
Accepted Manuscript

Constructing Cascade Bloom Filters for Efficient Access Enforcement

Nima Mousavi, Mahesh Tripunitara

PII: S0167-4048(18)31127-1
DOI: https://doi.org/10.1016/j.cose.2018.09.015
Reference: COSE 1414

To appear in: Computers & Security

Received date: 9 October 2017
Revised date: 2 August 2018
Accepted date: 5 September 2018

Please cite this article as: Nima Mousavi, Mahesh Tripunitara, Constructing Cascade
Bloom Filters for Efficient Access Enforcement, Computers & Security (2018), doi:
https://doi.org/10.1016/j.cose.2018.09.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.cose.2018.09.015 © 2019. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.cose.2018.09.015
https://doi.org/10.1016/j.cose.2018.09.015
https://dx.doi.org/10.1016/j.cose.2018.09.015
https://creativecommons.org/licenses/by-nc-nd/4.0/

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Constructing Cascade Bloom Filters for Efficient

Access Enforcement

Nima Mousavi∗† Mahesh Tripunitara‡
∗Google, Kitchener, Canada

‡ECE, University of Waterloo, Waterloo, Canada
nima.mousavi@gmail.com tripunit@uwaterloo.ca

Abstract

We address access enforcement — the process of determining
whether a request for access to a resource by a principal should be
granted. While access enforcement is essential to security, it must not
unduly impact performance. Consequently, we address the issue of
time- and space-efficient access enforcement, and in particular, study
a particular data structure, the Cascade Bloom filter, in this context.
The Cascade Bloom filter is a generalization of the well-known Bloom
filter, which is used for time- and space-efficient membership-checking
in a set, while allowing for a non-zero probability of false positives. We
consider the problems, in practice, of constructing Bloom, and Cascade
Bloom filters, with our particular application, access enforcement, in
mind. We identify the computational complexity of the underlying
problems, and propose concrete algorithms to construct instances of
the data structures. We have implemented our algorithms, and con-
ducted empirical assessments, which also we discuss in this paper. Our
code is available for public download. As such, our work is a contribu-
tion to efficient access enforcement.

1 Introduction

Access control, which is recognized as a fundamental component of security,
deals with whether a user may carry out an action on a resource. For
example, Alice may be allowed to read a file, but not write to it. When
a user attempts access, a process called access enforcement mediates her

†Nima Mousavi’s contributions to this work were made when he was a Ph.D. student in
the ECE department at the University of Waterloo.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

attempt, and determines whether it succeeds. The basis on which access
enforcement makes it decision is an authorization policy, which enunciates
who has access to what.

The efficiency with which access enforcement is carried out is of crucial
importance to a system, with regards to balancing security and performance.
We want access enforcement to be time- and space-efficient, while allowing
only accesses that are authorized by the policy. Consequently, data struc-
tures and algorithms that underlie access enforcement are an important topic
of study in information security.

In this work, our focus is a particular data structure, called the Cas-
cade Bloom filter [12, 21], that has been proposed in prior work for time-
and space-efficient access enforcement. The Cascade Bloom filter is a gen-
eralization of a Bloom filter [3]. We describe both data structures and the
associated algorithms in more detail in Sections 3 and 4, and provide an
introductory description here.

The Bloom filter is a data structure for checking, in constant-time,
whether an item is a member of a set. Apart from the classical time-space
trade-off, the Bloom filter introduces a third axis: a probability of error when
a ‘yes’ answer is returned for a membership check. That is, it is possible,
for example, to get high time- and space-efficiency in our checks, provided
we are willing to suffer a high probability of error in the checks. Or, we
may suffer higher space-usage, while retaining high time-efficiency, and a
low probability of error.

The Cascade Bloom filter is designed particularly with the application in
mind: access enforcement. In access enforcement, we always want a correct
‘yes’ or ‘no’ answer as to whether a user is authorized. That is, we cannot
tolerate any error. The Cascade Bloom filter adapts the classical Bloom
filter in a creative way to achieve this. Specifically, we encode, as another
Bloom filter, the set that results in erroneous checks (see Section 4).

Our contributions As we mention above, prior work [12, 21] has pro-
posed the Cascade Bloom filter for access enforcement, and presented em-
pirical evidence for its effectiveness in practice, particularly for Role-Based
Access Control (RBAC), in distributed settings. The focus of this work is
the creation of instances of the data structure. We first carefully identify
the various inputs that are meaningful when we seek to create an instance
of a Cascade Bloom filter. We then articulate the problems that underlie
the creation of such an instance.

We study these problems, and find that creating a Cascade Bloom filter

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is NP-hard in general (see Sections 3 and 4). Indeed, it remains NP-hard
even if we make assumptions about the input that may be meaningful in
practice for our application, access enforcement. While this may be seen
as a discouraging result, we observe that a corresponding decision problem
is in NP, and devise a suite of algorithms for constructing Cascade Bloom
filters based on reduction to Boolean Satisfiability, SAT [8], with the intent
of employing a corresponding constraint-solver. We have implemented our
algorithms and our code is available for public download [16]. In this paper,
we present an empirical evaluation based on our implementation. In our
empirical evaluation, we identify the manner in which our performance is
impacted by various choices of inputs.

Organization The remainder of the paper is organized as follows. In
Section 2, we discuss access enforcement. In Section 3, we describe the
Bloom filter, its use for access enforcement, and consider the problem of
constructing a Bloom filter, including the computational complexity of the
underlying problems. In Section 4, we describe the Cascade Bloom filter,
and consider the problem of constructing instances of that data structure.
In Section 5, we discuss our implementations, and present the results of an
empirical evaluation we have conducted. We discuss related work in Section
6, and conclude with Section 7.

2 Access Enforcement

Access enforcement is the process by which we decide ‘yes’ or ‘no’ to a request
for access to a resource from a user, or her agent. The decision is based on
an authorization policy, which enunciates who has access to what. In the
literature in access control, several different syntaxes have been proposed for
expressing an authorization policy. Two well-known examples are the access
matrix [9], and RBAC [19]. We focus on the latter in this work; however,
our contributions on the Cascade Bloom filter apply to the other syntaxes as
well, and indeed to other situations in which efficient membership checking
is needed.

