
Affect Lexicon Induction For the
Github Subculture Using Distributed

Word Representations

by

Yuwei Jiao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Yuwei Jiao 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Sentiments and emotions play essential roles in small group interactions, especially
in self-organized collaborative groups. Many people view sentiments as universal con-
structs; however, cultural differences exist in some aspects of sentiments. Understanding
the features of sentiment space in small group cultures provides essential insights into the
dynamics of self-organized collaborations. However, due to the limit of carefully human
annotated data, it is hard to describe sentimental divergences across cultures.

In this thesis, we present a new approach to inspect cultural differences on the level of
sentiments and compare subculture with the general social environment. We use Github,
a collaborative software development network, as an example of self-organized subculture.
First, we train word embeddings on large corpora and do embedding alignment using linear
transformation method. Then we model finer-grained human sentiment in the Evaluation-
Potency-Activity (EPA) space and extend subculture EPA lexicon with two-dense-layered
neural networks. Finally, we apply Long Short-Term Memory (LSTM) network to analyze
the identities’ sentiments triggered by event-based sentences. We evaluate the predicted
EPA lexicon for Github community using a recently collected dataset, and the result proves
our approach could capture subtle changes in affective dimensions. Moreover, our induced
sentiment lexicon shows individuals from two environments have different understandings
to sentiment-related words and phrases but agree on nouns and adjectives. The sentiment
features of “Github culture” could explain that people in self-organized groups tend to
reduce personal sentiment to improve group collaboration.

iii

Acknowledgements

This thesis cannot be completed without the help from many people. I would like to
take this opportunity to thank them all.

First and foremost, I would like to thank my supervisor, Professor Jesse Hoey. It
was a great honour to work with him throughout my studies. Thanks to Professor Mei
Nagappan and Professor Yaoliang Yu for being on my committee. Thanks to all my friends
and labmates for their support. Last but not least, I would also thank my boyfriend Jun
Zhao and my parents for supporting all the time.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions and Outline . 3

2 Related Work 5

2.1 Sentiment Analysis . 5

2.1.1 Evaluation-Potency-Activity Model 5

2.1.2 Hyperspace Alignmemt . 6

2.1.3 Sentiment Lexicon Induction . 6

2.1.4 Affective State Prediction . 7

2.1.5 Sentiment Analysis on Github Data 8

2.2 Natural Language Processing . 9

2.2.1 Bag of Words . 9

2.2.2 Distributed Word Representation 9

2.2.3 Word Similarities . 10

vi

3 Alignment Word Space 11

3.1 Introduction . 11

3.2 Background . 12

3.3 Method . 15

3.3.1 Linear Transformation . 15

3.3.2 Stochastic Gradient Descent . 16

3.3.3 Singular Value Decomposition . 16

3.4 Evaluation . 17

3.4.1 Github Dataset . 17

3.4.2 Pre-trained Word Embeddings . 18

3.4.3 Anchor Words Selection Strategy 19

3.4.4 Metrics . 19

3.5 Results and Discussion . 20

3.5.1 Part One . 20

3.5.2 Part Two . 24

3.5.3 Part Three . 26

3.6 Conclusion . 28

4 EPA Expansion 29

4.1 Introduction . 29

4.2 Background . 30

4.3 Methods . 32

4.3.1 Motivation . 32

4.3.2 Graph-based Label Propagation . 32

4.3.3 Support Vector Regression . 35

4.3.4 Artificial Neural Networks . 37

4.4 Evaluation . 37

4.4.1 Datasets . 37

vii

4.4.1.1 Pre-Trained Word Embeddings 38

4.4.1.2 Warriner EPA dataset . 38

4.4.1.3 Themis EPA dataset . 39

4.4.2 Methods for Sampling Seed Words 40

4.4.3 Neural Network Structure . 41

4.4.4 Evaluation Metrics . 41

4.4.5 Methods for Github EPA Expansion 42

4.5 Results and Discussion . 43

4.5.1 Training Mapping Models to Predict EPA 43

4.5.1.1 Graph . 43

4.5.1.2 SVR . 46

4.5.1.3 Neural Network . 46

4.5.1.4 Comparing Seed Words Threshold and Size 47

4.5.1.5 Training Hidden Models within Github Subculture 49

4.5.1.6 Examples of Predicted EPA lexicon 51

4.5.2 Exploration on Expanded EPA lexicon 51

4.6 Conclusion . 57

5 State Prediction 59

5.1 Introduction . 59

5.2 Background . 60

5.2.1 Related Work . 60

5.2.2 LSTM . 61

5.3 Evaluation . 62

5.4 Results and Discussion . 63

5.4.1 SVO EPA Prediction . 63

5.4.2 Sentiment Prediction on Github Comments 64

5.5 Conclusion . 66

viii

6 Conclusion 68

6.1 Future Work . 69

References 71

Glossary 81

ix

List of Tables

3.1 Model evaluation and comparison on five corpora. Pearson and Spearman
correlation with p-values are the results in word similarity task. Question
coverage and accuracy are the results in word association task. Parameter
settings: fasttext sg model, vector dimension as 300, and mincount as 5. . . 24

3.2 Using NLTK Part-of-Speech tag, we divided the intersected vocabulary of
Google-wv and Github-wv-aligned into three catogories: noun, verb, and
adjective/adverb. We calculate the average cosine distance and standard
deviation (std) for each word in two spaces. 26

3.3 Examples of words and their synonyms in Google-wv and Github-wv-aligned.
Action words show significant semantic shift, while sentiment wordsdo not
have much shift. But sentiment words show subtle potency differences across
the two cultures. 27

4.1 The VAD Distribution in Warriner’s dataset. valence=evaluation, domi-
nance=potency, arousal=activity. 39

4.2 The EPA Distribution in Themis EPA dataset. The variance values of three
affective dimensions are half of the Warriner’s dataset. 40

4.3 Osgood proposed 43 words that are extremely expressive on three affective
dimensions [68]. E+/E- represent those words are very good/bad; P+/P-
represent those words are very powerful/powerless; A+/A- represent those
words are very active/inactive. 41

4.4 Parameter reference table for three models used in this chapter, which are
graph-based label propagation, support vector regression (SVR), and neural
network. In the following sections, we first do experiments on parameter
tuning for each model, then study on the common parameters. Finally we
give comparisons of the best model using three algorithms. 44

x

4.5 Two approaches of training mapping models. Figure 4.5a shows the mean
error rate (MAE) of training on Github-wv word embeddings to predict
434 Themis-EPA ratings, and Figure 4.5b shows the mean error rate of
our proposed approach, training on Google-wv word embeddings to 1,000
Warriner-EPA ratings. 50

4.6 Examples of the results of our mapping model f (NN). We take word
embeddings Google-wv as input to the model, and compare the predic-
tions (General-EPA) with ground truths (Warriner-EPA). 52

4.7 Comparison of the performance of using three methods. There are two sub-
sets in the table, part is the intersected concept vocabulary of Warriner-
EPA, General-EPA, Github-EPA, and all is the intersected concept vo-
cabulary of General-EPA and Github-EPA. We calculate the prediction
accuracy (ACC), mean absolute error (MAE), and root mean square er-
ror (RMSE). ACC is calculated by counting the number of predictions that
are within the range of (mean - std, mean + std) in Themis-EPA. The
highest score are underlined in the table. 53

4.8 Examples of predicted Github concepts’ EPA in detail. 54

4.9 Detailed comparison of EPA lexicon between general culture and Github
community. 56

5.1 Affective prediction of 1,535 event-based sentences. MAE=mean absolute
error. RMSE=root mean squared error. LSTM model can achieve better
results compared with using ACT [1]. 64

5.2 LSTM model’s results on predicting basic sentiments. ETS and ETO are
sentiments towards subject and object respectively. SVO elements extracted
by parser are denoted as: subject, behavior, and object. 65

