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Abstract 
The building of small reservoirs is a typical measure taken by farmers to moderate the extremes of 
the hydrologic regime of a semiarid climate, which is characterized by the alternation of a short 
rainy season with long periods of dryness. South India is an example of a region that has utilized 
ancient village-level small rainwater harvesting (RWH) reservoirs (also known as tanks) for 
seasonal water storage. Decades of increasing dependence on groundwater has caused these tanks 
to fall into a state of disrepair. Now the severity of depleted groundwater resources is driving 
renewed efforts at the state and national levels to revive RWH systems. Critical to the success of 
the revival efforts and tank management is the regular monitoring of the water volume variations. 
Although synthetic aperture radar (SAR) observations have long been recognized as an important 
source of remote sensing (RS) data for monitoring surface water (SW) under all-weather 
conditions, and is used operationally for SW mapping applications, limited information is available 
about the limits of SAR RS technologies for small reservoirs for irrigation purposes.  
 
This thesis describes a RS approach to water volume monitoring in small reservoirs (5-80 ha in 
size) in the Gundar river basin, Tamil Nadu state in S. India. Empirically-derived water storage 
relationships were evaluated using TanDEM-X digital elevation model (DEM) data combined with 
estimates of SW extent from C-band Sentinel-1A (S1-A) SAR observations, and Landsat-8, 
Sentinel-2, and PlanetScope visible/infra-red observations. The TanDEM-X DEM data revealed 
strong power-type relationships between SW extent and storage volume, and were combined with 
satellite SW observations to estimate and monitor tank volumes. Three models of volume-area (V–
A) relationship(s) were assessed: a tank specific (TS) model, a size-dependent categorical (CAT) 
model and a generalized (GEN) model for all tanks. For volume estimation, the CAT model 
produced the lowest root mean squared error (RMSE) as a percentage, VERR, of volume for the 
basin. While tank SW area was estimated using S-1A data, the narrow SW area of some tanks, 
especially close to the retaining wall presented challenges for operational use. Two examples 
demonstrate the approach: 1) the maximum volume of water in 559 tanks in the basin for two 
monsoon seasons shows tank structures significantly under-performing and 2) a time-series 
analysis using a high-volume of satellite observations shows the cycle of water (inflow and 
outflow) at the tank scale.  
 
This thesis illustrates the applicability of using a satellite RS observation approach to continuously 
monitor RWH, and beyond this, the critical need of an adopted multi-sensor approach (optical and 
radar) to retrieve high spatio-temporal resolution monitoring. The ability to estimate reservoir 
volumes using satellite RS has wide reaching implications in transboundary water management. 
RWH tank systems are currently not continuously monitored and thus, our findings represent a 
unique contribution to the hydrologic science community by illustrating the applicability of using 
a satellite RS observation approach to monitor RWH structures during monsoon, habitually cloud-
covered, seasons.  
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Chapter 1 

General Introduction 

The availability of freshwater resources in the form of lakes, reservoirs, groundwater and river 

systems are critical for terrestrial life and ecosystem services. Only 2.5 % of the world’s total water 

supply is freshwater and only 29.9 % and 0.26 % of the total freshwater represent groundwater 

resources and surface waters stores respectively (Degefu, Weijun, Zaiyi, Liang, & Zhengwei, 

2018; Shiklomanov, 2000). Global freshwater availability and variability has been linked to a 

variety of stressors influenced by human, climatic, and physiographic factors (Kummu et al., 2016; 

Vorosmarty, Green, Salisbury, & Lammers, 2000). These stressors have increased water demand 

and placed increased pressure on variable and unpredictable freshwater resources. Numerous lines 

of evidence suggest that water shortages and water scarcity will be one of the world’s greatest 

challenges in the 21st century (Kummu et al., 2016; Vorosmarty et al., 2000; Wada et al., 2010).  

1.1 Motivation  

In India, like many countries in semi-arid climatic zones, water stress for human activities 

is driven not only by population increases, changes in food consumption, and climate driven 

changes in water availability (Wiltshire et al., 2013), but also by spatial and temporal differences 

between water availability and water demand (Degefu et al., 2018). In semi-arid regions where 

rainfall variability is high, some communities have developed adaptation strategies to deal with 

climatic variability by building rainwater harvesting (RWH) structures. Characterized by both 

spatial and temporal mismatches in water stress and availability, the climatic regime of South India 

is one such example of a region that has developed RWH structures. Across S. India are thousands 
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of human-made reservoirs (known as tanks), the construction of which date back 2000 years 

(Kumar, Patel, Ravindranath, & Singh, 2008). A tank is an ancient engineered structure designed 

at the localized scale with earthen embankments to store water for later use. Often arranged in 

cascading systems with a single tank serving one village, these tanks were developed as a strategy 

for managing the seasonal and inter-annual rainfall variability (Kumar et al., 2008). However, the 

underuse of these systems in recent decades, and the over extraction of groundwater, has caused 

many tanks to fall into a state of disrepair (Appendix A).  

Evaluating the rehabilitation of these structures and their re-emerging use for an effective 

mitigation measure against climate extremes has generated a significant amount of literature from 

non-governmental organizations (NGOs), scientists and public health specialists around the world 

(Gunnell & Krishnamurthy, 2003; Kumar & Rao, 2017; Kumar et al., 2013; Sakthivadivel, 

Fernando, & Brewer, 1997; Shah, 2004). This literature questions whether these systems, 

developed decades ago during a very different climatic regime, still serve their intended purpose 

in the Anthropocene. While recent efforts have contributed to a revival of RWH structures, there 

still exists a significant knowledge gap regarding the volume variation of water within these 

systems.  

Quantifying variations in tank water volumes is not possible from conventional ground 

based stage measurements in S. India because it is estimated that more than 120,000 RWH tanks 

exist (Gunnell & Krishnamurthy, 2003). The availability of remotely sensed data and image 

processing techniques offers a potential cost and time effective means of monitoring water volume 

changes in tank systems which is of significant use for farming communities in this region.  
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1.2 Aims and objectives  

The overall intent of this thesis is to provide a better understanding about how remote 

sensing (RS) observations can contribute to a greater understanding of the hydrology, and 

particularly water volume dynamics of RWH tank systems. Given the limited RS observation-

based studies of tanks in S. India and the importance of such observations as an intermediary to 

increased understanding of tank water dynamics, this thesis attempts to answer the question: can a 

remotely-sensed observation framework be developed to monitor the surface water storage (SWS) 

of tank systems? Developed in this thesis, the tank water volume space-based approach combines 

a novel high-precision global digital elevation model (DEM) to derive simple empirical models 

with the fusion of a dense time-series of repeat pass synthetic aperture radar (SAR) observations 

and high resolution multispectral visible infrared PlanetScope (PS), Sentinel-2A (S2) and Landsat-

8 (L8) satellite observations.  

This study has three closely related sub-objectives concurrent to developing a tank water 

volume space-based monitoring approach: (1) evaluate the applicability of the new novel 

TanDEM-X DEM for the accurate retrieval of tank bathymetry, (2) evaluate the suitability of 

empirical power models to quantify tank water volume at three levels – tank specific (TS) level, a 

clustered categorical (CAT) level, and a generalized (GEN) level, and (3) demonstrate the 

suitability of volume estimation using surface water (SW) extent extracted from a dense archive 

of freely available RS space-based radar and optical observations. Cumulatively, the former sub-

objectives will provide an understanding as to the degree to which space-based volume estimates 

can inform mass water balance components, given the current and future earth observation (EO) 

data climate, and contribute a greater understanding to tank hydrology. This thesis provides the 

first step required to evaluate and provide understanding for the availability of water in tanks 
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systems at large spatial scales. This monitoring is crucial for the understanding and 

characterization of water mass balance dynamics in these RWH systems and have applicability in 

other regions of the world. 

1.3 Motivation of research  

The Indian population is expected to increase by 450 million, one-third more than at present 

by 2050. This increase in population along with projected increase in average annual temperature 

by 2 degrees Celsius by 2050 for South Asia (Hijioka et al., 2014), and increasingly sporadic 

monsoon periods in S. India (Hijioka et al., 2014; Karmakar, Chakraborty, & Nanjundiah, 2017), 

highlights the need to better understand the usage of tank systems to mitigate against climate 

extremes. Given the expected increase in population and changes in climate, livelihood’s in India 

will continue to face challenges surrounding water availability. For S. India, a region where 

agriculture is primarily rain fed and groundwater irrigation is no longer sustainable, the 

rehabilitation of SW stores in the form of tanks is of critical importance to improve future water 

management.   

The usage of RS data to understand tanks is key to provide information over large spatial 

scales and for inaccessible locations. This information can equip policy makers and scientists with 

tools to evaluate the impact of tanks on the water budget. The goal is to use near real-time RS data 

to better inform resource management decisions, by providing water allocation estimates for 

irrigation based on current hydrological conditions, as opposed to a fixed amounts or knowledge 

based on the modelling of historical data. The presented research seeks to provide a method for 

monitoring water volume in tank systems in S. India with potential applicability to other regions 

with similar water issues.  
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1.4 Structure of thesis 

This thesis has been written following the manuscript structure in which a standalone paper 

is included as a separate chapter. Chapter 2 provides background information on tank structure, 

water balance components and the influence of climate change as well as a review on RS of inland 

water body monitoring, with a focus on SAR. Chapter 3 is the appended paper, entitled “Estimating 

seasonal surface water storage in rainwater harvesting reservoirs in southeast India using satellite 

remote sensing”. Chapter 4 identifies the limitations of the study, and lists recommendations for 

future studies utilizing RS observations to contribute greater understanding of tank systems. 

Chapter 5 provides a conclusion.  

1.5 Appended paper synopsis  

To monitor water volume changes in tanks, empirical volume-area (V-A) relationships 

were developed for a large subset of tanks (n=72) using a global DEM product and subsequently 

combined with SW extent extracted from a series of visible/infra-red and SAR satellite scenes. 

While studies have implemented empirical equations to approximate reservoir bathymetry in other 

semi-arid environments (Annor et al., 2009; Liebe, Giesen, Andreini, Steenhuis, & Walter, 2009; 

Sawunyama, Senzanje, & Mhizha, 2006), no work has focused on water volume estimation for 

tanks in S. India. Furthermore, in the context of continuously monitoring RWH tanks, neither the 

SAR techniques nor the implementation of a high-resolution global DEM to evaluate water storage 

has been performed previously. 
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Chapter 2 

Background and Literature Review 

In this chapter background context relevant to the study is presented before a literature review on 

tank SWS using RS space-based observations. Background information includes a description of 

the study area and detail on SWS structures and groundwater irrigation in S. India. Further 

discussion follows regarding changing climate implications, the physical structure of tanks and 

their water balance, and finally the current approaches used to understand tank systems. The 

literature review focuses on the methods available to measure SWS of reservoirs, with a focus on 

SAR, and concludes by outlining how the former discussed methods can apply for RWH structures 

in S. India.  

2.1 Study region and context  

The Gundar river basin (5647 km2) in the S. Indian state of Tamil Nadu (Figure 2.1a) is a 

river basin with a large concentration of small seasonal water storage reservoir structures and was 

selected for the specific study region. Figure 2.1a highlights the spatial extent of tanks across the 

state of Tamil Nadu, occupying 1.61 % of the state area, as captured from a global surface water 

(GSW) dataset (n= 36,575) (Pekel, Cottam, Gorelick, & Belward, 2016). The basin has a semi-

arid climate which is characterized by two two-month, monomodal monsoon climate seasons and 

an average rainfall of 770 mm per year.  

The Gundar is referred to as a “monsoon shadow area” (Sato, 2017), where peak rainfall is 

not observed during the typical southwest monsoon (SWM) period (June–September) but rather 

during the dryer northeast monsoon (NEM) season (October–December) (Figure 2.2). For 
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agriculture in the region, while total annual rainfall is important, the timing and intensity during 

the monsoon season is equally important. Figure 2.2 shows mean estimated precipitation for the 

Gundar from 1981–present and highlights that each year the NEM provides most of the annual 

precipitation, whereas precipitation from the SWM and other months are minimal in comparison 

(Funk et al., 2015). Also, the SWM and NEM precipitation patterns are spatially heterogeneous 

across the Gundar, with the upper basin experiencing higher precipitation levels during the NEM 

than the lower basin, and the opposite for the SWM. For centuries, this precipitation regime has 

enabled farmers to rely on small storage reservoirs, which often are the only source of water 

available for dry-season crops. During the NEM season, rice is the primary crop, while cotton, 

groundnuts and a variety of pulses are cultivated during other periods of the year (Van Meter, 

Steiff, McLaughlin, & Basu, 2016). This productivity is sustained in the basin by an estimated 

2314 tanks in combination with groundwater pumping.  

 

 

 

 

 

(a) (b) 

Figure 2.1: Location of the Gundar River Basin. (a) Distribution of tanks across Tamil Nadu identified 
from the GSW dataset. (b) Upper Gundar field data site visited June 2016. 
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Figure 2.2: Yearly precipitation in the Gundar River Basin separated by the two distinct monsoon seasons and the 
other months. Data calculated from Climate Hazards Group InfraRed Precipitation with Station data gridded rainfall 

product (Funk et al., 2015). 

 

2.2 Small reservoir irrigation tanks 

Small reservoirs are known under multiple names in various regions of the world: tanks or johads 

in South Asia, açudes in Brazil, small reservoirs or micro-dams in sub-Saharan Africa, and lacs 

collinaires in North Africa. Also, the definition of a small reservoir is not agreed upon. Here the 

generic term ‘small reservoirs’ or ‘tanks’ is used to define small reservoirs as reservoirs with a 

surface area smaller than 100 ha.  

Small seasonal water storage reservoir structures are an indispensable part of rural village 

life in S. India. They can be found across the S. Indian landscape with some being thousands of 

millennia old (dating back to 2600 BC) and can typically be described as small man-made reservoir 

structures developed using earthen banks across natural depressions in the landscape (D. Kumar 

et al., 2008; Pandey, Gupta, & Anderson, 2003). Tanks shape the landscape from their dense 

distribution; 159,000 and 39,000 in S. India and Tamil Nadu respectively servicing 65,000 and 

15,000 villages (Aubriot & Prabhakar, 2011). Historically, the primary purpose of these ancient 

structures was to alleviate periods of water shortages by storing water that can be harvested during 
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the monsoon and the subsequent dry season. These systems were vital for farmers to make 

decisions regarding when, what, and how much to plant.  

Dependence on SW for irrigation has been overtaken by the extensive use of groundwater 

in the region (Kajisa, Palanisami, & Sakurai, 2007; D. Kumar et al., 2008; Van Meter et al., 2016). 

Until the 1950s, tank irrigation was a sustainable strategy to cope with rainfall variability, 

providing irrigation to over 20 % of the cropped area in the S. Indian states. Historically, although 

these systems provided an indispensable water supply capable of sustaining the socioecological 

balance of the village ecosystem, many tanks have fallen into a state of disrepair and have become 

defunct. While the reasons for the decline in tank functionality are multifaceted and include an 

array of political, social, physical, and economic factors (Bitterman, Tate, Van Meter, & Basu, 

2016; Kajisa et al., 2007; Kumar & Rao, 2017; Mosse, 2018), the introduction of private 

groundwater wells with the onset of the Green Revolution in the 1960s has caused the significance 

of tanks as collective water resource system to greatly diminish.  

