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Highlights 

 Two-phase mixture model is used to solve nanofluid forced convection in 3D annulus. 

 Annulus walls are subjected to constant and same temperature boundary condition. 

 Both first and second laws of thermodynamics are considered. 

 Concentration at upper side of inner cylinder is greater than other regions. 
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Abstract 

The behavior of water–Al2O3 nanofluid inside the three-dimensional horizontal concentric 

annulus is investigated by the two-phase mixture procedure regarding the first and second laws 

of thermodynamics. The annulus walls are subjected to constant temperature boundary condition. 

Heat transfer and entropy generation rates, nanoparticle distribution, skin friction coefficient, and 

temperature distribution are evaluated at different concentrations and Reynolds numbers. The 

results show that nanoparticle concentration at the bottom of annulus and the upper side of inner 

cylinder is greater than other regions. In addition, the heat transfer and thermal entropy 

generation rates increase with increment of concentration and Reynolds number. Moreover, the 
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lowest and highest thermal entropy generation rates happen in the annulus central part and near 

the walls, respectively. Bejan number is very close to 1 at all cases under study, which shows the 

dominance of thermal entropy generation. 

 

Keywords: Annulus, nanofluid, two-phase mixture model, forced convection, entropy 

generation. 

 

Nomenclature    

Be        Bejan number 

Cp        specific heat (J/kgK)   

Dh        hydraulics diameter (= D0 -Di) (m)               

df         diameter of base fluid molecular (m)   

dp        diameter of solid phase (m)  

g          gravitational acceleration (m/s
2
)                                                                                                                                                          

KB        Boltzmann constant (=1.3807 / 10
23

) (J/K)                  

k          thermal conductivity (W/mK)       

L           length (m)                                                                       

.
m        mass flow rate (=ρm Vin A) (kg/s) 

P          pressure (Pa)                                                                 

Re        Reynolds number (=ρm Vin Dh /μm) 

St        thermal EG rate (W/K) 

S f
      frictional EG rate (W/K) 

T          temperature (K)         

V          velocity (m/s)                                                                                                        

VB         the Brownian velocity of solid phases (m/s) 

Greek letters 

        thermal diffusivity (m
2
/s)                                       

λf         average free path of base fluid molecular (=0.17) (nm) 

δ          the distance between solid phases (m)                                         

η          variable     

μ          dynamic viscosity (Ns/m
2
)   

ν          kinematics viscosity (m
2
/s)                    

ρ          density (kg/m
3
) 

τ          shear stress (N/m
2
) 

         concentration 

Subscripts 

dr         drift                                                                                                         

f           fluid   

h          hot  

in         inlet   

i           inner cylinder                                                                                            

m         mixture                                                                                                             

n          the number of phases                                                                        

out       outlet                                                                                        

o          outer cylinder                                                                                                                                                                         

p          particle (solid phase) 
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1. Introduction  

Nanofluids are novel kind of suspensions introduced by Choi in 1995 [1] which consist of 

well-dispersed solid nanometer-sized particles [2, 3]. Experiments have proven that with addition 

of nanoparticles, thermo-physical properties of base fluids including density, viscosity, and 

thermal conductivity increase [4]. The high thermal conductivity of these particles compared 

with that of the base fluids can enhance the heat transfer rate in many practical applications like 

heat exchangers, thermal storage systems, solar collectors, electronics cooling, and so forth [5-8].  

Many studies have been performed for investigating the forced convection heat transfer of 

nanofluids [9-12]. For simulation of nanofluids flow, the single-phase and two-phase models 

could be used. The single-phase model is easier and has less computational time. This model 

considers the fluid and particles motion with the same velocity and also, they are assumed in 

thermal equilibrium. The single-phase model has been utilized in many numerical investigations 

of nanofluids flow [13-17]. On the other hand, many parameters like gravity, sedimentation, 

fluid and solid particles friction, and Brownian diffusion may influence a nanofluid flow. Two-

phase models have better prediction in nanofluid flow investigation and also, take into account 

the solid and fluid molecular movements. Lotfi et al. [18] examined the flow of nanofluid in 

circular tube with three various models (single-phase, two-phase mixture, and two-phase 

Eulerian). The results demonstrated that the second one is more accurate than the other models. 

