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Abstract

We address access enforcement — the“\process” of determining
whether a request for access to a resourcesbysa, principal should be
granted. While access enforcement is essential to security, it must not
unduly impact performance. Consequently, we address the issue of
time- and space-efficient access enforcement, and in particular, study
a particular data structure, the Cascade Bloom filter, in this context.
The Cascade Bloom filter istazgeneralization of the well-known Bloom
filter, which is used for time- and space-efficient membership-checking
in a set, while allowingdoer,a non-zero probability of false positives. We
consider the problemis, in practice, of constructing Bloom, and Cascade
Bloom filters, with our,particular application, access enforcement, in
mind. We identify"the computational complexity of the underlying
problems, and* proposé concrete algorithms to construct instances of
the data gtructures: We have implemented our algorithms, and con-
ducted-empiricabassessments, which also we discuss in this paper. Our
code“isyavailable for public download. As such, our work is a contribu-
tion to efficient access enforcement.

1. Introduction

Acgess control, which is recognized as a fundamental component of security,
deals with whether a user may carry out an action on a resource. For
example, Alice may be allowed to read a file, but not write to it. When
a user attempts access, a process called access enforcement mediates her

"Nima Mousavi’s contributions to this work were made when he was a Ph.D. student in
the ECE department at the University of Waterloo.



attempt, and determines whether it succeeds. The basis on which access
enforcement makes it decision is an authorization policy, which enunciates
who has access to what.

The efficiency with which access enforcement is carried out is of crucial
importance to a system, with regards to balancing security and performance.
We want access enforcement to be time- and space-efficient, while allewing
only accesses that are authorized by the policy. Consequently, data struc-
tures and algorithms that underlie access enforcement are an important topic
of study in information security.

In this work, our focus is a particular data structure,callediythe Cas-
cade Bloom filter [12, 21], that has been proposed in prior work for time-
and space-efficient access enforcement. The Cascade Bloomufilter is a gen-
eralization of a Bloom filter [3]. We describe both.data structures and the
associated algorithms in more detail in Sections 3 and 4;” and provide an
introductory description here.

The Bloom filter is a data structure for checking, in constant-time,
whether an item is a member of a set. Apart from the classical time-space
trade-off, the Bloom filter introduces a thizd axis: a probability of error when
a ‘yes’ answer is returned for a membership’/check. That is, it is possible,
for example, to get high time- and ‘space-efficiency in our checks, provided
we are willing to suffer a high“prebability of error in the checks. Or, we
may suffer higher space-usage, while retaining high time-efficiency, and a
low probability of error.

The Cascade Bloom filter is designed particularly with the application in
mind: access enforcement. In’access enforcement, we always want a correct
‘yves’ or ‘no’ answer as.to whether a user is authorized. That is, we cannot
tolerate any error., The Cascade Bloom filter adapts the classical Bloom
filter in a créative way to achieve this. Specifically, we encode, as another
Bloom filteryithe set that results in erroneous checks (see Section 4).

Our contributions As we mention above, prior work [12, 21] has pro-
posed the Cascade Bloom filter for access enforcement, and presented em-
pirical.evidence for its effectiveness in practice, particularly for Role-Based
Access Control (RBAC), in distributed settings. The focus of this work is
the creation of instances of the data structure. We first carefully identify
the various inputs that are meaningful when we seek to create an instance
of a Cascade Bloom filter. We then articulate the problems that underlie
the creation of such an instance.

We study these problems, and find that creating a Cascade Bloom filter



is NP-hard in general (see Sections 3 and 4). Indeed, it remains NP-hard
even if we make assumptions about the input that may be meaningful in
practice for our application, access enforcement. While this may be seen
as a discouraging result, we observe that a corresponding decision problem
is in NP, and devise a suite of algorithms for constructing Cascade Bloom
filters based on reduction to Boolean Satisfiability, SAT [%], with the intent
of employing a corresponding constraint-solver. We have implemented our
algorithms and our code is available for public download [16]. In this paper,
we present an empirical evaluation based on our implementation. In‘our
empirical evaluation, we identify the manner in which our“performance is
impacted by various choices of inputs.

Organization The remainder of the paper is organized as follows. In
Section 2, we discuss access enforcement. In Section 37 we describe the
Bloom filter, its use for access enforcement, and consider the problem of
constructing a Bloom filter, including the computational complexity of the
underlying problems. In Section 4, we describe the Cascade Bloom filter,
and consider the problem of constructingeinstances of that data structure.
In Section 5, we discuss our implementations, and present the results of an
empirical evaluation we have conducted. We discuss related work in Section
6, and conclude with Section 7.

2 Access Enforcement

Access enforcementis the process by which we decide ‘yes’ or ‘no’ to a request
for access to a résourcefrom a user, or her agent. The decision is based on
an authorization pelicy, which enunciates who has access to what. In the
literature in.aceess control, several different syntaxes have been proposed for
expressing an-authorization policy. Two well-known examples are the access
matrix [J); and RBAC [19]. We focus on the latter in this work; however,
our contributions on the Cascade Bloom filter apply to the other syntaxes as
well, and indeed to other situations in which efficient membership checking
is needed.

