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Abstract

Solid particle distribution on an impingement surface has been simulated utilizing a graphi-
cal processing unit (GPU). An in-house computational fluid dynamics (CFD) code has been
developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method
(LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time
(MRT) models. This work proposed an improvement in the LBM-cellular automata (LBM-
CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 LBM
lattice model, while the particles movement employs the D3Q27 one.

The particle numbers are defined at the same regular LBM (fluid) nodes, and the transport
of particles from one node to its neighbouring nodes are determined in accordance with
the particle bulk density and velocity by considering all the external forces. The previous
CA models distribute particles at each time step without considering the local particles
number and velocity at each node. The present model overcomes the deficiencies of the pre-
vious LBM-CA models and, therefore, can better capture the dynamic interaction between
particles and the surrounding turbulent flow field.

Despite increasing popularity of the LBM-MRT model in simulating complex multiphase
fluid flows, this approach is still expensive in term of memory size and computational
time required to perform 3D simulations. To improve the throughput of simulations, a
single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel
programming platform and the CuRAND library are utilized to form an efficient LBM-
MRT-CA algorithm. The LBM-MRT fluid (i.e. no particles) model results were compared
with two benchmark test cases ones. The first case is a turbulent free square jet, and the
second one is a circular turbulent impinging jet for L/D=2 at Reynolds number equals to
25,000, where L is the nozzle-to-surface distance and D is the jet diameter.

The LBM-CA simulation methodology was first validated against a benchmark test case
involving particle deposition on a square cylinder confined in a duct. The flow was unsteady
and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for
different Stokes numbers. The GPU code was then used to simulate the particle transport
and deposition in a turbulent impinging jet at Re=10,000. The effect of changing Stokes
number on the particle deposition profile was studied at different L/D ratios, i.e. L/D=2,
4, and 6. The current model was finally used to simulate the particle impaction pattern
from a circular jet for L/D=0.5, where the effect of changing Stokes and Reynolds numbers
on the particle transport and deposition was examined. The present LBM-CA solutions
agree well with other results available in the open literature.

For comparative studies, another in-house serial CPU code was also developed, coupling
LBM with the classical Lagrangian particle dispersion model. Agreement between results
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obtained with LBM-CA and LBM-Lagrangian models and the experimental data for the
impinging jet case of L/D=0.5 is generally good, and the present LBM-CA approach on
GPU achieves a speedup ratio of about 150 against the serial code running on a single
CPU.

Another new model was proposed to incorporate the solid particle phase effect (i.e. two-way
coupling) on the fluid flow. The LMB-Lagrangian approach was used in this model to track
solid particles in the computational domain. The solid particle phase was considered as a
porous medium moving in the computational domain. The impact of the porous medium
(i.e. the solid particle phase) on the fluid flow characteristics (e.g. fluid velocity) is a
function of the particle phase volume fraction and velocity in the LBM. Particle-particle
collision (i.e. four-way coupling) was also considered in this model by utilizing the discrete
element method (DEM). This approach can numerically capture the multi-particle collision
behaviours in dense particle suspension problems. This model data were compared with
the numerical study ones for a single bubble injected in a fluidized bed, and the results of
the bubble diameters at different injection velocity were in good agreement.
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Chapter 1

Introduction

Single-phase flows have been studied for many years; problems related to these kinds of
flows have been traditionally modelled using Navier-Stokes equations, which describe the
mass, momentum, and energy of the single-phase fluid flows. One difficulty in modelling
fluid flows appears when turbulence take place in the flow. Turbulence has large effects
on the transport of mass, momentum, and energy which can be difficult to model. The
method of direct numerical simulation (DNS) can be the most accurate way to calculate
the turbulence effects on the problem under study. To obtain the most accurate results for
turbulent flows using DNS, all time and space scales must be captured which requires large
and often unacceptable amounts of computational resources. In addition to single-phase
flow problems, multiphase flow problems have more recently been gaining attention and
the formulas describing the equations of mass, momentum, and energy are still ambiguous.
Multiphase flows can be classified in to four main groups: liquid-gas, liquid-solid, gas-solid
and three phase flows. Fluid-particle or particle laden flows are two phase flows; the first
phase is the fluid (gas or liquid) which occupies the majority of the flow region and the
second phase is the particles. The complex hydrodynamic interactions between particles
and fluid makes the analytical solution for such flow very complicated or impossible to be
obtained [61]. Instead, numerical modelling is more suitable to understand the complex
behaviour of such systems. In simple cases, particles suspended in fluid can be described as
rigid bodies moving in a Newtonian fluid. Complex fluid flows such as turbulent flows may
add additional dissipative motion which needs more accurate modelling to describe. In-
creasing the solid fraction raises the particle-fluid interaction and leads to two-way coupled
flows. Brownian motion and particle-particle interaction force further complicate the hy-
drodynamics of the system. With microscopic particle suspension, increasing the particle
fraction may change the fluid properties significantly and produce a non-Newtonian fluid
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[61]. A wide range of applications related to the gas-particles flows has led to different for-
mulations to model such flows. In general, there are three kinds of gas-solid models based
on LBM: Lagrangian point-like particle tracking approach [19], Lagrangian fully-resolved
particle tracking approach [53], and cellular automata probabilistic approach [64][65].

1.1 Impinging Jets

Turbulent vertical impinging jets have wide applications in engineering and industrial fields.
Due to the high levels of momentum and temperature diffusion near the impinging surface,
impinging jets can be used in the removal of heat from industrial and electronic devices. To
improve the heat and mass transfer within the wall jet zone, solid or liquid particles (second
phase) can be added to the jet flow (first phase). The new generation of the vertical takeoff
and landing aircraft utilize vertical impinging jets to generate the necessary lift force to
push up the aircraft with zero forward speed. According to Jambunathan et al. [44],
vertical impinging jets have five main zones as shown in Figure 1.1, which are:

1. Potential core zone: In this region the nozzle centerline velocity Um is nearly equal
the jet exit velocity Uj. The end of this region is defined when Um = 0.95 Uj.

2. Initial mixing zone: This region lies at the outer edge of the flow region. Because of
the velocity difference in this region (surrounding velocity = zero), the mixing region
would be generated causing the surrounding fluid to be entrained in to the flow zone.

3. Established zone: For the free jet flow or when the impinging wall is placed in distance
larger than the core zone, this zone will be generated. In this zone the fall of the
centerline velocity and the jet half width (jet width where U = Um/2) will be directly
proportional to the axial distance after the core zone.

4. Deflection zone: Close to the impinging wall, the axial velocity is decreased rapidly to
the wall velocity (zero velocity). As a result, static pressure is raised corresponding
to the velocity decreasing.

5. Wall jet zone: Close to the wall, the transverse velocity rises rapidly and its value
is high near the wall and start to fall far from it. Due to the high turbulence levels,
this zone is very important when the high rate of momentum and heat transfer are
needed.
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Figure 1.1: Flow zones in an impinging jet.

1.2 Fluid-Particle Impinging Jet Flows

To improve the heat and mass transfer within the wall jet zone, solid or liquid particles
(a second phase) can be added to the jet flow (the first phase). Fluid-particle laden
flows appear in numerous applications starting from home devices like ink-jet printers, air
freshener, and car engines and extend to many industrial and environmental applications
such as sand conveying tubes, gas turbines, sand grinding, surface erosion, pollutants
transport in atmosphere, and paint and paper manufacturing. As well as, there are many
applications in the pharmaceutical field such as aerosols which are pressurized packages
containing very small drug particles (e.g. liquid or solid) dispersed in a propellant (e.g.
gas). The aerosol can deliver drugs to the lungs utilizing the high pressure, high speed,
and the turbulent characteristics of the impinging jets to provide better distribution of the
drugs inside the lungs which work as impinging surfaces.
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1.2.1 Fluid-Particle Interaction

Fluid-particle or particle laden flows are two phase flows; the first phase is the fluid phase
(e.g. gas or liquid) and it occupies the major size of the flow region, and the second phase is
the particle phase (e.g. solid or liquid). As the second phase occupies small fraction of the
flow, it is named the dispersed phase. The two phases are separated by interface and they
are interacted and correlated dynamically through it. The main flow is generated by the
first phase due to pressure or gravity forces, while the second phase or the particle phase
acquires its motion from the first phase due to the drag force between the two phases.

According to Tsuji [95] and Elghobashi [22], turbulent particle laden flows can be classified
as three main categories according to the particle volume fraction or concentration in the
flow which may affect the nature of interaction between the particles and fluid. Figure 1.2
depicts these categories, and the characteristic quantities in this figure are defined as:

Figure 1.2: Map of flow regimes in particle-laden flows [24].
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• Vp: volume of single particle,

• M : number of particles,

• V : volume occupied by both particles and fluid,

• Φp: volume fraction of particles defined as, Φp = MVp/V ,

• d: diameter of particle,

• ρf , ρp, and ν: fluid density, particle density, and fluid kinematic viscosity, respec-
tively,

• τp: particle response time (the time required for a particle to acquire the fluid phase
motion) defined as: τp = ρpd

2/(18ρfν),

• τk: Kolmogorov time scale = (ν/ε)1/2,

• τe: turnover time of large eddy = `/u,

where u is the rms fluid velocity, ` is the length scale of energy containing eddies, and ε
represents the dissipation rate of turbulence kinetic energy. The three categories in Figure
1.2 are:

1. Collision free flow (dilute phase flow): in this region, the volume fraction of particles
is very low (Φp ≤ 10−6). The particles have a negligible effect on turbulence, and
the interaction between the turbulence and the particles is called one-way coupling.
The term one-way means that the momentum transfer from the main turbulent flow
to the particles while the opposite transfer of momentum from particles to flow is
insignificant due to the low particle concentration. The dispersion of particles in this
flow highly depends on the turbulence of the flow field.

2. Collision dominated flow (medium concentration flow): in this region, the volume
fraction of particles is considered as a medium fraction (10−6 < Φp ≤ 10−3). The
momentum transfer from the particle to the fluid phase causing a significant effect on
the fluid turbulence structure, and the interaction between the fluid and the particles
in this case is called two-way coupling. Figure 1.2 shows that within this region at
constant Φp, the turbulent energy dissipation is increased with decreasing τp. The
reason for this phenomenon is when the particle response time τp is decreased (i.e.
decreasing the particles diameter) and for the same volume fraction, the contact area
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between the fluid and the particles will be increased. On the other hand, increasing
τp at the same Φp causing the particle Reynolds number Rep to be increased. As
stated in [24], when the particle Reynolds number reach values in the range of Rep ≥
400, vortex shedding (around particles) is generated resulting enhancement in the
turbulent energy production.

3. Contact dominated flow (dense phase flow): in this region, the volume fraction of
particles becomes very high (Φp ≥ 10−3), and the flow in this case is referred as dense
suspension flow. In addition to two-way coupling interaction between particles and
turbulence in fluid, each particle can collide with others causing additional momen-
tum transfer between particles. This particle-particle-fluid interaction is known as
four-way coupling. When Φp approaches 1, the granular flow is produced and in this
case the solid phase will occupy the major part of the flow regime.

1.2.2 Particles Deposition Mechanisms

The most important mechanisms for the deposition of solid particles suspended in turbu-
lent flows onto surfaces are: diffusion, gravity, inertia, and electrostatic effects, as show in
Figure 1.3. Diffusion can be divided into two mechanisms: Brownian diffusion and tur-

Figure 1.3: Particles deposition mechanisms [43].

bulent diffusion. In Brownian diffusion, particles collide randomly with surrounding fluid
molecules, and this mechanism is significant for very small particles (dp � 1µm) [3]. The
turbulent diffusion (turbulent dispersion) mechanism is governed by the fluid flow turbu-
lence and it depends on the particle Stokes number. In gravitational mechanism, which is
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also called sedimentation, the particles in a fluid moves under the effect of gravity force
and reaches a velocity called settling velocity. The inertial mechanism includes the effects
of impaction and interception. In inertial impaction, the fluid velocity experiences a rapid
change in magnitude and direction which causes a high relative velocity between the fluid
and particles especially for large particle size (i.e. high Stokes number). The inertial in-
terception mechanism is dominant for curved surfaces or in complex flow systems where
strong curvature exists. Finally, charged particles near the solid wall may experience an
electrostatic force due to induced charges on the wall surface [3].

1.3 Levels of Fluid Dynamics Modelling

Modelling fluid dynamics systems mathematically is interesting and challenging work. Such
models can be achieved with Hamilton’s equations (Hamiltonian mechanics), Boltzmann
equation, and Navier-Stokes equations at the micro-, meso-, and macro-scale, respectively
[66]. These three methods of modelling (or description) of fluid flow dynamics are illus-
trated in Figure 1.4. The LBM is considered to be at the meso-scale level as it describes

Figure 1.4: Fluid dynamics description levels [66].

the molecular movement of particles in a statistical way that connects the fundamental
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roles of kinetic theory (micro-scale) with the continuous macro-scale level. Theoretically,
all transport parameters such as viscosity and thermal diffusivity can be deduced from
the fundamental knowledge of the fluid particle state. In the microscopic scale, the state
of particles (atoms or molecules) is described by the local momentum and location for
each particle. In addition, the comprehensive definition of the particles state in a finite
region leads to define the hydrodynamics variables like pressure, velocity, temperature, and
density.
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Chapter 2

Literature Survey

2.1 Introduction

A wide range of applications related to the gas-particles flows has led to extended formu-
lations to model such flows. The numerical approaches which deal with these formulations
expand from direct numerical simulation-discrete particle system (DNS/DPS) models to
two-fluid models considering different levels of description [77]. Some literature that this
study is based on are summarized in Table 2.1. This chapter is organized such that each
section review some of the literature approaches in a specific area (e.g. single phase im-
pinging jet and Lagrangian particle tracking). After these reviews, the pros and cons of
each approach are presented showing the motivation of using the present model.
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Table 2.1: Summary of previous studies on single and two-phase flow

Researcher

and year Type of study Flow type Fluid model Particle model
Focus

of study

Cooper et al., 1993 [15] Experimental Single - -
impinging jet flow
for L/D = 2− 10

Craft et al., 1993 [16] Simulation Single RANS -
impinging jet flow

for L/D = 2
Geers et al., 2004 [33] Experimental Single - - impinging jet arrays
Alatawi and Matida

2012 [4]
Simulation Two

RANS
LES

Lagrangian
EIM

Particle deposition in
impinging jet flow

Elghobashi, 1993 [24]
Simulation

(Review paper)
Two

DNS
LES

Two-fluid
Lagrangian

Particle-Laden
turbulent flows

Xiong et al., 2014 [104] Simulation Two LBM
Lagrangian

DEM
Four-way coupling

bubbling fluidized bed

Chopard et al., 2000 [13] Simulation Two LBM CA
Dynamics of solid
particles erosion,

transport, and deposition

Zhang et al., 2014 [109] Simulation Two LBM
Lagrangian

DEM
Particle-Particle

collision. Particle Sedimentation

Salmanzadeh et al., 2007 [85] Simulation Two FVM Lagrangian
Particle deposition

on a rectangular Obstruction
in a duct flow

Burwash et al., 2006 [7]
Experimental

Simulation
Two CFD (Ansys) Lagrangian

Particle deposition
on an impingement surface

Sethi and John, 1993 [86] Experimental Two - -
Particle deposition

pattern on an impingement surface

Marple, 1972 [62]
Experimental

Simulation
Two FDM Lagrangian

Round and rectangular
particle impactor

2.2 Single-phase Impinging Jet Flows

Cooper et al. [15] accomplished a comprehensive experimental work focused on turbulent
fluid flow and heat transfer of the orthogonally impinging jet. In this work, different L/D
values ranging from 2 to 10 were studied and the distances 2 and 6 were the main focus of
this experiments, and two values of Reynolds number had been considered (i.e. 2.3× 104

and 7 × 104). The results reported the mean and rms velocity profiles in the vicinity of
the impingement surface. The mean velocity profiles showed small variation when L/D
was changed, while the rms velocities were increased with increasing L/D. In general,
the mean velocities are not affected by the wall within a distance between the jet exit and
y/D ' 0.7 from the wall. The wall starts to show more pronounced influence on the mean
velocity in the near wall region (y/D < 0.7) due to action of the turbulent shear layer.
Contrarily, the turbulence intensity increases smoothly within a distance y/D < 2, and
this growing was attributed to the turbulent diffusion within the mixing region of the jet.
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The turbulence intensity reaches its maximum values at distance y/D ' 0.3 because of
the near wall shear layer, and the intensity falls abruptly close to the wall due to the wall
damping effect.

The numerical study of Hällqvist [38] utilized the LES turbulence model to simulate a
circular impinging jet at Reynolds number Re = 20000. The LES results were compared
with experimental data and RANS based model results. The author stated that the RANS
model, which is computationally cheaper than LES, provides plausible results for free jet
flow simulation; however, the more complex hydrodynamics (e.g. dynamics of the coherent
structures) need more accurate turbulence modelling such as LES to resolve. For that
reason, it was believed that the comparison of mean and rms velocity values between LES
and RANS was reasonable. Primary vortices were formed after the jet outlet due to large
radial velocity gradient as a result of the low momentum surrounding fluid. These vortices
starts to interact with each other in the downstream fluid flow, and they are deflected by
the wall which produces secondary vortices due to the radial convection of the primary
vortices.

2.3 Eulerian-Lagrangian Solid Particle Simulation

In this method, the fluid flow simulation is based on the Eulerian fixed node approach (e.g.
CFD and LBM) and the solid particles movement is estimated based on Newton’s second
law of motion.

Derksen [19] incorporated point-like solid particles in LBM-LES flow fields in a mixing
tank and swirling tube. In this study, the underlying fluid (water) simulation is based on
LBM- Eulerian (fixed grid) approach, while the motion of each single particle is determined
by integrating the equations of motion (Lagrangian simulation). The particle diameter is
dp = 0.3 mm and the Stokes number is 1. Despite that the flow in this simulation is
turbulent, the particle-turbulence interaction is not considered (i.e. one-way coupling).
The Lagrangian particles tracking approach can determine the exact spatial location of
each individual particle at each time step. The LBM-Lagrangian approach may lose the
parallelism inherent to LBM because the two phases (i.e. fluid and particle) are represented
in different (Eulerian and Lagrangian) frameworks [99].
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2.3.1 RANS-Eddy Interaction Model

In the Eddy Interaction Model (EIM), one particle is allowed to interact successively with
various eddies. Each eddy has a characteristic lifetime, length, and velocity scales that are
obtained from the primary flow calculation results. The end of the interaction between the
particle and one eddy occurs when the lifetime of the eddy is over or when the particle
crosses the eddy. At this instant, a new interaction for the particle with a new eddy is
started, and the particle will have another trajectory according to its equation of motion
[47] [67]. When the particle enters the eddy, the local fluctuating velocity at the particle
location is added to the local mean velocity to obtain the instantaneous fluid velocity used
in the particle equation of motion.

Alatawi [3] predicted in his work the aerosol particle transport and deposition in impinging
jet flow. This work utilized Reynolds Average Navier Stokes (RANS) model for the fluid
flow simulation and the modified EIM method for the fluid-particle interaction. The near
wall correction technique through the modified EIM was used to model the near-wall region
to accurately predict the particle deposition in this region especially for small particles
where the turbulence fluctuation is the main driving mechanism. The deposition of a
particle is considered when the particle centre reaching a distance from the wall equal to
the particle radius where the particle stick to the impingement wall and no additional
bounce-back movement is allowed.

The RANS approach used in traditional CFD method is unable to predict the turbulent
fluctuating velocities around the solid particles, which are crucial in the turbulent fluid-
particle interaction problems. Contrarily, the LES approach is highly desirable for provid-
ing the turbulence (instantaneous) hydrodynamics surrounding the suspended solid parti-
cles. In general, the eddy viscosity (subgrid viscosity) in the LES models (e.g. Smagorinsky
model) is time and space dependent and it is based on the local deformation rate. Con-
sequently, one of the advantage of applying LBM over the traditional CFD methods is
that the deformation rate can be calculated locally from the non-equilibrium part of the
distribution function, while the CFD based methods (e.g. finite difference method) need
to calculate the spatial derivatives of the velocity field [19].