Before the Green Revolution, India was a minor consumer of groundwater for agricultural 

irrigation compared to other countries. This has drastically changed; from 2000 onwards, India has 

extracted more groundwater than any other country in the world, accounting for 25 % of the worlds 

extracted groundwater (Shah, 2004, 2009) (Figure 2.3). The Green Revolution, combined with 

new pump technology and cheap rural electrification, led to a 130-fold increase in irrigation wells 

across India, from 0.15 million in 1960 to nearly 20 million by 2000 (Sishodia, Shukla, Graham, 

Wani, & Garg, 2016). While groundwater irrigation has driven the development of India's 

agriculture economy by increasing yields and productivity (leading to improved livelihoods), the 

scale of groundwater development and reliance has caused severe groundwater depletion and 

degradation. For the southern state of Tamil Nadu, groundwater extraction now exceeds 100 % of 
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the natural groundwater recharge for several districts. As a result, one third of the states’ 

groundwater resources are identified as over exploited (Government of Tamil Nadu, 2015). The 

increase in groundwater extraction and the decline in the use of SW for irrigation has occurred 

concurrently. The ratio of tank irrigated area in India has decreased from 16 % in 1952-53 to 5 % 

in 1999-2000, whereas the ratio of well irrigated area has increased from 30 % to 55 % for the 

same period (Palanisami et al., 2010). 

 

Figure 2.3: Growth in agricultural groundwater use in selected countries: 1940–2010. Source (Shah, 2004, 2009) 

 

The impact of decline in the use of tank structures on the rural communities is multi-

facetted. Apart from irrigation and domestic use, tanks serve a variety of purposes with 

applications to forestry, fisheries and brick-making (Kumar & Rao, 2017). Furthermore, the shift 

from tank to groundwater as the dominant source of irrigation has directly impacted inequality and 

poverty (Gunnell & Krishnamurthy, 2003; Kajisa et al., 2007). In theory, access to water from tank 

irrigation was available to all farmers in the command area through an equitable management 

system. However, when water reliance shifted away from tank irrigation to private wells, water 

became limited to the owners of the wells or those who can afford to buy from the owners. A study 
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on changing farming practices in Tamil Nadu found that there was a reduction in both crop yield 

and income for tank dependent farmers, causing a growth in the more reliable water source of well 

irrigation that subsequently produced an increased deterioration in tank performance (Kajisa et al., 

2007). This highlights that a well-functioning tank is directly linked with income, and is 

particularly important for the small, marginalized farmers whose livelihood is heavily dependent 

on tank water supply. Unfortunately, the continued depletion of groundwater is not a sustainable 

means of irrigation and as a result, village level RWH structures are being rehabilitated and re-

evaluated as a promising solution to facilitate groundwater replenishment and recharge and for 

SW storage for later use (Government of Tamil Nadu, 2015).  

2.3 Climate, forecasted changes, and livelihoods  

The effort and interest in tank rehabilitation in recent years is driven by the knowledge that 

the livelihoods of rural S. Indian farmers, under current and future stressors (non-climate and 

climate-driven), are heavily threatened by the lack of water availability. Stressors refers not only 

to climate-induced stressors but also to rapid growth in population, increased agricultural need and 

industrial growth; all the former increase the demand for freshwater (Lele, Srinivasan, Thomas, & 

Jamwal, 2018). Groundwater, a resource which is declining rapidly, is the main source of irrigation 

for S. Indian agriculture (Kumar & Rao, 2017). Moving forward, re-introducing and utilizing local 

SW structures and protecting groundwater from further unsustainable declines should be a priority.  

The impact of climate change on the availability of water resources in S. India is heavily 

documented (Lele et al., 2018; Mall, Gupta, Singh, Singh, & Rathore, 2006; Pandey et al., 2003; 

Siderius et al., 2015). According to the Intergovernmental Panel on Climate Change (IPCC) 

climate change scenarios, S. India will likely be affected by rising temperatures, a higher 

variability of monsoonal rainfall and an increase in climatic extreme events such as floods and 
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droughts (IPCC, 2014). These developments have potential to affect the future sustainable 

functionality and management of RWH structures to an unknown extent. Hence water storage to 

conserve rainwater due to climate change will gain more importance in the future (Siderius et al., 

2015). The state of Tamil Nadu is of particular concern because the state is fully dependent on 

monsoon-rains for recharging its water resources and over 50 % of agricultural land requires 

irrigation (Government of Tamil Nadu, 2015).  

2.4 Tank structure and water balance 

A two-dimensional profile of typical geometry and topography of a tank structure found in 

S. India is shown in Figure 2.4. While this is only a single tank, each tank system is connected to 

the next in cascades with overflow from upstream tanks feeding downstream tanks or waterways. 

During monsoon rains, precipitation and runoff from the tank catchment area inundates the 

immediate tank area. Historically, sluices were constructed within the tank bund (retaining wall) 

and opened for water to route from the tank into irrigation channels and after to fields downstream 

in the command area (i.e., tank-supported irrigated fields). Wells are also often present within the 

command area to supplement tank irrigation and are recharged annually by water from the tank 

(Glendenning & Vervoort, 2010). When the water level in the immediate tank area falls below the 

sluice channel, this water is referred to as ‘dead storage’ and contributes primarily to groundwater 

recharge and evaporation (Van Meter et al., 2016).  
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Studies reported in the literature have shown that tank rehabilitation not only increases tank 

storage and in turn irrigation potential, but that rehabilitation heavily supports groundwater 

replenishment. In Tamil Nadu, it was observed that tanks help to increase the recharge by 40 

percent (Van Meter et al., 2016). In the absence of tanks, especially in low rainfall years, water 

levels in the wells drastically drop. Furthermore, if tanks are present but do not receive adequate 

supplies of rainfall, well recharge is relatively small (Srivastava et al., 2009). Therefore, the loss 

of tank capacity correlates to a loss of groundwater recharge in tank dominated landscapes. Despite 

this, tank rehabilitation and the associated positive impacts on rural livelihoods and water 

availability is still in its infancy. Centuries ago when tanks were successfully utilized for water 

surface storage and groundwater recharge, the cropping dynamics, political structure and 

groundwater levels were quite different. It was unknown how efficient these structures were for 

serving their intended irrigation purpose. Therefore, to better understand the tank water storage 

dynamics, scientifically-driven information on tank water availability is necessary. This should 

include knowledge of the spatial and temporal changes of the water mass balance variables.  

A tank’s water balance can be expressed in equation (2.1) as follows: 

ΔV = (Rt + ROt) – (It + Pt + Et )    (2.1) 

 

R 

RO 

P 

E 

I 

Figure 2.4: Schematic diagram of tank structure with tank components and mass balance variables 
described in Eq. (2.1). 
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where R is rainfall (m3), RO is the surface runoff entering into tank (m3), I is water used for 

supplemental irrigation (m3), P is water percolating down to the groundwater table (m3), and E is 

water lost due to evaporation (m3). Together the former variables result in water volume changes 

ΔV (m3) occurring between each time step (t).  

Quantifying the incoming and outgoing fluxes requires hydrological modeling and/or in 

situ data, which, in turn, depends on the availability of meteorological variables. In ungauged 

basins, hydro-meteorological information is often unavailable and, therefore, hinders the ability to 

quantify basin-wide V or ΔV. Fortunately, in the last two decades, satellite RS has played an 

increasingly important role in water balance studies and has helped our understanding of, and 

ability to recover, water balance components (McCabe et al., 2017; McCabe et al., 2008). 

Quantifying V provides insight into water availability for downstream users (both in the command 

area and lower basin cascades) and helps to inform agricultural decisions, especially when and 

how much to plant. Furthermore, focusing on ΔV at the tank level over a large spatial area may 

provide understanding of geographic patterns in water release practices, variability in social rules, 

and cropping pattern influences; all information critical to the success of tank rehabilitation but 

extremely difficult to retrieve. Former hydrological modeling studies focusing on the hydrology 

and water mass balance dynamics of RWH tanks focus often on one or few tanks structures. Such 

studies utilize a range of local-scale environmental data that are often unavailable in many regions 

of the world (Glendenning & Vervoort, 2011; Li & Gowing, 2005; Van Meter et al., 2016). The 

former noted works and others are critical for the evaluation of understanding the successfully 

rehabilitation of tanks because tank dynamics are reliant on an array of complicated and diverse 

social, political, economic, and hydrological components. Despite such importance, the former 

studies are limited in their ability to gain breadth of knowledge into tank dynamics and therefore, 
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RS space-based observations can complement the former literature. Furthermore, RS space-based 

observations could potentially offer insight into local-scale environmental data required for tank 

hydrological modeling studies and a methodology that is analytically transparent and reproducible 

with potential for use in other settings around the world. 

2.5 Estimating surface water storage (SWS) from remote sensing  

Remotely sensed data can reinforce the abilities of water resources researchers and decision 

makers to monitor waterbodies more effectively by covering larger areas more cost effectively. 

Furthermore, RS techniques have been implemented widely to retrieve SW parameters (e.g., water 

level, elevation, water extent). Although there are many RS satellites measuring water surfaces, 

there is no single sensor that can directly measure SWS. Instead, SWS and storage variations must 

be inferred from a combination of elevation (bathymetry or water height) and/or SW extent or area 

(A) estimates (Amitrano et al., 2014; Baup, Frappart, & Maubant, 2014; Crétaux et al., 2011; 

Crétaux & Birkett, 2006; Gao, Birkett, & Lettenmaier, 2012; Hong, Wdowinski, Kim, & Won, 

2010; Medina, Gomez-Enri, Alonso, & Villares, 2010). Retrieval of the former parameters 

becomes increasing more difficult as the size of the waterbody decreases and as data scarcity 

limitations in regions are introduced. Here, a review is provided of the satellite RS approaches for 

SWS estimation. Remotely sensed estimation of SWS in a reservoir is possible via two methods: 

(1) satellite observations alone or (2) the combination of satellite observations and bathymetric 

information (Table 2.1). 
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Table 2.1: Methods for reservoir storage estimation. Sat = satellite image, Alt = altimetry data. 

Type Data 
Satellite	observations	alone 

(1) 
 

a A	(Sat) + H	(Alt) 
b A	(Sat) à H-A	curve 
c H	(Alt) à H-A	curve	 

Combination	of	satellite	observations	and	a	DEM 

(2) 
 

d A	(Sat) à A-V	curve	(DEM) 

e H	(Alt) à H-V	curve	(DEM) 
f A	(Sat) à H-A	curve	(DEM) 

g H	(Alt) à H-A	curve	(DEM) 

 

For type 1, deriving SWS exclusively from satellite observations, the first approach (a) 

requires a pair of satellite images and altimeter data observed at the same periods, and ΔV is 

calculated. Methods b and c provide ΔV from the water level (H) and A (e.g., H-A curve), which 

is estimated by satellite observations, and satellite observed H or A. For methods b and c, once the 

empirical relationships are developed, SWS can be estimated if either satellite observations for A 

or altimeter data for H is obtained.  

Unlike the method above, type 2 methods (d-g) require topographic data, based on a three-

dimensional representation of the surface (e.g., DEM), in addition to satellite observations. In these 

methods, empirical relationships are developed from the DEM, and combined with satellite 

observations of H or A to provide ΔV. Often satellite observations cannot be obtained due to a 

coarse spatial resolution (for the altimeter) or cloudiness (for visible and near-infrared sensors). If 

a good quality DEM is available, the Type 2 method allows the estimation of SWS with either 

satellite images for A or altimeter data for H.  
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2.5.1 Measurement of water level or height (H) 

Satellite altimetry, originally developed to measure ocean surface topography (Brown, 

1977) has been successfully applied to measure the variation of H in lakes (Crétaux et al., 2011; 

Crétaux & Birkett, 2006; Medina et al., 2010), rivers (Birkett, Mertes, Dunne, Costa, & Jasinski, 

2002; Santos et al., 2012) and floodplains (Frappart, Seyler, Martinez, León, & Cazenave, 2005). 

Satellite radar altimetry is a system that measures the return time for a radar pulse to travel from 

the satellite antenna to the ground and back. By knowing the speed at which light travels, the time 

can be translated into a distance measurement (Medina et al., 2010). Despite the widespread use 

of satellite altimetry, the former studies highlight that achieving accurate H readings is a 

challenging task and the accuracy of H can vary substantially (from 5–80 cm). This variation is 

dependent on the type and spatial coverage of the altimetry sensor (e.g., from ERS-2 to Jason-2), 

the size of the water bodies being monitored, the configuration of the terrain, and the dominance 

of vegetation ( Birkett et al., 2002; Crétaux et al., 2011; Crétaux & Birkett, 2006; Frappart et al., 

2005; Medina et al., 2010; Santos et al., 2012). Focusing on the accuracy of H as a function of 

size, early work showed that radar altimetry was successfully used for monitoring large rivers with 

widths greater than 1 km (Birkett et al., 2002; Birkett, 1998). Until recently, few studies have 

focused on the limits of the RS altimetry technologies applied to small lakes and reservoirs. With 

the advancement of re-tracker algorithms, recent studies demonstrate the success of H retrieval for 

small rivers (< 100 m width) and small reservoirs (< 100 ha) (Baup et al., 2014; Kuo & Kao, 2011). 

Compared to the size of the rivers or the water bodies in the above-mentioned studies, most tanks 

have significantly smaller immediate tank areas (2–20 ha). In addition, a major drawback is the 

poor density of altimetry tracks at low to middle latitudes and their low temporal frequencies (Baup 

et al., 2014). 
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2.5.2 Bathymetry 

Many different data sources and techniques can be used to acquire elevation data and 

simulate the data into a continuous surface representing the real-world terrain. Traditionally 

elevation data was acquired through ground based surveying methods; however, with the increased 

acquisition of satellite RS data and improved techniques, elevation data can be retrieved more 

quickly and over larger spatial scales. DEMs can be obtained from contour lines, topographic 

maps, field surveys, photogrammetry techniques, radar interferometry, and laser altimetry. 

As noted in Table 2.1, the availability of a DEM for SWS estimation is valuable as it allows 

the creation of empirical relationships to calculate storage. Tank systems pose a unique challenge 

in terms of retrieving accurate bathymetric information. The term bathymetry here refers to the 

topography beneath the water surface. For tank structures, accurate bathymetry (i.e., detailed 

topographic profile) is difficult to retrieve for three primary reasons: 1) they are small and require 

detailed high-resolution information to capture their bathymetry; 2) they cover a large geographic 

extent; and 3) they are seasonally-filled water structures. Bathymetric information for tanks has 

been acquired during the dry-season when tanks are empty from traditional field topographic 

surveys (Van Meter et al., 2016) and more recently from unmanned surface vehicles (Young, 

Peschel, Penny, Thompson, & Srinivasan, 2017). The former bathymetric retrievals were only able 

to be captured because the tanks contained no water. Also, both former noted methods are limited 

by geographic scope and/or accessibility issues.  