In RBAC users acquire permissions via roles. In Figure 1, we show an
RBAC policy with three users, four roles and five permissions. A user creates
a session to exercise a set of permissions. In the session, the user activates
a subset of the roles to which she is authorized. In Figure 1, we show two
sessions, s, and sp, and with bold line segments, the user that created them,
and the roles that have been activated for those sessions. The session s, has



Project Software Database
Manager Engineer Admin

Team Project Code Project Database
Organization Planning Modification Review Access

Figure 1: An example RBAC policy, and sessions, s, and s,. Bold line-
segments indicate the roles that have been activated"in each session.

been created by Alice, and in that sessiomy.she has chosen to activate the
Project Manager role only. The session si’has been created by Bob in which
he has activated the role, IT Consultant.” The permissions to which those
roles are authorized are then“available for exercise to those sessions. For
example, the session s, is authorized to the permission Team Organization
only.

When the user seeks to,exercise a permission in the context of a session,
the enforcement mechanism needs to check whether there exists an active
role associated with the session that is authorized to that permission. If
such a role exists;ithe request by the user is allowed. This is exactly the
process of access enforcement in the context of RBAC. For example, if Alice,
in the context of the s, session, seeks to exercise the Team Organization
permission,-she is allowed to do so. If she seeks to exercise the Project
Planning permission in the context of the session s,, she is disallowed. Of
course, she can create a session in which she activates the Software Engineer
rolejswherein she can exercise the Project Planning permission.

From the standpoint of access enforcement, an access request for a per-
mission p in a session s can be represented by a pair (s,p). Let S and
P denote the set of active sessions, and the set of all permissions autho-
rized to any session, respectively. The set of valid requests VRQ = {(s,p) :
s is authorized to p} is a subset of S x P. Thus, the problem of access en-
forcement can be perceived as membership-checking in the set VRQ. In the



example in Figure 1, the set of sessions, S = {sq, sy}, the set of all autho-
rized permissions, P = {Team Organization, Project Review}. And the set
of valid requests, VRQ = {(s4, Team Organization) , (sp, Project Review)}.

3 Bloom Filter

A Bloom filter is a data structure proposed by Bloom [3] for applications
where the amount of memory required to store a set with any“error-free
methods is impractically large. Since it was first proposed, as” testimony to
its enduring utility, there has been considerable work on the Bloom filter;
in particular, its utility has been recognized in various centexts (see, for
example, [2, 10, 11, 17,23, 25]).

From our standpoint of access enforcement, we perceive a Bloom filter
as a space efficient data structure that is used4o represent a subset A of
elements in a universe Y. We say that the Bloom filter/represents A against
U — A; the Bloom filter supports membership=queries, that is, whether an
element of U is in A or not. A Bloom filter is an array M of m bits associated
with a set H of hash functions h : U — {0jily..., m — 1}, and is represented
by a tuple (M, H). All bits in the array are initially set to zero. To add
an element a € A into the Bloom filter, the indices h(a) for all h € H are
computed and the corresponding, bits, in the array are set to one. To query
for an element a, the indices h(a) for all h € H are computed, and if any
of the indices for a is net set to one, the element is surely not in A. If all
are one, then the elementiis reported to be in A. It is possible that some
elements not in A pass the membership query by coincidence. Such elements
are called false positives.

Figure 2 showsian example of encoding the set of valid requests, each of
which is a pair (s, p), where s is a session and p is a permission, as a Bloom
filter. We-assume that we use two hash functions, h1 and hs, each of which
maps-a,session-permission pair to one of {0,...,4}. The tables to the left
show the manner in which the two hash functions map each pair. We then
show the/Bloom filter itself — index i, for ¢ € {0,...,4}, is set if and only if
at least”one of the authorized session-permission pairs maps to ¢ for one of
the hash functions. The session-permission pair, (s,, Project Review), which
isSnot authorized, is a false positive, because the corresponding entries under
both hi and hy are set.

Access enforcement cannot tolerate errors; we are required to definitively
respond to a membership query with a correct ‘yes’ or ‘no.” A natural way
to mitigate the problem of false positives that can exist with a Bloom filter
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Figure 2: An example of encoding the set of authorized session-permission
pairs as a Bloom filter.

is to simply explicitly maintain those false positives in, for-éxample, a list.
(In Section 4, we propose the Cascade Bloom filter, which proposes a more
elegant solution.) Thus, an element is in A encoded by the:Bloom filter if
and only if (i) it tests positive with the Bloom filterygand, (ii) it is not in the
list E.

In the example in Figure 2, the only “entry in F would be
(8a, Project Review). As additional examples, when we membership-check
for (sp, Project Review), we observe that it\tests positive with the Bloom
filter, as both indices 0 (its image undetvhy), and 3 (its image under hy) are
set, and it is ¢ E. When we membershipseheck for (s;, Team Organization),
the Bloom filter does not test positive, asjits image under hg, which is 2, is
not set.

Assuming that each hash function is a random function, i.e., maps every
element of U uniformly t6 anjindex in {0,1,...,m — 1}, a formula can be
derived for the false positive rate, i.e., the probability that an element not in
A is a false positives The formula enables one to minimize the false positive
rate for a given A~and. M, by choosing the following value for the number
of uniform hash functions.

k:@ln2
n

Where &, n, and n are the size of H, M and A respectively. However, the
uniformity assumption is not always true in practice — it is often difficult
tofeven aseértain whether a particular hash function is indeed a random
functions/ Thus, we study the problem of finding an optimal Bloom filter for
a given set of elements A C U, and a set of available hash functions, H; we
do not make any assumption for the hash functions in H, other than that it
1s indeed a function the maps U to {0,...,m — 1}.

