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Abstract

Regression test suites are an excellent tool to validate the existing functionality of an
application during the development process. However, they can be large and time con-
suming to execute, thus making them inefficient in finding faults. Test Case Prioritization
is an area of study that looks to improve the fault detection rates of these test suites by
re-ordering execution sequence of the test cases. It attempts to execute the test cases that
have the highest probability of detecting faults first.

Most prioritization techniques base their decisions on the coverage information gath-
ered from running the test cases. These coverage-based techniques however have a high
probability of encountering ties in coverages between two or more test cases. Most studies
employ a random selection to break these ties despite it being considered a lower bound
method.

This thesis designs and develops a framework to supervise the tie breaking in coverage
based Test Case Prioritization using fault predictor models. Fault predictor models can
assist in identifying the modules in the application that are most prone to containing faults.
By selecting test cases that cover modules most prone to faults, the fault detection rate of
the test cases can be improved.

A fault prediction framework is also introduced in this thesis that supervises the tie
breaking for coverage-based techniques. The framework employs an ensemble learner that
aggregates results from multiple predictors. To date, no single predictor has been found
that can perform consistently on all datasets. Numerous predictors have also required
expert knowledge to make them performant. An ensemble learner is a reliable technique
to mitigate the problems and bias faced by single predictors and disregard results from
poorly performing predictors.

In order to evaluate the supervised tie breaking, empirical studies were conducted on
two large scale applications, Cassandra and Tomcat. As part of the evaluation, real faults
that existed in the application during development were used instead of hand seeded faults
or mutation faults as used by many other studies. The data used for fault prediction were
also not groomed or marked by experts, unlike other studies. Results from the studies
showed significant improvements in the fault detection rates for both case studies when
using the fault driven supervision for tie breaking.
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Chapter 1

Introduction

Software systems that exist today are fairly large and can consist of anywhere from a
few hundred to a few million of lines of code. Development of these systems is just as
complex and requires large effort. Each development cycle requires numerous man hours
that frequently get underestimated by the team, resulting in numerous cost overruns [30,
43]. With such level of complexity and tight time constraints, it is inevitable for faults
to be introduced into these software systems during the development process. Detecting,
locating and rectifying these faults before they become part of a release version of the
software system is an expensive and critical path in the development process [13]. If the
faults are not corrected before release, the consequences can be quite dire. One recent
case is the WannaCry ransomware attack that took advantage of a Microsoft fault and
rendered over 300k computers worldwide unusable unless a ransom was paid. The fault
that was exploited allowed arbitrary code to be executed on the system thus allowing for
the complete system to be encrypted [11].

The presence of faults in software systems, whether severe or minor, is not desirable at
any stage of the development cycle. In order to combat the presence of faults in software
systems, test suites are developed to validate functionality. The tests within these test
suites can be from a number of different categories: unit tests [107], functional tests [37],
integration tests [55], etc. The tests not only help detect any faults that might have been
introduced, but they also assist with locating the faults and eventually rectifying them.
As a result, the test suites along with the quality of tests within the suite is crucial in
delivering software that is fault free.

Over time, as new features are developed or existing features are updated, there is a
need to verify that all previous functionality is not affected. This verification of previous
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functionality is performed using a regression test suite [47]. These regression test suites
can either consist of all the coded tests that exist in the application or a subset of them. In
some use cases, the test suite can consist of a separate set of tests that have been written
by a separate team. No matter the case, as time goes on, the regression test suite for the
application tends to grow to an extremely large size in order to be able to verify all the
features and functionalities that exist in the application.

Large regression test suites pose the problem of long-run times to verify functionality.
This means, developers have to wait an inordinate amount of time to obtain results, thus
resulting in large cost overruns. Microsoft estimates the annual cost of regression testing
to exceed tens of millions of dollars for all its products [17]. Google also found that a
linear increase in commits per day and linear increase in test cases per commit results in
a quadratic increase in regression test times [4]. Such cost increases are unsustainable in
the long run, resulting in the need to find a way to mitigate the problem of unbounded
regression test costs.

One method used to mitigate the problem of waiting an inordinate amount of time for
results is to apply a technique known as Test Case Prioritization (TCP). The prioritization
technique re-orders the execution sequence of the test suite such that test cases with highest
probability of finding faults are executed first. This re-ordering should result in faults being
detected earlier in the test suite and thus reducing wait times to detect faults. Since the
relationship between faults and their revealing test cases is not know before hand, surrogate
features of the test cases are used to guide the re-ordering of tests. The surrogate features
used are typically statistically or heuristically correlated with exposing faults in code.
Most prioritization techniques rely on coverage information of the test cases as a surrogate
feature. The coverage information is typically gathered from previous runs of the test suite.
The set of techniques that rely on coverage information are aptly known as coverage-based
techniques and are an extensively studied area within TCP.

Coverage-based techniques do suffer from a fairly significant problem whereby there
is a high probability of coverage ties occurring during the selection of the next test case
to prioritize [19]. Breaking these ties to select the next test case is a crucial step in the
prioritization algorithm as it can adversely affect the fault detection rate of the test suite.
The currently used common method to break these ties is to randomly select a test case from
the tied set. This method however is considered to be a lower bound technique that can
negatively impact the fault detection rates. Selecting a test case with a lower probability of
finding a fault, highly probable in random selection, can cause a significant drop in the fault
detection rate of the prioritized test suite. To address this problem, this thesis proposes
a fault driven supervised methodology to break the ties. The proposed methodology uses
a supervised ensemble learner to generate fault probabilities for all covered classes in the
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application and uses this information as another surrogate feature within tie breaking.

Fault prediction is the static analysis of code to understand which modules in the
application are at risk of containing faults. Most recent studies have used a class of machine
learning algorithms known as classifiers or predictors to predict the faultiness of modules.
Studies that have employed classifiers for fault prediction have pointed out that no single
classifier can work on all datasets. At the same time, a number of classifiers require expert
knowledge to be able to tune them and make them performant. In addition, most of
these studies have been performed on pre-groomed or smaller applications that are easier
to analyze by a human. To address the problems faced by single classifiers and groomed
datasets, this thesis proposes an ensemble learner framework that is able to complete fault
prediction without any human intervention. It is the driving force behind the supervised
tie breaking that will be used within TCP.

1.1 Problem Statement

TCP at its core is an optimization problem that is an application of the set cover and hitting
set problems. TCP attempts to find the best ordering of test cases by maximizing a set of
pre-defined criteria with the aim of improving the fault detection rate. Most approaches use
some form of greedy algorithm to achieve the maximization of the pre-defined criteria. A
common criteria used for TCP is the coverage achieved by each of the test cases, generally
gathered during previous runs of the test cases. TCP algorithms that use coverage as a
criteria fall under the category of coverage-based prioritization techniques.

Two techniques come to the forefront of coverage-based prioritization techniques: Total
Technique (TT) and Additive Technique (AT). Given n test cases in a test suite, both
techniques iterate n times selecting the next test case to prioritize in each iteration. Within
each iteration, TT chooses the next test case that achieves maximum coverage of code
components. AT, on the other hand, chooses the test case that has the maximal coverage
of code components that have not been covered by previously prioritized test cases [87].
Numerous studies have shown that AT is the superior of the two prioritization techniques,
however both techniques tend to suffer heavily from coverage ties [19]. Coverage ties is
when two or more test cases achieve the same coverage values and thus a selection cannot
be made.

A commonly used technique to break ties in studies is to randomly select a test case
from the tied set. This approach to breaking ties is considered to be a lower bound and can
negatively impact the fault detection rates. The negative impact is more pronounced in AT
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whereby selection of a test case can drastically affect the selection criteria of all remaining
iterations. Various studies have proposed augmenting the tie breaking mechanism with
surrogate features, thus improving the overall fault detection rate. Augmenting the tie
breaking procedure by supervising it using fault detection classifiers is the first problem this
thesis looks to tackle.

In order to be able to build a tie breaking procedure with fault probability as a criteria,
it is necessary to be able to calculate the faultiness of each of the covered classes. The
area of study that addresses the fault probability of classes is known as Fault Prediction or
Defect Prediction. It is a static analysis approach to finding fault trends in the code, using
which predictions are made as to where more faults might exist in the code base. Fault
prediction methods typically use metrics, a way of quantifying details about the code, as
the data source for analysis and predictions. Most recent studies have focused on using
classifiers, a subset of machine learning algorithms, to predict the fault-proneness of code
components. The numerous classifiers proposed through the various studies have shown
very promising results, however they do have a few drawbacks.

Most studies have been performed on datasets that reside in repositories such as
PROMISE [68] and MDP [54]. These repositories are fantastic tools to assist with research
and comparison studies, however they typically contain pre-groomed datasets. These
datasets have been pruned and cleaned along with the faults being clearly marked by
various researchers. In some cases, the faults in these repositories have been hand seeded
or injected through mutation operators. This is mostly possible due to the fact that most
applications within these repositories have a fairly short development history and are only
a few hundred modules in size. This approach of grooming data does not however translate
very well to large applications as used in TCP research.

Another area of concern with the current approaches to fault prediction is the use of
single classifiers. Numerous studies and literature reviews have pointed out that there is no
silver bullet when it comes to selecting a single classifier to predict on all applications [103].
Instead, there is a need to understand the application and dataset before hand and then
select the classifier that best suites the dataset [62, 99]. There also exists the additional
problem that numerous classifiers need expert knowledge to be able to tune them before
their results can be useful. The tuning process can also be tedious with the possible
need of re-tuning as the application development progresses. Such an approach would
not be viable for supervising tie breaking due to the required overhead of maintaining it.
Studies have instead shown that using an ensemble learner, an approach to aggregating
results from multiple classifiers, is more versatile and consistent in producing results. By
aggregating results, the ensemble learner is capable of disregarding any classifier that is
under-performing, thus almost always returning a reasonable result.
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With the aim of supervising TCP for large applications, the secondary problem this
thesis looks to tackle is predicting fault-proneness of components using only their source
code history and no human intervention. An approach that is easily adaptable to multiple
situations with least amount of effort would be an ideal situation. Being able to predict
on large systems and thus assist with TCP tie breaking on these systems would be very
beneficial in numerous areas.

So far, two problems have been identified when it comes to TCP and fault prediction.
TCP has the problem of ties during test case selection phase of the algorithm and fault
prediction in its current state is not a viable solution to supervising TCP tie breaking
on large projects. This leads to the overall problem that the thesis is looking to address:
designing and developing a framework for fault driven supervised tie breaking for use in
coverage-based Test Case Prioritization.

1.2 Thesis Contributions

To address the problem of tie breaking in TCP by applying fault probabilities, this thesis
makes two main contributions. The contributions are as follows:

Tie Breaking Mechanisms - Two tie breaking mechanisms supervised by fault pre-
diction are proposed.

Fault Prediction Framework - An ensemble learner framework capable of complet-
ing fault prediction using the source code repository as its data source and no human
intervention at any stage of prediction.

As part of its contributions, this thesis will also look to answer the following research
questions:

RQ1 How do tie-breaking schemas that use fault–proneness compare to AT TCP?

RQ2 How viable is it to use a completely automated tool to predict fault-proneness?

RQ3 Is there a correlation between performance of a fault predictor model and the result-
ing APFD?

Using the two contributions, a complete framework is proposed in this thesis to detect
tests, predict faulty classes and finally prioritize tests based on the gathered information.
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1.3 Thesis Organization

The rest of this thesis is organized into further 4 chapters. Chapter 2 is a literature review
of past works in TCP, tie breaking within TCP and fault prediction. The current state of
research will be presented along with the gaps being addressed in this thesis.

Chapter 3 presents the goals of this thesis along with the framework to achieve said
goals. The design of the framework being proposed to address the problem of breaking
ties in TCP using fault proneness will be presented. There will be a detailed explanation
of the various components within the framework along with details about the data flow
between components.

Chapter 4 details the implementation of the framework and does an in-depth analysis
of the experiments performed on the framework. It will detail the languages, tools and
libraries used to realize the framework. The chapter will discuss the applications used as
case studies and how the framework performed on each of them. The chapter will also
discuss threats to the validity of the results.

Chapter 5 summarizes the works presented in this thesis and presents the conclusions.
It will also outline the future works that can be conducted to expand on the findings in
this thesis.
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Chapter 2

Background and Related Works

In this chapter, past works, state of research and background information will be presented.
Section 2.1 will describe TCP and review its relevant history. Section 2.2 will look at the
progress in Tie Breaking schemas for TCP. Section 2.3 will discuss details of fault prediction
along with its history.

2.1 Test Case Prioritization

Regression test suites are a common technique used to detect faults in software close to
the end of the development cycle. It is a test suite that is used to verify that previously
existing program functionality has not been affected as new or upgraded features and
functionalities have been added to the application [47]. As the application evolves over
time, the test suite tends to grow at a fairly quick rate to support all the new features to
verify. This causes the test suites to be increasingly expensive to run in terms of time and
effort, thus consuming up to 80% of the overall testing budget [60].