2.4 Lagrangian Fully Resolved Particle Simulation

The fluid-particle interface in this method can be defined according to the distance between
the LBM grid links. As shown in Figure 2.1, the particle volume in this method should be
large enough to include many LBM nodes inside it for better describing the fluid-particle
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interface (i.e. the particle should include at least ten lattice nodes [53]). In other words,
for small particle size (e.g. order of micrometer), the grid resolution should be very high
to resolve the particle size. In LBM, the distribution function at each lattice link provides
momentum according to the velocity and direction of the link. The net force exerted on the
solid particle can be calculated from the sum of the rate of momentum exchanged between
the nodes inside the particle and the surrounded fluid nodes through the boundary links.

Figure 2.1: Location of the boundary nodes for a circular particle [52].

From this idea, Ladd [53] [54] introduced the main concepts of the force calculation for
sphere particles driven by fluid flows. In these studies, series of stair-like boundary links
were used to describe the particle location in the flow (Figure 2.1). At each link, the idea
of bounce back boundary condition was applied to calculate the net momentum exchange
between both sides of the boundary (i.e. the fluid-solid interface). As shown in Figure 2.2,
a boundary node xw is located at halfway distance between the fluid node xf and the solid
node xb. The momentum exchange between two opposite sides neighbouring the wall node
xw is represented as:

F = [
(
eᾱf̃ᾱ(xb, t)− eαf̃α(xf , t)

)
∆x/∆t], (2.1)

where eᾱ represents the lattice velocity direction opposite to eα, f̃ represents the post col-
lision distribution function, and xf = xb +eᾱ∆t. By calculating the momentum exchanges
for the lattice links (Nw) and sum for all the boundary nodes (xw), the total force on the
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solid particle can be calculated as follows:

F =
∑
xw

Nw∑
α=1

eᾱ[f̃α(xb, t) + f̃ᾱ(xf , t)]× [1− w(xb + eᾱ∆t)]∆x/∆t. (2.2)

The outer summation in Equation 2.2 calculates the force for the interface boundary nodes
xw, and the inner summation calculates the force contribution from all lattice links which
intersect the boundary. The parameter w represents an indicator for the strength of each
neighbouring nodes.

Figure 2.2: Inter-phase boundary nodes
[52].

Figure 2.3: Wall boundary location [52].

Bouzidi et al. [6] proposed a new boundary condition for a moving curved boundary. This
boundary condition is based on the bounce-back scheme and spatial interpolation of the
distribution function. The nodes A and B in Figure 2.3 are the fluid and solid boundaries,
respectively, and C represents the wall boundary location. The location of the wall is
characterized by q = |AC|/|AB|. In the case of q = 1/2, the distribution function leaving
A to the wall needs one time step to complete one cycle and returns to A in the opposite
direction. Consequently, any change in q leads to change in the time period needed to
complete one spatial step. The remedy for this issue was proposed according to the q value
as following:

1. q < 1/2 : In this case a new location point (D) is constructed and a fictitious fluid
population is calculated at this point. As seen in Figure 2.3 (a), the distribution
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function leaving point D reaches point A after one time step which is consistent with
the LBM scheme.

2. q ≥ 1/2: In this case point D is located between point A and C as shown in Figure
2.3 (b). The post-advection distribution function at A can be calculated using the
distribution values at E and F .

In both two cases, interpolation is needed to construct the new distribution functions at the
fluid nodes after collision. To do this, suppose rl is the fluid node such that rl+ci is a solid
node. Let c′i the opposite direction velocity of ci (c′i = −ci). Using linear interpolation
leads to:

f ′i(rl, t+ 1) = 2qf̃i(rl, t) + (1− 2q)f̃i(rl − ci, t) for q < 1/2, (2.3)

f ′i(rl, t+ 1) =
1

2q
f̃i(rl, t) +

2q − 1

2q
f̃i(rl, t) for q ≥ 1/2, (2.4)

where f̃i represents the after collision (before streaming) distribution function.

The link bounce-back (LBB) boundary condition was proposed by Ladd [53] [54] for the
fluid-moving particle interaction simulation. In this method the bounce back boundary
condition was imposed at the fluid-particle boundary where the boundary is located at a
half link distance between a pair of fluid-solid nodes. The no-slip condition was applied for
the fluid nodes adjacent to the particle wall, which means that both solid and fluid nodes
have the same linear and rotational velocities of the particle, and the interface velocity is
calculated as:

Vb = UP + ΩP × [(x +
1

2
ci∆t− xp)], (2.5)

where UP , ΩP and xP are the linear velocity, angular velocity, and the solid particle centre
of mass location, respectively. Applying the BB boundary condition for fluid boundary
nodes and adding the effect of the moving particle momentum to the distribution function
produces the following modified distribution function:

f ′i(x, t+ 1) = f̃i(x, t)− 2wiρVb · ci. (2.6)

Recall that wi is the weighting factor for the lattice direction i and f ′i is the distribution
function in the direction opposite to fi. Obviously, when the particle velocity is zero, the
bounce back boundary condition (Section 3.8.1) will be recovered from Equation 2.6. At
this point, two opposite distribution functions were derived at each link which connects the
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solid and fluid nodes, and the net momentum exchange rate for these distribution functions
produce the force acting on that link as follows:

F′i(x +
1

2
ci∆t, t+

1

2
∆t) = 2[f̃i(x, t)− f̃ ′i(x + ci∆t, t)− 2ωiρVb · ci]ci. (2.7)

The half time step in Equation 2.7 comes from the fact that the distribution function and
its momentum reach the boundary nodes at time equal to half time step when the interface
boundary nodes are located at half link distance. Subsequently, the force calculation is
computed after two time steps in order to update the velocity and location of the particle.
Another technique for calculating the force is to take the average value over two time steps
and use this value for the updating process.

2.5 Lagrangian Particle-Particle Interaction

Mao [61] employed a hybrid model that used the lattice spring model (LSM) and LBM.
LBM with MRT were used to compute the fluid hydrodynamics, while the LSM calculate
the particle-particle interaction force. This model was able to model the spherical and
spheroidal deformable particle in dilute suspension.

Han et al. [39] and Feng et al. [26] utilized LBM with large eddy simulation and discrete
element method (DEM) for fluid-particle simulation. The DEM is used to determine
the interaction force between solid particles. In this work, the traditional bounce back
boundary condition at the particle surface was modified to overcome the high oscillation
force at the boundary nodes. The modification is based on an immersed moving boundary
scheme proposed by Noble and Torczynski [71]. In addition to reducing the hydrodynamic
fluctuations at the nodes by smoothing the lattice representation of particles, the fluid
density distribution is modified in this scheme to accurately apply the no-slip condition at
the fluid-particle interface.

Owen et al. [76] presented a computational framework which couples LBM for the fluid flow
and DEM for the particles suspended in flow interaction. The link bounce-back method
(LBB) presented in the previous section [53] is one of the most popular fluid-particle in-
teraction calculation method; however, this method suffers from inaccurate representation
of the particle boundary and statistical noise during the process of force and torque cal-
culations [76]. In this model (Owen et al. [76]), the immersed moving boundary method
proposed by Nobel and Torczynski [71] was adopted for the hydrodynamic coupling be-
tween LBM and DEM. The advantage of this method over the others is the locality of
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information required for force and torque calculations, while the other methods need in-
formation from neighbouring nodes. This locality makes this method consistent with the
parallel nature of the LBM and very valuable for parallel implementation code.

The numerical modelling approach proposed by Zhang et al. [109] combined LBM for fluid
flow simulation, immersed boundary method (IBM) for fluid-particle interaction, and DEM
for particle-particle interaction. This model was used to simulate the sedimentation of 2D
circular particles in incompressible flow. The BGK LBM scheme with force term (Fbi) were
used to modify the fluid distribution functions (fi) according to the force exerted from the
solid particle phase as:

fi(r + ∆tci, t+ ∆t) = fi(r, t)− ω (fi(r, t)− f eqi (r, t)) + Fbi∆t. (2.8)

The fluid force acting on each solid particle (Fp) is calculated based on the momentum
exchange at the particle location. The total force (F(r, t)) acting on a group of particles
inside a control volume at time t (i.e. a volume of an LBM cell at location r) is the sum of
all forces acting on the particles. The force term in Equation 2.8 is computed from F(r, t)
as follows:

Fbi =
(

1− ω

2

)
wi (3(ci − u) + 9(ci · u)ci) · F(r, t). (2.9)

The fully resolved particle simulation is accurate in defining the hydrodynamics and the
drag force on the fluid-particle interface. However, for small solid particles (order of mi-
cron), the computational resources required for this method is huge and not available even
with the most developed computers today. Because of the limited computational resources,
the fully resolved particle method is limited for small scale problems with a limited number
of particles.

2.6 Lattice Boltzmann and Cellular Automata Method

The works of Masselot and Chopard [65] [64] [12] merged the cellular automata (CA)
method [31] [83] [102] [84] and LBM to produce a new model (conveniently named LBM-
CA). In these works, fluid and solid particles are both described in the same Eulerian
framework (i.e. LBM nodes). This model utilized 2D and 3D LBM schemes to simulate
the fluid flow (wind model), and CA to predict the solid particles movement (snow model)
considering the transport, deposition, and erosion of the solid particles. The snow model
suggests a probability distribution parameter pi for each solid particle to judge which link
the particle will follow according to its local velocity. Moreover, the model defined the
particle deposition rate by considering a freezing process for each particle follow the link to
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the solid boundary. The erosion is also considered in this model by allowing the deposited
particle to be ejected upward with a specific probability depending on the wind speed.

Wang et al. [100] developed the LBM-CA model by considering the two-way coupling (i.e.
the effect of solid phase presence in the fluid flow) according to the particle phase volume
fraction (Section 1.2.1). The feedback forcing of particles on the flow field is represented
by adding an external force term in the evolution equation of LBM as follows:

fi(r + ∆tci, t+ ∆t)− fi(r, t) =
1

τ
(f eqi (r, t)− fi(r, t)) + Fi ·∆t, (2.10)

where Fi is the force term at each lattice link i (i.e. Fi = 3wici · F/cr), and F is the total
force exerting on fluid by particles in a control volume (lattice volume). The force term is
derived from the momentum transfer between the two phases and can be written as:

F = −ρp
ρ
Vr

M∑
p=1

Ff→p, (2.11)

where M is the total number of solid particles within the control volume, Vr is the ratio
of one particle volume to the lattice control volume, and Ff→p is the external fluid (drag)
force acting on the particle p and it can be found from Newton’s equation of motion:

Ff→p =
duf,p
dt

=
uf − up
τp

. (2.12)

The relative velocity uf,p is the difference between the particle velocity up and the fluid
velocity uf at the particle location, and τp is the particle relaxation time.

τp =
ρpd

2
p

8µf
(2.13)

More details about the LBM-CA method will be presented in Section 3.11.

2.7 Summary and Motivation

In summary, the fully resolved particle model can determine (exactly) the interaction be-
tween the fluid and the solid particles when the particle size contain lattice nodes enough
to accurately represent the fluid-solid interface. This method requires large computational
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resources to resolve the flow domain with a large number of small particles. The LBM-
Lagrangian approach is able to overcome the limited computational resources issue by
viewing the solid particles as point-like particles without volumes. There are two main
obstacles with using LBM-Lagrangian approach: first, many calculations (e.g. fluid drag
force, particle velocity, and particle location calculations) are required for each single par-
ticle; second, the fluid and solid particles are represented in two different frameworks (i.e.
Eulerian and Lagrangian) which may violate the parallelism inherent in LBM.

The previous LBM-CA models distribute particles through the LBM nodes at each sim-
ulation time step without considering the effect of the local fluid velocity on the particle
transport algorithm (e.g. the number of moving particles at each simulation time step).
In addition, the implementation of a 3D LBM-MRT-CA algorithm on serial coding is very
computationally expensive because of the massive number of calculations required to exe-
cute such algorithm. A new parallel LBM-CA probabilistic model is proposed in this thesis
to overcome the deficiencies of the previous models and can better capture the dynamic
interaction between particles and the surrounding turbulent flow.
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Chapter 3

Lattice Boltzmann Method

3.1 Introduction

Many observable macroscopic phenomena can be described according to the microscopic
behaviours of the system: surface tension, intermolecular forces (attractive and repulsive),
and phase separation are examples of macroscopic phenomena where the microscopic world
play major roles on their formations. The major difficulty in modelling macroscopic prob-
lems is the scale separation between the observable effects and the underlying molecular
effects on the problems. One of the remedies to capture all scales in simulation is using
the molecular dynamics method (MD)[81]. However, dealing with a tremendous number of
particles (i.e. on the order of Avogadro number) is very cumbersome and computationally
expensive. Instead, statistical methods (e.g. LBM) implementation are used as computa-
tionally feasible alternatives to MD. The fact that a large amount of molecular level details
such as atom speed and location are not important in the macroscopic description of flow
support the use of statistical methods.

3.2 Microscopic Description of Gases

The original derivation of the meso-scopic statistical description of fluid dynamics is based
on the microscopic molecular perspective. To start with a microscopic description, say there
are N particles in a three dimensional system; in this case the system state is a function of N
states for each particle in that system. The suitable state variables for each particle are the
instantaneous position ri and momentum pi, where i = 1, ....,N. The instantaneous particle
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velocity could be used as a state variable instead of the momentum, i.e. ci = pi/mi, where
m is the particle mass which is considered constant for all particles. In such system, there
are 6N degrees of freedoms and because of the huge value of N, following each particle
in the system needs enormous computational power which is unfeasible even with most
developed supercomputer today. The Hamiltonian equation used to describe the particles
motion in the system is as follows:

∂ri
∂t

=
∂H

∂pi

,
∂pi

∂t
= −∂H

∂ri
, i = 1, ...,N, (3.1)

where H is the total energy of the system including the particle kinetic energy and any
potential energy involved such as external electrical or gravitational field and interaction
forces between the particles. The phase space P can be constructed as a coordinate frame
work for the particles system. It has 6N mutual orthogonal axes, and each axis is associated
with a degree of freedom, i.e. position or momentum of a particle. The instantaneous
particles system could be specified as a single point q ≡ (r1,p1, ..., rN,pN) in the phase
space P. Theoretically, if the initial particles state is specified, the trajectories of the
particles can be tracked using Equation 3.1, and the instantaneous system states could be
specified. Practically, following this procedure is impossible because of the large number
of particles and their related degrees of freedoms. Moreover, defining the initial state
condition for each particle in the system is not affordable.

3.2.1 Kinetic Theory of Gases

Gases can be imagined as massive number of particles (molecules or atoms) moved in
nearly constant velocity in random directions. The study of these particles and their
motion (streaming and collision) inside enclosures can provide a satisfactory description of
macroscopic properties of gases such as pressure, temperature, and molecular and thermal
diffusion coefficients. The size of a fluid atom is very small which is on the order of one

Angstrom (1
◦
A = 0.1 nm = 1 · 10−10 m). The concept of mean free path (lm) (the distance

traveled by a single particle before it collides another particle) was first defined by Clausius
[9]. Consequently, the concept of mean free time (τm) was introduced as the time needed by
a particle to travel between two successive collisions. Another term related to the kinetic
theory of gases is the mean collision time (τµ) which is the time needed by two particles
to complete one collision. The main idea of the kinetic theory is based on the principle of
the ideal gas. This idea presumes that each particle in a gas spends most of travel time
without any interruption by a collision. In addition, the gas is dilute enough in order to
consider only binary collisions between particles, and any collision between more than two
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particles is rare enough to be considered. Knudsen number is defined as the ratio between
the mean free length to the characteristic length-scale of the macroscopic flow configuration
(Kn = lm/L). Knudsen number is used as a limit indicator for the flow problem which can
be solved by the continuum assumption, e.g. continuum condition is applied at Kn ≤ 10−2.

3.3 Statistical Approach

The kinetic theory of gases has developed our understanding about the connection be-
tween the molecular state and the macroscopic properties of gases in closed systems is in
equilibrium. Properties of gases under non-equilibrium conditions topic has been devel-
oping for many years, and researchers are still working to build a better insight for the
non-equilibrium constituent relations. The general basis for non-equilibrium kinetic theory
of gases was provided by Liouville equation and hierarchy of equations [50]. Fortunately,
in the practical macroscopic applications, information about each particle in the system
is rarely required, rather it is important to know the statistical behavior for a collection
of particles. The Hamilton equation defines fluid particles as points in the phase space
where the fluid system can be envisaged as a group of small distinct systems (N ) which
has many particles, enough to produce hydrodynamic properties equal to the macroscopic
system properties. The collection of replicate systems is referred to as Gibbs ensemble [66].
Each replicate represents a point (q) in the phase space P; if the system contain a large
number of replicates, they can be dense enough to define their distribution as a continuous
function called density function. The phase space element dq should be large enough to
contain appropriate points and small enough to keep the distribution function continuous.
The density function can be normalized to define a probability distribution function (FN)
in the phase space. The probability of finding N points in an element dq in the phase
space is FNdq. The probability distribution function evolution is governed by Liouville’s
theorem:

∂FN
∂t

+
N∑
i=1

ci ·
∂FN
∂ri

+
N∑
i=1

Fi ·
∂FN
∂pi

= 0, (3.2)

where Fi is the force acting on particle i. Equation 3.2 is a conservation equation for the
probability distribution function FN .
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3.4 Boltzmann Equation

In 1872, Ludwig Boltzmann described statistical behaviours of systems under non-equilibrium
thermodynamic conditions. Boltzmann defined the hydrodynamics and thermal gradients
as the effects of biased random distribution of the particles in the systems, and was able to
describe this random distribution by a transport equation. The transport equation could
be solved to define the macroscopic variables as moments of this equation. There are some
limits for using Boltzmann equation based on the following assumption [98] [66]:

1. The gas is sufficiently dilute to allow only two particles to involve in a collision. This
assumption assumes the interaction potential between particles is in a short range and
the potential only accounts for two particles which are close to colliding. Otherwise,
long range potentials could affect the two particles collision which violates the dilute
assumption.

2. The collisions process starts and finishes in a very short range of space and time. This
assumption ensures the locality of the collision process such that the collision time
is very small compared to the macroscopic time scale. Consequently, the collision
process will not transport, i.e. will not affect transport equation time scale.

3. During the collision process, total mass, momentum, and kinetic energy are conserved
quantities assuming that the particle collision is elastic and no energy transformation
exists in this process.

4. The collision process is microscopically reversible in time. This assumption is based
on the random motion of particles which means that there is no preference for the
particles movement before and after collision. For example, suppose there are two
particles have initial velocities c and c1, respectively. The probability of these parti-
cles to acquire velocities c̃ and c̃1 after collision is as same as the probability if they
have initial velocities c̃ and c̃1 to acquire final velocities c and c1.