We can associate two types of costs to any Bloom filter that represents
a set A with a bit array M and hash functions in H: (1) the memory cost
of storing all the false positives in the list £, and (2) the computational cost
associated with each membership query, which corresponds to the number



of hash functions in H. Therefore, our goal is to find Bloom filters with
fewer false positives and hash functions. In the following, we define the
BF problem that is the optimization problem of finding an optimal Bloom
filter with respect to two objectives: the number of false positives, and the
number of hash functions used.

BF Specification. An optimization the BF problem is specified’.by the
following inputs.

e U/ : A finite universe of elements
o A : A subset of U
e M : An array of m bits

e H : A set of hash functions that map each. element of U to a non-
negative integer

e pri: pri € {nsp,ny} indicates which of the two optimization objec-
tives, the number of false positives orathe number of hash functions,
we prioritize over the other. Without this parameter, there can exist
two optimal solutions that are\incomparable to one another.

Assuming that we prioritize the number of false positives over the number of
hash functions, i.e., pri =n,,a solution to the optimization the BF problem
is a Bloom filter (M H) with a minimum number of false positives such
that the size of H &H is. minimum over all the solutions with the minimum
number of false pOsitives. /A decision version of BF that corresponds to the
above optimization version does not take the input pri. Instead two input
integers:

e kfp:ythisyindicates the maximum number of false positives that we
seeK in a solution

e ky,: this indicates the maximum number of hash functions that a so-
Iation can use

A decision instance is either true or false. It is true if there exists a
Bloom filter (M, H) that represents A against & — A with at most kg, false
positives and kj, hash functions (i.e., |[H| < kp).



From the decision version to the optimization version. There exists
a polynomial-time Turing reduction [7] from the optimization versions of BF
to the decision version. That is, given an oracle €2 for the decision version,
we can solve the optimization version in polynomial time. An approach is
performing a two-dimensional binary search for the number of false positives
and the number of hash functions. For example, for the case that pri =ny,,
we first fix kj, at the total number of hash functions, |H|; that is, we accept
a solution with any number of hash functions. We then perform a binary
search for the optimal number of false positives with O(log [/ < A]) invoca-
tions to 2. Once we find the optimal number of false positives,opt;,, we
search for the optimal number of hash functions with O(log|H|) invocations
to Q, while k¢, is set to opt .

3.1 Computational Complexity of the BF problem

In this section we discuss the computational complexity of the BF problem.
The formal language for the corresponding decision problem is

BF = {(U, A, M, H, k¢p, kp) : there exists,a Bloom filter (M, H) that
represents'A against U — A such that
the number of false positives is at most kyp,
and, the size of H C H is at most kj}.

The following theorept shows that an efficient algorithm for the BF prob-
lem is unlikely to exist.

Theorem 1. TheBF problem is NP-hard.

Proof. We proyeiit by showing that SET-COVER <, BF. In SET-COVER
[8], we are given as‘imput a set U, a set of subsets of U, F, and an integer k.
The question is whether there exists a collection of k subsets of ¢/ from within
F whose unionyis Y. Given an instance of SET-COVER, ¢ = (U, F, k), we
construct’an instance ¢ of BF such that 1 is true if and only if ¢ is true.

We comstruct ¢ = (U', A, M, H,kgp, kp,) as follows. The universe U’
comnsists of an element x; for each e; in U, as well as an additional element
ZTn+1, where n denotes the size of . The set A contains only the element
xpi1- That is, U = {x1,29,...,2Tn, Tnt1} and A = {z,,11}. The set of hash
functions, H, consists of a hash function h; for each subset S; in F'. The bit
array, M, consists of two bits, and each hash function maps an element to
either index zero or one. Each hash function h; is defined as below.

1 ifi#n+1ande; isin S;
hj(xi) = { 0 otherwise



We set ky, to zero, and kj, to k.

Suppose that S C F is a set cover of size k. The Bloom filter (M, H)
where H = {h; : Sj € S} represents A with no false positives because each
x; in U' — A is mapped by at least one hash function in H to index one,
which is not set in M. Conversely, assume that there exists a Bloom filter
(M, H) that represents A with no false positives and |H| < k. The bit/zero
is the only bit in M that is set to one. The fact that the numberdof false
positives is zero implies that there exists a hash function in H for each x;
in U — A that maps z; to index one. Therefore, the set S" = {S; :'h; €' H}
is a set cover of size at most k.

O

The reduction in the proof of Theorem 1 shows that.the,hardness of the
BF problem is related to minimizing the second objective,4.e., the number
of hash functions. However, the following theorem shows that optimizing
the number of false positives is also NP-hard.

Theorem 2. The BF problem is NP-hard even if ky, = |H]|.

Proof. We prove it by showing that SET<COVER <, BF. Given an instance
of SET-COVER instance, ¢ = (U, Fyk),»we construct an instance of BF,
Vv = U, A M H, ksp, ky) as follows. Let n and m denote the size of U
and F in ¢ respectively. The universe U’ consists of (n + 2)m + 1 elements
T1,22, ., T(ny2)m+1 romt which the first m elements, and the last element
are in A, i.e., A = {21,%9,. .. |Tm, T(ny2)m1}- Bit array M is an array of
m + 1 bits. The setcof hash functions, H, consists of a hash function h; for
each set S; in F whete hj is defined as below.

g+ 1 ifi<m
1+1—m ifm+1<i<2m
hj(z;) = ¢ 1 if2m+1<i<(n+2)m and ¢ is in 5j,
where k = [£=2]
0 0.W.

We set k¢, to k, and ky, to |H|. We claim that the BF instance is true if and
only if the SET-COVER instance is true.

