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Presentation of improved methods for the simulation of the dynamics of continuous and 

discontinuous porous media. 

 

Presentation of the first application of the Phantom Node Method (PNM) to model fractures in 

porous media. 

 

Illustration that GFEM enrichment with suitable trigonometric functions can significantly reduce 

the spurious oscillations which appear in FEM simulations of wave phenomena in porous media. 

 

Presentation of a mixed Generalized Finite Element Method coupled with a PNM (PNM-GFEMM) to 

more accurately model wave propagation in fractured porous media. 

 

Presentation of an Augmented Lagrangian Method to implement contact and stick-slip friction 

between fracture surfaces, in the context of the PNM and the PNM-GFEM-M. 
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Enriched Mixed Finite Element Models for Dynamic Analysis of Continuous
and Fractured Porous Media

M. Komijani, R. Gracie∗

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Enriched Finite Element Models are presented to more accurately investigate the transient and wave
propagation responses of continuous and fractured porous media based on mixture theory. Firstly, the Gen-
eralized Finite Element Method (GFEM) trigonometric enrichments are introduced to suppress the spurious
oscillations that may appear in dynamic analysis with the regular Finite Element Method (FEM) due to nu-
merical dispersion/Gibb’s phenomenon. Secondly, the Phantom Node Method (PNM) is employed to model
multiple arbitrary fractures independently of the mesh topology. Thirdly, frictional contact behaviour is sim-
ulated using an Augmented Lagrange Multiplier technique. Mixed Lagrangian interpolants, bi-quadratic for
displacements and bi-linear for pore pressure, are used for the underlying FEM basis. Transient (non-wave
propagation) response of fractured porous media is effectively modeled using the PNM. Wave propagation
in continuous porous media is effectively modeled using the mixed GFEM. Wave propagation in fractured
porous media is accurately simulated using a mixed GFEM-enriched Phantom Node Method (PNM-GFEM-
M). The developed mixed GFEM portion of the model is verified through a transient consolidation problem.
Subsequently, the ability of the enriched FEM models to capture the dynamic response of fractured fully-
saturated porous media under mechanical and hydraulic stimulations is illustrated. The superior ability of the
PNM-GFEM-M to inhibiting spurious oscillations is shown in comparison against the regular finite element
solutions of some impact problems. It is demonstrated that by embedding appropriate enrichment
basis functions in both displacement and pore pressure fields the results obtained are more
accurate than those obtained using standard finite element approximations or approximations
in which only the displacement is enriched.

Keywords:
Generalized finite element method, Phantom node method, Porous media, Dynamic response, Wave
propagation.

1. Introduction

Analysis of porous media is of importance in a wide range of applications from reservoir engineering to
biological materials. Accurate simulation of coupled behaviour of fluid and solid in geomechanics is essential
in improving the reservoir performance and ensuring wellbore stability[1]. In a similar fashion, biomechanical
analysis of tissues such as the brain, bones, and cells involves coupled behaviour of solid skeleton and a pore
fluid [2, 3, 4, 5]. Investigations of coupled hydro-mechanical problems has a relatively long history going
back to the pioneering works of Terzaghi [6] and Biot [7].

Dynamic analysis is important in application such as liquefaction, induced seismicity, and earthquake
analysis, in which inertia effects are of significance. In coupled analysis of porous media, different approaches
have been developed to model the hydro-mechanical response. Fully-dynamic three-field models (u−w− p)
have been used to solve the problem based on the solution for solid skeleton displacement, u, the displace-
ment of the fluid relative to the solid matrix, w, and the fluid pore pressure, p [8, 9]. In some other works,
based on the assumption that the relative acceleration of fluid with respect to the total mixture is negligible,
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a simpler two-field formulations (u − p) had been developed [10]. Alternative formulation based on the
same assumption has lead to (u − w) models, in which pore pressure is eliminated instead of the relative
displacement of fluid with respect to the solid skeleton [12, 13] . Two-field u−p models of porous media have
been noted to be more appropriate for modelling saturated porous material up to earthquake frequencies [14].

Previous research efforts in dynamic/wave propagation analysis of porous media have emphasized the
hydro-mechanical response of continuous domains. However, in many applications, such as the analysis of
naturally fractured rock masses, we encounter discontinuous domains which contain pre-existing or induced
cracks and/or faults. The analysis of microseismic emission due to the reactivation of natural fractures
in geological formations under high in-situ stresses is of practical importance in the evolution of hydraulic
fracturing operations, which has not been dealt with sufficiently in the literature so far.

The dominant approach in seismic analysis has been to solve wave propagation in frequency domain [15]
with the assumption that the simulation domain is continuous and does not contain any fractures; in spite
the fact that the coupled problem of micro-seismic emission due to fault reactivation has to be partially mod-
eled (in localization/crack propagation phase) in the time domain. Therefore, developing new and efficient
time domain-based computational methods and tools to simulate the dynamic hydro-mechanical response of
porous systems that include discontinuities seems to be necessary and practical.

In the area of fractured porous media analysis, Remij et al. [16] present an enhanced local pressure model
for simulation of fluid-driven fractures in porous media using partition-of-unity finite element to impose strong
discontinuity of displacement and pressure fields across the fracture. In this work, fracture propagation due
to internal flow is modeled by a cohesive traction-separation law. Nikolic et al. [17] proposed a discrete
beam lattice model for simulation of localization in a fluid-saturated poro-plastic media. Localized failure of
media is embedded through discontinuities located in cohesive links enabled by the proposed discrete model
which can capture the fracture process zone initiation and the localization mechanisms. Armero and Callari
[19] performed an analysis of strong discontinuities in displacement in a poroplastic solid. They considered
continuous pressure field across the material discontinuity with discontinuous pressure gradient leading to
discontinuous fluid flux across the crack. They used an enhanced strain finite element formulation to rep-
resent the normal and shear displacement jumps along the discontinuity. Rethore et al. [18] developed a
numerical model for dynamic propagation of shear bands in saturated porous media. They used the partition
of unity property of finite element to introduce discontinuity in the domain in the context of XFEM. Using
cohesive shear tractions they simulated nucleation and propagation of shear bands based on Tresca-like and
a Coulomb criterion.

Another approach for simulation of fracture in porous media has been the phase field modeling. Christian
Miehe and Steffen Mauthe [20] proposed a macroscopic framework for a continuum phase field modeling of
fracture in porous media. The main idea in this approach is to regularize the discrete crack based on a
constitutive balance equation. The approach overcomes difficulties associated with the computational real-
ization of sharp discontinuities which is involved in discontinuity modeling and specifying the trajectory of
fracture once it propagates. The multi-physics coupling of porous media is accommodated through a mod-
ular concept for linking of the diffusive crack modeling with the hydro-poro-elastic response of the porous
bulk material. Lee et al. [21] employed phase field approach for proppant-filled fractures in porous media to
solve for displacements, phase field, pressure, and proppant concentration though a continuum model. The
coupling to the pressure equation is imposed via a fixed-stress iteration. A diffraction equation is used to
obtain the pressure and the phase-field variable serves as an indicator function that distinguishes between
the fracture and the reservoir. In this context, some damage localization models have also been proposed for
porous media. Mobasher et al. [22] proposed a damage-poroelastic model for analyzing the localization of
porous media in geomechanics applications. The mesh-dependency problem of local damage models has been
rectified by introducing a non-local model. However, these earlier works that are proposed to model fracture
in porous media did not address the topic of accurate simulation of wave propagation in multi-physics media.