5.3 Apply LSTM model to predict Github comments sentiments. The SVO
parser could extract from 976 Github comments successfully. We use the
LSTM model to predict sentiments triggered by those sentences. 66

xi

List of Figures

1.1 The architecture of our proposed approach. There are three components of
the architecture. First is word vector hyperspace alignment (Chapter 3).
Next is word vector to affective dimensions mapping models (Chapter 4.1).
The final component is the applications our predictions and models (Chap-
ter 5), where the green parts show how to predict words’ affective meanings
in subcultures and apply them to classify sentiments triggered by sentences. 3

3.1 Simple 2D visualization of distributed word vector representations of num-
bers and animals in English (left) and Spanish (right) [61]. 13

3.2 The Github word embeddings evaluation results of word similarity test (Word-
sim353) in Fig 3.2a and Fig 3.2b, and word association test (Questions-
words) in Fig 3.2c. There are four models: word2vec cbow, word2vec sg,
fasttext cbow, and fasttext sg used in the experiments. Vector space di-
mensions (size) ranges between 200 and 400, and token frequency thresh-
old (mincount) ranges between 0 and 20. Figure 3.2d demonstrates the
trade-offs between vocabulary size and quality. 21

3.3 The Twitter word embeddings evaluation results. They are similar to the
experiments described in Fig 3.2. 22

3.4 The WikiText word embeddings evaluation results. They are similar to the
experiments described in Fig 3.2. 23

3.5 The figures show the performance changes under different scales of training
dataset using SVD and SGD method. The blue line indicates the average
distance between word pairs in training process, while orange line is the
average distance on 1,000 testing word pairs. 25

xii

4.1 The workflow of EPA expansion on Github. In last chapter 3, we demon-
strate learning the hyperspace alignment function g. In this chapter, we
focus on training the mapping model f , which maps from word vector space
to three-dimensional EPA space. 31

4.2 In this thesis, we propose using three methods to train the mapping models,
which are graph-based semi-supervised learning, support vector regression,
and neural network. 33

4.3 A illustration of why unlabeled data could be helpful [15]. The knowledge
of having more points in the banana shape allows to decide more accurate
boundaries for classification. Otherwise, the decision boundary would be a
simple straight line separating the two labeled nodes. 34

4.4 The Structure of SVR. yi = w · xi + b is the prediction for the sample. The
purple points are predictions within the ε error ranges, while yellow points
are beyond the margin. 36

4.5 Green: evaluation/valence. Red: activity/arousal. Blue: potency/dominance.
The average values for evaluation/valence and potency/dominance are pos-
itive, however, it is negative for activity/arousal. 39

4.6 The Structure of Neural Network in EPA Expansion. The input vector
has 300 dimensions. The first layer has 128 units followed with an “tanh”
activation layer. The second layer has same structure with the first layer
except there are 32 units. The last layer is a three-unit dense layer without
activation function. 42

4.7 Graph Propagation Parameter Tuning. Figure 4.7a shows the MAE values
on three affective dimensions of the graph propagation models trained with
various enn and sigma settings. Figure 4.7b shows how propagation iter-
ations affect the model performance (MAE). Figure 4.7c demonstrates the
relation between clamping factor and MAE value. 45

4.8 SVR Epsilon Tuning. We experiment on training SVR models with the
epsilon ranging from 0 to 0.5. The figure shows how epsilon affect the
perforamance (MAE) of three affective dimensions. 46

4.9 Neural Network Epoch and Batch Size. We experiment on training neural
network models with different batch size and epoch settings. The figure
shows the mean absolute errors (MAE) on evaluation-potency-activity di-
mensions. 47

xiii

4.10 Parameter tunings for training dataset selection (parameter epa and seed).
We experiment on three machine learning models described above: graph
propagation (graph), SVR (svr), and neural network (nn). And we further
test if applying uniformization algorithm described in Section 4.4.1.2 can im-
prove the performance or not (denoted as True in the legend). Figure 4.10a
and Figure 4.10b show the mean absolute error (MAE) on three affective
dimensions of the three models with and without uniformization. 48

4.11 A comparison of the supervised learning models performance (SVR and NN).
Because of the limit of labeled data (vocab(Github-wv) ∩ vocab(Themis-
EPA) = 434 labeled concepts), we apply 5-fold cross validation. 49

4.12 Comparison of EPA distribution between general culture Themis-EPA and
Github community Github-EPA. The evaluation, potency, and activity rat-
ings in Github subculure are more concentrated with smaller standard de-
viations, comparing with the general culture. 55

5.1 The structure of LSTM used to predict EPA states of SVO model. The
architecture consistes three layers: the input SVO word embeddings layer,
the LSTM layer, and the output affective state layer. There are two hidden
dense layers connected between the outputs from LSTM layer and the final
output. 62

xiv

Chapter 1

Introduction

1.1 Motivation

Sentiment is closely associated with human daily life and activities. It could be the con-
sequence of single or multiple events, and also continuously affects human cognition and
behaviors. It is commonly agreed that sentiments are complex states of feelings involving
several components, including social environments, subject experiences and psychological
changes. Understanding the underlying sentimental states of individuals or groups would
be beneficial to many research areas as well as to industrial products. For example, in-
telligent home assistants could gather the user’s sentiment and provide more customized
service; leaders and managers in companies or organizations could do group collabora-
tion evaluation with the help of individuals’ sentiment analysis; sociologists and politicians
could measure public reactions to newly published regulations.

In the THEMIS.COG project, we aim at modeling collaboration dynamics in distributed
communities and providing insights into the social and psychological mechanisms of self-
organized collaborative groups like Github. There are pieces of evidence that sentiments
play an essential role in group collaboration [22, 4], as positive sentiments encourage people
to contribute and innovate, while negative sentiments reduce the community’s creativity
and vitality. Previous work has shown great success in modeling and analyzing sentiments
and interactions on Github [75, 76]; however, it ignores the sentimental divergence across
communities and cultures. Sentiment is generally recognized as a universal construct and
scientists believe it as genetically determined so that basic facial expressions and spoken
pitch patterns are interpreted and perceived in the same way across regions and cultures.
For example, smiling face represents friendliness while yelling at people shows anger. How-

1

ever, there exist subtle cultural differences in sentiment because the environment and social
experiences also shape the way people feel and express [59].

So what is culture? Culture is made up of the shared patterns of behaviors and inter-
actions, cognitive constructs and understandings that are learned through socialization. A
subculture is a group of people within a larger culture who develop norms and maintain
values that are different from the general culture. Github as a self-organized collabora-
tive software development network could be recognized as a subculture for several reasons.
First, people in this community are mainly programmers and know about coding. Second,
they share the same goals of software and tool iteration and development. Third, there are
specific rules to communicate using pull requests comments and commit messages. Usually,
it is difficult to describe the sentimental features of a given subculture like Github because
it requires quantities of human annotated data on images, texts or audio. However, such
high-quality data would be expensive as well as hard to collect, since people are influenced
by more than one subculture, and it’s almost impossible to ensure the annotation mainly
represents the subculture we want. Moreover, it is complicated to describe the sentimental
states of individuals in a subculture, so it would be even more challenging to extract the
general features of a group of people and compare horizontally across subcultures.

