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Abstract 

The quasi-static and strain-controlled fatigue characteristics of ZK60 extrusion have been 

investigated along three different directions: the extrusion direction (ED), the radial direction 

(RD), and 45 to the extrusion direction (45). The quasi-static response showed symmetric 

behavior for the samples tested along RD and 45, whereas the ED samples manifested completely 

asymmetric behavior. Although the ED samples exhibited longer fatigue lives than the RD and 

45 in the high cycle fatigue, the fatigue lives in the low cycle fatigue regime were similar. The 

texture measurement indicated a sharp basal texture along ED, explaining its asymmetric behavior. 

Higher tensile mean stress and less dissipated plastic energy per cycle for the ED samples, acting 

as two competing factors, were the principal reasons for exhibiting fatigue responses identical to 

those of RD and 45 in the LCF regime. The fracture surface in the ED direction was dominated 

by twin lamellae and profuse twinned grains, whereas that in RD was dominated by slip bands. 

Finally, Smith-Watson-Topper and Jahed-Varvani models were employed to predict the fatigue 

lives along all directions using a single set of material parameters. 

Keywords: ZK60 extrusion, Anisotropy, Asymmetry, Texture, Characterization, Fatigue 

Modeling  

1. Introduction 

Light-weighting is one of the pivotal steps toward fuel consumption reduction in vehicles and 

consequent environmental preservation. Magnesium (Mg) alloys, as the lightest engineering metal, 

could contribute to this process. However, they should be well characterized in order to elucidate 

their properties for the automotive industry [1]. In spite of the wide implementation of Mg alloys 

in many non-structural automotive components, their current application in load-bearing sections 

is limited [2]. To expand their application in load-bearing components, it is of key importance to 

investigate Mg alloys’ behavior under both static and cyclic loading. 

The hexagonal close-packed (HCP) crystal structure of Mg brings about a strong basal texture 

in its wrought alloys [3]. As they undergo forming processes, such as rolling and extrusion, the 

basal planes will be lined up parallel to the working direction. This intense crystallographic texture 

will make the {101̅2} pyramidal twin the dominant deformation mechanism under certain loading 
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directions where tension along the c-axis is triggered [4]–[6]. Reversing the load will reorient the 

twinned crystals toward their initial state; this process is known as detwinning. Twinning-

detwinning engenders highly distorted asymmetrical hysteresis loops, mainly in the twinning-

induced regions [7], [8]. The directional dependency of twinning-detwinning renders not only the 

quasi-static tension and compression behaviors but also the fatigue properties of wrought Mg 

alloys, and so has been widely investigated for such alloys [9]–[12].  

Anisotropy in Mg alloys can affect the fatigue strength differently in the high-cycle fatigue 

(HCF) and low-cycle fatigue (LCF) regimes. Sajuri et al. [13] reported that the HCF strength of 

AZ61 extrusion along the extrusion direction (ED) in stress-controlled experiments is higher than 

that in the transverse direction (TD) and 45° to the ED. The same characteristic was observed 

under controlled strain by Jordon et al. [14] for AM30 extrusion in the HCF regime, even though 

for LCF, loading along ED yields lower life to failure than along TD. Roostaei and Jahed [15] 

investigated the effect of loading direction on the LCF fatigue characteristics of AM30 extrusion. 

They reported that TD specimens failed in higher lives when identical strain amplitude is applied 

to both TD and ED specimens. In contrast, Wang et al. [16] found the opposite while testing ED 

against TD samples under the strain-control state for ZA81M extrusion, a result they attributed to 

strengthened twinning deformation as well as to the higher detrimental tensile mean stresses in 

TD. Xiong and Jiang [17], while experimentally scrutinizing the LCF behavior of AZ80 rolled in 

four different orientations found that deformation mechanism alteration at a certain strain level 

affects the material’s fatigue resistance with respect to the loading direction. The AZ80 samples 

in the rolling direction (RD) have the longest life of all other directions for strain amplitudes of 

less than 0.4%, but increasing the strain to higher values causes the 30° and 60° inclined samples 

with respect to the rolled plane to exhibit higher fatigue strength. 

ZK60, the material under study in this paper, exhibits exceptional strength and ductility due to 

its alloying elements [18]. However, despite these characteristics, only limited studies have 

investigated its fatigue characteristics in extrusion form. Xiong et al. [19], [20] and Yu et al. [21] 

have studied LCF and cyclic plastic deformation, and Wu et al. [22] explored twinning–detwinning 

behavior of ZK60 extrusion along the ED. These studies reported asymmetry in both the quasi-

static behavior and the cyclic hysteresis loops. In more recent study by Xiong et al. [23], 

characterizing ZK60 under monotonic loading along ED and TD revealed intensive anisotropy in 

the stress-strain response of the material. The reviewed literature discloses a lack of knowledge on 

the HCF behavior of ZK60 along directions other than ED. 