Recently, two-phase mixture model has been utilized to predict the nanofluids behavior by some 

researchers [19-24]. Behzadmehr et al. [23] investigated flow of the Cu–water nanofluid through 

a tube using the two-phase mixture procedure. Esmaeilnejad et al. [11] numerically studied 

forced convection within rectangular microchannels. In their study, the two-phase mixture 
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approach was used to investigate the flow behavior of a non-Newtonian nanofluid. Ghaffari et al. 

[24] studied nanofluid flow inside curved tubes with two-phase mixture model. The effects of 

parameters such as centrifugal force, buoyancy force and volume fraction of solid phase were 

studied. 

The annular conduits are significant geometries for heat exchange and fluid flow devices. 

They have many applications in engineering including turbo-machinery, double-pipe heat 

exchangers, solar collectors, nuclear reactors, chemical industries, and so on. Hence, 

considerable research has been carried out in the case of concentric and eccentric circular annuli 

with constant heat flux or constant temperature boundary conditions. Izadi et al. [25] examined 

forced convection of water–Al2O3 nanofluid in a 2-D concentric annulus with considering the 

boundary condition of constant heat flux. Moghari et al. [26] researched the mixed convection of 

the Al2O3–water nanofluid in concentric annulus under the constant heat flux at the walls. The 

results indicated that at the specific Reynolds and Grashof numbers, increasing nanoparticle 

concentration enhances the Nusselt number at the inner and outer walls while it has no 

considerable impact on the friction factor. Natural heat transfer of a hybrid nanofluid in 2D 

eccentric horizontal cylindrical annulus was evaluated by Tayebi and Chamkha [27]. It was 

concluded that use of the Cu–Al2O3/water hybrid nanofluid provides a better thermal and 

hydrodynamic efficiency in comparison with the Al2O3/water nanofluid. 

To investigate the nanofluid flow, the first and second laws of thermodynamics can be 

considered. The minimum entropy generation can be obtained by applying the second law of 

thermodynamics in engineering problems. Several researchers have applied the second law of 

thermodynamics for studying the nanofluid attributes [28-30]. Mahian et al. [31] conducted a 

comprehensive review on entropy generation in nanofluid flow. Bianco et al. [32] studied 
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turbulent nanofluid flow and entropy generation inside a circular pipe under constant temperature 

boundary condition. They showed as nanofluid volume fraction increases, pumping power and 

entropy generation intensify. Bahiraei and Mohammadi Majd [33] investigated the water–Al2O3 

nanofluid flow within a triangular minichannel, while the constant wall heat flux was considered 

as boundary condition. Their results demonstrated that by the increase of the particle size, total 

entropy generation and Bejan number increases and reduces, respectively.  

According to the presented literature survey and to the best knowledge of the authors, forced 

convection of nanofluids inside three-dimensional concentric annuli under constant temperature 

boundary condition has not been investigated so far via two-phase methods. In the current 

research, the first and second laws of thermodynamics are considered. The significant parameters 

including skin friction coefficient, heat transfer rate, temperature distribution, entropy generation 

rates as well as nanoparticle distribution are investigated and discussed in detail. 

 

2. Description and formulation of the model 

2.1. Two-phase mixture procedure  

The two-phase mixture procedure is employed with considering the fact that the coupling 

between phases is strong. In two-phase mixtures, many parameters like gravity, sedimentation, 

fluid and solid particles friction, and Brownian diffusion may influence behavior of mixtures. 

Consequently, for simulation of nanofluid flows, the slip velocity between the fluid and particles 

must be considered. Generally, two-phase models present better prediction for flow of 

nanofluids, and take into account solid and fluid interactions [26]. In this approach, instead of the 

separate equations for each phase, the governing equations are utilized for the mixture. These 

equations are as follows: 
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 Continuity: 

 .( ) 0 mm V   (1) 

 Momentum:  

. , ,m s s  

1

.(  ) .( ) . (    )  g
n

m m m dr s dr sm m

s

V V P V V V


            (2) 

 Energy:  

. . .s s ,

1

. ( T ) .( )s p s m

n

s

V C k T 


                                                      (3) 

 Volume fraction: 

 . . . . ,P.( ) .( )m dr pp p PV V                                                                  (4) 

The mixture velocity is obtained by: 

1

n

ss s

s
m

m

V

V

 





                                                                                                             
(5) 

 ,dr pV  and pfV are respectively the drift velocity (between nanoparticles and mixture) and the 

relative velocity (between nanoparticles and base fluid).  