Suppose that there exists a set cover S’ of size at most k. Then we show
that (M, H) where H = {h; : S; € S’} is a solution for . After adding all
elements of A using hash functions in H, the array M has |H|+ 1 bits set to
one: bit zero since any hash function maps z(;,42y,41 to zero, and bit j + 1
for any hash function h; in H. Let I denote the indices in M that are set to



one, i.e., I ={j+1:h; € H}U{0}. Since S’ is a set cover, any z; € U’ — A
for ¢ > 2m + 1 is mapped to one by at least one hash function in H; none
of Tom 41, Tam+2, - -+, T(ng2)m 18 false positive. Any of Zyi1, Tmi2, - -5 Tam
is false positive if and only if 4 + 1 — m € I. Therefore, the number of
false positives is at most k. Conversely, assume that (M, H) is a solution
to 1. We show that S’ = {S; : hj € H} is a set cover. Assume toward a
contradiction that there exists an element ej, that S’ does not coverd So,all
Of T(ky1)yms1s-- > T(ky2)m are false positives since any hash function‘in A
maps them to zero, which is set to one. Now, we show that the size of H
is at most k, so is the size of S’. Assume toward a contradiction that there
are at least k 4 1 hash functions in H. The array M has at least)k + 2 bits
set to one after adding all elements of A, because each hashufunction h; in
H sets two bits to one: bit zero, and bit j + 1. Eachmonzero bit of index
J # 0 in M makes x,,+;—1 to be a false positive. Therefore, the number of
false positives is at least k + 1, which contradicts the assumption that H is
a solution to . ]

Theorem 1 gives a lower bound for the hardness of BF problem, i.e., BF
€ NP-hard. However, the following theorem“establishes an upper bound for
the hardness of the BF problem is inyINP.

Theorem 3. The BF problem is_tneINP.

Proof. We prove that there exists a polynomial certificate for BF, which can
be verified in polynomial time. /A certificate for BF is a subset of size at most
kp of H. An algorithin te verify the certificate first constructs a M by adding
all elements of A asing hash functions in H. Then, it checks for each element
of U — A whetlieriit is a/false positive. The algorithm accepts the certificate
if the number-of false positives is at most ky,. The verification algorithm
runs in time' Q(|U||H|T},) where T, is the time complexity of computing each
hash function. 'We assume T}, is polynomial in |/| and |M|, and therefore
the verification algorithm is polynomial in the size of the instance. O

Theorem 3 suggests a way for mitigating the intractability of the Bloom
Filter problem — efficient reduction to CNF-SAT. We discuss this approach
in the next section.

3.2 Efficient Reduction to CNF-SAT

In this section, we discuss how the intractability of the BF problem can be
mitigated. We investigate an approach in which we reduce the BF problem

10



to CNF-SAT for which solvers exist that are efficient for large classes of in-
stances. The fact that BF is in NP implies that there exists a polynomial-
time many-one reduction from BF to CNF-SAT. We present an efficient
reduction, which is based on designing a circuit that decides BF. Our reduc-
tion to CNF-SAT involves reducing BF first to a circuit SAT problem, and
then reducing the circuit SAT to CNF-SAT.

Let n denote the size of the universe U. We encode the setdA with

n binary variables x1,Xs,...,X, in our circuit, where circuit variable'x; is
one if and only if element z; is in A. We say X = {x1,x2,.. 4X, } encodes
A. Similarly, we encode U — A with n variables y1,yo,..45yn €Y. The
set of circuit variables K = {kj,ko,...,kyn} is a binary encoding for & if

m = [logk], and Y, k2' = k.

The circuit has five inputs: X, which is the encoding of A; Y, the en-
coding of Y — A; W, an encoding of the size of M; Ky the binary encoding
of ky; and Ky, the binary encoding of kf,. The output is one if and only
if there exists a solution to the corresponding BF instance. As shown in
Figure 3, the circuit consists of five components, which we explain in the
following.

Y | Kfp
y A 4
X | Filter FA‘ False Positive Z' False |—
Array X Detector Positive
Manager out

’ D>
THsel Hsel

Hash Valid

Hash | |
sel|[Manager

Y

Y

A

Ky,

Figure 3: A circuit to decide the BF problem.

Hash Valid. A hash function in H may map an element of I to an index
greater than |M|. Hash Valid is a module that determines if a hash functions

11



is valid to be used in the Bloom filter. A Hash Valid module is shown in
Figure 4. The first input to Hash Valid is W, which is the binary encoding
of the size of the bit array M. Hash Valid uses a compare module [15, 20]
to decide whether a hash function is valid; a hash function is valid if the
maximum to which it maps an element of the universe is less than m. For
each hash function h;, we have a circuit variable h; v, that is one if and only if
h; maps every element of the universe to an integer in {0, 1, ..., m—1}. Each
variable hj a1 is an input to the AND gate whose output h;g. _determines
whether the hash function h; is selected. Hgel = {hy gel, ha ger, 4% >h|7-£|,sel} is
the output of Hash Valid, which is also an input to Filter Array and False
Positives modules. Hash Valid consists of |#| compare modules’and |H|
AND gates. Thus, the total number of gates in Hash Valid is @({#H| log | M]).

| I
compare Mhva h
W. 1,sel
1 | I
Wz h2,se|
W .
Wiog(im))
| B h
|H[,val
compare I thl,seI
| B

Figure 4: The Hash Valid module.