Numerous fatigue damage criteria have been developed and reviewed over the last two decades 

[24]–[33]. However, most of these criteria have been developed and calibrated for isotropic 

materials, with dislocation slip being the dominant deformation mechanism. Due to slip 

dislocation, intergranular and transgranular cracking along the slip lines are the primary cracking 

behavior under cyclic loading for isotropic material [34]. However, the twinning-detwinning 

deformation mechanism adds micro-cracking on the twin boundaries as a third mode in Mg alloys 

[34]. This additional deformation mechanism and its detrimental effects should be reflected in the 

fatigue damage models proposed for Mg and its alloys. The scalar inherence of energy allows the 

simple manipulation of the energy values corresponding to the axial and shear components of 

stress/strain tensors. This feature suggests that strain energy is a good candidate for fatigue damage 

representation in anisotropic materials. Jahed and Varvani proposed a fatigue model based on the 

strain energy dissipated in each cycle of loading and on the dominant cracking mechanisms [35]. 
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This model has been widely employed in many related types of research on Mg alloys [15], [36] 

exhibiting promising results. They improved the capability of the original model to make it 

applicable to non-proportional loading by adopting Garud’s incremental cyclic plasticity model 

[37], [38]. This extended model has shown promising life estimation for AZ31B under 

proportional and non-proportional loading in research by Albinmousa and Jahed [39]. Roostaei 

and Jahed showed that the Smith-Watson-Topper (SWT) and Jahed-Varvani JV parameters yield 

acceptable life prediction for AM30 extrusion along the different loading directions [15]. 

Smith–Watson–Topper (SWT) was introduced as a critical plane approach for modeling 

material in which fatigue cracks are initiated and grew predominantly under tensile loading [40]. 

Tensile cracking developed in ZK60 extrusion along ED was implied by a single curve description 

of the SWT parameter in less than 1.5% strain amplitudes [21]. A similar justification was provided 

to explain imprecise SWT life estimation when the strain amplitude was increased to larger than 

or equal to 3.5%, the amplitudes where ED samples fail under compressive loading [19]. 

This present investigation, therefore, begins with the microscopic characterization of ZK60 

extrusion. The cyclic behavior of the material, including its strain-life and stabilized strain-stress 

response together with fractographic observations, will be presented and rigorously discussed with 

reference to three different directions: namely, ED, RD, and 45 to ED (45).  Finally, the merits 

of SWT as a critical plane and JV as an energy-based model will be assessed based on their 

capability of mimicking experimental data. 

2. Material and Experimental Details 

2.1. Material and Specimen 

The material investigated in this study, ZK60A Mg alloy in the form of an extruded cylindrical 

billet with a 127mm diameter, has the chemical composition of Zn 5.5%, Zr 0.71%, other 0.3%, 

and the balanced weight percent of Mg. The static and fatigue specimens geometry is depicted in 

Figure 1 (a) and (b). In order to investigate the anisotropy effect of loading directions, specimens 

were extracted along three distinctive directions, labeled ED, RD, and 45, such that gage sections 

were located at the same radius for all samples. The reference cylindrical coordinate system for 

specimen extraction relative to the extruded billet is illustrated in Figure 1 (c). ED, RD, and TD 

denote the extrusion, radial, and tangential directions, respectively. 

2.2. Experimental Procedures 

For microstructural observation, samples were prepared through the following standard 

metallographic procedure. First, they were ground using silicon carbide papers with grit No. up to 

1200 and polished sequentially with 6, 3, 1 and 0.1 micron diamond pastes. In order to reveal the 

grain/twin boundaries, etchant made of 4.2 g picric acid, 70 ml ethanol, 10 ml acetic acid, and 10 

ml distilled water was applied to the sample surface. 

 

Figure 1. (a) Static tension and fatigue test specimens geometry, (b) Static compression test 

specimen geometry, and (c) Reference cylindrical coordinate system for sample extraction 

(Dimensions are in “mm”) 
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The crystallographic texture was characterized by means of X-ray diffraction employing Bruker 

D8 Discover X-ray diffractometer equipped with an advanced 2D-detector. The characterization 

started with measuring incomplete pole figures in the back-reflection mode applying CuKα 

radiation at 40 kV-40 mA. The complete pole figures were generated using DIFFRAC.texture 

software. The details of the texture measurement are elaborated in [41]. 

Quasi-static tests were conducted on Instron 8872 servo-hydraulic axial test frame with 25kN 

load capacity at the ambient temperature. Dog-bone and cuboid samples were used for the static 

tension and static compression tests, respectively. In these tests, displacement was controlled in 

order to maintain the strain rate at 0.015 mm/mm/min in accordance with ASTM E8 [42], while 

the strain was measured using digital image correlation (DIC) technique.  

Fully reversed strain-controlled fatigue tests were performed on the same Instron test frame. 

These tests were conducted at different strain amplitudes, (R=-1) ranging from 0.2 to 2 %, with at 

least two trials at each amplitude. The test frequency was selected based on the applied strain 

amplitude, varying from 0.1 Hz to 10 Hz, to guarantee precise control of the sinusoidal waveform 

of the strain. The strain was measured by Instron extensometer with a 10 mm gauge length and ±1 

mm travel. The fatigue failure was set at 50% drop in the peak tensile force of the stabilized cycle 

or the final fracture and the test is considered run-out if the sample survives for more than 1 million 

cycles. Selected fracture samples were analyzed using scanning electron microscope (SEM) to 

understand the fracture mechanisms. 

