store.

• No double spending: We assume that the adversary is unable to attack the under-
lying blockchain of SURF in such a way that two transactions which send the same
money to different destinations both appear to be valid. It is generally accepted
that the distributed consensus algorithms of popular public blockchains such as Bit-
coin and Ethereum are highly robust to any adversary with a reasonable amount of
resources, and double spending by the adversary is unlikely to succeed.

• Compromised SURF Server: A SURF server can be compromised to break iden-
tity retention. That is, a compromised server can fool clients into associating an ex-
isting software registration to an adversary-chosen value without noticing the owner
of the software. Nonetheless, this does not mean the data stored in the blockchain
can be modified without the owner’s consent.

• Secure verification of transaction existence: We assume that there is a way for
lightweight clients not participating in blockchain replication to confirm that a given
transaction exists in the blockchain. Furthermore, we assume that the adversary is
unable to fool a client to falsely believe that a transaction exists on a blockchain.
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3.4 Software Developers

In SURF, developers submit formatted metadata of software packages. There are two types
of metadata: registrations and revisions.

3.4.1 Registrations

A developer can register his/her software package in the SURF server by submitting a soft-
ware registration, a JSON object containing a unique software name, a secure hash of the
software package, and an identity script including a set of public keys that can later verify
signatures provided with revisions. Once the registration is confirmed in the underlying
blockchain, the registration becomes secure, and SURF server allows the developer to add
revisions to his or her registration.

{

"name": "software_xyz",

"version": 1,

"data": "00000001[SHA-256 hash of the original software package]",

"idScript": {

"n": 2,

"m": 3,

"scripts": [

{ "type": "ED25519", "pub_key": "[pub_sig_key_alice]" },

{ "type": "ED25519", "pub_key": "[pub_sig_key_bob ]" },

{ "type": "ED25519", "pub_key": "[pub_sig_key_choi ]" }

]

}

}

Listing 1: An example of a registration with (2,3)-quorum identity script

Listing 1 describes an example registration that a developer may submit to a server for
the first time registering a software package called “software xyz”. A detailed explanation
of the fields is as follows:

• name: A string representing the name of the software package being registered.
Name string must be unique.

• version: A numerical value for the update version. A revision added to the regis-
tration must have a version number higher than that of the previous version.
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• data: A base-16 encoded string where the first 4 bytes provide version number and
the remainder is a hash of the software package binary.

• idScript: An identity script which defines a quorum of required signatures that must
be provided by revisions to be added to this registration.

Identity script is a simple stack-based script defining a quorum of signatures. The devel-
oper includes an appropriate identity script in the registration with public keys representing
people who can authorize future revisions. For instance, the identity script presented in
Listing 1 is a (2,3)-quorum identity script which returns true only if at least two signatures,
generated by secret keys paired with the registered public keys, are provided. That is, any
revision follows after the example registration must satisfy the quorum by providing at
least two valid signatures.

3.4.2 Revisions

A revision is a JSON object containing formatted information describing a software package
update with cryptographic proofs authenticating the validity of the revision. Registrations
and revisions share a similar data format except for minor changes. Listing 2 describes an
example revision that a developer may submit to a server for the registration presented in
listing 1. A detailed explanation of the fields is as follows:

• name: A string representing the name of the software package corresponding to this
revision.

• version: A numerical value for the version which is higher than the version presented
in registration or a previous revision.

• data: A base-16 encoded string where the first 4-byte is version and the remainder
is a hash of the software update binary.

• signatures: A list of signatures obtained by signing data, verifiable by registered
public keys.

The revision shown in Listing 2 is valid and can be added to the registration shown
in Listing 1 as it provides two signatures derived from secret keys which are paired with
public keys presented in the registration (i.e., pub sig key alice, pub sig key choi). By
requiring signatures that can only be provided by the registration owner, SURF ensures
only developers can add revisions to registrations, guaranteeing ownership for all software
registrations.
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{

"name": "software_xyz",

"version": 2,

"data": "00000002[SHA-256 hash of software update binary]",

"signatures": [

"[signature_signed_by_secret_key_alice]",

"[signature_signed_by_secret_key_choi ]"

]

}

Listing 2: An example of a first revision of “software xyz”

3.4.3 Locating update binaries

Notice neither registrations nor revisions points to update binaries. One may add an
URL in each registration and revision to indicate where clients can obtain the binaries.
This method could effectively convey location information for update binaries alongside
the necessary data to verify updates. However, SURF avoids embedding such data in a
blockchain as it is possible that the data residing outside of a blockchain can change at any
moment while the information stored in a blockchain cannot be modified (e.g., a file stored
at abc.com/file1 can be removed), creating a gap that cannot be concealed. To this extent,
SURF recommends delivering update binary locations out-of-the-band with minimal to no
data embedded in registrations and revisions.

3.4.4 Changing Identity Scripts

A developer can add or remove registered public keys by providing new identity scripts
in subsequent revisions. If a revision does not submit an identity script, it directly inherits
the identity script provided in the registration or from a previous revision. A revision
can include an identity script using the idScript field — the same way as registrations
provide identity scripts. Listing 3 shows a possible revision submitted after the one shown
in listing 2. This revision provides valid signatures satisfying the previous identity script
(i.e., the one presented in the registration since the previous revision did not provide an
identity script) and a new (2,4)-quorum identity script including an additional public key
along with the previously submitted keys.

SURF can accommodate complex authentication mechanism by encoding nested iden-
tity scripts. The example identity script shown in listing 4 enforces an additional authenti-
cation approved by a manager in addition to developer signatures. More details on identity

19



{

"name": "software_xyz",

"version": 3,

"data": "00000003[SHA-256 hash of software update binary]",

"signatures": [

"[signature_signed_by_secret_key_alice]",

"[signature_signed_by_secret_key_bob ]"

],

"id_script": {

"n": 2,

"m": 4,

"scripts": [

{ "type": "ED25519", "pub_key": "[pub_sig_key_alice]" },

{ "type": "ED25519", "pub_key": "[pub_sig_key_bob ]" },

{ "type": "ED25519", "pub_key": "[pub_sig_key_choi ]" },

{ "type": "ED25519", "pub_key": "[pub_sig_key_dan ]" }

]

}

}

Listing 3: Changing identity scripts

scripts are provided in appendix A.
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{

"n": 2,

"m": 2,

"scripts": [{

"n": 1, "m": 1,

"scripts": [{ "type": "SECP256k1", "pub_key": "[pubkey_manager]"}]

}, {

"n": 2, "m": 3,

"scripts": [

{ "type": "ED25519", "pub_key": "[pubkey_alice]" },

{ "type": "ED25519", "pub_key": "[pubkey_bob ]" },

{ "type": "ED25519", "pub_key": "[pubkey_choi ]" }

]

}

]

}

Listing 4: Complex identity script

3.5 SURF Server

The SURF server manages registrations. Specifically, it performs the following tasks:

1. Creating registrations

2. Adding revisions to registrations

3. Encoding hashes of registrations and revisions in blockchain transactions

4. Broadcasting transactions

5. Listening for confirmations to obtain transaction IDs (TXID) and block heights re-
quired to locate confirmed transactions

6. Creating operations1 by combining developer provided data, TXIDs, and block heights

7. Providing operations to clients

1An operation is a set of necessary data for clients to verify a software update. More details will be
provided in Section 3.5.2
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Figure 3.2: SURF server tasks

Figure 3.2 illustrates server tasks and how a SURF server interacts with stakeholders.
In this section, we will describe how SURF server (i) manages registrations and revisions,
(ii) communicates with the underlying blockchain, (iii) generates verifiable updates records
— operations, and, finally, (iv) delivers operations to clients.

3.5.1 Encoding Blockchain Transactions

SURF server creates blockchain transactions to store hashes of registrations and revisions.
We call such embedded hashes proofs as one can use them to verify the authenticity of
data by reproducing hashes. Once transactions are confirmed in blocks, the included
registrations or revisions are securely verifiable. To avoid unnecessary cost of locating
transactions, the SURF server is responsible for providing blockchain information required
to retrieve transactions for relevant registrations and revisions.

Policy enforcement

In order to exercise policy enforcement, SURF server builds abstract data structures called
index trees, variants of binary search tree containing transactions, and update chains,
Catena-like lists of transactions [56].
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In Bitcoin, two transactions are considered to be chained if the subsequent transaction
spends the transaction output of the previous transaction. This property is transitive such
that, if A is chained to B and B is chained to C, then A is chained to C. No more than
one transaction can be chained to a single transaction output as Bitcoin’s double spending
prevention inhibits a transaction output from being spent more than once [46]. However, a
single Bitcoin transaction can have multiple transaction outputs, allowing multiple trans-
actions to be chained to a transaction. Transaction outputs can be created for a particular
recipient identified by a Bitcoin address, which can be uniquely converted to a public key.
To spend an unspent transaction output (UTXO), the recipient must provide a crypto-
graphic proof — a signature derived from his or her private key that is verifiable by the
public key obtained from the address.