To model arbitrary fractures independently of mesh topology and to rectify the requirement for continu-
ous re-meshing in the process of crack propagation Moes et al. [23] developed the concept of the eXtended
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Finite Element Model (XFEM). XFEM is based on the general idea of the Partition of Unity Finite Ele-
ment Method [24]. As a continuation, Song et al. [28] introduced and developed the idea of Phantom Node
Method (PNM) to model discontinuities. The model is in essence the same as the earlier method proposed by
Hansbo and Hansbo [29]. In the PNM, discontinuity in displacement is achieved by reformulating elements,
which contain a fracture as two superimposed intact elements with additional computational nodes, called
Phantom Nodes. Each of the superimposed elements is used to represent a different side of the original
cracked element, resulting in a discontinuous interpolation for displacement. The most important feature
and advantage of the PNM is that its implementation requires fewer modifications to an existing FEM code
compared to XFEM. To date the PNM has only been applied to purely mechanical models. Here we extend
its application to fractured porous media.

Owing to the direct satisfaction of the natural boundary conditions through integral form of the weak
formulation (divergence theorem), finite element is known to be a very effective tool for solving boundary-
value problems. However, the piecewise continuous polynomials used to interpolate the unknown functions
have been found to be inadequate in some problems, including transient wave propagation [35]. In the case
of transient wave propagation, FEM solution may show spurious oscillations. These non-physical oscilla-
tions degrade the results, including the wave propagation velocity, which is important in application such as
microseismic wave simulation, where the waves travel long distances. Here, this problem is treated through
introduction of harmonic enrichments.

An enriched finite element method was proposed in [34], where enriched harmonic and conventional low-
order polynomials interpolations are used to model multiscale wave propagation in one-dimensional problems.
The general idea of embedding appropriate basis functions, with characteristics that appear in the analytical
solution of the problem, as enrichments using the partition of unity property of the FE interpolants was
developed in the pioneering work of Melenk and Babuka [24]. For more detailed information about
enriched finite element methods one can also refer to [25, 26, 27]. Based on the general idea of the
Partition of Unity Method (PUM), Ham and Bahte [35] extended the approach of [34] to solve the problem
of time-harmonic and transient wave propagation in multiple dimensions; it was demonstrated that the spu-
rious oscillations that appear with the conventional FEM can effectively subside by the proposed enriched
FEM in the simulation of wave propagation in continuous domains.

Very recently, a GFEM-enriched PNM model was proposed by Komijani and Gracie [36] to extend the
enriched FE model developed in [35] to the case of fractured media. Their enriched FE model, the PNM-
GFEM, combines the advantages of the trigonometric enrichments introduced in [35] and the Phantom Node
Method. Using the PNM-GFEM, problem of transient wave propagation in fractured media is simulated
in various cases of high-frequency/impact mechanical loading conditions. Through several numerical illus-
trations it was demonstrated that the high-frequency non-physical spurious oscillations can be dramatically
suppressed in both primary emitted waves and reflected waves from the fracture surfaces.

To date these enriched finite element models have not been applied to any coupled multi-physics problem
with or without discontinuities, such as fractured porous media. The purpose of the present article is to
extend the use of the PNM-GFEM enriched FE model introduced in [36] to the case of fractured saturated
porous media. GFEM trigonometric functions are used to enrich the displacement field of solid skeleton
and pore pressure field to model transient wave propagation response of porous media more accurately. The
PNM is employed in a combined fashion to simulate discontinuities in the displacement fields as well as pore
pressure field in the case of impervious crack faces. The dynamic behaviour of fractured porous media is
investigated through several numerical examples for different mechanical and hydraulic loading types.

2. Mathematical Formulation

A porous media is composed of a fluid filled solid matrix. The fluid phase can flow through the connected
voids of the solid matrix. The behaviour of a porous media is governed by the interaction of fluid and solid
phases. In this work, the governing equations are obtained from Biot’s mixture theory based on the concept
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of volume fractions for each phase in a representative elementary volume.

2.1. Governing Equations

Consider a two-dimensional poroelastic medium, Ω, defined in Cartesian coordinate Oxy. Let ux(x, y, t)
and uy(x, y, t) be the displacement components of the total mixture in x and y directions, respectively, as a
function of time, t. Assuming infinitesimal deformation, the linear strain-displacement relations are

εxx = ux,x εyy = uy,y γxy = ux,y + uy,x (1)

The constitutive equations for the solid matrix can be written in Voigt notation as:



σ′xx
σ′yy
σ′xy


 =



C11 C12 0
C21 C22 0
0 0 C33





εxx
εyy
γxy


 (2)

in which σ′xx, σ′yy, and σ′xy are the components of the effective stress tensor acting on the solid skeleton, and
C11 through C33 are the elastic coefficients.

The relative motion of the fluid phase with respect to the total mixture is denoted by wi(x, t); it is
assumed that the relative acceleration of the fluid phase with respect to the entire mixture is negligible, i.e.,
ẅi = 0. The momentum balance of the total mixture is:

O · σ − ρü+ ρb = 0 (3)

in which ü is the acceleration of the total mixture, σ is the total stress, ρ is the average mixture density,
and b is the body force acting on the mixture.

The average density of the mixture is defined as a linear combination of solid and fluid phases

ρ = n′ρf + (1− n′)ρs (4)

in which ρf and ρs are the density of fluid phase and solid grains, respectively, and n′ is the porosity of the
media, defined as the ratio of the porous volume to the total volume of the mixture.

The total stress acting on the mixture is defined as

σ = σ′ − αppI (5)

where p is the fluid pore pressure, I is the identity tensor, σ′ denotes the effective stress acting on the solid
skeleton, and αp is Biot’s coefficient.

A generalized Darcy relation can be derived from conservation of momentum of the fluid phase. Neglecting
the relative acceleration of the pore fluid with respect to the total mixture, the momentum equation for the
fluid phase is:

−Op+R− ρf ü+ ρfb = 0 (6)

in which R denotes the lumped/averaged viscous drag force acting on the fluid. The drag force may be
defined by the Darcy seepage law

ẇ = −kfR (7)

in which kf denotes the permeability tensor of the porous media.
The Eulerian continuity equation for the fluid phase is:

O · ẇ + αO · u̇+
ṗ

Q
= 0 (8)

in which 1/Q = (α − n′)/Ks + n′/Kf , and Ks and Kf are the bulk moduli of solid and fluid phases,
respectively.

4
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The relative velocity of fluid phase with respect to the mixture, w, can be eliminated from (8) using (6)
and the Darcy seepage law (7) leading to [14]

O · kf [−Op− ρf ü+ ρfb] + αO · u̇+
ṗ

Q
= 0 (9)

Equations (3) and (9) along with the strain-displacement relations (1) and effective stress-strain constitutive
equations (2) are solved together with boundary and initial conditions to find the displacement and pore
pressure fields.

2.2. Weak Formulation

Consider a 2D domain Ω with boundary Γ. Boundary Γ comprises of Γu, Γt, Γp, and Γw, which are the
boundary surface for prescribed displacement, traction, pore pressure, and out-flow flux of pore fluid, respec-
tively. Domain Ω contains internal discontinuities (i.e., fractures) denoted by Γd. Using Galerkin’s method
the coupled system of equations (3) and (9) are transformed into a weak formulation using appropriate test
functions, δu and δp.