In RBAC users acquire permissions via roles. In Figure 1, we show an
RBAC policy with three users, four roles and five permissions. A user creates
a session to exercise a set of permissions. In the session, the user activates
a subset of the roles to which she is authorized. In Figure 1, we show two
sessions, sa and sb, and with bold line segments, the user that created them,
and the roles that have been activated for those sessions. The session sa has

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: An example RBAC policy, and sessions, sa and sb. Bold line-
segments indicate the roles that have been activated in each session.

been created by Alice, and in that session, she has chosen to activate the
Project Manager role only. The session sb has been created by Bob in which
he has activated the role, IT Consultant. The permissions to which those
roles are authorized are then available for exercise to those sessions. For
example, the session sa is authorized to the permission Team Organization
only.

When the user seeks to exercise a permission in the context of a session,
the enforcement mechanism needs to check whether there exists an active
role associated with the session that is authorized to that permission. If
such a role exists, the request by the user is allowed. This is exactly the
process of access enforcement in the context of RBAC. For example, if Alice,
in the context of the sa session, seeks to exercise the Team Organization
permission, she is allowed to do so. If she seeks to exercise the Project
Planning permission in the context of the session sa, she is disallowed. Of
course, she can create a session in which she activates the Software Engineer
role, wherein she can exercise the Project Planning permission.

From the standpoint of access enforcement, an access request for a per-
mission p in a session s can be represented by a pair 〈s, p〉. Let S and
P denote the set of active sessions, and the set of all permissions autho-
rized to any session, respectively. The set of valid requests V RQ = {〈s, p〉 :
s is authorized to p} is a subset of S × P . Thus, the problem of access en-
forcement can be perceived as membership-checking in the set V RQ. In the

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

example in Figure 1, the set of sessions, S = {sa, sb}, the set of all autho-
rized permissions, P = {Team Organization,Project Review}. And the set
of valid requests, V RQ = {〈sa,Team Organization〉 , 〈sb,Project Review〉}.

3 Bloom Filter

A Bloom filter is a data structure proposed by Bloom [3] for applications
where the amount of memory required to store a set with any error-free
methods is impractically large. Since it was first proposed, as testimony to
its enduring utility, there has been considerable work on the Bloom filter;
in particular, its utility has been recognized in various contexts (see, for
example, [2, 10, 11, 17, 23, 25]).

From our standpoint of access enforcement, we perceive a Bloom filter
as a space efficient data structure that is used to represent a subset A of
elements in a universe U . We say that the Bloom filter represents A against
U − A; the Bloom filter supports membership queries, that is, whether an
element of U is in A or not. A Bloom filter is an array M of m bits associated
with a set H of hash functions h : U → {0, 1, . . . ,m− 1}, and is represented
by a tuple 〈M,H〉. All bits in the array are initially set to zero. To add
an element a ∈ A into the Bloom filter, the indices h(a) for all h ∈ H are
computed and the corresponding bits in the array are set to one. To query
for an element a, the indices h(a) for all h ∈ H are computed, and if any
of the indices for a is not set to one, the element is surely not in A. If all
are one, then the element is reported to be in A. It is possible that some
elements not in A pass the membership query by coincidence. Such elements
are called false positives.

Figure 2 shows an example of encoding the set of valid requests, each of
which is a pair 〈s, p〉, where s is a session and p is a permission, as a Bloom
filter. We assume that we use two hash functions, h1 and h2, each of which
maps a session-permission pair to one of {0, . . . , 4}. The tables to the left
show the manner in which the two hash functions map each pair. We then
show the Bloom filter itself — index i, for i ∈ {0, . . . , 4}, is set if and only if
at least one of the authorized session-permission pairs maps to i for one of
the hash functions. The session-permission pair, 〈sa,Project Review〉, which
is not authorized, is a false positive, because the corresponding entries under
both h1 and h2 are set.

Access enforcement cannot tolerate errors; we are required to definitively
respond to a membership query with a correct ‘yes’ or ‘no.’ A natural way
to mitigate the problem of false positives that can exist with a Bloom filter

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Session Permission h1 h2
sa Team Organization 3 1
sa Project Review 3 3
sb Team Organization 0 2
sb Project Review 0 3

index → 0 1 2 3 4
1 1 0 1 0

Figure 2: An example of encoding the set of authorized session-permission
pairs as a Bloom filter.

is to simply explicitly maintain those false positives in, for example, a list.
(In Section 4, we propose the Cascade Bloom filter, which proposes a more
elegant solution.) Thus, an element is in A encoded by the Bloom filter if
and only if (i) it tests positive with the Bloom filter, and, (ii) it is not in the
list E.

In the example in Figure 2, the only entry in E would be
〈sa,Project Review〉. As additional examples, when we membership-check
for 〈sb,Project Review〉, we observe that it tests positive with the Bloom
filter, as both indices 0 (its image under h1), and 3 (its image under h2) are
set, and it is 6∈ E. When we membership-check for 〈sb,Team Organization〉,
the Bloom filter does not test positive, as its image under h2, which is 2, is
not set.

Assuming that each hash function is a random function, i.e., maps every
element of U uniformly to an index in {0, 1, . . . ,m − 1}, a formula can be
derived for the false positive rate, i.e., the probability that an element not in
A is a false positive. The formula enables one to minimize the false positive
rate for a given A and M , by choosing the following value for the number
of uniform hash functions.

k =
m

n
ln 2

Where, k, m, and n are the size of H, M and A respectively. However, the
uniformity assumption is not always true in practice — it is often difficult
to even ascertain whether a particular hash function is indeed a random
function. Thus, we study the problem of finding an optimal Bloom filter for
a given set of elements A ⊆ U , and a set of available hash functions, H; we
do not make any assumption for the hash functions in H, other than that it
is indeed a function the maps U to {0, . . . ,m− 1}.

We can associate two types of costs to any Bloom filter that represents
a set A with a bit array M and hash functions in H: (1) the memory cost
of storing all the false positives in the list E, and (2) the computational cost
associated with each membership query, which corresponds to the number

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of hash functions in H. Therefore, our goal is to find Bloom filters with
fewer false positives and hash functions. In the following, we define the
BF problem that is the optimization problem of finding an optimal Bloom
filter with respect to two objectives: the number of false positives, and the
number of hash functions used.

BF Specification. An optimization the BF problem is specified by the
following inputs.

• U : A finite universe of elements

• A : A subset of U

• M : An array of m bits

• H : A set of hash functions that map each element of U to a non-
negative integer

• pri : pri ∈ {nfp, nh} indicates which of the two optimization objec-
tives, the number of false positives or the number of hash functions,
we prioritize over the other. Without this parameter, there can exist
two optimal solutions that are incomparable to one another.