Filter Array.’ The first input to Filter Array is X, the encoding of A. The
se¢ond input'to the Filter Array is Hg), Hash Valid’s output. The output of
Filter Array is the set of circuit variables FA = {f},fs, ... ,f|M|} that encodes
the bits'in the array M. We have the following relation between each fi, and
input variables.

fi = \/ (xi A hj,sel) where D = {(Xhhj,sel) hj(x;) =k}
(Xi,hj,sel)eD

Filter Array has O(|U||H|) gates.

12



False Positive Detector. Three inputs to a False Positives Detector
module are Y, the encoding of 4 — A, Hg,, and FA. The output is
Z=Az,... ,Z|M|} that encodes the set of false positives. A circuit variable
zx is one if and only if element x, is a false positive. An element xj € U — A
passes a hash function hj; if either h; is not selected or the bit to which x; s
mapped by h; is set to one. An element xy, is a false positive if it is in 4 — A
and it passes every hash function. We have the following relation between
each circuit variable z; and input variables.

Zx = /\(yk A (hj,sel A f1>) where 1= hj(l'k)
j

Y
I LN B ] |
] False +ve [
— i Detector | H—
X i [Fiter [N 1 Z
Array
L B By I amw
- mm Hsel

w5 | Hash Valid

Figure/h: Filter Array, False Positives, and Hash Valid modules.

False Positive Detector consists of O(|U||H|) gates. False Positive Detector
is shown in Figure 5.

Hash Manager. Hash Manager checks whether the total number of hash
functions selected is less than kj,. Two inputs to Hash Manager are Hgg
and Ky, an binary encoding of integer kj,. The Hash Manager module con-
sists of a Max-Circuit module [15]. The output is one if the total number

13



of hash functions selected is less than the kj. Hash Manager consists of

O(|H|log |H|) gates.

False Positive Manager. False Positive Manager checks whether the
total number of false positives is less than ky, using a Max-circuit module
[15]. False Positive Manager has two inputs: Z, the output of a False Positive
Detector module; and Ky,, an binary encoding of ky,. The total number of
gates in False Positive Manager is O(|U|log(|U]).

We adopt a “textbook” reduction from CIRCUIT-SAT to CNE-SAT [5]
to generate the CNF formula that corresponds to the circuit. The total
number of the gates in the circuit that decides an instance of BF is O(n?)
where n is the size of the instance. Thus, the CNF-SAT formula is of size
O(n?). This proves that the proposed reduction toACNF-SAT is efficient.

4 Cascade Bloom Filter

In this section, we discuss the cascade Bloonnfilter, a generalization of the
Bloom filter, which is proposed by [21].\ A¥€ascade Bloom filter represents
a set A against U — A by employing, a cascade of Bloom filters. The basic
idea of cascading multiple Bloom filters. is to use the next Bloom filter to
distinguish between two sets that the previous Bloom filter failed to, i.e.,
the false positives of the previous Bloom filter and the set that the previous
Bloom filter represents.

As an example, weé returnto Figure 2 in Section 3. Rather than main-
taining a list of false positives for the Bloom filter, we maintain another
Bloom filter, which encodés, as its set, the set of false positives from the first
Bloom filter. In ourexample, the only false positive is (s,, Project Review).
Suppose wé employ ‘a third hash function hs whose range is {0,1,2}. And
supposeswe haye the following mappings, and the corresponding Bloom filter
which“encodes the singleton set that contains (s,, Project Review).

Session Permission h

3
Sa Team Organization 0 index - 0 1 2
Sa Project Review 1 nn
S Project Review 0

The only session-permission pairs for which the Bloom filter in Figure 2
returns positive are the three shown in the table above. And the only false
positive is (sq, Project Review). Therefore, the second-level Bloom filter,

14



for which we use the hash function hs, has the bit at index 1 as the only
one that is set. Thus, if we check with the first Bloom filter, and then this
second, for a pair that tests positive with the first, we learn immediately
that (sq, Project Review) is a false positive, while neither of the others is.

More generally, a cascade Bloom filter is specified with d Bloom filters
BF1,BFs,...,BF4, where Bloom filter BF represents A against Ui~ A,
and Bloom filter BF; represents F'P;_1, the false positives in the previous
level, against A;. Similar to the traditional Bloom filter, the false positives
in the last Bloom filter, F'P;, are stored in an explicit list E.in'order to
perform membership query with no error.

The idea of using multiple Bloom filters has been proposed [, 6]. The
Cascade Bloom filter is an adapted version of the Bloomier filter [5] suited
to the purpose of access checking. Prior work [21] gives'an example in which

a cascade Bloom filter with only two levels outperforms*a Bloom filter by
33% fewer false positives, while it uses the same number of hash functions
and allocates the same amount of memory to filter arrays.

Definition 1. (Cascade Bloom Filter)[21]

A cascade Bloom filter is (B, E), where B,=BF1,BFa,...,BF4 is a list of
Bloom filters and E C U is a set'of elements from a universe U . FEach
[ =1,...,d is called a level and.d is called the depth of the cascade. Each
BF; = (M;, H;) represents a set\A; € U against a set B; C U, such that
fori=2,...,d, A; is thessetyof false positives in BF;—1 and B; is equal to
A1, with Ay = A and“By = U — A. The set E is the set of false positives
i BFy. We say that'the cascade Bloom filter represents A against U — A.