3. Results 

3.1. Microstructure Analysis 

The microstructural examination of ZK60 extrusion, shown in Figure 2, disclosed the twin-free 

bimodal grains, i.e., sizable elongated and small equiaxed grains. Similar microstructural 

characteristics have been reported for this material  [21], [43].  

Figure 2. Typical microstructure of ZK60 extrusion: (a) TD-RD plane and (b) RD-ED plane 

The pole figures, plotted for both RD-TD and ED-RD planes in Figure 3, revealed that the 

majority of the c-axes are oriented approximately perpendicular to the ED, but not necessarily 

parallel to the RD or TD. The crystallographic orientation matches those observed in earlier studies 

on ZK60 extrusion [23], [43]. This can favor {101̅2}  extension-twinning under compression 

loading in ED samples [22], [23]. The effect of this texture on quasi-static and cyclic behaviors 

will be thoroughly discussed later.  

 

Figure 3. (0002) and (𝟏𝟎𝟏̅𝟎) pole figures of ZK60 extrusion obtained from: (a) TD-RD plane and (b) 

ED-RD plane 

3.2. Quasi-static Tension and Compression Behavior 

Figure 4 illustrates the engineering stress-strain curves for ZK60 extrusion under quasi-static 

tensile and compressive loadings along different directions. It is seen that the tensile and 

compressive yield strengths along ED are 251 MPa and 128 MPa, respectively. In contrast, similar 
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yield strengths are observed along the other two directions, i.e., the average yield strengths of 130 

MPa and 136 MPa, along RD and 45, respectively. Table 1 summarizes the quasi-static 

mechanical properties of the material along these directions. Two tests were averaged to get the 

value for each property. The ductility along ED is less than that along RD and 45°, which is in 

agreement with the texture results, indicating that the c-axes of the grains are perpendicular to the 

ED. Hence, less number of slip modes can be activated to accommodate the strain. 

 

Figure 4. Quasi-static behavior under tensile and compressive loading for ED, RD, and 45 

Table 1. Quasi-static mechanical properties of ZK60 extrusion along different directions (The 

numbers in the parentheses are standard deviations) 

Mechanical properties ED RD 45° 

Module of elasticity [GPa] 43 (1) 45 (0) 42 (1) 

Tensile yield strength [MPa] 251 (0) 128 (0) 149 (2) 

Tensile ultimate strength [MPa] 309 (1) 279 (1) 264 (1) 

Ductility (%) 11 (0) 23 (1) 26 (0) 

Compressive yield strength [MPa] 128 (10) 132 (4) 123 (5) 

Compressive ultimate strength [MPa] 449 (15)  357 (9)  388 (3) 

3.3. Cyclic Behavior 

3.3.1. Extrusion Direction  

Figure 5 depicts the typical engineering stress-strain hysteresis loops of the stabilized cycles for 

total strain amplitudes between 0.2% and 2% for the ZK60 extrusion along ED. It is observed that 

the hysteresis loops for the strain amplitudes lower than 0.5% are not sigmoidal. In contrast, 

increasing the strain amplitudes to more than 0.5% brings about a sigmoidal-shape hysteresis loop. 

Such asymmetry indicates the activation of twinning and detwinning upon compressive and tensile 

reversals, respectively [44]. 

 

Figure 5. Typical engineering stress-strain hysteresis loops of the stabilized cycle for ED ranging 

from 0.2% to 2% strain amplitudes 

To be more specific, the evolutionary change of hysteresis loops from the second cycle to the 

stabilized cycle is depicted in Figure 6. One of four distinct behaviors is applicable depending on 

the applied strain amplitude: (i) symmetric without twinning ,(ii) partially asymmetric ,(iii) 

asymmetric, and (iv) “leading-to-symmetric” behavior. First, at low strain amplitudes (lower than 

0.4%), the stabilized hysteresis loops are symmetric, implying that the stress is insufficient to 

activate extension-twinning under compression loading [45]. At such low strain amplitudes, the 

deformation mechanism is controlled by the gliding of dislocations [22]. Moreover, marginal 

cyclic hardening is observed in Figure 6 (a), probably due to the increased density of dislocations 

with the increasing number of cycles [46]. For the strain amplitudes of 0.5%, Figure 6 (b), the 

hysteresis loop at the second cycle is asymmetric in tension and compression reversals, denoting 
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that twin and detwin deformations are active. Activation of the extension twin in a compression 

reversal results in an 86.3° rotation in crystal orientation [47]. Therefore, the twinned grains are 

likely to detwin during the subsequent tension reversal [22]. Nevertheless, the twinned grains in 

the compression reversal are not fully detwinned in the following tension reversal, leading to the 

formation of residual twins and cyclic hardening [39]. However, the hysteresis loop at the 

stabilized cycle exhibits no sign of twinning dominance, and therefore the slip of dislocations is 

accommodating the applied strain. It is believed that this change in the deformation behavior is 

due to the exhaustion of the new extension twin. This behavior has already been observed in ZK60 

[21] and AM30 [15] along ED. 