SURF server achieves policy enforcement by leveraging Bitcoin double spending preven-
tion. The idea is simple: if a SURF server starts with a transaction — genesis transaction
— with transaction outputs it controls, then the SURF server has total control in de-
ciding which transactions to be chained assuming all new transactions also have SURF
controlled outputs. By defining valid registrations as registrations within transactions that
are chained to the genesis transaction, the SURF server can enforce arbitrary policies on
registrations as it is the only entity that can chain new transactions. For this reason, SURF
server pays fees for all transactions it generates.

Index tree

If we limit the number of transaction outputs per transaction to two, then the overall struc-
ture formed by transactions would look like a binary tree. Since each transaction encodes
a hash of a software package name, we can compare transactions by hashes, chaining a new
transaction by spending the first output if the hash is less than the current transactions’
hash; otherwise spending the second output. Accordingly, SURF server builds a binary
search tree of transactions — the index tree.

Bootstrapped with a genesis transaction, an index tree manages software registration
transactions. For each software registration, SURF server encodes a transaction which (i)
embeds the verifiable random hash of the software name and the secure hash of the sub-
mitted software package, (ii) spends a UTXO of a previous registration transaction or the
genesis transaction, (iii) creates a UTXO for update chain, and (iv) creates two UTXOs for
later registration transactions. For convenience, SURF refers to a registration transaction
in the index tree as a tree node. Except for the root node (i.e., genesis transaction), each
tree node is a transaction that:

23



• Spends an UTXO of a parent tree node

• Embeds a verifiable random hash of a software package name

• Embeds a secure hash of a registration

• Creates an UTXO for an update chain

• Creates two UTXOs for subtrees

The root tree node meets all of the above properties except the first one. Data embed-
ding can be done by leveraging Bitcoin OP RET, a method used to include arbitrary data
by adding an unspendable output to a transaction.

The position of a tree node is deterministically decided by the hash value of the name
to be inserted and the availability of UTXOs at the time of insertion. Since the hash of a
name is randomly calculated by a verifiable random function (VRF) [43], tree nodes will
be randomly distributed, and the index tree will become reasonably balanced, resulting
into a maximum height of the tree in log(N) for N-many tree nodes.

Note that each new transaction requires additional funding to create necessary trans-
action outputs and cover transaction fees. SURF server can introduce additional funding
at any time by adding more transaction inputs to a transaction. Detailed operation cost
is discussed in 4.3.

Update chain

Each tree node is a placeholder for an update chain, a data structure designed to contain
revision transactions. An update chain is a list abstract data type, similar to the one in
[56]. To ensure policy enforcement, transactions encoded for revisions are supposed to
spend either the UTXO of a previous revision transaction or the UTXO of the tree node.
For convenience and consistency, SURF refers to a revision transaction as a list node. Each
list node must encode a transaction that:

• Spends an UTXO of a previous list node or a tree node

• Embeds a secure hash of a revision

• Creates an UTXO for a subsequent list node
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As discussed in the previous section, all revisions must satisfy identity scripts presented
in previous revisions or registrations. Accordingly, adding revisions to a registration (i.e.,
adding list nodes to an update chain of a tree node) is only possible when provided with
valid developer signatures.

The figure 3.3 describes an index tree showing three registrations (i.e., three tree nodes
under the root node) with one update chain for a software registration called “vscode”,
and accompanying blockchain transactions. Since it is located on the right side of the
root, we know H(“vscode′′) > H(“surf ′′) holds. Once we look up a tree node, finding an
update chain attached to it is easy — you can follow the transaction output prepared for
the update chain. In the figure, the tree node with H(“vscode′′) has an update chain with
two list nodes indicating two revisions. When we combine all accompanying transactions
(tx0, tx1, tx2, tx3) from the root tree node to the list node containing the last revision of
“vscode”, we form a transaction chain, which will be discussed more with details, that can
prove the integrity of a software package and its updates.

Figure 3.3: An example index tree with transactions

25



Summary

SURF builds an index tree and update chains to maintain control over the addition of
registrations and revisions and, hence, the software update process. SURF spends UTXOs
of previous nodes to form cryptographic links that are difficult to forge, chaining trans-
actions. Transaction chains are protected by the double spending prevention provided by
the underlying blockchain; unless adversaries successfully compromise the blockchain and
break the double spending prevention, they cannot equivocate clients (i.e., showing dif-
ferent transactions stemming from a transaction output). As a result, the SURF server
guarantees policy enforcement.

3.5.2 Operations

All nodes correspond to transactions that need to be broadcast to the underlying blockchain
for inclusion into blocks, eventually becoming permanent, immutable records. Upon cre-
ating a valid node, the SURF server broadcasts the corresponding transaction to one or
more blockchain full-nodes and waits until at least one full-node confirms that the trans-
action has been included in the latest block. Note that it is recommended to wait for some
number of confirmations, which is platform dependent (e.g., six confirmations for Bitcoin),
to avoid diverged chains.

Once the SURF server receives a sufficient number of confirmations to ensure that the
broadcasted transaction is safe, it marks the node and its data (i.e., registration or revision)
as ‘secure’ and creates a record called an operation including the blockchain information
required for clients to verify the record. An operation must contain the following data:

• Data: Original, non-hashed developer submitted data

• Raw transaction: Original transaction (hereby ‘TX’)

• Transaction ID (TXID): Unique hash generated from TX

• Anchor: Number indicating the block height of a block where TX is stored

Eventually, for each node in an index tree, there is a corresponding operation. Clients
obtain operations from a SURF server and verify whether the data is correct by reproducing
and comparing the hash of the data with the proof found in the blockchain transaction
specified by the blockchain information provided in the operation.
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3.5.3 Operation Log

An operation log of a software package is an ordered list of operations required to verify
(i) the existence of the registration of the software package in a SURF server, and (ii)
the authenticity of revisions registered to the software package. An operation log has two
parts: proof of existence and update chain. Each part serves a different purpose. Figure
3.4 graphically describes an operation log for software package registration “vscode”.

Figure 3.4: An operation log for software “vscode”

Proof of existence

A proof of existence (PoE) of a software package registration x is a list of operations in a tree
path px that starts from the root, TNroot, to a tree node corresponding to x, TNx. That is,
px is a tree traversal generating a sequence of tree nodes such that px = (TNroot, ..., TNx).
If the index tree does not allow duplicates and the hash function used in calculating a tree
node value is collision-free, then, for a software package registration x, we can obtain a

27



unique path px by traversing from TNroot to TNx if and only if x exists in an index tree.
Construction of such px is trivial since an index tree is essentially a binary search tree; we
can build px by recursively searching for the hash of x in subtrees.

PoE allows a client to securely verify that the software registration does exist in a SURF
server; a client can verify the validity of a registration by reviewing transaction outputs
presented in a PoE. The SURF server cannot lie about the existence of a registration
as tampering with the operation log violates double spending prevention. However, a
compromised SURF server can still hide registrations by not providing operations. We will
discuss more security caveats in Section 4.1.

Update chains

The rest of the operation log is for the update chain. Operations come after the PoE
convey information for revisions and related transactions. Once the PoE is verified, a
client can verify the rest of the operations from the end of the log back until it reaches the
registration. Detailed verification mechanism will be discussed in Section 3.6.

3.5.4 Update delivery mechanism

Different software updates need different delivery methods. Security patches need to be
delivered immediately; updates for new features can be delivered within hours; minor fixes
such as removing non-feature related bugs can be introduced within days. To accommodate
different needs, SURF provides three update delivery modes — poll, publish/subscribe, and
push.

Poll-based delivery

For intermittent software updates, polling can be an effective delivery mechanism. Using
polling mechanism, clients can regularly check the mediator for new updates with decreas-
ing polling frequency after each unsuccessful trial.

The upside of polling is fault tolerance. Since polling retries when a request fails, clients
using polling will eventually receive an update even if they are deployed in an unreliable
network. Within a maximum interval (e.g., 24 hours) and random jitter, polling can keep
clients reasonably up-to-date while effectively distributing polling requests in time.
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The downside of polling is unnecessary overhead where unsuccessful requests (i) con-
sume power, and (ii) waste SURF server’s network bandwidth. While a SURF server can
avoid this problem through active caching by deploying CDN services, the power consump-
tion problem remains. Thus, polling is recommended for those devices needing intermittent
non-mission-critical updates with a reliable power source (e.g., plugged into a power source,
equipped with a large battery).

Publish/subscribe-based delivery

For immediate software updates, publish and subscribe (pub/sub) model is a more ap-
propriate delivery mechanism. Once subscribed to a given software update, clients can
promptly receive update notifications from the SURF server (publisher) which triggers
clients to download new operations.

The upside of pub/sub is short latency. Compared to polling which can delay updates,
pub/sub triggers clients to download updates as soon as they become available. Time-
sensitive and mission-critical applications pub/sub delivery to eliminate unnecessary delay
between the time an update becomes available and the time it gets reflected in client
devices.