Due to the time constraints set on development efforts, cost restrictions and limited
resource availability, there is a need to make regression test suites more efficient in detect-
ing faults. There have been three major areas of focus to improve fault detection rates
for test suites: Test Suite Minimization, Test Case Selection and TCP [47]. Test Suite
Minimization looks to reduce the number of test cases in a test suite by removing any test
cases that may be repeating coverage or behaviour performed by other test cases [8]. Test
Case Selection attempts to reduce the test suite size by selecting the test cases that are
most pertinent to the latest changes in the software [71]. TCP attempts to reorganize the
test suite to maximize an objective criteria, typically the rate of fault detection [88].
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Focusing on TCP, there has been a considerable amount of research performed on
identifying techniques that produce the highest performing test suites after prioritization.
There are multiple categories under which TCP techniques can fall. Some of the techniques
rely on coverage information, others use historical information and others are based on
model or requirement analysis.

Search based test prioritization is a methodology of adding the next test case to the test
suite based on a set of predetermined fitness criterion [34,56,59,75]. These fitness criterion
are normally a set of requirements about the code being tested which could include details
of some sort of code coverage. The techniques used in search-based TCP were heuristic
based algorithms such as greedy algorithms and hill climbing algorithms [20, 57]. Over
time, the techniques have transitioned towards using meta-heuristic or artificial intelligence
based algorithms that could provide better efficiency [61, 81]. Some of the meta-heuristic
or artificial intelligence based algorithms used are Ant Colony Optimization and Genetic
Algorithm. Quite a few of these techniques have shown promise to perform better than
coverage based techniques, however the results have not been conclusive due to the studies
being performed on smaller applications and test suites.

Similarity based techniques take into account the similarity between tests, based on a
pre-defined criteria, and attempt to diversify the selection of test cases [53]. Miranda et
al. [70] propose using hashing based approaches designed to accelerate the prioritization
of large-scale test suites. Among black-box similarity based approaches, Ledru et al. [53]
propose a similarity based approach that takes into account the strings that describe the
test cases, which are the input data or the JUnit test case. Noori and Hemmati [78] also
propose a history-based approach in which test cases are prioritized based on how close
they are to failing test cases.

Some test prioritization methods do not use the code base of the application to make
prioritization decisions. They instead analyze the architecture or requirements of the ap-
plication and build a set of criterion for prioritization accordingly. For example, Arafeen
et al. [7] propose the use of software requirements to cluster and order test cases. Ouriques
et al. [80] investigate prioritization techniques that rely on breaking down a system into
a behaviour model. The study specifically looks at how the prioritization techniques are
affected by the structure of the generated model and the profile of the failing test cases.

A few studies take historical fault data into account too. Laali et al. [51] utilize the
locations of detected faults of previously executed test cases to prioritize the rest of the
test suite. Yu et al. [105] study a prioritization technique that is based on using fault-
based test case generation models. One major assumption in their approach is that the
fault-revealing ability of each test cases is known in advance.
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Ordering test suites based on the changes made in the application is another area of
research that has been garnering attention. The reasoning behind this approach is that
covering parts of code that have been modified or are linked to modifications will result in
better efficiency of fault detection [22]. [40] used the property that modifications in source
code lead to changes in test output as an input criterion to TCP. They managed to split the
code into relevant slices that were either directly or indirectly affected by the modifications
and then use this information to achieve a promising result.

Most studies though tend to focus on coverage-based TCP techniques. They are
amongst the earliest used techniques for prioritizing test suites and can be considered
a simplified version of search based techniques. The foundation of this methodology is
that to be able to discover a fault there needs to be a test case that can execute the faulty
code. Coverage-based techniques use various granularities of code coverage (branch, class,
statement, method) as the criterion for prioritization [16,88]. The coverage is gathered by
instrumenting the code to determine which statements, branches or units of code of the
application are executed by each test. The most common coverage criterion used in studies
are class, method or statement level coverage. Researchers have also explored other cov-
erage criteria such as definition-use association coverage, modified decision coverage [42],
specification coverage [49], static coverage [66] and techniques that account for test case
execution time [100].

When looking back at all the research that has been done over the years on coverage-
based techniques, it will be noticed that most of the techniques fall into two main categories:
Total Technique and Additive Technique. In Total Technique, the test cases are ordered in
descending order by the total coverage each test case achieves. In Additive Technique, the
test cases are ordered by total coverage achieved without covering the same units of code
as the previous test cases in the test suite, in other words, find the next test that gives
maximum additional coverage. The units of code in this case could be statement, branch,
function or any other code structure. Several studies have shown that the techniques
from the category of Additive Technique, including the original technique by Rothermel et
al. [87], continue to be the superior techniques available to researchers [32,33,57,106].

There also exists a set of techniques that are considered to be multi-criteria. Depending
on the application of the multi-criteria technique, the idea is to start with a single criteria
for prioritization and then adding on other criterion, as needed, to either break ties or switch
between criteria dynamically to better suite the needs of the test suite [71]. The aim of
multi-criteria is to achieve better consistency and results across multiple applications using
the same criterion, which has been proven in a few studies when compared to single criteria
TCP techniques [47,91]. One such study was a quality-aware TCP, whereby coverage and
fault information of the application were used in conjunction to generate prioritized test
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suites that performed better than coverage-based techniques [102]. The study used a static
analysis technique, FindBugs [36], and an unsupervised technique, CLAMI [76], to detect
fault proneness of code and used those fault proneness values to add weights to the classes
for final prioritization.

One of the concerns that arises with TCP studies is the data used for verification. The
verification data used in most studies over the years consist of hand-seeded faults and/or
mutation injected faults. Hand seeded faults, as the name suggests, are faults that have
been purposely injected into an application by a developer or researcher to imitate faults
that could get introduced in the real world [18]. Mutation injected faults are modifications
done to the source code to introduce a fault based on a set of automated rules that are
meant to change the application’s behaviour [18]. Hunsook Do et al. [18] point out that
further studies need to be completed to compare hand-seeded faults and mutation injected
faults to better determine the correlation between the two techniques. This also begs the
question of how do these two data sources compare to real faults in TCP validation.

Studies have been conducted to gauge the relationship of mutation faults to real faults.
Rene Just et al. concluded that there is a significant correlation between real faults and
mutation faults in their study [44]. This further brought up the question of whether test
suites had an easier time detecting real faults or mutation faults. A study conducted
by David Paterson et al. addressed this question and found that prioritized test suites
have a harder time to detect real faults compared to mutant faults [82]. The main reason
for the result was that mutant faults typically span only one line of code, however real
faults have a tendency to span multiple lines of code, thus making them harder to detect.
Based on the finding, David Paterson et al. recommended updating the mutation injection
rules to contain rules that generate faults by modifying multiple lines of code in order to
better facilitate TCP validation. These results make it more apparent that using real fault
information from applications is the best way to validate results whenever possible.

In order to be able to evaluate and compare prioritization techniques, there needs to be
some method to measure the effectiveness of the technique under study. A common metric
used to measure the effectiveness of a technique is Average Percentage Faults Detected
(APFD), introduced by Rothermel et al. [87]. It measures the weighted average of the
percentage of the faults detected over the lifetime of the test suite and is a value between
0% and 100%. The closer the value to 100%, the better the rate of fault prediction by the
test suite. Formally, let T be the set of w test cases and TFi be the index of the first test
case that detects the i-th fault. Also, assume the number of faults that can be detected
by the test suite is q, then the value of APFD of an ordering is given by the following
equation:
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APFD = 1− TF1 + . . . + TFq

wq
+

1

2w
. (2.1)

Higher APFD values signal that the average value of TFis is lower and thus indicate
higher rates of fault detection. A higher rate of fault detection translates to quicker code
validation and thus cost savings in the long run.

2.2 Tie Breaking in TCP

Another concern that exists with regards to TCP is that of ties occurring during the
selection of the next test case to add to the test suite. Ties occurring are more prevalent in
coverage based techniques, however they are possible in almost all techniques. The number
of steps that result in a tie in coverage-based techniques are much higher than expected.
One study discovered that over 90% of the steps could result in a tie depending on the
coverage criteria used [19].

Breaking these ties is a definite concern as one wrong tie breaking result could adversely
affect the final fault detection rate of the prioritized test suite. A commonly used technique
in studies to break ties is to randomly select a test case from the tied set, but it is also
known to be a lower bound technique [41, 79, 90]. Leaving the selection of a test case to
chance is never a good idea especially when test suite execution and fault identification is
a very expensive process.

Limited studies have been conducted so far to address the problem of ties within TCP.
Most of the studies conducted continue to use some form of coverage criteria to break
the ties. Eghbali et al. [19] propose a tie breaking schema for AT whereby the complete
coverage of the test case is taken into consideration and not just the code that has not
been covered yet. Mei et al. [67] propose a technique of using multiple levels of criteria
based on detail and add more coverage details when ties occur until the tie is broken.

A few other tie breaking techniques do exist that do not rely on coverage information.
Gonzalez-Hernandez et al. [25] propose a TCP technique that relies on killing mutants in
the code. The TCP technique ranks all mutants based on how many test cases can detect
them and selects the next test case based on maximum mutants that are killed at the
lowest rank possible. When a tie occurs, the rank is increased for all in the tied set and
the procedure repeats itself. However, it can be noticed that again the main criteria used
by the procedure is manipulated to help break ties, number of mutants killed in this case.
In addition, this procedure uses mutation faults as its main criteria whereby we know from
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other studies that mutation faults do not completely represent real faults in code. He and
Bai [35] also proposed a TCP algorithm for GUI testing where they use GUI state coverage
as a criterion. When they face a tie though, they just modify the state coverage criterion
to break the ties.

As can be noted from all these studies, the tie breaking scenarios typically modify
the primary criterion for prioritization. There does not appear to be much research into
using a secondary set of criterion that is not related to the primary set. Multi-criteria
TCP techniques have shown mixed results with regards to the fault detection rates of the
prioritized test suites. There is certainly a need to investigate whether applying multi-
criteria for tie breaking would be beneficial

2.3 Fault Prediction

Being able to detect and predict faults using static analysis within software systems has
been an area of study for a large number of years. Static analysis is a technique to
understand the code without the need for running it by either generating some form of
metrics or breaking it down into descriptive structures like trees. Studies in the area of
fault prediction started as far back as 1993 with Moller et al. studying distribution of
software faults [73]. The study found that fault distribution is not uniform across the
code. Majority of the faults within software systems occur in a small percentage of the
code base.

Fault prediction algorithms have a very long history. Some early studies used statistical
models such as binary logistic regression, univariate regression and multivariate regression
to predict faults [9,92]. This set of methodologies are considered to be a black-box and suffer
from the problem of needing a lot of data to have any significant result. In addition, these
models are not transferrable between organizations or applications thus making them very
expensive to use [9]. In other words, if one organization happened to create and validate
a model, another organization or even another application would not be able to use the
model for their own fault prediction analysis.

Another set of techniques that is widely used for fault prediction is rules based tech-
niques [36]. The rules used to detect faults are typically patterns a developer might use
that are known to result in faulty code and can be detected by performing source code
parsing analysis. A similar concept is that of code smells, which are design patterns that
are prone to faults but might not be faulty to start with [45]. Such techniques though
are dependent on the knowledge of the language being used and the bad code patterns
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that exist within the language. They can however be used to augment other techniques to
better predict faults in code [45].

In the last decade, research has turned to using artificial intelligence and machine
learning algorithms to help predict faults in code. A variety of machine learning techniques,
supervised and unsupervised, have been successfully applied to help predict faults. A
supervised algorithm in fault prediction applications typically use fault data from previous
releases or similar applications to form a model, whereas an unsupervised algorithm does
not need any defect data and tries to cluster modules with similar attributes [6]. The
unsupervised algorithm would need an expert to label the various clusters as faulty or non-
faulty though, which either needs some human intervention or needs some sort of statistical
analysis to be applied.

In the unsupervised learning category of machine learning, one popular tool to predict
software faults is CLAMI [76]. It works by clustering the classes based on their metrics
and then labels the clusters using statistical analysis. The statistical analysis consists of
splitting the metrics into high and low values based on a median and then labelling the
higher values as faulty. The reasoning for this was that higher code complexity results
in higher fault-proneness [69]. Such an approach is very useful, however, large complex
applications will typically have higher complexity values in general thus possibly skewing
the results. In addition, [102] found that CLAMI did have a higher false positive rate, which
can be of concern in large applications. Similarly, [23] found that unsupervised algorithms
are affected by the datasets they are used on and thus are not universally acceptable to be
as good as supervised learning algorithms.

Supervised learning techniques have been the more popular choice in fault prediction
research. Some of the most common supervised machine learning algorithms that have
been used so far are Logistic Regression, Näıve Bayes and Neural Networks [99]. The
first two algorithms have been used extensively and have been deemed to be reliable in
detecting faults [69]. There are other techniques though, like Support Vector Machines
that do not perform well until they are tuned correctly for the given dataset [28,94]. Once
all the algorithms have been tuned though, it has been noted that there is not much of
a performance difference between the various algorithms [54, 64]. However, [99] has noted
that choosing the right algorithm for the right dataset is still key to getting good results
for fault predictions.