The admissible spaces of the displacement and pore pressure fields are defined as below:

U =
{
u(x, y, t)|u(x, y, t) ∈ H1,u(x, y, t) = ū(t) on Γu,u discontinuous on Γd

}
(10)

U0 =
{
δu(x, y, t)|δu(x, y, t) ∈ H1, δu(x, y, t) = 0 on Γu, δu discontinuous on Γd

}
(11)

P =
{
p(x, y, t)|p(x, y, t) ∈ H1, p(x, y, t) = p̄(t) on Γp, p discontinuous on Γd

}
(12)

P0 =
{
δp(x, y, t)|δp(x, y, t) ∈ H1, δp(x, y, t) = 0 on Γp, δp discontinuous on Γd

}
(13)

The resulting weak form of the initial boundary value problem is

∫

Ω

σ : δε dΩ +

∫

Ω

ρü · δu dΩ−
∫

Γt

t̄ · δu dΓ−
∫

Ω

ρb · δu dΩ +

∫

Γd

t̄d · δ[[u]] dΓ = 0,∀δu ∈ U0 (14)

∫

Ω

Oδp · kfOp dΩ +

∫

Ω

Oδpkf · ρf ü dΩ +

∫

Ω

δp αp O · u̇ dΩ +

∫

Ω

δp 1/Q ṗ dΩ−
∫

Ω

Oδpkf · ρfb dΩ +

∫

Γw

δp(ẇ · nΓ) dΓ−
∫

Γd

δp[[ẇ]] · nΓd
dΓ = 0,∀δp ∈ P0 (15)

in which [[u]] denotes the jump in the displacement field across the discontinuity surfaces and
[[ẇ]] represents the discontinuity of fluid flux into the crack interface in both sides of the
discontinuity. t̄d denotes the internal applied traction (e.g., contact force) on the surfaces of the internal
discontinuity Γd. In this work natural boundary conditions are imposed on the internal inter-
face, Γd. For the mechanical problem, the tractions on the crack surfaces are non-zero when
contact is modeled or zero (traction free) when contact is not modeled. For flow problem, the
fluid flux perpendicular to the fracture surfaces is zero for impermeable fractures. In the case
of permeable fractures, there is no discontinuity in the pore pressure field and therefore no
natural boundary condition needs to be considered on Γd.

3. Enriched Mixed Finite Element Formulation

In this section, the discretization of the weak form (14)-(15) using the PNM-GFEM interpolations [36],
the implementation of frictional contact using an Augmented-Lagrangian approach, the integration of the
semi-discretized equations using a Generalized Newmark implicit method are discussed.
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3.1. GFEM interpolation

Spurious waves due to the Gibbs phenomenon can be suppressed/reduced in FEM simulations of transient
wave propagation in continuous domains by GFEM enrichment with appropriate functions. Inspired by the
exponential- (or trigonometric-) type nature of the analytical solutions of wave problems, Ham and Bathe
[35] proposed the following interpolation for displacement

u(x, y, t) =
∑

I

(
NIuI(0,0) +

n∑

kx=1

[NIφ
Cx

(kx,0)u
Cx

I(kx,0) +NIφ
Sx

(kx,0)u
Sx

I(kx,0)]+

m∑

ky=1

[NIφ
Cy

(0,ky)u
Cy

I(0,ky) +NIφ
Sy

(0,ky)u
Sy

I(0,ky)]+

n∑

kx=1

m∑

ky=1

[NIφ
C+
(kx,ky)u

C+
I(kx,ky) +NIφ

S+
(kx,ky)u

S+
I(kx,ky)+ (16)

NIφ
C−
(kx,ky)u

C−
I(kx,ky) +NIφ

S−
(kx,ky)u

S−
I(kx,ky)]

)

in which φγ(kx,ky) with the corresponding superscript denotes the following trigonometric enriched basis

functions:

φCx

(kx,0) = cos(
2πkxx

Λx
), φSx

(kx,0) = sin(
2πkxx

Λx
),

φ
Cy

(0,ky) = cos(
2πkyy

Λy
), φ

Sy

(0,ky) = sin(
2πkyy

Λy
)

φC+
(kx,ky) = cos(

2πkxx

Λx
+

2πkyy

Λy
), φS+

(kx,ky) = sin(
2πkxx

Λx
+

2πkyy

Λy
)

φC−(kx,ky) = cos(
2πkxx

Λx
− 2πkyy

Λy
), φS−(kx,ky) = sin(

2πkxx

Λx
− 2πkyy

Λy
)

In the above enriched FE formulation NI are the conventional Lagrangian shape functions,
uI(0,0) are the conventional nodal degrees of freedom, uγI(kx,ky) with the associated superscript

(Cx, Cy, Sx, Sy, ...) are the enriched nodal degree of freedom corresponding to the local node
number I, kx and ky are the wave numbers, n and m are the cutoff numbers for enrichment
functions in x and y directions, respectively, and Λx and Λy are wavelengths, which are assumed
to be equal to the element sizes in x and y directions, respectively. It is noted that the cutoff
numbers n and m are user-defined parameters and would vary between different problems.
In the case of highly-transient waves or time-harmonic waves with short wave lengths, higher
cutoff numbers may be required to obtained more accurate results. The excitation of different
wave lengths can be modeled using different cutoff numbers, which facilitates the possibility
of modelling waves with wavelengths smaller than the element size. It is important to note
that considering higher cutoff numbers than 2 may lead to severe ill-conditioning problems.
However, based on our experience so far, cutoff numbers of 1 or 2 is sufficient in many cases.

To model the dynamic/wave propagation response of fracture media, the Phantom Node
Method [36] is combined with the above GFEM approximation (16). The PNM is employed
to facilitate the modelling of the discontinuities and GFEM enrichments are used to more
accurately model wave propagation, compared to what can be achieve with regular FEM
approximations. As illustrated in Figure 1, a cracked element containing a discontinuity is represented
by two superimposed intact elements (i.e., overlapping paired elements) with real and additional phantom
nodes [28]. The location of the discontinuity inside an element is defined by a level set function such that
f(x, y) = 0 specifies the discontinuous surface. In this work the level set is the signed distance

6
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Figure 1: Decomposition of a mixed cracked element into two superimposed elements, in which the underlying Lagrangian
interpolants for the displacements and pore pressure are bi-quadratic (Q9) and bi-linear (Q4) shape functions, respectively.
Real and phantom nodes with displacement degrees of freedom are shown using solid and hollow rectangles, respectively. Real
and phantom nodes with pore pressure degrees of freedom are shown using solid and hollow circles, respectively.

function to the crack [28]. Displacements in fractured elements in the PNM-GFEM are approximated
by

u(x, y, t) = H(−f(x, y))
∑

I∈S1

(
ψI(0,0)uI(0,0) +

n∑

kx=1

[ψCx

I(kx,0)u
Cx

I(kx,0) + ψSx

I(kx,0)u
Sx

I(kx,0)]+

m∑

ky=1

[ψ
Cy

I(0,ky)u
Cy

I(0,ky) + ψ
Sy

I(0,ky)u
Sy

I(0,ky)]+

n∑

kx=1

m∑

ky=1

[ψC+
I(kx,ky)u

C+
I(kx,ky) + ψS+

I(kx,ky)u
S+
I(kx,ky) + ψC−I(kx,ky)u

C−
I(kx,ky) + ψS−I(kx,ky)u

S−
I(kx,ky)]

)
+

H(f(x, y))
∑

I∈S2

(
ψI(0,0)uI(0,0) +

n∑

kx=1

[ψCx

I(kx,0)u
Cx

I(kx,0) + ψSx

I(kx,0)u
Sx

I(kx,0)]+ (17)

m∑

ky=1

[ψ
Cy

I(0,ky)u
Cy

I(0,ky) + ψ
Sy

I(0,ky)u
Sy

I(0,ky)]+

n∑

kx=1

m∑

ky=1

[ψC+
I(kx,ky)u

C+
I(kx,ky) + ψS+

I(kx,ky)u
S+
I(kx,ky) + ψC−I(kx,ky)u

C−
I(kx,ky) + ψS−I(kx,ky)u

S−
I(kx,ky)]

)

in which ψI(0,0) = NI and ψγI(kx,ky) = NIφ
γ
(kx,ky), and H(·) is the step function. S1 and S2 are the set of nodes

corresponding to each of the two superimposed elements; each of the two superimposed elements contain
original real nodes and additional phantom nodes. In the framework of GFEM, both the real and phantom
nodes have conventional and enriched degrees of freedom. For cracked elements, the wavelengths Λx
and Λy are taken to be equal to the length of the superimposed paired elements (i.e., regular
elements with real and additional phantom nodes) in x- and y-directions, respectively. This is
because while only part of each superimposed element is used to model one side of the crack,
the displacement and pressure fields are interpolated using nodal degrees of freedom located
at the nodes on both sides of the crack.