The downside of pub/sub is the necessity of a reliable connection and the infrastruc-
ture cost. Pub/sub requires clients to maintain bi-directional connections with the pub/sub
middlewares. For devices that (i) are deployed in an unreliable network or (ii) have inter-
mittent connectivity, pub/sub may not be appropriate as it wastes resources to establish
and maintain connections. Cost of running infrastructure can vary. However, it can be
costlier than running CDN services since publishers need to maintain stateful connections
that consume memory space.

Push-based delivery

Push is the ideal solution for software update systems. If push is enabled, neither stateful
connections nor periodic polling are required; the SURF server can send updates to clients
directly using their registered addresses.

Due to the depletion of IPv4 addresses, the only effective way that arbitrary devices can
expose themselves on the Internet is to obtain IPv6 addresses. However, IPv6 deployment
is an on-going process and the current penetration rate is less than 25% [10]. While it
is possible to implement a push service relying on tunneling such as 6to4 or Teredo, it is
beyond the scope of this work.
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3.6 SURF Client

3.6.1 Update Verification

Suppose we want to perform update verification for a software package x. The goal is
to verify the operation log of x, OPx, to determine if the revision indicated by the last
operation in OPx is correct.

A naive implementation of this procedure is to download an entire OPx at once and
process operations one by one. For each operation oi in OPx, clients first need to check
whether the transaction, txi, indicated by oi is in the claimed block. Checking the existence
of txi in a particular block can be done using Bitcoin Simple Payment Verification (SPV)
[46]. SPV enables clients to query a Bitcoin full node (e.g., miner) to determine whether a
transaction exists in a specified block at which time the full node returns a merkle branch
for the queried transaction. A Merkle branch is a sequence of hashes that are necessary
to reconstruct the root of the Merkle tree of TXIDs presented in the block header [19].
Since the size of a Merkle branch is proportional to the logarithmic of the number of
transactions included in a block, clients can quickly calculate the root of a Merkle tree
given a non-empty Merkle branch.

Note that clients must provide a TXID (what trasnaction to look for) and a block height
(where to look in the blockchain) to query a Merkle branch. TXID, if not provided, can
be easily derived from the raw transaction. However, without the block height, the client
must linearly scan through all blocks to find the target transaction, wasting bandwidth
and time. For example, assuming block heights are unknown, to verify an operation log,
a SURF client needs to download all block headers starting from the block containing
the genesis transaction to the block containing the last operation in the operation log.
Regardless of the number of operations in the operation log, the amount of header data
a client needs to download for a single verification can be at least 6.68 MB (87,600 block
headers; 80 bytes per header) in the best case (i.e., the last operation is found in the last
block) if the log has operations dispersed in time where the time difference between the
first operation and the last operation is one year.

Figure 3.5 shows an example index tree containing a registered software package “vs-
code” with two revisions. In order to verify the operation log for software package “vscode”,
clients must download all block headers starting from block k hdr to block k+5 hdr. Al-
though downloading hundreds of megabytes is not a problem for desktops with a reliable
network connection, it can be problematic for smartphones with a small data plan or worse
for IoT devices with small flash memory.
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Figure 3.5: Blockchain headers for SURF operations

To reduce bandwidth cost, the SURF server provides anchors in operations, allowing
clients to pinpoint blocks. One may argue that there is a security risk in downloading
selected block headers since it is possible that a blockchain node colluding with a com-
promised SURF server can show fabricated blocks. Nonetheless, since transactions are
securely chained, and all clients expected to verify whether transactions are in blocks using
headers obtained from multiple sources (e.g., multiple Bitcoin full nodes), skipping blocks
would not degrade the security of SURF . For this reason, SURF recommends clients to
wait for some number of confirmations, which is platform dependent (e.g., six confirma-
tions for Bitcoin), to ensure block headers they obtained are consistent. Figure 3.6 shows
the use of anchors for the same operation log illustrated in Figure 3.5. Notice that, in
the worst case, we only need to fetch four headers, one header for the last revision and
three headers indicated by preceding transactions, to thoroughly verify the operation log
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Figure 3.6: Anchor example

for software package “vscode”.

Once SURF clients confirm the transactions are in the claimed blocks, they need to
check whether each transaction has spent the correct output of a previous transaction,
forming a valid chain. Validating cryptographic links is necessary to confirm that the
transactions are indeed encoded by the SURF server providing the operation log. Note
that if a client successfully verifies all transaction chains derived from OPx, then we can
conclude that the PoE in OPx is verified.

Following the verification of the transaction chains, SURF clients can now verify the
integrity of revisions. They reproduce and compare hashes of data observed in operations
to the hashes stored in transactions. This step proves that the data provided by the
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operation log is the same data submitted by the developer who owns the registration. If
the hashes match, then we can run identity scripts presented in the revisions to validate
signatures.

The purpose of running identity scripts is to check whether the data provided in the
revision has been altered since the registration, breaking ownership. In case the data
has been changed, identity script will always return false since signatures included in the
revision are obtained from the data.

In summary, for each operation, from the tail to the head of the operation log, the
following verification tasks are performed:

• The transaction is in the claimed block.

• The transaction has spent the correct output of the previous transaction.

• The transaction has the correct hash of the current operation’s revision.

• The operations signatures satisfy the previous operations identity script.

If any of the above tasks fails, then a client can conclude that the operations are
not valid. Additionally, knowing that all operation logs start with the root node of the
index tree, clients must check if the last operation (i.e., head of the operation log) in the
verification process has a matching transaction with the root transaction of the index tree.

3.6.2 Enhancing Update Verification

Challenges

Software update is essential to all software-powered devices ranging from enterprise servers
to low-powered devices such as smartphones, tablets, wearable devices, and embedded
computers. The recent rise of the Internet of Things (IoT) adds even smaller, less powerful
devices to the list while emphasizing the need for a truly secure software update system.
However, providing secure software updates to low-powered devices can be challenging as
they come with extremely limited resources. Unlike desktop computers, small devices lack
in many aspects: CPU clock, memory, storage, and network bandwidth. For instance,
in 2018, a reasonably priced desktop computer comes with high-clock multi-core CPU,
gigabytes of memory, terabytes of storage, and sufficiently fast network interfaces. Such
specification make it possible to run a Bitcoin full node for a length of time with no
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difficulties. However, this is not possible with smartphones and IoT devices. Due to
power consumption and small design, portable computing devices and embedded systems
are generally equipped with single- or dual-core CPUs and tend to be limited in memory,
storage, and network capacity.

For SURF, limitations mostly come from the need to download and store data. Al-
though SURF does not require clients to download a lot of data initially, the data required
to verify software updates — operation log — linearly grows over time, eventually becom-
ing too large for small devices to hold indefinitely. Considering a reasonably small IoT
device comes with few megabytes of storage while each operation can be arbitrarily big
if not regulated by a mediator, storing such a linearly growing operation log per software
package makes SURF impractical.

There is also a memory limitation that SURF has to overcome when supporting resource-
constrained devices. Recall that update verification is the process of verifying operations.
Clients download an operation log and iterate over the log to check the authenticity of
each operation and the accompanying revision. A naive implementation such as the shown
in subsection 3.6.1 may download an entire operation log at once, store the log in the
memory, and process operations one by one. However, such implementation can only run
on devices with at least few megabytes of memory as each operation verification round
requires complex signature validation.

Incremental verification

SURF addresses aforementioned challenges by implementing incremental verification. In-
cremental verification is simple: a SURF client obtains operations one at a time and
verifies them in reverse chronological order until it reaches a known, verified transaction
called check point. The following describes an example of incremental verification:

• Suppose we have a client, C, and a firmware, f , which C wants to update regularly.
The developer of f has published three updates and the operation log containing
those updates is OP where OP = [o1, o2, o3, o4, o5, o6] and [o1, o2, o3, o4] represents
the PoE of f .

• Let TX(o) be a function extracting the transaction ID portion of an operation, o.

• Initially, C has a check point TX(o1), the genesis transaction. Then, C needs to
verify oi for i = [1, 6] to successfully authenticate OP since TX(o1) is the check
point. Once OP is checked, C updates its check point to TX(o6), the transaction of
the latest operation it verified.
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• Suppose the developer of f publishes a new update and creates a new operation log
OP ′ with o7. Now, C does not need to verify the entire OP ′. Instead, it verifies
o7 and checks whether o7 leads to an operation o6 which contains its check point
TX(o6).

• C updates its check point to TX(o7).

Though straightforward, incremental verification effectively reduces the network band-
width required for the verification process. Storage-wise, clients do not need to store
previously verified data or block headers as they only need 32-byte TXIDs to continue ver-
ifying future updates. Furthermore, since we download one operation at a time, the total
memory requirement per operation is considerably smaller compared to the case where we
download the entire operation log.