,dr p p mV V V                                                                                                                                                     (6) 

pf p fV V V                                                                                                              (7) 

where f and p refer to base fluid and nanoparticles, respectively. 

The drift velocity is associated to the relative velocity: 
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 . .

s s
,

1 m

  n

dr p pf fs

s

V V V
 



                                                     (8) 

The relative velocity ( pfV ) and drag coefficient (fdrag) are defined respectively by Manninen et al. 

[34] and Schiller and Naumann [35]. 

2 ( )

18

p p p m
pf

f drag p

d
V a

f

  

 


   

where a is acceleration ( .( ( ) ).m ma g V V    

(9) 

0.6871 0.15Re ,Re 1000

0.0183Re ,Re 1000

p p

drag

p p

f
   

  
  

, Re
m p

p

m

V d


                                                  (10) 

where m  and dp are kinematics viscosity of mixture and nanoparticles diameter, respectively.  

 

2.2. Definition of geometry and boundary conditions 

The geometry under study (i.e. horizontal concentric annulus) is demonstrated in Fig. 1. 

Radiuses of two cylinders are ri and ro (ro = 2ri), and the annulus length is equal to 15Dh (L = 

15Dh). The gravitational force is exerted in the vertical direction. 
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Fig. 1. Geometry under study and relevant coordinate system. 

 

The problem’s boundary conditions are as follows: 

  At the annulus inlet, the flow velocity is only in the z direction. In two other directions, the 

flow velocity is zero. Also, at the annulus inlet, the flow temperature is uniform and constant. 

Therefore, at the inlet: 

 ,     0m,z m,r m,in
V V V V


      and  in T  T                                           (11) 

  For the walls of the annulus, no-slip condition is applied (in three directions, the flow velocity 

is zero). The temperature of walls is constant and uniform (Th): 

Hence, at the walls:  

m,z m,r m, 0V V V      and   Th = 320 K                                                  (12) 

At the annulus outlet, a zero relative pressure is considered. 

P = Patm                                                                                                                                                          (13) 

 

2.3. Properties of nanofluid 

In Table 1, the properties of nanoparticle (Al2O3) and base fluid (water) are given. The 

nanoparticles diameter is 72 nm and they are spherical, and are similar in scale and form.  

 

Table 1. Thermophysical properties of Al2O3 and water [6]. 

Properties Water Nanoparticles (Al2O3) 

ρ (kg/m
3
) 997.1 3970 

μ (kg/ms) 0.000855 - 

Cp (J/kgK) 4179 765 
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k (W/mK) 0.613 40 

 

The utilized equations for calculating nanofluid properties are as follows:  

ρm and Cp,m are obtained as:  

 = (1 - )m f p                                                                                         (14) 

, ,

,

(1 ) f p f p p p

p m

m

C C
C

 


  


                                                                (15) 

The following equation was suggested by Masoumi et al. [36] for dynamic viscosity:   

.

2

72

p p B

m f

d V

C
 


 


                                                                                    (16) 

where BV ,  and C are obtained by the following equations: 

181 B

B

p p p

K T
V

d d



                                                                                         (17) 

3

6
pd





                                                                                                   (18) 

1

1 2 3 4[( ) ( )]f p pC C d C C d C                                                            (19) 

where C1, C2, C3 and C4 are given as: 

C1 = –1133, C2 = –0.000002771, C3 = 90, C4 = –0.000000393 (20) 

The following equation was offered by chon et al. [37] for thermal conductivity:  

0.746 0.369 0.7476 0.9955 1.23211 64.7 ( ) ( ) Pr Re
fm P

f f

f p f

dk k

k d k
                       (21) 

where Prf  and Ref are obtained by following equations: 
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Prf

f f




 
 (22) 

.