Word embedding [62, 60, 52] is a common used method in most recent natural lan-
guage processing projects. Much work has been done in the field of semantic shifts and
syntax changes across time and cultures. Austin Kozlowski et al. [49] and Nikhil Garg et
al. [24] explore the linear relationship of word embeddings and demonstrate applications
to analyze gender and class association in history. William Hamilton et al. [31, 32] propose
a method for quantifying semantic change by evaluating word embeddings and prove the
rate of semantic change is proportional to word frequency and polysemy. Aparna Garimella
et al. [25] identify a set of words with significant usage difference between American and
Australian personal writings and investigate language attributes and underlying psychol-
ogy mechanisms across cultures. To best describe and compare group sentiments, we use
the continuous three-dimensional Evaluation-Potency-Activity (EPA) space. Introduced
by Osgood [69, 70], it is a vector space that describes the direction and magnitude of an
affective meaning in three dimensions: Evaluation (pleasant/unpleasant), Potency (pow-
erful/powerless) and Activity (active/inactive). There are several cross-culture empirical
studies of EPA ratings. Each affect meaning is measured on a scale from -4.3 (infinitely neg-
ative) to +4.3 (infinitely positive). Studies have shown that most of the affective meanings
are shared across culture and would not change significantly over time. However, specific
social events could make a difference to a set of related affective meanings [40].

This thesis is mainly based on two hypotheses: first, that the cultural differences in
language usage could be reflected in distributed word representations; second, that the

2

affective meanings of sentiments vary from one subculture to another. In this thesis, we
demonstrate a new method to induct and expand sentiment lexicons across subcultures.
Moreover, we propose a framework to describe the sentimental features of subcultures and
explore sentimental divergence across cultures.

Figure 1.1: The architecture of our proposed approach. There are three components of
the architecture. First is word vector hyperspace alignment (Chapter 3). Next is word
vector to affective dimensions mapping models (Chapter 4.1). The final component is the
applications our predictions and models (Chapter 5), where the green parts show how to
predict words’ affective meanings in subcultures and apply them to classify sentiments
triggered by sentences.

1.2 Contributions and Outline

Figure 1.1 shows the architecture of our proposed approach in this thesis. The main
contributions of this thesis are:

• Align two distributed word vector spaces using a statistical inference (singular-value
decomposition) method and linear transformation with stochastic gradient descent
modeling. The average cosine distance reduces from 1.0 to 0.6 by using the proposed
alignment approach.

• Use distributed word representations to predict a sentiment lexicon using graph-based
semi-supervised learning, support vector regression and artificial neural networks.
The mean absolute errors of 13,790 concepts are 0.63, 0.70, 0.75 on three affective
dimensions respectively, scaling from -4.3 to 4.3.

3

• Generate the sentiment dictionary of 39,366 concepts from general culture to a given
subculture (Github community culture in this thesis). Evaluating on 371 concepts,
the mean absolute errors are 0.57, 0.66, 0.58 on three affective dimensions in the
same scales as above.

• Integrate the augmented sentiment lexicon with a sentence sentiment recognizer using
Long Short-Term Memory (LSTM) model. The model achieves a 95% accuracy of
predicting sentiments triggered by news headlines, but only 48% when performing
on Github comments data.

• Demonstrate the sentiment divergence between the universal general culture and
a self-organized collaboration community (Github). There are significant affective
shifts of words related to sentiments and emotions.

The structure of this thesis is as follows. Chapter 2 provides background information
and related work in recent years regarding natural language processing, sentiment anal-
ysis as well as culture difference in sentiment. Chapter 3 introduces a set of commonly
used methods to align distributed high-dimensional word embeddings, including singular
value decomposition (SVD) and linear transformation modeling with stochastic gradient
descent. We evaluate the performance of these methods on several separately trained word
vector models under different anchor words selection strategies. Within the aligned word
vector space, we propose doing sentiment lexicon expansion for a subculture and discuss
the sentimental meaning divergence on the level of words across subcultures in Chapter 4.
More details about datasets, sampling methods, model selection, and evaluation metrics
are provided in this chapter too. In Chapter 5, we apply the aligned distributed word rep-
resentations and augmented sentiment lexicon to predict sentiments evoked from sentences
using a LSTM network. Sentiment analysis results support the hypothesis that Github is a
collectivist culture instead of individualist. Conclusion and future work are in Chapter 6.

4

Chapter 2

Related Work

2.1 Sentiment Analysis

2.1.1 Evaluation-Potency-Activity Model

There have been several theories trying to describe sentiments. A sociology theory called
Affect Control Theory (ACT) uses a three-dimensional vector to describe sentiments.
The basis vectors of the sentimental space in this theory are called Evaluation (pleas-
ant/unpleasant), Potency (powerful/powerless) and Activity (exciting/calm). Affect Con-
trol theory proposes that individuals process words and events as symbols or concepts
which are shared among groups of people. ACT represents social behaviors with an Actor-
Behavior-Object model. It uses a three-dimensional EPA profile as the fundamental senti-
ments and proposes that it is important for individuals to maintain the transient impres-
sions. Fundamental sentiments are representations of social objects, such as interactants
identities, behaviors and environmental settings in EPA space. Transient impressions are
the result of social events corresponding to fundamental sentiments. Sentiments arise be-
cause of the differences between fundamental sentiments and transient impressions. The
equations have been obtained through empirical studies.

Usually, EPA profiles are measured through surveys where annotators rate identities
and behaviors on a numerical scale from -4.3 (infinitely bad, powerful or inactive) to
4.3 (infinitely good, powerful or lively). People from a similar cultural background would
reach an agreement about the EPA values, and the affect ratings are relatively stable over
time. For example, a baby is seen as (1.63, -1.64, 0.3) which is described as good, quite

5

weak and not very active. While the EPA value of a mother is (2.48, 1.96, 1.15) which
means kind/good, much more powerful and active compared to a baby [39].

2.1.2 Hyperspace Alignmemt

High-dimensional distributed representations of words and phrases enable people to reason
about new facts from texts, conversations, and knowledge graphs. The similarity of two
entities could be defined by their cosine distances in this space. Usually, word vectors
are trained online, where a text corpus is fed into the training network all at once. On-
line training ensures vectors across language, regions, time series and knowledge graphs
are within the shared space. Mikolov et al. [61] show that word vectors can also be ob-
tained offline. It enhances the feasibility and scalability to obtain sets of word vectors
independently. Tomas Mikolov et al. first proposed the approach of using similarity of
distributed word representations [61] as complementary to the existing statistical machine
translation systems [47, 46, 30], which shows the geometric arrangement similarity of sim-
ilar words (numbers and animals) in high dimensional vector space between English and
Spanish. Taking the advantage of a linear transformation (rotation and scaling), they can
infer missing dictionary entries of words and phrases through projections even between lan-
guages that are substantially different, for example, English and Chinese. Moreover, this
method could also give a similarity score for each word pair. The linear projection method
archives great success despite the simplicity. Following Mikolov’s work [61], Samuel Smith
et al. [82] prove further that the optimized linear transformation between two vector spaces
is orthogonal. Therefore the alignment could be achieved using singular value decomposi-
tion (SVD) instead of using SGD. The SVD method is more robust to noise compared to
SGD, and they improve the precision from 34% in previous work to 43% by introducing
inverted softmax to identify translation pairs.

2.1.3 Sentiment Lexicon Induction

One of the most popular methods of sentiment analysis tasks is to use sentiment lexicons
that associate words with their polarity, either positive or negative. Such lexicons are
composed of a relatively small set of words with semantic orientation (valence), or in multi-
dimensional space of evaluation (valence), potency (dominance), and activity(arousal).
Osgood first carried out a large set of cross-cultural studies and introduced the first affective
meaning dictionary [68, 70, 69]. Based on this work, Heise further measured the affective
ratings in several countries [37, 38, 39].