Assuming that we prioritize the number of false positives over the number of
hash functions, i.e., pri = nfp, a solution to the optimization the BF problem
is a Bloom filter 〈M,H〉 with a minimum number of false positives such
that the size of H ⊆ H is minimum over all the solutions with the minimum
number of false positives. A decision version of BF that corresponds to the
above optimization version does not take the input pri. Instead two input
integers:

• kfp: this indicates the maximum number of false positives that we
seek in a solution

• kh: this indicates the maximum number of hash functions that a so-
lution can use

A decision instance is either true or false. It is true if there exists a
Bloom filter 〈M,H〉 that represents A against U −A with at most kfp false
positives and kh hash functions (i.e., |H| ≤ kh).

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

From the decision version to the optimization version. There exists
a polynomial-time Turing reduction [7] from the optimization versions of BF
to the decision version. That is, given an oracle Ω for the decision version,
we can solve the optimization version in polynomial time. An approach is
performing a two-dimensional binary search for the number of false positives
and the number of hash functions. For example, for the case that pri = nfp,
we first fix kh at the total number of hash functions, |H|; that is, we accept
a solution with any number of hash functions. We then perform a binary
search for the optimal number of false positives with O(log |U −A|) invoca-
tions to Ω. Once we find the optimal number of false positives, optfp, we
search for the optimal number of hash functions with O(log |H|) invocations
to Ω, while kfp is set to optfp.

3.1 Computational Complexity of the BF problem

In this section we discuss the computational complexity of the BF problem.
The formal language for the corresponding decision problem is

BF = {〈U , A,M,H, kfp, kh〉 : there exists a Bloom filter 〈M,H〉 that

represents A against U −A such that

the number of false positives is at most kfp,

and the size of H ⊆ H is at most kh}.
The following theorem shows that an efficient algorithm for the BF prob-

lem is unlikely to exist.

Theorem 1. The BF problem is NP-hard.

Proof. We prove it by showing that SET-COVER ≤p BF. In SET-COVER
[8], we are given as input a set U , a set of subsets of U , F , and an integer k.
The question is whether there exists a collection of k subsets of U from within
F whose union is U . Given an instance of SET-COVER, φ = 〈U ,F , k〉, we
construct an instance ψ of BF such that ψ is true if and only if φ is true.

We construct ψ = 〈U ′, A,M,H, kfp, kh〉 as follows. The universe U ′
consists of an element xi for each ei in U , as well as an additional element
xn+1, where n denotes the size of U . The set A contains only the element
xn+1. That is, U ′ = {x1, x2, . . . , xn, xn+1} and A = {xn+1}. The set of hash
functions, H, consists of a hash function hj for each subset Sj in F . The bit
array, M , consists of two bits, and each hash function maps an element to
either index zero or one. Each hash function hj is defined as below.

hj(xi) =

{
1 if i 6= n+ 1 and ei is in Sj
0 otherwise

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

We set kfp to zero, and kh to k.
Suppose that S′ ⊆ F is a set cover of size k. The Bloom filter 〈M,H〉

where H = {hj : Sj ∈ S′} represents A with no false positives because each
xi in U ′ − A is mapped by at least one hash function in H to index one,
which is not set in M . Conversely, assume that there exists a Bloom filter
〈M,H〉 that represents A with no false positives and |H| ≤ k. The bit zero
is the only bit in M that is set to one. The fact that the number of false
positives is zero implies that there exists a hash function in H for each xi
in U − A that maps xi to index one. Therefore, the set S′ = {Sj : hj ∈ H}
is a set cover of size at most k.

The reduction in the proof of Theorem 1 shows that the hardness of the
BF problem is related to minimizing the second objective, i.e., the number
of hash functions. However, the following theorem shows that optimizing
the number of false positives is also NP-hard.

Theorem 2. The BF problem is NP-hard even if kh = |H|.

Proof. We prove it by showing that SET-COVER ≤p BF. Given an instance
of SET-COVER instance, φ = 〈U ,F , k〉, we construct an instance of BF,
ψ = 〈U ′, A,M,H, kfp, kh〉 as follows. Let n and m denote the size of U
and F in φ respectively. The universe U ′ consists of (n+ 2)m+ 1 elements
x1, x2, . . . , x(n+2)m+1 from which the first m elements, and the last element
are in A, i.e., A = {x1, x2, . . . , xm, x(n+2)m+1}. Bit array M is an array of
m+ 1 bits. The set of hash functions, H, consists of a hash function hj for
each set Sj in F , where hj is defined as below.

hj(xi) =





j + 1 if i ≤ m
i+ 1−m if m+ 1 ≤ i ≤ 2m
1 if 2m+ 1 ≤ i ≤ (n+ 2)m and ek is in Sj ,

where k = d i−2mm e
0 o.w.

We set kfp to k, and kh to |H|. We claim that the BF instance is true if and
only if the SET-COVER instance is true.

Suppose that there exists a set cover S′ of size at most k. Then we show
that 〈M,H〉 where H = {hj : Sj ∈ S′} is a solution for ψ. After adding all
elements of A using hash functions in H, the array M has |H|+1 bits set to
one: bit zero since any hash function maps x(n+2)m+1 to zero, and bit j + 1
for any hash function hj in H. Let I denote the indices in M that are set to

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

one, i.e., I = {j+ 1 : hj ∈ H}∪ {0}. Since S′ is a set cover, any xi ∈ U ′−A
for i ≥ 2m + 1 is mapped to one by at least one hash function in H; none
of x2m+1, x2m+2, . . . , x(n+2)m is false positive. Any of xm+1, xm+2, . . . , x2m
is false positive if and only if i + 1 − m ∈ I. Therefore, the number of
false positives is at most k. Conversely, assume that 〈M,H〉 is a solution
to ψ. We show that S′ = {Sj : hj ∈ H} is a set cover. Assume toward a
contradiction that there exists an element ek that S′ does not cover. So, all
of x(k+1)m+1, . . . , x(k+2)m are false positives since any hash function in H
maps them to zero, which is set to one. Now, we show that the size of H
is at most k, so is the size of S′. Assume toward a contradiction that there
are at least k + 1 hash functions in H. The array M has at least k + 2 bits
set to one after adding all elements of A, because each hash function hj in
H sets two bits to one: bit zero, and bit j + 1. Each nonzero bit of index
j 6= 0 in M makes xm+j−1 to be a false positive. Therefore, the number of
false positives is at least k + 1, which contradicts the assumption that H is
a solution to ψ.

Theorem 1 gives a lower bound for the hardness of BF problem, i.e., BF
∈ NP-hard. However, the following theorem establishes an upper bound for
the hardness of the BF problem is in NP.

Theorem 3. The BF problem is in NP.