2
Re

3

f B

f

f

K T



 
 (23) 

where  is obtained as: 

.10
A

T HB   in which 52.414 10B   ,  A = 247.8,   H = 140       
(24) 

 

2.4. Definition of parameters  

Heat transfer rates for the nanofluid and the skin friction coefficient on the walls are 

calculated respectively by the following equations: 

( ),q mC T Tp m out in
                                                                          (25) 

, 20.5

i

f i

m in

C
V





      and      , 20.5

o

f o

m in

C
V





                                     (26) 

where  is calculated on the inner and outer walls as below:  

( )r

i m i

V

r





      and   ( )r

o m o

V

r





                                                     (27) 

The total entropy generation rate is obtained as: 

t fS S S                                                                                                                                              (28) 

where tS   and fS  are thermal and frictional entropy generation rates, respectively. 

2 2 2

2
[( ) ( ) ( ) ]m

t

k T T T
S

x y zT

  
   

  
                     (29)    

2 2 2 2 2 22[( ) ( ) ( ) ] ( ) ( ) ( )m

f

u v w u v u w w v
S

T x y z y x z x y z

         
          

         


   

 (30) 
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With integrating from Eqs. (29) and (30) on the whole volume, global thermal entropy 

generation rate and global frictional entropy generation rate are obtained.  

.S S d                                                           (31)    

To evaluate the contribution of heat transfer and friction in the entropy generation, a non-

dimensional number (i.e. Bejan number), which is the ratio of thermal entropy generation rate to 

total entropy generation rate, is defined as: 

tS
Be

S
                                                                                                                            (32)    

3. Numerical procedure and validation 

In this simulation, the coordinates are in three directions (Z-θ-r), and the suitable 

combination of meshes is selected in all directions. With increasing the number of cells in three 

directions (the size of the meshes), it is tried to find the optimal mesh for this geometry. Fig. 2 

shows one instance of structured grids listed in Table 2. It is demonstrated that the grid 

containing 55, 55 and 55 cells respectively in the Z (axial), θ (tangential) and r (radial) directions 

is the optimal grid. This is because increasing the number of cells (in three directions) does not 

change significantly the heat transfer rate compared with the mentioned grid. 

 
Fig. 2. Structured grid type. 

 

Table 2. Mesh independency at  = 0.02, Re = 600. 

Grid numbers (Z-θ-r) Heat transfer rate (W) 
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30-30-30 90.21 

35-35-35 101.82 

40-40-40 108.61 

45-45-45 114.36 

50-50-50 118.02 

55-55-55 120.25 

60-60-60 120.56 

65-65-65 120.97 

 

The finite volume technique is used for solving the governing equations (continuity, 

momentum, energy, and volume fraction). For coupling the pressure and velocity, SIMPLEC 

method is utilized and also, the second order upwind procedure is employed for Eqs. (2) and (3) 

[38]. 

In order to ensure the validity of the numerical procedure, the results of the present research 

are compared with two different studies including one experimental work and one numerical 

investigation. The selected parameters include the Nusselt number (Nu) and skin friction 

coefficient (Cf) reported by Mirmasoumi and Behzadmehr [21] at Re = 300, dp =10 nm,   = 0.04 

and Ri=1 (numerical work); and the local convective heat transfer coefficient (h) on the tube wall 

with the length of 1 m at flow rate of 2.6 L/min and  = 0.02 reported by Sheikhnejad et al. [39] 

(experimental work). As can be seen from Fig. 3, there is a proper consistency between the 

results of present numerical work and the above-mentioned studies. It is noteworthy that the 

average deviations of present work’s results in compression with the numerical work and 

experimental study are 1.5% and 4%, respectively. 
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   (a)                                                                                           (b)                                  

 

(c) 

Fig. 3. Comparison between the results of present study with: (a) and (b) numerical work of Mirmasoumi and 

Behzadmehr [21], (c) experimental work of Sheikhnejad et al. [39]. 

 

4. Results and discussion 

The current research investigates the forced convective heat exchange and entropy generation 

of the water–Al2O3 nanofluid within the horizontal concentric annulus by the two-phase mixture 

approach. Constant and uniform temperature boundary conditions on the annulus walls (Ti = To 

= Th) are applied. The annulus aspect ratio and its length (L) are 2 and 15Dh, respectively. 