Supervised learning algorithms have their own set of problems though when it comes
to fault prediction. The first problem is the no free lunch theorem, whereby there is no
predictor that can universally perform on all datasets [103]. In other words, one needs
some form of expert knowledge to be able to match a given dataset to a predictor in order
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to obtain beneficial results. The other problem with datasets in fault prediction is that
they are typically imbalanced [21, 85]. An imbalanced dataset is where one category in
the dataset has significantly more data points within it compared to the other categories.
The imbalance in fault prediction datasets is towards non-faulty data as there are a larger
number of non-faulty data points compared to the faulty data points. This imbalance can
lead to a lower that expected number of predictions for the faulty category. In order to
mitigate this problem, techniques such as sampling or augmenting with other information
is typically used [45]. In the case of [45], prediction sampling is used along with code smells
to help counteract the imbalance in data, which resulted in improved predictions on the
faulty category.

The above two problems make it very clear that the dataset is key to good results just as
much as the algorithm being used. To this effect, numerous studies have been performed
on the types of data that should be used and the effect the data has on the prediction
results. Studies such as [74], [104] and [39] looked to refine the datasets before feeding the
data to the classifiers. In this refinement, they looked to typically remove redundant data,
normalize the data and then perform feature selection. Feature selection is the process of
finding the minimum set of features within the dataset that best describe the data with
little to no loss of applicable information. As a result, feature selection algorithms allow
to reduce noise in the data thus reducing the probability of a wrong classification [27].

Machine learning algorithms have helped push the fault prediction field forward to the
next level quite quickly. However, as has been seen so far, there are still a number of
problems with the techniques used: results highly dependent on metrics used, datasets can
be imbalanced, excessive noise in datasets and each classifier is able to only detect certain
fault trends in the code. In order to counteract some of these problems, researchers have
looked into using ensemble learners for predicting faults. Two different studies evaluated
the performance of various ensemble learning techniques and both concluded that the
ensemble classifier outperformed the individual classifiers [50, 86]. However, Kumar et al.
stated that the results appear to be dependent on the set of metrics chosen. They point out
that selecting the right subset of code metrics is still important to achieving good results,
just as pointed out by Wahono in his literature review [99].

One of the keys to making ensemble learning algorithms useful is to have a variety of
classifiers that will not show the same characteristics. With that in mind, [84] created an
ensemble learner, using stacking ensembles that embedded a diversity function into the
learner. The diversity function gave weights to the individual classifiers in the ensemble
learner based on accuracy and diversity compared to the rest of the classifiers. The resulting
learner performed better than single classifiers and a few other common ensemble learning
techniques.
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Another technique that is being researched to overcome the issues with the datasets
is to use meta-heuristic and fuzzy logic. The intent is to partially allow the models to be
human understandable and to be able to deal with the large biases in the datasets. As
such, [93] and [10] look to apply various forms of fuzzy logic along with other known tech-
niques to improve the prediction results. [10] uses a neuro-fuzzy network in conjunction
with genetic algorithm to predict faulty modules. Similarly, [93] uses a fuzzy rule gener-
ation methodology alongside feature selection that performs better than numerous single
classifiers.

The one large concern though is that most fault prediction studies use what can be
considered to be pre-groomed datasets. These datasets are stored in open-source reposito-
ries like PROMISE [68] and NASA MDP. They have been used in numerous prior studies.
The datasets allow for repeatability and comparison studies without having to repeat prior
studies on new datasets. The reason they are considered groomed is because most of
these datasets have the faults pre-marked within the application and code history by a
researcher. Studies such as [95] that have developed frameworks to predict faults tend to
use such repositories to evaluate their models too. The advantage as mentioned before is
that it does allow for reproducibility and comparison, however the grooming cannot be
replicated on larger applications. These repositories typically contain applications with a
couple hundred classes, which does raise some concerns when the model have to be run
on applications with a few thousand classes in them. Such a large difference in code size
and history does not make it a feasible solution to groom the source history to mark faults
within the code similar to the groomed datasets. Similarly, the difference in code size can
also translate to the need for more extensive tuning of the classifiers for them to be useful
on the datasets.

In order to evaluate the fault prediction capability of each of the proposed techniques,
studies typically use the same performance measures as those used to evaluate classi-
fiers, which are Precision, Recall, Receiver Operating Characteristic Curve and F-measure
amongst others [62]. Along with these measures, this thesis uses one more evaluation tech-
nique known as Precision @ K. Precision @ K is the percentage of correctly identified
faulty classes amongst all the classes marked faulty when the top K classes are selected
from the list of classes sorted in descending order of their probability of being fault prone.
This method helps to visually understand how well the predictor performs when selecting
the top K faulty modules. Having good confidence in the modules rated the highest for
faults is crucial, otherwise the predictor might be considered under-performing and thus
not useful overall.
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2.4 Summary

This chapter has looked at the research that has been conducted so far in the areas of
TCP, Tie Breaking for TCP and Fault Prediction. Each of these fields have come a long
way but there still exist obstacles to overcome and areas to improve upon.

When it comes to TCP, there is a heavy reliance on simulated faults in the form of
hand seeded or mutation injected faults. There is some correlation between real faults
and mutation faults when it comes to test cases detecting the faults. However, it appears
that the mutation faults might be too simple. As a result, there is the need to run TCP
experiments on real faults to gauge their true performance.

Tie breaking in TCP has not garnered enough attention yet even though the current
choice of random selection can have a negative impact on fault detection rates. When tie
breaking has been taken into account in studies, the procedure still depends on a variation
of the primary criterion. There is a need to investigate secondary criterions to use as part
of tie breaking.

Finally, when it comes to fault prediction, there are two issues that arise when dealing
with supervised learning algorithms. The first is that most studies have been performed on
pre-groomed applications or datasets. For initial studies, it is great to use these datasets
for comparison and validation. However, there needs to be more work done to address
fault prediction in large systems where pre-grooming is not a viable option. The second
issue is the classification algorithm selection problem, in that no single classifier can predict
on all datasets. Instead, one needs expert knowledge to select and tune an algorithm for
use with each dataset. Due to these two problems, there is a need to investigate using
non-groomed datasets along with possibility of universal classifiers to be able to predict on
large applications.
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Chapter 3

The Framework Architecture

In this chapter, the design of the framework to supervise tie breaking within TCP will
be presented and discussed. The chapter will start by discussing some of the goals and
qualities that dictated the final architecture of the framework. This will be followed by
an in-depth discussion of the data flow and the various parts of the framework along with
how they help achieve the final goal.

3.1 Framework Goals and Qualities

The primary goal of the framework as stated earlier is to supervise tie breaking in TCP
algorithms. One approach to achieving this goal is to just right a whole lot of code with
no real structure. The actual code might work and return reasonable results, but could
be unusable beyond the study. The more prudent approach is to design the framework
for versatility such that it can be re-used for future studies and applications. With that in
mind, the goal is to design a framework that is versatile and self-sufficient for applicability
to a variety of large applications with the intention of supervised tie breaking within TCP.

The qualities that were deemed necessary to achieve the goal are as follows:

• Generic - The framework needs to be able applicable to multiple situations. It should
be not be tuned for any particular application or use case.

• Modular - The framework needs to be distinct components that can be swapped out
easily for upgrades or modifications during future use.

17



• Extensible - The framework needs to be easily extendable for future research or ap-
plications. This works hand-in-hand with the modular aspect to make the framework
more versatile.

Based on these goals and qualities, the framework’s architecture is shown in Figure 3.1.
The framework is split into two distinct set of components: Fault Predictor and TCP
Tie Breaker. As implied by the names, the Fault Predictor components are responsible
for predicting faults in the applications modules. The TCP Tie Breaker components are
responsible for prioritizing test suites based on coverage information and fault predictions
from the first set of components. The workflow of the two sets of components along with
the description and responsibilities of each of the components will be presented in the rest
of this chapter. The final implementation of the various components in the realization of
this framework is left to the implementers discretion.

3.2 Workflow

The workflow for testing a new version of an application under development typically
relies on information gained from testing previous versions of the software. Testers use
coverage information and/or expert knowledge gained from previous test results to help
direct testing effort for the new version. In this way, they try to maximize their fault
detection efficiency once the application is code complete.

In a similar manner, the framework shown in Figure 3.1 works to use prior information
to guide future actions. To accomplish this, the framework splits the work into two distinct
phases. The first phase, called the training phase, uses the history of the application to
collect software metrics and train the classifier for fault prediction. This effort along with
the gathering of coverage information can be conducted during the development cycle of the
new version. The second phase, called the prioritization phase, takes place after the new
version is code complete. During this phase, the framework calculates the fault probability
of all existing using the trained classifier. The framework then uses the gathered coverage
information and the fault probabilities to prioritize the test suite for the new version. The
workflows and the components involved in each phase can be seen in Figure 3.1 where
the solid black line represents the training phase and the dashed green line represents the
prioritization phase.

Taking a closer look at the data flow, the process starts with the training phase with
Test Suite & Coverage Discoverer, Code History Parser and Metrics Collector components
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gathering the base information needed by the framework. The base information includes
the parsed source history, software metrics and test cases. The Fault Discoverer uses the
parsed information from Code History Parser to identify the faults that existed in the
source history. The Dataset Creator uses the fault history and collected software metrics
to create the training and validation datasets. The Classifier Trainer uses the datasets to
train and validate the classifiers, whose results are passed onto the Ensemble Classifier. At
this stage, the training phase is completed and the prioritization phase begins. During the
prioritization phase, metrics are collected for all existing classes by the Metrics Collector
provided to the Classifier Trainer. The Classifier Trainer has all the trained classifiers pre-
dict on all the metrics. These predictions are given to the Ensemble Classifier for final fault
predictions. These final fault predictions are passed to the Test Case Prioritizer, which
uses the prediction values along with coverage information to complete the prioritization
of the test suite. At this point, the user of the framework will receive their prioritized test
suite.

3.3 Details on Components

Based on the data flow, the rest of this chapter will go into details of the various compo-
nents. Each component’s functionality will be explained with regards to their role(s) in
each of the phase(s).

3.3.1 Test Suite & Coverage Discoverer

In order to be able to prioritize tests within an application, there are two requirements.
The first requirement is to know the set of tests that exist and need prioritization. The
second requirement is the criteria by which the prioritization will take place and how it
relates to each test. The prioritization criteria used in the framework is the code coverage
achieved by each test case at the granularity level of the class.

The Test Suite & Coverage Discoverer component, as its name suggests, identifies all the
tests within the application source code and collects all their code coverage information.
This component is the only one in the framework that will need to be tailored to each
application. The tailoring is necessary due to two main reasons. The first reason being that
the test structuring is not always the same between applications. There are some general
rules used to organize tests, but nuances exist between applications. The second reason is
that there exist a variety of tools to run tests and collect their coverage information. Each

20



application, based on their technologies and structuring, could use a different toolset to
execute their test code. As a result, there is the need for tailoring to each application.

When considering code coverage though, just knowing the tool and how to execute it
is not enough. In most cases, the tools are configured to collect overall code coverage.
The primary concern typically is to either increase or maintain the coverage when making
modifications. In addition, by completing a delta analysis of the coverage before and after
a change, it is possible to make sure there has been a gain in the code coverage. TCP on
the other hand, needs to know the coverage of each individual test case instead. Due to
this gap in general use of the toolsets versus the needs of coverage-based TCP, there is a
need to build custom components to gather the needed information. This component is
meant to be the custom component that is able to setup the right execution environment
to gather and record the needed coverage information. The gathered coverage results are
stored as a matrix of test to class coverage. To gather the needed coverage information,
the component always uses the latest available code from the source code repository. As an
extension, it is possible to have the component keep state and only track the coverage for
test cases that have been modified since the last execution. All of this work is completed
as part of training phase of the framework.

Once the component has completed its work, the initial information needed to perform
coverage-based TCP will have been aggregated. There is still the need to generate the test
case to fault detected matrix to be able to complete evaluations using APFD and the fault
proneness of modules to supervise the tie breaking within TCP.

3.3.2 Test Case to Fault Discoverer

Evaluating test suites is typically conducted using a measure known as APFD. To be able to
use this measure, it is necessary to understand the relationship between test cases and the
faults they detect. There are two approaches to gathering this information: intentionally
adding the faults and the detecting test cases or identifying the previous faults and the test
cases that detect these faults. The approach taken by the Test Case to Fault Discoverer
component is to use real faults from the code base along with the test cases that can detect
them. In this way, the evaluation is based on real faults.

The component gathers the fault information and the detecting test cases in two steps
during the training phase of the framework. Each step is performed by a separate sub-
component, each described below.

The Code History Parser is the first step in identifying the historical faults within
the source application by parsing the source code repository. Changes in source code are
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stored in the repository as an atomic set of modifications known as commits. Each of
these commits are highly detailed with regards to the code modifications performed. They
contain the time of the modifications and the author of the modifications amongst all
the information available. When these commits are ordered chronologically, it provides a
detailed development history of the application.