6

There are two primary methods used for polarity acquistion: corpus-based methods and
thesaurus-based method. The corpus-based methods utilize a small set of labeled words
and induce the sentiment lexicon based on co-occurrence statistics from the corpus. Some
general co-occurence features include term frequency-inverse document frequency (TF-
IDF), SVD [88], syntactic information [34], etc. People also use statistics gathered online
to create lexicon for specific domain. Astudillo et al. [5] proposed a regression model to
create a Twitter sentiment lexicon using skip-gram word embeddings. Rothe et al. [77]
transformed word embeddings to lower dimensional representations by training a gradient
descent algorithm with two objective functions. Fast et al. [20] combined skip-gram word
embeddings with crowd-sourcing annotations to map words into 200 predefined categories.
The thesaurus-based methods rely on lexical relationships in WordNet and other human-
annotated resources, for example, WordNet [63], General Inquirer [84], etc. Kamps et
al. [45] built a lexical network of snonyms and antonyms and computed the sentiment
orientation by measuring the relative distances between words and seeds (e.g., bad and
good). Rao et al. [74] presented extensive evaluations of label propagation methods using
dictionay, copurs, and graph to induce words polarity. Joseph et al. [43] futher compared
the relationships of senmantic similarity and the identities of annotators (e.g., student,
mother). A number of studies use graph-based learning methods to induce sentiment
polarity. The general idea is to use a few already labeled data to label a set of unlabeled
data within a graph, which encodes the relationships between words. Velikovich et al.
proposed to build co-occurance frequency graph and induce polarity lexicons [89]. A few
researchers explore to expand multi-dimensional sentiment lexicons. Kamps et al. [45]
extended a three-dimensional sentiment lexicon based upon WordNet similarities, focused
mainly on adjectives.

2.1.4 Affective State Prediction

Sentiments have been studied extensively in many fields like computer science, psychology,
and sociology in recent years. Although there is psychological evidence showing sentiments
are perceived in more than one dimension, most proposed theories adopt discrete appraisal
theory by representing sentiments with discrete labels, such as positive, negative, neutral,
or happy, sad. Some commonly used features in sentiment analysis include part-of-speech
tagging, n-grams, term weighting, sentiment lexicons, and syntactic dependencies [71].
Unsupervised learning approaches usually calculate the difference between the point-wise
mutual information (PMI) and determine the semantic orientation of sentence or docu-
ment. Advanced approaches build more structured models by taking semantic taxonomy,
the interaction of words or bag-of-words techniques into consideration. A framework is

7

proposed by Coecke et al. which constructs a sentence vector as a function of its word
vectors [14]. There are several recent studies tackled to predict readers’ sentiments instead
of from the writers’ perspective.

Alm et al. [3] annotated and analyzed sentiments in a corpus of children’s stories. They
utilized Ekman’s basic sentiments [18] and concluded that the sentiments in fairy tales
often start with neutral sentiments and end with happy one. Lin et al. [56] proposed their
method of using bigrams features, affix similarities, and text metadata to classify Chinews
news articles. Bhowmick et al. [8] presented a multi-label classification method to classify
news articles into multiple sentiment classes (e.g., disgust, happiness, and sadness) with
an accuracy of 77%. Kozareva et al. [48] presented an unsupervised learning method that
computes PMI scores by querying search engines. Ahothali and Hoey explore predicting
sentiments for each news headline using an augmented EPA lexicon and ACT equations [1].
They decompose sentence into subject-verb-object and associate subject with the actor,
verb with the behavior and object with the object in ACT. MingLei Li et al. further
propose to use LSTM learning method using word embeddings to predict the affective
states of a described event [54]. They claim the method outperform the linear model in
the ACT and most importantly, there is no need to construct affect lexicons manually.

2.1.5 Sentiment Analysis on Github Data

Github 1 is a collaborative code hosting site built on top of the git version control system.
It integrates social features which allow developers to communicate and collaborate. The
main feature of Github is the fork and pull model, which enables users to create a copy
of the repository and submit the pull requests to the project master branch. Human
activities evoke sentiments and have positive or negative effects on group collaborations.
It is a challenging task to determine sentiments in open source projects.

There has been some work done in this direction. Guillory et al. show the possibility
of sentiment analysis on mailing lists and discussion boards [28]. Murgia et al. also
perform a feasibility study of sentiment mining using issue reports of Apache software
foundation [66]. Their work is based on Parrott’s sentiment framework [72] that classifies
six basic sentiments into love, sadness, anger, joy, surprise, and fear. Guzman et al. analyze
60,425 Github commit comments [29] with the help of a lexical sentiment extraction tool
called SentiStrength, which can rate comments within the range of [-5, 5]. However, the
tool only analyzes the polarity (positive, negative or neutral) without a finer granularity
of sentiments. Pletea et al. explore sentiment analysis on software security discussions

1https://github.com/

8

on Github [73]. They mainly use the NLTK library to predict the probability of being
positive, neutral or negative.

However, Lin et al. exploit commonly used tools to identify the sentiment of software
engineering related texts in their studies [55], and their results show none of the sentiment
analysis tools are ready for real usage in software engineering related discussions yet. In
their studies, they focus on three software engineering datasets, categorize sentiments as
positive, neutral and negative, and experiment with six state-of-art sentiment analysis
tools. The three software engineering datasets are from Stack Overflow, issue tracker
comments, and mobile application reviews. The analysis of results reveals that all the
experimented tools fail to discriminate between positive/negative sentences with neutral
ones. Therefore, the tools are not reliable at all. As a conclusion, they suggest we should
be more careful when doing sentiment analysis and opinion mining in software engineering
in practice.

2.2 Natural Language Processing

2.2.1 Bag of Words

The bag-of-words model is a simplifying term used in natural language processing area [90].
In this model, a sentence or a document is represented as a multiset of its words. A common
problem with text is that the text is messy, and machine learning algorithms prefer well-
defined input and output format. A bag-of-words model extracts features from text for
use, and discards any information about the order and structure of the document. The
basic intuition is that, documents are similar if they share same content. Despite the
simlicity, the bag-of-words model suffers from some shortcomings. For example, it requires
careful-designed vocabulary and word representations are usually sparse vectors in large
dimensional space.

2.2.2 Distributed Word Representation

Distributed word representations represent words in dense, continuous, high-dimensional
space. These vector space models, know as word embeddings, have embedded much in-
formation of interest and attracted much attention among computer scientists and com-
putational linguists in recent years. One of the major features of word embeddings is the

9

ability to capture complex semantic relations between words. In word embedding models,
words sharing similar contexts would be positioned nearby in the vector space.

The word2vec is the most widely used word embedding algorithm nowadays, which uses
a shallow, two-layered neural network architecture to optimize the prediction of context
words. There are two distinct network architectures under word2vec: continuous bag-of-
words (CBOW) and skip-gram (SG). Under the skip-gram architecture, the model predicts
context words given a center word in a sliding window of k words. While the CBOW
architecture works similarly, except that predicts the center word given k context words.
Several other approaches take the statistical analysis into account to generate a word vector
position, for example, n-grams. The word2vec model ignores all words with total frequency
lower than min count, so the sliding window is the k context words among the surviving
words.

Past work with word embeddings also show semantic relations between word pairs. For
example, the analogy “man is to woman as king is to queen” can be solved by computations
on word embeddings trained with sufficient text. Computer scientists believe that word
embeddings are promising tools for cultural analysis [32, 31]. It reveals the fundamentally
relational nature of their meanings. We also believe that word embeddings could shed light
upon sentiment analysis and explore this direction in this thesis.

2.2.3 Word Similarities

In general, there are two types of word similarities used in natural language processing
tasks, which are attributional and relational similarity. The attibutional similarity mea-
sures the degree of correspondence between attributes of words, while the relational sim-
ilarity measures the correspondence between internal relationships. The term “semantic
similarity” used in this thesis mainly refers to the attributional similarity by calculating
the Eucliden or cosine distances between word embedding vector pairs.

10

Chapter 3

Alignment Word Space

3.1 Introduction

Distributed representations of words and phrases in high dimensional space enable people
to reason about new facts from texts, conversations, and knowledge graphs, where the sim-
ilarity of two entities could be defined by their cosine distances in this space. For example,
bilingual machine translators utilize word embeddings to describe semantic associations
between word pairs across language. Targeting knowledge graph completion usually de-
signs a set of vector operations for reasoning and assertion. Linguistic change detectors
can construct time series of distributional vectors for each word and track its linguistic
displacement over time.