3.2. Mixed GFEM-enriched Phantom Node Method (PNM-GFEM-M)

The PNM-GFEM approach is extended to the modelling of dynamic transient response of discontinuous
porous media, in which discontinuities in both the displacement and pore pressure fields across the fracture
surfaces occur. This is accomplished using an approximation analogous to (17) for the pore pressure.
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It is noted that the employed trigonometric enrichment functions in [35] are not exclu-
sively derived for linear elastic case and have been originally proposed in [34] for multi-scale
electromagnetic and radio-frequency wave propagation in plasmas. Any type of transient or
time-harmonic wave can be represented by exponential (or trigonometric) basis functions based
on the Fourier concept and analytical solutions of waves. Hence in [34] the fundamental trig
wave functions have been embedded in finite element interpolations as enrichments to mimic
the transient/harmonic wave responses. In poroelastic case the response is a combination of
diffusion and elastic wave process and the wave-type transient behaviour in displacement field
is accompanied by a transient response in pore pressure field. Therefore, there is a coupled
transient physics in both displacement and pore pressure variables that can be represented by
harmonic functions (i.e., fundamental wave packages).

As illustrated in Figure 1, the underlying element for our approximation is a mixed element, with a
bi-quadratic (nine node) approximation for the displacements and a bi-linear (four node) approximation for
the pore pressure. The mixed element is replaced by two superimposed elements: superimposed element 1
(SE1) and superimposed element 2 (SE2). The nodes and corresponding displacement and pressure degrees
of freedom of SE1 with f((X) ≤ 0) are inherited from the underlining element, while nodes of SE1 with
f((X) > 0) are additional phantom nodes with corresponding additional displacement and pressure degrees
of freedom. In a similar way, the nodes of SE2 with f((X) > 0) are inherited from the underlining element,
while nodes of SE2 with f((X) ≤ 0) are additional phantom nodes.

3.2.1. Displacement field discretization

For a cracked element in a porous media, the displacement components in x and y directions are inter-
polated based on the discretization introduced above, in a more compact form as:

ux(x, y, t) = H(−f(x, y))
∑

I∈S1

(
ψ1
I(x, y)uIx(t)

)
+H(f(x, y))

∑

I∈S2

(
ψ1
I(x, y)uIx(t)

)
(18)

uy(x, y, t) = H(−f(x, y))
∑

I∈S1

(
ψ2
I(x, y)uIy(t)

)
+H(f(x, y))

∑

I∈S2

(
ψ2
I(x, y)uIy(t)

)
(19)

in which ψ1
I and ψ2

I are the arrays of conventional and enriched basis functions of node I for the displacement
components in x and y directions, respectively. uIx and uIy are the vectors of corresponding conventional and
enriched mixture displacement degrees of freedom of the porous media for node I in the x and y directions,
respectively, as shown below.

ψ1,2
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(20)

u>Ix = [uIx(0,0), u
Cx

Ix(1,0), ..., u
S−
Ix(n,m)] (21)

u>Iy = [uIy(0,0), u
Cx

Iy(1,0), ..., u
S−
Iy(n,m)] (22)

The Lagrange interpolation functions (ψI(0,0) = NI) are taken to be bi-quadratic shape functions (Q9).

3.2.2. Pore pressure field discretization

When the pore pressure in the cracked element is discontinuous, as when the crack faces are impervious
or when the fluid pressure in the fracture is different than in the bulk, pore pressure is approximated by
PNM type approximation.

Following the general idea of PNM-GFEM, the pore pressure approximation in discontinuous (pressure)
elements is

p(x, y, t) = H(−f(x, y))
∑

I∈S1

(
ψ3
I(x, y)pI(t)

)
+H(f(x, y))

∑

I∈S2

(
ψ3
I(x, y)pI(t)

)
(23)
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in which ψ3
I denotes the set of conventional and enriched interpolation functions for the pore pressure variable

(i.e., the third unknown field of the problem), and pI is the vector of corresponding regular and enriched,
phantom or real pore pressure degrees of freedom for node I.

ψ3
I =

[
ψI(0,0) ψCx

I(1,0) ... ψS−I(n,m)

]
(24)

It is noted that the Lagrange interpolation functions (ψI(0,0) = NI) for the pore pressure filed are bi-linear
shape functions (Q4).

3.3. Semi-discretized mixed FE equations

Substitution of the prescribed interpolation functions for the displacement fields (18)- (19) and pore
pressure field (23) in the governing weak form (14)-(15) results in a semi-discretized system of equations,
which at the element level is

nnode∑

J=1

(
[Me]11

IJ üeJx + [Ke]11
IJueJx + [Ke]12

IJueJy + [Ke]13
IJpeJ

)
= FeIux

, (I = 1, ..., nnode) (25)

nnode∑

J=1

(
[Me]22

IJ üeJy + [Ke]21
IJueJx + [Ke]22

IJueJy + [Ke]23
IJpeJ

)
= FeIuy

, (I = 1, ..., nnode) (26)

nnode∑

J=1

(
[Me]31

IJ üeJx + [Me]32
IJ üeJy + [Ce]31

IJ u̇eJx + [Ce]32
IJ u̇eJy+

[Ce]33
IJ ṗeJ + [Ke]33

IJpeJ

)
= FeIp, (I = 1, ..., nnode) (27)

in which nnode is the number of nodes in each of the two superposed elements 1 and 2, and includes both
original real and phantom nodes. It is noted that for the cracked elements, the numerical integration is
performed separately over the active areas of each of the two superposed elements. To evaluate the finite
element integrals a sub-domain integration scheme is employed [23].

In an element crossed by a crack, the definitions of [Me]IJ , [Ce]IJ , [Ke]IJ , FeIux
, FeIuy

, and FeIp in (25),

(26), and (27) for each of the superimposed elements, i.e., e= 1 or 2, are

[Me]11
IJ =

∫

Ae

ρ(ψ1
I)
>ψ1

JdΩ, [Me]31
IJ =

∫

Ae

ρfkf (ψ3
I)
>
,xψ

1
JdΩ (28)

[Me]22
IJ =

∫

Ae

ρ(ψ2
I)
>ψ2

JdΩ, [Me]32
IJ =

∫

Ae

ρfkf (ψ3
I)
>
,yψ

2
JdΩ (29)

[Ke]11
IJ =

∫

Ae

(
C11(ψ1

I)
>
,x(ψ1

J),x + C33(ψ1
I)
>
,y(ψ1

J),y

)
dΩ, (30)

[Ke]12
IJ =

∫

Ae

(
C12(ψ1

I)
>
,x(ψ2

J),y + C33(ψ1
I)
>
,y(ψ2

J),x

)
dΩ, (31)

[Ke]13
IJ =

∫

Ae

−αp(ψ1
I)
>
,x(ψ3

J)dΩ, (32)

[Ke]21
IJ =

∫

Ae

(
C21(ψ2

I)
>
,y(ψ1

J),x + C33(ψ2
I)
>
,x(ψ1

J),y

)
dΩ, (33)

[Ke]22
IJ =

∫

Ae

(
C22(ψ2

I)
>
,y(ψ2

J),y + C33(ψ2
I)
>
,x(ψ2

J),x

)
dΩ, (34)

[Ke]23
IJ =

∫

Ae

−αp(ψ2
I)
>
,y(ψ3

J)dΩ, (35)

9
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[Ke]33
IJ =

∫

Ae

kf

(
(ψ3

I)
>
,x(ψ3

J),x + (ψ3
I)
>
,y(ψ3

J),y

)
dΩ, (36)

[Ce]31
IJ =

∫

Ae

αp(ψ
3
I)
>(ψ1

J),xdΩ, (37)

[Ce]32
IJ =

∫

Ae

αp(ψ
3
I)
>(ψ2

J),ydΩ, (38)

[Ce]33
IJ =

∫

Ae

(ψ3
I)
>(ψ3

J)
1

Q
dΩ, (39)

FeIux
=

∫

Ae

(
ρ(bx)(ψ1

I)
>
)
dΩ+

∫

ste

(
t̄x(ψ1

I)
>
)
dΓt +

∫

sde

(
t̄dx(ψ1

I)
>
)
dΓd, (40)

FeIuy
=

∫

Ae

(
ρ(by)(ψ2

I)
>
)
dΩ+

∫

ste

(
t̄y(ψ2

I)
>
)
dΓt +

∫

sde

(
t̄dy (ψ2

I)
>
)
dΓd, (41)

FeIp =

∫

Ae

kfρf

(
(ψ3

I)
>
,xbx + (ψ3

I)
>
,yby

)
dΩ−

∫

swe

(
ẇ · nΓw(ψ3

I)
>
)
dΓw (42)

in which e is either 1 or 2 for the superimposed elements one and two, respectively, and ste, s
d
e , and swe are

the portions of superimposed element e on the traction boundary Γt, discontinuity surface Γd, and fluid
flux boundary Γw, respectively. t̄dx and t̄dy are the components of contact tractions in x and y directions,
respectively.