 

Figure 6. Evolution of hysteresis loops for 2nd and stabilized cycles along ED at different strain 

amplitudes: (a) 0.3%, (b) 0.5%, (c) 0.8%, and (d) 2% 

As the applied strain amplitude is increased (to more than 0.5%), Figure 6 (c), the stresses 

during compressive reversals are high enough to activate the extension-twinning. The twinned 

grains formed under compression are partially detwinned in the next tensile reversal, resulting in 

residual twins. These residual twins build up resistance to the plastic deformation in the wake of 

their interactions with dislocations and twinned grains which brings about cyclic hardening 

[22][48]. Lastly, when the strain amplitude reaches to as large as 2%, Figure 6 (d), twinning 

governs the plastic deformation in the compressive reversal of the first few cycles. During the 

tensile reversal, detwinning occurs inside the twinned grains, and after detwinning exhausts, non-

basal slips accommodate strain [17]. As a result, the hysteresis loop for the second cycle is 

sigmoidal for the tensile reversal. However, as the number of cycles increases, the compressive 

reversal also tends to the sigmoidal shape, as twinning is exhausted before the end of compressive 

reversal. The subsequent concave-down curve is as a result of the competitive twinning and slip 

mechanisms [20]. In contrast, the tensile reversal demonstrates cyclic softening, which is due to 

the incessant formation of micro-cracks in the first few cycles with limited growth at such a high 

strain amplitude. These micro-cracks alleviate deformation under tension which would be 

generally hindered by residual twin. As a result, less tension is required to achieve the intended 

strain level leading to the softening behavior. In contrast, the micro-cracks are closed under 

compression and consequently cannot accommodate the deformation [49]. It is also reported that 

the annihilation and rearrangement of dislocations can cause this softening [22]. As a result of 

cyclic hardening in the compressive reversals and cyclic softening in the tensile reversals, 

hysteresis loops tend to be tension-compression symmetric. Similar behavior has been observed in 

AM30 extrusion for strain amplitudes greater than 1.5% [15].  

3.3.2. Radial Direction 

Typical engineering stress-strain hysteresis loops along RD for ZK60 extrusion are plotted in 

Figure 7 at different strain amplitudes ranging from 0.2% to 2%. At all strain amplitudes, the 

hysteresis loops are roughly symmetric, unlike those in the ED. Slip is the dominant deformation 

mechanism at small strain amplitudes; however, twinning is also happening at high strain 

amplitudes (𝜀𝑎≥1.6%) and forms sigmoidal-shape hysteresis loops. It is also observed that the peak 

stresses in the compression reversals are larger than those in the tension ones. As indicated in 

Figure 8, there is no such a difference between the second hysteresis and the stabilized one along 

RD. This is because of the lack of residual twins in this direction, the reason of which will be 
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discussed later. Thus, larger compressive peak stresses comparing to the tensile ones stem from 

the quasi-static behavior. Returning to section 3.1 and Table 1, it was stated that along RD, the 

compression yield strength is greater than the tension yield; thereby, higher peak stress is 

eventually achieved under compression reversal. 

 

Figure 7. Typical engineering stress-strain hysteresis loops of the stabilized cycle for RD ranging 

from 0.2% to 2% strain amplitudes 

According to Figure 8, at the strain amplitude of 1%, the second and stabilized hysteresis loops 

do not show a remarkable decrease of hardening rate under compressive reversal, indicating that 

twinning is not happening massively. In fact, the crystal orientations in some grains favor the 

activation of extension-twinning under both reversals, and consequently, detwinning partially 

reorients the twinned grains under both tension and compression loading. As a result, few residual 

twins remain in the microstructure; hence, slight strain hardening occurs both in tension and 

compression reversals due to the twin-twin and twin-dislocation interactions. On the other hand, 

as the strain amplitude is increased to 2%, the non-basal slip modes are activated in addition to the 

twinning and detwinning, which results in the sigmoidal hysteresis loop. However, for the reason 

mentioned before, only a limited number of residual twins remain in the microstructure. Marginal 

cyclic hardening can be observed by comparing the stabilized and second cycle hysteresis loops. 

 

Figure 8. Evolution of hysteresis loops for 2nd and stabilized cycles along RD at the strain amplitude 

of (a) 1% and (b) 2%  

3.3.3. 45° Direction  

Figure 9 shows the typical engineering stress-strain hysteresis loops along 45 for ZK60 

extrusion at strain amplitudes ranging from 0.3% to 2%. The stabilized fatigue response, like the 

one along RD, does not show a low-hardening section under compressive and tensile reversals up 

to the strain amplitude of 1%. However, the sigmoidal behavior along 45 differs from that along 

RD, i.e., the peak stresses and strain hardening are slightly higher in tension reversals. This, again 

like RD, is stemming from the quasi-static behavior of 45. 

Hysteresis loop evolution along 45 is shown in Figure 10. As seen in Figure 10 (a), the 

hysteresis loop evolution along 45 at the strain amplitude of 1% is similar to that along RD; i.e., 

very marginal cyclic hardening is observed under both tension and compression loading. However, 

at the strain amplitude of 2%, Figure 10 (b), the behavior is more similar to that in the ED direction; 

i.e., after the first few cycles, cyclic softening on the tensile side and cyclic hardening on the 

compressive side can be seen. However, in the case of 45, softening is not as severe as that along 

ED. 