In accordance with the need to understand the application’s history, the Code History
Parser walks through each and every commit in the source code repository and stores the
relevant details. For each commit, the sub-component extracts the date, commit message,
modified files along with type of modification, commit identifier and author information.
The type of file modification extracted from the commit details whether the file was copied,
renamed, modified, added or deleted as part of the modification. The sub-component stores
all the commit history information gathered in a database so that they can be used for
future analysis by the components within the Test Case Prioritization Tie Breaker and
Fault Prediction.

The Fault Discoverer is the second step in identifying the historical faults and the
test cases that detect them. This subcomponent uses the parsed history from the Code
History Parser to perform its task.

To identify the faults within the source history, the Fault Discoverer analyzes the com-
mit message of each and every commit of the application. In the commit message, it looks
for variations of the word ‘fix’ as an indication that a fault has been fixed in the commit.
This was a technique successfully used by [48], [63] and [72] in identifying faults in their
studies. Another reason for this approach was that during the analysis of a few large appli-
cations along with their source and bug repositories, it was found that there consistent link
did not exist between the commits fixing a fault and resolved bug reports. The resulting
fault fixing commits identified from this analysis are stored in the database for future use.

On identifying all the faults within the source history, the test cases that were modified
or added to detect each of the faults can be established. As discussed earlier, the files
modified within each commit have been parsed and stored in the database by the Code
History Parser sub-component. Using this pre-parsed information, it is possible to identify
the test cases that accompany a fault fix. Based on the test cases identified in each of the
fault fixing commits, a matrix of test cases to fault commit is created. This matrix shows
the relationship between all existing test cases and the faults they detect. The APFD
reports needed for evaluation will be generated using this matrix. The fault information
gathered by this sub-component will also be utilized by the Dataset Creator component
during fault prediction.
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3.3.3 Metrics Collector

Data or information is the basis to learning. A system or individual needs to be able to
analyze and understand relevant data to be able to achieve the desired learning. When
it comes to classifiers, the relevant data is one that is quantifiable in nature. Classifiers
work best on numerical data and thus the code needs to be broken down into meaningful
numerical or quantifiable values.

The Metrics Collector is the component responsible for calculating all the necessary
software metrics. The component runs in both phases of the framework, training and pri-
oritization. During the training phase, the component is tasked with analyzing each and
every code file within each and every commit of the application. The analysis consists
of calculating a variety of software metrics and storing them for future analysis. The set
of software metrics calculated for fault probability is meant to be determined by the im-
plementer of the framework so as to allow for flexibility where necessary. This flexibility
should allow for software metrics more suited to the technologies being used or updating
the component for new applicable software metrics. The only requirement during imple-
mentation of this component is that there be a few different classes of software metrics and
they all be numerical in nature. All the metric values are then stored in the database for
use in training.

In the prioritization phase, the component again calculates the software metrics for all
the available code files. The difference in this case is that the calculations are done on the
latest version of the code. All available code files available in the code repository at the
latest commit are analyzed and submitted for prediction to the next component.

3.3.4 Dataset Creator

When learning to distinguish two types of things apart, as humans we need examples of
each thing to be able to identify what is different about the two. This comparison allows
us to differentiate between the two types when encountered later on. Similarly, classifiers
need information about each category so as to be able to learn the unique features of each.
For this purpose, it is necessary to generate two datasets for fault prediction, non-faulty
and faulty. The datasets need to be as disjoint as possible so as to allow the classifiers the
best possible chance of finding the discerning features of the dataset. The job of creating
the two datasets is performed by the Dataset Creator component and is executed only
during the training phase of the framework. From this point on, the dataset that is made
of classes within fault fixing commits will be called the ‘high risk’ dataset and then second
set will be called the ‘low risk’ dataset.
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The component splits the work of generating the datasets into three tasks. The first
task is to extract the software metrics for all the classes in the ‘high risk’ dataset. This
extraction is performed using the fault information collected by the Fault Finder sub-
component and the software metrics calculated by the Metrics Collector. Any file that has
been modified in a commit that addresses a fault is considered to be a ‘high risk’ file. The
component extracts the software metrics for each of the classes identified in the files that
have been modified in the fault fixing commit. When extracting the software metrics, the
values that correspond to the last modification of the class before the fault fixing commit
in question is used. Extracting the software metrics before the commit allows the classifier
to understand the state of the classes before a fix was implemented and thus the state of
the class when the fault existed within it. This aligns with the aim of identifying classes
within the code base that might be at risk of containing faults. If we take the software
metrics after the fix has been applied, we only get the snapshot of the result and not the
snapshot of the class with the fault within it. The gathered software metrics are cached in
the database, each set being grouped by the fault fixing commit they belong to.

The second task performed is to aggregate the ‘low risk’ dataset. To gather these values,
the files modified between two fault fixing commits are identified. If any of these files have
been modified in the second fault fixing commit, they are discarded from this set. In other
words, assume there are two fault fixing commits, A and D, with two other commits in
between, B and C. If there exists a files within B or C that has been corrected in D, the
file will not be included in the ‘low risk’ dataset. These values are stored in memory until
the third task is completed.

The third task performed is the removal of duplicates from the datasets. Faults are
an unwanted by-product of development efforts and thus will show up in the code base
in time. As a result, a set of software metrics that appears in the ‘low risk’ dataset will
definitely appear in the ‘high risk’ dataset at some point when the fault is identified and
corrected. If left as is, the same set of software metrics will appear once in the ‘low risk’
dataset and once in the ‘high risk’ dataset, breaking the rule of disjoint datasets. To
rectify this situation, it is necessary to remove these duplications and create two disjoint
sets of data. To achieve this, the component compares the software metrics in the ‘low
risk’ dataset to the ‘high risk’ dataset class by class. The reason for identifying duplicates
only for the same class is that multiple classes having the same metric values allow for a
stronger learning as the values get reinforced. When duplicates are encountered, they are
removed only from the ‘low risk’ dataset. The collected software metrics are then stored in
the database as the ‘low risk’ dataset along with the class identifiers and commit identifiers
just as the ‘high risk’ dataset are stored. The commit identifier stored in this case is that
of fault fixing commit that occurs right after the modification to the class was committed.
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Once the two sets are created, they are combined into one set as a list of tuples,
{(zi, yi)}ni=1, where zi is the i-th set of software metrics and yi is the label for the i-th set.
During the combining step, the tuples are grouped together by commits so as to create
time-slices of history. By storing as time-slices, it is possible to mimic the progression of
code and it creates a definite sequence of input for any classifier whose training can be
affected by the order of input of the training data. This list of tuples is further broken
down into a train and validation set. The split is performed on the number of commits in
the dataset and not on the number of data points. This is so as to mimic the progression
of code in time-slices and will be addressed during the training of the classifiers in the next
sub-section.

3.3.5 Classifier Trainer

The Classifier Trainer, as the name suggests, is the component that performs the training
of each individual classifier as part of the training phase. The first is to pre-process the
datasets for ingestion by the classifiers. The second step is to train and validate each of
the classifiers. The component is also utilized as part of the prioritization phase to get
predictions from each of the classifiers.

The pre-processing step manipulates the data as needed before it is fed to the classifiers
for training, validation and prediction. By pre-processing data, it can be massaged into
the necessary format and dimensions as needed by each classifier. It can also be used to
reduce noise and normalize values by techniques such as dimensionality reduction if it is
deemed necessary.

To perform this step, the component receives the dataset {(zi, yi)}ni=1 as prepared by
the Dataset Creator. Each tuple’s z set is then manipulated (for example dimensionality
reduction techniques can be applied if necessary) and the resulting set is used to train and
validate each classifier. If dimensionality reduction is performed on the data, the resulting
reduction scheme is stored for performing dimensionality reduction on the data during the
prioritization phase too. The component can perform multiple manipulations if needed and
build multiple datasets as a result. For example, one dataset could be created by using
Principal Component Analysis, while another could use binarization and then Principal
Component Analysis.

By allowing for multiple manipulations and multiple datasets, it allows for experts in
classification algorithms to analyze and compare the data with regards to each classifier. It
also allows for further analysis on the data in a research or tuning situation. One possible
comparison, which has been performed in this thesis, is how well the classifiers are able to
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clean out noise in the data by themselves. In the case that the classifiers are able to detect
different fault sets by just manipulating the data, it allows for larger number of trained
classifiers using the same base set of classifiers.

Overall, this approach is meant to allow for a bit more flexibility in the data being
ingested by the classifiers. Small algorithm changes can be made without changing the
actual data that has been extracted and aggregated into datasets.

Once the data has been pre-processed for ingestion, the framework can start the process
of training the classifiers. The Classifier Trainer component is meant to be able to handle
any classifier as long as they follow a standard interface to ingest the training, validation
and prediction data. Using such an interface, allows for adding, removing or swapping of
classifiers very easily for future use. This ability to change the classifiers used allows for
greater flexibility in the component. The training and validation is run by the Classifier
Trainer separately on each classifier.

The Classifier Trainer is made of r classifiers multiplied by the number of n pre-
processors used. The datasets provided at this point have been partitioned into the training
and validation sets. As mentioned earlier, the partitioning is performed on the number
of commits (in chronological order) in the dataset, rather than the total number of data
points that exist. By splitting in this manner, the system has virtually created versions
of the data for training and validation, similar to studies using two versions of the same
application for their analysis.

Similar to the partitioning, the data is fed to the classifier in batches, where each batch
represents a commit. This is meant to mimic source code getting committed to the source
code repository in distinct time slices. The main advantages of this approach is that,
just as mentioned earlier, any classifier that is susceptible to order of data inputted learns
based on chronological order. By training in such a manner, it would be easy to store the
state of the classifiers and then add more commits for training as time progresses during a
development cycle. Depending on the classifier too, it can allow for learning the changing
trends in faults as time progresses and the application gets more complex. At this stage,
the training of the classifiers is complete and validation needs to be performed.

The validation of the classifiers begins with the test data being run through each of
the classifiers. The test data is fed without the labels one at a time and the resulting
predictions are stored. These predictions are compared to the known data point labels and
used to calculate the precision and recall for the ‘high risk’ category. The precision and
recall are then used to calculate the F-beta scores using Equation 3.1.
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F -beta = (1 + beta2) ∗ precision ∗ recall
beta2 ∗ precision + recall

(3.1)

The F-beta score is the harmonic mean of precision and recall. The beta value changes
the weighting of the harmonic mean as can be see from Equation 3.1. When the beta
value is 1, precision and recall are given the same weight. When the beta value is below
1, precision is given a higher weight and vice versa. For the framework’s use case, F-1 and
F-10, beta scores of 1 and 10 respectively, are the specific scores calculated. The F-1 scores
are used to evaluate the performance of each of the classifiers along with being an input
to the Ensemble Classifier component. The F-10 beta scores are used to assist with the
evaluation of each of the classifiers. F-10 scores have not been used in previous studies,
however it was found to be a good indicator of recall vs precision when compared to F-1
scores due to its heavy weighting of recall. A low F-1 score could be due to either low
precision or low recall or both. When the F-1 score is compared to the F-10 score, it is
possible to determine whether precision or recall of the classifier performed poorly. If an
F-10 score is lower than the F-1 score, it points to a lower recall value and vice versa.

At this stage of the Fault Prediction components, there exists the set of r ∗n classifiers
that have been trained and validated as part of the training phase of the framework. The
classifiers potentially detect different fault trends in the code, which in-turn should make
the Ensemble Classifier more versatile.

During this prioritization phase, this component becomes a set of r ∗n predictors. The
component receives the set of classes for which to predict their fault proneness along with
their respective software metrics. These software metrics are received directly from the
Metrics Collector component with its class name labelled. The received software metrics
are pre-processed with the same algorithms used in the training phase, creating n datasets
for prediction. These n datasets are then matched with the right classifiers from the
r ∗ n set of classifiers for prediction. The resulting predictions are gathered where each
prediction is labelled with the class name and the classifier that returned the prediction.
These predictions are then given as input to the Ensemble Classifier for the final prediction
values on each class.

3.3.6 Ensemble Classifier

As stated earlier, individual classifiers can be biased towards detecting certain types of
faults. There also exists the problem of tuning the classifiers based on the data being
used, thus necessitating the need for an expert in the field to build a good predictor.
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One approach, that is garnering a lot of attention, to overcome these issues is to combine
multiple classifiers into an ensemble learner, called the Ensemble Classifier component in
the framework. The ensemble learner works on the principle of aggregating information
from multiple sources, multiple classifiers in this case, to make a final informed decision.
The ensemble learner could use a majority vote, a weighted approach or numerous other
techniques to generate the final result. This approach allows for versatility of use while
allowing for the ability to detect multiple fault trends in the code.

The Ensemble Classifier component, just like the classifiers, takes part in both phases of
the framework. During the training phase, the Ensemble Classifier establishes the schema
it will use to generate the final predictions. There are multiple schemas that can be used,
some are näıve while others are fairly complex. For efficiency and simplicity, the framework
uses a weighted averages technique. The weights of each of the classifiers is calculated using
their F-1 scores, as provided by the Classifier Trainer. Using weighted averages allows the
framework to take the results of each classifier into consideration while giving importance
to those classifiers that performed the best on the validation data.

wj =
Fj∑r∗n
i=1 Fi

(3.2)

Equation 3.2 is used to calculate the weight for each of the r ∗ n classifiers. In the
equation, Fi represents the F-1 score for the i-th classifier and wj represents the weight for
the j-th classifier. As can be seen from the equation, the weights are highly dependent on
how the classifiers perform compared to each other. A classifier that has a relatively higher
F-1 score will have a higher weight compared to the other classifiers and similarly a lower
F-1 score results in a lower weight. These weights are then stored for applying during the
prioritization phase.