Various concentrations and Reynolds numbers are considered to evaluate the thermal and 

hydrodynamic attributes of the nanofluid. The local skin friction coefficient, heat transfer rate 
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(q), entropy generation rates, nanoparticle distribution, and temperature profile are obtained and 

discussed at five following sections in details. 

 

4.1. Nanoparticle distribution  

The nanoparticle distribution at the annulus outlet is illustrated at Re = 600 for different 

concentrations in Fig. 4, and at   = 0.05 for different Reynolds numbers in Fig. 5. The 

temperature conditions (constant, uniform and same), nanofluid flow (forced convection), and 

the geometry under study are symmetrical. Therefore, uniform distributions for the nanoparticles 

are observed at the left and right surfaces of the annulus outlet. However, Figs. 4 and 5 show that 

the gravity force affects the distribution of nanoparticles in the annulus. In this regard, 

concentration of solid phase at the outer wall’s bottom side and the upper side of the inner wall 

has increased. On the contrary, solid phase concentration at the outer wall’s upper side and at the 

lower side of the inner wall has reduced. Besides, at the annulus center, the solid phase 

distribution is constant and uniform. The results reveal that at higher concentrations, the 

sedimentation increases compared to the initial value. It can be concluded from Fig. 5 that the 

Reynolds number and gravity force also affect the sedimentation of solid phase. In this situation, 

increment of Reynolds number means the nanofluid velocity increase and therefore, the solid 

phase sedimentation decreases at the bottom of the annulus.  
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                  (a)   = 0.02                                         (b)   = 0.03                                     (c)   = 0.04 

Fig. 4. Solid phase distribution for different concentrations at Re = 600. 

 

 

 

 
 

 

 

(a) Re = 900  

 

(b) Re = 1200 

 

(c) Re = 1500 

Fig. 5. Solid phase distribution for different Reynolds numbers at  = 0.05. 

 

Fig. 6 shows the solid phase distribution within the annulus at Re = 900 and   = 0.05. It is 

found that due to the gravity force, the concentration respectively increases and decreases at the 

bottom and the top of the annulus. As can be observed, the sedimentation increases (at the 

bottom of the annulus) along the annulus. In fact, the boundary layer grows along the annulus 

and affects the slip between the two phases. Based on the results obtained, it can be concluded 

that the solid phase sedimentation strongly depends on the gravity force, Reynolds number, and 

concentration. 
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Fig. 6. Solid phase distribution inside the annulus at Re = 900 and   = 0.05. 

 

4.2. Local skin friction coefficient 

The effect of the solid phase concentration on local skin friction coefficients (Cf,i and Cf,o) is 

shown in Fig. 7 for Re = 600. Increase of concentration leads to increase of the nanofluid density 

and decrease of the velocity gradient. Therefore, with respect to Eqs. (26) and (27), increment of 

the concentration leads to decrement in skin fraction coefficient on the walls. It should be noted 

that with the concentration increment, the velocity and viscosity decreases and increases, 

respectively. The skin friction coefficients on both walls at annulus entrance possess higher 

values in comparison with the region in which L > 1× Dh. This is because that in the entrance 

region, the maximum velocity gradient occurs. Fig. 8 illustrates the non-dimensional velocity 

distribution inside the half of annulus for   = 0.02 and Re = 600. It is seen that the 

hydrodynamic boundary layer is thinner in the annulus entrance and therefore, the maximum 

velocity gradients happen there. 
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Fig. 7. Concentration effects on local skin friction coefficient at Re = 600. 

 

 

Fig. 8. Non-dimensional velocity distribution inside half of annulus at  = 0.02 and Re = 600. 

 

Investigation of the Reynolds number effect on local skin friction coefficients is depicted in 

Fig. 9 for   = 0.05. The local skin friction coefficient decreases with enhancement of the 

Reynolds number because the Reynolds number increment increases the nanofluid velocity, 

which leads to a higher dynamic pressure. Moreover, it is obvious that the slope of friction 

coefficients decreases quickly, and becomes approximately invariant near the inlet. This 

indicates that the growth of the hydrodynamic boundary layer is significant. 
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Fig. 9. Reynolds number effects on local skin friction coefficient for Re = 900, 1200 and 1500 at  = 0.05. 