Usually, word vectors are trained online, where a text corpus is fed into the training
network all at once. Online training ensures vectors across language, regions, time series
and knowledge graphs are within the shared space. Mikolov et al. [61] show that word
vectors can also be obtained offline. It enhances the feasibility and scalability to obtain sets
of word vectors independently. However, because independently obtained word embeddings
vary in spatial orientation in this case, an additional step of vector space alignment is
needed to ensure vectors across language, time serious, knowledge graphs, or region are
within in the shared space.

Usually, two simplifying assumptions are made to aid the alignment process: first, the
spaces are assumed to be equivalent under linear transformation [51]; second, the meaning
of most words is assumed to be stable across different contexts. Vivek Kulkarni et al. [51]
align the embeddings in one unified coordinate system by learning a linear transformation

11

matrix Wt′ 7→t(w)that maps a word for each time snapshot. The matrix minimizes average
distance between each anchor word and k nearest words in the embedding space. However,
the objective function relies heavily on synonyms, and the researchers fail to provide more
information on the transformation evaluation. The method is not feasible for alignment
tasks in semantic analysis. Tomas Mikolov et al. [61] share the same idea, but instead of
using the k nearest words in space, they utilize the publicly available WMT11 datasets
and claim to achieve over 90% precision in an English-Spanish translation task. Samuel
Smith et al. [82] further prove the linear transformation between two spaces is orthogonal
and could be obtained using the singular value decomposition (SVD). They extend the
method to bilingual translation from English sentences to Italian with a precision of 68%.
Zhen Wang et al. and Huaping Zhong et al. [92, 95] propose a new alignment model
based on text descriptions of entities. The model consists three components: a knowledge
model embedding entities and relations describing the plausibility of a triplet; a text model
embedding the statistical attributes of pairs of words, for example, the probability of co-
occurrence; and an alignment model. The aligned word vector model achieves more than
80% hit rates on semantic and syntactic reasoning tasks.

In this thesis, we explore using the linear transformation method and singular value
decomposition (SVD) method to do the alignment of word vectors obtained from Github
datasets to the pre-trained Google News word vectors. We denote the learned alignment
model as alignment-model as a reference. We use two methods to construct the anchor
word sets. One is to pick a set of words at random from the intersected word lists, the other
is to construct anchor word datasets manually from stop words like what, the, an, some
under the assumption that stopwords shift little across context. We perform extensive
experiments on semantic and syntactic reasoning task before and after the alignment. The
average of word pairs distance is more than 1.0 before the alignment and reduces below 0.6
afterwards. Furthermore, we demonstrate the semantic shifts across subculture captured
by our algorithm.

3.2 Background

Tomas Mikolov et al. first proposed the approach of using similarity of distributed word
representations [61] as complementary to the existing statistical machine translation sys-
tems [47, 46, 30]. This method makes only a few assumptions, so it is feasible to apply
to any texts. Figure 3.1 illustrates the mechanism of the method. It shows the geometric
arrangement similarity of similar words (numbers and animals) in high dimensional vector
space between English and Spanish. Taking the advantage of a linear transformation (ro-

12

Figure 3.1: Simple 2D visualization of distributed word vector representations of numbers
and animals in English (left) and Spanish (right) [61].

tation and scaling), they can infer missing dictionary entries of words and phrases through
projections even between languages that are substantially different, for example, English
and Chinese. Moreover, this method could also give a similarity score for each word pair.
The linear projection method archives great success despite the simplicity.

Suppose there are a set of word pairs and their word vector representations obtained
using word2vec models (either skip-gram or continuous bag-of-words model) as {xi, zi}ni=1,
where xi ∈ Rd1 and zi ∈ Rd2 is the distributed representation of word i in target and source
language respectively. The objective of the linear projection is to learn a transformation
matrix W such that Wxi approximates zi in vector space. They formalize the problem as
an optimization task:

min
W

n∑
i=1

‖Wxi − zi‖2

where stochastic gradient descent (SGD) is utilized to solve the equation.

Following Mikolov’s work [61], Samuel Smith et al. [82] prove further that the optimized
linear transformation between two vector spaces is orthogonal. Therefore the alignment
could be achieved using singular value decomposition (SVD) instead of using SGD. The
SVD method is more robust to noise compared to SGD, and they improve the precision
from 34% in previous work to 43% by introducing inverted softmax to identify translation

13

pairs. The inverted softmax Pj→i is the inverted calculation of finding target words, and it
provides a confidence estimation for the space alignment. Alexey Zobnin applies the SVD
method to the Russian language and re-learns word embeddings to improve component
stability [98].

The process of orthogonal transform action is performed by defining similarity matrix
S = YWXT , where X, Y ∈ Rn×d are word vector matrices in source and target space
respectively. The vocabulary size is denoted as n and the dimension of word vector space
is denoted as d. Therefore each entry of similarity matrix is:

Sij = yTi Wxj

= yi · (Wxj)
(3.1)

The largest value in a column represent the most similar source word for each target word,
while the largest value in a row is the most similar target word for each source word. Then
they form a second similarity matrix S ′ = XQY T so that the matrix Q maps target word
back to the source.

S ′ji = xTj Qyi

= xj · (Qyi)
(3.2)

To keep self consistency, they require that S ′ = ST . Since ST = XW TY , there is
Q = W T . It is natural that mapping between source and target word vector space is
reversible, and x ∼ W Ty, y ∼ Wx. Thus x ∼ W TWx holds for any word vector x and it
is concluded the transformation matrix W is an orthogonal matrix O satisfying OTO = I.
After normalizing word vectors x and y, the objective is to optimize the cosine distance
between possible pairs:

max
O

n∑
i=1

yTi Oxi, subject to OTO = I, (3.3)

which is equivalent to the “orthogonal Procrustes problem” [81]:

min
O

n∑
i=1

‖yi −Oxi‖2, subject to OTO = I. (3.4)

The proposed solution in their paper [82] is to form two ordered dictionary pair matrices
XD, YD (where XD, YD are ordered X, Y), by computing the SVD of

M = Y T
DXD

= UΣV T ,
(3.5)

14

and minimizing with:
O = UV T , (3.6)

the optimized similarity matrix becomes as the following:

S = Y UV TXT (3.7)

Sij = yTi UV
Txj

= (UTyi) · (V Txj).
(3.8)

Therefore they could map from source space to target by applying the transformation
matrix UV T to the source language matrix. This method is highly efficient and is proved
to get a translation precision on 200k Italian sentences corpus with a precision of 68% [82].

3.3 Method

In this thesis, we mainly explore the methods of using linear transformation with stochastic
gradient descent and singular value decomposition to the language matrix. Here we first
give a brief introduction of the two algorithms. Also, we describe our strategy of selecting
word pairs from two domains.

3.3.1 Linear Transformation

In mathematics, linear transformation T : V → W is an important rule to make geometric
changes between two subspaces while preserving the operations of addition and scalar
multiplication. Basically, linear transformation satisfies the following two conditions:

• T (~u+ ~v) = T (~u) + T (~v) for all vectors ~u, ~v in space V1,

• T (c~u) = cT (~u) for all vectors ~u in space V1 and a scalar c.

The linear transformation is useful because most geometric operations are linear trans-
formations, including rotations, scaling, and reflections. The artificial neural network (ANN)
takes the idea of linear transformation by producing the linear combinations of input signals
and weight matrix as output. Moreover, neural network introduces bias inputs, nonlinear
functions and so on. Despite its simplicity, a linear transformation still acts as an essential
component in the architecture of modern machine learning and deep learning.