The total memory size of a cascade Bloom filter is the sum of the array
size at each level,ive., >, m;. The total number of hash functions used in
a cascade Bloom filter is the sum of the number of hash functions used at
each level; i.ef, > . |H;|. Before defining the problem of finding an optimal
cascade, Bloow filter, we discuss two examples. The first example shows
how a caseade Bloom filter can reduce the number of false positives when a
traditional Bloom filter can not. It also explain why the filter BF;, which is
to distinguish between FP;,_; and A;_1, should represent F'P;,_1, not A;_1.

Example 1. Assume we want to represent A = {x1,22} against Y — A =
{x3}. The set of available hash functions is H = {h1,ha} where hy and hso
are binary hash functions. hi(x) =1 if and only if x = x1, and he(x) =0
if and only if x = xo. The element x3 is a false positive for any Bloom
filter (M, H). However, we can have zero false positive using a cascade
Bloom filter with three Bloom filters: BF1 = (M, H1), where |Mi| =0 and
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H1 = @,’ BFQ = <M2,H2>, |M2| =2 and H2 = {hl},‘ and B.Fg = <M3,H3>,
’M3| =2 and H3 = {hg}

The following example shows that the number of false positives may not
increase monotonically as the number of levels increase in the cascade Bloom
filter.

Example 2. Let U = {z1,x2,...,2n11}, A ={x1,22,...,2,} . The setiof
available hash functions is H = {h1, ha,...,hy}, where each hash, funetion
h; is defined as below.

hiwi) = { ] —1 mod 2 ow (1)

If Ming,(d) denotes the minimum number of false\positives that can be
achieved with a cascade Bloom filter of depth d; we have the following.

1 if 0 < d <2ns—1 and d is odd
Ming,(d) =4 n—k if0<d<2p—1 andd is even
0 if d $op 1

The minimum number of false positives can be achieved by choosing h; for
the Bloom filter at level 25 and“amy hash function for the Bloom filter at
level 25 — 1 for j =1,...,[d/2]. The size of the bit array at each level is 2.
Figure 6 shows Mins,(d) as dyincreases for n = 10.

Similar to the traditional Bloom filter, we define the problem of finding
an optimal cascade Bloombfilter of depth d with respect to two objectives:
the number of false positives, and total number of hash functions used. It
is a two dimensional,optimization problem, which we define formally below.

CBF Specification. An optimization Cascade Bloom Filter problem
(CBE) is(specified by the following inputs.

e U/ : A finite universe of elements

e A : A subset of U

d : A positive integer
e M : An array of m bits

e H : A set of hash functions that map each element of U to a non-
negative integer
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Minimum number of false positives
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1 2 3 4 5 6 7 8 9 10 11 12 13414 15 16, 17 18 19 20
Number of levels

Figure 6: Example 2 above, with n = 10.

e pri: pri € {nysp,ny} indicates which of the two optimization objec-
tives, the number of false positives or the number of hash functions,
we prioritize over thesether.

A solution to the optimization version of the CBF problem is a cascade
Bloom filter of depth d)withitotal memory of m that minimize the number
of false positives/and hash functions used. A decision version of the CBF
problem that ¢orresponds to the above optimization version takes all inputs
of the optimization version, but the input pri, as well as two input integers:

o kgp this indicates the maximum number of false positives that we
Seek/in & solution

e ky,: this indicate the maximum number of hash function that a solution
can use

The decision and optimization versions of Cascade Bloom Filter problem
are related closely. Given an oracle (2 for the decision version, we can solve
the optimization version using two dimensional binary search approach.

4.1 Computational Complexity of the CBF problem

The formal language for the corresponding decision version is
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CBF = {(U,A,d, M, H, kyp, kp) : there exists a cascade Bloom filter (B, E) of
depth d that represents A against U — A such
that the number of false positives is at_most kg,
the total hash functions used is at most ky,

and the total memory size is at mosty| M|}

The BF problem is a special case of the CBF problem with dy="1"=Since
the Bloom Filter Problem is NP-hard, it is unlikely that there exists an
efficient algorithm for the Cascade Bloom Filter.

Theorem 4. The CBF problem is NP-complete.

Proof. CBF is NP-hard because it generalizes the BE problem, which is
proved to be NP-hard in Theorem 1.

We show that CBF € NP. A certificate for antinstance of CBF is a list
of d Bloom filters, BF1,BFa, ..., BFg+The sige of certificate is O(d(|H| +
|M])), which is polynomial in the size of théjinstance since d = O(|M]|).

The verification algorithm firstychecks whether > . |H;| < kj, and
> mi < |M|. It then computes, the sets A; and B; for each i = 1,...,d,
and checks whether hash functions selected for each level are valid; that is,
h € H; maps each elementsvof A; U B; to an integer less than m;. Finally,
it computes the set of false positives, and checks if its size is less than ky,,.
The verification algorithm runs in time O(d|U||H|T}), where T}, is the time
complexity of computing each hash function. We assume 7T}, is polynomial
in [U| and | M| Therefore, the verification can be performed in polynomial
time. Ol

Theorem 4 establishes an upper bound for the complexity of the Cascade
Bloom Filter problem.

4.2 Efficient Reduction to CNF-SAT

In this section, we discuss how the intractability of the CBF problem can
be/mitigated. Our approach is to reduce an instance of the CBF problem to
a CNF-SAT formula and solve the SAT formula using a SAT solver. Since
CBF is in NP, there exists an efficient reduction from CBF to CNF-SAT.
We find the efficient reduction by designing an efficient circuit that decides
CBF and then adopting a “textbook” reduction from CIRCUIT-SAT to
CNF-SAT [3].
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The circuit that decides CBF is shown in Figure 7. It has five inputs:
X, which is the encoding of A; Y, an encoding of U/ — A; W, the encoding
of |[M|; Ky, the binary encoding of kj; and K, the binary encoding of k.
The output of the circuit is one if and only if there exists a solution to the
corresponding CBF instance. The circuit consists of d modules of Bloomn
filters, BF{,BFs,...,BF4, a Hash Manager module, a Memory Manager
module, and a False Positive Manager module. We explain each medulefin
the following.