 

Figs. 7 and 9 demonstrate that the local skin friction factor on the outer wall has the lower 

values in comparison with the corresponding values on the inner wall. The reason is that the 

outer wall has a milder curvature and therefore, velocity gradient on the outer wall is smaller 

than that on the inner wall. 

 

4.3 Heat transfer rate  

Table 3 summarizes the heat transfer rates for different concentrations and Reynolds 

numbers. It can be noticed that the heat transfer augments with the concentration increment. This 

is because the outlet temperature and density of nanofluid increase by enhancing concentration. 

While, in this case, the velocity and specific heat of the nanofluid are decreased. Physically, the 

reason of heat transfer enhancement with the concentration increment is increase of the nanofluid 

thermal conductivity, which intensifies the convective heat transfer coefficient. As can be 

observed, the heat transfer rate also enhances with an increase in Reynolds number. Indeed, 

Reynolds number increment means an increase in the nanofluid velocity whereas the outlet 
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temperature reduces. In effect, the mass flow rate is greater for higher Reynolds numbers, and 

physically, the thermal boundary layer is thinner. 

 

Table 3. Heat transfer rates for several values of Re and  . 

Re = 600 

  0.02 0.03 0.04 

q (W) 120.25 155.72 175.80 

  = 0.05 
Re 900 1200 1500 

q (W) 229.44 257.51 282.38 

 

4.4. Temperature distribution  

In the current paper, the heat transfer mechanism is forced convection and therefore, the 

temperature distribution inside the annulus is symmetrical. As a result, only one half of the 

annulus is presented. Fig. 10 shows distribution of the nanofluid temperature for Reynolds 

numbers of 100 and 200 with concentration of 4  % in the annulus half. The temperature of inner 

and outer walls of the annulus are constant, uniform and same (Th = 320 K). Also, at the annulus 

inlet, the temperature of nanofluid is uniform and constant (Tin = 300 K, see Fig. 11a). The 

nanofluid temperature increases along the annulus, and its value at Re = 200 is much lower than 

that at Re = 100. This is because at Re = 200, the nanofluid velocity is greater and therefore, the 

thickness of the thermal boundary layer is smaller. In addition, the residence time of the flow is 

lower for the higher Reynolds number. It is found that the nanofluid flow develops at L≅14 Dh 

for Re=100 whereas the flow development occurs at L > 15 Dh for Re=200. Therefore, for Re = 

100 at the annulus outlet, the temperature value is approximately 320 K (see Fig. 11b). While, 

for Re = 200, the temperature value is different (see Fig. 11c). Also, it can be seen that due to the 
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greater surface of the outer cylinder than the inner cylinder, the more heat reaches the nanofluid 

flow from this cylinder. It is noteworthy that the temperature of both cylinders is same and 

uniform. 

 

 

 

 
(a) 

 

 
(b) 

Fig. 10. Temperature distribution (K) inside the annulus half for   = 0.04 at: (a) Re=100, (b) Re=200. 

 

   

(a)                                                       (b)                                                           (c) 

Fig. 11. Temperature distribution for   = 0.04: (a) at annulus inlet, (b) at annulus outlet for Re=100, (c) at annulus 

outlet for Re=200. 

 

4.5. Entropy generation rates 

Table 4 (row a) shows global thermal and frictional entropy generation rates as well as Bejan 

number for Re = 600 at different concentrations. It is found that the frictional entropy generation 

rate reduces by increment of the concentration, because the velocity gradient and temperature 
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decreases and increases, respectively, while the nanofluid viscosity intensifies. In addition, the 

thermal entropy generation rate and Bejan number increase with the increment of concentration. 

The reason is that thermal condutivity enhances, and thermal boundary layer grows quicker with 

the concentration increment, which intensifies the global thermal entropy generation rate. 