Extrapolated DEMs from different sources like Shuttle Radar Topography Mission 

(SRTM) or Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs 

have been used to approximate bathymetry ( Peng, Guo, Liu, & Liu, 2006; Vaze, Teng, & Spencer, 

2010; Venkatesan, Balamurugan, & Krishnaveni, 2011). Although the quality of the DEM (which 
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is a function of the spatial resolution and vertical accuracy of the data source) will influence the 

estimated SWS, it is unclear under what circumstances global DEMs are suitable for SWS 

estimation in small water bodies (Ouma, 2016). Currently, global SRTM and ASTER DEMs are 

available for S. India but are too coarse a spatial resolution to capture tank bathymetry (Appendix 

B). 

  Fortunately, the new TanDEM-X DEM, produced by DLR (German Aerospace Centre) is 

a new global DEM with unprecedented accuracy compared to the SRTM and ASTER datasets and 

is highly valuable for large-scale hydrological applications. The DEM has a spatial resolution of 

10–12 m, and a reported height accuracy 2–4 m. This global high-precision DEM was developed 

using SAR interferometry (InSAR) from TanDEM-X and its twin satellite TerraSAR-X data flying 

in a close orbit formation to enable single-pass SAR interferometry. The final nominal 12 m spatial 

resolution DEM was then generated by stacking overlapping TerraSAR-X/ TanDEM-X radar pair 

DEMs. While the height accuracy of the 12 m resolution TanDEM-X product has been evaluated 

in various environments (Rizzoli et al., 2017), few studies in the literature have applied the novel 

data in hydrological applications (Zhang et al., 2016) and no study has evaluated the application 

of the TanDEM-X DEM for the retrieval of tank bathymetry. 

2.5.3 Estimating lake/reservoir surface water (SW) extent  

At different frequencies, water has distinct radiative properties that allow it to be 

distinguished from other land features. This unique response allows water to be detected from 

several passive and active satellite sensors (Huang, 2018). When weather conditions are favorable, 

optical sensors are the preferred information source due to their straightforward interpretability 

and abundant volume of data in terms of both temporal and spatial resolution (Gao et al., 2012; 

Huang, 2018; Liebe, Van De Giesen, & Andreini, 2005; Rodrigues & Liebe, 2013; Verpoorter, 
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Kutser, Seekell, & Tranvik, 2014). For example, the S2 sensor currently provides data every five 

days with a high spatial resolution of 10 m. Water is easily distinguished spectrally in the visible-

infra-red region of the electromagnetic (EM) spectrum with characteristically low reflectances 

over visible wavelengths and lower or no reflectance in the near-infrared (NIR) and short-wave 

infrared (SWIR) wavelengths. Depending on water quality and sediment concentration, water 

reflectance is variably across the NIR and SWIR wavelengths and as shown, increased sediment 

concentration increases reflectance (Figure 2.5).  

 

Figure 2.5: Reflectance versus wavelength (visible-SWIR) for water and increased sediment concentrations. 
(Retrieved from Moore, 1980) 

  

Despite the merits of optical data for surface hydrology studies (i.e., easy distinguishability 

and high accessibility) (Huang, 2018), a limitation of multispectral imagery is its dependence on 
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cloud-free acquisitions. This is a crucial disadvantage for monitoring waterbodies in semi-arid 

monsoon dominated climates because cloud cover prevails during the main precipitation events, 

which makes the application of optical RS data for operational monitoring inadequate. A detailed 

review of the applications for the detection, extraction, and monitoring of SW extent using optical 

satellite platforms can be found in Huang (2018) in which a compelling case is made for the use 

of radar observations for hydrology monitoring as a possible alternative for, or complement to, 

optical imagery (Huang, 2018). Unlike optical sensors, active microwave or radar (RAdio 

Detection And Ranging) sensors (within the 3–10 GHz) range can potentially collect data from 

large areas under any weather conditions, allowing for continuous and repeatable observations. 

2.6 SAR RS for the characterization of tanks 

Inland water monitoring using SAR observations has been the object of study for many 

researchers for over two decades (Behnamian et al., 2017; Bioresita, Puissant, Stumpf, & Malet, 

2018; Bolanos, Stiff, Brisco, & Pietroniro, 2016; Bonn & Dixon, 2005; Cazals, Rapinel, Frison, 

Bonis, & Mercier, 2016; Clement, 2018; Dasgupta, Dwivedi, Kushwaha, & Bhattacharya, 2010; 

Kasischke et al., 2003; Matgen, Schumann, Henry, Hoffmann, & Pfister, 2007; Tholey, Clandillon, 

& Fraipont, 1997; Twele et al., 2016; Zeng, Schmitt, Li, Zhu, & Li, 2017). SAR is a side-looking 

imaging radar system (airborne or spaceborne) that utilizes the flight path of the platform to mimic 

an extremely large aperture electronically, generating high-resolution RS imagery. Many SAR 

sensors currently are in operation (e.g., European Sentinels and Canadian Radarsat-2) or are 

scheduled for launch in the next few years (see Appendix C). This diversity in sensors offers a 

wide range of possibilities in terms of spatial resolution, wavelengths, revisit periods and 

polarizations. In the past four years, greater attention has been drawn by S1-A and B satellites, 

which were launched in April 2014 and April 2016, respectively by European Space Agency 
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(ESA) in the framework of the European Union’s Copernicus Program (Bioresita et al., 2018; 

Cazals et al., 2016; Clement, 2018; Martinis & Plank, 2018; Twele et al., 2016; Zeng et al., 2017). 

Both Sentinel-1 satellites carry a C-band SAR and the data is freely available with increased 

temporal and spatial resolution compared to previous sensors (e.g., ENVISAT, ERS).  

2.6.1 SAR: theoretical considerations  

SAR systems transmit and receive an EM wave with a specific wavelength (λ) and 

frequency (f). Unlike optical sensors, SAR systems generate their own source of energy, and the 

sensor receives the energy that is backscattered back from the target surface. When the incoming 

wave interacts with the ground surface or target, part of the energy is absorbed by the target and 

part of the energy is reflected and scattered. The fundamental form for describing the waveform 

interaction with the target is given by the monostatic radar equation:  
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Eq. (2.2) describes the relationship between the power that the target receives from the incoming 

EM wave and the power re-radiated by the same target in the form of a scattered waves. Pr is the 

power detected by the receiver, Pt is the power transmitted, G is the antenna gain, and σ is the 

backscatter coefficient of the target. Eq. (2.2) represents the power returned from a theoretical, 

distinct target and not the scattering behavior of real world terrain. This is not the case for EO 

targets on Earth as most power responses are formed of multiple targets, making them distributed 

in nature. As water surfaces are distributed targets, it is standard to normalize σ by the radar 

illuminated area (A), Eq. (2.3), to provide the normalized radar cross-section (σ) and the radar 

backscatter coefficient, also called sigma nought (20), which is a power term measured in decibels 

(dB): 
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Combining Eq. (2.2) and Eq. (2.3) to solve for 20 yields:  
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In Eq. (2.2), variables other than σ are defined by the sensor system parameters. If the 

sensor system parameters do not change, solving for σ determines the influence of the target 

properties on backscattered power. However, solving Eq. (2.2) requires understanding of sensor 

properties, such as frequency, polarization and incident geometry and surface properties (surface 

roughness and dielectric constant).  

Different microwave frequencies (f) are used to transmit the EM energy in a SAR system, 

where f ranges from about 0.3 to 300 GHz (1 m–1 mm in λ). EO radars commonly have f below 

20 GHz (Ulaby & Long, 2014) and operate at one explicit frequency within a narrow frequency 

band, which is an important characteristic of a radar sensor. These different frequencies (inversely 

proportional to wavelength) are often called bands and image the Earth’s surface properties in 

different ways, depending on the frequency (wavelength) with lower (longer) frequencies 

(wavelengths) providing increased penetration though Earth surface materials than higher (shorter) 

frequencies (wavelength) (Figure 2.6). With respect to open liquid water, the ability of detection 

using radar is typically independent of frequency; microwave energy is highly sensitive to liquid 

water because its dielectric constant is highly reflective of the propagated wave (Ulaby & Long, 

2014). The Sentinels operate in C-band (at 5.6 cm wavelength) and have been used for open water 

mapping (Brisco, Short, Van Der Sanden, Landry, & Raymond, 2009; Cazals et al., 2016; Martinis 

& Plank, 2018; Ottinger, Clauss, & Kuenzer, 2017); however other wavelengths such as X, and L 

band are also often used.  
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Figure 2.6: Schematic showing various application within the X, C and L-band frequency and wavelength regions of 

the EM spectrum. 

 

Polarization refers to the orientation of the electric field of the propagated and received EM 

wave along its propagation axis as it travels from the transmitter to the target on the ground and 

back. When the transmitted or received wave is measured in the horizontal direction, the wave 

measured is the horizontally (H) polarized wave; conversely, when the wave is measured in the 

vertical (V) polarization state, perpendicular to the horizontal state, the wave measured is the 

vertically polarized wave (Figure 2.7). Relative to the Earth’s surface, SAR systems primarily 

transmit and receive backscatter power in the horizontal or the vertical polarization state leading 

to four polarization configuration measurements: HH, HV, VV and VH. VV and HH polarization 

are defined as like polarized, and VH and HV are defined as cross-polarized. Although each 

polarization state can be used for water delineation, the backscatter characteristics of the radar 

signal can vary depending on water quality, surface roughness and incidence angle, impacting the 

accuracy of the water maps produced (Annor et al., 2009; Bolanos et al., 2016; Brisco, Kapfer, 

Hirose, Tedford, & Liu, 2011; Liebe, Giesen, et al., 2009; Manjusree, Kumar, Bhatt, & Rao, 2012).  
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Figure 2.7: Example of linearly polarized wave, showing horizontal polarized wave and vertically polarized wave. 

 

For the S1 SARs, the interferometric wide swath (IW) is the default imaging mode covering 

land surfaces and observations are acquired in a dual-polarized manner with VV and vertical VH 

state measurements. Most studies have shown that HH polarization is better suited for water 

mapping (Bolanos et al., 2016; Brisco et al., 2011, 2009; Manjusree et al., 2012); however, some 

studies showed that good results can be obtained with HV (Henry, Chastanet, Fellah, & Desnos, 

2006) polarization and VV (Martinis & Plank, 2018) polarization. Since reflections of smooth 

open water are primarily like-polarized, VV is better suited for extracting SW area (Liebe, Giesen, 

et al., 2009; Martinis & Plank, 2018). However, VV polarization is also more sensitive to wind-

induced roughness over open SW compared to HV (Behnamian et al., 2017; Brisco et al., 2011; 

Henry et al., 2006). Using the same polarization different water bodies on the same date can present 

large variations in backscatter. Figure 2.8 presents a result from Manjusree et al. (2012) who 

examined SAR signature ranges for C-band data for varying water bodies, one of which was tanks 

in Northern India (Manjusree et al., 2012). Unlike flood water, backscatter for other water bodies, 

including tank water, is typically low due to calmer SW and low roughness states.  
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Figure 2.8: Result from Manjusree et al. (2012) that shows variation in backscatter among five different SW regions 
for four polarizations. 

 
In addition to the former noted system specific properties, the objects specific (surface 

roughness and dielectric constant) influence the radar backscatter. Focusing on smooth open water, 

water acts as a specular reflector causing most of incident energy away from the sensor (Figure 

2.9). Thus, open smooth water surfaces appear dark in SAR scenes because of very low signal 

return. Also, due to the high dielectric constant of water (about 70 at C-band), the penetration depth 

of the radar signal into the water is low (Eilander, Annor, Iannini, & van de Giesen, 2014). This 

results in low volume scattering and depolarization and therefore mostly like-polarized reflection. 

For this reason, when water is calm, backscatter in like-polarized bands tends to be higher than 

cross-polarized bands.  

However, water bodies are often not smooth and instead the surface roughness of water 

bodies is highly variable (Figure 2.9). For this reason, even the same water bodies overtime present 

large variations in backscatter. Furthermore, vegetation at the tail ends of the reservoir during the 
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dry-season and lack of backscatter from surrounding dry areas causes further problems when 

extracted SW from a SAR scene (Annor et al., 2009; Eilander et al., 2014). Both wind and rain are 

known to increase surface roughness and in turn increase backscatter (Eilander et al., 2014). This 

causes the land and water contrast to diminish, making it difficult to accurately extract SW. 

 In addition to surface roughness influencing radar backscatter, the backscatter also varies 

as a function of incidence angle. As shown by Figure 2.10, for smooth surfaces, such as calm 

water, when the incidence angle is small, the water surface acts like a mirror. As incidence angle 

increases, the radar backscatter intensity continuously declines and the rate of this decline is also 

variable for different surfaces.  

 

 
Figure 2.9: Scattering mechanisms of water and land surfaces as a result of changes in incidence angle and surface 

roughness (retrieved from Martinis, 2010) 
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Figure 2.10: Relationship between incidence angle and radar backscatter for three surfaces. Retrieved from (Mark, 

2018) 
 
 

 

2.6.2 Water extraction 

For the extraction of SW area from radar, many methods have been implemented with 

various levels of automation. The most commonly used approach to delineate water-land 

boundaries, also used herein, is a grey-level threshold-based procedure (Bolanos et al., 2016; 

Clement, 2018; Martinis & Plank, 2018; Twele et al., 2016). For grey level intensity thresholding, 

all pixels in the SAR image are mapped as water when their backscatter coefficient is lower than 

a specific threshold based on intensity ranges sampled in regions of known water (Behnamian et 

al., 2017). The backscatter distribution over a water body can be variable between SAR 

acquisitions and is largely influenced by weather (surface roughness), polarization, and incidence 

angle. For this reason, thresholds need to be determined uniquely per scene (Bolanos et al., 2016). 

Beyond a global threshold, where the threshold remains constant for the entire scene, it is also 
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common to set local thresholds, where a scene is subdivided and has threshold value chosen for 

each region with the scene. Although grey-level threshold-based procedures are easy to implement, 

determining a threshold is difficult and the technique of threshold selection is largely dependent 

on the required level of automation for SW extraction.  

2.7 Sentinel-1 system and Google Earth Engine (GEE) considerations 

Harmonizing the large amounts of open-access EO observations is increasingly possible 

using enhanced modern information and communication technology such as hosted computing 

platforms and services (e.g. cloud computing). Beyond data storage limitations, often RS 

applications face the challenge of limited computational capabilities. While cloud computing 

technology combined with RS analysis is still in its infancy, its use is growing rapidly. Efficient 

monitoring applications of wide area Earth systems can benefit from cloud computing. This is 

especially the case for tank monitoring systems which cover wide areas and need frequent high 

spatial resolution observations. Tanks structures are continuously changing and long term 

continuous monitoring of tanks during the monsoon seasons is critical. While several cloud-

computing platforms exist for RS processing, a well-known example is the Google Earth Engine 

(GEE). GEE provides the possibility to develop algorithms in an environment which is directly 

linked to mass EO data collections (e.g. from Landsat, S1, S2). For the SW detection of tanks 

noted in Chapter 3, all S1-A, L8, and S2 data were retrieved directly from the GEE data catalog. 