15

3.3.2 Stochastic Gradient Descent

Usually, gradient descent (GD) is used to minimize the least squared error by updating
coefficients in linear regression and weights in neural networks. Learning rate refers to the
size of steps specified by the negative gradient. With a high learning rate, the algorithm
can cover more parameter space quickly under the risk of missing the optimal state. And
with a low learning rate, the algorithm scans over the space more precisely with more
iterations. Therefore, the learning rate can vary as a function of the number of iterations
and decay rate, so that the algorithm updates quickly at the beginning and precisely when
approaching the optimal state.

The main problem in gradient descent is that calculating the parameters in each iter-
ation would be expensive, especially when the data is large. Therefore, the basic idea of
stochastic gradient descent is to optimize by sampling on the training dataset. The result
after each iteration is an estimation towards the globally optimal state. With stochastic
gradient descent, the algorithm does not compute the exact derivative of loss function.
Instead, it is estimating it on a small batch of data. To get a better estimation of the
optimal direction, momentum is used as the moving average of gradients. In this thesis,
we set the learning rate as 0.1, the decay rate as 1.0 ∗ 10−6 and momentum as 0.9.

3.3.3 Singular Value Decomposition

Singular value decomposition is a factorization of the matrix in linear algebra. It has many
useful applications in statistics and signal processing. Here is the statement of singular
value decomposition over rectangular matrix M ∈ Rm×n:

M = UΣV ∗

where

• U is a m×m unitary matrix over field K.

• Σ is a diagonal m× n matrix with non-negative values on the diagonal.

• V is a n× n unitary matrix over K and V ∗ is the conjugate transpose of V .

Therefore, the geometric meaning of the SVD theorem can be concluded as finding
the orthonormal basis of two linear spaces. It is widely used in the field of unsupervised
machine learning, so we can decompose a matrix into lower rank matrices without losing
too much information.

16

3.4 Evaluation

We perform distributed word embeddings alignment on two datasets: the 300-dimension
pre-trained Google News corpus word vector model (denoted as Google-wv) with over
three billion words and phrases, and 300-dimension word vectors (denoted as Github-wv)
trained on a recently collected Github corpus consisting of pull requests, issue comments
and commit messages. We further evaluate the trained word vector models using semantic
and syntactic tasks. We implement singular value decomposition and linear transformation
in stochastic gradient descent approaches. At last, we evaluate the aligned word vector
space and conclude some words who have significant semantic shifts in high dimensional
space.

3.4.1 Github Dataset

The Github dataset used in this thesis is firstly collected by Achyudh Ram, which includes
raw data of pull requests, issue comments and commit messages from 4124 repositories and
the size is around 9.5G. Repositories are selected on the basis of them being “engineered”
projects that are maintained and developed by groups of people in contrast to student
projects, forked project, etc [65]. A full list of engineeered projects can be found on the
website of RepoReapers 1. Each record is stored in the format of JSON. Of the whole
dataset, there are 53,430 pull requests, 1,495,156 issue comments, and 1,933,243 commit
messages. We first extract useful text information from the raw data including the title,
description, and following comments on an issue post, pull request and commit record.
We believe communications under a single item could give enough background information
and context. Then we filter out any URL or non-alphanumerics to get a clean vocabulary.
The last step of pre-processing is tokenization and lemmatization on the raw data.

Tokenization and lemmatization are widely used when processing texts in natural lan-
guage processing. Giving a character sequence or document, tokenization is the task of
splitting it into pieces called tokens. Tokens are usually referred to words or phrases with
semantic meanings. Lemmatization removes derivation of words and returns the base for-
mat in the dictionary. We denote the Github dataset as Github-comments in the remainder
of the thesis.

1https://reporeapers.github.io/results/1.html

17

3.4.2 Pre-trained Word Embeddings

We perform distributed word representation alignment between two pre-trained word vec-
tor spaces. The target hyperspace is the Google-wv trained on Google News corpus. The
source hyperspace is word embeddings trained on subculture corpus. As Section 2.2.2
describes the pre-trained approach, we obtain word embeddings using several training
methods including word2vec [62] and fastText [44]. Let Github-wv denote word embed-
dings trained on Github-comments, and Github-wv-aligned denote the results after using
the alignment methods introduced in this chapter. Considering people leave their online
comments informally, we also utilize another two datasets as comparison models. In addi-
tion to the Github corpus, we collect about 44G real-time tweets in English from Twitter
within a three-days time window. Moreover, we use WikiText dataset that contains 600
articles from Wikipedia 2 as a comparison. Both Github and Twitter datasets uses mainly
day-to-day (informal) language, except there are more terminologies in the Github com-
munity. On the contrary, WikiText dataset is well formatted and contains mainly formal
language.

To select the best model, we try a series of configuration combinations and perform
semantic and syntactic tasks for each model. These configurations include using skip-
gram or CBOW training algorithm, the dimensions of feature vectors, the minimum token
frequency threshold, and neural network model (word2vec or fastText).

There are several methods to evaluate the word embeddings [42, 6]. Extrinsic evalua-
tion methods are based on the ability of word embeddings to be used as features of machine
learning tasks, such as sentiment recognition, Part-of-Speech tagging, and topic modeling.
On the other hand, intrinsic evaluation methods are experiments of word embeddings on
human annotations of word relations, for example, word similarity, word analogy, and word
pair association. In this thesis, we take Wordsim353 [21] and Questions-words 3 [62, 60]
as evaluation datasets. The dataset Wordsim353 provides a collection of human-assigned
word pair similarity scores on a scale of 0.0 to 10.0 (e.g., train car 6.31), and it has re-
cently emerged as a commonly used dataset for evaluating relatedness measures. There
are two sets of English word pairs in Wordsim353. The first set contains 153 word pairs
in 13 subjects, while the second set contains 200 word pairs in 16 subjects. The dataset
Questions-words implies words relationships. There are five types of semantic and nine
types of syntactic questions in the test set. For example, the semantic relationship type
between (Athens, Greece) and (Oslo, Norway) is called common capital city, and the syn-
tactic relationship type between (possibly, impossibly) and (ethical, unethical) is called

2https://en.wikipedia.org/wiki/Main Page
3code.google.com/p/word2vec/source/browse/trunk/questions-words.txt

18

opposite. Overall, there are 8,869 semantic and 10,675 syntactic questions. We use built-in
modules in Gensim 4 to evaluate word vectors.

3.4.3 Anchor Words Selection Strategy

The selection of anchor words could have a significant influence on the quality of aligned
word vector models. If the training word dataset is too small, the alignment model
learns little about the entire vocabulary space and performs poorly when testing on larger
datasets. However, if the training word dataset is too large and introduces a considerable
portion of noisy word pairs, the model would try to map between irrelevant vectors. Thus
over-fitting occurs. In general, we want to increase the training data size while keeping the
semantic alignment of two domains.

Stopword is a commonly used concept in search engines that a particular set of words,
like the and that, are ignored by the program when searching and indexing. Researchers
believe that stop words would not change their semantic meanings significantly across
language domain, therefore utilizing them as anchor words for alignment models could
probably increase the accuracy [85].

However, there is one problem that the stop word list has limited tokens (around 50
words), but the transformation matrix in the space of 300 dimensions generally requires
more than 100,000 parameters. Therefore, we consider enlarging the anchor word dataset
by sampling from the Warriner-EPA vocabulary at random. We further explore the rela-
tionship between anchor words and mean distance of alignment models.

3.4.4 Metrics

To assess the performance of the alignment model from Github subculture to general
culture, we measure the average cosine distance between each word in two corpora before
and after the alignment. If the average distance decreases significantly after alignment,
it demonstrates our alignment model could transform the word vectors to the same high
dimensional space effectively. Word vectors in Github-wv-aligned do not necessarily to be
exactly the same as they are in Google-wv because they represent two different corpora.
However, they should be close in general.

4https://radimrehurek.com/gensim/index.html

19

To illustrate the semantic shift across Github and Google News corpus, we further
compare words based on the Part-of-Speech and construct a few word lists of several
topics, including sentiments and actions.