5. The state of molecular chaos is assumed before collision; this means it is assumed
that velocities of two particles close to a collision are uncorrelated

According to the above assumptions, Boltzmann was able to construct a formula based on
binary collision in the following form:

∂f

∂t
+ c · ∂f

∂r
+ a · ∂f

∂c
=

1

m

∫
VR(f̄ f̄R − ffR)dηdθdcR, (3.3)
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where f is the mass density distribution function which is a function of time t, coordinate
r, and velocity c. The VR (VR = c − c1) is the relative velocity between two particles
close to collision, and VR is the relative speed. The distance between two particles after
collision is measured by a directional vector b(s, η, θ) where the parameters s, η, and θ
are the coordinates in a spherical system and a is the acceleration due to any external
forces. The left hand side of Equation 3.3 represents the linear transport operator, while
the right hand side is the collision non-linear operator. The collision operator term will
be abbreviated by Ω, and the final Boltzmann equation can be re-written in the following
index vector notation form:

∂tf + cα∂αf +
Fα
m
∂cαf = Ω(r, t). (3.4)

Mass, momentum, and kinetic energy (ε) are conserved during the collision process and
the conservation equation can be written as:∫

Ω

 1
cα
ε

 = 0. (3.5)

3.4.1 BGK Collision Operator

The collision operator term (Ω) in Equation 3.4 is non-linear and very complicated to
solve. Higuera et al. [42] derived a linearized collision operator term considering it as
a relaxation process to the equilibrium state. Qian et al. [80] proposed a simple LBM
discretized scheme named (LBGK), as follows:

fi(r + ∆tci, t+ ∆t) = fi(r, t)︸ ︷︷ ︸
streaming

−ω (fi(r, t)− f eqi (r, t))︸ ︷︷ ︸
collision

, (3.6)

where ω = 1/τ , and τ is the relaxation time of the distribution function. The parameter
f eqi is the equilibrium distribution function and it can be represented by the form of the
Maxwellian equation:

fM(r, c, t; ρ,u, T ) = ρ

(
m

2πkbT

)3/2

e−mv
2/2kbT , (3.7)

where v = c − u is the peculiar or thermal velocity which is the difference between the
molecular and the macroscopic fluid velocities, and kb is the Boltzmann constant (kb ≈
1.38 × 10−23 J/K). As shown in Equation 3.6, there are two main steps evolves at each
time step in the LBM:
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• streaming: fluid particles (i.e. distribution functions) move to the nearest node in
the direction of i link velocity,

• collision: fluid particles arrive at a node from the neighbouring nodes and interact
by changing their velocity directions.

3.4.2 Non-Dimensional Boltzmann Equation

Equations 3.4 and 3.7 represent the dimensional form of the density distribution function
in unit of (kg.s3/m6). To derive a non-dimensionalized form of the Boltzmann equation, we
need to find appropriate dimensional parameter scales for time, spatial coordinate, and ve-
locity. The characteristic length scale Lo could be used for spatial coordinate and the speed

of sound (cs =
√

kbT
m

) of the ideal gas can be used as a characteristic velocity. For sim-

plicity, isothermal condition will be considered (T = const.), and the non-dimensionalized
Boltzmann equation can be written as [51]:

∂ f

ρ
(
kbT

m

)3/2

∂t cs
LO

+
cα
cs

∂ f

ρ
(
kbT

m

)3/2

∂ xα
LO

+
FαLo
mc2

s

∂ f

ρ
(
kbT

m

)3/2

∂ cα
cs

= − f − f eq

ρ
(
kbT
m

)3/2

1

τ cs
Lo

, (3.8)

after some algebra, the final non-dimensional form of the Boltzmann equation is as follows:

∂t̂f̂ + ĉα∂α̂f̂ + F̂α∂ĉα f̂ = − f̂ − f̂
eq

τ̂
. (3.9)

The hat symbol is used for non-dimensional variables and it will be omitted for simplicity.
The discretized form (as shown later in Section 3.5) of the equilibrium distribution function
(Equation 3.7) is:

f eqi (ρ(r, t),u(r, t)) = wiρ
(

1 +
ciαuα
θ

+
ciαuαciβuβ

2θ2
− uαuα

2θ

)
, (3.10)

where wi is the weight factor for each discrete particle velocity ci, and the parameter θ is the
squared sound speed. The equilibrium distribution function arguments, ρ and u, are the
local macroscopic fluid density and velocity. The local density and velocity (momentum)
are defined as zeroth and first moments of the discretized density distribution function,
and they can be calculated by summing the distribution functions over all discrete links:

ρ(r, t) =
∑
i

fi(r, t), (3.11)
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ρ(r, t)uα(r, t) =
∑
i

ciαfi(r, t). (3.12)

The weight coefficients wi and the parameter θ are specified when the set of discrete
velocities is fixed according to the problem under study, e.g. two or three dimensions
problem. The convention for LBM model enumeration is abbreviated as DdQq, where
d and q refer to the number of spatial dimension and the number of discrete velocities,
respectively [80]. The discrete velocity set models D2Q9 and D3Q19 involve three speeds,
0, cr and

√
2cr and the number of discrete velocities having these speeds for D2Q9 are 1,

4, and 4 (e.g. four links have the speed value of cr, which are c1, c2, c3, and c4 as shown in
Figure 3.1), while for D3Q19, they are 1, 6, and 12 (Figure 3.2), respectively. The speed
cr in Figure 3.1 is a reference speed and it has non-dimensional unit of value equal to one
for square and cubic lattice schemes. The lattice spatial difference ∆r is connected to the
reference speed cr by the discrete time step ∆t (∆r = ∆t cr).

Figure 3.1: The set of nine discrete velocities D2Q9.

The values of the weight factors wi are obtained from Hermite expansion (See Appendix
A) of the distribution function f by considering a specific discrete velocity number. These
values are independent on the velocity directions, rather they are speed magnitude de-
pendent as shown in Table 3.1 [80]. The values of w0, w1, w2, and w3 are for the discrete
velocity speeds of 0, 1,

√
2, and

√
3, respectively.
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Figure 3.2: The set of nineteen discrete velocities D3Q19.

Model w0 w1 w2 w3

D1Q3 2/3 1/6 0 0
D2Q9 4/9 1/9 1/36 0
D3Q15 2/9 1/9 0 1/78
D3Q19 1/3 1/18 1/36 0
D3Q25 1/3 1/36 0 0

Table 3.1: Weight coefficients for different lattice models.

3.5 Discrete Equilibrium Function

In numerical computation perspective, any continuous function should be convert to a
discrete form to allow handling it by a computer algorithm. Accordingly, the continuous
equilibrium distribution function (Equation 3.7) must be written in a discretized form.
Some assumptions are needed to accomplish this task; the first assumption is that the
flow is isothermal, which means that the temperature of the flow stays constant over
space and time. Although the temperature actually fluctuates in the lattice Boltzmann
scheme, these fluctuations can be neglected when the temperature distributions are not
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considered as main objective. A constant reference temperature T0 is considered for the
entire flow domain. The other assumptions is that the flow is incompressible and the
fluid is Newtonian. The incompressibility in LBM is not clear because of local density
fluctuations. It is not possible to neglect the density fluctuations in similar way to the
temperature fluctuations because of the importance of these density difference to derive the
pressure gradients in the flow domain from the ideal gas law. To simplify the equilibrium
distribution function (Equation 3.7), a constant θ = kbT0 is defined and the equation is
rewritten as:

f eq(c, ρ,u) = fM(c, ρ(r, t),u(r, t), T0) = ρ(2θπ)−d/2e(−vαvα/2θ)

= (2θπ)−d/2e(−cαcα/2θ)︸ ︷︷ ︸
=wb(cα)

. e(cαuα/θ)︸ ︷︷ ︸
=B(cα,uα)

. e(−uαuα/2θ)︸ ︷︷ ︸
=C(uα)

, (3.13)

where d, e(), and vα = cα − uα are the spatial dimension, the exponential function, and
the peculiar or relative velocity, respectively. The variable

√
θ has velocity unit and it is

defined for the thermal speed of the fluid particles or the model speed of sound. Recalling
Taylor series expansion for the exponential function and applying this expansion for the
two exponential functions B and C in Equation 3.13:

B(cα, uα) = 1 +

(
cαuα
θ

)
+

1

2

(
cαuα
θ

)2

+ .......,

C(uα) = 1−
(
uαuα

2θ

)
+

1

2

(
uαuα

2θ

)2

+ .......

The Mach number in the above expansions is Ma ∼ uα/
√
θ and cα ∼

√
θ. By considering

the low Mach number flow, the terms involving higher-order Mach number (i.e. third
order and higher) will be neglected. Only terms up to the second order are maintained
and substitution of the above expansions in Equation 3.13 leads to:

f eq(c, ρ,u) ' wb(cα)ρ
(

1 +
cαuα
θ

+
cαuαcβuβ

2θ2
− uαuα

2θ

)
. (3.14)

The microscopic velocity set (e.g.,
{
c0α , c1α , c2α , ....., c(q−1)α

}
) is defined according to the

spatial dimension and the lattice configuration, where the subscripts (0 to q − 1) in the
velocity define the velocity direction according to the lattice configuration. While the
Greek letters α and β are the spatial components of the velocity vectors.
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3.6 Chapman-Enskog Analysis

The macroscopic hydrodynamic equations of fluid and their relevant properties are func-
tions of the microscopic original world. To verify this fact, the macroscopic equation
(Navier-Stokes Equations) must be derived from Boltzmann equation. To accomplish this
derivation, multiple-scale analysis is utilized for the discrete Boltzmann equation (Equation
3.6) [66]. First, a Taylor series expansion is used to find the finite-difference approximation
for Equation 3.6. The derivative parameters for space (∆r = ∆tcr) and time (∆t) are
small in the macroscopic scale. Therefore, only second order derivatives are retained:

∆t∂tfi +
∆t2

2
∂2
t fi + ∆tciα∂αfi + ∆t2ciα∂α∂tfi +

∆t2ciαciβ
2

∂α∂βfi = −ωfneqi , (3.15)

where fneqi = fi − f eqi is the non-equilibrium distribution function and fi = fi(r, t). Equa-
tion 3.15 contains two time scales, the convective τ1 (fast) and the diffusive τ2 (slow).
These scales are connected to the discrete time step ∆t by a small parameter ε, where
τ1 = ε−1∆t and τ2 = ε−2∆t. According to these time scales, two time variables are defined
for the Boltzmann equation evolution, t1 = t∗1τ1 and t2 = t∗2τ2, where the star represents
the non-dimensional time variables. The distribution function is now function of the two
time variables fi(r, t1, t2) and the time derivative is redefined as follows:

∂t ≡
∂

∂t1
+

∂

∂t2
≡ ∂

(1)
t + ∂

(2)
t .

The dimensionless spatial parameter can be defined as: r∗ = r/L, where L is the charac-
teristic length scale L = crτ1. Then, the temporal and spatial derivatives in Equation 3.15
can be written in the following form:

∆t∂t = ∆t

(
∂

∂t∗1τ1

+
∂

∂t∗2τ2

)
= ε

∂

∂t∗1
+ ε2

∂

∂t∗2
, (3.16)

∆tciα∂t = ∆tc∗iαcr
∂

∂r∗αL
= ∆tc∗iαcr

∂

∂r∗αcrτ1

= εc∗iα
∂

∂r∗α
. (3.17)

Based on the perturbation theory, the distribution function fi can be represented using a
power series with the expansion parameter ε (i.e. ε = ∆t/τ1):

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ...., (3.18)

where f
(0)
i is the equilibrium distribution function which has an exact solution form (Maxwellian).

The next step is substituting the series 3.18 in Equation 3.15, applying the multiple-scale
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derivatives and retaining only up to the second order term of ε, giving:

∆t
(
∂

(1)
t f

(0)
i + ∂

(2)
t f

(0)
i + ε∂

(1)
t f

(1)
i

)
+

∆t2

2
∂

(1)
t ∂

(1)
t f

(0)
i + ∆tciα(

∂(1)
α f

(0)
i + ε∂(1)

α f
(1)
i

)
+ ∆t2ciα∂

(1)
α ∂

(1)
t f

(0)
i +

∆t2ciαciβ
2

∂(1)
α ∂

(1)
β f

(0)
i = −ω

(
f

(0)
i + εf

(1)
i + ε2f

(2)
i − f

(eq)
i

)
. (3.19)

The coefficients of ε with order of 0, 1 and 2 should be matched on the both sides of
Equation 3.19, and after some algebra the following is found:

O(ε0) : f
(0)
i = f eqi , (3.20)

O(ε1) : ∂
(1)
t f

(0)
i + ciα∂

(1)
α f

(0)
i = −ωε

∆t
f

(1)
i , (3.21)

O(ε2) : ∂
(2)
t f

(0)
i + ε

(
1− ω

2

)(
∂

(1)
t f

(1)
i + ciα∂

(1)
α f

(1)
i

)
= −ωε

2

∆t
f

(2)
i . (3.22)

From the above formula, the zeroth order of the expansion f
(0)
i in Equation 3.18 can be

related to the equilibrium distribution function f
(eq)
i and the higher terms (i.e εf

(1)
i +ε2f

(2)
i )

can be related to the non-equilibrium distribution. It was stated before that the zeroth and
the first moments of the equilibrium distribution function are conserved moments. This
means that the equivalent moments for the higher order distribution vanish, yielding:

q−1∑
i=0

fneqi ≡
q−1∑
i=0

(
εf

(1)
i + ε2f

(2)
i

)
= 0, (3.23)

q−1∑
i=0

ciαf
neq
i ≡

q−1∑
i=0

ciα

(
εf

(1)
i + ε2f

(2)
i

)
= 0. (3.24)

The next step is taking the zeroth moment for Equation 3.21,

∂tρ+ ∂αρuα = 0. (3.25)

Equation 3.25 is the mass conservation equation. Next, taking the first moments of Equa-
tions 3.21 and 3.22 and combining them will recover the momentum conservation equation
as:

∂tρuα + ∂β

(
Π

(0)
αβ + ρθ

(
1

ω
− 1

2

)
∆t Π

(1)
αβ

)
= 0, (3.26)
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where Π
(0)
αβ and Π

(1)
αβ are the convective and the diffusive momentum flux tensors, respec-

tively, defined as follows:

Π
(0)
αβ =

q−1∑
i=0

ciαciβf
eq
i = ρθδαβ + ρuαuβ = Pδαβ + ρuαuβ, (3.27)

Π
(1)
αβ =

q−1∑
i=0

ciαciβf
(1)
i . (3.28)

It can be deduced from Equation 3.26 that the kinematic viscosity in LBM is:

ν = θ

(
1

ω
− 1

2

)
∆t.

The final result can be written for the incompressible limit as follows:

ρ∂tuα + ρuβ∂βuα = −∂αP + νρ∂β∂βuα. (3.29)

3.7 Multiple Relaxation Time (MRT) Model

In this model, the hydrodynamics moments of the velocity distribution function are relaxed
at different rates, or at different relaxation times. Each moment’s relaxation rate could be
tuned separately from different physical behaviours of the flow which leads to an increase
in the simulation stability by choosing suitable relaxation times [21]. This model was
provided by D’Humieres [20] and it demonstrated a superior numerical stability over the
BGK single relaxation time. The distribution functions in this model should be mapped
to their moments space to allow applying a different relaxation time for each moment. The
mapping process is linear by the transformation matrix M such that:

|m〉 = M |f〉, (3.30)

where |m〉 and |f〉 are the moments and the distribution functions column vectors, re-
spectively, such that |m〉 ≡ (m0,m1,m2, ....,mq−1)T and |f〉 ≡ (f0, f1, f2, ...., fq−1)T . The
transformation matrix is constructed to provide appropriate moments spanning the mo-
ment space and it is orthogonalized by the Gram-Schmidt orthogonalization procedure.
When the transformation matrix M becomes an orthogonal matrix, the collision matrix S
is then chosen to be diagonal matrix of eigen-value elements of M , yielding:

Ŝ = MSM−1, (3.31)
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where Ŝ ≡ diag(s0, s1, s2, ...., sN), and the transformation matrix M for the D3Q19 model
is:



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


(3.32)

The evolution equation for the MRT model will take the following form:

|f(ri + ci∆t, t+ ∆t)〉 − |f(ri, t)〉 = −M−1Ŝ [|m(ri, t)〉 − |meq(ri, t)〉], (3.33)

where the |meq(ri, t)〉 represents the equilibrium moments vector. The D3Q19 MRT model
will be presented here to give a better insight to this model. The 19 discrete velocities are:

ciα =


(0, 0, 0) i = 0,
(±1, 0, 0), (0,±1, 0), (0, 0± 1) i = 1, 2, ...., 6,
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ...., 18,

(3.34)

and the corresponding 19 moments are:

|m〉 = (δρ, e, ε.jx, qx, jy, qy, jz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T .

The 19 moments are defined as the following: δρ is the density fluctuation, e is the energy,
ε is the energy square, jx,y,z are the momentum components of x, y and z directions, qx,y,z
are the heat flux components, 3pxx and pww are the trace of the strain rate tensor, pxy, pyz,

32



and pzx are the symmetric and traceless strain rate tensor, 3πxx and πww are fourth order
moments, and mx,y,z are third order moments. The diagonal collision matrix Ŝ is:

Ŝ ≡ diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16, s16).

The equilibrium moments of the non-conserved moments are functions of the local flow
density and momentum as follows:

eeq = −11δρ+
19

ρ0

j.j = −11δρ+
19

ρ0

(j2
x + j2

y + j2
z ), (3.35)

εeq = wεδρ+
wεj
ρ0

j.j, (3.36)

qeqx = −2

3
jx, qeqy = −2

3
jy, qeqz = −2

3
jz, (3.37)

peqxx =
1

3ρ0

[2j2
x − (j2

y + j2
z )], peqww =

1

ρ0

[j2
y − j2

z ], (3.38)

peqxy =
1

ρ0

jxjy, peqyz =
1

ρ0

jyjz, peqxz =
1

ρ0

jxjz, (3.39)

πeqxx = wxxp
eq
xx, πeqww = wxxp

eq
ww, (3.40)

meq
x = meq

y = meq
z = 0. (3.41)

The parameters in the above equilibrium equation are chosen to optimize the linear stability
of the model as follows: wε = wxx = 0 and wεj = −475

63
. It has been proven that the

MRT model has superior advantages over the single relaxation time (SRT) method in the
following perspective [107]:

• MRT has better stability characteristics because of the more freedom to tune the
relaxation rate for different hydrodynamic and non-hydrodynamic moments.

• MRT has better accuracy characteristics. The small fluctuations in the spurious non-
hydrodynamic moments may add non-physical contribution to the hydrodynamic
moments.

• MRT model can simulate problems at a Reynolds number four times higher than
with the SRT model .

33



3.8 Boundary Conditions

In LBM, the macroscopic hydrodynamic characteristics of the flow field are not directly
computed; rather, the dynamics of the underlying microscopic world are simulated. In
traditional CFD methods, the implementation of the hydrodynamic boundary condition
is a straightforward task as these methods adopt the macroscopic variables for flow field
dependence. The boundary conditions for the macroscopic world are normally defined by
specifying the hydrodynamic properties (e.g. pressure, velocity, density, and temperature)
at the flow boundaries. Defining the microscopic characteristics (e.g. number of particles
and particles speed) at the flow boundaries is a very difficult or impossible task. For that
reason, deriving the unknown microscopic elements from the known macroscopic properties
is an essential process to achieve the accurate results. Many LBM boundary conditions
have been developed and only boundary conditions used in this work will be presented.

3.8.1 Bounce Back Boundary Condition.

The bounce back (BB) boundary is used to define the unknown distribution functions
at the solid (stationary or moving) boundaries. The implementation of this method is
simple by considering an intuitive process for objects bouncing back from a solid wall when
they collide with it. Figure 3.3 depicts this method in D2Q9 model where the unknown
distributions (f2, f5, f6) are replaced with the known distributions (f4, f7, f8) at the solid
wall as follows:

f2 = f4,

f5 = f7,

f6 = f8.

There are two ways to implement this boundary condition. First, by locating the solid
wall at one lattice length far from the inner node (full-way BB). In this case the collision
process for LBM will take place before bounce back. The second way is to locate the solid
wall at half lattice length from the inner node (half-way BB). The collision process in this
way is not performed for the boundary node which allows the bounce back process to be
more natural and consistent with the LBM spatial discretization [102].
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Figure 3.3: Full-way bounce back boundary condition.

3.8.2 Velocity Boundary Condition

The velocity, pressure and density have usually known values at the flow domain bound-
ary. Zou and He [110] applied the idea of bounce-back boundary condition for the non-
equilibrium part of the distribution function:

f
(1)
i = f

(1)
opp(i), (3.42)

where f
(1)
i is the non-equilibrium distribution at ci direction and f

(1)
opp(i) is the non-equilibrium

distribution at the opposite direction copp(i) ≡ −ci. The equilibrium part of the distribution
function is known at the inlet boundary (Equation 3.14). Then, substituting its value in
Equation 3.42 leads to the inlet boundary condition in the following form [108]:

fα(xb, t+ ∆t) = f̃α(xb, t)− 6wαρbub · cα, (3.43)

where the subscript b is symbol for the boundary values, f̃α is the known after collision
distribution, and fα is the unknown distribution entering the the flow domain.