Proof. We prove that there exists a polynomial certificate for BF, which can
be verified in polynomial time. A certificate for BF is a subset of size at most
kh ofH. An algorithm to verify the certificate first constructs a M by adding
all elements of A using hash functions in H. Then, it checks for each element
of U −A whether it is a false positive. The algorithm accepts the certificate
if the number of false positives is at most kfp. The verification algorithm
runs in time O(|U||H|Th) where Th is the time complexity of computing each
hash function. We assume Th is polynomial in |U| and |M |, and therefore
the verification algorithm is polynomial in the size of the instance.

Theorem 3 suggests a way for mitigating the intractability of the Bloom
Filter problem — efficient reduction to CNF-SAT. We discuss this approach
in the next section.

3.2 Efficient Reduction to CNF-SAT

In this section, we discuss how the intractability of the BF problem can be
mitigated. We investigate an approach in which we reduce the BF problem

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to CNF-SAT for which solvers exist that are efficient for large classes of in-
stances. The fact that BF is in NP implies that there exists a polynomial-
time many-one reduction from BF to CNF-SAT. We present an efficient
reduction, which is based on designing a circuit that decides BF. Our reduc-
tion to CNF-SAT involves reducing BF first to a circuit SAT problem, and
then reducing the circuit SAT to CNF-SAT.

Let n denote the size of the universe U . We encode the set A with
n binary variables x1, x2, . . . , xn in our circuit, where circuit variable xi is
one if and only if element xi is in A. We say X = {x1, x2, . . . , xn} encodes
A. Similarly, we encode U − A with n variables y1, y2, . . . , yn ∈ Y. The
set of circuit variables K = {k1, k2, . . . , km} is a binary encoding for k if
m = dlog ke, and

∑
i ki2

i = k.
The circuit has five inputs: X, which is the encoding of A; Y, the en-

coding of U −A; W, an encoding of the size of M ; Kh, the binary encoding
of kh; and Kfp, the binary encoding of kfp. The output is one if and only
if there exists a solution to the corresponding BF instance. As shown in
Figure 3, the circuit consists of five components, which we explain in the
following.

X

Y

Z

W

FAFilter
Array

False Positive
 Detector

Hash Valid

False
Positive
Manager

Hash
Manager

Kfp

Kh

out

Hsel Hsel

Hsel

Figure 3: A circuit to decide the BF problem.

Hash Valid. A hash function in H may map an element of U to an index
greater than |M |. Hash Valid is a module that determines if a hash functions

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is valid to be used in the Bloom filter. A Hash Valid module is shown in
Figure 4. The first input to Hash Valid is W, which is the binary encoding
of the size of the bit array M . Hash Valid uses a compare module [15, 20]
to decide whether a hash function is valid; a hash function is valid if the
maximum to which it maps an element of the universe is less than m. For
each hash function hj , we have a circuit variable hj,val that is one if and only if
hj maps every element of the universe to an integer in {0, 1, . . . ,m−1}. Each
variable hj,val is an input to the AND gate whose output hj,sel determines
whether the hash function hj is selected. Hsel = {h1,sel, h2,sel, . . . ,h|H|,sel} is
the output of Hash Valid, which is also an input to Filter Array and False
Positives modules. Hash Valid consists of |H| compare modules and |H|
AND gates. Thus, the total number of gates in Hash Valid is O(|H| log |M |).

W

h1,sel

h1,val

h|H|,val h|H|,sel

h2,sel

w1

w2

wlog(|M|)

compare

compare

Figure 4: The Hash Valid module.

Filter Array. The first input to Filter Array is X, the encoding of A. The
second input to the Filter Array is Hsel, Hash Valid’s output. The output of
Filter Array is the set of circuit variables FA = {f1, f2, . . . , f|M|} that encodes
the bits in the array M . We have the following relation between each fk and
input variables.

fk =
∨

(xi,hj,sel)∈D
(xi ∧ hj,sel) where D = {(xi, hj,sel) : hj(xi) = k}

Filter Array has O(|U||H|) gates.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

False Positive Detector. Three inputs to a False Positives Detector
module are Y, the encoding of U − A, Hsel, and FA. The output is
Z = {z1, . . . , z|U|} that encodes the set of false positives. A circuit variable
zk is one if and only if element xk is a false positive. An element xk ∈ U −A
passes a hash function hj if either hj is not selected or the bit to which xk is
mapped by hj is set to one. An element xk is a false positive if it is in U −A
and it passes every hash function. We have the following relation between
each circuit variable zk and input variables.

zk =
∧

j

(yk ∧ (hj,sel ∧ fl)) where l = hj(xk)

Hash Valid

Filter
Array

False +ve
Detector

X

Y

Z

W

FA

Hsel

Figure 5: Filter Array, False Positives, and Hash Valid modules.

False Positive Detector consists of O(|U||H|) gates. False Positive Detector
is shown in Figure 5.

Hash Manager. Hash Manager checks whether the total number of hash
functions selected is less than kh. Two inputs to Hash Manager are Hsel

and Kh, an binary encoding of integer kh. The Hash Manager module con-
sists of a Max-Circuit module [15]. The output is one if the total number

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of hash functions selected is less than the kh. Hash Manager consists of
O(|H| log |H|) gates.

False Positive Manager. False Positive Manager checks whether the
total number of false positives is less than kfp using a Max-circuit module
[15]. False Positive Manager has two inputs: Z, the output of a False Positive
Detector module; and Kfp, an binary encoding of kfp. The total number of
gates in False Positive Manager is O(|U| log(|U|).

We adopt a “textbook” reduction from CIRCUIT-SAT to CNF-SAT [8]
to generate the CNF formula that corresponds to the circuit. The total
number of the gates in the circuit that decides an instance of BF is O(n2)
where n is the size of the instance. Thus, the CNF-SAT formula is of size
O(n2). This proves that the proposed reduction to CNF-SAT is efficient.

4 Cascade Bloom Filter

In this section, we discuss the cascade Bloom filter, a generalization of the
Bloom filter, which is proposed by [21]. A Cascade Bloom filter represents
a set A against U − A by employing a cascade of Bloom filters. The basic
idea of cascading multiple Bloom filters is to use the next Bloom filter to
distinguish between two sets that the previous Bloom filter failed to, i.e.,
the false positives of the previous Bloom filter and the set that the previous
Bloom filter represents.

As an example, we return to Figure 2 in Section 3. Rather than main-
taining a list of false positives for the Bloom filter, we maintain another
Bloom filter, which encodes, as its set, the set of false positives from the first
Bloom filter. In our example, the only false positive is 〈sa,Project Review〉.
Suppose we employ a third hash function h3 whose range is {0, 1, 2}. And
suppose we have the following mappings, and the corresponding Bloom filter
which encodes the singleton set that contains 〈sa,Project Review〉.