The semi-discretized coupled hydro-mechanical poro-elastic finite element equations (25), (26), and (27)
can be rewritten in a more compact form as:

[M ]
{

∆̈
}

+ [C]
{

∆̇
}

+ [K] {∆} = {F} (43)

where {∆} = {ux uy p}> is the vector of unknown nodal values for displacement and pore pressure degrees

of freedom in the porous media, and {F} =
{
Fux Fuy Fp

}>
is the vector of mechanical forces and flow

fluxes.

3.4. Fully Discrete Equations

To establish the fully-discretized governing algebraic equations, the Generalized Newmark time integra-
tion schemes G22 and G11 are employed for displacement and pore pressure degrees of freedom, respectively.
The following relations link the unknown values for displacement and pore pressure at time step (i + 1) to
the corresponding values at time step (i)

üi+1 =
1

β∆t2
(ui+1 − ui)−

1

β∆t
u̇i − (

1

2β
− 1)üi (44)

u̇i+1 =
γ

β∆t
(ui+1 − ui)− (

γ

β
− 1)u̇i −∆t(

γ

2β
− 1)üi (45)

ṗi+1 =
1

θ∆t
(pi+1 − pi)− (

1

θ
− 1)ṗi (46)

where γ, β, and θ are the integration parameters that are all considered to be 0.7 in the numerical examples
of the present work. The integration constants are typically chosen in the range of [0 1]. For
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unconditional stability of the time integration θ and γ need to be greater than or equal to 0.5
and β should be greater than or equal to 0.25(0.5 + γ)2.

For a prescribed set of initial and boundary conditions and surface tractions on the crack faces, which
may include contributions from friction and contact forces, the substitution of (44-46) into (43) leads to a
linear system of equations of the following form for the displacement and pressure degrees of freedom ∆i+1

at time ti+1 in terms of known displacement and pressure degrees of freedom ∆i at time ti.

A∆i+1 = R (∆i, t̄, t̄d, q̄) (47)

in which the right hand side R is function of the degrees of freedom at time ti, the external applied traction
t̄, the crack surface tractions t̄d, and the boundary flux q̄ = ẇ · nΓ. In the next section, the calculation of
the crack surface tractions stemming from friction and contact is discussed.

4. Augmented-Lagrangian frictional contact simulation

Geomechanical porous systems experience high in-situ confining stresses due to the overburden and hor-
izontal stresses leading to large contact and frictional forces acting along natural fractures and faults. A
considerable amount of attention has been given to how to enforce interfacial constraints in the context
of the partition-of-unity FEM; a number of contact simulation methodologies and appropriate spacial and
interfacial interpolation strategies have been developed leading to smoother and more stable contact results
[30, 31, 32, 33]. In this work, an augmented Lagrange multiplier approach is adopted to enforce the normal
contact constraint via an iterative method.

When frictional contact between crack surfaces is incorporated into the model, it is convenient to rewrite
the weak form (14) as

∫

Ω

σ : δε dΩ +

∫

Ω

ρü · δu dΩ−
∫

Γt

t̄ · δu dΓ−
∫

Ω

ρb · δu dΩ−
∫

Γd

λ̄NgNdΓ−

∫

Γd

λ̄T gT dΓ = 0 (48)

in which λ̄N , gN , λ̄T , and gT are the normal contact traction, the normal inter-penetration, the tangential
contact frictional traction, and the tangential displacement jump across the contact surface, respectively.
It is noted that the inter-penetration (gN ) has been defined with a positive sign. Here λ̄T is the friction
stemming for a stick-slip friction model.

The normal contact and tangential frictional force/Lagrange multiplier fields are interpolated using one-
dimensional elements along the discontinuity as:

λ̄N = Ñλ̄N and λ̄T = Ñλ̄T (49)

in which Ñ are linear one-dimensional Lagrangian shape functions and
(
λ̄N , λ̄T

)
are the vectors of Lagrange

multipliers degrees of freedom. The nodes of the Lagrange multiplier mesh are chosen using the Vital Vertex
Method [31, 32].

At each time step, ∆i+1 and
(
λ̄N , λ̄T

)
i+1

, given the solutions ∆i and
(
λ̄N , λ̄T

)
i

at ti, are sought using

an iterative process. The iterative process starts (k = 0) with an initial guess for the vector of Lagrange

multipliers
(
λ̄N , λ̄T

)k=0

i+1
=
(
λ̄N , λ̄T

)
i
. Given

(
λ̄N , λ̄T

)k
i+1

at iteration k, the linear system of equations (47)

is solved for ∆k
i+1, from which the normal interpenetration gkN and tangential slip gkT of the crack at each

node of the Lagrange multiplier mesh are computed. If the norm of gkN is greater than a prescribed tolerance
then the Lagrange multiplier nodal vector (normal contact forces) are updated using

λ̄
k+1
N = λ̄

k
N + dλ̄

k
N , and dλ̄

k
N = KNg

k
N (50)
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Table 1: Material properties of the porous media.

E(Pa) ν ρs(kg/m
3) ρf (kg/m3) n′ kf (m3s/kg) Kf (Pa) Ks(Pa)

14.516× 106 0.3 2000 1000 0.3 1.0194× 10−6 2.1× 109 1× 1020

in which KN is an arbitrary rebounding stiffness value.

In the case of frictional contact, a similar iterative update procedure is implemented to obtain the
frictional (i.e., tangential) contact nodal forces. Sliding occurs, gT > 0, if the tangential frictional contact
force, λ̄T , required to prevent slip exceeds λ̄maxT = λ̄Nµf , otherwise a state of stick exists and the associated
tangential slip, gT , should be 0. When frictional contact is modelled, the iterative process is also conditioned
on the norm of the tangential slip gT at Lagrange multiplier nodes in a state of stick being less than a
prescribed tolerance. When this condition is not satisfied, the Lagrange multiplier nodal vector associated
with the stick-slip friction is updated using

{
λ̄
k+1
T = λ̄

k
T +KT g

k
T if λ̄T < λ̄max,k+1

T (Stick Condition)

λ̄
k+1
T = λ̄max,k+1

T otherwise (Slip Condition)
(51)

in which λ̄max,k+1
T = λ̄k+1

N µf and KT is an arbitrary rebounding stiffness.
By repeating the iterative process at each time step, the normal inter-penetration at the crack location

approaches zero as the vector of Lagrange multiplier, λ̄k+1
N , converges to the real magnitude of the contact

force at the interface of the crack. In a similar way, the frictional contact forces converge to those satisfying
the stick-slip condition. Once convergence of the iterative procedure is achieve, the solution algorithm pro-
ceeds to the next time step.

5. Results and discussion

In this section, different types of dynamic and transient wave propagation problems are simulated in
poroelastic domains. The domain of analysis is assumed to be a two-dimensional poroelastic media with
hydro-mechanical properties given in Table 1, unless stated otherwise. A unit thickness is assumed in the
out-of-plane direction.