Bloom filter A Bloom Filter module is similar to the one/described in the
Section 3.2, except that it does not have False Positive Manager/and Hash
Manager modules (see Figure 8). A Bloom Filter mgdule has“two inputs:
Xj, the encoding of A;; Y;, the encoding of B;, and three outputs: Z;, the
encoding of F'P;; H; 4, the encoding of the set of hash\functions selected at
level i; Wi, the binary encoding of m;. A Bléom filter module consists of
three modules: a Filter Array, a False Positives Detector, and a Hash Valid,
which are described in the Section 3.2.

Hash Manager Hash Manager( checks if the total number of hash
functions used is at most k. It ‘eonsists of a Max-circuit with in-
puts Hj gel, Hosel, - - -, Hg sel anid Kpe A" Hash Manager module consists of
O(d|H|log d|H]) gates.

Memory Manager,Memory Manager checks if the total memory size is
at most |M|. The inputs to’a Memory Manager module are the binary en-
coding of memory sizeyof each level, i.e., W1, Wy, ..., Wy, and the binary
encoding of the maximum memory size allowed, W. Memory Manager out-
puts one iffand only if the total memory size is less than |M|. A Memory
Manager module consists of a Max-circuit module [15], and therefore has
O(dlog|M| (log d + loglog |M])) gates.

False Positive Manager False Positive Manager checks if the number
of false positives is at most ky,. The inputs to a False positive Manager
module are Zq, the encoding of the false positives at level d, and Kg,, the
binary encoding of kf,. False Positive Manager outputs one if and only if
the number of false positives at most ky,. A False Positives Manager module
consists of a Max-circuit module [15], and therefore has O(|U|log |U|) gates.

The total number of gates in the circuit for CBF is O(dn?), where n is
the size of an instant of CBF. Since d = O(|M]|), the total size of the circuit,
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Figure 7: A circuit to decide the CBF problem.

and therefore the size of the corresponding CNF SAT formula is O(n?).
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Figure 8: The Bloom filter module at level i, BF;.

5 Empirical Evaluation

We have implemented our CNF SAT approach to the Cascade Bloom Filter
problem. Our code is available for public download [16]. We used Min-
iSat [1], an open source” SAT solver, to solve the SAT formula from the
reduction in Section 4:2. The/input for the empirical assessment has been
generated based ondthe/benchmark of RBAC instances in [12]. Each gener-
ated RBAC consists of.two users, 2n roles, 10n permissions. Each user is
assigned to a tole'with probability 0.5. Each permission is connected to k
random rolés where k is less than 8. There is also a role-hierarchy of depth
3, generated dccording to stanford model (see [12]). The generated RBAC
policies,are used to create CBF instances for our approach. For each RBAC
instance with 2n roles, we create a session profile by instantiating n sessions.
Each sesgion profile comprises access pairs (session id, permission) for the
permissions allowed in the sessions. In each session we choose the set of
allowed permissions as below.

— Randomly pick one of the two users, as the user for the session (call it
u)

— Randomly pick one role, r, from the roles to which wu is authorized

— Collect all the junior roles S for r (including r itself)
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— Collect all the permissions to which at least a role in S is authorized
— Output that set of permissions for that session

The sets A and U/ in the corresponding CBF instance are the set of all
access pairs (i.e., (session id, permission) ) in the session profile and _the
set of all possible access pairs respectively. Each generated CBF instance
is represented with the quantity “Problem size”, which is the number of
different sessions in the corresponding session profiles (i.e., n)=3All data
points in our graphs represent a mean across at least 10 different=inputs
generated randomly.

Our empirical evaluations were conducted on a desktop PC with an Intel
Xeon CPU E5-1650 v2 processor, that clocks between 1347 and 3900 MHz,
and has a cache of 12 MB. The system has 32 GB RAM, and runs the 64-bit
Debian 9 operating system.

Overall Observations. Our approach.sesultshin cascade Bloom filters
with significantly fewer false positives_than prior work. We observe that
a cascade Bloom filter with more levels\produces fewer false positives, and
in some cases requires fewer hash functions to achieve the same number of
false positives. Furthermore, our implementation can be adapted to trade
off between efficiency (CPU time) and the quality of the solution, i.e., the
number of false positives and hash functions used in a solution.
We present our specific observations in the following sections.

5.1 Comparison with'a prior approach

We were given{aceess to the implementation of the prior work [21]. We first
compared the performance of two approaches in optimizing the number of
false positives‘fwhen there is no constraint for the number of hash functions
used. AFigure,9 shows the result of that comparison. We observe that our
approachuis resilient to the size of the problem, and is always able to find a
cascade Bloom filter with a small number of false positives as the problem
sizelincreases.
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Figure 9: Number of false positivesrof our approach, labelled “CNF SAT),”
and a prior approach.

To compare th ormance of the two approaches in minimizing the
number of has we set a constraint for the number of false pos-
itives to be ore than half of the maximum number of false positives,
ie., U — U is the universe and A is the set to be represented
by the cascade Bloom filter. However, We were not be able to compare two
approache ause the prior work fails for most instances. Figure 10 shows
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Figure 10: Success rate of our appreach, labelled “CNF SAT,” and a prior
approach.