Session Permission h3
sa Team Organization 0
sa Project Review 1
sb Project Review 0

index → 0 1 2
0 1 0

The only session-permission pairs for which the Bloom filter in Figure 2
returns positive are the three shown in the table above. And the only false
positive is 〈sa,Project Review〉. Therefore, the second-level Bloom filter,

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for which we use the hash function h3, has the bit at index 1 as the only
one that is set. Thus, if we check with the first Bloom filter, and then this
second, for a pair that tests positive with the first, we learn immediately
that 〈sa,Project Review〉 is a false positive, while neither of the others is.

More generally, a cascade Bloom filter is specified with d Bloom filters
BF1,BF2, . . . ,BFd, where Bloom filter BF1 represents A against U − A,
and Bloom filter BF i represents FPi−1, the false positives in the previous
level, against Ai. Similar to the traditional Bloom filter, the false positives
in the last Bloom filter, FPd, are stored in an explicit list E in order to
perform membership query with no error.

The idea of using multiple Bloom filters has been proposed [5, 6]. The
Cascade Bloom filter is an adapted version of the Bloomier filter [5] suited
to the purpose of access checking. Prior work [21] gives an example in which
a cascade Bloom filter with only two levels outperforms a Bloom filter by
33% fewer false positives, while it uses the same number of hash functions
and allocates the same amount of memory to filter arrays.

Definition 1. (Cascade Bloom Filter)[21]
A cascade Bloom filter is 〈B, E〉, where B = BF1,BF2, . . . ,BFd is a list of
Bloom filters and E ⊆ U is a set of elements from a universe U . Each
l = 1, . . . , d is called a level and d is called the depth of the cascade. Each
BF i = 〈Mi, Hi〉 represents a set Ai ⊆ U against a set Bi ⊆ U , such that
for i = 2, . . . , d, Ai is the set of false positives in BF i−1 and Bi is equal to
Ai−1, with A1 = A and B1 = U − A. The set E is the set of false positives
in BFd. We say that the cascade Bloom filter represents A against U −A.

The total memory size of a cascade Bloom filter is the sum of the array
size at each level, i.e.,

∑
imi. The total number of hash functions used in

a cascade Bloom filter is the sum of the number of hash functions used at
each level, i.e.,

∑
i |Hi|. Before defining the problem of finding an optimal

cascade Bloom filter, we discuss two examples. The first example shows
how a cascade Bloom filter can reduce the number of false positives when a
traditional Bloom filter can not. It also explain why the filter BFi, which is
to distinguish between FPi−1 and Ai−1, should represent FPi−1, not Ai−1.

Example 1. Assume we want to represent A = {x1, x2} against U − A =
{x3}. The set of available hash functions is H = {h1, h2} where h1 and h2
are binary hash functions. h1(x) = 1 if and only if x = x1, and h2(x) = 0
if and only if x = x2. The element x3 is a false positive for any Bloom
filter 〈M,H〉. However, we can have zero false positive using a cascade
Bloom filter with three Bloom filters: BF1 = 〈M1, H1〉, where |M1| = 0 and

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

H1 = ∅; BF2 = 〈M2, H2〉, |M2| = 2 and H2 = {h1}; and BF3 = 〈M3, H3〉,
|M3| = 2 and H3 = {h2}.

The following example shows that the number of false positives may not
increase monotonically as the number of levels increase in the cascade Bloom
filter.

Example 2. Let U = {x1, x2, . . . , xn+1}, A = {x1, x2, . . . , xn} . The set of
available hash functions is H = {h1, h2, . . . , hn}, where each hash function
hi is defined as below.

hj(xi) =

{
j mod 2 i = j
j − 1 mod 2 o.w.

(1)

If Minfp(d) denotes the minimum number of false positives that can be
achieved with a cascade Bloom filter of depth d, we have the following.

Minfp(d) =





1 if 0 < d < 2n− 1 and d is odd
n− k if 0 < d < 2n− 1 and d is even
0 if d ≥ 2n− 1

The minimum number of false positives can be achieved by choosing hj for
the Bloom filter at level 2j and any hash function for the Bloom filter at
level 2j − 1 for j = 1, . . . , dd/2e. The size of the bit array at each level is 2.
Figure 6 shows Minfp(d) as d increases for n = 10.

Similar to the traditional Bloom filter, we define the problem of finding
an optimal cascade Bloom filter of depth d with respect to two objectives:
the number of false positives, and total number of hash functions used. It
is a two dimensional optimization problem, which we define formally below.

CBF Specification. An optimization Cascade Bloom Filter problem
(CBF) is specified by the following inputs.

• U : A finite universe of elements

• A : A subset of U

• d : A positive integer

• M : An array of m bits

• H : A set of hash functions that map each element of U to a non-
negative integer

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
in

fp
(d

)

LevelNumber of levels

M
in

im
u
m

 n
u
m

b
e
r

o
f

fa
ls

e
 p

o
si

ti
v
e
s

Figure 6: Example 2 above, with n = 10.

• pri : pri ∈ {nfp, nh} indicates which of the two optimization objec-
tives, the number of false positives or the number of hash functions,
we prioritize over the other.

A solution to the optimization version of the CBF problem is a cascade
Bloom filter of depth d with total memory of m that minimize the number
of false positives and hash functions used. A decision version of the CBF
problem that corresponds to the above optimization version takes all inputs
of the optimization version, but the input pri, as well as two input integers:

• kfp: this indicates the maximum number of false positives that we
seek in a solution

• kh: this indicate the maximum number of hash function that a solution
can use

The decision and optimization versions of Cascade Bloom Filter problem
are related closely. Given an oracle Ω for the decision version, we can solve
the optimization version using two dimensional binary search approach.

4.1 Computational Complexity of the CBF problem

The formal language for the corresponding decision version is

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CBF = {〈U , A, d,M,H, kfp, kh〉 : there exists a cascade Bloom filter 〈B,E〉 of

depth d that represents A against U −A such

that the number of false positives is at most kfp,

the total hash functions used is at most kh,

and the total memory size is at most |M |}.

The BF problem is a special case of the CBF problem with d = 1. Since
the Bloom Filter Problem is NP-hard, it is unlikely that there exists an
efficient algorithm for the Cascade Bloom Filter.

Theorem 4. The CBF problem is NP-complete.

Proof. CBF is NP-hard because it generalizes the BF problem, which is
proved to be NP-hard in Theorem 1.