The GEE S1-A and B collection includes Ground Range Detected (GRD) scenes, processed using 

the S1-A Toolbox to generate calibrated, ortho-corrected products. Pre-processing steps before 

ingestion to GEE included: updated orbit metadata, thermal noise removal, radiometric calibration 

and terrain correction (orthorectification).  
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2.8 Uncertainties in the RS DEM product 

As noted previously, the TANDEM-X DEM dataset provides high spatial topographic 

information and has the potential to be applied for tank bathymetric retrieval. Despite its promising 

spatial resolution, a known limiting factor of the TanDEM-X DEM product is the time of 

acquisition ranging over multiple years and for tank bathymetry this is of critical importance. 

Tanks are seasonal storage structures and some tanks have been dry for many consecutive years. 

This thesis will not focus on the detailed information about the InSAR technique (for more 

information see Rossi et al. (2012) (Rossi, Gonzalez, Fritz, Yague-martinez, & Eineder, 2012). 

However, an important point to note is that high coherence between satellite overpasses is a 

requirement of accurate DEM generation using InSAR. The final TanDEM-X-DEM is comprised 

of the combination of data sets acquired at different dates with time spans up to a year and as a 

result, the appearance of water bodies can vary. In the case of tank structures, variability between 

scenes and in turn a reduction in coherence is introduced due to seasonally changing water levels. 

Fortunately, along with their TanDEM-X DEM product, DLR provides a Water Indication Mask 

(WIM) to support the TanDEM-X-DEM editing process (Wendleder et al., 2013). The WIM 

provides a value representing the frequency, where the higher the frequency of classification, the 

more reliable the pixel represents water. While the highest frequencies (i.e., water presence located 

in every single interferometric data set) and lowest frequencies values (i.e., no water presence 

located in any single interferometric data set) of WIM in conjunction with the TanDEM-X DEM 

are easy to determine the reliability and usability of the associated TanDEM-X elevations, the 

middle frequencies (i.e., water presence located in some single interferometric data sets) is not 

clear. In these cases, in situ data should be used in combination with the WIM mask to determine 
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its suitability and accuracy for the retrieval of bathymetry in water bodies using the TanDEM-X 

DEM product.  

The above concern lead the rationale to collect a detailed topographic field survey of four 

tanks within the upper Gundar basin (Figure 2.1b). The field survey was carried out over four tanks 

in the Gundar basin using a Trimble S6 Robotic Vision Total Station together with a 360 degree 

Multi Track prism (Appendix A). The survey was completed from 20th June-13th July with a total 

of approximately 2,791 points collected and an area of 126 ha covered by the survey. The 

conventional field survey was conducted like a standard topographic survey but the focus was only 

upon mapping the shape and elevation variations of the terrain accurately. A cross section or point 

spacing of approximately five m was adopted except where terrain variation required denser data. 

Vigilance was utilized to ensure the data was accurate. Pole heights were regularly checked by 

measuring a known mark before starting survey work. Instrument and backsight targets were 

measured accurately and checked. Stations were located to permit maximum inter-visibility to 

other marks and measurements were taken where extra control marks could be seen. The field 

surveys were completed a few days ahead of schedule which allowed all four tanks to be revisited 

to QA/QC results. This consisted of traversing the tanks while observing the generated DEM at 

each location and noting significant anomalies. The topographic surveys as well as the visual 

inspection of several tank structures observed from the TanDEM-X DEM supported the 

application of the DEM to approximate tank bathymetry. Based on these validation measures, the 

assumption was made that the TanDEM-X DEM elevations reach close to the tank bed and as 

such, the dataset was used to obtain volumetric estimates.  
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2.9 Rationale for manuscript  

The previous sections provide the background to the following study of tank monitoring in 

S. India which serves several purposes. From an application perspective, there is currently no RS-

based method to estimate tank SWS. Unlike other inland water bodies, tanks are particularly 

challenging to monitor due to their small geographic size and limited in situ data to support RS-

based estimates. The manuscript serves primarily to highlight a potential methodological approach 

for SWS storage in tanks and the application examples are provided only to give context to the 

potential application of the tank SWS estimation approach. From a methods perspective, an effort 

was made to utilize GEE JavaScript application program interface (API) for RS data preprocessing 

and analysis. By using GEE for data access and analyses, there is a potential to extend this analysis 

to other local and/or regional scales.  

Given the current limited water availability from groundwater reserves and interannual 

variability in monsoon events in S. India, the amount of water in tanks should be quantified to 

improve or at least be considered in local resource water planning. At present, the magnitude and 

variability of water in tanks can be inferred from SW extent from several satellite and aerial 

observations but the value of these observations would increase dramatically if water extent 

observations could be related to SWS (i.e., water volume). For tanks, remotely sensed surface 

elevation estimates from radar altimeters are too coarse in spatial resolution for water level 

retrievals. Therefore, a DEM in addition to satellite extracted SW observations is the only current 

means to estimate SWS during monsoon periods. Fortunately, the novel DEM data set from 

TanDEM-X provides an opportunity, for the first time, to retrieve tank bathymetry at large spatial 

scales. Therefore, the paper that comprises Chapter 3 is entitled “Estimating seasonal surface water 

storage in rainwater harvesting reservoirs in southeast India using satellite remote sensing”, and 
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utilizes a novel high-resolution DEM, that (for the first time) captures the bathymetry of tanks at 

a large spatial scale. The research aims to evaluate whether tank volume estimates derived from 

the combination of empirically generated power-like models and SW estimates are a) appropriate 

and b) can be used to monitor tank volumes given the extensive amount of available EO data.  
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Chapter 3 

 

Estimating seasonal surface water storage in rainwater 

harvesting reservoirs in southeast India using satellite 

remote sensing 

 

3.1 Summary 

India’s vulnerability to water shortage and scarcity demands a critical understanding of the 

hydrological role of rainwater harvesting tanks (reservoirs) at multiple spatial scales. This study 

describes a remote sensing (RS) approach to water volume monitoring in small reservoirs (5-80 

ha) in the Gundar Basin, Tamil Nadu state in S. India. Empirically-derived water storage 

relationships were evaluated using TanDEM-X digital elevation model (DEM) data combined with 

estimates of the surface water (SW) area from C-band Sentinel-1A (S1-A) synthetic aperture radar 

observations, Landsat-8, Sentinel-2, and PlanetScope visible/infra-red observations. The 

TanDEM-X DEM data revealed strong power-type relationships between surface area and storage 

volume, and were combined with satellite SW observations to estimate and monitor tank volumes. 

Three models of volume-area (V–A) relationship(s) were assessed: the tank specific (TS) model, 

a size-dependent categorical (CAT) model and a generalized (GEN) model for all tanks. For 

volume estimation, the CAT model produced the lowest root mean squared error (RMSE) as a 

percentage, VERR, of volume for the basin. While tank SW area was estimated using S-1A data, 

the narrow SW area of some tanks, especially close to the retaining wall presented challenges for 

operational use. Two examples demonstrate the approach: 1) the maximum volume of water in 
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559 tanks in the basin for two monsoon seasons and 2) a time-series analysis using a high-volume 

of satellite observations shows the cycle of water (inflow and outflow) at the tank scale. This study 

illustrates the applicability of using a satellite RS observation approach to continuously monitor 

rainwater harvesting, and beyond this, the critical need of an adopted multi-sensor (optical and 

radar) monitoring approach.  

3.1 Introduction  

Reservoirs are essential for the development and management of water resources in a river 

basin (Liebe, Van De Giesen, & Andreini, 2005). In S. India, thousands of traditional small storage 

reservoirs, termed 'tanks', are used as rainwater harvesting (RWH) systems to harvest, store and 

supply rainwater for domestic and agricultural use (Van Meter et al., 2016). With a growing 

awareness in water security, these traditional structures built decades ago are now being re-

examined as a way of increasing water storage and supply (Aubriot & Prabhakar, 2011; Kumar et 

al., 2008; Shah, 2004), yet there is a gap in knowledge on their distribution and storage capacities. 

With the large-scale interest in the restoration of these systems, it is critical to have a method of 

monitoring tank water volume variations and with approximately 120,000 tanks in S. India alone 

(Gunnell & Krishnamurthy, 2003), capturing these variations on a regular basis is not feasible from 

conventional field-based measurements. RS techniques and Earth observation (EO) data are 

promising tools to overcome the difficulty in estimating reservoir volume state, at a minimal cost, 

and also provide the potential to systematically monitor the vast number of tanks present in the 

landscape. With this information, hydrological research can begin to quantify the hydrological 

water balance at tank, cascade and basin scales (Bitterman et al., 2016).  

RS methods have been used to characterize and monitor a range of continental inland water 

bodies ( Baup et al., 2014; Frappart, Seyler, Martinez, León, & Cazenave, 2005; Medina, Gomez-
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Enri, Alonso, & Villares, 2010; Musa, Popescu, & Mynett, 2015). For reservoir storage estimation 

using satellite RS, the common approach is to retrieve elevation and surface water (SW) area 

separately, and then combine these two variables for calculating the storage (Crétaux et al., 2011; 

Gao et al., 2012). For elevation, satellite radar and laser altimetry are the common approaches to 

estimating the elevation of open water bodies, their water level or bathymetry (Crétaux et al., 

2011; Frappart et al., 2005). For SW area, studies have successfully delineated the water extent 

with optical sensors or radar images (Gao et al., 2012; McFeeters, 1996; Musa et al., 2015). In S. 

India, remotely sensed surface elevation estimates from radar altimeters are too coarse in spatial 

resolution for water level retrievals of small tanks less than 80 ha in size (Baup et al., 2014). An 

alternative approach, based on empirically-derived storage relationship(s) combined with 

estimates of the SW area from RS satellite observations, can be followed for tank monitoring 

(Annor et al., 2009; Liebe, Van De Giesen, Andreini, Walter, & Steenhuis, 2009; Magome et al., 

2003; Minke & Westbrook, 2010; Sawunyama et al., 2006).  

The success of water resource management depends on the accurate assessment of water 

availability in tanks at the watershed scale. Therefore, the objective of this study is to provide a 

RS-based tank volume monitoring approach, which can be used for water resource management 

and Earth system modeling applications. This RS-based method consists of deriving empirical 

storage relationship(s) using a high-resolution global digital elevation model (DEM) and satellite 

synthetic aperture radar (SAR) observations for the retrieval of SW area. The study seeks to (i) 

evaluate the utility of volume-area (V–A) relationship(s) for small reservoirs located in the Gundar 

river basin and (ii) demonstrate time-series volume estimation by combining V–A relationship(s) 

and SAR and optical satellite observations. 
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3.2 Datasets and study area 

The data sources and their purposes are listed in Table 3.1. Processing and analysis of SAR 

and optical data sources were performed in the Google Earth Engine (GEE) cloud computing 

platform with a Java API interface (Gorelick et al., 2017).  

Table 3.1: Satellite and field data sources for the validation and estimation of water surface area in tank systems 
(Purpose: 1= Calibrate V-A method, 2 = Monitoring application). 

Data No.	of	

images 
Date Provider Purpose 

Field	GPS	Elevation n/a July	2016 Topographic	field	survey	with	total	station 1	(§3.3.5) 
Sentinel	1A	(S1-A)	 44 Sept.–Dec.2015,	

2017 
Google	Earth	Engine’s	public	data	catalog 2	(§3.3.7) 

5 Sept.–Oct.	2017 1	(§3.3.6) 
Planet	Scope	(PS) 20 Sept.–Oct.	2017 Planet	through	the	Education	and	Research	

Program 
1	(§3.3.6) 

27 Aug.	2017–Jan.	2018 2	(§3.3.7) 
TanDEM-X	DEM 2 n/a DLR	through	proposal	titled	DEM_HYDR0751 1	(§3.3.2) 
Landsat-8	(L8) 3 2017-08-23,	2017-

10-10,	2017-12-29 
Google Earth Engine’s public data catalog 2	(§3.3.7) 

Sentinel-2	(S2) 4 2017-08-22,	2017-

09-06,	2017-10-01,	

2017-10-21 

Google Earth Engine’s public data catalog 2	(§3.3.7) 

 

3.2.1 Satellite C-band SAR observations 

20 m pixel spacing SAR Sentinel-1 (S1-A) observations were selected for this study. S1, 

part of the European Space Agency Copernicus programme, is a constellation of two polar-orbiting 

C-band SAR satellites. The 2015 and 2017 years were selected for water monitoring because tanks 

received significant precipitation. A total of 49 S1A dual-polarization (VH+VV) Interferometric 

Wide Swath mode products were used, delivered in Ground Range Detected High Resolution 

mode. Radiometrically calibrated and terrain corrected S1 images are stored in GEE, meaning that 

each scene was pre-processed with the S1 Toolbox in GEE using the following steps: 1) thermal 

noise removal; 2) radiometric calibration; and 3) terrain correction using SRTM 30. Additionally, 
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in GEE, a median filter with a 4 × 4 window was applied to reduce speckle noise within each 

scene.  

3.2.2 Satellite visible/infra-red observations  

3 m PlanetScope (PS) data (Planet Team, 2017) were acquired for this study. PS imagery 

has four bands, blue (Band 1, 455–515 nm), green (Band 2, 500–590 nm), red (Band 3, 590–670 

nm) and near infrared (Band 4, 780–860 nm). For the validation of the SW area, 20 PS Level 3A 

data product scene swaths (~ 225 km2 each) were acquired for the listed 2017 dates: Sept. 2 (n = 

8), Oct. 1 (n = 6), and Oct. 8 (n = 6). These specific images were chosen because they match a S1-

A acquisition date and had minimal cloud cover. An additional 27 cloud-free PS images were 

acquired between August 2017–January 2018 to extract a time-series of SW area. All PS were 

calibrated to top of atmosphere reflectance and imported to GEE. Three 30 m L8 and four 10 m 

S2 images were also used. L8 imagery has 11 bands, but only the green (Band 3, 533–590 nm) and 

near infrared (Band 5, 85-0.88nm) bands were used. The green band was used instead of SWIR 

bands due to high sediment content in tank water (Appendix A). Similarly, from the 13 S2 bands 

only the green (Band 3, 0.560 nm) and near infrared (Band 8, 0.842 nm) bands were used. 

3.2.3 TanDEM-X DEM product data 

This research relies on a DEM to estimate the topography/bathymetry of selected tanks in 

the basin. The highest spatial resolution global DEM available was obtained. The TanDEM-X 

DEM, produced by DLR (German Aerospace Centre) from a five year (2010–2015) radar satellite 

mission and interferometric techniques, provides a DEM with a spatial resolution of 10–12 m, and 

a relative height accuracy of 2–4 m (Eineder, Adam, Bamler, Yague-Martinez, & Breit, 2009). To 

cover the entirety of the basin, two tiles were mosaicked and imported into GEE. Early 
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investigation revealed that other global DEM products were insufficient to capture the small-scale 

topography of the tanks, making the TanDEM-X DEM critical for this work.  