 

Figure 9. Typical engineering stress-strain hysteresis loops of the stabilized cycle for 45 direction 

ranging from 0.3% to 2% strain amplitudes 
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Figure 10. Evolution of hysteresis loops for 2nd and stabilized cycles along 45 direction at the strain 

amplitudes of (a) 1% and (b) 2%  

3.4. Strain-life Curve 

The strain-life (εa-N) curves for ZK60 extrusion along different directions are depicted in Figure 

11. It is noteworthy that both the 45 and RD samples are displaying the same life at different 

strain amplitudes. Moreover, comparing the fatigue responses along RD and ED, it is noted that 

the lives are similar for the strain amplitudes of 0.4% and higher (the low cycle fatigue regime). 

However, in the high cycle fatigue regime (strain amplitudes of 0.3% and lower), the cyclic 

respond depends on the material direction. For instance, while the fatigue life at the strain 

amplitude of 0.3% along RD is ~ 27000 cycles, that for ED is improved to ~ 100,000 cycles.  While 

the run-out test for ED happened at the strain amplitude of 0.25%, RD samples exhibited an 

average life of 90,000 cycles at the same strain amplitude. The run-out test for RD was achieved 

at 0.2%. The reasons for the similar fatigue performance in the low cycle fatigue (LCF) for all 

directions, but not in the high cycle fatigue (HCF) will be discussed later. 

 

Figure 11. A comparison of strain-life (εa-N) curves obtained from different directions for the ZK60 

extrusion 

3.5. Fatigue Fracture Surfaces 

The SEM images of the fatigue fracture surface of ED, RD, and 45 samples at two strain 

amplitudes of 0.3% and 2% are presented in Figure 12. Multiple crack initiation sites (marked by 

yellow arrows) are visible for all directions at the higher strain amplitude, whereas crack initiation 

sites are fewer at the lower strain amplitude. The fatigue failure (FF) area is distinguished from 

the fatigue crack growth (FCG) zone by dashed lines, and generally, at lower strain amplitudes, 

the FCG area is larger, manifesting a longer fatigue life. Yellow arrows indicate the position of 

crack initiation sites. 

 
Figure 12. SEM images of fatigue fracture surfaces of ZK60 extrusion Mg alloy at different strain 

amplitudes along different directions: (a) ED at 𝜺𝒂 =0.3%, (b) ED at 𝜺𝒂 =2%, (c) RD at 𝜺𝒂 =0.3%, 

(d) RD at 𝜺𝒂 =2%, (e) 45 at 𝜺𝒂 =0.3%, and (f) 45 at 𝜺𝒂 =2% 

The fracture surfaces at higher magnifications are shown for the strain amplitude of 2% along 

different directions in Figure 13. Twin lamellae are observed on the fracture surface of ED 

samples, whereas RD fracture surface reveals slip bands (SB). 

 

 
Figure 13. SEM images of the fracture surface of ZK60 extrusion at the total strain amplitude of 

2% showing twin lamellae and slip bands on the (a) ED sample and (b) RD sample 
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Figure 14 illustrates the FCG zone of ZK60 at the total strain amplitudes of 0.3% and 2%. 

Fatigue striations (FS) marks are denoted on the images. Each striation mark represents the 

propagation of the fatigue crack in one cycle. Hence, the finer the marks, the longer the fatigue 

life. While the average distance between the FS marks for the ED sample under strain amplitude 

of 0.3% was 0.6±0.16 µm, the RD and 45 samples exhibited striations with an average distance 

of 1.92±0.3 µm, which is a testimony to the longer fatigue life along ED. In contrast, the average 

distance along FS marks along ED, RD, and 45 directions under strain amplitude of 2% were 

2.14±0.04 µm, 2.01±0.09 µm, and 2.21±0.43 µm, asserting the similar lives in the LCF regime. 

 

Figure 14. Fatigue crack growth at the total strain amplitudes of 0.3% (Top) and 2% (Bottom) for 

(a) ED, (b) RD, and (c) 45 samples 

Lastly, to be more specific, the microstructure of the fatigue fractured samples tested at the 

strain amplitude of 2% along (a) ED and (b) RD are shown in Figure 15. Profuse twinned grains 

are observed in the microstructure along ED; however, the twinned area in the RD sample was 

significantly lower. This is in agreement with the hysteresis loops obtained in section 3.3, in that 

the ones for ED samples were less symmetric, as twinning was more dominant. 

 

 

Figure 15. Microstructure illustrating the traces of twin on the polished cross-section of the fatigue-

tested samples near the fracture surface, obtained at a strain amplitude of 2% along (a) ED and (b) 

RD 

4. Discussion 

4.1. Deformation Behavior 

The development of hysteresis responses along different directions during the fatigue tests was 

discussed in the previous sections. The mechanical behavior of the material is highly associated 

with the crystallographic texture, which controls the active modes of deformation. It is well-

established that }2110{  extension-twin can accommodate plastic strain in HCP crystal structures 

when the applied loading is either tensile along the c-axes of the grains, or compressive 

perpendicular to the c-axes [22]. This polar nature of twinning brings about evident tension-

compression asymmetric behavior in wrought Mg alloys [50]. For ZK60 extrusion, along ED, 

extension-twinning drives the deformation only under compressive loading. However, for the 

radial and 45 directions, twinning can happen under both tensile and compressive reversals. 