Pensemble(Oi) =

∑r∗n
j=1wj × Pj(Oi)∑r∗n

j=1wj

(3.3)

During the prioritization phase, the Ensemble Classifier receives the predictions from
the Classifier Trainer. These predictions are inputted into Equation 3.3 to calculate the
final probability value for each class submitted for fault-proneness prediction. In Equation
3.3, Oi is the class for which the fault probability is being calculated, r ∗ n is the number
of classifiers, wj is the weight of j-th classifier, which was calculated during the training
phase, and Pj(Oi) is the probability score of j-th classifier for class Oi. The resulting value
Pensemble(Oi) is the probability of class i containing a fault.
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On completion of all the predictions during the prioritization phase, the Ensemble
Classifier aggregates the results into a list of tuples. Each tuple contains the class name
and the resulting fault-proneness prediction as a value between 0 and 1. These results are
then provided as input to the Test Case Prioritizer to supervise the tie breaking within
TCP.

3.3.7 Test Case Prioritizer

The final task of the framework is to prioritize the test suite based on all the information
it has gathered so far. The task of prioritizing the test suite is performed by the Test Case
Prioritizer component as part of the prioritization phase of the framework. The set of
tests to prioritize and their code coverages have been generated by the other components
of the TCP Tie Breaker. The Fault Predictor components, described in Section 3.3.2, will
provide the fault-proneness information to supervise the tie breaking.

To create the prioritized test suite, the Test Case Prioritizer uses AT. As mentioned
in Section 2.1, AT is one of the more common techniques used as a foundation for more
complex prioritization methodologies. To perform AT, the component uses the test case to
code coverage matrix generated by the Test Suite and Coverage Discoverer component. As
noted earlier, the technique does suffer from the problem of ties occurring fairly frequently
during the selection of the next test case.

In order to break the ties, the component applies three different tie breaking method-
ologies, two new supervised tie breaking methodologies being proposed by this thesis and
a base tie breaking as a comparison. Due to there being three tie breaking methodologies,
three prioritized test suites will be generated by the component. The three methodologies
are as follows:

1. Binary (ATB) - This approach is to add the fault probability values of every class
covered by the test case. The more the classes and the higher the fault prediction
values, the larger the sum. The test case with the largest sum gets selected as the
next test case to run in the test suite. The methodology can be represented with the
following equation:

Sb(Ti) =
o∑

j=1

sgn(Cij)× Pensemble(Oj) (3.4)

where sgn(.) denotes the sign function, Cij denotes the coverage achieved by the ith
test case on jth class, Pensemble(Oj) denotes the fault probability of the jth class and
S(Ti) denotes the score of the ith test case.
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2. Percentage Coverage (ATP) - This approach multiplies the percentage of code of a
class covered by a test by the fault probability value of the class and then sums up
all the values. This could be considered a weighted approach to the selection. If a
large number of classes covered by the test case have high coverage and high fault
probability values, the test case has a higher chance of being prioritized next in the
test suite. The methodology can be represented with the following equation:

Sp(Ti) =
o∑

j=1

Cij × Pensemble(Oj), (3.5)

where Cij denotes the coverage achieved by the ith test case on jth class, Pensemble(Oj)
denotes the fault probability of the jth class and S(Ti) denotes the score of the ith
test case.

3. Random - This approach randomly selects a test case from the set of test cases that
have been tied in coverage. This is the method commonly used when breaking ties
at present.

The first two tie breaking methodologies, Binary and Percentage Coverage, are the
supervised techniques being evaluated in this thesis. The last methodology, Random, will
be used as the control for comparison. As stated earlier, random tie breaking is considered
a lower bound method.

The component also takes the test to fault matrix as input to build APFD reports for
evaluating the prioritized test suites. During the generation of the APFD report, only the
first test case that detects a faults is attributed with the found fault. All other test cases
that detect the same fault disregard the fault in question. In other words, if test cases A,
B and C all find the same fault and B is the first test case to run, A and C are deemed to
not have detected the fault when they run later in the test suite.

The Test Case Prioritizer is the last component to run in the complete framework. It
executes as part of the prioritization phase and its output is returned to the user. As
stated earlier, the component returns the prioritized test suites and the respective APFD
reports. The returned prioritized test suites can be used as input to a test runner and the
APFD reports can be used for evaluation purposes.

3.4 Summary

In this chapter, the goals, qualities and architecture of the framework were discussed. The
framework is meant to be versatile and self-sufficient so as to be useful in a variety of uses
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cases for use as a supervised tie breaker within TCP.

To achieve this goal, the framework is able to detect and gather coverage information
for all the tests within the application. In parallel, the framework is able to parse source
code history, generate software metrics on all changes and detect faults that have existed in
the past. Using the software metrics and fault information, it is able to train an ensemble
learner to predict the fault-proneness of classes within the application. The fault-proneness
of classes is then used to supervise the breaking of ties when they occur in coverage-based
TCP. Finally, the framework returns a set of prioritized test suites for evaluation and use.
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Chapter 4

Experimental Setup and Empirical
Studies

In the previous chapter, a framework was designed and two tie breaking schemas were
proposed to help solve the problem of ties in TCP. Both of them now need to be evaluated
to make sure that they actually solve the problem they were designed to solve. In order
to be able to perform the evaluation, it is necessary to implement the framework into a
usable tool and execute it against some case studies to produce prioritized test suites and
fault predictions. These returned prioritized test suites and fault predictions can be used
in the evaluation of the framework.

In the rest of this chapter, the experimental setup, the case studies and the obtained
results will be discussed. The discussion will include details about libraries and tools used
to implement the framework. Details about the selection process for case studies and
pertinent details about them will be presented. Finally, the results obtained by running
them through the framework will be discussed in relation to the research questions posed
in Section 1.2.

4.1 Experimental Setup

In this section, the various details about the experimental setup will be discussed. The
languages and libraries used, and concrete details about software metrics and classifiers
will be presented.
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4.1.1 Languages and Tools

The framework has been designed to be tooling and language agnostic. This was done
with the aim for flexibility in implementation and for ease of use for future research. The
implementation of the framework completed in this thesis depicts some of the intended
flexibility by using readily available tools and libraries.

The framework was implemented in Python 2.7. Python, especially Python 2.7, has
been the language of choice for numerous studies [60,91,96]. The ease of use of the language
along with its vast set of research focused libraries have made it a popular choice for use
in research studies. Due to this popularity, there exist numerous libraries for Python for
machine learning applications and statistical analysis. Most of these libraries are open
source and thus easily available for use. The database used for storage of all the parsed
and intermediary information was MariaDB [3]. It is an open source SQL database that
has been forked from MySQL.

Two external tools were integrated into the framework to perform source code analysis
and source repository analysis. These tools were CVSAnaly, used as the Code History
Parser (Section 3.3.2), and UnderstandTMby SciTools, used as the Metrics Collector (Sec-
tion 3.3.3). CVSAnaly is an open source tool written in Python 2.7 to parse the commit
history within source repositories and has been used in numerous data mining studies [24].
It supports the parsing of a number of source code repositories, understanding how to step
through each commit within the various types of repositories. It is also capable of extract-
ing all the necessary information, as detailed in Section 3.3.2, from each of the commits
within the source code repository.

UnderstandTMby SciTools is a proprietary tool that is capable of calculating a large
variety of software metrics. The tool supports the calculation of software metrics on nu-
merous languages thus opening up the ability to use the same implementation against
a variety of applications regardless of their language. When integrated with CVSAnaly,
it is able to extract software metrics on every file in every commit. CVSAnaly has the
capability of adding custom analysis on every commit as it parses a source code reposi-
tory. This custom analysis is where CVSAnaly provides UnderstandTMthe files modified
in the commit in order to complete the software metrics calculation. On completion of the
software metrics calculation, UnderstandTMreturns the values to CVSAnaly so that the
commit values and software metrics can be stored together in the database.
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4.1.2 Software Metrics

As mentioned in the previous section, the use of UnderstandTMby SciTools allows for a
large number of software metrics to be gathered for each application. Every file modified
within every commit of the application was analyzed by the tool resulting in a set of
software metrics. The software metrics were calculated for each class stored in each of
the files. These software metrics, when aggregated, form the zi vectors which are used by
the framework to train and predict the fault proneness of classes. A total of 94 different
software metric values were calculated on each class in every commit. Most of the software
metrics used belong to known suites such as Halstead, McCabe and Chidamber & Kemerer.
A few extra software metrics were also calculated to represent details of the commit history
of each of the classes, aptly named historical metrics. The historical metrics suite consisted
of the following values:

1. Number of times a class has been modified.

2. Number of distinct authors that have modified the class.

3. Number of classes that have been committed alongside the class being studied.

4. Average number of classes that have been committed alongside the class being stud-
ied.

Each of the values in the historical metrics suite were calculated in two different ways.
The first calculation was performed from the start of time to form a rolling history of the
class. The second calculation was performed from the last time the class had a fault fixed
within it. If the class did not have any faults fixed before the commit being analyzed,
this value was calculated from the start of time. The one historical metric that does not
follow the same calculation as the rest is metric 4. This metric calculates an average value
instead of just a count. The reason for this historical metric being added was that during
large architectural changes or addition of large features, the number of classes committed
together become fairly large. These large commits tend to skew the values for the classifier
and do not give a good representation of the status of a class to the classifier. By creating
an average, it is possible to see how the class was modified along with other classes over
time, rather than just one instance dominating the complete dataset. Historical data,
similar to those outlined above, have shown correlation to the existence of faults in various
studies, making it a prudent choice to include them in the datasets [26,97].

Table 4.1 gives a break down of the various metrics suits gathered by the framework
along with details of how many metrics come from each suite. A more detailed list of
metrics used in the framework can be found in Appendix A.
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Table 4.1: Metrics Category

Metric Suite Description # Metrics
Count A set of metrics that count various aspects such as

the number of lines of code and comments.
27

Halstead A set of metrics that describe operators and opera-
tions in the code along with effort values [31].

9

History A set of metrics that depict the history of the classes.
These include the number of commits, the number
of authors and the number of co-commits.

8

McCabe A set of complexity metrics [65]. 21
Chidamber &
Kemerer

A set of metrics describing objects in the code, in-
cluding details on inheritance, coupling of classes
and number of methods and variables [12].

29

4.1.3 Test Discovery & Execution

As discussed in Section 3.3.1, the Test Suite and Coverage Discoverer component needs to
be tailored to the application being tested. The component needs to know the organization
of the code, specifically the test cases, in order to be able to identify all the existing test
cases. It also needs to know how to execute the cases and gather the coverage information.

The implementation of these components were completed as independent scripts written
in Python 2.7. Since the case studies, presented in Section 4.2, used Jacoco and Cobertura
for their coverage reports, the scripts were developed to be able to ingest their respective
coverage reports. The scripts ran the tests one at a time and recorded the coverage after
each individual run. All results were tallied up into a matrix and then stored as pickle files
for later use.

The component was built as scripts for simplicity, parallelizability and ease of use. That
being said, in a more permanent solution, it could be built into the framework itself and
be made a bit more efficient.

One aspect to note is that each test case for which the coverage has been recorded
consists of the full test class. This means that the test case actually consists of multiple
tests within it. Similarly, the coverage was recorded for the complete class and not for
individual functions in the class. This relates to the software metrics granularity being at
the class level and not at the granularity of individual functions within the class.
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4.1.4 Classifiers

Machine learning is the area of study of the set of algorithms that allow a computer to
simulate human learning with the attempt of making computers intelligent [101]. Amongst
the variety of machine learning algorithms that exist, there is a set that are used for
predictions. This set of algorithms are typically referred to as classifiers or predictors.

A large variety of classifiers have been developed over the years to help solve numerous
problems. They typically fall into one of two categories: supervised learning and unsu-
pervised learning. Supervised learning algorithms are the set of algorithms whereby the
machine learning algorithm is fed a set of data points along with pre-labelled information
that allow it to learn the differences. Unsupervised learning algorithms do not use any
form of labelling to learn about the data, instead they typically aim to create clusters of
similarity to be able to classify data [5, 14]. These learning algorithms also typically need
an expert to label the clusters for the prediction phase. Given that the aim is for the
framework to be self-sufficient, classifiers that need human input to complete predictions
is not advisable. This requirement directs us towards using a supervised algorithm along
with the fact that the framework is already producing labelled data.

The supervised classifiers used by the framework all come from the library scikit-
learn [83]. The library contains a large variety of classifiers belonging to both, supervised
and unsupervised, categories. It is an open source library that supports multiple versions
of Python and is updated on a regular basis. The library has also been known to be used
in prior fault prediction studies [46]. From this library, four classifiers were chosen to be
used in the framework: K-Nearest Neighbours [84], Näıve Bayes [38], Bernoulli Bayes [89]
and Multinomial Bayes [52].