We show that CBF ∈ NP. A certificate for an instance of CBF is a list
of d Bloom filters, BF1,BF2, . . . ,BFd. The size of certificate is O(d(|H|+
|M|)), which is polynomial in the size of the instance since d = O(|M |).

The verification algorithm first checks whether
∑

i |Hi| ≤ kh and∑
imi ≤ |M |. It then computes the sets Ai and Bi for each i = 1, . . . , d,

and checks whether hash functions selected for each level are valid; that is,
h ∈ Hi maps each elements of Ai ∪ Bi to an integer less than mi. Finally,
it computes the set of false positives, and checks if its size is less than kfp.
The verification algorithm runs in time O(d|U||H|Th), where Th is the time
complexity of computing each hash function. We assume Th is polynomial
in |U| and |M |. Therefore, the verification can be performed in polynomial
time.

Theorem 4 establishes an upper bound for the complexity of the Cascade
Bloom Filter problem.

4.2 Efficient Reduction to CNF-SAT

In this section, we discuss how the intractability of the CBF problem can
be mitigated. Our approach is to reduce an instance of the CBF problem to
a CNF-SAT formula and solve the SAT formula using a SAT solver. Since
CBF is in NP, there exists an efficient reduction from CBF to CNF-SAT.
We find the efficient reduction by designing an efficient circuit that decides
CBF and then adopting a “textbook” reduction from CIRCUIT-SAT to
CNF-SAT [8].

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The circuit that decides CBF is shown in Figure 7. It has five inputs:
X, which is the encoding of A; Y, an encoding of U − A; W, the encoding
of |M |; Kh, the binary encoding of kh; and Kfp, the binary encoding of kfp.
The output of the circuit is one if and only if there exists a solution to the
corresponding CBF instance. The circuit consists of d modules of Bloom
filters, BF1,BF2, . . . ,BFd, a Hash Manager module, a Memory Manager
module, and a False Positive Manager module. We explain each module in
the following.

Bloom filter A Bloom Filter module is similar to the one described in the
Section 3.2, except that it does not have False Positive Manager and Hash
Manager modules (see Figure 8). A Bloom Filter module has two inputs:
Xi, the encoding of Ai; Yi, the encoding of Bi, and three outputs: Zi, the
encoding of FPi; Hi,sel, the encoding of the set of hash functions selected at
level i; Wi, the binary encoding of mi. A Bloom filter module consists of
three modules: a Filter Array, a False Positives Detector, and a Hash Valid,
which are described in the Section 3.2.

Hash Manager Hash Manager checks if the total number of hash
functions used is at most kh. It consists of a Max-circuit with in-
puts H1,sel,H2,sel, . . . ,Hd,sel and Kh. A Hash Manager module consists of
O(d|H| log d|H|) gates.

Memory Manager Memory Manager checks if the total memory size is
at most |M |. The inputs to a Memory Manager module are the binary en-
coding of memory size of each level, i.e., W1,W2, . . . ,Wd, and the binary
encoding of the maximum memory size allowed, W. Memory Manager out-
puts one if and only if the total memory size is less than |M |. A Memory
Manager module consists of a Max-circuit module [15], and therefore has
O(d log |M | (log d+ log log |M |)) gates.

False Positive Manager False Positive Manager checks if the number
of false positives is at most kfp. The inputs to a False positive Manager
module are Zd, the encoding of the false positives at level d, and Kfp, the
binary encoding of kfp. False Positive Manager outputs one if and only if
the number of false positives at most kfp. A False Positives Manager module
consists of a Max-circuit module [15], and therefore has O(|U | log |U |) gates.

The total number of gates in the circuit for CBF is O(dn2), where n is
the size of an instant of CBF. Since d = O(|M |), the total size of the circuit,

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

out

H1,sel

W1

BF1

Y1

X1

Z1

H2,sel

W2

BF2

Y2

X2

Z2

Hd,sel

Wd

BFd

Yd

Xd

Zd

Hash
Manager

False
Positive
Manager

Memory
Manager

Kfp

WKhYX

Figure 7: A circuit to decide the CBF problem.

and therefore the size of the corresponding CNF SAT formula is O(n3).

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TX

Y

W

FAFilter
Array

False Positive
 Detector

Hash Valid

Hi,sel Hi,sel

Hi,sel

Wi

Zi

i

i

i

i

Figure 8: The Bloom filter module at level i, BFi.

5 Empirical Evaluation

We have implemented our CNF SAT approach to the Cascade Bloom Filter
problem. Our code is available for public download [16]. We used Min-
iSat [1], an open source SAT solver, to solve the SAT formula from the
reduction in Section 4.2. The input for the empirical assessment has been
generated based on the benchmark of RBAC instances in [12]. Each gener-
ated RBAC consists of two users, 2n roles, 10n permissions. Each user is
assigned to a role with probability 0.5. Each permission is connected to k
random roles where k is less than 8. There is also a role-hierarchy of depth
3, generated according to stanford model (see [12]). The generated RBAC
policies are used to create CBF instances for our approach. For each RBAC
instance with 2n roles, we create a session profile by instantiating n sessions.
Each session profile comprises access pairs 〈session id, permission〉 for the
permissions allowed in the sessions. In each session we choose the set of
allowed permissions as below.

– Randomly pick one of the two users, as the user for the session (call it
u)

– Randomly pick one role, r, from the roles to which u is authorized

– Collect all the junior roles S for r (including r itself)

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

– Collect all the permissions to which at least a role in S is authorized

– Output that set of permissions for that session

The sets A and U in the corresponding CBF instance are the set of all
access pairs (i.e., 〈session id, permission〉) in the session profile and the
set of all possible access pairs respectively. Each generated CBF instance
is represented with the quantity “Problem size”, which is the number of
different sessions in the corresponding session profiles (i.e., n). All data
points in our graphs represent a mean across at least 10 different inputs
generated randomly.

Our empirical evaluations were conducted on a desktop PC with an Intel
Xeon CPU E5-1650 v2 processor, that clocks between 1347 and 3900 MHz,
and has a cache of 12 MB. The system has 32 GB RAM, and runs the 64-bit
Debian 9 operating system.

Overall Observations. Our approach results in cascade Bloom filters
with significantly fewer false positives than prior work. We observe that
a cascade Bloom filter with more levels produces fewer false positives, and
in some cases requires fewer hash functions to achieve the same number of
false positives. Furthermore, our implementation can be adapted to trade
off between efficiency (CPU time) and the quality of the solution, i.e., the
number of false positives and hash functions used in a solution.