3.8.3 Periodic Boundary Condition

The periodic boundary condition is used when the system boundary is at an infinite point
or very large distance away where it becomes meaningful or impossible to specify in the
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computer code implementation. To illustrate this boundary condition, Figure 3.4 shows
the a schematic for a flow domain where the periodic boundary can be applied at the north
and south boundaries as follows:

fN7 = fS7 , fN4 = fS4 , fN8 = fS8 ,

fS5 = fN5 , fS2 = fN2 , fS6 = fN6 ,

where the subscripts N and S represent the north and south walls, respectively.

Figure 3.4: Periodic boundary condition.

3.8.4 Fully Developed Boundary Condition

The fully developed boundary condition is applied at the boundary where there is no spatial
derivatives for the flow variables. The procedure for this boundary condition is to copy all
distribution function values from the nodes preceding the final nodes and to past them to
the last nodes.

3.8.5 Curved Boundary Condition

In order to accurately describe the bounce back distribution functions on curved bound-
aries, the traditional BB boundary condition (Section 3.8.1) is modified to exactly find the
location of the wall nodes [36]. The wall nodes distance (q) from the adjacent fluid nodes
in the BB boundary condition equals half the LBM link distance (q = 0.5). However, this
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distance may be larger or less than 0.5 when the curved boundary exists. The interpola-
tion method for the bounce back (IBB) distributions proposed by Bouzidi et al. [6] was
adopted in this study. As shown in Figure 3.5, the distance from the wall to the adjacent
fluid node is qδ. The distance between two fluid nodes is δ, and the fluid particles traverse
this distance when they move from fluid to fluid nodes and from fluid to wall to fluid (BB
boundary condition) nodes within one time step. The main idea of IBB is to keep the
distance travelled by the fluid particles at the curved boundary as same as δ as follows.
Assume δ = 1 (i.e. dimensionless LBM link length), for the case of q < 0.5, a fictitious
node rB is assumed (Figure 3.5 (a)) such that:

‖ rB − rA ‖= 1− 2q. (3.44)

The post collision distribution functions (f ∗i ) at rB can be evaluated by applying a linear
interpolation between rA and rA − ci as:

fi′(rA, t+ 1) = f ∗i (rB, t) = 2qf ∗i (rA, t) + (1− 2q)f ∗i (rA − ci, t), (3.45)

where i′ represents the opposite velocity direction of i (i.e. ci′ = −ci). For the case of
q ≥ 0.5, node rB is located between the wall node and the adjacent fluid node (Figure 3.5
(b)) such that the fluid particles leaving rA will collide the will and bounce back to rB
within one time step, and the distance between rA and rB becomes:

‖ rB − rA ‖= 2q − 1. (3.46)

Fluid particles leaving rA in the opposite direction (fi′) will reach node rA− ci at the next
time step, and can be estimated as follows:

fi′(rA, t+ 1) =
(2q − 1)

2q
fi′(rA − ci, t+ 1) +

1

2q
fi′(rB, t+ 1)

=
(2q − 1)

2q
f ∗i′(rA, t) +

1

2q
f ∗i (rA, t).

(3.47)

37



Figure 3.5: Curved boundary condition; (a): q < 0.5. (b): q > 0.5.

3.9 LBM-MRT Local Grid Refinement

The lattice Boltzmann method is based on uniform grid discretization which makes this
method inadequate for simulations with different resolution requirements (e.g. turbulent
wall bounded flow). One option to overcome this problem is applying hierarchical grid re-
finement techniques, which preserve the uniformity of each grid level and allow the different
levels to exchange their information (e.g. distribution functions) by applying a suitable
transformation and interpolation techniques. The grid refinement method proposed by
Filippova and Hänel [28] is adopted in this work. The lattice speed (c) in this method is
kept constant, while the grid size (δx) and the time step (δt) are modified by a refinement
factor (n) which depends on the required grid refinement level. The most important feature
in the grid refinement techniques is retaining the same flow characteristics (e.g. Reynolds
number and viscosity) for the different grids (i.e. coarse and fine grid). In LBM-MRT, the
viscosity is a function of the relaxation parameter s9 as:

ν =

(
1

s9,c

− 1

2

)
δxc

3
. (3.48)

The relaxation parameter s9,c in Equation 3.48 is for the coarse uniform original LBM grid,
where the subscript c refers to the coarse grid and the subscript f will be used for the fine
grid. The modified relaxation parameter for the fine grid (s9,f ) will be a function of the
refinement factor as follows:

s9,f =
2

1 + n (2/s9,c − 1)
. (3.49)
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In addition, the hydrodynamic variables and their derivatives should be continuous between
the coarse and fine grids. To ensure continuity, the non-equilibrium part of the post-
collision distribution functions (f ∗) moving from the fine to coarse and from coarse to fine
grids must be scaled as follows:

f ∗c = f eqf +
(
f ∗f − f

eq
f

) (1− s9,c) s
n
9,f

s9,c (1− s9,f )
, (3.50)

f ∗f = f eqc + (f ∗c − f eqc )
s9,c (1− s9,f )

(1− s9,c) sn9,f
. (3.51)

Equations 3.50 and 3.51 scaling the distribution functions in the velocity space by using
s9. In order to keep a consistent MRT algorithm in the simulation, the latter equations
can be used to scale moments in the moment space, and s9 should be replaced by different
relaxation parameters (i.e. the elements in Ŝ) according to their corresponding moments
(Section 3.7).

The refinement factor is set to 2 in this work which means that the time needed to pass
each refinement level will be half the time in the coarse grid. Consequently, the LBM
algorithm in the fine grids should be marched by two time steps for each time step in
the coarse grid. As shown in Figure 3.6, the internal nodes (white nodes) in the fine grid
receive the required information (e.g. distribution functions) from the external nodes (red
nodes) of the fine grid. For the external nodes, spatial bilinear and trilinear interpolations
can be used for the 2D and 3D problems, respectively, to find the distribution function
values in the external nodes (fine grid) from the adjacent nodes in the coarse grid. Linear
interpolation can also be used for the temporal interpolation [30]. The spatial interpolation
is utilized to find the distribution functions at node a (Figure 3.6) in the fine grid from the
nodes in the coarse grid (A,B,C, and D) at time t = t0 as follows:

fat0 =
1

16

(
9fDt0 + 3fBt0 + 3fCt0 + fAt0

)
. (3.52)

At time t0+1, the spatial interpolation (Equation 3.52) is used to find the distribution func-
tions at a (fat0+1), and the temporal linear interpolation can be used to find the distribution
functions at time t = t0 + 1

2
at node a:

fa
t0+ 1

2
=

1

2

(
fat0 + fat0+1

)
(3.53)

At the end of time t0 + 1, the LBM algorithm (streaming and collision) was applied two
times in the fine grid, and the distribution functions on the fine grid nodes are averaged
spatially to find the distributions in the corresponding coarse grid nodes.
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Figure 3.6: Schematic of the grid refinement by a factor of 2.

3.10 Large Eddy Simulation Subgrid Model

To model high Reynolds number flows with the regular LBM, some actions should be taken
[64]:

• increasing the characteristic inlet velocity. This action may increase the Mach number
and the error related to it in the discrete equilibrium distribution function.

• decreasing the relaxation time τ value (viscosity). This action causes the numerical
scheme to be unstable.

• increasing the lattice number. This action increases the computational resources
required for the calculation.

To overcome the obstacles related to the aforementioned actions, Large Eddy Simulation
(LES) can be adopted for the (unresolved) subgrid scale (SGS) eddy modelling, while
eddies which are resolved by the grid scale will be simulated directly by LBM. The LES
method utilizes filtering operation (with spatial filter G) for a physical variable (w). The
new filtered variable can be defined as:

w(r) =

∫
w(r′)G(r − r′)dr′. (3.54)
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The SGS turbulent flow effects can be incorporated in the filtered grid scale flow by defining
the SGS viscosity (eddy viscosity) νt and add its value to the fluid kinematic viscosity ν0

to produce a total kinematic viscosity νtotal as follows:

νtotal = ν0 + νt. (3.55)

Smogorinsky eddy viscosity model defines the eddy viscosity as a function of the local fluid
deformation:

νt = (Cs∆x)
2|S|, (3.56)

where |S| =
√

2SαβSαβ is the strain rate tensor magnitude, Sαβ is the strain rate tensor,
Cs is Smagorinski constant, and ∆x is the filter length scale and in LBM-LES can be taken
as the same lattice length (∆x = ∆xLBM = 1). In LBM, the deformation rate tensor
can be obtained by local calculations from the non-equilibrium part (i.e. fi − f eqi ) of the
distribution function:

Sαβ =

q−1∑
i=1

(fi − f eqi )ciαciβ . (3.57)

3.11 LBM-CA Model

The traditional LBM-CA model was studied and validated by a comprehensive work of
Masselot [64]. This work studied obstacles on near-mountains roads and railways which
are generated by snow falls or (and) snowdrifts. The author stated that the effect of
snowdrifts is more hazardous than snow falls when they are deposited on the roads. Snow
particles are transported by wind following three different modes:

• Creeping: particles are rolling on the ground.

• Saltation: particles are ejected and fly vertically along a parabolic trajectory.

• Suspension: during the saltation process, particles can be taken in large scale eddies
and fly for longer distance.

This work (Masselot [64]) simulates the natural phenomena that affect snow particles
movement by using the BGK (single relaxation time) LBM to models the fluid (wind) flow,
and a probabilistic algorithm to describe the solid (snow) particles movement. Classical
approaches that model solid particles behaviour (e.g. position and velocity) under the
action of a fluid flow can be split into two methods which are:
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• The Eulerian method: On each cell of the computational domain, all parameters (e.g.
density and velocity) of the solid phase are spatially averaged. The transport of the
particle phase is then governed by state equations, describing the phase exchange
between adjacent cells.

• The Lagrangian method: This approach tracks each particle in a set of particles indi-
vidually by considering the interaction between these particles and the surrounding
fluid.

The cellular automata approach for the solid phase lies between these methods, where the
flow domain is decomposed in cells and the solid particles are distributed within these cells.
There is no information of exactly where a particle is located inside a cell. On the other
hand, particles can be tracked individually inside the domain in the Lagrangian way, but
the tracking will not recognize the identity of each particle.

Solid particles at a site are represented as quantities evolving synchronously and discretely
over the same lattice. At time t, on site r (Figure 3.8), the number of particles travelling
with velocity ci is noted pi(r, t), and the number of particles remaining in the site is p0(r, t).
Contrary to the LBM approach, pi are integer values, and the particles are represented as
discrete variables. The particle phase local density is defined as:

ρp =
i=0∑
q

pi(r, t), (3.58)

and the particle flux:

Jp(r, t) =
i=0∑
q

pi(r, t)ci, (3.59)

where q is the number of lattice cell neighbours. This number can be different than the
number of lattice links in LBM.

3.11.1 Particle Motion

For a one-dimensional lattice case (Figure 3.7), a particle position at time t + 1 will be
r+(uf+ufall), where uf is the fluid local velocity, and the parameter ufall takes into account
the gravity effect on the particle. Both uf and ufall are normalized (i.e. non dimensional)
by the fluid characteristic velocity. Then the following probabilistic algorithm is proposed:
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• The direction of motion depends on the sign of uf + ufall.

• The particle moves with probability ξx, and rests (does not move) with probability
(1− ξx), where ξx =| uf + ufall |.

Figure 3.7: Particle movement over a one-dimensional lattice.

The algorithm is straightforward and the next position for the particle will be the right
one when uf � ufall as shown in Figure 3.7.

For a two-dimensional lattice (Figure 3.8), the previous technique (i.e. the one-dimensional
algorithm) can be extended. First, the quadrant where the a particle is leading towards
should be defined (e.g. north, north-east, south, etc.). This decision is based on the sign of
the two components (x and y) of uf +ufall. The probabilities of the vertical and horizontal
motions of the particle can be defined as: ξx =| ufx +ufallx | and ξy =| ufy +ufally |, where
the subscripts x and y are for the horizontal and vertical components.
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Figure 3.8: Particle movement on a two-dimensional square lattice.

Therefore, the probabilities of resting or reaching each of the three neighbours in a specific
quadrant (Figure 3.8) are:

• moving along the diagonal ξxξy

• moving to the x-direction (east) ξx(1− ξy)

• moving to the y-direction (north) ξy(1− ξx)

• resting (1− ξx)(1− ξy)

For a three-dimensional lattice (Figure 3.9), the two-dimensional algorithm is directly
extended. The three components of uf + ufall give three probabilities of moving in x−,
y−, or z−direction, which are ξx, ξy, and ξz, respectively. The moving probabilities are:

• Pxyz = ξxξyξz

• Pyz = ξyξz − Pxyz

• Pxz = ξxξz − Pxyz
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• Pxy = ξxξy − Pxyz

• Px = ξx − Pxy − Pxz − Pxyz

• Py = ξy − Pxy − Pyz − Pxyz

• Pz = ξy − Pxz − Pyz − Pxyz

• P0 = (1− ξx)(1− ξy)(1− ξz)

In the above algorithm, for example, P0 is the probability of resting, and Pxy is the prob-
ability of moving along the x and y directions (i.e. r + c7 in Figure 3.9).

Figure 3.9: Particle movement on a three-dimensional lattice.
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Chapter 4

Fluid Flow LBM Code Validation

The fluid flow simulation was carried out by employing a three-dimensional LBM in-house
code. This code utilized the D3Q19 LBM scheme with the LES model (i.e. Smagorin-
sky subgrid-scale model) for the turbulence in the flow. To validate the code, different
numerical simulations were performed for two benchmark test cases. Flow in a free tur-
bulent square jet at Re=25000 was first examined, and the results were compared with
the experimental work results by Ghasemi et al. [35]. The second test case is the round
turbulent impinging jet where the simulation results of this case were compared with the
LES numerical simulation ones by Hällqvist [38], and with the experimental work results
by Cooper et al. [15] and Geers et al. [33].

4.1 Numerical Aspect (Non-dimensional Units in LBM)

Before going through the simulation of test cases and their results, the unit conversion in
LBM will be reviewed with a practical test case. The LBM quantities have non-dimensional
units (LBM units), while the physical problems have dimensional units, e.g. length (m),
mass (kg), and time (s). Unit conversion factors are needed to provide a good understand-
ing of the non-dimensional LBM units and their equivalent physical units.

To give a better insight for these conversion factors, a simulation case will be examined to
find the unit conversion factors. The case study is the experimental work of Burwash et
al. [7], where this work has the following dimensional characteristics:

• Air density, ρa = 1.14 kg/m3.
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• Air dynamic viscosity, µa = 1.824 · 10−5 kg/m · s.

• Nozzle diameter, D = 15 mm.

• Nozzle exit velocity, u = 10.5 m/s.

• Solid particle diameter, dp = 5 µm.

• Solid particle density, ρp = 1050 kg/m3.

In the LBM simulation, some of the dimensionless variables should be selected first, and
the others can be calculated; the selected simulation variables are:

• Nozzle diameter, Dlbm = 70 LBM nodes.

• Nozzle exit velocity, ulbm = 0.1 (dimensionless).

• Air density, ρlbm = 1 (dimensionless).

The non-dimensional parameters (e.g. Reynolds and Stokes numbers) should be invariant
for both physical and numerical (non-dimensional) units, e.g. Re = Relbm = 10000, where
the subscript lbm is used for the LBM dimensionless quantities. The following conversion
equation can be used to calculate the conversion factors:

Q = Qlbm × CQ, (4.1)

where Q,Qlbm and CQ are the physical quantity, dimensionless LBM quantity, and the
conversion factor for the quantity Q, respectively.

4.1.1 Length Conversion

The nozzle diameter is considered as a characteristic length scale, therefore:

D = Dlbm × CL =⇒ CL = D/Dlbm,

CL =
0.015(m)

70
= 0.000214 (m) = 0.214 (mm). (4.2)

Equation 4.2 states that each LBM lattice length is equivalent to 0.000214 m (0.214 mm).
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4.1.2 Velocity Conversion

u = ulbm × CU =⇒ CU = u/ulbm,

CU =
10.5 (m/s)

0.1
= 105 (m/s). (4.3)

4.1.3 Density Conversion

ρ = ρlbm × Cρ =⇒ Cρ = ρ/ρlbm,

Cρ =
1.14(kg/m3)

1
= 1.14 (kg/m3). (4.4)

4.1.4 Kinematic Viscosity Conversion

The LBM kinematic viscosity can be calculated from the LBM Reynolds number as follows:

νlbm =
ulbm ·Dlbm

Relbm
. (4.5)

Equation 4.5 can be used to calculate the LBM viscosity, or the invariant Reynolds number
can be utilized to derive the viscosity conversion, as follows:

Re = Relbm =⇒ u ·D
νa

=
ulbm ·Dlbm

νlbm
, (4.6)

yielding:

νa
νlbm

=
u

ulbm

D

Dlbm

=⇒ Cν = CUCL = 105 (m/s) · 0.000214 (m) = 0.02247 (m2/s). (4.7)

4.1.5 Time Conversion

In the LBM, lattice length and time step have values of 1 for convenient calculation, thus:

∆x = CL, ∆t = Ct.

The physical kinematic viscosity in the Navier-Stokes equation is connected to the LBM
relaxation time by the following formula (Chapman-Enskog analysis):
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ν =

(
τ − 1

2

)
c2
s∆t, (4.8)

where the squared speed of sound c2
s in LBM is:

c2
s =

1

3

∆x2

∆t2
. (4.9)

Substituting Equation 4.9 in Equation 4.8 leads to:

ν =
τ − 1

2

3
· ∆x2

∆t2
·∆t, =⇒ ν =

τ − 1
2

3︸ ︷︷ ︸
νlbm

·C
2
L

Ct
, (4.10)

and finally:

Ct = νlbm ·
C2
L

ν
=

1

Cν
· C2

L =
0.0002142

0.02247
= 2 · 10−6 (s). (4.11)

4.2 Results and Discussions

4.2.1 Inlet Jet Condition

For the jet flow simulations in this study, a top-hat velocity profile was used for the inlet
jet condition. Turbulent fluctuations in three components of velocity are added at each
time step by generating a random number with a rang of (0−10%) from the mean velocity
value for the x-direction (axial direction), and with a range of (0 − 5%) for the y and
z-direction (radial and spanwise directions), respectively.

4.2.2 Free Square Jet

Numerical simulations are performed with four different combinations of inflow and side
boundary conditions. The computational domain for the free square jet is depicted in Fig-
ure 4.1. Table 4.1 shows these combinations for each simulation case. The main difference
between the first two cases (1 and 2) and the second two cases (3 and 4) is in the side
wall boundary condition, where the no-slip solid wall (BB boundary condition) and the
periodic boundary condition were applied for these cases. The inlet jet perturbation was
also changed (i.e. with and without) in the simulation.
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Figure 4.1: Computational domain of the square jet.

Table 4.1: Square free jet cases.

Case Characteristics Case1 Case2 Case3 Case4

Jet width D (Nlbm) 20 20 20 20
Nx 25D 25D 25D 25D
Ny 7D 7D 7D 7D
Nz 7D 7D 7D 7D

Wall BC NoSlip NoSlip Periodic Periodic
Re 25000 25000 25000 25000

Jet speed Uj 0.1 0.1 0.1 0.1
Jet perturbation 0 1 0 1

Smagorinsky constant Cs 0.1 0.1 0.1 0.1
LBM time steps 300000 300000 300000 300000
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(a)

(b)

Figure 4.2: (a)Instantaneous streamwise velocity contour, (b) instantaneous streamwise
velocity.