5.1. Verification study - Consolidation

To verify the accuracy and reliability of the developed enriched finite element model in solving dynamic
transient poroelastic problems, the results obtained using the enriched FE model of the present work (with
n = 1) is compared with some available results from the literature. To this end, as shown schematically
in Figure 2 a vertical column of small width is considered under uniformly applied external traction on its
top surface. The side walls and the bottom are assumed to be impervious and there is normal displacement
restriction on them. The upper boundary is drained ( there is essential boundary condition for p, i.e., p=0 )
and under compressive normal uniform traction of 3 kN/m2. The width and length of the porous column are
0.1m and 10m, respectively, and a one dimensional coordinate system is set on the domain with its origin
at the bottom of the vertical column. Sixty rectangular Q4 elements with bi-linear polynomial
interpolations have been considered to model this problem. Figures 3 and 4 show the velocity and
pore pressure time histories of the transient response in the domain for particular control points on the
column. As seen in these figures, a very close agreement is observed between the results of the numerical
model of this work and those reported in [8].
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Figure 2: A schematic picture of the porous column used for the validation study.

0 2 4 6 8 10
Time (s)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

V
er

tic
al

 v
el

oc
ity

 (
m

/s
)

×10-4

Z=1 m
Z=6 m
Z=8 m
Lotfian & Sivaselvan 2014

Figure 3: A comparison study of the proposed enriched FE model with [8] on the variation of point velocity over time for
vertical column of porous media.
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Figure 4: A comparison study of the proposed enriched FE model with [8] on the variation of pore pressure over time for vertical
column of porous media.

5.2. Dynamic response of fractured porous media under external traction-

To investigate the effect of discontinuity on the dynamic response of porous media, a 1m×0.1m poroelastic
domain discretized by 30× 10 Q4 mesh is considered. The domain contains a vertical crack of length 0.06m
centered at x = 0.5m. The crack faces are assumed to be hydraulically impervious. Simulations with and
without crack surface contact are modeled and are compared to the case of a continous intact domain. A
uniform traction is imposed on the left side of the domain (x = 0) as:

t̄x(t) =

{
3000× t

0.1 [N/m2] if t 6 0.1s;
3000 if t > 0.1s.

(52)

The top, bottom, and right edges of the domain are assumed to be impervious and the normal displace-
ments to these edges are constrained. The left edge of the domain is fully drained. The domain, crack
geometry, and the boundary conditions are shown in Figure 5.

In this problem long term dynamic response is investigated, which is comprised of lower
frequency components. This is in contrast with the early time dynamic response, which is
comprised of higher frequency components. In the case of the former long term dynamic be-
haviour, the regular (uneriched) PNM model can be employed to accurately model the porous
media.

Figure 6a illustrates the x-displacement contour of fractured domain at t = 0.16 s when contact between
the crack faces is modeled. As seen in this contour plot, the contact no-interpenetration constraint is satisfied
across the crack faces. On the other hand, as expected, neglecting the contact condition along the fracture
faces results in a discontinuous displacement field, results for which are shown in Figure 6b. Neglecting the
contact traction results in a higher magnitude of peak displacement in the field compared to the case in which
the contact problem is accounted for. Figure 6c illustrates the differences between the response of
the fractured porous media along the center-line, y = 0.05, with and without contact modeled
along the crack faces. When contact is modeled the displacements normal to the crack are
continuous, whereas when contact is not modeled the displacements are discontinuous across
the crack.

Figures 7a, 7b, and 8 illustrate, respectively, the pore fluid velocity contour in x-direction,
pore fluid velocity streamlines, and normal strain in the x-direction (εxx) at t = 0.08s using 90×60
Q4 mesh. As seen in Figures 7a and 7b, because of the existence of an impervious crack, the
streamlines go around the fracture and the velocity of the fluid perpendicular to the fracture
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Figure 5: A schematic figure of the porous media of section 5.2.

0

0.05

0.1

y 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 

0

1

2
×10-4

(a) with contact traction along crack faces

0

0.05

0.1

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

1

2
×10-4

(b) with no contact traction along crack faces

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

x-
di

sp
la

ce
m

en
t  

×10-4

(a) with contact traction along crack faces
(b) with no contact traction along crack faces

(c) 2D plot of x-displacement along the center-line (i.e.,
y=0.05)

Figure 6: x-displacement under external uniformly distributed loading on the left edge at (t = 0.16 s).
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(a) Velocity contour in x-direction.
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(b) Velocity streamlines.

Figure 7: Pore fluid velocity at t = 0.08s.

at the interface of the discontinuity is zero (no fluid flux goes through the fracture). As seen
in Figure 8 the strain magnitude at the fracture surface region is zero due to the traction-free
interface assumption.

To further demonstrate the effect of the existence of crack on the hydraulic response of porous media,
Figures 9a and 9b illustrate the pore pressure distribution through the fractured and intact domain, respec-
tively. In the case of fractured domain it was assumed that the crack faces were completely impervious.
As seen, the discontinuity in the pore pressure across the fracture is clear in Figure 9b while Figure 9a
exhibits a continuous distribution for pore pressure. Moreover, due to the impermeability of crack faces, the
maximum pore pressure of the domain (behind the crack) is higher than that of the intact media with no
crack after the pore fluid begins to be discharged from the domain through the drained surface (left edge).
This phenomenon happens due to the trapping of the pore fluid behind the fracture in the discharge process
which makes the fluid discharge slower compared to the case with no crack. Figure 10 shows the time history
of the pore pressure at a particular point in the domain (x = 0.5667 m, y = 0.05 m) behind the fracture.
The impermeability of crack faces results in higher peak pressure in the cracked domain compared to the
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Figure 8: Strain contour (εxx) at t = 0.08s.
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(b) Fractured domain with contact

Figure 9: Pore pressure distribution under external uniformly distributed loading on the left edge at (t = 0.16 s).

intact media. Due to the existence of drained hydraulic boundary condition at the left edge, as the system
moves forward the pore pressure gradually tends to zero in steady state condition.

5.3. Dynamic response of fractured porous media under point injection

To investigate the transient response of fractured porous media under hydraulic stimulation, a 1m by
1m domain (illustrated schematically in Figure 11) is considered under point injection at the center of the
domain. The system is discretized by a 10 × 10 Q4 rectangular mesh. The boundaries are fully drained
and are assumed to be traction-free with no displacement constraints. The problem is solved for the cases
of discontinuous and intact domain. For the case of discontinuous media a vertical crack of 0.6m length
is embedded at x = 0.65m. The problem is investigated under impervious as well as permeable crack face
conditions. Contact constraints are considered for the cases in which there exists a crack. Due to the diffusive
nature of this hydraulically-stimulated problem, regular PNM is used for the simulation.

To asses the effect of the hydraulic loading rate on the dynamic response of the system, two types of
point injection rates are considered as:
• Case 1 (rapid injection):

q̄(t) =

{
0.01× t

1×10−4 [m3/s] if t 6 1× 10−4s;

0.01 if t > 1× 10−4s.
(53)

• Case 2 (slow injection):

q̄(t) =

{
0.01× t

100×10−4 [m3/s] if t 6 100× 10−4s;

0.01 if t > 100× 10−4s.
(54)

Figures 12a and 12b illustrate the early responses of the pore pressure at the mid-point of the domain as
a function of time for two different injection rates into fractured and intact (continuous) domains. For the
case of rapid injection, a peak-pressure point exist in the pore pressure time history. After the peak-pressure,
the pore pressure abruptly drops-off before gradually increasing to a steady-state value. The pressure peak
in the high injection rate simulation are a result of the initially undrained behaviour of the porous me-
dia. In contrast, under slow injection the pore pressure increases in a nearly monotonically way towards
a steady-state. The pore pressure response of an intact domain under both rapid and slow injection are
also illustrated in Figures 12a and 12b. In both cases, the pore pressure response of the intact domain falls
beneath that of the fractured domain. This behaviour is reasonable, since the cracks were assumed to be
impervious and so the effective hydraulic conductivity of the fractured domain is less than that of the intact
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Figure 10: Time history of pore pressure at point (x = 0.5667 m, y = 0.05 m) for cracked and intact domains.