3.2.4 Gundar River Basin and reservoir selection  

A river basin with a large concentration of tanks was selected for detailed study; the Gundar 

River Basin (5647 km2) in the S. Indian state of Tamil Nadu (Figure 3.1). The region is dominated 

by tropical monsoon climate seasons, receiving a mean annual rainfall of 770 mm from three 

distinct periods: the Southwest monsoon from June–September (25 % of annual rainfall), the 

Northeast (NE) monsoon from October–December (50 % of annual rainfall), and the dry season 

from January–May (25 % of annual rainfall). Tank structures have been constructed across natural 

depressions in the landscape to capture surface runoff and rainfall. Water is impounded behind an 

earthen embankment (a bund) and is released through sluices into canals to be further distributed 

to irrigated lands. Irrigation tanks are linked in cascades, with overflow channels providing 

connections to tanks downstream. These connected systems form a complex hydrologic network 

of man-made wetlands across the landscape, ranging in size from 20 × 105 m2 to 80 × 105 m2 (Van 

Meter et al., 2016).  

A hand-digitized shapefile of tank locations was used to gain an understanding of their 

distribution. Of the 5647 km2 total study area, 2314 tanks cover 9 % of the land surface. Given the 

spatial heterogeneity in tank size, the cumulative distribution of tanks is not linear (Figure 3.2, 

Table 3.2). Table 3.2 shows that large tanks ( > 100 ha) contain 24 % of the total tank water storage 

area despite representing only 3 % of the total number of reservoirs. In contrast, smaller tanks (10-

100 ha) occur at the highest frequency and represent 67% of the total water storage area. Despite 

the large concentration of tanks, only 1503 tanks have received water in the last 25 years as 

observed from Landsat satellite observations (Pekel et al., 2016). For this work, the focus was on 
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tanks within the sample of 1503 that are also between the size range of 5-80 ha. This results in 559 

tanks (103 km2) for water volume monitoring over two monsoon seasons. 
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Figure 3.1: The location of the study area – the Gundar River Basin in Tamil Nadu, India. 
The left inset shows tanks across the landscape 

Figure 3.2: Cumulative distribution of tank size (n=2314) 
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Table 3.2: Number of tanks in basin categorized by size and their SW area 

Tank	

Size, 
ha 

Number	

of	Tanks 
Total	

Surface	

Area,	km2 

Relative	Water	

Surface	Area,	% 

1-10 1051 50 9 
11-100 1191 350 67 
>100 72 126 24 
Total 2314 526 100 

3.3 Methods 

3.3.1 Surface water estimation  

SW retrieval using SAR data has been the subject of several studies (Bolanos et al., 2016; 

Brisco et al., 2009; Medina et al., 2010). SAR data is particularly suited to SW monitoring in 

persistent cloud-covered monsoon environments because of its all-weather capability and 

moderate-high spatial resolution. For operational SW estimation, image histogram threshold-based 

procedures are widely implemented because of their simplicity. The key parameter in the 

thresholding process is the automatic choice of the threshold value. The Otsu (1979) method was 

selected due to its tractable implementation in the GEE environment. The method partitions a 

histogram into n classes by iterating through all possible histogram threshold values (per scene). 

The final threshold is specified as the value at which the sum of the variances for the sub-modal 

distributions (water and land classes) is minimized (Figure 3.3).  

For SW retrievals from the SAR data, a tank mask buffer of 200 m surrounding each tank 

was generated. SAR scenes were clipped to the mask and the Otsu algorithm was run to generate 

a unique threshold (VV and VH polarization) per masked SAR scene. This local threshold was 

selected on a tank by tank basis per satellite scene to reduce the effect of the incidence angle in the 

threshold selection process. Masked pixels below the Otsu-defined threshold were labelled as 

water and above the threshold labelled as land. Each image was converted to vector format and 
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subsequently, the SW area for each vector was calculated.  

 

 

Figure 3.3: Concept of the implemented Otsu method to separate water from land in tanks. A.1 and A.2 define a 
loop, resulting in finding the threshold which corresponds to the maximum Between-Class Variance shown in B. 

 

3.3.2 Derivation of reservoir Volume–Area (V-A) relationships 

The theoretical basis to estimate total reservoir water storage is developed on the 

assumption that a reservoir shape can be simplified as a square pyramid diagonally cut in half 

(Magome et al., 2003). Tank water volume (V) can be estimated from reservoir SW area (A) using 

an empirical relationship (Magome et al., 2003). Power law expressions have been demonstrated 

as effective storage-discharge model predictors for the hydrologic modelling of small reservoirs 

(Young et al., 2017): 

 

 5 = 	67
8 (3.1) 
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where V is the volume of the reservoir (m3), 7 is its SW area (m2), a is a scaling coefficient and b 

is an exponent indicating the rate of growth or decay. For the generalized case of a half pyramid 

geometry reservoirs, b = 1.5, while b > 1.5 if the slopes are more convex and b < 1.5 if slopes are 

more concave. While the power model is robust for idealized hydrologic modelling (Annor et al., 

2009; Liebe, Van De Giesen, Andreini, Walter, & Steenhuis, 2009), the a and b parameters vary 

with natural geomorphic heterogeneity (Liebe, Van De Giesen, & Andreini, 2005; Meigh, 1995; 

Sawunyama, Senzanje, & Mhizha, 2006); over smaller distance scales the 

parameters a and b might be expected to remain constant (Annor et al., 2009) while over larger 

scales they might vary. Therefore, the challenge lies in finding the a and b parameters that 

minimize the error in the volume estimates.  

To derive a V-A relationship of any given tank, TanDEM-X DEM data were used to 

provide paired volume and area estimates for the tank at 5 cm height increments from the base of 

the tank to the bund (i.e. the top of the dam, hmax) (see Appendix D). Using this method, a sample 

of 72 from the 559 (13%) small reservoirs were selected to generate V-A relationships for the 

reservoirs in the basin. The 72 tanks were selected by clustering the 559 tanks into four size groups 

and taking a proportional sample of suitable tanks from each group (Table 3.3). For each of the 

tanks, TanDEM-X DEM data and high resolution imagery were used to visually inspect for 

minimal water and vegetation presence to ensure that the bathymetry of the tank was accurately 

represented. In addition, for each size class only tanks with a bund height of at least 3 m (typical 

bund height) were selected. 
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Table 3.3: Proportional sample from each tank size group. 

Size Class Count Proportion Sample Count 
<10 183 0.33 24 

10-20 183 0.33 24 
20-50 135 0.24 17 
>50 58 0.10 7 

Total 559 1.00 72 

 

Having selected the 72 samples, three models were parameterized to explore scalability of 

the a and b coefficients needed for Eq. 3.1: the tank specific (TS) model, categorical (CAT) model 

and the generalized (GEN) model. For the TS model, Eq. 3.1 was fitted using linear least squares 

regression to each tank in the data set (n=72). Hence, there were 72 unique a and b coefficient 

pairs. Analysis of the TS model was included to identify the a and b coefficients that best describe 

each tank’s morphometry, assess the overall suitability of power functions to describe tank 

bathymetry, and estimate the water volume using TS metrics. The CAT model sought to fit a 

generalized model for each size category in Table 3.3. a and b coefficients were fitted to generate 

four unique equations with category-specific a and b coefficients. Analysis of the CAT model 

provided an opportunity to assess the accuracy of generalized equations relative to the TS model. 

Finally, the GEN model provided single a and b coefficients that were fitted to all tanks, regardless 

of size. This was the most generalized model. Analysis of the GEN model provided an opportunity 

to compare volume estimates for the TS and CAT models. 

3.3.3 Added metrics for volume estimation 

A tank’s water storage capacity is defined by its bathymetry, and can be directly calculated 

if an accurate topographic survey is available. However, if the height accuracy and/or spatial 

resolution of the DEM is low, other metrics can be invoked to explain Vmax. Maximum surface area 

(Amax) (m2) of the tank at the maximum water height (Hmax) was used along with the length of the 
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bund (Blen) and a dimensionless shape index (SI) to describe the shape of the tanks water surface. 

SI is the ratio of the tank perimeter to the circumference of a circle with the same area (Eq. 3.2): 

 

 9: = 	
%

;	 -	4<=>

 (3.2)  

 

where P is the perimeter of the tank (m). Tanks with SI = 1 have shapes that are perfectly circular, 

whereas tanks with SI > 1 are increasingly complex. Tank shape is an important metric because 

the V-A relationship is predicated on the half-cut four-sided pyramid standard bathymetry. 

Therefore, using the SI metric provides an opportunity to characterize any variance from this 

standard (Karran, Westbrook, Wheaton, Johnston, & Bedard-haughn, 2017; Minke & Westbrook, 

2010). Regression and correlation analysis was performed to determine if any significant 

relationships exist between the morphometric variables, a, b and Vmax. 

3.3.4 Error Assessment: V–A model assessment  

The root mean squared error (RMSE) of the volume estimate for each tank was calculated 

between the predicted volume from each model (TS, CAT, GEN) and the “reference” volume from 

the DEM. V-A estimates were compared with reference volume estimates at 0.05 m fill increments 

from empty to 100 % of hmax. A standardized error, VERR (%) for volume, was calculated by 

dividing the RMSE by Vmax. This enabled comparisons of error between the different tanks and 

models regardless of tank size. In addition, VERR was calculated for two additional fill cases: 80 % 

of hmax and 50% of hmax. These additional depths were selected to test inconsistencies in error 

magnitudes when the tanks do not fill completely (Minke & Westbrook, 2010). Figure 3.4 shows 

that the largest volumetric differences typically occurs at stage levels above 1.5 m and the spillover 



	 47 

elevation in each tank (located at the top of the bund at ~ 3 m). Studies indicate that tank water 

levels rarely reach spillover elevation (Young et al., 2017) and in Tamil Nadu average tank water 

depths rarely exceed 1.5 m (Vaidyanathan, 2001). 

 

Figure 3.4: Difference in volume from “actual” volumes compared to predicted volumes from TS, CAT and GEN 
models for a selected representative tank. 

 

3.3.5 TanDEM-X DEM 

The accuracy of the TanDEM-X DEM product was evaluated using a topographic field 

survey of four tanks conducted in 2016, with a total of 2300 traditional survey points. The absolute 

elevations were compared, and V-A power relationships were derived and compared for each of 

the four tanks based on both field survey and TanDEM-X DEM data. 

3.3.6 SW Area estimation  

S1-A water classifications were validated by comparing them to tank water boundaries 

delineated from 3 m optical PS data acquired on the same date. Since, the PS data is not available 

for the basin until May of 2016, SAR data for 2017 were used for the SW validation. Three 

additional S1-A scenes were acquired from 2017 with 34 tanks from the Sept 2. image, 26 tanks 

from the Oct 1. image and 51 tanks from the Oct. 8 image. SAR SW area estimates were derived 
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using the Otsu algorithm (see §3.3.1). For SW extraction from PS, a Normalized Difference Water 

Index (NDWI) was calculated for each image:  

 

 ?@AB =
CD1DECF/G

CD1DHCF/G

 (3.3) 

 

where IJ,J and IKL3 are the band reflectances at 545 nm and 830 nm respectively. Analysis of the 

NDWI PS scenes revealed that selecting arbitrary threshold reflectance values per scene to 

distinguish water from non-water surfaces was highly variable between scenes. Therefore, a 100 

m buffer was generated for each tank polygon, yielding a buffered polygon mask containing both 

the maximum extent of water and some surrounding land and vegetation. The buffered tank 

polygons were intersected with the NDWI for each image and Otsu thresholding was used to 

delineate SW in each image. The SW area in each image were then converted to vector format for 

area calculation. The SW extents and equivalent volumes derived from PS and S1-A were 

compared and the area differences were used to compute the mean absolute error (MAE), RMSE, 

and mean absolute percentage error (MAPE).  

Based on a reference water mask covering SW in the PS data, the histograms of the 

backscatter coefficients for VH and VV polarizations were evaluated, separately for water and 

non-water pixels and using Otsu defined thresholds, the SW was classified separately for each 

polarization.  

3.3.7 Suitability of volume estimation: Real world application 

After calibrating and validating the approach in §3.3.1-3.3.6 to estimate tank water volume, 

two application examples were evaluated: 1) estimation of tank contributing water volume at the 
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basin scale using only SAR S1-A and 2) a time-series analysis for a single tank from multi-sensor 

observations.  

To test (1) with the aim of evaluating the suitability of SAR for SW mapping of tank 

dynamics using solely S1-A observations, a time-series of SW area was extracted using the method 

in §3.3.1. The monitoring period covered the NE monsoon season in 2015 and 2017 and the water 

dynamics of 559 tanks were assessed (see §3.2.4 and Appendix E). Total water volumes were 

estimated for tanks that received water during this period from the most suitable derived power 

models (see §3.3.2). Since not all tanks in the basin were studied and the dynamic process of 

tank filling (i.e., tanks are known to fill multiple times in a season) are not captured by infrequent 

state observations, it was not possible to evaluate the magnitude of volume estimates in the context 

of basin-wide precipitation totals. Instead, the TanDEM-X DEM (for the sample of testing tanks) 

were used to simulate fill levels to provide an approximate assessment of the volume estimates 

in the absence of field measurements. This simulation was achieved by modelling the water 

volume for the 72 tanks (see §3.3.2) at four stage levels (0.75, 1.5 m, 2.25 m, 3 m). From the 

sample of 72 tanks, for the tanks that filled in both years, the net volumes were calculated from 

the modelled DEM water levels. The estimate was also up-scaled to the full number of the of 

tanks, for the same tanks that filled in both years. For test (2) – the time-series application example 

– a high spatio-temporal resolution monitoring approach was investigated using a dense time-

series analysis for a single tank from multi-sensor observations.  
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3.4 Results  

3.4.1 Validation of bathymetry and SW area  

Summary statistics for the error of the TanDEM-X DEM compared with the four field-

surveyed tanks are shown in Table 3.4. The MAE and the RMSE between the TanDEM-X DEM 

and field elevations range from 0.67-0.86 m and 0.98-1.47 m, respectively for the four tanks. These 

vertical errors of the DEM are below the reported accuracies of 2–4 m, providing confidence for 

implementing the TanDEM-X DEM to derive V-A relationships for a larger sample of tanks 

(Eineder, Fritz, Abdel Jaber, Rossi, & Breit, 2012). The a and b parameters derived from the field 

data and the TanDEM-X DEM noted in Table 3.4 are also similar. The slight differences between 

the two data sources can be explained by Figure 3.5 which shows that the largest deviation in 

volume estimates between the two DEMs is at the bund area (heights > 4 m). 

 

Table 3.4: MAE, standard deviation, RMSE, V–A relationships and the R2 value for four tanks comparing the 
TanDEM-X DEM to topographic field measurements made in 2016. 