We present our specific observations in the following sections.

5.1 Comparison with a prior approach

We were given access to the implementation of the prior work [21]. We first
compared the performance of two approaches in optimizing the number of
false positives when there is no constraint for the number of hash functions
used. Figure 9 shows the result of that comparison. We observe that our
approach is resilient to the size of the problem, and is always able to find a
cascade Bloom filter with a small number of false positives as the problem
size increases.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

100

1000

1500

5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

Problem size

prior work
CNF SAT

Figure 9: Number of false positives of our approach, labelled “CNF SAT,”
and a prior approach.

To compare the performance of the two approaches in minimizing the
number of hash functions, we set a constraint for the number of false pos-
itives to be no more than half of the maximum number of false positives,
i.e., |U − A|/2 where U is the universe and A is the set to be represented
by the cascade Bloom filter. However, We were not be able to compare two
approaches because the prior work fails for most instances. Figure 10 shows
the success rates for the two approaches.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 0

 2

 4

 6

 8

 10

 12

5 7 9 11 13 15 17 19 21 23 25 27 29

S
uc

ce
ss

 r
at

e

Problem size

prior work
CNF SAT

Figure 10: Success rate of our approach, labelled “CNF SAT,” and a prior
approach.

5.2 Efficiency of our approach

We observe that the prior work always returns in few seconds, while it takes
more time for our approach to find the optimal solution. However, our
empirical results in the previous section show that the prior approach does
not find an optimal solution, and it is not even complete; it may not return
a solution for hard instances.

Figure 11 shows the CPU time for our approach to find a cascade Bloom
filter with minimum number of false positives as the problem size increases.
Figure 12 shows the CPU time for our approach to find a cascade Bloom
filter with minimum number of hash functions. We observe that it takes
few minutes for our approach to find the optimal cascade Bloom filter for
large problem size. We are able to trade off between the CPU time and
the quality of solution, i.e., the number of false positives and the number
of hash functions, by introducing a time limit for each invocation to the

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sat solver, MiniSat, in our binary search for finding the optimal solution.
If MiniSat does not return an answer within the time limit, the approach
would deem that the instance provided to MiniSat is unsatisfiable. Indeed,
the time limit affects the quality of the solution as there might be the case
that the instance deemed unsatisfiable is just a hard satisfiable instance for
MiniSat. Figure 13 shows how the time limit affects the number of false
positives in the solution that our approach returns.

10

100

200

300

400

 5 7 9 11 13 15 17 19 21 23 25 27 29

T
im

e
(s

ec
)

Problem size

Figure 11: CPU time (average of 100 runs) for the minimum number of false
positives for different problem sizes, with 95% confidence intervals.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

100

200

300

400

500

600

700

 5 7 9 11 13 15 17 19 21 23 25 27 29

T
im

e
(s

ec
)

Problem size

Figure 12: CPU time (average of 100 runs) with a minimum number of hash
functions for different problem sizes, with 95% confidence intervals.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

10

100

1 5 10 20 30 40 50

N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Time Limit (sec)

d = 1
d = 2
d = 3
d = 4
d = 5

Figure 13: Achievable false positives for different number of levels, d, given
a time-limit.

5.3 Effect of levels on the performance of the cascade Bloom
filter

Figure 14 shows how the number of false positives changes as the number of
levels increases. We observe that the number of false positives may increase
first, but eventually decrease as the number of level increases. It is dis-
cussed in Example 2 and Figure 6. Figure 15 shows how the number of false
positives changes for different problem sizes. We observe that regarding the
number of false positives, cascade Bloom filter is more resilient to an increase
in the problem size than the traditional Bloom filter. Figure 16 shows how
the number of hash functions required to achieve a k false positives decrease
as k increases. We observe that for large value of k, a cascade Bloom filter
with fewer levels uses fewer hash functions. However, for smaller value of k,
a cascade Bloom filter with more levels uses fewer hash functions.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

5

10

15

1 2 3 4 5

N
um

be
r o

f F
al

se
 P

os
iti

ve
s

Number of levels, d

problem size = 23
problem size = 25
problem size = 27
problem size = 29

Figure 14: Number of levels vs. minimum number of false positives.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

5

10

15

20

 5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Problem Size

d=1
d=2
d=3
d=4
d=5

Figure 15: Problem size vs. minimum number of false positives, for different
numbers of levels, d.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

10

010 50 100 300 650

N
um

be
r o

f H
as

h
Fu

nc
tio

ns
 n

ee
de

d

d=1
d=2
d=3
d=4
d=5

Number false positives allowed

Figure 16: Number of of false positives allowed vs. minimum number of hash
functions required.

6 Related Work

Our work pertains to efficient access enforcement, using a generalization of
the Bloom filter. The Bloom filter was originally proposed by Bloom [3].
Since that work, there has been considerable work on the Bloom filter. A
comprehensive discussion is well beyond the scope of this work; however,
we point out, broadly, that more recent work on the Bloom filter can be
categorized into two: variants of, or extensions to, the Bloom filter (see, for
example, [5, 6, 14, 18, 24]), and new domains in which the Bloom filter or
a variant has found applicability (see, for example, [2, 10, 11, 17, 23, 25]).
None of such pieces of work are directly relevant to our work.

To our knowledge, the Cascade Bloom filter was first proposed by
Tripunitara and Carbunar [21]. That work considers the application that
we consider as well, access enforcement for RBAC policies. However, while
that work proposes an algorithm for constructing Cascade Bloom filters,

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

it acknowledges that the algorithm there is not complete — the algorithm
may fail even though a Cascade Bloom filter that corresponds to the inputs
exists. That work also leaves the underlying questions regarding compu-
tational complexity, which are intimately tied to problem of devising an
algorithm, unanswered.

From the standpoint of efficient access enforcement, there are indeed a
few pieces of prior work. CPOL [4] is an approach to access enforcement
in distributed settings. CPOL employs caching and a structure called an
AccessToken, that is application-specific, to speed-up access enforcement.
The work on CPOL points out also that simply using database querying
does not suffice for fast access enforcement. Our work is related also to those
of Wei et al. [22], Komlenovic et al. [12], and Liu et al. [13], that address the
access enforcement problem in RBAC. Wei et al. [22] propose an architecture
for distributed enforcement. In that context, they propose authorization
recycling as an approach to speed up enforcement. Komlenovic et al. [12]
empirically study various prior approaches, including the Cascade Bloom
filter, from the standpoint of efficient access enforcement. Liu et al. [13]
propose a technique that they call transformations for access checking in
RBAC. All these pieces of work are complementary to ours, and do not
address the issues we address.