Figure 4.3 demonstrates the spanwise distribution of the normalized mean streamwise ve-
locity profiles (U/Uj) at different streamwise distances (x/D) from the jet exit. The central
portion in this figure (y/D = 0) illustrates the potential core of the jet where the velocity
is at its maximum value or equal to the jet exit velocity. The jet core velocity decreases
with increasing x/D and this behaviour is expected for this portion. The potential core
is defined in the near field of the jet (i.e. 0 < x/D < 7) where the streamwise centerline
velocity is almost constant. This region is more obvious for contraction nozzles where
the shear layer affect the the central velocity after the core region. In computational per-
spective, it is not easy to perform smooth jet contraction and that leads to the velocity
decreasing in this portion in this simulations. The shear layer causes the the core velocity
decreasing because of the development in turbulence. The streamwise velocity decreases
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when it moves in the radial direction toward the shear layer. The top hat velocity profile
is retained in the region close to the jet exit (Figure 4.3 x/D = 1 ), and the Gaussian
distribution is dominated in the region far from the jet exit as shown in Figure 4.3 at
x/D = 4, 5 . Comparison with the experimental results (Ghasemi et al. [35]) shows good
agreement; however, the numerical result profiles show non-smooth curves with slight de-
viation compared with the experiment ones. The reasons for these two differences may
be attributed to the spanwise distance from the shear layer in the solution domain, where
this distance may be not sufficiently large to vanish the effects of the side boundary on
the flow and probably the averaging time is not large enough to produce smooth profile.
Comparison between the four different simulation cases shows that there are no effects of
the inlet and the wall boundary conditions on the obtained results from these cases.

Figure 4.4 shows the normalized streamwise turbulence intensity distribution (urms/Uj) at
different streamwise distances from the jet exit. At the streamwise distance x/D = 1 and
for y/D = 0 (i.e the core region), the maximum values of urms/Uj for cases 1 and 2 are
less than 0.03 because this region is far from the effect of the shear layer of the jet. The
maximum values of urms/Uj are reached at distance y/D ' 0.5 in the shear layer region.
The results in the downstream direction show increases in the turbulence intensity because
of the the ambient fluid entrained into the core zone. At x/D = 1, the urms/Uj values at
the core zone (y/D = 0) for cases 3 and 4 are more than the values for cases 1 and 2. The
periodic boundary condition for the former cases causes spreading in the urms/Uj profiles
at the side boundaries and that push the profiles up in the core zone.

Figure 4.5 depicts the spanwise turbulence intensity profiles. The vrms/Uj is strongly
affected by the shear layer and the side boundary. At x/D = 1, in the core zone, the
values of vrms/Uj are very low for cases 1 and 2 because of the weak influence of the shear
layer on the core zone. However, cases 3 and 4 exhibit higher values of spanwise turbulence
intensity in the core zone resulting from the periodic boundary condition at the sides. The
no-slip boundary condition used in cases 1 and 2 damps the spanwise fluctuations at the
side wall. In contrast, in cases 3 and 4 the periodic boundary allows for more fluctuations
at the side wall and consequently these fluctuation are penetrated into the jet zones.

Reynolds shear stress profiles (u′v′/U2
j ) are shown in Figure 4.6. Close to the jet exit (i.e.

x/D = 1), the Reynolds stress at y/D = −0.5 (shear layer) exhibits sharp peak with minus
value. This minus value is attributed to the opposite direction for both u′ and v′ at the jet
shear layer. The jet core is less affected by the vortical eddies at the shear layer and has
a zero Reynolds stress value. As the flow move in the downstream direction, the vortices
penetrate to the core zone and spread the Reynolds stress profile, and the zero Reynolds
stress value is retained in the centerline zone.
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Figure 4.3: Spanwise distribution of U/Uj at different streamwise distances.
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Figure 4.4: Spanwise distribution of urms/Uj at different streamwise distances.
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Figure 4.5: Spanwise distribution of vrms/Uj at different streamwise distances.
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Figure 4.6: Lateral distribution of u′v′/U2
j at a: x/D = 1; b: x/D = 2; c: x/D = 3 ; d:

x/D = 4; e: x/D = 5.
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4.2.3 Circular Impinging Jet

The impinging jet results in this simulation were compared with the numerical ones by
Hällqvist [38] and with the experimental works results by Cooper et al. [15] and Geers et
al. [33]. Figure 4.7 shows a schematic view of the round impinging jet. The impingement
plate to the jet exit distance was chosen to be constant at L/D = 2.

Figure 4.7: Computational domain of the circular impinging jet.

Computational grid

The computational scheme and the grid resolution effects have been evaluated for different
test cases where the grid resolution was changed. For this case of the impinging jet (i.e.
L/D = 2), four different (coarse) grids were used: 500 ∗ 100 ∗ 500 (case1), 600 ∗ 120 ∗ 600
(case2), 700 ∗ 140 ∗ 700 (case3), and 800 ∗ 160 ∗ 800 (case4). The previous grid resolutions
are the coarse grids and all these grids were refined in the near wall region (i.e. high
velocity gradient). Table 4.2 shows the impinging jet characteristics for the different grids.
The viscous length-scale (y+) was used in this study to estimate the grid spatial resolution
adequacy [38]. It should be noted that this estimation is not accurate enough because the
near wall flow is not fully developed, however the value of y+ is determined in a range for
the first grid line adjacent to the wall. For the different test cases, the ranges of y+ are:
y+ ≤ 7.2 (Case1), y+ ≤ 5 (Case2), y+ ≤ 3.8 (Case3), and y+ ≤ 1.6 (Case4). Coarser
grid for the L/D = 2 case can reduce the range of y+ and increase the computational cost
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(e.g. y+ ≤ 1.2 for D = 120). The characteristics of Case4 grid will be considered in this
section results to keep a reasonable computational cost (e.g. available GPU memory), and
to provide a dimensional consistency for the different L/D cases (e.g. L/D = 2, 4, 6) in
the next results (Section 5.3.3). Table 4.3 shows the higher resolution test case (i.e. Case4
in Table 4.3) characteristics in the LBM non-dimensional units.

Table 4.2: Impinging jet characteristics for different cases.

Case Characteristics Case1 Case2 Case3 Case4

Jet diameter D (Nodes) 50 60 70 80
Ny 2N 2N 2N 2N
Nx 10N 10N 10N 10N
Nz 10N 10N 10N 10N
Re 20000 20000 20000 20000
Uj 0.04 0.04 0.04 0.04

Jet perturbation 1 1 1 1
Cs 0.1 0.1 0.1 0.1

Time steps 400000 400000 400000 400000

Grid refinement level 2 2 2 2

Refinement height (y/D) 0.15 0.15 0.15 0.15

Errors in LBM scheme

The LBM parameters for a specific problem should be chosen carefully to ensure stable
and accurate solution. In general, there are several errors related to the LBM simulation
[51]:

• The spatial discretization error which is of order ∆x2.

• The temporal discretization error which is of order ∆t2.

• The compressibility error which is ∝Ma2 ∝ u2
lbm. The LBM velocity (ulbm) decreases

with increasing the velocity conversion factor (CU = CL
Ct

), then this error is ∝ ∆t2

∆x2
.

Increasing the lattice resolution (i.e. decreasing the spatial discretization error) will grow
the compressibility error, and decreasing the time step does not decrease the spatial error.

58



Table 4.3: Impinging jet (Case4) characteristics.

Case Characteristics Case4

Jet diameter 80
Axial dimension (coarse grid) 160

Spanwise dimension (coarse grid) 800
Grid size ∆x (coarse grid) 0.0125
Time step ∆t (coarse grid) 0.0005

Grid size ∆x (fine grid) 0.00625
Time step ∆t (fine grid) 0.00025
Inlet boundary condition Velocity boundary condition (Section 3.8.2)

Outlet boundary condition Fully developed boundary condition (Section 3.8.4)
Wall boundary condition Bounce back boundary condition(Section 3.8.1)

Thus, it is important to compromise a relation between ∆x and ∆t to control the errors.
To decrease the LBM problem errors in this work, the relation between the time step and
grid size was chosen to be close to ∆t ∼ ∆x2 [51].

Results

The simulations in this section were carried out for different grids (Table 4.2). The results
for these grids are shown in Figures 4.8 and 4.9, however, the results discussion in this
section is only considered for the high resolution grid (i.e. Case4 in Table 4.2).

Figure 4.8 (a) shows the normalized mean axial velocity V/Uj as a function of normalized
wall-normal distances y/D at the normalized radial distance x/D = 0. The results show
good agreement with the numerical and experimental results. The axial velocity profile at
x/D = 0.5 is shown in Figure 4.8 (b) and the results are also shown a good agreement
with the literature result. Figure 4.8 (c) depicts the results for U/Uj profile at the radial
distance x/D = 1. The LBM simulation result is in good agreement with the simulation
and experimental results in the region far from the wall (i.e. y/D > 0.05); however, the
result slightly deviates from the literature values in the near wall region (y/D < 0.05). The
main reason for the discrepancy in the near wall results could be attributed to insufficient
LBM grid resolution in this region which makes the current resolution unable to resolve
and capture the radial velocity parallel to the wall.

Figure 4.9 (a) illustrates the normalized axial turbulence intensity vrms/Uj at x/D =
0.5 (shear layer). In general, the vrms profile follows the numerical result profile ([38])
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within the region y/D < 0.4. Figure 4.9 (b) demonstrates the normalized axial turbulence
intensity (vrms/Uj) at x/D = 1. The LBM profile (this work) exhibits good agreement
with the numerical simulation result at y/D < 0.14, while it shows some variation for
y/D > 0.14, The reason for this disagreement might be related to the jet inlet boundary
condition.

Figure 4.9 (c) shows the normalized radial turbulence intensity urms/Uj at the radial dis-
tance x/D = 0.5 (shear layer). Down to axial distance y/D ≈ 0.15, the LBM result shows
good agreement with the numerical simulation and Cooper’s experimental results. Close
to the wall (i.e. y/D < 0.02), the urms value is gradually decreased as a result of the damp-
ing from solid wall. Figure 4.9 (d) depicts the normalized radial fluctuating velocity at
radial distance x/D = 1. The LBM result shows acceptable agreement with the numerical
and experimental results except for the distance y/D < 0.04, where the effect of the grid
resolution becomes very crucial in determining near-boundary accurate results.

The fully developed boundary condition, used in this simulation, enforces vanishing spatial
derivatives along the radial (x) direction, and providing an unrealistic non-physical con-
dition in the region directly preceding the outflow boundary. To insulate the physically
accurate results from the outflow boundary condition, a buffer zone could be placed before
the flow exit boundary and the results can be calculated before this zone. This buffer zone
should be about the last 1/3 of the entire computational domain [108].
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Figure 4.8: a: Mean axial velocity V/Uj at x/D = 0; b: Mean axial velocity V/Uj at
x/D = 0.5; c: Mean radial velocity U/Uj at x/D = 1.
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Figure 4.9: a: Axial vrms/Uj at x/D = 0.5; b: Axial vrms/Uj at x/D = 1; c: Radial
urms/Uj at x/D = 0.5; d: Radial urms/Uj at x/D = 1.

Figures 4.10 and 4.11 depict the energy spectral content of the flow analyzed by the power
spectrum. The figures show the power spectrum of urms and vrms at two different stations
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within the flow domain. The first station is located within the shear layer close to the
impingement wall at y/D = 0.05 and x/D = 0.5, and the second station is positioned at
y/D = 1 and x/D = 0.5.

Figure 4.10: Power Spectral Density (PSD) for a: v′; b: u′ at station 1 (y/D = 0.05,
x/D = 0.5).
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Figure 4.11: Power Spectral Density (PSD) for a: v′; b: u′ at station 2 (y/D = 1,
x/D = 0.5).
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Chapter 5

Modified LBM-CA Model
Implementation on CUDA GPUs

Due to the massive number of calculations, the implementation of the MRT LBM-CA
algorithm in a serial CPU code increases the computational load in a substantial manner.
However, this deficiency in the serial CPU code can be alleviated by utilizing GPU CUDA
programming to provide a parallel multi-threaded code. Inspite of the fact that GPUs are
designed originally to process large graphic data in a fast way, tremendous strides have
been made in order to reduce the limitation in the GPUs programming and facilitate them
for general purpose calculations. In this study, a single NVIDIA GeForce GTX TITAN X
was used to accomplish the numerical simulation. The technical specifications of this GPU
are given in Table 5.1.

Table 5.1: Technical specifications for the NVIDIA GeForce GTX TITAN X

Compute Capability 6.1
CUDA Cores 3072
Memory Size 12(GB)
Memory Bandwidth 336.5(GB/sec)
Single Precision Floating Point Performance 7(TFLOPS)

65



5.1 LBM-MRT Fluid Flow Implementation on GPUs

The data locality in LBM makes this method very suitable to be implemented on GPUs. In
a very basic LBM CUDA code, each thread, which is the smallest processing unit in GPU,
is assigned to an LBM node in the problem domain. The major problem in the LBM code
implementation is the memory transaction related to the streaming step. To involve the
distribution functions from the neighbouring nodes in the streaming process, each thread
needs to access the contiguous memory locations associated with diffent LBM nodes. To
reduce the time required for the memory accessing process, Structure of Arrays (SoA)
memory arrangement is usually used instead of Array of Structures (AoS) one; the former
arrangement ensures optimal memory access by providing a coalesced memory locations.
Moreover, a multi-dimensional LBM nodes array can be stored in a linear one-dimensional
block array. Algorithm 1 shows the pseudocode of conversion three-dimensional block array
in to one-dimensional linear array. The value of J represents the location of an LBM node
in the linear memory, while x, y, and z are the positions of the LBM node in x, y, and z
direction, respectively. More details about the LBM fluid code implementation on GPUs
can be found in [48].

Algorithm 1 Conversion of three-dimensional block array in to one-dimensional linear
array

int x = threadIdx.x+blockIdx.x*blockDim.x;
int y = threadIdx.y+blockIdx.y*blockDim.y;
int z = threadIdx.z+blockIdx.z*blockDim.z;
int J = x+y*pitch+z*YDIM*pitch; //linear memory
//pitch = pitch size of array

5.2 The LBM-CA Dispersed Particles Model on GPUs

A new model is developed to simulate the solid particles transport and deposition. In
this model, the number of solid particles is defined in the LBM fluid nodes. This method
can reduce the number of memory locations required when the number of particles in the
simulation is larger than the LBM lattice number. In addition, updating particle velocities
only requires the local information of the LBM nodes. The particles in this model are forced
to move in the same fluid LBM lattices by considering all external forces and applying
Newton’s second law. In three-dimensional LBM-CA simulation, the fluid flow utilizes the
D3Q19 model, while the particles movements employs the D3Q27 one. Figure 5.1 shows
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an LBM lattice; the blue links represents the fluid links, and the extra red colour links
are defined for the particles movements. In addition to the fluid simulation parameters,
the implementation of the LBM-CA model in GPU involves new parameters in the GPU
global memory. A particle number array is used to define the number of particles at each
node. To avoid the data interaction conflict, two sets of this array, NA and NB (source
and destination), are defined in the global memory throughout the simulation, and they
are swapped at each time step. Another array for the particles local average velocity is
allocated in the GPU memory. This array is a three-dimensional array, and each dimension
represents the velocity component in the Cartesian three-dimensional LBM model. The
particle velocity is not defined for each single particle; instead, it is defined at each LBM
node representing the average velocity for a group of particles residing inside the LBM
lattice boundaries.

Figure 5.1: LBM lattice; blue: fluid model (D3Q19); blue and red: solid particles model
(D3Q27)

5.2.1 The Particle Transport Algorithm of LBM-CA

The movements of the solid particles in this model are constrained in the same regular LBM
nodes. At each node, the number of particles (Np) and the particles average velocity (Up)
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are defined initially according to the initial particles distribution condition. At the next
simulation time step, the number of particles moved to the neighbouring nodes (Nmove) is
determined according to the local particle number and speed:

Nmove = integer

(
Np

tmove

)
, (5.1)

where tmove is the number of time steps required to move all the particles in a specific node
to the next neighbouring nodes, and it is defined as follows:

tmove = integer

(
1

Upabs

)
, (5.2)

where Upabs is the local absolute particles velocity magnitude.

Upabs =
√

(Upx)2 + (Upy)2 + (Upz)2 , (5.3)

where Upx, Upy, and Upz are the local particle velocity components in x, y, and z direction,
respectively. In Equations 5.1 and 5.2, the term integer is used in the GPU code to round
the real values to the nearest integer values. However, the Nmove can take a real number
form which represents the exact fraction of the Np distributed at each time step. Note:
integer values of Nmove are used in this work because using real values leads to losing
some particles during the simulations. The value Nmove in Equation 5.1 may be decreased
when the local number of particles (Np) is decreased during the simulation; then applying
Equation 5.1 at each time step will give unrealistic number of the moving particles (i.e.
less than the real moving particles). To avoid the decrease in Nmove during the particles
movement, an array of Nmove can be built and saved in the GPU memory. For each
LBM node, Nmove value can be raised with increasing Np through Equation 5.1 and it is
unchanged when Np is decreased.

Figure 5.2 depicts an example of movement of particles in a two-dimensional lattice. In
this figure, 100 particles (Np) are moving downward (i.e. one-dimensional movement) at a
uniform non-dimensional velocity [Upabs = 0.2 lattice/LBM time step (t)]. The red colour
particles represent the particles which are initially (t = 0) in the lattice, while the blue
colour is for particles moving into the lattice from the upper boundary. According to these
condition, the blue particles need 5 time steps to occupy the lattice space (tmove = 1

Upabs
=

5), and the red particles require the same time steps to leave the lattice. The number of
red particles leaving and blue particles entering at each time step is: Nmove = Np

tmove
= 20.
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t=0 t=1 t=2

t=3 t=4 t=5

Figure 5.2: Schematic view of time (t) evolution of particles movement in a two-dimensional
LBM lattice.

In three-dimensional D3Q27 LBM model, particles in a node can move along 26 links
(i.e. 26 probabilities) to new nodes as shown in Figure 5.1. To reduce the number of
probabilities where the particles can move, a cubic lattice is equally divided into eight
sub-cubes. According to the particle velocity components in three dimensions, the sub-
cube which particles move through can be determined as shown in Figure 5.3. Then,
the distribution of the particles from each node to the next nodes is accomplished on the
GPU by a program looping through Nmove. This loop allows a GPU thread to deal with
each single particle separately and move it to the next node according to a probabilistic
algorithm.

69



Figure 5.3: Distribution of particles inside a sub-cube.

The first step inside the loop is generating three real random numbers (r1,r2, and r3) in
an interval [0, 1]. The cuRAND library in CUDA, which used in this work, provides a
simple and efficient generation of high-quality pseudorandom and quasirandom numbers
[73] [93]. These three numbers are compared with the absolute normalized particle velocity
components Upxn, Upyn, and Upzn (e.g. Upxn =| Upx | /Upabs ), and the new position
is determined according to the conditions in Algorithm 2. Note: this algorithm is for the
sub-cube shown in Figure 5.3 and different algorithms are applied for different sub-cubes.

Algorithm 2 Particle movement conditions

if (r1 < Upxn & r2 > Upyn & r3 > Upzn) , then, (Xadd = 1;Yadd = 0;Zadd = 0) ,
if (r1 > Upxn & r2 < Upyn & r3 > Upzn) , then, (Xadd = 0;Yadd = 1;Zadd = 0) ,
if (r1 > Upxn & r2 > Upyn & r3 < Upzn) , then, (Xadd = 0;Yadd = 0;Zadd = 1) ,
if (r1 < Upxn & r2 < Upyn & r3 > Upzn) , then, (Xadd = 1;Yadd = 1;Zadd = 0) ,
if (r1 < Upxn & r2 > Upyn & r3 < Upzn) , then, (Xadd = 1;Yadd = 0;Zadd = 1) ,
if (r1 > Upxn & r2 < Upyn & r3 < Upzn) , then, (Xadd = 0;Yadd = 1;Zadd = 1) ,
if (r1 < Upxn & r2 < Upyn & r3 < Upzn) , then, (Xadd = 1;Yadd = 1;Zadd = 1) ,

The values of Xadd, Yadd, and Zadd are the spatial increments (i.e. in three-dimensions) of
the particle located at (x, y, z) which coincides with the fluid node (e.g. node 0 in Figure
5.1). The new linear memory location for a moving particle is defined in Algorithm 3.
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Algorithm 3 The new linear memory location (Jnew)

int Xnew = x + Xadd;
int Ynew = y + Yadd;
int Znew = z + Zadd;
int Jnew = Xnew + Ynew ∗ pitch+ Znew ∗ Y DIM ∗ pitch; // new linear memory location

The two copies of the particle number array (NA and NB) are passed to the particle update
kernel. The array NA contains the initial particle number at each node, while the array
NB has zero values for all nodes. The two arrays are updated at the end of the particle
distribution loop (through Nmove) as shown in Algorithm 4.