3.5 Results and Discussion

This section presents the results of parameter tuning, evaluation of training word vector
models, and aligning high dimensional spaces. It could be divided into three parts: pa-
rameter tuning and word embeddings evaluation (Part One), comparisons of word vector
space alignment strategies (Part Two) and findings of cross-culture semantic shifts (Part
Three).

3.5.1 Part One

To get the best-trained word embedding model, we try different configuration combina-
tions including the algorithm (word2vec or fasttext), architecture (skip-gram or CBOW),
word vector dimension size as well as the minimum token frequency threshold, and do
extensive evaluations for each model. Figure 3.2 shows the results of the parameter tuning
on the Github corpus where the lighter color indicates the better performance. We mainly
focus on two evaluation methods of word vectors: one is the word similarity regression
test (Wordsim353), and the other is the word association test (Questions-words). The
word similarity regression test is to predict the similarity score (from 0 to 10) of given
word pairs, like bread and butter, computer and keyboard. We then calculate the Pear-
son Correlation and Spearman Correlation comparing predictions and human annotated
Wordsim353 scores (see Fig 3.2). The correlation scores range between 0.3 and 0.5 and
p-values are around 10−12. The word association test Questions-words is about the linear
relationship of word vectors (woman - man ∼ king - queen). The test dataset consists of
14 sections such as capital/country, currency, family, past tense of verbs, plurals of nouns.
The trained word vector models can answer the questions with an accuracy of 0.58 in the
best case, but only 0.13 in the worst case. Note, we ignore those questions that include
any word which is not in the vocabulary of word embeddings Github-wv. For example,
the word “furnace“ in Wordsim353(furnace stove 8.79) does not appear in Github-wv, so
we do not count it in our evaluation stage. Same with (Athens Greece Tehran Iran) in
Questions-words dataset.

We present the parameter tuning results in two evaluation tasks in Figure 3.2. Fig-
ure 3.2a and Figure 3.2b are about correlations of the word similarity regression test.

20

(a) (b)

(c) (d)

Figure 3.2: The Github word embeddings evaluation results of word similarity test (Word-
sim353) in Fig 3.2a and Fig 3.2b, and word association test (Questions-words) in Fig 3.2c.
There are four models: word2vec cbow, word2vec sg, fasttext cbow, and fasttext sg used
in the experiments. Vector space dimensions (size) ranges between 200 and 400, and token
frequency threshold (mincount) ranges between 0 and 20. Figure 3.2d demonstrates the
trade-offs between vocabulary size and quality.

Figure 3.2c and Figure 3.2d are about the word association test. Specifically, Figure 3.2c
shows the accuracy of calculating the missing word based on their linear relationship, and
Figure 3.2d plots the vocabulary size of Github-wv and intersected vocabulary size with
Questions-words task. We compare the similarity regression correlations of using four algo-
rithms, which are word2vec + CBOW (word2vec cbow), word2vec + skip-gram (word2vec sg),
fasttext + CBOW (fasttext cbow), and fasttext + skip-gram (fasttext sg) in each figure.
For each model, we study how vector dimensions (“size” as the horizontal axis) and mini-

21

(a) (b)

(c) (d)

Figure 3.3: The Twitter word embeddings evaluation results. They are similar to the
experiments described in Fig 3.2.

mum token frequency threshold (“mincount” as the vertical axis) affect the performance.
We use heatmap to show the results, where the a lighter color cell represents a higher
correlation or accuracy rate.

As Figure 3.2a and Figure 3.2b indicate, in general, word2vec models can get higher cor-
relation scores on word similarity test compared to fasttext, and using the skip-gram archi-
tecture is slightly better than using CBOW. However, it is not the case in word association
test as shown in Figure 3.2c, where fasttext performs significantly better than word2vec,
and CBOW further improves the accuracy than skip-gram. All the three heatmaps indicate
vector dimensions (“size”) ranging from 200 to 400 have little impact on two evaluation
tasks. On the contrary, increasing the minimum token frequency threshold (“mincount”)
can have better results. However, as Figure 3.2d demonstrates, the Github-wv vocabu-

22

(a) (b)

(c) (d)

Figure 3.4: The WikiText word embeddings evaluation results. They are similar to the
experiments described in Fig 3.2.

lary shrinks a lot when setting “mincount” greater than 10. It is a trade-off between the
vocabulary size and the word embeddings quality.

We further evaluate models on Twitter and Wikitext corpora, and the results agree
as above (see Fig 3.3 and Fig 3.4). The results further support our conclusion above,
that word2vec + sg models are better at word similarity test, while fasttext + CBOW
can achieve higher accuracy on word association test. Vector dimension does not affect
the performance a lot, but increasing frequency threshold (“mincount”) up to 20 can
significantly improve the performance. In fact, “mincount” filters out noisy examples that
occur occasionally in the raw data but have negative impacts on the training process. We
also compare the model on different corpora horizontally as shown in Table 3.1. Compared
to models on other corpora, the Github word embedding model is relatively small and

23

Result Github Twitter Wikitext Google News
Pearson Corr 0.45(5.6E-15) 0.61(2.5E-32) 0.65(1.5E-42) 0.63(1.8E-39)

Spearman Corr 0.47(8.4E-15) 0.63(5.6E-37) 0.67(1.7E-47) 0.66(2.5E-45)
Question Coverage 6,548 10,182 12,902 13,191
Question Accuracy 0.58 0.44 0.64 0.77

Vocabulary Size 39,366 46,586 69,828 3,000,000

Table 3.1: Model evaluation and comparison on five corpora. Pearson and Spearman
correlation with p-values are the results in word similarity task. Question coverage and
accuracy are the results in word association task. Parameter settings: fasttext sg model,
vector dimension as 300, and mincount as 5.

less accurate, which is partly because people in Github community care less about topics
like politics, fashion, and economy than on Twitter or Google News. Taking all factors
into consideration, we would use the 300-dimensional skip-gram word2vec model with the
frequency threshold set as 20 as Github word vector model in the remainder of the paper.

3.5.2 Part Two

As described above, we have two methods to align high dimensional space: singular value
decomposition (SVD) and linear transformation. In this part, we compare the alignment
performance of each method, and further investigate the impact of seed words size.

Figure 3.5a plots the results of aligning word vector space using the SVD method under
different scales of the training dataset. As it indicates, the average cosine distance of word
pairs in two models increases as the training dataset enlarges. However, the standard
deviation decreases. The aligned models are tested with 1,000 tokens selected from the
vocabulary space at random. As it shows in the figure, the initial average distance is around
0.8 with 2,000 training words and the distance decreases to 0.74 with 24,000 training words.

Figure 3.5b shows the results of using a linear transformation to align word vector
space. We use 1,000 randomly selected words for testing as in the SVD method. As it
is indicated, the average cosine distance for both training and testing decreases from over
0.80 to under 0.65 as the size of anchor words increases. We notice the performance would
become stable with more than 18,000 anchor words.

In general, larger anchor words dataset can improve the alignment performance. How-
ever, it has a different impact on the training process. When using a small bunch of data,

24

(a) Average cosine distance using SVD method.

(b) Average cosine distance using SGD method.

Figure 3.5: The figures show the performance changes under different scales of training
dataset using SVD and SGD method. The blue line indicates the average distance between
word pairs in training process, while orange line is the average distance on 1,000 testing
word pairs.

SVD method could align the training word vector space pretty well. However, the lin-
ear transformation does not align word pairs well. As training words increased, the SVD
method shows its limitation in learning from big data, but linear transformation improves

25

the results gradually. Overall the linear transformation method beats the SVD method
with an average cosine distance below 0.62 when testing. The two figures also indicate
training such alignment models requires a large dataset. However, stop words sampling
method cannot satisfy the requirement even if it has better quality. We can continue try-
ing this strategy if having a larger stop word vocabulary in the future. We think using
20,000 tokens including stop words as aligning anchor words should be a good strategy. In
the following of this thesis, we apply a linear transformation method to align word vector
models.