1 def op_verify(O, N, last_op_pos, check_point):

2 for i=N-1..last_op_pos:

3 curr <- download O[i]

4 if curr not exists in blocks[curr.anchor]:

5 return false

6 elif subsequent is null:

7 subsequent <- curr

8 pass

9 # verification process omitted for brevity

10 delete subsequent # C-like memory deallocation

11 subsequent <- curr

12 if curr.txid is check_point:

13 return true

14 return false

Listing 5: Incremental operation verification

Putting it all together

Incremental verification saves substantial network bandwidth, storage cost and memory.
Listing 5 shows the pseudo code of improved update verification with virtual anchor and
incremental operation verification.
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3.7 Quantum-Safe Software Updates

With some exceptions, most of the modern public key cryptography algorithms are based
on the difficulty of factoring integers or the discrete logarithmic problem. While integer
factorization is believed to be computationally infeasible for an ordinary computer if the
number is the product of large prime numbers [40], the recent advances in quantum com-
puting suggests that using Shor’s algorithm, both integer factorization, and the discrete
logarithmic problem can be efficiently solved by a quantum computer with sufficient num-
ber of qubits [41], implying that many of public key cryptography algorithms currently
employed will eventually collapse.

Although there are no true quantum computers yet, researchers predict that quantum
computers will surpass the limits of classical computers, achieving quantum supremacy in
near future [23]. Since public key cryptography underpins the security of SURF , there
is a high quantum-risk threatening the foundation of software update system including
SURF . Therefore, we designed SURF to be cryptographically agile by supporting different
cryptographic techniques including quantum-safe cryptography.

3.7.1 Cryptographic agility

Cryptographic agility is the ability of a system to accept or transition to new crypto-
graphic algorithms at minimal cost. It is a likelihood of a system moving from using one
cryptography to another (with improved security) without re-writing much code [21].

The concept is not new and has been in development for a long time. For example, x.509
digital certificate standard, which was released in 1988, was created with crypto-agility,
making the standard flexible to accept extensions such as handling version differences or
the use of different cryptographic algorithms in generating keys and certificates. How-
ever, recent outbreaks of failing cryptographic algorithms (e.g., ROCA [47], ROBOT [22],
KRACK [57]) and subsequent need for replacing old vulnerable cipher schemes generated
renewed attention for crypto-agility.

SURF is crypto-agile by design in its use of digital signatures. Cryptographic algorithms
are represented as plugins in SURF and a new scheme (e.g., signing algorithm) can be added
to SURF as a plugin without modifying existing code. Clients can choose cryptographic
algorithms and specify them in the identity scripts. Recall that identity script has a
field type; this field states the type of cryptographic algorithm. Clients can freely choose
a digital signature algorithm and provide signatures generated by the chosen algorithm.
Listing 6 shows an identity script using three different signing algorithms.
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{

"n": 2,

"m": 3,

"scripts": [

{ "type": "ED25519", "pub_key": "[pub_sig_key_ed25519]" },

{ "type": "SECP256r1", "pub_key": "[pub_sig_key_p256r1 ]" },

{ "type": "SECP256k1", "pub_key": "[pub_sig_key_p256k1 ]" }

]

}

Listing 6: An identity script with key scripts using three digital signature algorithms

SURF does not rely on one cryptography; it uses many of them and can easily sup-
port more in the future. Indeed, if and when a public key cryptography that can gener-
ate quantum-safe signatures becomes available, SURF can add a new plugin to achieve
quantum-safe software updates.

3.7.2 Post quantum cryptography (PQC)

Developing quantum-safe cryptographic algorithms or post-quantum cryptography (PQC)
is an active research area. Because Shor’s algorithm is only effective for integer factorization
and discrete logarithmic problems, public key cryptography algorithms relying on other
models are considered safe from Shor’s algorithm and, ultimately, quantum attacks.

There are five different approaches to developing PQCs: lattice-based, code-based,
hash-based, multivariate, and supersingular elliptic curve isogeny cryptography. Note that
this thesis rules out symmetric cryptographic algorithms as it is not relevant in the con-
text of SURF. SURF does not necessarily encrypt data to hide, but rather transparently
shows that they are indeed the right data by presenting valid signatures. Table 3.1 briefly
describes the five approaches with representative algorithms.

3.7.3 Integration in SURF

Of those PQC algorithms presented in Table 3.1, BLISS-II, GLYPH, and SPHINCS-256
are designed to generate fixed length digital signatures with 128-bit post quantum security
level [33, 26, 20]. Our analysis of these PQC algorithms for the purpose of SURF is as
follows:

37



Type Description Algorithm

Lattice-based Based on lattice problems; can be most efficient in
terms of key sizes [44]

BLISS-II [33],
GLYPH [26]

Code-based Relying on error-correcting codes which can be
used to decode a general linear code; public key
size is large (100KB to several megabytes) [50]

Goppa-based
McEliece [50]

Hash-based Based on the idea that a secure digital signature
scheme is analogous to a secure, collision-resistant
hash function (e.g., lamport signature) [25]; the
recent algorithm, SPHINCS-256, can sign multiple
times with one private key [20]

SPHINCS-256
[20]

Multivariate Based on solving nonlinear equations over a finite
field (considered NP-hard); relying on multivariate
trapdoor functions [30]

Rainbow [51]

Supersingular
Isogeny

Based on the conjectured difficulty of finding iso-
genies between supersingular elliptic curves; al-
though there is a sub-exponential quantum algo-
rithm constructing isogenies between ordinary el-
liptic curves, in the supersingular case, the same
algorithm remains exponential, making supersin-
gular model quantum resistant (SIDH) [38]

SIDH [38]

Table 3.1: PQC approaches and algorithms

• Although extensively studied, BLISS-II does not have a security reduction to a known
hard mathematical problem, failing to prove that breaking the algorithm is as difficult
as solving the problem. For this reason, we ruled out BLISS-II and all NTRU variant
algorithms.

• GLYPH is the best candidate out of the three. It has a security reduction to an NP-
hard problem — Shortest Vector Problem (SVP) [26] and generates comparably small
digital signatures (public key 2KB, signature 1.8KB). Nonetheless, the algorithm is
relatively new and not extensively evaluated by the research community.

• Unlike most hash-based signature schemes, SPHINCS-256 is stateless, allowing it
to be a drop-in replacement for current signature schemes used in SURF. Nonethe-
less, comparably large signatures (41Kb) make SPHINKS-256 less desirable as it
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drastically increases the average size of registrations and revisions which clients will
download.

SURF can integrate both GLYPH and SPINCS-256, allowing developers to use either
PQC as they desire to maintain identity retention. No changes are required in submitting
registrations or revisions; there will be two additional public key types that can be used
in identity scripts; Listing 7 shows an example identity script using both GLYPH and
SPHINCS-256 public keys.

{

"n": 1, "m": 2,

"scripts": [

{ "type": "GLYPH", "pub_key": "[pub_sig_key_glyph ]" },

{ "type": "SPHINCS256", "pub_key": "[pub_sig_key_sphincs ]" }

]

}

Listing 7: An identity script with key scripts using PQC

3.7.4 Security Against Quantum Computers

Assuming the integrated PQCs are truly quantum-safe, we can evaluate the security of
SURF as follows:

• Identity retention: Recall that revisions can be only appended when they are
submitted with valid signatures. Employing PQCs effectively prevents adversaries
with quantum computers from adding malicious revisions to a registration, enforcing
only developers with valid private keys can add revisions to registrations. Hence,
identity retention is still maintained.

• Policy enforcement: Policy enforcement in SURF is protected by the double spend-
ing prevention provided by the underlying blockchain, Bitcoin. Since Bitcoin uses
SECP256k1, a public key cryptography vulnerable to quantum threats, to prove the
ownership of UTXOs, adversaries with quantum computers can break policy enforce-
ment without even compromising SURF server. In fact, the only required information
for adversaries to overthrow policy enforcement of a SURF server is a set of public
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keys controlled by the server to spend UTXO(s); adversaries can use quantum com-
puters to derive private keys from the public keys and spend UTXO(s), sabotaging
SURF server’s operations (e.g., spending all UTXOs to disable the service).

Although the lack of policy enforcement does not impact identity retention (i.e., clients
still verify registrations and revisions that are made in the past), it discourages service
providers who would run SURF servers to make profits (e.g., “Software Update”-as-a-
Service). Solving this problem is hard. Because the problem comes from the underlying
blockchain, mitigating the threat of losing policy enforcement would require SURF to be
deployed on a quantum-safe blockchain. Unfortunately, as of May 2018, there are no
sufficiently large quantum safe public blockchains.

However, growing demand for preparing to the post-quantum era suggests there will
be quantum safe blockchains in the future. In this perspective, SURF proposes blockchain
migration to address the quantum threat by allowing SURF to easily migrate from one
blockchain to another.

40



3.8 Blockchain Migration

Although blockchain technology enables applications to decentralize data, leveraging a
blockchain generally results in tight coupling between applications and blockchains (i.e.,
an application is locked in a specific blockchain). While this is not problematic in most
cases, as we discussed in the previous section, there is a situation where an application
needs to migrate to another blockchain in case the current blockchain lacks features the
application requires (e.g., quantum-safe cryptography).

SURF is designed to be blockchain-agnostic. That is, SURF can use any blockchain as
long as it provides features required to implement SURF operations. The following section
describes the properties of a blockchain required by SURF .