Algorithm 4 Updating particle number in NA and NB

NA[J ] = NA[J ]− 1;
NB[Jnew] = NB[Jnew] + 1;

After finishing the particle updating loop, each particle number element in array NA is
added to its equivalent element (i.e. same linear memory location) in array NB. After the
addition process, all the particle number values in NA are cleared (zeroed). Finally, the
memory addresses of A and B for the two arrays are swapped to make NB the source array
and NA the destination array, as illustrated in Algorithm 5.

Algorithm 5 Finalizing the GPU algorithm

//End of particles distribution loop
NB[J ] = NB[J ] + NA[J ];
NA[J ] = 0;
//End of the GPU kernel
// Return to the CPU time loop
swap(A,B);

5.2.2 Particle Velocity Update

The local particles motion can be described by applying Newton’s second law considering
external forces:

dUp

dt
= Fdrag + Fbuo + Fg + Fother (5.4)
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where Fdrag, Fbuo and Fg are the drag, buoyancy, and gravity forces, respectively. The
Fother represents other external forces such as Basset force, Magnus force, Saffman force,
and Brownian force. Only drag, buoyancy, and gravity forces are considered in this work
because of the high particle to fluid density ratio. The non-dimensional (LBM units)
equation of motion is given as [85]:

dUpi
dt

=
Ufi − Upi
Stk

+
1

Fr2

(
1− 1

S

)
(5.5)

where Stk and Fr are Stokes and Froud numbers, respectively, and they are defined as:

Stk =
ρpd

2
pu0

18µgl0
. (5.6)

Fr =
u0√
g0l0

. (5.7)

where ρp and dp are the particle density and diameter, respectively; µg is the fluid dynamic
viscosity; u0 is the fluid characteristic velocity; l0 is the characteristic dimension of the
obstacle (typically the particle diameter); S is the solid particle to fluid density ratio.
Equation 5.5 is solved using the fourth order Runge-Kutta method. The particle velocity
update process is performed for each node containing particles in NA, and the a non-
dimensional time step (∆tRK) used in Equation 5.5 is:

∆tRK =
∆tlbm
tmove

=
1

tmove
, (5.8)

where ∆tlbm is the non-dimensional LBM time step, which is equal to 1. The velocity
values of all particles moving to NB are summed to produce total velocity (UB), and the
new average particle velocity is calculated by the pseudocode shown in Algorithm 6.

Algorithm 6 Particle velocity update

if NA[j] = 0 // No particles in array A
Up[j] = UB[j]/NB[j] ;
else if NA[j] 6= 0
Up[j] = (Up[j] ∗NA[j] + UB[j] ∗NB[j])/(NA[j] +NB[j]) ;
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5.2.3 Particle Sedimentation on the Wall

Particles deposited on the wall may occupy significant volumes of the LBM wall nodes. In
this case, the particles will build a collection of heaps with different heights based on the
particles number. Consequently, the wall nodes will be deformed and the curved boundary
condition (Section 3.8.5) can be applied instead of the traditional BB boundary condition.
Figures 5.4 shows the effect of the particle deposition on the wall, where the distance
(dx/2) between the fluid and the wall nodes (a and b) is reduced by the factor ζ which is
estimated as follows:

ζ =
NpVp
Vlbm/2

, (5.9)

where Np, Vp, and Vlbm are the number of deposited particles, particle volume, and the
LBM cell volume, respectively. When a large number of particles(e.g. Np × Vp = Vlbm/2)
are deposited next to a wall node, the neighbouring fluid node (node c in Figure 5.4) is
solidified and considered as a wall node. The latter wall boundary process is only considered
when the deposited particle volume exceeds a given threshold value (Pthr). In this study,
the threshold value is equal to 20% of the LBM wall cell volume (Note: less than 20% may
not affect the fluid flow and particle deposition significantly).

Figure 5.4: Schematic view of the particle sedimentation on the wall.
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5.2.4 LBM-CA Particle Transport Grid Refinement Model on
GPUs

In this study, a new LBM-CA local grid refinement technique for the particle transport is
developed. The movement of particles in the fluid fine grid should be adjusted to build a
compatible robust model for the fluid-particle interaction in the refined region of the flow.
Figure 5.5 depicts a two-dimensional schematic view of the coarse (blue) and fine (red)
grids in an LBM flow domain for a refinement factor n = 2.

Figure 5.5: Particle transport between the coarse grid (blue) and the fine grid (red).

The model of the particle transport between the coarse and fine grid and inside the fine
grid is constructed as follows. The fluid distribution and all other variables (e.g velocities)
are defined in both (coarse and fine) grids (Section 3.9). The particles numbers is known
in the coarse nodes which are contiguous to the fine grid. Particle in the coarse node (i.e.
node A in Figure 5.5) can be transport spatially to the neighbouring nodes in the coarse
grid by applying the transport algorithm (Section 5.2.1). The line between nodes A and
B shows that some particles are moved from node A to node B which is located inside
the fine grid. The particles in node B are distributed spatially to the adjacent fine grid
nodes (i.e. a, b, c, and d). This distribution can be accomplished by applying the linear
extrapolation technique, such that:

Na = Nb = Nc = Nd =
NB

4
, (5.10)
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where Na, Nb, Nc, Nd, and NB are the number of particles at nodes a, b, c, d and B, respec-
tively. The distribution in Equation 5.10 can be applied when the number of particles
is defined as a real number in the LBM nodes. For the case of integer number values of
the particles, the distribution is completed by applying successive particle movement from
node B to the fine grid nodes (i.e. the successive distribution starting from node d), as in
Algorithm 7.
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Algorithm 7 Distribute particles in a refined grid

for (int i=0; i < NB ;i++)
(
Nb=Nb+1;
NB=NB-1;
if(NB > 0)
(
Nc=Nc+1;
NB=NB-1;
)
if(NB>0)
(
Nd=Nd+1;
NB=NB-1;
)
if(NB>0)
(
Na=Na+1;
NB=NB-1;
)
)

5.2.5 LBM-CA Near-Wall Turbulent Dispersion Model

The LBM-CA probabilistic model is considered in the flow region where the turbulence
intensity (e.g., urms) is much lower than the mean fluid flow velocity U such that (urms <<
U). Near the wall, the turbulence is of the same order as the mean flow (urms ≈ U).
As shown in Figure 5.6, the solid areas are constructed on the wall due to the particle
deposition. Velocities at points a and b in the fine grid may exhibit high fluctuations
because of the non-uniform wall boundaries (Section 5.2.3). In this situation, it is necessary
to find a model that can control the particle movements at these points based on the
turbulence intensity. The near wall particle distribution can be defined in term of the
particle distribution function (PDF) or the particle dispersion function as follows:

fp(cp,x, t) = 〈δp(x, t)δ(cp)〉, (5.11)

76



where δ is the Kronecker delta symbol and δp(x, t) is the dispersed phase function such
that:

δp(x, t) = 1, if the particle center is located at x at time t,

δp(x, t) = 0, otherwise,
(5.12)

where the 〈.〉 symbol represents the ensemble average over a very large number of particles.
The probable number of particles located in the volume [x,x+dx] at time t with velocities
in the range [cp, cp + dcp] is fp(cp,x, t)dxdcp. The total number of particles np(x, t) (zero
moment) at a volume centre x and a time t is calculated by integrating the distribution
functions over all possible particle velocities. In addition, higher order moments can also
be calculated in similar way to LBM, as follows:

np(x, t) =

∫ ∞
cp=−∞

fp(cp,x, t)dcp, (zero moment)

Upi =
1

np

∫ ∞
cp=−∞

cpifp(cp,x, t)dcp, (first moment)

〈u′piu
′
pj
〉 =

1

np

∫ ∞
cp=−∞

(cpi − Upi)(cpj − Upj)fp(cpx, t)dcp. (second moment)

(5.13)

The single particle velocity PDF following the Boltzmann kinetic equation is [87] [25]:

∂fp
∂t

+
∂

∂xi
(cpifp) +

∂

∂cpi

(
〈dupi
dt
〉fp
)

=

(
∂fp
∂t

)
collision

. (5.14)

The third term in Equation 5.14 represents the force acting on particles from the flow

turbulence. The term on the right
(
∂fp
∂t

)
collision

is the modification of PDF as a result

of the inter particle collision and it can be neglected for dilute particle dispersion. The
fluid-particle interaction can be separated in to two terms: first, fluid-particle interaction
through the mean flow velocities; second, turbulent interaction through the fluid turbulence
motion.

The particles equilibrium state can be defined to take the Gaussian distribution form [58]:

f eqp =
np(

2π〈u′fu′p〉
)1/2

exp

(
−(cp − Up)2

2〈u′fu′p〉

)
, (5.15)

where 〈u′fu′p〉 represents the fluid-particle correlation and can be defined according to Tchen
theory [8]:

〈u′fu′p〉 = 〈u′fu′f〉
1

1 + Stk
= 〈u′pu′p〉, (5.16)
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where the term 〈u′pu′p〉 is the particle-particle correlation. The Stk is Stokes number (i.e.
Stk = τp/τf ), where τf is the fluid relaxation time defined as the Lagrangian integral
time scale measured along a fluid particle trajectory [25]. It was noticed that the near-
wall velocity fluctuations in this study cases (e.g. turbulent impinging jet) are very small
compared with the fluid mean velocities. The axial velocity fluctuation (towards the wall)
is important when the particle deposition is the main focus of simulations. Consequently,
the near-wall turbulence will account in the nodes which are adjacent to the wall nodes by
adding the particle-particle correlation (Equation 5.16) to the particle mean axial velocity.

Figure 5.6: Turbulent dispersion model.

5.3 Results and Discussion

5.3.1 Flow Over a Rectangular Cylinder Confined in a Duct

The schematic view of the computational domain for this test case is shown in Figure 5.7.
A rectangular cylinder with width B and length W is located at the centre of the duct.
The duct length (L) is equal to 24B, and H is the height of the duct. The dimensions in
this simulation were set to facilitate a comparison to the numerical work of Salmanzadeh
et al. [85]. For the case of obstruction aspect ratio (W/B) equal to 2, simulation was

78



conducted using a uniform mesh with B = 30, W = 60, H = 120, L = 720 nodes, and the
cylinder was located at distance 10B from the duct entrance. The inflow was determined
according to the prescribed velocity profile as:

u = Umax

(
1− r2

R2

)
, (5.17)

where R = H/2, and Umax is the maximum velocity in the axial (x) direction. The
simulation was conducted in three-dimensional flow domain and the z dimension was set
to 10 nodes; however, the current results were compared with the simulation ones in two-
dimensional domain. For that, particle movements were restricted to be in two dimensions
only (i.e. x and y directions).

Figure 5.7: Schematic view of the duct with an obstacle.

Fluid Flow Simulation on GPUs

A comprehensive study for this problem was accomplished by Koda and Lien [49]. An LBM
code was developed utilizing the GPU CUDA architecture, and the results were validated
against results of a test case involving the flow in a duct over a square cylinder. Good
agreement was obtained, and the GPU code was faster than the traditional CPU code by a
factor of 150. More information about the fluid flow LBM code implementation on GPUs
can be found in literature, [49][48][74][90][91].
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LBM-CA Particle Transport and Deposition Code Validation

The results in this section were obtained for particle trajectories and deposition rates with
different Stokes (Stk) numbers and blockage ratios (Br = B/H). In this simulation, the
fluid flow simulation was first started, and after sufficient simulation time steps (e.g. 30000
LBM time steps), 50 particles were injected in each of the duct entrance nodes. The time
when the particle injection started is consider a zero (i.e. t=0). The particle diameter can
be controlled by the Stokes number which is the square of the non-dimensional particle
diameter [86].

Figure 5.8 shows the particle trajectories for different Stokes numbers at different time
steps in the presence of span-wise gravity force (i.e. Fr = 3). The blockage ratio is 0.25,
cylinder aspect ratio is 2, and the Reynolds number is 200. For a small Stokes number (i.e.
Stk = 0.001), the drag force is very high compared to the gravity force. Consequently,
the particles follow the streamlines of the flow in the duct and no particles are deposited
on the duct walls. The small particles (i.e. small Stokes number) have low inertia forces;
so few of these particles reach the cylinder surface and are deposited on it, and most of
them follow the curved streamlines around the cylinder. It can be seen from Figure 5.8
(i.e. Stk = 0.001) that particles past the cylinder are entrained in to the area behind it
by the effect of the vortex shedding which takes place downstream the cylinder. The small
stokes number problem does not necessarily include nano-particles because Stokes number
is a function of many parameters (Equation 5.6) in addition to the particle size; hence the
Cunningham slip correction factor is not considered in this study.

When the Stokes number is increased (e.g. Stk = 0.1), the effect of the gravity force be-
comes more obvious and the particle deposition on the lower wall is increased significantly.
Particles with higher Stokes numbers also have greater inertia force which enables them to
move out of the curved streamlines before the cylinder and reach its front face. As shown
in Figure 5.8 (i.e. Stk = 0.1), the effect of the vortex shedding becomes less dominant and
few particles are entrained into the projection area behind the cylinder. For high Stokes
numbers (e.g. Stk = 1 and 5), the gravity effect dominates the movement of the particles
and most of the particles are deposited on the cylinder and the lower wall of the duct be-
fore the duct outlet. Table 5.2 shows this problem configuration in LBM non-dimensional
units.
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Figure 5.8: Particle trajectories at different time steps (t) for Re = 200, AR = 2, Br =
0.25, Fr = 3, and different Stokes numbers (Stk = 0.001, 0.1, 1, and 5).
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Table 5.2: Flow over a rectangular cylinder problem configuration.

Duct height H 120
Duct Length L 720

Cylinder height B 30
Cylinder width W 60

Characteristic length Cylinder height
Characteristic velocity (inlet velocity) 0.04

Grid size ∆x (1 / Characteristic length ) 0.0333
Time step ∆t 0.0013

Inlet boundary condition Velocity boundary condition (Section 3.8.2)
Outlet boundary condition Fully developed boundary condition (Section 3.8.4)

Wall and cylinder boundary condition Bounce back boundary condition(Section 3.8.1)

Figure 5.9 (a) shows the cumulative deposition efficiencies along the longitudinal direction
of the duct for Fr = 3, Br = 0.25, and for different Stokes number. The deposition on
both of the cylinder and the duct walls were considered, and the cumulative efficiency was
defined as:

β =
Number of particles deposited at a specific distance from the duct inlet

Total number of particles injected in the duct inlet
. (5.18)

In this numerical experiment, particles were injected in the duct inlet with a number of
50 particles per node within the cylinder projection area. Figure 5.9 (b) demonstrates
the effect of changing the blockage ratio on the deposition efficiency for different Stokes
numbers in the absence of the gravity force. The particle deposition efficiency on the front
side of the cylinder is defined as:

η =
Number of particles deposited on the front side of the cylinder

Number of particles injected in the cylinder projected area
. (5.19)
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(a) (b)

Figure 5.9: (a) Cumulative depositon efficiencies along the x direction for Br = 0.25 and
different Stokes numbers . Green: St = 10; black: St = 1; red: St = 0.1; blue: St = 0.001.
(b) Particles deposition efficiencies for different Stokes numbers and blockage ratios. Black:
Br = 0.5; red: Br = 0.25; blue: Br = 0.1. Symbols: simulation [85]; lines: present work.

5.3.2 Fluid-particle interaction in the modified LBM-CA model

The simulations in this section are carried out to compare the modified LBM-CA model
proposed in this work with the previous LBM-CA model in term of the fluid-particle
interaction in vortex shedding. In this test case, 20 particles are injected in each node at the
duct entrance area within 5000 time steps, and the simulations are carried out for another
20000 time steps. The simulations are performed for Re = 300 and the characteristic length
is taken to be the height of the obstacle (B in Figure 5.7). This problem configuration
is utilized to allow unsteady vortices shaped to appear downstream of the obstacle. The
problem characteristics for this test case are shown in Table 5.3. Figures 5.10 and 5.11
depict particle trajectories over an obstacle in a duct for small particles (i.e. Stk = 0.1)
at different time steps (i.e. non-dimensional LBM unit) for the modified LBM-CA model
used in this study and the classical LBM-CA model, respectively. The particles are injected
initially in the LBM nodes possess the same fluid velocity at each node. After few time steps
(i.e. t=1200), the particles distribution in the duct of the modified LBM-CA model start
to disperse taking the fluid velocity profile in the entrance area (i.e. parabolic velocity
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Table 5.3: Characteristics of fluid-particle interaction problem.

L H B W Umax Re Stk Fr (-y) S Lx Time steps

510 88 20 20 0.04 300 0.1 300 1000 90 20000

distribution). The axial (x-direction) location of particles at the centerline, where the
maximum fluid axial velocity equals to 0.04, is 50 which is a realistic location as the
particle Stokes number is small (Stk = 0.1) and the particles movement is nearly as same as
fluid velocity (particle axial location = particle velocity× time steps ' 0.04× 1200 ' 50).
On the other hand, at time 300 for the classical LBM-CA model (Figure 5.11), many
particles are moved in the duct axial direction far from the real physical location (i.e.
300×0.04 = 12). The reasons for this discrepancy between the previous and current model
is that the total number of moving particles (Nmove) at each time step in the current model
is a function of the total number of particles at each LBM node and the particle average
velocity (i.e. Equations 5.1 and 5.2) which provides a better particle-fluid interaction
description, and the particles will be transported and distributed in a realistic manner.
In contrast, the total number of moving particles in the previous LBM-CA models is
considered to be the same as total number of particles in each LBM node (i.e. Nmove = Np).
As can be seen in Figure 5.10 for later time steps (e.g. t=3600→ t=13200), the particles are
interacted with vortex shedding behind the obstacle and entrained in the region where the
vortex shedding takes place. Contrarily, the fluid-particle flow simulation of the classical
LBM-CA model (5.11) can not capture the appropriate fluid-particle interaction in the
vortex shedding region where most of the particles flow across the area behind the obstacle
in the axial direction towards the duct outlet. The current particle transport algorithm (i.e.
Algorithm 2) through the Nmove loop provides more probabilities to distribute particles
within each LBM time step. As a result, applying this algorithm for each individual
particle allows this model (modified LBM-CA model) to better describe the fluid-particle
interaction in complex fluid flow problems.
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Figure 5.10: Modified LBM-CA method fluid velocity magnitude and particle number for
different LBM time steps for Stk = 0.1 and Re = 300.
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Figure 5.11: LBM-CA method fluid velocity magnitude and particle number for different
LBM time steps for Stk = 0.1 and Re = 300.
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5.3.3 Fluid-Particles Flow Through a Turbulent Impinging Jet

Fluid flow, particle transport and deposition through a turbulent impinging jet were exam-
ined in this simulation. Two test cases were run to validate this simulation. The first case
(Case1) provided a qualitative study for the effect of jet-to-wall distance to jet diameter
ratio (L/D) and Stokes number on the particle deposition pattern on the wall (impinge-
ment surface). The second test case (Case2) provided a quantitative comparison of the
particle deposition density on the wall with an experimental work [86]. Figure 5.12 (a)
and (b) show the impinging jet schematic for Case1 and Case2, respectively. The main
difference between Case1 and Case2 is that the jet configuration in Case1 was set without
convergence area which reduced the required computational resources for the case of large
L/D ratio (e.g. 2, 4, and 6). While Case2 was used for L/D = 0.5.

(a) (b)

Figure 5.12: Impinging jet schematic; (a): Case1 and (b): Case2.