K-Nearest Neighbours is an algorithm that is based on simple Euclidean Distance of
the plotted data points. During training, the data points are plotted in an n dimension
space, where n is the number of features in the dataset. Each data point that is plotted
has its respective label attached to it too. When predicting on a new piece of data, the
algorithm finds the k nearest neighbours to the newly plotted data based on Euclidean
Distance, retrieves the labels for these k data points and returns the majority label as the
prediction [84]. The algorithm is fairly simple to use and efficient to use when it comes to
training and predicting results.

A more mathematical family of classifiers is the set of Bayes classifiers. The Bayes
family of classifiers works on the principle of independence between features. This family
of classifiers uses a probability model built from the data fed to it during training [15].
The three versions used in the framework manipulate the data in different manners before
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building the probability models. Näıve Bayes builds the probability model from the data
fed during training without any pre-processing, thus naming it the Näıve algorithm. In
Bernoulli Bayes, the inputted data is converted to a binary set and then fed to the proba-
bility model [52]. Binarization is done based on some threshold value for each feature set.
Multinomial Bayes assumes the inputted data has a multinomial distribution and imple-
ments a set of probability equations within the model to support such a distribution [52].

All four of the above mentioned classifiers have been used in previous fault prediction
and fault localization studies to great effect. The caveat being a few studies concluded
that the classifiers do depend on the data inputted in them and thus could be detecting
only certain faults or types of faults [99]. Similarly, the no free lunch theorem [103] states
that there is no universal learner that will be able to perform well on all tasks. To mitigate
the issue of classifier performance dependence on data, the framework uses an ensemble
learner for final predictions as mentioned in Section 3.3.6

4.1.5 Training Classifiers

As noted in the previous section, the classifiers being used are from the supervised learning
category. Training these supervised learning algorithms requires pre-labelled datasets that
are typically disjoint. Using the datasets, they are able to identify features within that
distinguish the categories from each other. Once the training is completed, it is imperative
to verify that the classifiers can in fact label previously unseen data correctly. This verifi-
cation, also known as the validation step, is conducted using a dataset with known labels
whereby the data is fed to classifier without labels so as to get predictions back from it.
These predictions are compared to the known labels and used to evaluate the accuracy of
the classifier.

Performing these training and validation steps need multiple datasets. One way of
producing these datasets is to split the known data into the needed training and validation
sets based on percentage and/or criteria. The split implemented in the framework was 95%
training data and 5% validation data. The reasoning for such a large training set was to
allow the classifier the maximum possible dataset for learning the discerning features while
leaving a statistically significant amount of data for validation. Due to the large history
of the applications being analyzed, the 5% testing set was deemed to have enough data
points within it to be of statistical significance.

37



4.1.6 Dimensionality Reduction

Almost all data, specially if gathered from a real source like code metrics, contain some
amount of noise or fuzziness. This translates to the various labels or categories within
the datasets not always being disjoint. Datasets that are not disjoint tend to make it
more difficult for classifiers to learn the discerning features of each category. If the dataset
contains too much noise, it is very possible that the classifiers will not be able to identify
the discerning features at all and return erroneous categories during predictions. To tackle
this problem of non-disjoint or noisy datasets, dimensionality reduction was introduced as
one of the pre-processing steps prior to feeding the data to the classifiers.

Dimensionality reduction is a method used to reduce the number of features in a dataset
as an attempt to clean as much noise as possible from the dataset [93]. It attempts to find
the set of significant features that maximize the data variance and lowers the number
of dimensions. Significant features could be single features from the original dataset or
could be a combination of features to create a new feature. Given that the framework
implementation contains 94 distinct metrics, there is a high possibility of noise within the
dataset. Removing said noise using dimensionality reduction would be prudent and helpful
in generating reliable results.

Principal Component Analysis is a very common dimensionality reduction technique.
It has been effectively used in a number fault prediction studies [9]. Principal Component
Analysis works to find the set of linearly uncorrelated features, principal components, that
try to maximize variance [28]. It attempts to find features with variances in descending
order whereby every new feature identified is orthogonal to every other feature identified
before it. In practical use cases, a covariance matrix is constructed using the dataset.
Using this covariance matrix, eigenvectors and eigenvalues are computed. The eigenvalues
are then summed together until they reach a pre-determined threshold. On reaching the
threshold, the number of eigenvalues summed together is the number of features in the
new datasets. In the case of the framework, the pre-determined threshold was set to 95%.

Using the dataset created from Principal Component Analysis would also allow for
comparison of classifier results between raw and dimensionality reduced datasets. If there
is a huge swing between the two due to noise, the raw dataset could be discarded at later
stages if desired.
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4.2 Case Studies

The framework in Chapter 3 has been developed with the intention of being used against
larger applications. The framework is intended to be able to complete all tasks without the
need of human supervision. In order to evaluate the framework under these circumstances,
there were five requirements in the selection of applications to be used as cases studies.
These requirements are as follows:

1. The applications need to have an extensive test suite that can be used as a regression
test suite. If a test suite does not exist, there is no way to evaluate a Test Case
Prioritizing algorithm.

2. The applications need to be complex in nature and the overall size needs to be large in
terms of number of classes and development history. A framework cannot be deemed
self-sufficient if it cannot process large amounts of data without human intervention.

3. The applications need to be open source. By having open source applications, it
allows for easy access to the code history, thus allowing for a code base that can be
independently analyzed. It also allows for repeatability studies and further iterations
using the same applications.

4. The applications need to belong to different domains. This was to evaluate whether
the framework can easily adapt to different types of applications and thus satisfy the
goal of the framework being versatile.

5. The applications need to be in active development. By using applications that are in
active development, further improvements to the framework can be evaluated against
the new and evolved versions of the software.

Based on these requirements, the applications Cassandra and Tomcat were selected as
the case studies. Both applications have been in development for a number of years and
have a rich code history. The applications have also had numerous developers commit code,
thus allowing for the possibility of a wide range of technical skills affecting the applications.
Both applications have readily available source code repositories in public git repositories.
These public git repositories were used for data collection and analysis. They also have
fairly large test suites that can be used for TCP. The selection of these applications also
satisfies the requirement of having different domains: a database and a web server . The
details of each of the applications: languages, overall size, number of commits and number
of test cases can be found in Table 4.1.
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Figure 4.1: Statistics and Information about Selected Large Scale Applications

Name Language(s) # Commits # Classes # Fixes # Test Cases
Cassandra [1] java, python 24076 13330 3222 389
Tomcat [2] java 21440 6130 6183 533

Table 4.2 presents details on the total number of data points collected from classes
within a fault fixing commit, the faulty dataset, vs the number of data points from classes
not within a fault fixing commit, the non-faulty dataset. The table also provides a break-
down of the number of data points within the test set for each label. Observing the data, it
can be noted that the ratio of total faulty to total non-faulty data points reduces with the
age of the application. Cassandra, a younger but very active application, has an approx-
imate ratio of 1:4 for faulty:non-faulty data points, whereas Tomcat has an approximate
ratio of 1:2.

Table 4.2: Large Scale Application Data Details

Name
Faulty Non-Faulty

Total Test Total Test
Cassandra 4938 234 22438 1049
Tomcat 8536 364 12223 945

The details about the data points and how many of each type exist in the test set
are a good litmus test for verifying the classifiers later on in the experiment. A precision
higher than the ratio of faulty to non-faulty data points would be a good first check of
the capability of a classifier as the classifier would be performing better than a random
classifier.

The next steps are to evaluate the framework with respect to these two applications,
from now on referred to as the case studies. The analysis will first take a look at the
performance of the supervised tie breaker and how it compares to AT. Following this,
the analysis will look at the Fault Prediction components and their performance at the
individual classifier and ensemble learner levels.

4.3 Obtained Results - Supervised Tie Breaking

Most studies so far have used case studies with mutation faults injected or hand seeded
faults [19]. These studies have shown a large number of ties occurring during AT. This
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thesis on the other hand looks to use the real faults available in large systems as its data
sets. As such, it is imperative to understand the frequency with which ties occur in the
selected case studies.

Table 4.3: Number of test cases, faults and details of ties within the case studies

Name
# Total
Test Cases

# Fault
Identifying
Test Cases

# Faults # AT ties
Avg. #
test cases
in tie

Cassandra 389 155 124 57 9.5
Tomcat 533 152 151 58 9.9

Table 4.3 provides the necessary information for the evaluation: total number of test
cases, number of test cases that have detected faults so far, number of faults, number of
ties, and also average number of candidates involved in each tie. The data provided in the
table pertains to the data in the test set used for TCP. Details about the split into train
and test data set are provided later on in this section. Glancing at the data, it can be
noted that ties occur in about a third of the iterations that take place in AT. At the same
time, there is an average of 10 classes per tie, which is of high significance when deciding
which test case to select next. Leaving such a large decision to chance is not prudent
and necessitates an informed tie breaking mechanism. One point to note, the test cases
that have been marked as fault detecting were the test cases modified during a fault fixing
commit. It was assumed that developers either added test case(s) or modified existing
the test case(s) to detect the reintroduction of the fault in future development efforts. All
other non-fault identifying test cases have been ignored as part of the evaluation.

To be able to evaluate the tie breaking procedures, there is a need to create datasets
for the purposes of training and testing the algorithms. This would be similar to training
with one version of a software and testing with the next version of the software. To build
the training and testing sets, the data is split into 80% training and 20% testing. The
split is performed by ordering the commits in chronological order and splitting based on
the number of commits, similar to that of the fault predictor split. This is meant to mimic
using two sequential versions of a software, one for training and the second for testing.
The fault prediction components are fed the training set as the data to train and validate
upon. The resulting trained Ensemble Classifier is used to predict the fault-proneness of
covered classes and thus supervise the tie breaking.

Upon running the complete framework on the two case studies, each case study produces
three prioritized test suites. To evaluate the three test suites, APFD graphs are generated
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for each along with the calculation of their APFD values. The resulting APFD graphs
are presented in Figure 4.2 and the APFD values in Table 4.4. The APFD graphs also
include a theoretical optimal solution and the minimal case produced from random tie
breaking for comparison. If we compare the APFD values of the three prioritized test
suites to the optimal solution, there is a significant improvement possible. It is however
just a theoretical improvement as there is no easy way to knowing before hand how many
faults each test case might find.
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Figure 4.2: APFD of three techniques, additional technique (AT), additional technique
with binary tie breaker (ATB), additional technique with percentage tie breaker (ATP)

Table 4.4: APFD values

Mechanism Cassandra Tomcat
AT 61.6% 62.0%
ATB 65.6% 67.2%
ATP 65.4% 67.5%
QTEP [102] 62.1% 62.5%

As stated earlier, AT uses the code coverage of the test cases to decide which test case
should be run next in the test suite. Due to the nature of the technique, the selection
of a test case during any iteration of the process affects the remaining selections. This
translates to tie breaking procedures being very important as it could lead to a swing in
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results as can be seen in 4.2. It can be noted in both case studies that a tie occurs fairly
early in the process and from that point on the divergence can be significant.

RQ1 How do tie-breaking schemas that use fault–proneness compare to AT
TCP?

From Table 4.4 and Figure 4.2, it can be observed that there is definitely significant
improvement in the APFD results. The AT results presented are among the worst case
scenarios possible. The two tie breaking schemas consistently outperform AT with im-
provements of up to 5%. The question does arise of why not apply the fault prediction
rates to every iteration of AT. This was the basis of the study conducted by Wang et
al [102]. When the same procedure was applied using the fault predictions from the En-
semble Classifier, the results showed only a marginal improvement compared to AT, as can
be seen in Figure 4.2 and Table 4.4. This could be due to the fact that fault proneness
predicts whether a fault could exist in the class and not the possible number of faults
within the class. Thus a class that has one fault or ten faults could have the same fault
probability. There also appears to be a higher correlation between coverage and number
of faults detected, which all points to the fact that relying on just the coverage is sufficient
for the normal iterations of AT.

One of the more important aspects of the experimental setup to note is that unlike
similar studies [32,102], real faults are used instead of mutation faults. The problem asso-
ciated with mutation faults is that they often follow uniform distribution across the code
whereas real faults tend have a non-uniform distribution across the code [23]. According
to the Pareto Principle, 80% of faults are found in 20% of the code [29]. This is perhaps
one of the main reasons for there being no consensus on whether there is a high correla-
tion between mutation faults and real faults. Some studies have provided evidence for the
presence of a weak correlation [44], while others have rejected this hypothesis [77]. Nev-
ertheless, by using real faults the threat of adopting non-representative mutation faults
has been eliminated. As such, using real faults places a higher significance on the results
obtained from the two proposed tie breaking schemas.

Another advantage of the tie breaking schemas is the repeatability of the results and
the ability to positively affect the prioritization early in the process. The affect early in
the process is fairly evident from Figure 4.4, whereby the ties occur within the first 10% of
the test suite and the resulting divergence in fault detection continues almost till the end
of the test suite. It is also of significant importance to note that the complete process has
been completed using only the source code history and no human intervention to assist the
framework.