3.8.1 SURF Compatibility Requirements

SURF can leverage any blockchain as its security foundation if it:

1. Has strong double spending prevention.

2. Allows applications to embed arbitrary data.

3. Provides controlled write access.

4. Provides expressive data structures to build index tree and update chain.

5. Provides open read access with verification support.

We call the above requirements SURF Compatibility Requirements (SCRs). Any blockchain
satisfying these SCRs can be used as an underlying blockchain for SURF. In the following,
we explain how the SCRs contribute to supporting SURF.

• SCR-1: Double spending prevention is a cornerstone of SURF in which protects
identity retention from the adversaries. This requirement is trivial since recent cryp-
tocurrencies and blockchain projects do achieve strong double spending prevention.
The remainder of this chapter assumes that all cryptocurrencies satisfy this condition.
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• SCR-2: This is a core requirement for SURF — recording hashes of developer sub-
mitted data (i.e., proofs) in blocks and taking advantage of a secure, immutable
ledger. In its current implementation, SURF embeds hashes of registrations and re-
visions in Bitcoin transactions using OP RET, and the integrity of embedded data is
protected by the Bitcoin network as transactions cannot be forged without compro-
mising the network. Any SURF-compatible blockchain must provide a mechanism
that allows the SURF server to record arbitrary data in blocks with equivalent secu-
rity guarantees.

• SCR-3: This requirement is essential for policy enforcement since we want to limit
write privileges to the SURF server. For instance, Bitcoin’s Pay-to-PubKeyHash
(P2PKH) ensures that UTXOs created for addresses owned by a SURF server can
be only spent by the server, not anyone else [46].

• SCR-4: This refers to the ability to build an index tree and update chain. Having an
index tree is essential for SURF to achieve fast lookup; assuming the tree is reasonably
balanced, the lookup performs in O(logN) where N is the number of software packages
registered. Implementing an update chain using a list data structure is imperative
for SURF as such an ordered list of revisions starting with a unique registration
clearly represents the software update history. Combined together, the overall time
complexity required to verify the latest software update with k-many revisions results
in O(logN) + O(k) where N is the number of registrations present in the index tree.

• SCR-5: This last requirement is crucial for thin client support; access to the embed-
ded proofs must be open, and the underlying blockchain should provide a mechanism
for clients to verify the proofs without downloading blocks. Without this, only a lim-
ited number of clients with the capacity to replicate and execute blocks can benefit
from SURF.

3.8.2 Different Types of Blockchains

There are two broad categories of blockchains: UTXO-based such as Bitcoin and account-
based such as Ethereum. The difference between UTXO-based and account-based blockchains
is the way they represent the balance. In UTXO-based blockchains, balance is a sum of
UTXO values paid to an entity. On the other hand, in account-based blockchains, balance
is a numeric value kept by the system representing the number of tokens that an entity
can spend.
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UTXO-based blockchains have more expressive, rich transactions than account-based
blockchain transactions. For example, Bitcoin transactions can embed arbitrary data in
transactions (i.e., OP RET) while each transaction can have multiple outputs (e.g., trans-
ferring funds to multiple parties using a single transaction). Account-based blockchains,
however, use somewhat simplified transactions; no data embedding nor multiple transaction
outputs; they merely transfer funds from one address to another. They generally provide
smart contracts, high-level scripts that can be executed based on blockchain activities (e.g.,
transactions) and conditions observable in blocks (e.g., block heights).

Tofino is a SURF implementation successfully deployed on Bitcoin. Since the majority
of existing UTXO-based blockchains, including Litecoin, are the forks of Bitcoin with no
groundbreaking changes affecting the aforementioned SURF requirements, it is safe to
assume that SURF is compatible with UTXO-based blockchains. Indeed, Litecoin, for
instance, satisfies all SURF’s SCRs, allowing us to implement SURF with Litecoin. In
fact, Tofino can leverage Litecoin with very minor modifications.

Account-based blockchains, most famously represented by Ethereum, do not satisfy
all SURF ’s SCRs; since their simplified transactions do not allow data embedding nor
transaction chaining. In this case, we need to provide a proper smart contract that can
securely store and replicate arbitrary data to blockchain participants. Providing such a
smart contract is not trivial. In the following, we provide an Ethereum smart contract for
SURF to demonstrate it is indeed blockchain-agnostic.

3.8.3 SURF on Ethereum

In this section, we first recall how transactions are supported in Bitcoin and then describe
how SURF transactions are supported using smart contracts in Ethereum.

Bitcoin Transactions

Recall SURF leveraged UTXOs to form unforgeable links between registrations and revi-
sions. Bitcoin uses UTXOs to describe one’s balance; if Alice has ten bitcoins, then Alice
has a set of UTXOs which sums up to ten bitcoins. Spending bitcoins is not very intuitive
because it involves destroying old transaction outputs (i.e., making them unspendable)
and creating new spendable transaction outputs. For example, when Alice sends one bit-
coin to Bob, Alice creates a transaction that (i) consumes a set of UTXOs, UI , and (ii)
outputs a set of UTXOs, UO. The sum of UI must be greater than or equal to 1 bitcoin
plus the anticipated transaction fee to broadcast the transaction. UO contains at most two
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transaction outputs: one for Bob, and one for Alice if there are any changes. Once the
transaction gets confirmed (i.e., included in a block), Alice can no longer spend ‘spent’
transaction outputs, and Bob will have a new transaction output at his disposal.

Ethereum Transactions

Ethereum transactions are simpler than Bitcoin transactions. This is because, instead of
relying on transaction outputs and accompanying cryptographic proofs, Ethereum allows
a sender to issue a transaction to a recipient only if such transaction moves a fund that is
less than or equal to the balance of sender’s account.

Ethereum has two types of accounts: externally owned accounts (EOAs) and contract
accounts. The term transaction is used in Ethereum to refer to the signed data package
that stores a message to be sent from an externally owned account (i.e., a user) to another
account on the blockchain [7]. A typical message carrying Ethereum transaction contains
the followings:

• nonce: A scalar value equal to the number of transactions sent by the sender.

• to: The recipient address of the message.

• value: The amount of Wei (a unit of Ethereum cryptocurrency; 1 ether = 1e18 wei)
to transfer from the sender to the recipient.

• gasPrice: A scalar value representing the fee the sender is willing to pay for one
unit of gas. Each Ethereum Virtual Machine (EVM) operation code charges a specific
amount of gas to be executed.

• gasLimit: A scalar value representing the maximum number of computational steps
the transaction execution is allowed to take.

• data: An optional field, which can contain an unlimited size byte array specifying
the input data of the transaction.

• v, r, s: Values corresponding to the signature of the transaction and used to deter-
mine the sender of the transaction.

Notice that Ethereum transactions do not have ‘transaction outputs’ (hence, no UTXOs).
For instance, if Alice issues a transaction which transfers one ether to Bob, once the
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transaction gets confirmed, both Alice’s and Bob’s balances change accordingly, without
generating transaction outputs.

As described above, such simple transaction scheme cannot fulfill SCR-3 and SCR-4
using the same strategy Tofino uses with Bitcoin. Since Ethereum does not use secure
transaction outputs, we cannot ensure ownership of transactions nor create cryptographic
chains between transactions, which are essential to building index trees and update chains.

Smart Contracts

Ethereum supports smart contracts, allowing developers to execute arbitrary code and
store values in Ethereum blockchain [6]. Ethereum smart contracts (or simply ‘contracts’)
are programs deployed at random addresses. Contracts are considered as accounts just like
externally owned accounts and can receive transactions from other accounts. Contracts,
or more specifically contract functions, are executed when transactions are sent to the
contract address; for each new block, Ethereum full nodes iterate over transactions in
the received block and run corresponding contracts for those transactions sent to contract
accounts. Arbitrary execution results of contracts are persistent in Ethereum in the form of
states. Similar to blocks, states are replicated across the network. All full nodes replicating
blocks should have the same states as no transaction can invoke a contract more than
once, or multiple contracts simultaneously due to Ethereum’s double spending prevention.
Thus, states are safe from equivocation (i.e., no adversaries show different data to different
parties). SURF can successfully migrate to Ethereum by developing a contract using
Solidity, one of Ethereum high-level programming languages. The following summarizes
how SURF managed to satisfy SCR-2∼4.

• SCR-2 can be achieved by leveraging Ethereum contract state. The state is part
of the Ethereum blockchain storing contract permanent data. Ethereum full nodes
maintain the same states across the network by executing transactions in replicated
blocks.

• SCR-3 can be satisfied using require. By recording the ownership to contract state,
only the contract creator can call functions that can modify the contract state. Listing
12 in Appendix B presents a custom modifier using require, limiting the function
invocation to a specific sender.

• SCR-4 can be emulated by exploiting mapping, hashtable-like data structure pro-
vided by Solidity. Due to limitations in Turing completeness, Solidity does not offer
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recursive data structure which is essential to traditional binary tree abstract data
type. Instead, one may represent a binary tree using an array of tree nodes where
each node has references to subtrees using array index. Listing 10 in Appendix B
shows how SURF emulates a tree with mapping.