7 Conclusions

We have addressed the construction of the Cascade Bloom filter, which prior
work touts as effective for efficient access enforcement. We have identified
the computational complexity of the underlying problems, and proposed
concrete algorithms, which leverage off-the-shelf SAT solvers. We have im-
plemented our algorithms, and carried out an empirical assessment. Our
work suggests that instances of these data structures can indeed be con-
structed practically, and access enforcement based on them can perform
well.

Access enforcement remains an interesting topic for further research, as
do further investigations into the Cascade Bloom filter. New authorization
schemes continue to be proposed, and it is worthwhile to ask how efficiently
access enforcement can happen for those schemes. Indeed, our work consid-
ers RBAC only. Particularly in the context of distributed access enforce-
ment, it may be meaningful to investigate whether a Cascade Bloom filter
can be fragmented, so each piece can be employed at a different location
for access enforcement. Of interest also is asking what parameters in the

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

construction of a Cascade Bloom filter actually need to be assumed to be
unbounded. Also, it is interesting to investigate whether applications other
than access enforcement can benefit from the Cascade Bloom filter.

References

[1] MiniSat, January 2013. http://minisat.se/.

[2] B. Alzahrani, M. Alreshoodi, V. Vassilaki, A. Almuhaimeed, and
F. Alarfaj. Toward secure packet delivery in future internet communica-
tions. In 2018 IEEE International Conference on Consumer Electronics
(ICCE), pages 1–2, Jan 2018.

[3] B. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7), 1970.

[4] K. Borders, X. Zhao, and A. Prakash. Cpol: High-performance policy
evaluation. In Proceedings of the 12th ACM conference on Computer
and communications security (CCS05), pages 147–157. ACM Press,
2005.

[5] B. Chazelle, J. Kilian, R. Rubinfield, and A. Tal. The bloomier fil-
ter: An efficient data structure for static support lookup tables. In
Proceedings of the fifteenth annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 30–39. ACM Press, 2004.

[6] S. Cohen and Y. Matias. Spectral bloom filters. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data
(SIGMOD), pages 241–252, 2003.

[7] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of comput-
ing, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, 3 edition,
September 2009.

[9] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating
systems. Communications of the ACM, 19(8), 1976.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[10] Byeong hee Roh, Ju Wan Kim, Ki-Yeol Ryu, and Jea-Tek Ryu. A
whitelist-based countermeasure scheme using a bloom filter against sip
flooding attacks. Computers & Security, 37:46 – 61, 2013.

[11] Marek Klonowski and Ania M. Piotrowska. Light-weight and secure
aggregation protocols based on bloom filters. Computers & Security,
72:107 – 121, 2018.

[12] Marko Komlenovic, Mahesh Tripunitara, and Toufik Zitouni. An empir-
ical assessment of approaches to distributed enforcement in role-based
access control (rbac). In Proceedings of the first ACM conference on
Data and application security and privacy, CODASPY ’11, pages 121–
132, New York, NY, USA, 2011. ACM.

[13] Y. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao,
and J. Zhang. Core Role-Based Access Control: Efficient implementa-
tions by transformations. In Proceedings of the ACM SIGPLAN sym-
posium on Partial Evaluation and semantics-based Program Manipula-
tion, pages 112–120, may 2006.

[14] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions
on Networking, 10(5):604–612, 2002.

[15] N. Mousavi and M. V. Tripunitara. Mitigating the intractability of the
user authorization query problem in role-based access control (RBAC).
In Proceedings of the international conference on Network and System
Security, NSS’12, pages 516–529. Springer-Verlag, 2012.

[16] Nima Mousavi. Code to construct Cascade Bloom Filters. https:

//ece.uwaterloo.ca/~tripunit/cbf/, May 2018.

[17] C. Rathgeb and C. Busch. Cancelable multi-biometrics: Mixing iris-
codes based on adaptive bloom filters. Computers & Security, 42:1 –
12, 2014.

[18] Debanjan Sadhya and Sanjay Kumar Singh. Providing robust security
measures to bloom filter based biometric template protection schemes.
Computers & Security, 67:59 – 72, 2017.

[19] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer, 29(2):38–
47, February 1996.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[20] C. Sinz. Towards an optimal cnf encoding of boolean cardinality con-
straints. In P. van Beek, editor, CP, volume 3709 of LNCS, pages
827–831. Springer, 2005.

[21] M. Tripunitara and B. Carbunar. Efficient Access Enforcement in Dis-
tributed Role-Based Access Control (RBAC) Deployments. In Pro-
ceedings of the 14th ACM symposium on Access control models and
technologies, SACMAT ’09, pages 23–32, New York, NY, USA, 2009.
ACM.

[22] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu. Authorization
Recycling in RBAC Systems. In Proceedings of the 13th ACM sympo-
sium on Access control models and technologies, SACMAT ’08, pages
63–72, New York, NY, USA, 2008. ACM.

[23] Z. Xu, B. Chen, X. Meng, and L. Liu. Towards efficient detection of
sybil attacks in location-based social networks. In 2017 IEEE Sym-
posium Series on Computational Intelligence (SSCI), pages 1–7, Nov
2017.

[24] Yuanhang Yang and Shuhui Chen. Multiple bloom filters. In Proceed-
ings of the 2017 VI International Conference on Network, Communica-
tion and Computing, ICNCC 2017, pages 59–63, New York, NY, USA,
2017. ACM.

[25] X. Yu, X. Chen, J. Shi, L. Shen, and D. Wang. Efficient and scalable
privacy-preserving similar document detection. In GLOBECOM 2017
- 2017 IEEE Global Communications Conference, pages 1–7, Dec 2017.

Author Biographies

Nima Mousavi is a Software Engineer at Google, in Kitchener, Canada. He
has a Ph.D. in Electrical and Computer Engineering from the University
of Waterloo, where his Ph.D. dissertation explored algorithmic aspects of
access control. He has an Master’s from Sharifi University, Iran, and a
Bachelor’s from Iran University of Science and Technology, both in Electrical
and Electronics Engineering.

Mahesh Tripunitara is Associate Professor in the Electrical and Computer
Engineering Department at the University of Waterloo. He works mostly

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in information security, in problems in access control, the security of digital
ICs, and applied cryptography. His work, with students, has been awarded
“Best Paper” and “Best Paper, Runner-up” at the 2013 and 2015 ACM
Symposium on Access Control Models and Technologies (SACMAT) respec-
tively, and “Best Student Paper” at the 2013 Usenix Security Symposium.

35