Based on the analysis completed of the test suites generated, it can be concluded with
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a high level of confidence that the two schemas for tie breaking have a significant positive
impact on test case prioritization. Using fault probabilities of the classes as part of tie
breaking has helped stabilize the results of Additive Technique.

4.4 Obtained Results - Fault Prediction

The proposed supervised tie breaking schema has shown a significant improvement over
AT. The APFD values were higher and more consistent. The supervision though comes
from fault predictor models. As such, it is prudent to evaluate the models and evaluate
if there is a correlation between the performance of a model and the resulting APFD
Value. The rest of this section will evaluate the Fault Prediction components, namely the
individual classifiers and the Ensemble Classifier.

4.4.1 Individual Classifier Results

Ensemble learners typically work by merging the results of individual classifiers to produce
a more reliable result. This translates to the fact that the ensemble learner’s performance
depends on the performance of the individual classifiers. If a small percentage of the
individual classifiers do not perform well, it should not affect the results of the ensemble
learner. However, if all the classifiers underperform, the resulting ensemble learner will
most likely underperform too. With these facts in mind, the first evaluation is conducted
on the individual classifiers. The performance of the classifiers need to be verified such
that most of them can classify the data reasonably well. The evaluation is completed
using three different methods: F-beta scores, the Precision-Recall curve and Precision @
K curve.

Starting with the F-beta scores, table 4.5 provides a breakdown of the F-beta scores
for each classifier with regards to each case study. One point to note in the results, any
classifier that uses the PCA pre-processed dataset has the suffix ‘PCA’ added to their
name. The results for a random classifier is also included so as to be a benchmark for
comparison. The random classifier is meant to represent a coin toss decision and depict
how a classifier would perform if it were to just guess instead. For the random classifier,
a value between 0 and 1 was randomly selected for each data point and if the value was
above 0.5 it was deemed to be a faulty class. On inspection of the values, it can be noted
that for the most part, with regards to the F-1 scores, the individual classifiers do perform
better than the random classifier. However, when isolating Cassandra results, Näıve Bayes
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Table 4.5: Classification Results

Classifier
Name

Cassandra Tomcat
F-1 Score F-10 Score F-1 Score F-10 Score

Bernoulli Bayes 0.227758 0.137843 0.461538 0.732946
Bernoulli Bayes PCA 0.227758 0.137843 0.461538 0.732946
KNN 0.144828 0.090425 0.459259 0.426439
KNN PCA 0.14433 0.090421 0.464497 0.43193
Multinomial Bayes 0.419118 0.485618 0.632219 0.851147
Multinomial Bayes PCA 0.419118 0.485618 0.632219 0.851147
Näıve Bayes 0.44898 0.697251 0.38141 0.327851
Näıve Bayes PCA 0.44226 0.385611 0.331288 0.297318
Random 0.270023 0.495757 0.363636 0.50162

and Multinomial Bayes are the only classifiers that have performed better than the random
classifier. The main reason is that a random classifier often achieves high recall rate at
low precision which is not often useful in practice (one can always achieve the highest
recall by labelling all classes as faulty). As mentioned earlier, this is not a great concern
as majority of the classifiers are performing reasonably well, thus giving the ensemble
learner data that it can perform reasonably well with too. Inspecting the F-10 scores,
they do not consistently outperform the random classifier, especially for the classifiers that
underperform in the F-1 scores when compared to the random classifier. Since the F-10
scores are weighted more heavily towards the recall of the classifier, it shows that the recall
of the classifiers are comparatively low. Having a low recall rate is not necessarily a bad
property of a classifier, but it does mean that there are faulty classes being missed. The
F-beta scores are a good first litmus test to make sure the classifiers are able to classify
our data points reasonably well, however, there is a need to analyze the results further.

Since the aim is to augment the TCP algorithm with fault information to be able to
break ties, the classes that are at highest risk of faults need to be identified correctly and
early. This translates to the need to verify the precision of the classifiers when it comes to
those classes that have been given a high probability of containing faults. To this effect,
further analysis will be conducted using the Precision-Recall curve and Precision @ K
curve.

In Figure 4.3, the Precision-Recall curves are presented for the various classifiers, in-
cluding the random classifier. These curves depict how the precision and recall would
change as the probability threshold of the classifiers is changed with regards to the high
risk category. Taking a deep dive into the classifier results, the precision of most of the

45



0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re
ci
si
o
n

Cassandra

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

Tomcat

BB BB PCA EL KNN KNN PCA

MB MB PCA NB NB PCA Rand

Figure 4.3: Precision-Recall curves for Cassandra and Tomcat.

classifiers are higher than the random classifier for almost all recall levels. Näıve Bayes
PCA is the exception where the precision does drop for low recall values, however the pre-
cision does improve fairly quickly and outperforms the random classifier. This first analysis
validates that the classifiers can at least discriminate between the two labels better than
random guessing.

From Figure 4.3, we can make a few more observations about the results. The first
point to note is that other than Näıve Bayes, the classifiers have almost identical results
whether they were given the copy dataset or the PCA transformed dataset. From this, it
can be inferred that the classifiers were able to select the right set of features without the
need of feature selection. On the other hand, Näıve Bayes appears to be affected by extra
features and/or noise in its dataset. This is not of large concern though as it is known that
Näıve Bayes is a fairly simplistic classifier compared to most others and might need tuning
to return better results. Having the dual datasets though have strengthened the results of
all classifiers that return the exact same result.

The final method in which the results will be analyzed is by using Precision @ K
retrieval metric. This approach analyzes the top K returned results when the results are
ordered in descending order by fault probability. This analysis methodology lends itself
well to analyzing the results as if they were to be ranked in priority of testing and allows
to build confidence for a user as they investigate the first few results returned by the
classifier. It also lends itself well to making sure that the classes with highest probability
of containing faults are actually accurate and thus applicable to tie breaking in TCP.

To build the graph, precision is calculated on the top K classes ordered by fault prob-
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ability in descending order. By increasing the value of K to the number of classes in the
application, a curve can be created that depicts the precision for each value of K. It is a
good way to visualize the performance of the classifiers as one iterates through the ordered
results and compares to the true labels of the data points.
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Figure 4.4: Precision @ K for Cassandra and Tomcat.

The precision results of retrieving the top K classes are depicted in Figure 4.4. It can
be noted that most of the classifiers have fairly high precision in the first few values of
K, however the results do have a large variance for these smaller values of K. The large
variance refers to the fact that precision tends to have a swing of 10% to 15% for these
smaller values of K. As the value of K increases, the variance of the precision reduces and
all the results do converge, as expected, to the ratio of faulty to non-faulty classes. There
is some concern that Näıve Bayes PCA is having trouble classifying the probabilities for
Tomcat, however it is not significant as it is one out of eight classifiers showing a different
behaviour.

Overall, looking back at the various analysis completed, it can be concluded that the
individual classifier are able to discern the features to label the classes as high risk or
low risk with fairly good precision. When focusing the analysis on the classes that have
been assigned the highest probability of containing faults, the precision values increase for
most of the classifiers, thus building further confidence in the classifiers and their ability to
categorize the data. There have been instances of classifiers performing poorly in certain
situations, but given that majority of the classifiers perform well at all times, these one off
instances can be ignored. The Ensemble Classifier should be able to discount these results
or give them very little weight.
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4.4.2 Ensemble Classifier

The last section performed an in-depth evaluation of the individual classifiers. The eval-
uation concluded that the classifiers have fairly good precision and thus their results are
acceptable to use as part of the Ensemble Classifier. In this chapter, the Ensemble Classifier
will be evaluated. As mentioned earlier, the Ensemble Classifier employs a weighted aver-
age to calculate its final predictions. The evaluation of the Ensemble Classifier will employ
the three same methodologies that were used when evaluating the individual classifiers.

The F-beta scores of the Ensemble Classifier can be found in Table 4.6 and Figure
4.3 presents the Ensemble Classifier’s Precision-Recall curve compared to the individual
classifiers. From Table 4.6, we can note that the F-beta scores are fairly close to the best
values in Table 4.5. This is expected as the weighted average based on F-1 scores will cause
the resulting Ensemble Classifier to have results close to the highest performing classifier
but not be able to match it necessarily. Further analysis shows that the F-10 scores are
reasonably high, pointing to good recall performance of the Ensemble Classifier. From
Figure 4.3, we can observe that the variance of the precision of the Ensemble Classifier
over all values of recall is a fair bit smaller than the individual classifiers. This is expected
as the Ensemble Classifier is able to remove any existing bias from individual classifiers
and detect a larger variety of fault types at the same time.

Table 4.6: Ensemble Learning Classification Results

Case Study F-1 Score F-10 Score
Cassandra 0.43787 0.473577
Tomcat 0.626068 0.800417

Continuing the analysis of the results, when comparing the Precision @ K, a similar
trend can be found. The precision for the Ensemble Classifier tends to the higher values
shown by the individual classifiers and in some instances of K the Ensemble Classifier
matches the best result from all the individual classifiers. This again confirms that the
Ensemble Classifier is negating the bias of the various classifiers without compromising
the final result. There is a high likelihood of some of the faults being missed due to the
ensembling of results, however this is expected and acceptable given the flexibility of use
that the Ensemble Classifier provides.

RQ2 How viable is it to use a completely automated tool to predict fault-
proneness??

At first glance at the data, it is a little fuzzy as to whether the set of Fault Prediction
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components have achieved their goal of identifying faulty classes in the code base. Revis-
iting the evaluation completed earlier, the individual classifiers showed mixed results for
F-1 when compared to the random classifier. When evaluated on Tomcat, the F-1 results
were almost always higher than the random classifier, however the same could not be said
when evaluated on Cassandra. The low F-1 scores were deemed to be due to low recall
after analyzing the F-10 scores. On the in-depth analysis, the individual classifiers almost
always outperformed the random classifiers for all values of recall. Similarly, the individ-
ual classifiers performed very well when taking into consideration the classes that were at
highest risk of containing faults.

The individual classifier results were deemed to be acceptable to use in the Ensemble
Classifier and thus the evaluation of the Ensemble Classifier was performed. The F-1 results
for the Ensemble Classifier are close to double that of the random classifier, a random coin
toss, for both applications. This is a very good indicator that the Ensemble Classifier is
able to discern the features and classify the data. Further looking at the F-10 results, they
are higher than the F-1 results pointing to a higher recall, something that was missing
in a number of the individual classifiers. Similarly, if we were to look at Figure 4.4, the
precision of the Ensemble Classifier is able to identify a significant number of faulty classes.
The precision values do not seem to go over 70%, however, it has to be remembered that
the faulty dataset only account for a maximum of 35% of the complete testing dataset
used, thus there exists a large data imbalance.

One concern that does arise from looking at these results is that there are other studies
that have achieved a higher F-1 score, 0.75 and higher [62, 76, 99]. This is a valid concern
as this system does not match the performance of previous studies in identifying faulty
classes. However, it has to be noted that the dataset generation, the metrics used and the
classifiers have not been tuned or manipulated in any form to help improve the performance
of the framework. Since we are looking to have a versatile framework for general usage, the
classifiers should not be tuned for any particular use case as this would become over-fitting.
Tuning for a particular use case can also make the framework worse for other use cases.

Based on the discussion, we can confirm that it is completely viable to use an automated
tool for fault prediction. The classifiers were fed information that was extracted and
categorized by an automated system solely using source code history. These classifiers
were then used in an ensemble learner to complete a final prediction. The results of the
Ensemble Classifier were very reasonable and better than random guessing when analysis
was completed using Precision-Recall curves and Precision @ K curves.

RQ3 Is there a correlation between performance of a fault predictor model
and the resulting APFD?
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Figure 4.5: APFD of ATB and ATP in terms of the classifier F-score. Each point is
associated to one of the classifiers.

So far it has been established that the supervised tie breaking schema outperforms
AT in generating prioritized test suites. It has also been established that the Ensemble
Classifier is able to predict fault prone classes without any human intervention or tuning.
However, it still needs to be established whether there exists a correlation between the tie
breaking performance and the fault prediction performance.

To evaluate this correlation, the two tie breaking schemas, ATB and ATP, were re-run
using the fault-proneness returned by each individual classifier and the Ensemble Classifier.
The resulting APFD values were plotted against the classifier’s F-score value in a scatter
plot. The resulting graphs can be seen in Figure 4.5. The figures to the left are from
running ATB and the figures on the right are from running ATP.

Just from a quick glance at the results in Figure 4.5, a high correlation between F-score
and APFD values can be noted. For both tie breaking schemes, the better the F-score
achieved by the fault predictor, the better the resulting APFD in general. A point to
note is that the Ensemble Classifier achieved a high F-score when compared to the overall
performance of all the individual classifiers. This shows that the resulting APFD of the
two tie breaking schemas has higher significance and is not random chance.