 
Site 

Mean	

Absolute	

Error	

(m) 

Standard	

Deviation 
(m) 

 
RMSE 
(m) 

Area	Storage	Relationship 
5 = 	6	×7

8	from	field	(F)	&	

TanDEM-X	(T)	data 
 
R2 

Tank	1 0.67 1.22 0.98 (F)	5 = 0.00061	×7
R.SS3 

(T)	5 = 0.00042	×7
R.SVL 

97.35 
97.34 

Tank	2 0.86 1.72 1.47 (F)	5 = 0.00107	×7
R.SJR 

(T)	5 = 0.00156	×7
R.J,; 

90.32 
95.83 

Tank	3 0.76 1.12 0.89 (F)	5 = 0.00021	×7
R.S3R 

(T)	5 = 0.00035	×7
R.JV3 

93.78 
91.89 

Tank	4 0.80 1.50 1.26 (F)	5 = 0.00861	×7
R.;R; 

(T)	5 = 0.00876	×7
R.;JR 

96.42 
95.33 
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Figure 3.5: TanDEM-X DEM compared to the 2016 field DEM for tank 1. (a) stage height volume curve, (b) area 
volume curve, and (c) 3-D visualization of TanDEM-X DEM (top) and field DEM (bottom). 

 
For the SW area extraction methodology, the classification derived from the VV polarized 

image had a stronger correlation with the reference water mask compared with the VH polarized 

image (96 % compared to 91 %) confirming a higher sensitivity of the VV polarization to the 

presence of SW in tanks. Furthermore, the effect of the backscatter incidence angle on the 

backscatter coefficient was tested for a collection of pixels located over SW and found no strong 

or significant correlation (see Appendix F, Figure F2). 

With respect to the SW area, Table 3.5 shows the SW area (8.55 km2) estimates of 111 

tanks obtained from the PS images and from S1-A images in 2017. These tanks were selected such 

that they contained water on the observation dates. It was found that the classification of S1-A 

underestimates the total SW coverage by �27 % (2.28 km2) (Table 3.5). When comparing the SW 

estimates at the tank level, the MAPE varied substantially across the 111 tanks (Figure 3.6). SW 

estimates from S1-A had an RMSE of 30,540 m2, equivalent to 27,741 m3 for volume (Table 3.5). 

The average MAPE was 37.84 % and 45.71 % for SW area and volume, respectively. The high 

c) 
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MAPE for SW area is concerning because this error will translate to an even higher percentage 

volume error, since reservoir area and volume are related through a power relationship. To better 

understand the large MAPE between the PS and S1-A observations, the tanks with a MAPE above 

30 %, which included 58 tanks (52 % of the sample) were visually inspected. The 13 tanks with a 

MAPE above 70 % revealed the same scenario (Figure 3.7a-d). These tanks showed elongated 

narrow SW extents in the PS imagery (Figure 3.7a). As a result, the SW areas were under detected 

in the S1-A imagery (Figure 3.7d), due to the spatial resolution of the sensor, and in turn caused 

high MAPE and an underestimation of the SW extent. Tanks with moderate MAPE (30-70 %) 

either contained a less severe case of the above underestimation (Figure 3.7e-h) and/or commonly 

displayed undetected water pixels around the border of the SW extent in the PS scenes (Figure 

3.7i-l). These differences in tank SW extent and the total surface of inundated area comes mainly 

from the difference of spatial resolution between the two satellites and complexity in the S1 

polarization response for SW detection. PS has a spatial resolution three times greater than S1 and 

therefore potentially captures increased detail. With regards to SAR imagery for small reservoir 

monitoring, there is large variability in backscatter intensities from water surfaces. The roughness 

of the water is highly variable and influences backscatter intensities over time and space. 

Difficulties also arise when the contrast between land and water deteriorates, due to the absence 

of vegetation on the land surrounding a small reservoir at the end of the dry season (Liebe, Giesen, 

et al., 2009).  
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Figure 3.6: Histogram of MAPE for SW areas in 111 tanks. 

 
Table 3.5: Accuracy of 111 tank SW extents and volume equivalents from S1-A and PS data. 

 
Date 

 
n 

Total	PS	

area	(m2) 
Total	S1A	

area	(m2) 
RMSE	

(m2) 
RMSE	

(m3) 
MAE	

(m2) 
MAE	

(m3) 
MAPE 

(%	Area) 
MAPE		

(%	Vol) 
Sept.	2 34 2476863 1956500 23840 18864 19728 14266 33.17 40.86 
Oct.	1 26 1719288 1411000 20151 14931 15261 10471 30.34 37.54 
Oct.	8 51 4350330 2903000 38000 36388 30149 23970 44.78 53.11 
All 111 8546481 6270500 30540 27741 23470 17835 37.84 45.71 
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Figure 3.7: Examples of the MAPE for three tanks displaying variable MAPE % errors. (a), (e), (i) display PS true 
color composite (TCC); (b), (f), (j) show extracted SW area from PS on TCC image; (c), (g), (k) show S1-A scene; 

and (d), (h), (l) show extracted SW areas. 

 

3.4.2 Understanding tank morphometry  

The selected 72 tanks were representative of the various shapes and sizes of tanks that are 

present in S. India. Bund lengths (Blen) ranged from 599–3399 m (mean = 1305 m). Max tank 

volumes (Vmax) ranged from 50445–809678 m3 (mean = 243563 m3). Low statistical associations 

(i.e. R < 0.70) were found between Vmax and Blen, S1, b, a, and Amax , and also between SI and Blen, 

b, a, and Amax.  

For Eq. 3.1, V-A coefficients b and a reveal information about the slope of the reservoir 

(the bund) and the openness of the half-pyramid tank bed, respectively. These parameters varied 

a)  

b) 

i) 

 

j)  

e

f) 

c)  

c) 
 

g)  k)  

d) 

 

h) 

 

l)  
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significantly among the 72 tanks, with the b parameter ranging from 1.09–1.90 (mean = 1.46) and 

the a parameter ranging from 1.64E-05–1.57E-01 (mean = 1.30E-02). Of the 72 tanks, 45 (63 %) 

have b parameters that were < 1.5, indicating that tanks tend to have more concave bathymetries 

(Magome et al., 2003). The small a parameters for the 72 tanks reveal that the tanks are narrow 

and without an evident flat middle area (Magome et al., 2003). Although these tank structures 

primarily do have a flat bed, the main depressed region is present along the bund, from which the 

V-A relationship is developed. A correlation value (R = 0.98) was observed between the a and b 

parameters indicating a strong relationship. This high correlation between the parameters of the 

A-V relationships for the basin demonstrate that generic or category power equations obtained can 

be used with confidence.  

3.4.3 Tank empirical storage relationship(s)  

The V–A relationships for the tank categories (CAT) and by all tanks (GEN) are shown in 

Table 3.6. Despite the variety of reservoir sizes, the generalized equation for the 72 tanks fitted 

the observed model well with an overall R2 of 95 %. The parameter values of the generalized V–

A relationship (GEN in Table 3.6) for the Gundar Basin are in the same order of magnitude as 

those obtained for basins in Africa by Annor et al. (2009) and Liebe et al. (2005) for the Upper 

East Region of Ghana and by Sawunyama et al. (2006) for the Limpopo Basin in Zimbabwe. The 

power equations reported in these studies are from 41, 21, and 12 reservoirs and fitted the data 

with b coefficients of 1.44, 1.44 and 1.33, respectively. Young et al. (2017) found higher b 

coefficients of 2.1 and 2.0, respectively when investigating only two tanks. In our study, high b 

coefficients greater than 1.8 were obtained for three TS models in the sample of 72. Similar to our 

study in terms of reservoir size and a large sample size, Rodrigues and Liebe (2013) used a power 



	 56 

relationship to generate a and b parameters for 103 small reservoirs (1–40 ha) in two semi-arid 

watersheds. They also noted a high R2 between the a and b parameters. 

 

Table 3.6: Generalized V–A relationships and the coefficient of determination (R2) values for GEN and CAT 
models. V is the tank volume (m3), A is the tank surface area (m2), and a, b are parameters. 

Tank	Size	Category	(CAT) n 5 = 	6	×7
8 R2 

<10	 24 V=	0.00277×A1.50 94% 
10-20	 24 V=	0.00599×A1.41 96% 
20-50	 17 V=	0.00734×A1.38 97% 
>50 7 V=	0.01116×A1.32 95% 
All	(GEN) 72 V=	0.00871×A1.37 95% 

 

3.4.4 Assessment of volume error  

While the power relationships in Table 3.6 all fit the input data well, the sensitivity of the 

a and b parameters to the corresponding volume estimates is unclear. To assess this sensitivity, the 

VERR (%) of volumes estimated from the three models (TS, CAT, GEN) were compared with actual 

volume estimates from the DEM (Table 3.7, Figure 3.8). 

Figure 3.8 and Table 3.7 show that in general, the CAT model had the lowest average VERR 

for each size category and fill level (hmax, 80 % and 50 %) and performed best. While the local TS 

model was expected to have the lowest VERR, it also appeared to introduce large uncertainties of 

volume estimation for select tanks. The basin-wide GEN model was similar in performance to the 

TS model. Consistently, the tanks in the smallest size category (<10 ha) and largest size category 

(>50 ha) had the highest VERR for all models. It should be noted, however, particularly for the GEN 

model, that the VERR is highly variable between the tank size categories, with the largest average 

VERR of 22.12 % for tanks <10 ha in size. The increased VERR for very small tanks is expected 
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because they vary substantially in shape. Understanding the higher VERR values associated with 

large tanks require a larger sample size. 

The a and b parameters developed for the TS, CAT, and GEN models were originally 

developed at a hmax of 3 m. Evaluating the VERR at 80 % of hmax and 50% of hmax shows that the 

VERR largely decreases with fill level. This decrease is most evident at 50% of max where the VERR 

drops from 13.67 % to 6.84 % for the TS model. This is highly informative to the practical 

application of the power regression equations for volume estimation in tanks because water levels 

are rarely elevated to 3 m and thus the uncertainty in the estimates is likely closer to the VERR at 

the 80% and 50% cases.  

 

Figure 3.8: Volume (VERR) error from each tank using the three different models (a–c) at hmax, 80% of hmax (d-f) and 
50% of hmax (g-i). Bars are colour coded by size category as per the legend at the top of the figure 

 
 

 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 
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Table 3.7: V–A model performance comparisons based on the mean (± standard deviation) percent volume error 
magnitude (VERR). “n” is the number of tanks studied in each size category. VERR 80% and VERR 50% refer to the 
volume error at 80% and 50% of hmax respectively.  

Tank 
Size 
(ha) 

n TS  CAT  GEN 

 VERR  
max 

VERR  
80% 

VERR 
50% 

 VERR  
max 

VERR  
80% 

VERR  
50% 

 VERR  
max 

VERR  
80% 

VERR  
50% 

< 10 24 16.5±6.8 13.2±5.5 8.2±3.4  14.5±3.9 11.7±3.1 7.3±1.9  22.1±3.4 17.7±32.8 11.1±1.7 

10-20 24 12.8±6.4 10.3±5.1 6.4±3.2  12.6±4.6 10.1±3.7 6.3±2.3  14.4±4.3 11.6±3.4  7.2±2.1 

20-50 17 10.1±5.4  8.1±4.3 5.0±2.7  9.9±4.3 7.9±3.5 4.9±2.1  9.0±4.1 7.2±3.6  4.5±2.2 

>50 7 16.0±4.6 12.8±3.7 8.0±2.3  15.1±0.6 12.1±0.5 7.5±0.3  17.9±7.0 14.3±5.6  8.9±3.5 

All 72 13.7±6.6 10.9±5.3 6.8±3.3  12.8±4.5 10.2±3.6 6.4±2.2  16.0±6.6 12.9±5.3 8.0±2.3 

 
 

3.4.5 Assessment of remote sensing monitoring water availability in small reservoirs 

The efficacy of measuring volume using solely SW extent and power models provides 

confidence in the applicability of RS SW extent to characterize tanks in remote regions and 

improve our understanding of water availability at various spatial scales. This sub-section 

demonstrates the results of our investigation with two tested application examples. The first 

application, test (1), presents the results for maximum water volume estimation at the basin scale 

for the 559 tanks using only SAR S1-A data for two high precipitation NE monsoon years (2015 

and 2017) and the second, test (2), focuses on a time-series analysis for a single tank from multi-

sensor observations. 

Focusing on SW area changes during the NE monsoon, only 49 % (n = 274 based on 16 

S1-A scenes) and 48 % (n = 268 based on 28 S1-A scenes) of the tanks showed water presence 

during the NE monsoon season. This highlights the first difficulty with attempting to contextualize 

our retrieved total volume estimate and tank dynamics (S1A-observation based). Despite good 

monsoon years, not all tanks are functioning and retained water, for example 177 of the same tanks 

showed no water presence for both years. This is not surprising as the literature highlights that 
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many tanks are currently not operating as functional structures able to retain water (Van Meter et 

al., 2016).  

Using the power models based on size (i.e., CAT) to estimate water volume observed at 

maximum fill for tanks with water present during the season, the SAR S1-A estimated volume is 

8222995 m3 and 5129576 m3, respectively for 2015 and 2017. These estimates are difficult to 

compare as not all the same tanks filled in the two years. For this reason, the estimated maximum 

volume for the same tanks (n = 179) that received water for both observation years are reported. 

This revealed that between the two observations years, the total tank water volume was larger 36% 

for 2015 than 2017 (6303091 m3 versus 4011419 m3 respectively). This finding is supported by 

NE monsoon precipitation estimates for 2015 and 2017. The gridded Climate Hazards Group 

InfraRed Precipitation with Station (CHIRPS) satellite product data, showed total NE monsoon 

precipitation for 2015 was 596 mm compared with 282 mm for 2017. To evaluate what these net 

volume estimates mean in the context of tank filling, the net estimates for the 179 tanks were 

compared against our simulated four filling cases representing the potential maximum fill at each 

stage level. As noted in §3.3.7, this process was done for the full 179 tanks and the subset of the 

179 tanks that corresponded to the same tanks for each year from the sample of 72, which resulted 

in 34 tanks. The simulated fill levels from the 34 tanks were estimated directly from the DEM. 

The simulated fill levels for the 179 tanks were estimated from the DEM for the sample of 72 

tanks. Within the sample of 72 tanks, the median volume for each size category was calculated for 

each fill level, resulting in one volume estimate for each size class: < 10 ha, 10-20 ha, 20-50 ha 

and > 50 ha. The 179 tanks were labelled with one of the former noted size categories and in turn, 

with a median volume estimate. The sum of the 179 tanks based on the median volumes was 

subsequently calculated for each fill level. While the 34-tank simulation is more accurate, it is only 
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a small subset and therefore, the 179-tank median net volume estimates were also considered. As 

shown in Figure 3.9, compared to simulated tank filling levels, estimated tank volumes from the 

power relationships for both years showed tanks filling closest to simulated stage level category 

of 1.5 m; they did not fill close to full simulated capacity (set at a stage of 3 m in this work).  

Both the observed years are an underestimation of the total input to the basin’s water budget 

since functioning tanks can fill multiple times, water is lost through the system and many 

hydrologic processes are not captured by infrequent state observations from space. However, the 

fact that the 2017 estimated fill levels were lower than the 2015 levels agrees with the lower basin-

wide precipitation in 2017 estimated from the CHIRPS data.  