Figure 11: Schematic picture of porous media under point injection.
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Figure 12: Pore pressure time history under point injection.

(continuous) domain. As a means to further verify the PNM and contact implementations, the simulated
hydraulic response of the fractured media with fully-permeable crack surfaces is also included in Figure 12b.
The responses of the fractured media with fully-permeable crack surfaces and contact is almost identical to
that of intact domain, as would be expected.

5.4. Dynamic response under point injection in porous media with multiple fractures

To demonstrate the applicability of the developed model in hydro-mechanical simulation of porous me-
dia with multiple fractures, Figure 13 exhibits the pore pressure contour of a domain with three cracks
as shown in the figure. The domain is considered to be under Case 2 type of point injection as repre-
sented in the preceding example in section 5.3. In the example PNM is used to introduce impermeable
fractures. The domain is discretized by a 20 × 20 Q4 rectangular mesh. To specify the geometry of the
fractures of this model the starting and finishing points of the cracks are given. For the vertical crack:
(xstarting = 0.3m, ystarting = 0.2m) and (xfinishing = 0.3m, yfinishing = 0.8m); for the first sloping crack:
(xstarting = 0.5m, ystarting = 0.1m) and (xfinishing = 0.67m, yfinishing = 0.4m); and for the second sloping
crack: (xstarting = 0.67m, ystarting = 0.6m) and (xfinishing = 0.5m, yfinishing = 0.9m). Figure 13 shows a
snapshot of pore pressure distribution at t = 0.055s. As expected, the figure shows a discontinuous distri-
bution for the pore pressure due to the impermeability assumption on crack faces.

5.5. Stick-slip frictional contact behaviour of fractured porous media

To examine the ability of the developed FE model to simulate frictional contact phenomenon in porous
media a 1m×0.1m domain with a tilted crack is considered, as schematically shown in Figure 14. The crack
faces are assumed to be impervious. A time dependent traction of the following form is applied on the left
side (x = 0) of the domain.

t̄x(t) =

{
3000× t

0.1 [N/m2] if t 6 0.1s;
3000 if t > 0.1s.

(55)

Top, bottom, and right boundaries are assumed to be impervious and normal displacements are restricted.
The left edge is hydraulically open. In this problem long term dynamic response is investigated,
which is comprised of lower frequency components. This is in contrast with the early time
dynamic response, which is comprised of higher frequency components. In the case of the
former long term dynamic behaviour, the regular (uneriched) PNM model can be employed
to accurately model the porous media.
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Figure 13: Pore pressure distribution under point injection at t = 0.055s in porous media with multiple fractures.

Figure 14: Schematic picture of porous media with inclined crack.

To simulate different frictional contact behaviour, from full-slip to perfect-stick conditions, four different
friction coefficients of µf = 0.00, µf = 0.05, µf = 0.10, and µf = 0.50 are examined. Results for each
of these coefficients are shown in Figures 15a, 15b, 15c, and 15d, respectively. Figure 15e shows the
variation of x-displacements as a function of x along the center-line (i.e., y = 0.05) for different
friction coefficients. As the friction coefficient increases the magnitude of the displacement
discontinuity decreases. As can be observed, by increasing the friction coefficient magnitude from 0 to
0.5, the contact behaviour of the system changes from the condition of fully-slip to perfect-stick response.

5.6. Wave propagation in porous media: Regular vs enriched FE

In this section the ability of the proposed PNM-GFEM-M model in simulating transient wave propa-
gation is assessed for the case of velocity impact problem in continuous and fractured porous media. The
results are compared with regular FEM/PNM simulations to demonstrate the capability of the developed
enriched FE model in suppressing the high-frequency spurious oscillations in both displacement and pore
pressure variables. In the numerical simulations of this section, bi-quadratic (Q9) and bi-linear
(Q4) polynomials are used as shape functions for interpolation of the displacement and pore
pressure fields, respectively.
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Figure 15: x-displacement under frictional contact.
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Figure 16: Schematic picture of porous media under velocity impact loading.

5.6.1. Impact problem in continuous media

The fixed-velocity impact phenomenon is known to be a good benchmark problem to examine the accuracy
of a developed finite element method for wave propagation[35]. To demonstrate the ability of the developed
enriched finite element model in solving the problem of transient wave propagation in porous media a
poroelastic domain of 6m× 0.1m is considered. An impact mechanical load is applied on the left edge of the
domain and is imposed in the form of a fixed velocity boundary condition of u̇x = 1m/s. All the boundaries
are considered to be fully-drained and with displacement restrictions normal to the domain. The considered
domain, the boundary conditions, and the loading are exhibited schematically in Figure 16.

The impact problem investigated here is similar to the benchmark problem for evaluating
the accuracy of dynamic finite element analysis for non-porous media [35]. In the case of non-
porous media, it is known that the velocity response is a step function with no oscillations.
In the case of porous media, we are not aware of the existence of an analytical solution for
this problem. However, it’s expected that the velocity response of the solid matrix will be
similar to the non-porous media case, but that the response will be a step-like function with
a steep but non-infinite slope. The slope of the step-like function is expects to decrease as the
wave propagates due to diffusion of the fluid in the porous media. The expected behaviour of
the pore pressure is also non-oscillatory. The compressive wave in displacement/velocity field
stimulates pore pressure at the wave front. The induced pore pressure at the velocity front
is then expected to decay over time due to diffusion. Hence, it is physically sensible to see a
moving pulse, free from oscillations in the pore pressure during the wave propagation.

For a 20 × 2 mesh, Figures 17 and 18 illustrate the time histories at the center of the domain at
(x = 3m, y = 0.05m) for x-velocity and pore pressure, respectively. Comparing the results of con-
ventional/unenriched FEM with those obtained using the GFEM model of this work demonstrates the
shortcoming and deficiency of regular/conventional FE models and also, the requirement for employing en-
riched/unconventional finite element models for wave propagation analysis of porous media. As can be seen in
both figures, the velocity and pore pressure curves exhibit high-frequency non-physical spurious oscillations
over time in the case of conventional FEM. However, the oscillations (numerical dispersions that appear due
to the Gibb’s phenomenon) can be significantly suppressed by employing the GFEM model. In other words,
using the GFEM model for porous media results in much more accurate wave patterns in both velocity and
pore pressure fields. In Figure 17 it can be observed that using the GFEM model leads to a velocity-time
profile that is very close to the step-function response, which is the analytical solution of this impact problem.

It is very important to note that in Figure 18 the results of the GFEM model have been provided for
different types of enrichments for the displacement field (u) and pore pressure field (p). As seen in this
figure, the most accurate results for pore pressure wave pattern are obtained when both displacement and
pressure fields are enriched using trigonometric basis function in the context of GFEM. The GFEM models
that are enriched only in the displacement field exhibit relatively more oscillations compared to the GFEM
models that are enriched for both displacement and pore pressure. Moreover, increasing the cutoff number
of enriched basis functions embedded in the GFEM model leads to the wave results with fewer spurious os-
cillations and subsequently to more accurate solutions. Figure 19 shows the wave propagation results of pore
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Figure 17: Time history for x-velocity at the mid point of the porous media under impact loading. Conventional FEM Vs the
developed GFEM model of this work with different types of enrichment for displacement and pore pressure fields.

pressure for a longer period of time. In this case, the effect of wave reflection from boundaries are observed.
As seen, when using the conventional FEM model the non-physical oscillations exist for primary emitted
wave (the very first pulse) as well as the waves reflected from the boundaries (the second pulse onward).
The effect of physical damping/dissipation (which is attributed to the viscous pore fluid) is apparent from
the attenuation of the pressure pulse as the wave travels. Also it is observed that the spurious oscillations
tend to gradually subside over time due to this attenuation.