4.5 Threats to Validity

As with any research, there are always some threats to the validity of the results. There
are either design decisions (internal), or concerns with the data used that can affect the
results (external). These threats are outlined in the following sub-sections.
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4.5.1 Internal Threats

There are three main internal threats to the validity of the results. They are as follows:

• Identifying Tests and Coverage - The methodology used to identify the tests within
the code base was a fairly rudimentary technique. Given that the code was looked
at very briefly to understand the structure of the tests, it is possible that a few test
cases were missed and some coverage details might have been missed. However, spot
checking after running the coverage reports did not show any missing information
and thus the missing information, if any, should be minimal.

• Identifying Faulty Classes - The approach taken to identify faulty classes was to
identify the commits where fixes were applied. To achieve this, any commits that
had a variation of the word ‘fix’ in its commit message were identified as a fault fixing
commit. This approach can lead to either some fixes being missed or others being
wrongly marked as a fix. However, a similar approach was used by [63] successfully
and thus was deemed appropriate.

• Classifier Choice - The types of classifiers used can affect the final results as discussed
by [50,99]. In the realization of the framework, three of the four classifiers come from
the same class of classifiers, which could be of concern. However, it is important
to note that each one behaved differently with the same data, thus not causing a
bias in the results. Experimenting with a different set of classifiers would be a good
approach when conducting more studies.

• Lack of Data Context - The metrics aggregated for each data set was gathered at
the point of time right before each fix was applied. This creates a nice snapshot
of the repository before a fix, thus helping to identify what a fault might look like
from a metrics perspective. However, this approach does cause a loss of context as
it is not possible to include historical data. The set of events that led to a fault is
not captured. Some of this information is gained back by adding in details of the
number of prior commits, the number of authors and the number of co-commits in
prior commits, however this data could still be incomplete. If other forms of historical
data that are quantifiable could be added, it could strengthen the frameworks ability
to identify faulty classes and trends that lead to faults.

4.5.2 External Threats

There were two main external threats to the validity of the results and they are as follows:

51



• External Tools - A number of external libraries and tools were used in the framework
during the execution of the experiments. These tools are very prominent in the field
of study, however they always have the possibility of containing errors. As a result,
there is always the risk of the results being affected by any errors that were not
captured during the realization of the framework.

• Source Code Repositories - For both applications used in the experiments, their
respective git repositories were used. Git has gained a lot of popularity as a source
code repository in recent years. Due to some of its superior features compared to
other source code repositories and its popularity, most projects have migrated to
using it. This means that older projects do not have a complete history in git, which
could be of some concern. However, when comparing to studies that have completed
experiments on single versions of the same applications, it can be noted that the data
size is still significantly larger, thus allowing us to ignore the lost data.

4.6 Lessons Learned

In this chapter, details about the implementation of the framework have been discussed.
Details about the metrics gathered and the classifiers applied have been presented along
with details about the methodologies of acquiring the test suite and their code coverage.
The two applications, Cassandra and Tomcat, used as case studies were outlined along
with test and structure details as needed to complete the evaluation.

Evaluation of two fault driven supervised tie breaking schemas showed significant im-
provement over AT. The two tie breaking schemas used fault proneness values from pre-
diction models to make their decisions. The APFD values of the prioritized test suites
showed improvements of up to 5% when compared to AT. The results were achieved by a
framework that was able to identify tests, gather coverage information and then prioritize
the test suite based on this information.

The experiments and evaluations conducted on the Fault Prediction components of the
framework have proven that it is feasible to build a predictor that needs no human inter-
vention to predict fault proneness. It performed all its prediction tasks using information
stored in a source code repository without any data grooming done prior. Most of the
individual classifiers are able to discern the identifying features in the dataset and ignore
most of the noise that might exist within the dataset. The results achieved from the En-
semble Classifier point towards the ability of getting a more rounded result and detection
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of a larger number of trends in terms of faults within classes, resulting in reasonable pre-
cision and recall values. The Ensemble Classifier does not achieve the high precision that
some of the classifiers are able to achieve in the precision-recall analysis, however there is
a predictable uniformity in the results. Similarly, the Ensemble Classifier does not show
very high precision when analyzing Precision @ K results, however they stay consistent
until we get to fairly large values of K. There is some concern that the results achieved in
this thesis are not as good as some other studies, however, it is hard to find any studies
that have conducted fault prediction on the scale completed in this thesis.

The experiments also showed a high correlation between the performance of the fault
prediction models and the performance of the tie breaking schemas. For higher F-scores
from the prediction models, a higher performing test suite would be generated almost all
the time. Given that the Ensemble Classifier had a F-score that was comparably higher to
most of the individual classifiers, the tie breaking results become even more significant.
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Chapter 5

Conclusion and Future Works

In this chapter we will revisit the contributions of this thesis and examine areas for future
works.

5.1 Thesis Contributions

This thesis designed and developed an end-to-end framework to address the problem of
criteria ties in coverage based TCP algorithms. The framework has been designed to
only need the source code repository as an input, to be able to return prioritized test
suites. In addition to its two main contributions that are detailed below, the framework
performed its own test case detection and information gathering for TCP. The framework
was implemented and executed against two large scale applications, Tomcat and Cassandra,
as case studies. The obtained results showed consistent and significant improvement over
AT.

The framework made two main contributions in the fields of TCP tie breaking and
Fault Prediction. The are as follows:

Tie Breaking Mechanisms - Two tie breaking mechanisms are proposed in this
thesis. Both mechanisms are supervised by fault prediction values to select the next test
case when ties occur. The first mechanism was a Binary approach, whereby the fault
probabilities of all classes covered by a test case, was used to break the ties. The second
mechanism was a Percentage approach, whereby the fault probabilities were multiplied by
the coverage percentage and then summed to break the ties. Both mechanisms showed
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significant improvement and consistency when compared to AT. There was an increase of
up to 5% in the APFD values in both case studies.

Fault Prediction Framework - A secondary framework was introduced inside the
proposed end-to-end Framework. This internal framework is a fault predictor that is able
to ingest raw information from the source code repository and make predictions based on
the analysis. It is able to create datasets for training and validation of multiple supervised
classifiers in an automated fashion. This dataset generation is achieved by parsing the
source history, generating software metrics for the complete history, detecting all historical
faults and finally forming the datasets using the fault history. The set of supervised classi-
fiers trained with the data are finally aggregated into an ensemble learner, using weighted
averages of F-1 score, for the final predications. Using an ensemble learner allowed to mit-
igate issues with single classifier performance and need for expert knowledge for tuning.
The fault prediction framework returned an F-1 score of 0.44 and 0.63 for Cassandra and
Tomcat respectively. The results are low compared to a number of prior studies, however
it has to be noted that the experiments were conducted on real data and no form of data
grooming or classifier tuning was performed before hand.

Analysis was also completed on the relationship between fault predictor performance
and the fault driven tie breaking schemas. The results showed a high correlation between
the two, whereby better predictors resulted in a better prioritized test suite. Overall, the
results from the case studies have proven that breaking ties in coverage-based TCP using
fault predictions return test suites that consistently have high fault detection rates.

5.2 Future Works

As any research, there are always areas of improvement or areas that can be modified to
improve the works. Some of the possible improvements are outlined below.

• Use fault numbers - In the current study, fault probabilities are used to supervise the
tie breaking. Instead of using fault probabilities, it could be more informative to the
tie breaking schemas to use potential number of faults that exist in each module.

• Natural Language Processing - The current approach to detecting faults in the code
base is fairly simple. There is possibility of misclassifying a commit as faulty or not
faulty based on this technique. Instead, using natural language processing techniques
could potentially improve the dataset generation for fault prediction.
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• Cross project TCP - When an application is in its infancy, it will not have enough in-
formation to be able to complete defect prediction. Using a framework that has been
trained on one project to predict faults on another for TCP could be an interesting
avenue of research.

• Cost-effectiveness Analysis - More recent studies [58,98], investigate the cost-effectiveness
of performing TCP, where cost is the execution time. The premise being a technique
that takes longer to prioritize compared to the time saved from execution is not cost-
effective. Performing the same analysis on the proposed tie breaking technique after
implementing in a performant language would be prudent.
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Appendix A

Metrics Description

Following is the set of metrics, as they appear in the database, and a description of the
data they hold grouped by class of metrics. All metrics descriptions, other than the History
set, have been retrieved from the scitools website.

Table A.1: Count Metrics

Metric Name Metric Description
altcountlineblank Number of blank lines, including inactive

regions
altcountlinecode Number of lines of code, including inactive

regions
altcountlinecomment Number of lines of comments, including in-

active regions
countdeclfile Number of files
countdeclfilecode Number of code files
countdeclfileheader Number of header files
countdeclfunction Number of functions
countdeclinstancevariableinternal Number of internal variables
countdeclinstancevariableprotectedinternal Number of protected internal variables
countdecllibunit Number of library units
countdeclmethodfriend Number of local friend methods
countdeclmethodinternal Number of local internal methods
countdeclmethodprotectedinternal Number of protected internal methods
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countinput Number of calling subprograms plus global
variables read.

countline Number of all lines
countlineblank Number of blank lines
countlinecode Number of lines containing source code
countlinecodedecl Number of lines containing declarative

source code
countlinecodeexe Number of lines containing executable

source code
countlinecomment Number of lines containing comments
countlineinactive Number of inactive lines
countlinepreprocessor Number of preprocessor lines
countsemicolon Number of semicolons
countstmt Number of statements
countstmtdecl Number of declarative statements
countstmtempty Number of empty statements
countstmtexe Number of executable statements

Table A.2: Chidamber and Kemerer Metrics

Metric Name Metric Description
countclassbase Number of immediate base classes
countclasscoupled Number of other classes coupled
countclassderived Number of immediate subclasses
countdeclclass Number of classes
countdeclclassmethod Number of class methods
countdeclclassvariable Number of class variables
countdeclinstancemethod Number of instance methods
countdeclinstancevariable Number of instance variables
countdeclinstancevariableprivate Number of private instance variables
countdeclinstancevariableprotected Number of protected instance variables
countdeclinstancevariablepublic Number of public instance variables
countdeclmethod Number of local methods
countdeclmethodall Number of local methods, including inher-

ited
countdeclmethodconst Number of local const methods

70



countdeclmethoddefault Number of local default methods
countdeclmethodprivate Number of local private methods
countdeclmethodprotected Number of local protected methods
countdeclmethodpublic Number of local public methods
countdeclmethodstrictprivate Number of local strict private methods
countdeclmethodstrictpublished Number of local strict published methods
countdeclmodule Number of modules
countdeclprogunit Number of non-nested modules, block data

units and subprograms
countdeclsubprogram Number of subprograms
countoutput Number of called subprograms plus global

variables set
countpackagecoupled Number of other packages coupled to
maxinheritancetree Maximum depth of class in inheritance tree
percentlackofcohesion 100% minus the average cohesion for pack-

age entities
loc Number of lines of code
sloc Number of source lines of code

Table A.3: McCabe Metrics

Metric Name Metric Description
countpath Number of possible paths, not counting ab-

normal gotos or exits
cyclomatic Cyclomatic complexity
cyclomaticmodified Modified cyclomatic complexity
cyclomaticstrict Strict cyclomatic complexity
essential Essential Complexity
essentialstrictmodified Strict modified essential complexity
maxcyclomatic Maximum cyclomatic complexity of all

nested methods or functions
maxcyclomaticmodified Maximum modified cyclomatic complexity

of all nested methods or functions
maxcyclomaticstrict Maximum strict cyclomatic complexity of

all nested methods or functions
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maxessential Maximum essential cyclomatic complexity
of all nested methods or functions

maxessentialstrictmodified Maximum strict modified essential cyclo-
matic complexity of all nested methods or
functions

maxnesting Maximum nesting level of control con-
structs

sumcyclomatic Sum of cyclomatic complexity of all nested
functions or methods

sumcyclomaticmodified Sum of modified cyclomatic complexity of
all nested functions or methods

sumcyclomaticstrict Sum of strict cyclomatic complexity of all
nested functions or methods

sumessential Sum of essential cyclomatic complexity of
all nested functions or methods

sumessentialstrictmodified Sum of strict modified essential cyclomatic
complexity of all nested functions or meth-
ods

knots Measure of overlapping jumps
maxessentialknots Maximum Knots after structured program-

ming constructs have been removed
MI Maintainability Index
minessentialknots Minimum Knots after structured program-

ming constructs have been removed

Table A.4: Halstead Metrics

Metric Name Metric Description
D Difficulty of program
E Effort to maintain
n Program vocabulary
N Program length
N 1 Total number of operators
N 2 Total number of operands
n1 Number of distinct operators
n2 Number of distinct operands
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V Program Volume

Table A.5: History Metrics

Metric Name Metric Description
Authors Since Fix Number of authors editing code since last

fix applied
Avg Co Commits Average number of classes co-commited

since start of time
Avg Co Commits Since Fix Average number of classes co-commited

since last fix applied
Co Commits Since Fix Total number of co-commits since last fix

applied
Commits Since Fix Total number of times class has been mod-

ified since last fixed
Total Authors Total number of authors modified class

since start of time
Total Co Commits Total number of classes co-committed since

start of time
Total Commits Total number of time class has been modi-

fied since start of time
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