Moreover, the value of Bejan number shows that the entropy generation due to the heat transfer 

is dominant because Bejan number is close to 1. Table 4 (row b) presents the global thermal and 

frictional entropy generation rates for different Reynolds numbers at   = 0.05. It can be observed 

that the thermal and frictional entropy generation rates intensify as the Reynolds number 

increases. This is due to the fact that by increasing the Reynolds number, the velocity gradient 

intensifies while the nanofluid temperature decreases. 

 

Table 4. Integrated rates of thermal and frictional entropy generation as well as Bejan number at different 

concentrations and Reynolds numbers. 

a Re = 600 

  0.02 0.03 0.04 

St (W/K) 0.0216 0.0244 0.0271 

710S
f

 (W/K) 3.181 3.112 3.0813 

Be 0.9999852 0.9999872 0.9999886 

b   = 0.05 

Re 900 1200 1500 

St
(W/K) 0.0359 0.0410 0.0452 

610S
f

 (W/K) 0.7213 1.3195 2.1131 

 

Fig. 12 demonstrates the contour of thermal entropy generation rate for   = 0.02 and Re = 

600. Obviously, the more significant thermal entropy is generated near the annulus inlet 
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compared to near the annulus outlet. In fact, the thermal boundary layer is thinner at the region 

adjacent to the inlet. In addition, the lowest and highest thermal entropy generation rates happen 

respectively in the annulus central part and near the walls because the highest temperature 

gradients occur in the vicinity of the walls. 

 

 

Thermal entropy 

generation rate 

(W/m
3
K) 

 

Fig. 12. Thermal entropy generation rate distribution inside the annulus half for   = 0.02 and Re = 600. 

 

The contour of local Bejan number at the cross section through center of the annulus is 

presented in Fig. 13 for   = 0.02 and Re = 600. It is found that the value of Bejan number is very 

close to 1 in significant part of the annulus. In fact, there is a great temperature difference 

between the nanofluid and the annulus walls and therefore, noticeable thermal entropy is 

generated, which results in large Bejan numbers. It should be noted that the growth of the 

hydrodynamic boundary layer is faster than that of the thermal boundary layer and as can be seen 

at the beginning of the annulus, because the thermal boundary layer has not reached the central 

region, Bejan number is very small there due to very low temperature gradients. In addition, it is 

clear from the figure that with increase of the distance from the annulus inlet, Bejan number 

develops towards the central region thanks to the growth of thermal boundary layer. 
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Bejan number 
 

Fig. 13. Bejan number distribution at cross section through center of the annulus for   = 0.02 and Re = 600. 

 

5. Conclusion 

In the present study, behavior of the water–Al2O3 nanofluid forced convection within the three-

dimensional annulus is simulated via the two-phase mixture model regarding the first and second 

laws of thermodynamics. The walls of the annulus are subjected to constant temperature 

boundary condition. The heat transfer rate, second law attributes (i.e. thermal and frictional 

entropy generation rates as well as Bejan number), solid phase distribution, local skin friction 

coefficient, as well as the nanofluid temperature distribution are evaluated at different 

concentrations and Reynolds numbers. The major findings of the current investigation are as 

follows:   

 Concentration of the solid phase increases at the bottom of the annulus and at the upper 

side of the inner cylinder. Moreover, the concentration decreases at the top of the annulus 

and at the lower side of the inner cylinder. 

 Sedimentation of the solid phase at the bottom of the annulus decreases with increment of 

Reynolds number.  

 The friction coefficients intensify by increasing the concentration, while decrease with 

the Reynolds number increment. Moreover, the friction coefficient on the outer wall has 

the less value compared to the inner wall and also, has much higher value at the annulus 

entrance.  
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 The nanofluid temperature increases along the annulus, and has much less value at higher 

Reynolds numbers. Moreover, at lower Reynolds numbers, the flow thermally develops 

at a location closer to the annulus inlet. 

 Heat transfer rate enhances with increment of either concentration or Reynolds number.  

 By increasing the Reynolds number, thermal and frictional entropy generation rates 

increase. 

 As the solid phase concentration increases, thermal entropy generation rate and frictional 

entropy generation rate increases and decreases, respectively. 

 Bejan number is very close to 1 at all states under study, which shows the dominance of 

thermal entropy generation. 

 The lowest and highest thermal entropy generation rates happen in the annulus central 

part and near the walls, respectively. 
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