Notice that functions managing index tree, and update chains are now entirely off-
loaded to an Ethereum smart contract. SURF server still accepts developer and client
requests and stores local copies of operations, but adding registrations and revisions are not
taking place in Ethereum. Note also that while this does not impact SURF functionality,
it sacrifices code flexibility as Ethereum contracts cannot be redeployed without changing
addresses. There are ways to seamlessly migrate a contract to a newer version such as using
a proxy contract routing transactions to an active contract. However, it is unnecessarily
complicated Appendix B provides the full Solidity script used for SURF to work with
Ethereum.

Thin Client Support for Secure Verification

SCR-5 is a bit tricky. Clients can obtain state value of a contract by calling contract
functions via web3, an interface to Ethereum blockchain. Nonetheless, only full nodes
who replicate blocks can securely verify the correctness of the latest state by executing
transactions sent to the contract. Tofino solved this problem by leveraging Bitcoin SPV,
allowing clients to verify operations by validating transactions; a compromised Bitcoin
node cannot provide false updates without forging many blocks which requires tremendous
hashing power if the number of blocks to forge is high. However, in Ethereum’s case, states
only contain the final result and clients cannot verify the contract state as it is impossible
to replay transactions. Hence, unlike Bitcoin, the Ethereum-based SURF client may accept
false operations if the communicating Ethereum full node is adversarial. While this can
be considered as a major security setback compared to Bitcoin, clients can mitigate this
problem by querying multiple Ethereum nodes to validate operations, overcoming the risk
of compromised full nodes. Section 4.1 discusses this security challenge in more details.

Summary

We demonstrated SURF portability to Ethereum by providing a smart contract managing
index tree and update chains. As account-based blockchains in general offer equivalent or
more expressive scripting languages to accommodate Ethereum-like smart contracts, SURF
can also be migrated to other account-based blockchains such as EOS [5] or Hyperledger
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Fabric [12] by implementing smart contracts similar to the one developed in Solidity for
Ethereum.
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3.9 Conclusion

In this chapter, we explored how SURF manages software package registrations and revi-
sions. With strong guarantees in terms of both identity retention and policy enforcement
assuming a sophisticated threat model, SURF provides a secure mechanism for clients to
safely verify the authenticity of software updates, answering the question ‘how does a client
know the patch is correct’ without trusting a centralized entity. It is important to point out
that the security of SURF is derived from that of the underlying blockchain; compromising
SURF is as difficult as compromising the blockchain used by SURF . As of April 2018, it is
virtually impossible to compromise Bitcoin, the blockchain Tofino uses, without possessing
a significantly large hashing power amounting to more than 13 Exahash per second [3].

However, there are attacks that SURF does not fully handle such as eclipse [37] and
replay attacks. We will discuss such attacks and outline possible remedies in Section 4.1.2.

In summary, SURF provides a secure software update system by accomplishing the
followings:

• Secure identity retention: Only the registration owner(s) can add revisions and
the violation of this property can be easily found by consulting the underlying
blockchain.

• Strong policy enforcement: The SURF server holds all rights to make changes
to the namespace by owning all UTXOs; unless payment keys are compromised, the
SURF server can enforce strict policies to all software names.

• Secure update verification: Clients do not rely on a centralized trust to verify
updates; they obtain operation logs from the SURF server and verify the logs by
querying the underlying blockchain.

The following chapter evaluates SURF in terms of security and performance.
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Chapter 4

Evaluation

4.1 Security

We evaluate SURF security by demonstrating how SURF mitigates commonly known at-
tacks that are launched against software update systems. We also discuss security caveats.
Although SURF does not fully handle some attacks, we provide mitigation ideas which can
effectively close these security gaps.

4.1.1 Mitigating Common Attacks

The following list enumerates commonly observed attacks against software update systems.

1. Arbitrary installation attacks

2. Extraneous dependencies attacks

3. Fast-forward attacks

4. Mix-and-match attacks

5. Replay attacks

6. Denial of service attacks

Assuming adversaries cannot compromise the underlying blockchain (e.g., rewriting
multiple blocks), SURF effectively mitigates the following attacks.
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1. Arbitrary installation attacks

This is probably the most desired attack by an attacker to compromise an update server. A
successful arbitrary installation attack allows an attacker to lead a client to a fake update
and eventually install anything the adversary wants on the client system.

Attackers, who have successfully compromised a SURF server, may attempt to fool
SURF clients in various ways:

• Providing malware binary: attackers, who also have compromised software binary
repositories, may attempt to provide malware to clients. Since the last operation has
a secure hash of a valid binary, clients can verify the downloaded binary before
installation.

• Injecting malware hashes: attackers can provide an operation containing a mal-
ware hash (i.e., the last 32-byte of data is malware hash). A SURF client naturally
mitigates this attack as such a modified data would result in verification failure when
the client runs an identity script. Hence, unless attackers have also compromised de-
veloper signing keys, registrations and revisions cannot be altered, and clients can
safely verify the authenticity of operation data.

• Forged transactions: attackers may forge transactions and create a completely dif-
ferent update chain for a specific software package registration. However, all update
chains must be chained to a registration by spending the valid transaction output.
Since SURF clients can verify transaction outputs without consulting SURF server,
adversaries cannot deceive clients.

2. Extraneous dependencies attacks

Using this attack, an adversary can cause clients to download or install software depen-
dencies that are not the intended dependencies.

This attack is similar to the arbitrary installation attack in that its main goal is to in-
stall software against client intention; mitigating extraneous dependencies attacks, hence,
is possible for the same reason SURF clients can defeat malware hash injection. A suc-
cessful extraneous dependencies attack assumes that adversaries are capable of misleading
clients to download a modified set of software libraries containing malware. However, de-
ceiving SURF clients requires modifying data field. As explained in the previous attack
mitigation, adversaries cannot alter data without getting caught unless they compromise
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a sufficient number of developer signing keys. Assuming developers devise a reasonably
secure identity script (e.g., requesting multiple keys with two-factor authentication), it
is difficult for adversaries to launch extraneous dependencies attacks. Therefore, SURF
effectively mitigates this type of attacks.

3. Fast-forward attacks

Fast-forward attacks allow attackers to arbitrarily increase the version numbers of meta-
data of a software update well beyond the current value and thus tricking a software
update system into thinking any subsequent updates are trying to rollback the package to
a previous, out-of-date version.

Recall the version number is a part of data. Thus, changing the version number will
create discrepancies between provided signatures and the expected outcome of signature
verification, and cause the previously defined identity script to fail, notifying SURF clients
that the server is compromised.

4. Mix-and-match attacks

The mix-and-match attack is a variant of extraneous dependencies attack; it allows attack-
ers to trick clients into using a combination of metadata that never existed together on the
repository at the same time.

In SURF, mix-and-match attacks cannot occur by design. There are two types of meta-
data managed by SURF: registration and revision. Associating metadata such as adding
revisions to a registration can only happen by spending transaction outputs. Since spent
transaction outputs cannot be unspent nor re-spent thanks to double spending prevention,
it is impossible to combine metadata in a different way than the form already stored in
SURF . Furthermore, all revisions in SURF are ordered such that every subsequent revision
satisfies the identity script of the previous revision or registration with developer signa-
tures. Hence, associating forged metadata with existing metadata cannot happen without
compromising enough number of developer signing keys.
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4.1.2 Caveats

There are some security caveats that are not relevant or fully resolved by SURF .

Replay Attacks

A replay attack is an attack issued by providing a stale, previously valid update with known
vulnerabilities. Known variants are freeze and rollback attacks. The purpose of this type of
attacks is to stall updates, opening up a time window for adversaries to exploit unpatched
vulnerabilities. An attacker may collude with a malicious repository mirror in addition to,
or instead of, compromising centralized update servers. For example, a malicious mirror
can launch a replay attack by giving a previously signed update with known bugs to clients
requesting the most recent updates.

SURF only partially solves this problem. The primary purpose of SURF is to separate
update metadata and store them in an unforgeable data structure, allowing clients to query
and verify the update records of a software package. The assumption is if clients can verify
an operation log then the last revision in the log is a valid update; there is no guarantee
that the last revision always indicates the latest update. Thus, in case the SURF server
is compromised, an adversary can launch a replay attack on clients by responding with
partial operation logs.

However, the attack is limited as (i) adversaries cannot equivocate clients (i.e., all
clients should see the same operation logs), and (ii) clients can check whether the last
revision has a valid UTXO which has not been spent in cooperation with reputable full
nodes.

A simple workaround for a developer to detect replay attacks is to run a client. Within
a reasonable period (e.g., 72 hours for Bitcoin; average delay for a transaction to get
confirmed), if the developer who added the last revision to the SURF server does not get
the complete operation log, it can suspect that the server is compromised and actively
deploying a replay attack.