Simulation Validation for the Particle Transport and Deposition (Case1)

Three different cases were utilized to validate the current GPU particle laden flow code.
The main difference in these cases is the ratio (L/D) between the jet-to-wall distance
and the jet diameter (i.e. L/D = 2, 4, and 6). For the current simulation, to provide a
qualitative comparison with the experimental work by Burwash et al. [7] and the numerical
simulation by Alatawi [3] the following simulation settings were made: the LBM fluid
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simulation was run first for 50000 time steps before the particle injection to reach the
steady state. After time step 50000, 20 particles were injected in each jet inlet node at
each time step within 1000 time steps. In addition to the different L/D ratios, different
Stokes numbers were used in the numerical simulations to examine their effects on the
particle deposition pattern. Table 5.4 shows the simulation characteristics for different
L/D values.

Table 5.4: Impinging jet (Case1) characteristics for L/D = 2, 4, and 6.

Characteristics L/D = 2 L/D = 4 L/D = 6

Jet diameter 80 80 80
Axial dimension (coarse grid) 160 320 480

Spanwise dimension (coarse grid) 800 800 800
Re 10000 10000 10000
Stk 0.11 0.11 0.11

Inlet jet velocity 0.04 0.04 0.04
Inlet jet perturbation 1 1 1
Grid refinement level 2 2 2

Refinement height (y/D) 0.15 0.15 0.15
Grid size ∆x (coarse grid) 0.0125 0.0125 0.0125
Time step ∆t (coarse grid) 0.0005 0.0005 0.0005

Grid size ∆x (fine grid) 0.00625 0.00625 0.00625
Time step ∆t (fine grid) 0.00025 0.00025 0.00025
Inlet boundary condition Velocity BC (Section 3.8.2) Velocity BC Velocity BC

Outlet boundary condition Fully developed BC (Section 3.8.4) Fully developed BC Fully developed BC
Wall boundary condition Bounce back BC (Section 3.8.1) Bounce back BC Bounce back BC

Figure 5.13 depicts the particles trajectories for the case of L/D = 6 at different time
steps (t). The most essential advantage of this model over the previous LBM-CA models
(e.g. [64] and [99]) is the real physical time simulation that the current model can provide.
This advantage can obtain better dynamic interaction between the particles and the in-
stantaneous turbulence in the flow. To explain this advantage in more quantitative details,
Figure 5.13 will be used. The initial particle velocity in the axial direction is the same as
the fluid velocity at the jet inlet which is 0.04 (LBM dimensionless unit). In the down-
stream direction, inertia forces enable the particles to be less affected by the fluid velocity
close to the wall. Consequently, it is expected that particles reach the wall with a velocity
larger than the fluid velocity and slightly less than the particle initial velocity. For axial
distance equal to 240 nodes (i.e. D = 40 nodes and L/D = 6), the expected number of
time steps for all particles to reach the lower wall is ≥ 6000 time steps (i.e. 240/(≤ 0.04)).
As shown in Figure 5.13, the particles are deposited and leave the computational domain
at a time step slightly more than 6000.
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Figure 5.13: Particles trajectories for L/D = 6, St = 0.11, Re = 10000 and Fr = 300 at
different time steps.

Figure 5.14 depicts the particle deposition profiles for different Stokes numbers at L/D = 2.
To compare with previous works results ([7][3]), the total number of particles (Ntotal)
deposited on the wall for the case of St = 0.11 was normalized by the number of 1.7× 106

particles by multiplying the particle number at each wall node by a ratio factor α (α =

89



1.7×106

Ntotal
) . For the other cases with different Stokes numbers, the same ratio factor is used

to normalize the particles numbers.

Figure 5.14: Particle deposition pattern on the impingement wall for different Stokes num-
bers at L/D = 2, and D = 80 nodes.

As shown in Figure 5.14 (St=0.11), there are two obvious rings where the particles are
concentrated: the first ring has a diameter approximately the same as the jet diameter,
and the second one is located at distance ' 2.5D from the stagnation point. Particles
which are initially injected within the jet inlet area obtain specified inertia because they
have the inlet jet fluid velocity. In the downstream direction, the dispersion effect of the
shear layer region starts to spread particles to the region outside the projection area of
the jet. These particles obtain less ineria as a result of the drag force in the outer jet flow
region which reduces the particles velocity. Subsequently, the particles with high inertia
(i.e. within the jet projection area) can reach the wall and deposit on it producing the
small ring particle profile. In contrast, the low axial momentum particles in the exterior
area of the jet flow are carried by the radial flow close to the wall. At a distance ' 2.5D
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from the stagnation point, the fluid radial velocity is decreased and the particles axial
momentum and the gravity force dominate the particle movements which increase the
particle deposition rate making the large ring shape. As shown in Figure 5.14 with Stokes
number higher than 0.11, the particle deposition profiles retain the same trend as in case
of St = 0.11. Increasing the Stokes number decreases the drag effect and raises the effect
of gravity force on the particles, which leads to a higher deposition rate on both of the ring
regions.

Figures 5.15 and 5.16 demonstrate the particles distribution on the impingement surface
for cases L/D = 4 and L/D = 6, respectively. It can be seen from these figures that for
the same Stokes number the total number of deposited particles on the wall are decreasing
with increasing the jet to impingement surface distance. Increasing this distance provides
more space for the jet flow to be developed in the axial direction. As a consequence, the
established and deflection zones (Figure 1.1) become wider close the the wall which spreads
the particles in the fluid flow region close to the wall. The particles dispersion affects the
deposition on the wall within the small ring, making it thicker with a higher jet to wall
distance. The spreading of both the axial fluid flow and the particle distribution within
this flow increases the distance from the stagnation point where the large ring profile takes
place. It can be seen in Figures 5.14, 5.15, and 5.16 that the particle deposition patterns
within the small rings are not taken the round shape because the solid particles are not
injected in a circular shape at the jet inlet (Cartesian coordinate system is used to represent
the inlet jet nodes).
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Figure 5.15: Particle deposition pattern on the impingement wall for different Stokes num-
bers at L/D = 4, and D = 80 nodes.
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Figure 5.16: Particle deposition pattern on the impingement wall for different Stokes num-
bers at L/D = 6, and D = 80 nodes.

Simulation Validation for the Particle Transport and Deposition (Case2)

The 3D circular impinging jet used in this simulation is depicted in Figure 5.12 (b). The
impinging jet configuration in this case (Case2) was used to provide a comparison with
the experimental work by Sethi and John [86]. The jet physical diameter (D) is 1.484 mm
which was set to 40 LBM nodes, and its length (LD) is the same as the jet diameter. The
impingement surface was positioned at distance equal half the nozzle diameter from the
jet exit (i.e. L/D = 0.5). The converging zone height (H) is set to be 100 LBM nodes;
subsequently, the flow inlet diameter (Dinlet) is a function of the converging height and
angle:

Dinlet = D +
2H

tan 640
. (5.20)

Particle diameter (pd) in the experimental work was kept constant (i.e. pd = 3.0 µm), and
the Stokes number was changed by modifying the flow rate (i.e. fluid characteristic velocity)
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through the jet. In this simulation, the dimensionless inlet velocity (Uinlet) was constant,
and the simulation characteristics (e.g. Stokes number) were changed by choosing different
Reynolds number (i.e. LBM fluid viscosity νlbm) to be compatible with the experimental
work conditions.

Table 5.5 shows the Stokes number effect on some of the simulation parameters in the
physical and LBM units. The parameters CU , CL, and CT in this table are the velocity,
length, and time conversion factors between the LBM units and their equivalent physical
units. For example, each LBM time step equals to 1.61672× 10−8 seconds in the physical
time unit for the case of Stk = 2.56. Uireal and Ujreal are the dimensional fluid velocities
at the inlet and jet regions (i.e. Dinlet and D in Figure 5.12 (b)).

Table 5.5: Impinging jet simulation parameters for different Stokes numbers.

Stk 2.56 1.96 1.21 0.49 0.23

Uireal (m/s) 4.82798 3.69642 2.28197 0.924105 0.434518
Ujreal (m/s) 53.1078 40.6606 25.1017 10.1652 4.7797

Re 4926 3771 2328 945 443
νlbm 1.786× 10−4 2.333× 10−4 3.779× 10−4 9.333× 10−4 1.985× 10−3

ω 1.99786 1.9972 1.99547 1.98886 1.97646
CU(m/s) 2414 1848.21 1141 462.053 217
CL(m) 3.805× 10−5 3.805× 10−5 3.805× 10−5 3.805× 10−5 3.805× 10−5

CT (s) 1.6167× 10−8 2.1115× 10−8 3.4204× 10−8 8.44641× 10−8 1.79633× 10−8
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Figure 5.17 depicts the particle normalized velocity magnitude (normalized by the fluid
average velocity in the jet Ujet) on the impingement surface at different Stokes numbers.
The horizontal axis in this figure represents the normalized radial direction (x/D). As
was explained in Section 5.3.3, the effect of the inertia force of the high Stokes number
particles (e.g. Stk = 2.56) produces high particle velocity in a spot diameter about 0.8,
and particles with low velocity are deposited on the wall in the diameters between 0.8 and
1. The radial fluid velocity (momentum) drags particles with lower Stokes number (e.g.
Stk = 1.96 − 0.23) into the region of larger diameters and reduces the particle velocity
close to the stagnation point.

Figure 5.17: Particle deposition velocity magnitude

Figure 5.18 shows the particle deposition density on the wall with the radial distance from
the stagnation point for different Stokes numbers. As can be seen in this figure that the
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deposition diameters obtained from experiments are less than those of the simulations. For
Stokes number equal to 2.56, the experimental result shows that the deposition diameter is
1.2 mm while the jet diameter is 1.484 mm. This means that the particle locations in the
nozzle during the flow are far from the jet cylindrical surface. The experimental configu-
ration is probably the major cause of this phenomenon where the particles flow through
a long pipe before the jet. The numerical simulation is restricted by the available compu-
tational resources (e.g GPUs memory size) which reduce the ability to build a simulation
completely compatible with this real world phenomenon.

Figure 5.18: Particles deposition density for different Stokes numbers; dotted line: experi-
mental results [86]; solid lines: simulation results (this work).

Figures 5.19, 5.20, and 5.21 show some of the LBM simulation results for different Stokes
and Reynolds numbers. The sub-figures in these figures are: (a): instantaneous fluid axial
velocity; (b): instantaneous fluid radial velocity; (c) fluid axial turbulence intensity; (d):
instantaneous fluid density (pressure); (e): instantaneous fluid velocity magnitude; (f):
solid particle mean velocity magnitude. The dimensions in these figures are normalized by
the jet diameter, and the velocities are normalized by the inlet flow velocity.

Figure 5.19 is for the case of Re = 4926 and Stk = 2.56. As shown in this figure (a), the
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fluid axial velocity diminishes close to the wall. Particles with high stokes number (i.e.
Stk = 2.56) are driven by their high inertia and will not follow the flow streamlines close to
the wall. Consequently, these particles have velocity lower than the fluid velocity, and they
are deposited on the wall within a circle with diameter almost the same as jet diameter, as
shown in Figure 5.19 (f). It was seen that the axial velocity fluctuations (Figure 5.19 (c))
are very low near the wall surface, and there is no considerable effect of these fluctuations
on the particle deposition rate.

At low Reynolds and Stokes numbers (Figures 5.20), the particles are dragged by the
fluid flow due to the low stokes number. In the flow domain, the particles have almost
the same fluid velocity and they follow the flow streamlines. As shown in Figures 5.21,
increasing the Reynolds number and decreasing the Stokes number (i.e. Re = 10000 and
Stk = 0.1) affects significantly the particle transport and deposition behaviours. Flow
with high Reynolds number will generate vortices close to the wall, where these vortices
can be seen in Figures 5.21 (b). Particles in this case are lifted by the vortices and some
of them are deposited on the upper wall of the flow domain (i.e. y/D = 0.5).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Fluid-particle impinging jet flow simulation results for Stokes number Stk =
2.56 and Reynolds number Re = 4926.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Fluid-particle impinging jet flow simulation results for Stokes number Stk =
0.23 and Reynolds number Re = 443.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Fluid-particle impinging jet flow simulation results for Stokes number Stk =
0.1 and Reynolds number Re = 10000.
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Chapter 6

Lagrangian-DEM Four-way Coupling
Particle Tracking Model

Another model is proposed in this section to incorporate the feedback effect of the (La-
grangian) dispersed solid particles phase on the fluid flow (two-way coupling). A discrete
Boltzmann equation with fluid-solid particles collision term is proposed as:

fi(x+ ci∆t, t+ ∆t) = fi(x, t)−
1

τ
(fi(x, t)− f eqi (x, t))︸ ︷︷ ︸

fluid-fluid collision

− fP-collision
i

(x, t).︸ ︷︷ ︸
fluid-solid particle collision

(6.1)

The right-hand side term of Equation 6.5.1 (i.e. fP-collision
i

(x, t)) represents the bounced-
back part of the distribution function after colliding moving solid wall with direction op-
posite to the incoming distribution function fi(x, t) (Section 3.8.2). Recall that for the
regular bounce back boundary condition (Section 3.8.1), the solid wall is located at the
half link distance between the lattice nodes where the bounce back process is accomplished
within one time step. As shown in Figure 6.1, the solid particles in the flow are distributed
along the lattice links randomly and the bounce back process is accomplished in different
time steps. The bounced back part can be written as follows:

fP-collision
i

(x, t) =

∫ x+∆x

x

∫ t+∆t

t

fP-collision
i

(x′, t′)dt′dx′, (6.2)

where x′ and t′ are the spatial and temporal subgrid scales within the LMB spatial and
temporal grid scales, respectively. Obviously, the integration in Equation 6.3 is very compli-
cated and needs to be simplified. To simplify the collision term, the following assumptions
are proposed:
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• solid particles are distributed uniformly around the lattice nodes,

• the bounced back term is proportional to the solid particles volume fraction and
velocity,

• the collision process is completed in one time step.

The bounce back boundary condition with moving wall is presented in Section 2.4 and it
can be re-written in a new form to incorporate the moving solid particles effect instead of
the wall:

fi(x+ ci∆t, t+ ∆t)︸ ︷︷ ︸
net streaming

= fi(x, t)︸ ︷︷ ︸
before collision

− 1

τ
(fi(x, t)− f eqi (x, t))︸ ︷︷ ︸

fluid-fluid collision

−Φv6wiρp〈Up〉 · ci.︸ ︷︷ ︸
P-collision

(6.3)

The local solid particles volume fraction Φv can be defined for a uniform lattice with length
∆x containing np particles as follows:

Φv = np
π

6

(
dp
∆x

)3

. (6.4)

The 〈UP 〉 is the solid particle phase velocity and it is defined as the ensemble average for
all particles within the lattice volume:

〈Up〉 =

(
np∑
i=1

upi

)
/np. (6.5)
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Figure 6.1: Particle distribution in an LBM cell.

6.1 Particle Motion

The linear motion of a discrete particle p with mass mp and velocity Up can be described
by applying Newton’s second law of motion:

mp
dUp

dt
= Fdrag + Fbuo + Fg + Fcoll + Fother, (6.6)

where Fdrag, Fbuo, Fg, and Fcoll are the drag, buoyancy, gravity, and collision force, re-
spectively. The Fother represents other external forces such as Basset force, Magnus force,
Saffman force, and Brownian force. Because of the high particle to fluid density ratio,
only drag, buoyancy, gravity, and collision forces are considered in the present work. The
force Fcoll is the sum of the collision forces exerted by all particles, which are included in
a contact list (contact− list), in contact with particle p, and this force is divided in to two
main components, i.e. normal and tangential forces:

Fcoll =
contact−list∑

l=1

(Fp↔l,n + Fp↔l,t) . (6.7)

In addition to the linear motion, the rotational motion of particle p should also be consid-
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ered as a result of the tangential contact force:

Ip
dωp
dt

= Tp, (6.8)

where Ip is the particle moment of inertia, the angular velocity is ωp, and the torque Tp is
defined when the tangential contact force is present:

Tp =
contact−list∑

l=1

(Rpnpl × Fp↔l,t), (6.9)

whith Rp the radius of particle p, and npl is the normal unit vector between the colliding
particle centers (i.e particle p and l centers).

6.1.1 Contact Force Model

In this study, the spring model proposed by Cundall and Strack [17] is employed to calculate
the contact force between the colliding particles as shown in Figure 6.2 (c). The normal
force exerted on two particles in contact (e.g. pi and pj) is computed as:

Fc
pi↔pj ,n = −knηnpipj − ξnUpipj ,n, (6.10)

Upipj ,n =
[
(Upi −Upj) · npipj

]
npipj , (6.11)

npipj =
Xpi −Xpj

| Xpi −Xpj |
, (6.12)

ξn =
−2 ln e

√
mpimpj
mpi+mpj

kn

π2 + (ln e)2
, (6.13)

where kn, η, ξn, and e are the normal spring stiffness, inter-particle overlap, normal damping
coefficient, and the restitution coefficient for the normal collision, respectively. In this
study, a collision between two particles is considered if the distance (Distance) between
these particle centers is less than the particle diameter (Dp) by a specified factor (i.e.
Distance < 0.99Dp). The tangential contact force between the two particles is calculated
according to the normal force as follows:

Fc
pi↔pj ,t = −µ | Fc

pi↔pj ,n | tpipj , (6.14)
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tpipj =
Upipj ,t

| Upipj ,t |
, (6.15)

Upipj ,t = Upipj −Upipj ,n, (6.16)

where µ is the friction coefficient, and tpipj is the unit vector in the tangential direction.

6.2 Inter-Phase Momentum Transfer

According to Yang et al. [105], the fluid force (drag force) acting on a particle is:

Ff→p =
Vpβ

1− εf
(Uf −Up), (6.17)

where Vp, εf , Uf , and Up are the particle volume, fluid voidage, fluid velocity, and the
particle velocity, respectively. The correlated drag coefficient factor (β) is calculated based
on the heterogeneous particle distribution inside the fluid cell [105], and the subscript f in
Equation 6.17 refers to the fluid properties calculated at the solid particle location. The
standard drag coefficient for individual particle is:

Cd =

{
24
Rep

(
1 + 0.15Re0.687

p

)
, Rep < 1000,

0.44, Rep ≥ 1000,
(6.18)

and the particle Reynolds number (Rep) is defined as:

Rep =
εfρf | Uf −Up | dp

µf
. (6.19)

The corrected drag coefficient factor is calculated from the following formula [105]:

β =
3

4

(1− εf )ρf |Uf −Up|
dp

· Cd · ψ, (6.20)

and the correction factor (ψ) for the standard drag coefficient is obtained as:

ψ =
0.0214

4(εf − 0.7463)2 + 0.0044
− 0.5760, (0.74 6 εf 6 0.82) (6.21)

ψ =
0.0038

4(εfp − 0.7789)2 + 0.0044
− 0.5760, (0.82 6 εfp 6 97) (6.22)

ψ = 32.8295εf − 31.8295. (εf > 0.97) (6.23)
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Figure 6.2: Schematic of contact force model; (a): particle grouping in LBM lattices; (b):
two contacting particles; (c) spring model; (d): interpolation for the particle location.
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6.3 Particle Searching Algorithm

In the DEM, searching for colliding particles is very crucial process, and it is simple and
straightforward to search for all particles in the computational domain. However, for a
large number of particles in the domain, this technique will be very expensive computa-
tionally (i.e. very large computational time is needed). The neighbor list method was
first developed in the molecular dynamics simulation field to speedup the simulation [5].
The neighbor list contains a list of particles which are within a cut-off distance (Scut−off )
determined based on the required computational accuracy, as shown in Figure 6.3. The
cut-off distance should be defined carefully; choosing very small cut-off value may lead to
excluding some particles (outside Scut−off ) which are involved in collisions with particles
inside the cut-off distance. On the other hand, too large cut-off value will reduce the
computational efficiency (e.g. increases the computational time).