Figure 20 demonstrates a convergence study of regular FE approach for the impact problem.
Different mesh resolutions are considered to simulate the wave propagation response. As seen,
the conventional FEM approach shows noticeable numerical dispersions and oscillations even
for highly refined meshes. However, the refined regular finite element solutions are converging
(qualitatively) to enriched finite element result (see Figure 18). In Figure 20 the regular FEM
model with the highest mesh resolution (400× 2 elements) has 12015 degrees of freedom while
in Figure 18 the GFEM model with the coarsest mesh resolution (20× 2 elements with n = 1)
has 1435 degrees of freedom. Although the number of degrees of freedom in regular FEM
simulation is more than 8 times higher than that of the enriched GFEM model, the enriched
model provides more accurate (spurious oscillation-free) results. Moreover, the computational
cost of the simulation using the mentioned enriched GFEM model is proportionally lower than
that of the regular FEM simulation.

Role of Permeability

To assess the effect of the permeability parameter on wave propagation response of porous media, Figure
21 shows the pore pressure time history of the same problem for a lower permeability/diffusivity porous
media case (Kf = 1.0194 × 10−7). As seen, lower values for permeability results in higher peak pore pres-
sures. Moreover, regular FE analysis of porous media with lower permeability shows even relatively less
oscillations compared with the preceding case with Kf = 1.0194 × 10−6 since the hydraulic behaviour is
closer to undrained, as the permeability decreases.

To have a better intuitive understanding to the effect of permeability on transient wave propagation
response of porous media, Figures 22 through 25 show the wave propagation responses for pore pressure and
velocity variables at the mid point of the media for various values of permeability. Comparing the figures
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Figure 18: Time history for pore pressure at the mid point of the porous media with Kf = 1.0194×10−6 under impact loading.
Conventional FEM Vs the developed GFEM model of this work with different types of enrichment for displacement and pore
pressure fields.
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Figure 19: Time history of pore pressure at the mid point of the porous media under impact loading with wave reflection from
the boundaries. Conventional FEM Vs the developed GFEM model of this work.
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Figure 20: Convergence study of conventional FE approach for pore pressure at the mid point.
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Figure 21: Time history of pore pressure at the mid point of the porous media under impact loading with wave reflection from
the boundaries with Kf = 1.0194 × 10−7. Conventional FEM Vs the developed GFEM model of this work.
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Figure 22: Time history of pore pressure under impact load-
ing for Kf = 1.0194 × 10−6.
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Figure 23: Time history of pore pressure under impact load-
ing for Kf = 1.0194 × 10−7.
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Figure 24: Time history of pore pressure under impact load-
ing for Kf = 1.0194 × 10−8.
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Figure 25: Time history of velocity under impact loading for
various values of permeability.

reveals the crucial effect of diffusivity value on wave propagation behaviour. As is clear in the figures, de-
creasing the permeability of porous media results in the reduction of the frequency of pressure wave/pulse.
Also, the long-term pore pressure is dependent on permeability. In other words, for low permeability media
(Figure 24) there is a positive non-zero steady-state pore pressure. Whereas for the higher permeability
cases (Figures 22 and 23) the pressure keeps its periodic trend of the wave pulse in which the peak value
is monotonically decreasing. Moreover, the results show the highest rate of attenuation/dissipation for the
lowest permeable case.

5.6.2. Impact problem in fractured media

To demonstrate the transient wave propagation response in a cracked porous media under impact load-
ing (the same velocity impact loading of the earlier example is considered) and to investigate the inter-
action of hydro-mechanical wave pulse with fracture, a cracked poroelastic domain of 3m × 0.5m with
kf = 1.631 × 10−6m3s/kg is considered. Contact constraints across the fracture are satisfied through the
ALM technique and the crack face are assumed to be impervious. The domain is discretized by a 20 × 10
rectangular mesh. A 0.3m long nearly vertical crack, inclinded at an angle of 3.6×10−2 radians, is embedded
in the media centered at x = 1.1m.
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Figure 26: Pore pressure signal in fractured porous media under impact loading at t = 0.0092s.

Figures 26a and 26b exhibit wave pattern for pore pressure distribution using the conventional PNM and
the enriched PNM-GFEM-M model of this work (n = 1 for both displacement and pore pressure variables),
respectively. As observed in these figures, in the case of the conventional PNM, the wave pattern (at a par-
ticular time) is noisy and asymmetric owing to numerical dispersions emerging from the regular polynomial
interpolations used in conventional FEM. To be more clear, the interaction of the wave pulse and the imper-
vious crack (when the wave front hits the crack surface) results in very abrupt and sharp spacial variation
in the pore pressure distribution in the vicinity of the fracture. These sharp variations cannot be captured
and modeled accurately using conventional interpolations, resulting in very severe numerical dispersion as
seen in Figure 26a. Furthermore, the small amount of asymmetry introduced into the problem, by slightly
inclining the fracture, leads to very asymmetric solution. Unlike the regular PNM, as seen in Figure 26b,
using the developed PNM-GFEM-M leads to much more accurate and tangible results for the pore pressure
contour of the interaction between the wave pulse and the crack. In addition, the PNM-GFEM-M solution
is nearly symmetric, as would be expected for a nearly symmetric problem.

6. Conclusions

A two-variable (u − p) mixed Finite Element Model (FEM) has been developed for dynamic and wave
propagation analysis of continuous and fractured porous media. General idea of the Phantom Node Method
(PNM) is employed to introduce strong discontinuity of displacement and pore pressure across the crack faces.
Trigonometric enrichments are included in the context of the Generalized Finite Element Method (GFEM)
to rectify the problem of numerical dispersion that can appear in transient wave propagation simulation of
porous media. This way, a new GFEM-enriched PNM mixed finite element model (i.e., PNM-GFEM-M) is
developed for coupled dynamic hydro-mechanical simulation of saturated porous media. To satisfy the no-
interpenetration condition along the crack faces and to simulate the frictional contact in stick/slip regimes,
an Augmented Lagrange Multiplier Method is implemented.

Through various numerical examples, the effectiveness of the developed enriched FE model over conven-
tional approaches is demonstrated. It has been demonstrated that the high-frequency numerical dispersions
that may appear in regular FEM/PNM wave results (that are attributed to the Gibb’s phenomenon) can
be successfully suppressed in the hydro-mechanical wave propagation solutions of porous media using the
enriched mixed FE model of this work. Moreover, it was shown that the most accurate wave results with
the least amount of spurious oscillations are achieved when both the displacement and pore pressure fields
are enriched with trigonometric interpolations; the larger the cutoff number for enrichments, the better the
spurious oscillations are inhibited.

Lastly, some interesting hydro-mechanical features of the dynamic response of porous media are doc-
umented. When fluid is rapidly injected into a porous media, a non-monotonic response, characterized
by a peak-pressure point in the injection pressure time history, is observed. This is in contrast to the
monotonically-increasing trend of the injection pressure time history observed when fluid is injected slowly.

The developed Mixed GFEM-enriched Phantom Node Method (PNM-GFEM-M) is a promising model
for the simulation of hydro-mechanical wave phenomena and transient dynamic behaviour in both con-
tinuous and fractured porous media. It is worth mentioning that the proposed computational
approach can be extended to moving cracks in applications like 3D hydraulic fracturing by
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adding suitable crack propagation criterion and evolving the discontinuities by replacing the
regular element with superimposed elements with additional phantom nodes at the locations
where failure occurs and fracture advances.

The present article does not concentrate on the computational efficiency of the method for
large-scale problems. Given the significant spurious oscillations which appear in the regular
FE simulations (even with highly-refined meshes) of high-frequency waves or time-harmonic
waves with small wavelengths and the notable capability of the presented enriched FE method
to more accurately simulate the wave problems, a future investigation should address the
cost-effectiveness of the enriched scheme for large-scale problems.
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