Another workaround is to leverage known reputable full nodes as a trusted third party.
For UTXO-based SURF implementations, clients can cooperate with well-known full nodes
to check whether the UTXO of the last revision is spent or not. Since our threat model
assumes even a powerful adversary cannot rewrite the blocks, a spent UTXO cannot be
reverted. Since SURF server only spends UTXOs when registering software packages and
appending revisions, if the last revision has a spent UTXO, it implies that the server is
deliberately hiding part of the operation log.
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As of May 2018, no cryptocurrencies offer the possibility for clients to verify UTXOs;
one must run a full node and synchronize blockchain data to check whether a UTXO has
been spent. Hence, clients have no options but to trust some well-known, trusted full
nodes (e.g., blockchain.info for Bitcoin) to query whether the UTXO of the last revision,
supposedly reserved for the next revision, is spent to determine the completeness of an
operation log. However, this method significantly degrades SURF’s security as it relies on
trusting third parties. In this case, it is highly recommended to have multiple full nodes
and cross-validate results to ensure full nodes are honest.

Denial of Service

Another possible attack that an adversary can carry out is the denial of service (DoS)
attack. A compromised SURF server may ignore or deliberately slow down client requests
to deter software updates. Attacks known as endless data attacks, which respond to clients
with huge amounts of data, and slow retrieval attacks, which intentionally delay responses
until clients give up requesting updates, are variants of DoS.

Although SURF cannot fully prevent denial of service attacks as they are indistinguish-
able from benign service outages, a successful DoS attack does not affect client integrity
as it does not exploit client vulnerabilities or propagate malware to subvert clients. Thus,
the impact on clients from this type of attack is minimal.
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4.1.3 Inherent Limitations

The SURF threat model assumes that the underlying blockchain is resilient to compromises.
It is, however, possible to compromise a blockchain with sufficiently large computation
power or launch a targeted attack on some clients by partitioning the network momentarily.

51% attack

Blockchains employ a consensus algorithm to allow participants to come to an agreement for
each block. Bitcoin’s consensus algorithm assumes that if more than half of the consensus
participants, or miners, are honest, then the network is safe and free from Sybil attacks and
collusions. This idea is based on Bitcoin’s incentive mechanism which only rewards those
blocks appended to the longest chain; if the sum of computational power provided by honest
miners is greater than the computational power collectively owned by malicious miners,
then the rate of adding good blocks will always be higher than the rate of adding bad
blocks since creating a block requires computationally expensive mathematical calculation.
Nonetheless, the opposite is also true — if malicious miners own more computational power
than the good ones, the network is vulnerable to the so-called 51% attack [58].

The 51% attack, also known as the majority attack, can take place when the attacker
owns more than half of network hash power. While it is difficult to achieve such condition, a
successful 51% attack gives adversaries an ability to perform double spending by replacing
last n blocks with malicious n+1 blocks [13]. Although this is a severe concern for Bitcoin
or any other blockchain, due to identity retention, an adversary with the majority hash
power can only undo transactions (i.e., reverting confirmed revisions) to hide some software
updates or registrations from clients in the case of SURF.

Nonetheless, as already discussed in the previous subsection, hiding operations is only
useful for delaying software updates, buying some time for adversaries to exploit known
vulnerabilities — not injecting malware to clients. Of course, unlike replay attacks, the
51% attack can alter blockchain data with adversary chosen blocks, effectively ruling out
one of the workarounds suggested before. Yet, developers can still check whether their
updates are published by obtaining operation logs and quickly realize the server has been
compromised.

In the context of the software update, performing the 51% attack is not economically
sound since the resources required for the attack are enormous, and the consequences of
the attack are limited.
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Eclipse attack

The eclipse attack, on the other hand, is a far more effective, economically-sound attack
which consists in partitioning the blockchain network. In an eclipse attack, an adversary
monopolizes all incoming and outgoing network connections of a blockchain full node —
the victim, isolating, or eclipsing the victim from the network. Then, the adversary ma-
nipulates the eclipsed victim’s view of the blockchain by providing obsolete transactions
[37].

Figure 4.1: Eclipse attack

This can be a great threat to SURF. Adversaries can manipulate the eclipsed miners
to generate blocks containing adversary-chosen transactions. If adversaries know which
blockchain nodes (miners) a client connects to, they can eclipse those nodes and inten-
tionally delay software updates of the client by removing relevant transactions. Figure 4.1
describes the case of a blockchain node being eclipsed into an adversary-controlled network.
Consequently, a successful eclipse attack achieves the same goal as the 51% attack on a
specific target at much lower cost.
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4.2 Performance

Although SURF is designed for secure software update systems. For its wide adoption, it is
imperative to provide good performance without requiring much resources. Indeed, SURF
performs fast verification with relatively low resource consumption. To illustrate this, we
evaluated SURF through two experiments: (1) verification latency and (2) efficiency.

Section 4.2.1 demonstrates that SURF performs comparably to centralized systems. We
compare SURF to TUF, the secure start-of-the-art centralized software update system. We
simulate software updates on local instances of SURF and TUF and compare secure lookup
latency, which entails both lookup and verification of updates, of both systems. In this
experiment, we used a 3.7GHz AMD Ryzen 71 processor and 32GB of RAM.

Section 4.2.2 shows the efficiency in verifying software updates by running SURF clients
on resource constrained devices such as Raspberry Pi. We run SURF client on a Raspberry
Pi 2 Model B2 and verify simulated packages with varying lengths of operation logs. As a
result, SURF successfully verifies all packages within reasonable runtime.

4.2.1 Verification latency

Both SURF and TUF lookup updates and verify them by checking the accompanying
signatures. The objective of this evaluation is to compare the latency difference between
SURF and TUF verification in a similar condition.

To achieve the experiment objective, first, we baseline the experiment by evaluating
TUF. We simulate software updates on an arbitrary package including a single file by
repeatedly changing the file and registering it to the TUF repository. For each new change,
we run and time the TUF client which verifies the new update. Although the client fetches
the updated file while performing verification, we keep the file size small (e.g., less than
100 bytes) so the file transfer is negligible. We run one hundred updates and verifications
to obtain a sample set that can best describe the latency of a single verification.

We use PySURF, our lightweight SURF client, to illustrate the performance of SURF
in this experiment. We run two sets of tests; one with caching and one with no caching.
Recall that in the most secure setup SURF client fetches the entire transaction chain of
a software package and relevant blockchain headers to verify the updates. While this is
necessary for the first time verifying a software package, we can always cache the last

1AMD Ryzen 7 2700X; 8 core, 16 threads
2900MHz quad-core ARM Cortex-A7 CPU; 1GB RAM; 100 Base Ethernet
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update record and use it to verify a new update without going over all past updates.
Similar to the TUF evaluation, we simulate one hundred updates on an arbitrary software
package. All updates use the same (2,3)-quorum identity script with three keys and come
with proper signatures (i.e., two or three signatures satisfying the identity script). In the
caching scenario, we use the last known update record to verify the new update; and in
the non-caching scenario, we fetch all update records and verify them all each time when
there is a new update.

Figure 4.2 shows the latency comparison between PySURF and TUF. It shows that,
with caching (the line with dots), PySURF performs relatively better than TUF (the line
with empty circles). As expected, without caching (the line with squares), the latency
grows linearly; however, this is only the worst case scenario where clients rarely update
their software. In practice, it is likely that clients often check software updates with a
frequency depending on the use case.

4.2.2 Efficiency

Since update verification involves cryptographic operations requiring high CPU compu-
tation, it is important to evaluate how SURF can indeed run on resource-constrained
computers such as IoT devices. We ran PySURF on Raspberry Pi 2 Type B (RPi2B), one
of the popular test boards for IoT development in many industries, to show the latency
difference compared to that of the high-end desktop (DESKTOP) used in the previous ex-
periment. In this experiment, we verify multiple software packages where each has a single
update record. The number of signatures to verify per update record ranges between two
to three, similar to the setup of the previous experiment.

Recall that the verification latency is directly proportional to the length of operation
log. That is, the overall time consumed for a verification increases if an operation log
contains many transactions that need to be verified. Although signature verification is
the most significant factor when it comes to latency, there is proof of existence (PoE), an
inevitable cost that the client has to pay when it bootstraps a software package for the
first time. As SURF uses the index tree, the number of PoE transactions in an operation
log can be at most logN where N is the total number of software packages registered to
SURF.

To show the possible latency gap between operation logs with a varying number of
PoE transactions, we ran PySURF for twenty software packages with a different number
of PoE transactions ranging from 2 to 9. The following plot illustrates verification latency
observed from RPi2B and DESKTOP.
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Figure 4.3 shows the latency gap between DESKTOP and RPi2B. Since we only verify
a single update record and PySURF utilizes a single core, the only meaningful hardware
difference between RPi2B and DESKTOP is the CPU clock. Based on the benchmarks
obtained from Geekbench [4], the CPU performance gap between AMD Ryzen 7 2700x
and ARM Cortex A7 is about 15x (4,670 vs. 305). Assuming differences in the speed
of memory and the network speed are negligible, PySURF performed well with limited-
capacity hardware given that the latency gap is around 12x - 13x.