In this work, a new searching technique is proposed based on the LBM scheme. As shown
in Figure 6.2 (a), particles in a two-dimensional LBM computational domain are grouped
according to their center locations (e.g. Group A, B, C, and D). These particle are arranged
in a cell list (i.e. belongs to the LBM node i, j), and the searching process is consider for
particles in this list. The Grouping procedure is accomplished in a consecutive way starting
from the left to the right side of the 2D computational domain (e.g. the next cell list is
for the LBM node i + 1, j in Figure 6.2 (a)). This searching technique is very efficient
because there are no particles will be excluded from the searching algorithm, and it is very
fast compared with the all particles searching method, e.g. about 50 times faster than all
particles searching method for the fluidized bed test case (Section 6.5.1).
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Figure 6.3: Neighbor list searching method.

6.4 Simulation Procedure

In this model, solid particles motion is described in the fluid flow domain utilizing the
Lagrangian tracking approach; however, the fluid flow is defined in Eulerian nodes (i.e.
LBM nodes). Consequently, the center coordinates of the solid particles rarely coincide
with the LBM node locations during the simulation time. For that, each particle is linked
to an LBM node according to its nearest node. Subsequently, solid particles are grouped
and related to the LBM fluid nodes, e.g., Group A, B, C, and D in Figure 6.2 (a). The first
step in our simulation is setting up the initial fluid and particle configuration, and then the
simulation is carried out at each time step according to the following steps (Figure 6.4):

1. Calculate the nearest LBM node for each particle (e.g. node ip, jp in Figure 6.2 (d)),
and insert this particle in an array related to this LBM node.

2. According to the total number of particles inside the LBM lattice, find the volume
fraction of the fluid and particle phases.
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3. Find the fluid local properties (e.g, velocity and volume fraction) at the particle loca-
tion utilizing the bilinear or trilinear interpolation for the two and three dimensional
flows, respectively.

4. Calculate the fluid drag force on the particles from Equation 6.17.

5. Applying the searching algorithm to find particles which are within the contact dis-
tance (less than the particle diameter) and calculate the normal and tangential forces
(Equations 6.10-6.16).

6. Adding all the external forces exerting on the particles (e.g., drag, contact, gravity,
and buoyancy force) and update the particle velocities (linear and rotational) and
locations (Equations 6.6 and 6.8).

7. According to the solid particles velocity and volume fraction, calculate the solid phase
effect term (the right-hand side term of Equation 6.3) on the fluid flow.

8. Applying the LBM equation (Equation 6.3) after adding the particle phase effect.
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Start

Input particle and fluid initial condition

Calculate the nearest LBM node for each particle

Find the volume fraction of the fluid and particle phases

Find the fluid local properties at the particle location

Calculate the fluid drag force on the particles

Applying the searching algorithm to find the colliding particles

Adding all the external forces and update the particle velocities and locations

Calclate the particle phase effect term

Adding the particle phase effect term to the LBM equation

Updating the fluid variables t ≥ tMAX

Stop

No

Yes

Figure 6.4: Simulation steps for the LBM-DEM model.
110



6.5 Results and Discussion

Two benchmark test cases were used to validate the present simulations: a bubble raised
in a fluidized bed [101], and particle deposition in a turbulent impinging jet [86] .

6.5.1 A Single Bubble Injected in a Fluidized Bed

The simulation parameters used in this test case are summarized in Table 6.1.

Table 6.1: Simulation parameters for the fluidized bed at injection velocity ui = 0.8 m/s

Parameter Physical unit LBM unit

Bed width 0.00675 (m) 100
Bed height 0.027 (m) 400

Inlet flow width 0.00081 (m) 12
LBM cell size 6.75 ×10−5 (m) 1

Time step 3.375 ×10−6 (s) 1
Inlet velocity 0.8 (m/s) 0.04
Fluid density 1.1795 kg/m3 1

Particle density 930 kg/m3 788.46
Particle diameter 5.4 ×10−5 0.8

Coefficient of restitution 0.9 0.9
Particle number 15000 15000
Spring stiffness 7 N/m 0.0176621

Initial Condition

In this test case, 15000 solid particles were initially positioned randomly in a fluidized bed
container. The motion of the particles was generated due to the gravity and the inter-
particle forces. A final packing configuration is achieved after sufficient time of simulation.
Figure 6.5 depicts the particle configurations at different time steps starting from the
initial particle distribution time (t = 0). The time in this figure is measured based on the
dimensionless LBM time unit.

111



t=0 t=10000 t= 20000 t= 30000

t= 40000 t= 50000 t= 60000 t= 70000

Figure 6.5: Particle axial velocities and configurations at different LBM time steps.
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Starting the Flow

After reaching a suitable time step (e.g. t = 7000 in Figure 6.5), all information (e.g.
particle locations, forces, and torques) is saved in the computer memory and to be used
as an initial state. A bubble was injected at the bottom of the fluidized bed at different
injection velocities based on the same initial condition, and the injection was continued
for 0.006 seconds. The simulation results were utilized to provide a comparison with those
of Wang et al. [101]. Figure 6.6 and Figure 6.7 show particle axial and spanwise velocity
distributions in the fluidized bed at different time steps where the coordinate origin point
was chosen to be at the center of the lower wall. The growth of the spherical bubble can be
observed starting from an initially small perturbation (Figure 6.6 (a)) at the beginning of
the fluid flow. Even though the fluid flow lasts 0.006 seconds, the growth is continued after
this time causing increments in the horizontal and vertical bubble size. It can be also seen
that the shape of the bubble is developed from a spherical shape (Figure 6.6 (b)) to an
elliptical bubble (Figures 6.6 (c)-(e)). A kidney bubble detached from the bed bottom is
constructed as shown in Figures 6.6 (f)-(g). Finally, the bubble shape is vanishing as seen
in Figure 6.6 (h). These phenomena are in good qualitative agreement with the previous
simulation results of Wang et al. [101].

The effect of the particle-particle interaction can be seen in Figure 6.6 (a) where the top
surface of the particle phase exhibits maximum particle axial velocity. Particles at this
surface start to rise due to the contact force exerted from the lower particle layer where
the lower particles are driven by the injected fluid at the lower wall. Gravity force on the
solid particles is also considered in this simulation, and its effect on the particles movement
can be observed in Figure 6.7. The fluid flow drags particles far from the bubble causing
a spanwise particles movement (Figure 6.7 (b)). Consequently, the gravity force exerting
from the upper on the lower particles (beside the bubble) pushes the lower particles in to
the bubble area. The particle entrained from the both sides (right and left) of the bubble
eventually collide, and this collision forces the particles to rise and the kidney-shape bubble
to be built, as shown in Figures 6.7 (f)-(g).
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(a) t=0.0027 (b) t=0.0060 (c) t= 0.0081 (d) t= 0.0136

(e) t= 0272 (f) t= 0.0409 (g) t= 0.0545 (h) t= 0.1091

Figure 6.6: Particle axial velocity at an injection velocity ui = 0.8 m
s

at different time
steps.
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(a) t=0.0027 (b) t=0.0060 (c) t= 0.0081 (d) t= 0.0136

(e) t= 0272 (f) t= 0.0409 (g) t= 0.0545 (h) t= 0.1091

Figure 6.7: Particle spanwise velocity at an injection velocity ui = 0.8 m
s

at different time
steps.
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Bubble formation in this study was slightly different from that of the numerical simulation
of Wang et al. [101]. The disagreement between the two results can be attributed to the
different particle-particle interaction and inter-phase momentum transfer models used in
these studies. In this study, the proposed model was able to capture the multi-particle
collision mechanism and the tangential component of the contact force, while the previous
simulation utilized the time-driven hard-sphere model, which only considered the binary-
particle collision mechanism and the normal component of the contact force. Finally,
in spite of the aforementioned differences in models, the maximum bubble diameters at
different injection velocities in this study were in good agreement with those of Wang et
al. [101], as shown in Figure 6.8. The bubble diameter (i.e. volume-averaged equivalent
bubble diameter) is the diameter of a circle with area equals the area of region where the
gas voidage is higher than 0.85 [101].

Figure 6.8: Bubble diameter (m) with different injection velocity (m/s)

6.5.2 Particle Transport and Deposition in an Impinging Jet

The circular impinging jet used in this simulation is depicted in Figure 5.12 (b), where
the jet physical diameter (D) is 1.484 mm which was set to be 40 LBM units, and its
length (L) is the same as the diameter length. The impingement surface was positioned at
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distance equal half the nozzle diameter from the jet exit. The converging zone hight (H)
is set to be 100 LBM units; subsequently, the inlet diameter (Dinlet) is a function of the
converging height and angle:

Dinlet = D +
2H

tan 640
. (6.24)

The LBM fluid flow simulation was run first for 50000 LBM time steps before the particle
injection, and after this time step, 10000 particles were randomly released in the inlet
(Dinlet) area with velocity equal to the fluid inlet velocity. The particle diameter was
chosen to be constant for all simulation cases (i.e. Dp = 3.0 µm). The particles were
deposited on the impingement wall when the distances between the particle centers and
the wall were equal to the particle radius. The number of the deposited particles was
normalized by 2500 in order to make a comparison with the experimental work of Sethi
and John [86]. The simulations were carried out for a wide range of Stokes numbers, and
the square root of the Stokes number is considered as a dimensionless particle diameter.
The Stokes number was changed by modifying the flow rate (i.e. fluid velocity) through
the jet. The current simulation includes two units: the LBM unit which was adopted for
the fluid flow simulation, and the physical unit which was used for the particle transport
simulation. The LBM unit for the velocity was kept constant where the inlet velocity was
Uinlet = 0.002, and this low value of velocity at the inlet produced an average velocity in
the jet region equals to:

Ujet =
(
R2
inlet/R

2
jet

)
Uinlet = 0.022, (6.25)

where Rinlet and Rjet are the radii of the inlet and jet in LBM unit, respectively. This low
jet maximum velocity value ensures reducing the compressibility error and increasing the
stability in the lattice Boltzmann simulation [51]. The average physical fluid velocity in
the jet (Ureal) is calculated based on Stokes number (Stk) as follows:

Ureal =
StkDrealνreal

ρpD2
p

(6.26)

where νreal, ρp, and Dreal are the fluid kinematic viscosity, solid particle density, and
the physical jet diameter, respectively. The subscript real is used to define the physical
quantities in the simulation, while the subscript lbm is utilized for parameters in the
LBM unit. The non-dimensional variables (e.g. Stokes number and Reynolds number) are
invariant in both the LBM and the physical units; accordingly, the Reynolds number can
be calculated based on the physical quantities as follows:
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Re =
UrealDreal

νreal
. (6.27)

The LBM kinematic viscosity (νlbm) and the relaxation frequency (ω) were calculated based
on the Reynolds number:

νlbm =
UjetDjet

Re
, ω =

1

3νlbm + 0.5
. (6.28)

Finally, the Van Driest correction function was implemented in the near-wall region to
correct (damp) the eddy viscosity, which is calculated from Equation 3.56:

νtcorrec = νt

(
1− e

−y+
A

)
,

y+ =
yuτ
ν
,

uτ =

√
τw
ρ
,

(6.29)

where y+, uτ and τw are the non-dimensional wall distance, friction velocity and the wall
shear stress, respectively. The LBM simulation results for the particle deposition density
on the impingement surface were validated against the experimental work of Sethi and
John [86], as shown in Figure 6.9.
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Figure 6.9: Particle surface density for different Stokes numbers; dash lines: experimental
results [86]; solid lines: simulation results (this work).
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this study, the LBM-MRT was applied to simulate laminar and turbulent flows in various
test cases. The LES turbulence model was implemented in the LBM-MRT scheme and to
resolve the sub-grid eddies. The implementation of the solid-particle phase movement on
the GPUs CUDA framework and the LBM-Lagrangian particle tracking approach are the
main features of this study. The primary contributions from this work are summarized as
follows:

• A new three-dimensional LBM-MRT-CA model was developed to simulate the par-
ticle transport and deposition through laminar and turbulent flows with different
hydrodynamic characteristics (e.g. vortex shedding, impingement, and turbulent
boundary layer).

• The particle phase information was described in the LBM nodes which allows for a
massively parallel execution of this method using GPUs.

• The particle transport algorithm was based on the local (bulk) particle density and
velocity which provides more realistic results of the particle movement and deposition.

• The parallel scalability of the probabilistic particle dispersion algorithm (i.e. LBM-
CA) is compatible with the LBM one which allows this method and the computational
system (e.g. a server machine) to handle and manage a growing amount of work.
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• The representation of the particle density (i.e. number of particle) in the LBM nodes
makes this method suitable to implement the effect of the particle phase on the fluid
flow (i.e. two-way coupling).

• This model can be tuned to coincide with the LBM grid refinement technique which
can better capture the the hydrodynamic interaction in the fine grid close to the wall
surface nodes (i.e. the refined region).

• A new LBM-Lagrangian particle tracking model was developed by considering the
particles influence (two-way coupling) on fluid flows. This model represents the par-
ticle phase as a porous medium moving within the LBM nodes, and the porosity of
this medium is a function of the particle number in the LBM node control volumes.
The traditional DEM was implemented for dense particle suspension to incorpo-
rate the particle collision (four-way coupling) in the flow domain. This model (i.e.
LBM-Lagrangian) can capture the multi-particle collisions which can better describe
particle-laded turbulent (high speed) flows.

7.2 Future Work

The following future work related to the topic of this thesis is recommended:

• Extending the LBM-MRT-CA CUDA code to be run in parallel on many GPUs
on the same node (e.g. same computer), or on multiple GPUs on different compute
nodes utilizing MPI parallelization, which can allow access to multiple compute node.
The current model simulation results were shown for a single GPU implementation,
while the workstation (computer), where the simulations were run, includes two
GPUs (i.e. 2 × GeForce GTX TITAN X). The code was extended and executed on
both GPUs successfully; however, some particles were lost during the simulations.
It was noticed that the number of the missing particles was proportional to the
number of the simulation time steps. This phenomenon might be attributed to GPUs
synchronization issues and data transactions between the two GPUs.

• Particle deposition on a wall in the current (LBM-MRT-CA and LBM-Lagrangian)
models is highly related to the solutions (e.g. fluid velocity) of fluid nodes adjacent
to the wall, e.g. no more information is needed when the particles leave the fluid
nodes toward the wall. For that, it is crucial to accurately simulate turbulent flows
near the wall. In the current study, LES static Smagorinsky model with Van Driest
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damping function was used because of the simple implementation of this model in
the LBM-MRT framework, and because of the simple boundary configurations used
in this study, e.g. flat surfaces. However, for complex flow involving transition, it is
recommended to investigate more advanced turbulence models (e.g. dynamic subgrid
[79] and sigma models [78]) in the future work.
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Appendix A

Gauss-Hermite Quadrature

∫ ∞
∞

ω(x)f(x)dx ≈
q∑
i=1

wif(xi). (A.1)

The integration accuracy of Equation A.1 depends on the number q which is the number
of integration points in the values of xi. If the number of xi is chosen as the n roots of
the Hermite polynomial of order n (i.e. Hn = 0 and q = n), then any polynomial of order
N = 2n− 1 (i.e. PN(x)) can be integrated exactly as:

∫ ∞
−∞

ω(x)PN(x)dx =
n∑
i=1

wiP
N(xi), (A.2)

where the weight function Wi can be found as follows:

wi =
n!

(nHn−1(xi))
2 . (A.3)

The weights required to integrate up to fifth order polynomials (N = 5) are shown in Table
A.1. To integrate a third-order polynomial P 3(x), we need n = 2 and the polynomial
H2(x) with two abscissae points (i.e. ±1). The weights for this case are w1,2 = 1/2, and
the integration will be: ∫ ∞

−∞
ω(x)P 3(x)dx =

(
1

2
P 3(1) +

1

2
P 3(−1)

)
(A.4)
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Table A.1: Abscissae xi and weights wi for exact integration of polynomials up to fifth
order

Number of abscissae Polynomial degree Abscissae Weights

n N = 2n− 1 xi wi
1 1 0 1
2 3 ±1 1/2
3 5 0 2/3

±
√

3 1/6

The extension to multiple dimension is straightforward for any real polynomial of order N
in d-dimensional space, and the form of this polynomial can be written as:

PN(x) =
∑

N1+...+Nd≤N

aN1...Ndx
N1
1 ...xNdd , (A.5)

where aN1...Nd are real coefficients and N1, ...., Nd are integers. An example of a second-order
polynomials in two dimension vector x is:

P 2(x) = x · x = x2
1 + x2

2

The mixed coefficients (e.g. a12) are all vanished and a11 = a22 = 1.

Integration of such polynomial multiplied by multidimensional weight function ω(x) can
be represented as sum of integral with 1D weight function ω(x), as follows:∫

ω(x)PN(x)ddx =

∫
ω(x)

∑
aN1 ....Ndx

N1
1 ....xNdd ddx

=
∑

aN1....Nd

d∏
j=1

∫
ω(xj)x

Nj
j dxj, .

(A.6)

where the multidimensional weight function omega(x) =
d∏
j=1

. The 1D integrals in Equation

A.6 are decomposed utilizing Gauss-Hermite quadrature (Equation A.2) as:

∑
aN1....Nd

d∏
j=1

∫
ω(xj)x

Nj
j dxj =

∑
aN1....Nd

d∏
j=1

nj∑
i=1

wi,jx
Nj
i,j . (A.7)
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The xi,j is the j-component of the i-th abscissae. If the 1d integrals are discretized using
the same Hermite polynomial, e.g. n1 = n2 = .... = nd = n, xi,1 = xi,2 = ....xi,d = xi, and
wi,1 = wi,2 = ....wi,d = wi, the product of sums can be written in the following form:

d∏
j=1

nj∑
i=1

wi,jx
Nj
i,j =

n∑
i1=1

....

n∑
id=1

wi1 ....widx
N1
i1
....xNdid . (A.8)

New multidimensional abscissae xi = (xi1 , ...., xiD) and weights wi = (wi1 ....wiD) are defined
to obtain a multidimensional Gauss-Hermite quadrature, as follows:

∫
ω(x)PN(x)ddx =

nd∑
i=1

wiP
N(xi). (A.9)
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Appendix B

CUDA GPUs Programming

The main advantage of using the LBM is the data locality in the problem-solving opera-
tions. Many efforts have been made during the last decade in order to construct efficient
LBM implementation on GPUs. Contrary to CPUs, GPUs are designed and manufactured
for highly graphic parallel computing utilizing several Streaming Multiprocessors (SMs).
Each SM contains many of Scalar Processors (SPs), shared memory, an instruction unit,
and it may include an L1 cache in the Fermi GPUs architecture with compute capability
2.x.

B.1 Process Hierarchy

The CUDA programming model utilizes a hierarchy of process threads to scale efficiently
through GPUs with different number of processing units. The GPU functions (kernels) are
run concurrently in the GPU threads, which are the smallest processing units in GPUs.
Blocks, which are the processing units used to allocate jobs to the available SMs, contains
many threads as a group. The threads inside a block can be synchronized and commu-
nicated through the shared memory, and they are executed in the same SM. Blocks are
grouped in a grid, which is responsible for executing the GPU functions on a group of
threads. For GPUs with compute capabilities 2.0 and above, grids can be arranged in
three dimensions which makes dealing with 3D problems more organized.

A SM runs a kernel when it is assigned to a thread block. Multiple blocks can be allocated
in a single SM when there are available resources. The thread block is decomposed by SM
into thread groups of 32 (threads), which is called a warp. The SM can only operate one
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warp at a given time, but it can move to different warp when the current warp is unused.
The process of switching one warp to another one can hide from memory transaction. To
optimize a CUDA code on a GPU, the number of warps could be maximize in a SM to
increase the occupancy.

B.2 Memory Hierarchy

In GPUs programming, there are different types of memory which are organized in a
hierarchical fashion. The smaller memory size is the thread local memory, which is private
and only accessible by its thread. Shared memory is the memory assigned to each thread
block and thread in this block can only access this memory. The lifetime of the shared
memory is the same as the block lifetime. In other words, this memory is deleted once the
block finish the execution cycle. The largest memory size is the global memory, which is
accessible by all threads. The global memory also contains constant and texture memory,
and both of them are read-only .
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