Consequently, in each reversal, some of the grains’ orientation favors the activation of twinning, 

while the other pre-twinned grains tend to detwin. Therefore, hysteresis loops along these 

directions are less asymmetric compared to ED. 

Figure 16 depicts the cyclic tension and compression behaviors of ZK60 along the three 

directions. The plots are constructed from the peak stresses of the stabilized hysteresis loops. It is 

noted that both the cyclic tension and cyclic compression curves for 45 are located between the 

curves of ED and RD. This observation suggests that the deformation mechanism, as a 
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macroscopic consequence of texture, along the 45 direction is a combination of the activated 

mechanisms along ED and RD. 

 

Figure 16. Cyclic tension and compression behaviors along ED, RD, and 45 

In Figure 17, the term Asymmetric Ratio (AR) = 
𝑇𝑆−𝐶𝑆

𝑇𝑆+𝐶𝑆
 refers to the level of asymmetry, 

where TS and CS are the tensile peak stress and compressive peak stress, respectively. For a 

symmetric cyclic behavior, the asymmetry level equals zero, whereas the positive and negative 

levels of asymmetry reveal higher tensile peak stress and higher compressive peak stress, 

respectively. Asymmetry is clearly evident along ED up to the strain amplitude of 1%, but then 

decreases drastically, probably due to the formation of micro-cracks, and consequently reduces the 

tensile peak stress. The annihilation and rearrangement of dislocations, which together can 

decrease the post-detwinning dislocation-based flow, can also cause this softening, as reported in 

the literature [20][22][49][41]. 

 

Figure 17. Ratio of cyclic asymmetry at different strain amplitudes ranging from 0.3 to 2% for 

different  sample orientations 

The RD asymmetry levels do not change remarkably, remaining close to zero, and so 

manifesting more symmetric behavior than other directions. As discussed, this symmetric behavior 

arises from the crystallographic texture of ZK60 extrusion, in which the c-axes of grains are 

randomly orientated on a plane normal to ED. Hence, twinning happens under both tension and 

compression along RD. Lastly, along 45, like the deformation curves, the level of asymmetry lies 

between the ones for ED and RD, signifying that the deformation behavior of 45 is a combination 

of ED and RD behaviors. Moreover, while the asymmetry level for 45 is not as high as ED’s 

owing to different texture, it decreases like ED’s at high strain amplitudes. A finding that can be 

attributed to the tension peak stress drop at high strain amplitudes (Figure 10). 

In Figure 18, the tension and compression cyclic behavior of ZK60 is plotted against the quasi-

static behavior under tension and compression loadings along different material directions. At low 

strain amplitudes, where the material response is nearly elastic, the quasi-static and cyclic 

behaviors are very similar. However, at higher strain amplitudes, cyclic hardening occurs due to 

the resistance built up by dislocation-dislocation, dislocation-twin, and twin-twin interactions [20]. 

Hence, cyclic curves are harder than quasi-static curves for RD and 45°. However, as previously 

stated, for ED, softening occurs at strain amplitudes higher than 1%, probably due to the formation 

of micro-cracks, and affects fatigue modeling, as discussed later. 

 

Figure 18. Comparison between quasi-static and cyclic curves for ZK60 extrusion along (a) ED, (b) 

RD, and (c) 45 

4.2. Effect of Loading on the Fatigue Performance 

Figure 11 showed that the fatigue life of ZK60 is not sensitive to the material direction in the 
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LCF regime, i.e., 𝜀𝑎 ≥ 0.4%, although the deformation behavior differs. In other words, the cyclic 

deformations for RD and 45 are almost symmetric, whereas the deformation for ED involves 

profound twinning happening only under compressive loading. Thus, significant asymmetry is 

evident. On the other hand, according to Figure 11, fatigue life within the HCF regime, i.e., 𝜀𝑎 <
0.4%, is distinct in spite of similar symmetric deformation behavior. 

Figure 19 demonstrates the hysteresis loops at two different strain amplitudes, 0.5% and 1%, 

both corresponding to the LCF regime, for different directions. Although the tensile peak stresses 

for ED are the highest among all directions for both strain amplitudes, the areas inside the ED 

hysteresis loop are less than those of RD and 45. The area inside a hysteresis loop represents the 

energy being dissipated in each cycle. Therefore, less energy would dissipate along ED in each 

cycle than along the other two directions, both of which show relatively similar loop areas. On the 

other hand, the larger tensile peak stress causes wider stress ranges and higher tensile mean 

stresses, which are more damaging for ED samples. 