Notice that the number of PoE transactions (i.e., the number of transactions in op-
eration log less one) marginally affects the verification latency, confirming that signature
verification is the deciding factor in verification latency. We conclude that verifications can
take place on limited-capacity devices comparable to RPi2B within few seconds.
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4.3 Operation Cost

The cost of running a system is a determining factor for a sustainable operation in the long
term. Even a good system can be considered impractical if it incurs too much operational
cost. Most of currently available blockchains require clients to pay fees when they broadcast
transactions mainly due to prevent abuses and network spamming. Since writing to a
blockchain costs transaction fees, running a SURF server, which broadcasts transactions
for every registration and revision, comes at a price.

Clients broadcasting transactions need to pay fees in the platform-specific cryptocur-
rencies (e.g., BTC, ETH). Each blockchain employs different pricing mechanisms; the total
cost for a transaction converted in fiat money such as USD varies based on the selected
blockchain and the exchange rate (i.e., cryptocurrency price). For example, the Bitcoin
transaction fee depends on the number of bytes of a transaction whereas Ethereum fee is
determined by the number of instructions a smart contract executes triggered by the client
transaction. Thus, SURF operation cost may vary as different implementations of SURF
encode transactions or write smart contracts in different ways.

Tofino with Bitcoin, for instance, creates a transaction which consumes a UTXO and
outputs three additional transaction outputs (one for the left subtree, one for the right
subtree, and one for the update chain) when registering a new software package. Since each
transaction output must be greater than the dust amount, Tofino spends 0.00005 BTC per
transaction output. Hence, the total money spent on a registration transaction is 0.0001
BTC. Additionally, with two public keys, the average size of a registration transaction
is 700 bytes. Given the minimum transaction fee allowing a transaction gets confirmed
within 80 minutes is 0.0000001 BTC/byte (10 satoshis/byte) [2], the minimum fee for
a registration transaction is 0.00007 BTC. In total, registering a software package costs
0.00017 BTC, which is roughly 1.28 USD3.

Blockchain
Registration Revision

Crypto USD Crypto USD

Bitcoin 0.00017 BTC 1.28 0.00006 BTC 0.45
Ethereum 0.00132 ETH 0.77 0.00071 ETH 0.40

Table 4.1: Operation Cost Comparison

Table 4.1 compares average operation costs of registering a new software package and

3Based on the exchange rate 7534.79 USD/BTC, coinbase.com on June 1, 2018
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adding a new revision for Tofino integrated with Bitcoin and Ethereum. The exchange
rates of cryptocurrencies used in the table are 7534.79 USD/BTC and 580.01 USD/ETH4

where platform-specific transaction fees are 10 satoshis/byte (Bitcoin) and 10 Gwei/gas
(Ethereum).

4Retrieved from coinbase.com on June 1, 2018
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Chapter 5

Conclusion

The unique strength of SURF lies in that it inherits the security of the underlying blockchain
without compromising performance. Indeed, to the best of our knowledge, SURF is the
first software update system that fully leverages the protection offered by large public
blockchains such as Bitcoin and Ethereum.

It is also worth noting that the use of the multi-signature scheme for individual records
makes SURF resilient to key compromises. Although the current quorum-based imple-
mentation performs adequately, it is possible to improve the multi-signature support by
employing Schnorr signatures [53] or CoSi [55] as demonstrated in CHAINIAC, reducing
the overall size of the operation log and further cutting down the verification latency.

Thin client support has been the missing piece in blockchain-based security systems,
and SURF successfully fills this gap by leveraging Bitcoin SPV and providing a light-weight
Python implementation, PySURF. Although PySURF well serves its purpose of support-
ing a broad spectrum of client devices, in the future, it would be beneficial to develop
a compiled program (e.g., C, Go) to help even smaller devices such as microcontrollers
powering small IoT devices.

In conclusion, SURF contributes to providing an efficient, secure, decentralized software
update system that can leverage virtually any blockchain offering high security. Conducted
a set of experiments show SURF has comparable performance to centralized update systems
in terms of verification latency and demonstrate SURF efficiency in verifying updates on
low-profile devices within reasonable runtime.
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Appendix A

Identity Script and Examples

A.1 Types of Identity Scripts

Identity script is a simple stack-based script with two types of scripts: quorum and key.

A.1.1 Quorum Script

A quorum script is an identity script where:

• n is the number of required votes

• m is the number of total votes

• scripts is one or more identity scripts yielding 1 or 0 votes

A.1.2 Key Script

A key script is an identity script with two fields:

• type indicates a type of cryptographic algorithm used for this key

• pub key is a public key that can verify a signature

70



A.2 Examples

1 "id_script": {

2 "n": 2,

3 "m": 2,

4 "scripts": [

5 { "type": "ED25519", "pub_key": "alice_pubkey" },

6 {

7 "n": 1,

8 "m": 3,

9 "scripts": [

10 { "type": "ED25519", "pub_key": "alice_cellphone" },

11 { "type": "SECP256k1", "pub_key": "alice_tablet" },

12 { "type": "SECP256r1", "pub_key": "alice_desktop" }

13 ]

14 }

15 ]

16 }

Listing 8: Example identity script illustrating Two factor authentication (2FA)

The example identity script in 8 illustrates a simple setup of a two factor authentication
which enforces Alice to provide her password and additional authentication from one of
her registered devices (i.e., cellphone, tablet, desktop).
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Appendix B

SURF Ethereum Smart Contract in
Solidity
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1 pragma solidity ^0.4.0;

2 contract Tree {

3 uint public genesis = 0;

4 address public owner = msg.sender;

5 uint public creationTime = now;

6 uint public next;

7

8 struct Revision {

9 uint revision;

10 bytes32 opHash;

11 }

12

13 struct Node {

14 bytes32 name;

15 uint left;

16 uint right;

17 uint numRevisions;

18 mapping(uint => Revision) revisions;

19 }

20

21 mapping(uint => Node) data;

22

23 function Tree(bytes32 name, uint revision, bytes32 opHash) public {

24 Node storage gen = data[genesis];

25 gen.name = name;

26 gen.revisions[0].revision = revision;

27 gen.revisions[0].opHash = opHash;

28 gen.numRevisions = 1;

29 next = 1;

30 }

31

32 // functions omitted for brevity

33 }

Listing 9: Solidity script for SURF + Ethereum
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1 function getPosition(bytes32 name)

2 public

3 returns (uint)

4 {

5 return getPosition(genesis, name);

6 }

7

8 function getRevisions(bytes32 name)

9 public

10 returns (bytes32[])

11 {

12 uint pos = getPosition(name);

13 Node storage node = data[pos];

14 bytes32[] memory ret = new bytes32[](node.numRevisions);

15 for (uint i = 0; i < node.numRevisions; i++) {

16 ret[i] = node.revisions[i].opHash;

17 }

18 return ret;

19 }

20

21 function getPosition(uint pos, bytes32 name)

22 private

23 returns (uint)

24 {

25 Node storage curr = data[pos];

26 if (curr.name < name) {

27 require(curr.right > 0);

28 return getPosition(curr.right, name);

29 }

30 else if (curr.name > name) {

31 require(curr.left > 0);

32 return getPosition(curr.left, name);

33 }

34 else return pos;

35 }

Listing 10: Solidity script 2 for SURF + Ethereum
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1 function append(bytes32 name, uint revision, bytes32 opHash)

2 public

3 onlyBy(owner)

4 {

5 append(genesis, name, revision, opHash);

6 }

7

8 function append(uint pos, bytes32 name, uint revision, bytes32 opHash)

9 private

10 onlyBy(owner)

11 {

12 Node storage curr = data[pos];

13 if (curr.name < name) {

14 if (curr.right == 0) {

15 curr.right = appendNewNode(name, revision, opHash);

16 } else {

17 append(curr.right, name, revision, opHash);

18 }

19 } else if (curr.name > name) {

20 if (curr.left == 0) {

21 curr.left = appendNewNode(name, revision, opHash);

22 } else {

23 append(curr.left, name, revision, opHash);

24 }

25 } else {

26 uint idx = curr.numRevisions;

27 require(curr.revisions[idx-1].revision < revision);

28 curr.revisions[idx].revision = revision;

29 curr.revisions[idx].opHash = opHash;

30 curr.numRevisions = idx + 1;

31 }

32 }

33

34 function appendNewNode(bytes32 name, uint revision, bytes32 opHash)

35 private

36 onlyBy(owner)

37 returns (uint)

38 {

39 uint pos = next;

40 next = next + 1;

41 Node storage n = data[pos];

42 n.name = name;

43 uint idx = n.numRevisions;

44 n.revisions[idx].revision = revision;

45 n.revisions[idx].opHash = opHash;

46 n.numRevisions = idx + 1;

47 return pos;

48 }

Listing 11: Solidity script 3 for SURF + Ethereum
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1 modifier onlyBy(address _account) {

2 require(msg.sender == _account);

3 _; // replaced by the actual function body when the modifier is used

4 }

Listing 12: Solidity script 4 for SURF + Ethereum
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