5.2 Efficiency of our approach

We observe that the prior work always returns in few seconds, while it takes
more timefor our approach to find the optimal solution. However, our
empiricalresults in the previous section show that the prior approach does
not find an“optimal solution, and it is not even complete; it may not return
a solutionyfor hard instances.

Figure11 shows the CPU time for our approach to find a cascade Bloom
filterswith minimum number of false positives as the problem size increases.
Figure 12 shows the CPU time for our approach to find a cascade Bloom
filter with minimum number of hash functions. We observe that it takes
few minutes for our approach to find the optimal cascade Bloom filter for
large problem size. We are able to trade off between the CPU time and
the quality of solution, i.e., the number of false positives and the number
of hash functions, by introducing a time limit for each invocation to the
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Sat solver, MiniSat, in our binary search for finding the optimal solution.
If MiniSat does not return an answer within the time limit, the approach
would deem that the instance provided to MiniSat is unsatisfiable. Indeed,
the time limit affects the quality of the solution as there might be the cas

that the instance deemed unsatisfiable is just a hard satisfiable instance for
MiniSat. Figure 13 shows how the time limit affects the number o c‘@ g
positives in the solution that our approach returns.
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Figure'11: time (average of 100 runs) for the minimum number of false
positives ifferent problem sizes, with 95% confidence intervals.
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Figure 13: Achievable false positives for different number of levels, d, given
a time-limit.

5.3 Effect of levels on'the performance of the cascade Bloom
filter

Figure 14 shows how'the number of false positives changes as the number of
levels increases. We observe that the number of false positives may increase
first, but eventually decrease as the number of level increases. It is dis-
cussed in Example 2 and Figure 6. Figure 15 shows how the number of false
positiveschanges for different problem sizes. We observe that regarding the
numberof false positives, cascade Bloom filter is more resilient to an increase
in the problem size than the traditional Bloom filter. Figure 16 shows how
the number of hash functions required to achieve a k false positives decrease
as k increases. We observe that for large value of k, a cascade Bloom filter
with fewer levels uses fewer hash functions. However, for smaller value of k,
a cascade Bloom filter with more levels uses fewer hash functions.
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6 Related/"Weork

Our work pertains to-efficient access enforcement, using a generalization of
the Bloom filter. The Bloom filter was originally proposed by Bloom [3].
Since that)work; there has been considerable work on the Bloom filter. A
comprehénsive discussion is well beyond the scope of this work; however,
we point, out, broadly, that more recent work on the Bloom filter can be
eategorized into two: variants of, or extensions to, the Bloom filter (see, for
example, [0, 6, 14, 18, 241]), and new domains in which the Bloom filter or
a_variant has found applicability (see, for example, [2, 10, 11, 17, 23, 25]).
None of such pieces of work are directly relevant to our work.

To our knowledge, the Cascade Bloom filter was first proposed by
Tripunitara and Carbunar [21]. That work considers the application that
we consider as well, access enforcement for RBAC policies. However, while
that work proposes an algorithm for constructing Cascade Bloom filters,

30



it acknowledges that the algorithm there is not complete — the algorithm
may fail even though a Cascade Bloom filter that corresponds to the inputs
exists. That work also leaves the underlying questions regarding compu-
tational complexity, which are intimately tied to problem of devising an
algorithm, unanswered.

From the standpoint of efficient access enforcement, there are indéed a
few pieces of prior work. CPOL [4] is an approach to access enforcement
in distributed settings. CPOL employs caching and a structure.called an
AccessToken, that is application-specific, to speed-up access- €nforcement.
The work on CPOL points out also that simply using databaseyquerying
does not suffice for fast access enforcement. Our work is related also to those
of Wei et al. [22], Komlenovic et al. [12], and Liu et al./[13], that“address the
access enforcement problem in RBAC. Wei et al. [22)¢qpropose an architecture
for distributed enforcement. In that context, they propose authorization
recycling as an approach to speed up enforcement, Komlenovic et al. [12]
empirically study various prior approaches, including the Cascade Bloom
filter, from the standpoint of efficient access_enforcement. Liu et al. [13]
propose a technique that they call tramsformations for access checking in
RBAC. All these pieces of work are comiplementary to ours, and do not
address the issues we address.

7 Conclusions

We have addressed the construction of the Cascade Bloom filter, which prior
work touts as effective foryefficient access enforcement. We have identified
the computational compléxity of the underlying problems, and proposed
concrete algorithms, which leverage off-the-shelf SAT solvers. We have im-
plementedOur)algorithms, and carried out an empirical assessment. Our
work suggests. that instances of these data structures can indeed be con-
structéd practically, and access enforcement based on them can perform
well.

Access enforcement remains an interesting topic for further research, as
do further investigations into the Cascade Bloom filter. New authorization
schemes continue to be proposed, and it is worthwhile to ask how efficiently
access enforcement can happen for those schemes. Indeed, our work consid-
ers RBAC only. Particularly in the context of distributed access enforce-
ment, it may be meaningful to investigate whether a Cascade Bloom filter
can be fragmented, so each piece can be employed at a different location
for access enforcement. Of interest also is asking what parameters in the
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construction of a Cascade Bloom filter actually need to be assumed to be
unbounded. Also, it is interesting to investigate whether applications other
than access enforcement can benefit from the Cascade Bloom filter.
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