 

Figure 3.9: Total water volume for 179 tanks (DEM median based) and 34 tanks (DEM only) with simulated fill 
levels at 3.0 m, 2.25 m, 1.5 m and 0.75 m using the TanDEM-X DEM and compared with SAR 2015 and 2017 

estimates.  
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While the volume estimates retrieved using S1-A over larger spatial scales provided insight 

into the maximum water extent and potentially the stored water volume, the temporal sampling of 

the tanks by S1-A alone is likely not good enough to evaluate the tank volume changes over time. 

Therefore, for test (2), a time-series of satellite-based volume estimates was calculated and shown 

for a selected tank in Figure 3.10. This tank and observation year provides an example of a season 

with both cloud-free optical observations (PS, S2 and L8) and S1-A data, for a NE monsoon 

season. The tank has a maximum SW area between 10-20 ha and therefore, the CAT 10-20 ha 

equation from Table 3.6 is used as the power model to retrieve volume estimates. All cloud-free 

observations from optical and SAR sensors covering the tank were retrieved for the period between 

August 2017 and January 2018.  

The volumes shown in the main graph of Figure 3.10a were retrieved from cloud-free 

observations while the coloured markers above the graph in Figure 3.10a correspond to scene 

acquisition dates, regardless of cloud contamination. This clearly shows the unavoidable challenge 

with employing optical RS observations for monitoring as they are often not useable due to cloud 

presence. While PS imagery is subject to variable cloud contamination, its high temporal 

resolution enables more frequent cloud-free observations than L8 and S2 sensors and facilitates 

not only a single snapshot of the volume but the seasonal variation of tank water volume. PS 

provides 27 SW areas, compared to three, four and 12 from L8, S2, and S1, respectively. Water 

volumes in the tank rose sharply at the start of September following the monsoon rains, and then 

dropped over the next three months as water was discharged from the tank (Figure 3.10a). Figure 

3.10b-c show the tank on September 2 observations from PS and S1-A, corresponding to the largest 

SW area of the tank for this season. While a full water balance explanation for the varying change 

in volume from tank to tank, or for the tank shown here is beyond the scope of this research, this 
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application test highlights how the combination of satellite radar and frequent visible-infrared 

observations of can be used to monitor tanks regularly all year-round. Additionally, inferences 

about inflows and outflows can be made if multiple adjacent daily observations are available. 

 

 

 

 

 

 

 

 

 

 

 

b) 

a) 

c) 

Figure 3.10: Time-series of volume estimates acquired from PS, L8, S2 and S1-A, top bars show all available 
acquisition dates while the dots for each sensor show only the volume retrieved from cloud free observations. b-

c show b) PS TCC image and c) S1-A VV polarized. 
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3.5 Discussion  

In this study, power relationship(s) were used to estimate tank water volume in the Gundar 

Basin, India for the calculation of net storage at the basin scale and monitoring changes in volume 

at the tank scale using TanDEM-X DEM data. This dataset provided an opportunity to evaluate V-

A relationships for water volume estimation covering a sample of tanks (n = 72). Based on the 

application of the V-A relationship method applied to 72 tanks, volumes can be estimated within 

an absolute volume error range of 6-8 % (TS, GEN and CAT models) for water levels below 1.5 

m, with the CAT model providing the best solution according to the VERR method. The application 

of SAR observations for water monitoring has a developed history (Bolanos et al., 2016; Musa et 

al., 2015; Xie et al., 2015), but this is the first study using S1-A to monitor SW area changes for 

tanks in S. India. The PS data were invaluable for both augmenting the observation frequency of 

S1-A to continuous (~1 day) monitoring (Cooley, Smith, Stepan, & Mascaro, 2017) and for 

validation of SW area. When the S1-B data is available for our study region, temporal monitoring 

will increase potentially to 6 days. Beyond this, the C-Band RADARSAT Constellation Mission 

(RCM) planned for launch in 2019 will offer advanced capabilities for monitoring SW with high 

spatial resolution and temporal resolution, providing enhanced monitoring of tanks during the 

monsoon seasons.  

While TanDEM-X DEM data produced VERR between 10-20 %, currently it is the only 

feasible dataset to implement to retrieve tank topography at large spatial scales. By indicating 

the uncertainly for volume estimation, users implementing our method can evaluate if the 

specified error is acceptable. While the bathymetric field data supported the use of TanDEM-X 

DEM data, it is unknown if this is the case for tanks in the lower basin because the monsoon 

regime is typically variable across the basin. Since the TanDEM-X DEM is from RS observations 
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spanning a five-year period, some scenes incorporated in the generation of the DEM may have 

been acquired when tanks contained water, contributing to differences in bathymetry values 

(Collins, Riegler, Schrader, & Tinz, 2015). To better understand these differences due to water 

presence, a bathymetric survey should be completed on a larger number of tanks in the middle and 

lower basin.  

To improve the accuracy of extracting the SW area from the S1-A images, the 

incorporation of a shape metric (SI) as a metric to eliminate SW areas that are too narrow to be 

accurately detected is suggested. In this study a tank mask was used to reduce errors in the 

estimation of SW area using S1-A; however, to apply the volume estimation method to a larger 

number of tanks, either a vector dataset of tank boundaries is needed or the methodology for SAR 

SW estimation needs to be improved to ensure that only open water areas are detected. The latter 

is a non-trivial problem because when water pools start forming in the fields surrounding the tanks, 

the land-water contrast deteriorates causing problems for tank SW area extraction (Eilander et al., 

2014). In addition, before S1-A imagery can be fully implemented into a larger-scale hydrological 

observing system for tanks, the influence of water surface roughness and vegetation presence on 

backscatter intensity needs to be understood; these can affect the error in SW delineation (Annor 

et al., 2009). By resolving these issues, it should be possible to use S1-A for continuous SW area 

monitoring to inform water management decisions.  

Finally, it is noted that power law type expressions can be used as effective storage-

discharge model predictors for the hydrologic modelling of tanks. Unlike other studies using 

generalized power law expression for volume estimation (Annor et al., 2009; Sawunyama et al., 

2006), this study shows that the a and b parameters are spatially variable and that volume estimates 

are sensitive to these parameters. When combining the power law expressions and SW estimates, 
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the ability to understand the dynamic amount of water stored in the region or in a large hydrological 

unit for managing local water resources was highlighted. With over 160,000 of these structure 

present in S. India, the hydrological potential of these systems to store water managed use is 

extremely important. This could have significant societal benefit by improving the prediction and 

application of irrigation in marginalized rural communities in S. India who are unable to cope with 

climate extremes. In the future, water volume extraction methods noted in this work could be 

incorporated into a hydrological and crop management framework to evaluate water requirements 

under current and future climate scenarios. Additionally, the Surface Water and Ocean 

Topography (SWOT) mission, to be launched in 2020, should be able to provide the first 

application of satellite altimetry for tanks and could be incorporated into our tank monitoring 

methodology by providing water levels at a higher temporal and spatial resolution.  

3.6 Conclusion  

Tank systems are a potential solution for reducing water stress in S. India by providing 

local groundwater recharge and a means of storing surface-accessible water for longer durations 

during the dry seasons. In this study, it is shown that RS techniques can be an important tool for 

tank monitoring providing an opportunity to understand the dominant hydrologic controls 

governing reservoir outflow and inflows. A methodology is developed to monitor and quantify 

water volume in tanks under all weather conditions for tanks in S. India, using high quality S1 

SAR observations, freely available online, and high-resolution PS data. Our results coupling 

empirical V-A models and remotely sensed SW area is a promising first step and proof of concept 

toward future modelling of ungauged flows in tanks, especially as developments in cloud 

computing for RS make our method easily applicable to any basin. The ability to estimate reservoir 

volumes using satellite RS has wide reaching implications in transboundary water management. If 
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equipped with remotely sensed observations of tank volumes, stakeholders can make more 

informed decisions about a wide array of water management issues related to tank use. RWH tank 

systems are currently not continuously monitored and thus, our findings represent a unique 

contribution to the hydrologic science community.  
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Chapter 4 

Discussion 

4.1 Summary and Contributions  

Characterizing the seasonal variation of freshwater is critical for ensuring sustainable use of water 

resources and therefore, the ability of biological systems to support human needs. This is especially 

true in S. India, where water resources are limited, unequally distributed in space and time and 

vulnerable to changes in climate, and where societies are dependent on surface waters for their 

livelihoods. The study presented in Chapter 3 identifies how space-based observations of SW 

distribution in the Gundar basin can improve our understanding of water availability at various 

spatial scales. Limited in several respects, the first application of SAR observations and a high-

resolution global DEM for tank monitoring provide a proof-of-concept for monitoring tank 

structures using RS techniques. 

At the onset of this thesis, three operational goals were established that have been addressed 

throughout the course of this study. The first finding of this thesis, though small, is significant; for 

the first time, tank bathymetry can be retrieved from a high-resolution global DEM. The most 

accurate ‘modelled’ estimate of tank SWS is, in theory, calculated directly from tank bathymetry 

(for all tanks). Even though the TanDEM-X DEM does provide full spatial coverage, the 

bathymetry of many tanks was not captured because of vegetation issues in the tank bed or water 

presence shown in the WIM. Fortunately, it was found that the bathymetry for a large subset of 

tanks can be retrieved using TanDEM-X DEM based on low WIM frequency values and visual 

inspection. The application of the TanDEM-X DEM was crucial to provide the ability to develop 
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empirically-derived tank storage relationships for a large sample of tanks (n = 72). As noted 

previously in Chapter 2 (see Table 2.1), although SWS has been estimated in small lakes and 

reservoirs with the combination of radar altimetry, visible-infrared reflectance and radar 

backscatter data, no prior work has focused on monitoring tank SWS during the monsoon season. 

Prior to the availability of TanDEM-X DEM for the retrieval of V-A power models, tank SWS 

was evaluated ten years prior by examining the spectral response of water from Landsat reflectance 

observations to approximate water depth (Mialhe, Gunnell, & Mering, 2008). While this work was 

critical to set the foundation and discussion surrounding the application of EO to support 

understanding of tank rehabilitation, their method does not allow monitoring during critical 

monsoon – habitually cloud covered – periods or when tank water is turbid. Furthermore, the field 

of satellite RS has witnessed a significant expansion of EO platforms for terrestrial water 

monitoring (McCabe et al., 2017); a clear example of this technological advancement has been 

illustrated in Chapter 3 from the ability of a satellite derived DEM (i.e., TanDEM-X DEM) to 

measure detailed geometry of tank structures (Mialhe et al., 2008).  

The TanDEM-X DEM product has set the foundation for evaluating simple, commonly 

applied, power type expressions for volume estimation in small storage structures (Karran et al., 

2017; Liebe et al., 2005; Meigh, 1995; Sawunyama et al., 2006; Young et al., 2017). To achieve 

the second operational goal, this research built on the success of the previous studies to evaluate 

the suitability of empirical power law expressions for water volume estimation in tanks. At the 

individual tank scale (i.e., TS model), the results present significant power relationships between 

the storage and area for the 72 tanks – a predicted result, given the success of the previous studies 

and the expected over-fitting of the model when focused on independent tank structures. More 

interestingly, and perhaps unpredictable, is our result showing high variability for a and b 
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parameters among the 72 evaluated tanks and the substantial impact this variability introduces to 

volume estimates. It is an unpredictable result because common practice has been to develop a 

single regionalized V-A equation for geomorphological similar landscapes, with the latter point 

lending to the assumption of minimal variation among reservoirs. Results in Chapter 3 highlight 

that variability among individual structures, even in geomorphologically similar landscapes, is 

important to consider when determining 1) the suitability of a power type relationships and 2) 

assessing a baseline to compare volume estimates when further approximating the models (i.e. 

CAT and GEN). Likely, previous studies have been unable to evaluate the former points due to 

limited bathymetric data. Fortunately, the TanDEM-X DEM facilitates the calculation of a dense 

set of bathymetric data for tanks, providing the ability to generate four power type models for 

volume estimation in tanks. Prior to this research there was no RS-based method to estimate SWS 

in tanks during monsoon periods: this is now possible with power law tank expressions and with 

estimated volume uncertainties. 

The two application test examples, volume estimation using the derived power models 

combined with multiple satellite observation-based SW extent, shows promising application of 

SWS monitoring. A detailed history can now be built regarding tank volume changes and when 

up-scaled to several tanks in the same cascade, management and water use questions at the cascade 

level can be addressed. Furthermore, tank volume estimates could now be used for a variety of 

applications. For example, Liebe et al. (2009) showed that small reservoirs can be used as runoff 

gauges by monitoring their surface area with remotely sensed time-series and regional V-A 

relations. In addition, when combined with precipitation records, remotely sensed reservoir storage 

changes can be used to calibrate a simple hydrological model (Liebe, Van De Giesen, et al., 2009). 
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These are potentially powerful practical applications of the proof of concept developed in this 

thesis. 

4.2 Methodological issues and limitations  

The methodology used in this study has several limitations. Here, the discussion is divided 

by limitations and uncertainties within the confines of 1) input data and 2) user-defined 

methodology. 

4.2.1 Data related limitations  

The primary limitation of using RS and model outputs is that the resolution (spatial and/or 

temporal) of the sensing system may not sufficient for the hydrological analysis. Results from this 

thesis indicate the water dynamics of tank structures cannot be captured solely with S1-A at the 

temporal resolution of 12 days. While S1-B is operational and increases the observation to a six-

day period, S1-B does not acquire observations over the study region. With respect to spatial 

resolution, lower agreement between S1-A extracted SW extent and PS-estimated inundation 

areas showed that where water accumulates along a spatially constrained area, such as a narrow 

SW area near the retaining wall, even currently available high spatial resolution SAR data (i.e., 10 

m) may not (yet) be sufficient to capture SW extent. A similar issue is noted by Ottinger et al. 

(2017), who mapped aquaculture ponds using S1-A and found the spatial resolution of the data 

limiting to the applicability of the observations to accurately recover pond outlines (Ottinger et al., 

2017). Furthermore, the developed power regression models are limited by spatial resolution, 

and spatial and height accuracy of the bathymetry estimation. While the TanDEM-X DEM 

dataset is an improvement over SRTM and other global satellite DEMs and can capture tank 

bathymetry, it is still a modelled approximation of the real-world terrain with errors and 
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uncertainties caused in many cases by insufficient spatial resolution. A limitation in the DEM 

accuracy also relates to tank processes which can influence the InSAR DEM estimation 

accuracy. For example, tank bathymetry, and volume estimation, is altered when silt is removed 

from the tank for agricultural applications and vegetation encroachment in tank beds (Gunnell, 

Anupama, & Sultan, 2007; Sato, 2013). These dynamic factors change over-time and continue 

to introduce additional error to the volume estimate using the methodology developed in this 

research. Although the error was difficult to evaluate and account for in this research due to 

time constraints, it could be undertaken in future. Nevertheless, no other DEM or surface 

products are available to retrieve tank bathymetry and no other RS based methods are 

appropriate to measure water volumes in tanks, indicating that this study represents a 

contribution to this field of SWS monitoring.  