 

Figure 19. Stabilized hysteresis loops for ED, RD, and 45 at (a) 𝜺𝒂 =0.5% and (b) 𝜺𝒂 =1% 

Profound residual twins can affect the fatigue life of ED samples in two ways. Firstly, 

interactions between twin-twin bands and twin-dislocations can initiate cracks, leading to 

premature fatigue failure [41][51]. On the other hand, some studies have suggested that the surface 

roughness as a result of extension-twinning can retard crack growth, due to roughness-induced 

crack closure [52]. The overall result of competing factors, namely strength, twin-twin bands 

interactions, twin-dislocations interactions, and surface roughness resulting from extension-

twinning, is that the fatigue lives in the LCF regime are similar. However, in the HCF regime 

where twinning does not happen, material’s strength governs deformation. In fact, at these strain 

amplitudes, the area inside the hysteresis loop is small, indicating little plasticity in the 

deformation. The deformation thus tends to be more elastic, and so the governing fatigue life factor 

in the HCF regime would be the strength of the alloy, suggesting a remarkably higher fatigue life 

for ED samples in HCF because cracks initiation occurs later due to the higher strength along this 

direction [53]. 

5. Fatigue Modeling 

As discussed, ZK60 extrusion exhibits identical behavior in the LCF regime along three 

different directions in terms of the strain-life curve; however, in the HCF regime, their fatigue 

response shows segmental deviation. Furthermore, along the ED, there is a partial softening in the 

high strain amplitude, e.g., 𝜀𝑎 =1.6% compared to 1 %, which causes nonlinearity in the elastic 

strain response of the material, when plotted with respect to the number of reversals (Figure 20 

(a)). As a consequence, the fatigue modeling of ZK60 can be complex. A goal in fatigue modeling 

of anisotropic materials is to discover a set of universal parameters that can be employed for life 

prediction of the material regardless of the orientation. To this intent, RD was selected as the 

primary direction, and the universal parameters required for two different damage criteria were 

extracted from the experiments in this specific direction. Eventually, these parameters were used 

to predict the life in other directions. In what follows, SWT, as a critical plane model, and JV, as 

an energy-based damage criterion, are assessed for the fatigue life prediction of ZK60.  
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5.1. SWT 

The SWT parameter was founded on the principal strain range and maximum stress on the 

principal strain plane, namely ∆𝜀1 and 𝜎𝑛,𝑚𝑎𝑥, respectively, in the following formulation: 

𝑆𝑊𝑇 = 𝜎𝑛,𝑚𝑎𝑥

∆𝜀1

2
 

  Eq. 1 

This parameter was originally suggested to account for the mean stress effect and has been 

extensively employed in many efforts to estimate the fatigue life of Mg alloys [15], [19], [21], 

[41], [54], [55]. Although the SWT parameter was defined the same in all those studies, its 

correlation with fatigue life was made differently. In the present study, the correlation is formulated 

by integrating SWT with the Coffin-Manson relation as follows: 

𝑆𝑊𝑇 =
𝜎′

𝑓
2

𝐸
(2𝑁𝑓)

2𝑏
+ 𝜎′

𝑓𝜀′
𝑓(2𝑁𝑓)

𝑏+𝑐
 

  Eq. 2 

where: 

 

𝜎′
𝑓: Fatigue strength coefficient  

𝜀′
𝑓: Fatigue toughness coefficient  

𝑏: Fatigue strength exponent 

𝑐: Fatigue toughness exponent 

and E is the modulus of elasticity and 2Nf  is the number of reversals to failure. Other components 

on the right side of the equation are based on the Coffin-Manson approximation and will be 

extracted by employing strain-life and hysteresis curves along RD. In this approach, the strain 

range is decomposed into elastic and plastic parts (∆𝜀𝑒 and ∆𝜀𝑝), which are calculated from the 

stabilized hysteresis loop for each strain amplitude:   

∆𝜀𝑒

2
=

𝜎′
𝑓

𝐸
(2𝑁𝑓)

𝑏
   Eq. 3 

∆𝜀𝑝

2
= 𝜀′

𝑓(2𝑁𝑓)
𝑐
   Eq. 4 

The elastic and plastic strain ranges with respect to the number of reversals to failure are 

depicted in Figure 20 (b). The Coffin-Manson parameters, as presented in Table 2, were extracted 

from the experimental results in the reference direction (RD) using the aforementioned equations. 

Table 2. Coffin-Manson parameters for SWT model 

𝝈′
𝒇 (MPa) 360.73 

𝜺′
𝒇 1.862 
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b -0.110 

c -0.780 

Finally, by substituting these parameters into the SWT model (Eq. 1 and 2), the predicted lives 

in all three directions were found through a numerical solution.  

 

Figure 20. (a) Nonlinear elastic response of the strain for ED and (b) decomposition of strain into 

elastic and plastic strain in RD 

The predicted lives in contrast to the experimental ones are illustrated in Figure 21. A diagonal 

solid line denotes the ideal prediction, while the dashed and dashed-dot lines specify the area where 

predicted life over experimental life rests within the factors of 2 and 2.5, respectively. Along RD, 

life prediction meets expectation in accordance with the fact that the Coffin-Manson parameters 

were extracted in this direction. For both 45 and ED specimens, SWT underpredicts the life; 

however, the prediction is more conservative for ED. The observed drop in the life prediction 

accuracy of ED might be attributed to the reported nonlinear elastic strain of the material, which 

is fitted by the linear regression in the Coffin-Manson relation (Figure 20 (a)). 

 

Figure 21. SWT predicted vs. experimental reversals for all directions 

5.2. Jahed-Varvani 

As was pointed out and discussed earlier, the anisotropic properties of wrought Mg alloys could 

make their fatigue modeling challenging. Due to the scalar nature and resulting direction 

independency of energy, the longstanding approach to tackling this exceptional characteristic is 

implementing energy-based damage parameters, including JV, Jiang, and Ellyin [9], [15], [39], 

[41], [54]–[58]. In JV, total strain energy, as the damage parameter, is expressed by two terms: i) 

the positive elastic strain energy density (∆𝐸𝑒
+), and ii) the plastic energy density (∆𝐸𝑝). The latter 

is defined as the area inside the hysteresis loop, and the former is obtained by the following 

equation: 

∆𝐸𝑒
+ =

𝜎𝑚𝑎𝑥
2

2𝐸
 Eq. 5 

where 𝜎𝑚𝑎𝑥 is the tensile peak stress. By assembling the elastic and plastic parts of strain energy, 

the JV parameter is formulated thus: 

𝐽𝑉 = ∆𝐸𝑒
+ + ∆𝐸𝑝   Eq. 6 

and will be correlated to life as follows [35]: 

𝐽𝑉 = 𝐸𝑒
′ (2𝑁𝑓)

𝐵
+ 𝐸𝑓

′(2𝑁𝑓)
𝐶
   Eq. 7 

where the four parameters on the right side of the equation are 
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𝐸𝑒
′  = Energy-based fatigue strength coefficient 

𝐸𝑓
′  = Energy-based fatigue ductility coefficient 

B = Energy-based fatigue strength exponent 

C = Energy-based fatigue ductility exponent 

These parameters are determined from curves fitted to the elastic and plastic portions of the 

energy along the radial direction, as depicted in Figure 22 (a). 

Table 3. JV model parameters 

𝑬′
𝒆 (MJ/m3) 1.4875 

𝑬′
𝒇 (MJ/m3) 1604.3 

B -0.219 
C -0.920 

 

 

 

Figure 22. (a) Decomposition of total strain energy into elastic and plastic energies in RD and (b) 

JV predicted vs. experimental reversals for all directions 

By employing the JV model in conjunction with the parameters extracted for RD, Table 3, 

fatigue lives in different directions are predicted numerically similar to the SWT approach and 

plotted against the experimental life in Figure 22 (b). The data-points congregating about the solid 

line and almost within the bound of factor 2.5 in both LCF and HCF regions demonstrate the 

capability of the JV parameter to model the fatigue of ZK60 with anisotropic behavior. However, 

some deviation is observed along the ED direction as the lives increases to more than 10000 cycles. 

This deviation is possibly attributed to exhausted plastic energy decapitation through the hysteresis 

loops in HCF where the model relies solely on the elastic part of the strain energy. Comparing the 

Figure 21 and Figure 22 (b) suggests that the SWT model yields to more conservative life 

predictions than the JV model.  

5.3. Further Discussion 

The total strain energy density, as a fatigue damage parameter, is determined at each strain 

amplitude at the stabilized cycle to discern the underlying reason for similar LCF lives, but 

different HCF ones. Figure 23 depicts the total strain energy density against the total strain 

amplitude for the different directions. It is observed that at high strain amplitudes, although the 

deformation behaviors are dissimilar, the fatigue damage parameters are roughly the same. 

Therefore, the fatigue lives in the LCF regime are identical in the wake of similar fatigue damage 

occurring. On the other hand, under small strain amplitudes, i.e., the HCF regime, the amount of 

damage at the stabilized cycle is marginal and close to zero, implying elastic deformation. 

 

 

Figure 23. Total strain energy density as the fatigue damage parameter at different strain 

amplitudes along different directions for ZK60 extrusion 
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6. Conclusions 

This study explored the mechanical behavior of ZK60 extrusion Mg alloy in three different 

directions: extrusion (ED), radial (RD), and 45. From the results and discussions, the following 

conclusions can be made: 

- The extruded alloy exhibited a sharp basal texture in the microstructure such that the 

hexagonal crystals were randomly orientated with their c-axes perpendicular to the 

extrusion direction. 

- The quasi-static behavior of ZK60 extrusion depended on the material’s direction in the 

light of the developed texture. Indeed, while the static behavior along ED was asymmetric 

in tension and compression, the RD and 45 samples exhibited symmetric behaviors. 

- In spite of dissimilar quasi-static behaviors along the different directions, the cyclic 

behavior in the LCF regime was not sensitive to the direction. However, the behaviors in 

the HCF regime were distinct. 

- JV, as an energy-based model, provides acceptable fatigue life predictions for ZK60 

extrusion with anisotropic behavior.   
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Highlights 

 Quasi-static behavior along extrusion direction is tension-compression asymmetry; 

whereas, radial and 45° directions showed symmetric behaviors. 

 Fatigue response of as-extruded ZK60 is not sensitive to the material direction in the low 

cycle fatigue regime. 

 Extrusion direction exhibits higher fatigue life in comparison to the radial and 45° 

directions in the high cycle fatigue regime. 

 Twin lamellae in extrusion direction, and slip bands in radial direction were dominant 

features of the fracture surfaces. 

 The Jahed-Varvani fatigue model predicts the fatigue life along all the directions with a 

single set of material parameters. 
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