Beyond the limitations related to tank bathymetry, TanDEM-X DEM has additional known 

inconsistencies and errors, particularly when applied for hydrological analysis. A hindrance with 

the application of the DEM is the unknown likelihood of water presence. While DLR provides the 

WIM along with the product, it is still a challenge to determine the uncertainty for landscapes with 

seasonal and not permanent water presence (Eineder et al., 2012). A high vertical agreement 

between TanDEM-X DEM and the total station topographic measurements confirmed confidence 

for tank bathymetric retrieval using the TanDEM-X DEM but this confidence is limited to a 

confined geographic location. It is possible that tanks in the lower basin do not present strong 

vertical agreement if in situ bathymetry was collected. This is only speculative and further study 

is needed to determine if there was increased water presence during scene acquisition for tanks in 

the lower basin. The clustering of the significant differences in elevation between the TanDEM-X 

DEM and in situ survey data primarily in the tank water spread area support that water presence 
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during scene equation does influence the bathymetry (Figure 4.1). Despite this, a study that 

developed a wet and dry season DEM from TanDEM-X data for small reservoirs in northeastern 

Brazil demonstrate that the retained water during data acquisition had little impact on the derived 

reservoir bathymetry and on estimated water volumes (Zhang et al., 2016). This should be verified 

with an increased number of field surveyed tank elevation measurements during the dry-season.  

 

 
Figure 4.1: Spatial distribution of the Getis-Orid Gi* z-scores labelled as confidence level for elevation differences 

between TanDEM-X elevations and in situ data for a field surveyed tank. Hot spots are located primarily in tank 
water spread area. 

 

4.2.2 User-driven methodological limitations  

User-driven methodological choices also introduced uncertainty and limitations for this 

study. The first limitation is related to the reporting of uncertainty in Table 3.7. Uncertainties are 

identified for both the satellite-derived SW areas and the established power relationships 

statistically independent of one other. The uncertainties in the model-estimated water storage 
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volumes will however be larger because they will combine uncertainties from the SW area 

estimates and the volumes estimates from the V-A relationships.  

 The research area of accurate reservoir water boundary detection using SAR is still a 

debated topic in the literature and a challenging task (Amitrano et al., 2014; Eilander et al., 

2014; Liebe, Van De Giesen, et al., 2009). The challenge is due to the large variation in the radar 

backscatter from water surfaces. While the Otsu method was efficient to implement in the GEE 

environment for unique tank and scene backscatter threshold selection, the method might not 

be a robust algorithm; a robust algorithm for SAR reservoir water delineation here is defined as 

one that can operate all year round and provide weather independent small reservoir monitoring. 

To date no such algorithm exists that is fully autonomous and accurate because of uncertainties 

arising from wind (e.g., surface scattering) and low land-water contrast at the end of the dry season. 

Therefore, the Otsu method is likely less robust for monitoring at the tail end of the season because 

there is no longer a bimodal distribution between water and non-water pixels (Otsu, 1979); other 

techniques might be more applicable (Bolanos et al., 2016; Eilander et al., 2014; Mueller et al., 

2016). Although wind-induced surface scattering (i.e., Bragg scattering) was not observed during 

the NE monsoon monitoring period, it was observed during the SW monsoon, which is the windy 

season (Figure 4.2). Extraction of SW area with VV polarized data on July 9th of 2016 would result 

is a large underestimation of the true extent as wind induced Bragg scattering has significantly 

increased the backscatter; this is not observed in the HV data (Figure 4.2). While the impact of 

wind induced Bragg scattering was minimal during the NE monsoon season (observation period 

in Chapter 3) and the VV co-pol derived SW extents were in higher agreement with PS extracted 

SW extents, co-pol (VV) and cross-pol (VH) data should be combined for improved SW 

detection when moving to year round tank monitoring.  
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Figure 4.2: VV and VH channels over a tank reservoir, showing better land–water discrimination with the cross-
polarization channel when windy (July). 

 

While the GEE was, and will continue to be an extremely valuable platform for efficient 

satellite data access and analysis, there was a trade-off in time when performing analysis. GEE is 

a programming interface and for S1 data, there is currently very few pre-existing algorithms, such 

as speckle filters, that have been translated into the JavaScript code environment. Therefore, the 

availability of an API presents a trade-off between the ease-of-use for a user and the flexibility to 

implement complex functions within said API. From this research, a workflow has been developed 

to continue SW extraction from L8, S2 and S1-A over tanks. The challenge still lies in automating 

the processing of the PS data and ingesting the data efficiently into the workflow. The time-series 

analysis using PS was presented for a single tank and the imagery was selected to contain minimal 

cloud cover and subsequently, SW extent was visibly checked to verify automated SW extraction 

performed well on all imagery. This was a manual process and needs to be improved before PS 
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data can be utilized for the large scale hydrological analysis of tanks. This is in agreement with 

Cooley et al. (2017), who notes many of the challenges that persist in PS data for large-scale 

analysis including a lack of an automated cloud mask, geolocation inaccuracies, and inconsistent 

radiometric calibration across multiple dove satellites (Cooley et al., 2017). 

4.3 Opportunities and future work  

Despite the above limitations and challenges, specific methodological considerations 

can overcome some of them to improve the tank SWS methodology. First, SW extent extraction 

can be improved for year-round monitoring by combining the VV and VH bands. Furthermore, 

incorporating auxiliary temporal information would help to resolve errors introduced by low land 

water contrast during the tail-end of the season or on high wind acquisition days (Eilander et al., 

2014; Liebe, Giesen, et al., 2009). As followed by Eilander et al. (2014), this work also utilized a 

mask of tank boundaries for the Gundar; to up-scale the analysis to the regional scale, a larger 

mask will need to be developed.  

The most pressing and exciting opportunity moving forward is the automation of the 

method, considering the datasets used in this research but also in conjunction with the large volume 

of data for SW extraction available in the near future (Appendix C). Our research highlights that 

the temporal frequency of S1-A acquisitions alone (12 days) is insufficient to monitor the highly 

variable hydrologic water cycle (primarily output) of tanks. The time-series analysis does however 

highlight that there is sufficient EO optical datasets now available that can provide the required 

temporal resolution to begin to understand tank dynamics. While PS data is daily, cloud cover still 

presents a serious challenge when processing and utilizing the data at larger spatial scales. Moving 

forward, the RCM to be launched in 2019 will further increase the number of observations and 

will be a critical source of information for tank monitoring during the monsoon periods.  
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Beyond the increased number of SAR mission in the future, the SWOT mission (2020 

launch) will present several new opportunities to understand tank SWS. SWOT will be the first 

altimetry dataset with a high enough spatial resolution to potentially retrieve water heights for 

tanks. This is turn would allow the evaluation of SWS storage estimated from satellite estimated 

SW extent and altimetry estimated H. While this research focused on the foundational methods to 

estimate SWS in tanks, moving forward, many interesting questions can now be addressed in 

subsequent work. With the tank volume estimation framework, a wide variety of novel 

experiments could be run to investigate tank dynamics. For example, a time-series for tanks within 

the same cascade can be developed to evaluate the timing of water release dynamics and if these 

dynamics are conducive to command area crop requirements. In addition, past multi-mission SAR 

data, dating back to the 1990s, can be incorporated to investigate long term change in tank SWS 

storage.  
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Chapter 5 

Conclusions  

This thesis asked the question: Can RS observations be used to monitor tank systems? The 

answer to this question is perhaps the greatest contribution of this thesis. A flexible framework for 

volume estimation in tanks has been created from available RS data. To date, few studies in the 

literature have focused on the ability to monitor tanks from space and no studies have investigated 

the monitoring of tank volume dynamics at the basin scale with the integration of radar and visible 

infra-red constellation sensor observations. Furthermore, although this research had the benefit of 

leveraging the TanDEM-X DEM, this resource at 12-m spatial resolution is not openly available 

to the public.  

The study presented in Chapter 3 identified how space-based observations of SW 

distribution in the Gundar Basin can improve our understanding of water availability at various 

spatial scales. Although limited in some respects, the first application of radar observations and a 

high-resolution global DEM for tank monitoring provide a proof of concept in the context of 

monitoring the tank structures. The results demonstrate that S1-A SAR observations can be used 

to monitor tank water extent and when combined with power models fitted to tank bathymetry, 

time-series volume estimates can be calculated. When the Sentinel-1B data is collected for the 

region, the temporal scale of monitoring will increase from 12 days to 6 days. Since this data is 

freely available and can operate in all weather conditions, it is highly advantageous to use this 

system for systematic monitoring of small reservoirs. Beyond this, the synergy of optical data and 

SAR data is crucial; it increases temporal frequency but can also validate the SAR based water 
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retrieval estimates. Although cloud cover is a hindrance for the operational use of optical data in 

water monitoring applications, the high temporal daily revisit of optical constellation satellites 

provides an increasingly frequent series of cloud-free data during critical monsoon observation 

periods. While it is challenging to fully and comprehensively validate volume estimates, the results 

show strong potential to employ RS observations to further explore tank water dynamics at various 

spatial scales. Now, with power law type expressions and the uncertainty estimates, volume 

estimates in tanks between 5-80 ha can be estimated solely based on SW extent without the need 

for tank bathymetry. 

Tank systems are a potential solution for reducing water stress in S. India by providing 

groundwater recharge and a means of storing water for longer durations. This research provides a 

stepping stone to understand these systems by providing a potential method to monitor water 

storage within tanks using satellite RS techniques. Tank systems are currently not continuously 

monitored and thereby, this research has offered a unique contribution to the hydrologic science 

community by incorporating SAR data and a high-resolution DEM for tank monitoring.  
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Appendix A: Field photos  

 
Figure A1: Topographic field survey in July 2016 using total station when tanks contained no water. 

 
 

 
 

Figure A2: Invasive vegetation in tank bed highlighted tank state of disrepair.  
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Figure A3: Tank with water highlighted high water turbidity.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 89 

Appendix B: DEM comparison  

 

 
 
Figure B1: DEM comparison for tank geometry. (a) 30 m STRM DEM, (b) 30 m ASTER DEM, (c) TanDEM-X 12 

m DEM, and (d) field interpolated topographic data DEM.  
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Appendix C: SAR missions- Past, current, future 

Table C1: Past, Current and Future SAR Missions 

Satellite Lifespan Specifications 

Name	(sponsor)   frequency polarization	modes spatial	
res.	(m) 

swath	
width	
(km) 

repeat	
cycle	
(d) 

SAOCOM	(CONAE) 2018 Current	 L-band single	pol.	(HH,VV,HV,VH),	dual	pol.	
(VV/VH,HH/HV),	quad	pol. 

10	-	
100m 

	30	-	
350 

16 

Gaofen-3	(CNSA) 2016 Current	 C-band single	pol.	(HH,VV,HV,VH),	dual	pol.	
(VV/VH,HH/HV) 

1-500 650 29 

KOMPSAT-5 2013 Current	 X-Band	 single	pol.	(HH,VV,HV,VH) 1-20 5-100 28 

Sentinel	1	(ESA)	 2014 Current	 C-band dual	pol.	(VV/VH,HH/HV)	 5-40	 20-	400	 12 

RADARSAT	Constellation	(CSA/	MDA)	 2019 Current	 C-band single	pol.	(HH,VV,HV,VH),	dual	pol.	
(VV/VH,HH/HV),	quad	pol. 

3-100 5-500 12 

ALOS	PALSAR-2	(JAXA)	 2013 Current	 L-band single	pol.	(HH,VV),	dual	pol.	(HH/HV,	
VV/VH),	quad,	compact	pol.	 

1-100 25-350 14 

TerraSAR-X	(DLR)	 2007 Current	 X-Band	 single	pol.	(HH,VV,HV,VH),	dual	pol.	
(HH/VV,	HH/HV,	VV/VH)	 

1-18 10-1650	 11 

COSMO-	SkyMed	(ASI)	 2007 Current	 X-Band	 single	pol.	(HH,VV,HV,VH),	dual	pol.	
(HH/VV,	HH/HV,	VV/VH)	 

1-100 10-200 16 

ERS-2	(ESA)	 1995 2011 C-band	 single	pol.	(VV)	 30 100 35 

ENVISAT	ASAR	(ESA)	 2002 2012 C-band	 single	pol.	(HH,VV,HV,VH),	 30-500	 5-400	 35 

RADARSAT	1	(CSA/	MDA)	 1995 2013 C-band	 single	pol.	(HH)	 8-100	 50-500	 24 

RADARSAT	2	(CSA/	MDA)	 2007 Current	 C-band	 single	pol.	(HH,VV,HV,VH),	dual	pol.	
(VV/VH,HH/HV),	quad	pol.	 

3-100	 20-500	 24 

ALOS-	PALSAR	(JAXA)	 2006 2011 L-Band	 single	pol.	(HH,VV),	dual	pol.	(HH/HV,	
VV/VH),	quad	pol.	 

10-100	 30-350	 46 
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Appendix D: Deriving the power function out of the 
linear line from the log-log curves 
 

Figure D1 provides a schematic of the process to retrieve Equation (3.1) - the V-A power 
equation. The minimum (hmin) and maximum topographic elevation (hmax) was extracted for each 
tank. Using a surface volume tool, the surface water extent and the volume was calculated for 0.05 
m increments from hmin to hmax (3 m max.).  

 
 

:  
Figure D1: Process to retrieve power V-A relationship. Example provided specific to Tank 1. 
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Appendix D Continued 
 
To derive the V-A relations to the power equation, it was necessary to determine the linear 

regression equations for the logarithms of surface area and volume. The output from the surface 
volume analysis allowed the creation of a log area log volume curve for each tank. Using the log-
log curve it was possible to make a linear line that represents the relationship. The function of the 
linear line was rewritten to a power function using basic logarithm principles. Figure D2 provides 
an example of deriving the power function for Tank 1 using the linear regression equation from 
the log area-log volume curve. The derived power function represents the V-A relationship. When 
iterating this process for each tank, the result was 72 different V-A relationships with 72 unique a 
and b parameters.  

 

 
Figure D2: Example of process to retrieve power form of linear log area-log volume equation for 

Tank 1. 
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Appendix E: Maximum water extent monitoring  

 
Figure E1 displays 12 SAR scenes for eight tanks in the upper basin. To extract maximum SW 
extent, SW extent was extracted from each date for each tank. Tank mask boundaries were used 
to extract tank regions. From the time-series of SW estimates, the maximum SW extent was used 
in the volume estimates at the basin scale. This was completed for two monsoon seasons (2015 
and 2017).  
 
 

 
Figure E1: Time series of SAR S1-A scenes over the 2015-2016 monsoon season for eight tanks 

in the upper basin. 
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Appendix F: SAR water delineation – VV versus VH 

 

 
Figure F1: For SW delineated with PS, histograms of the water and non-water pixels for the SAR backscatter 

coefficients in VH and VV polarizations. 

 

 
Figure F2: The SAR backscatter coefficients (VH and VV polarizations) from the S1-A as a function of the 

incidence angle over water bodies. The linear regression lines are also plotted. 

 

 
 
 