3.5.3 Part Three

In this part, we turn our attention to analyze the semantic shifts across the web environ-
ment. We apply our space alignment method to general culture (Google-wv) and the web
subcultures (Github-wv). Firstly we divide all tokens into three-word sets according to
Part-of-Speech (POS) tag: Noun, Verb, and Adj/Adv. For each word set, we calculate the
average cosine distance and standard deviation of cross culture word pairs. As Table 3.2
shows, there are 8212 nouns, 3021 verbs, and 3872 adjectives or adverbs in total. In gen-
eral, nouns have the highest mean distance at 0.643 and the lowest standard deviation as
0.118, which means there are significantly semantic shifts of nouns in space after alignment.
However, the standard deviation of verbs is the highest at 0.126, which implies a part of
verbs in vocabulary aligns well and has little semantic shift, but the other part shifts a
lot. Adjectives and adverbs keep the lowest cosine distances across aligned culture space,
so they have little semantic shifts in this case.

alignment size average distance distance std
noun 8212 0.643 0.118
verb 3021 0.621 0.126

adj/adv 3872 0.588 0.125

Table 3.2: Using NLTK Part-of-Speech tag, we divided the intersected vocabulary of
Google-wv and Github-wv-aligned into three catogories: noun, verb, and adjective/adverb.
We calculate the average cosine distance and standard deviation (std) for each word in two
spaces.

Table 3.3 shows examples of semantic changes between general culture and Github.
Verb commit has significantly semantic shift in the Github culture. In general culture, the
word is most close to contribute, perpetrate and engage (e.g. he committed an uncharac-
teristic error). However, in the context of Github culture, commit is often related to code

26

word general github distance
commit contribute, perpetrate, engage revision, patch, merged, pr 0.960
thread purls, silk ribbons worker, process, daemon 0.613

bug worm, virus, insect, flaw issue, problem, typo, glitch 0.608
crash accident, collision, wrech corruption, error, hang 0.591
merge merger, combine, divest develop, add, resubmit 0.575

password passphrase, login, PIN code credential, authentication, token 0.358
happy glad, pleased, overjoyed, thrilled willing, grateful, inclined, glad 0.384

sad heartbreaking, bittersweet, tragic uncomfortable, nervous, uneasy 0.398
angry irate, annoyed, impatient upset, annoyed, nervous 0.434

excited thrilled, pleased, proud stoked, thrilled, pleased 0.382
cautious careful, mindful, hesitant careful, skeptical, worried 0.392
difficult impossible, tricky, tough challenging, complicated, hard 0.250

important vital, crucial, essential crucial, valuable, useful 0.278
significant substantial, markedly considerably, substantial 0.368
efficient economical, efficiency, streamlined robust, flexible, sophisticated 0.321

Table 3.3: Examples of words and their synonyms in Google-wv and Github-wv-aligned.
Action words show significant semantic shift, while sentiment words do not have much
shift. But sentiment words show subtle potency differences across the two cultures.

changes and the usage would be like “he committed a new revision”. Another example is
the word bug. In general culture, the word bug refers to worm and insect. However, it
mainly refers to software issue or problem instead of small insect in zoology.

We further found the words that represent human sentiments are not shifting a lot
across culture. Table 3.3 gives a few examples of word synonyms by calculating cosine
distances in hyperspace. The words with underline are related to sentiments, while words
with dotted line are actions. Word “commit”, “crash”, and “merge” have large hyperspace
distances after alignment, and we can see significant semantic shifts as those words are
used in software community. On the other hand, word “happy”, “sad”, and “angry” do
not have much semantic shifts, and the hyperspace distances are much smaller than these
action verbs. We further construct an sentiment word list from an online website 5. The
word list consists of 147 words that describe sentiments, for example, alarmed, shamed,
trust, etc. The average distance of sentiment words in the word list is around 0.35, while it
is about 0.6 for action words in Table 3.2. This is because most sentiments have universally
shared meanings, but verbs are usually semantically overloaded. However, we still can find

5http://www.psychpage.com/learning/library/assess/feelings.html

27

subtle differences of sentiment words in two context. The word happy is similar to glad,
pleased and overjoyed. However, in Github environment, it is close to willing and inclined
which show preference to do something. For example, “I am happy to do this” is probably
what people are saying in GitHub, whereas in general it is “I am happy” or “I feel happy
today”. In next Chapter, we will introduce the Evaluation-Potency-Activity space, which
could quantify those subtle changes in affective dimensions.

In a word, we believe verbs usually get apparent semantic shifts across subcultures and
have different common usages. Moreover, sentiment words vary on the axis of potency.
People tend to be close to neutral in Github culture compared to the general environment.
We will prove this hypothesis in Chapter 4.

3.6 Conclusion

In this Chapter, we train and select the word embedding model on a Github corpus. We
perform extensive parameter tuning and evaluation, and we further compare horizontally
on Twitter and Wikitext corpus. The wikitext model gets the highest correlation score
and prediction accuracy. We believe it is because of wikitext data is constructed formally
and contains more linguistic information compared to Github and Twitter, since most pull
requests, commit messages and tweets are short in length with misspelling and abbrevia-
tion.

We applied two methods to align word vector space to make a further comparison of
Github culture and general culture. We find linear transformation with at least 20,000
anchor words could get the best performance in learning enough space information in
common while keeping the differences. Using the aligned Github model and GoogleNews
model, we make a coarse-grained word-level comparison. We find verbs and nouns would
have more semantic shifts across online web cultures while adjectives and adverbs keep
relatively the same. Some words like commit, merge, thread have developed specific usage
in subculture and therefore become like terminologies. We also find people show different
intensity when using sentiment words. In general, they behave more neutral in the Github
environment without showing extreme intensities.

28

Chapter 4

EPA Expansion

4.1 Introduction

Sentiment analysis is widely applied to a variety of important areas, such as health in-
formatics [35], recommendation system [19], intelligent assistant [87] and customer sur-
veys [67]. It is a popular area of interest in natural language processing. Most sentiment
analysis relies heavily on a human annotated dictionary that maps words to sentiment,
while some researchers are working on generating such lexicons automatically from a small
bunch of seed words. Expanding sentiment lexicons from text by machine learning mod-
els reduces the cost of manual annotation, and it is more feasible to apply to a variety
of applications. However, most explorations in sentiment lexicon expansion methods use
one-dimensional score, for example, the polarity of attitude as positive, negative or neu-
tral [57, 17]. One dimensional sentiment model could be a good fit in some applications,
like customer review analysis. However, it shows limitations when dealing with more com-
plicated human sentiments, like happy, sad, angry and afraid. In this thesis, we propose
to expand sentiment lexicons using the Evaluation-Potency-Activity (EPA) model, which
maps words or phrases to a three-dimensional space to best describe the complexity of
sentiments.

Osgood first carried out a large set of cross-cultural studies and showed that the EPA
model could be used to characterize the shared affective meaning successfully [68, 70,
69]. Based on this work, Heise further measured the EPA space in several countries [37,
38, 39]. Besides, participants in his studies were asked to rate identities (e.g., mother),
behaviors (e.g., help), adjectives (e.g., kind) and institutions (e.g., school). Sharing similar
idea, Warriner et al. construct the most recent manually annotated sentiment lexicon [93].

29

These culturally dependent sentiment dictionaries are collected by asking random people
who belong to this desired country or region to rate each word or phrase in the surveys.
However, it becomes challenging if the target culture is an online culture because multiple
subcultures usually influence participants and it is hard to ensure the survey data quality.
An alternative solution is to take a look at what people are talking about and how they
are saying if in the online subculture. In this thesis, we propose to collect sentiment
lexicons of online subcultures by analyzing word and sentence usage. More specifically, as
it shows in Figure 4.1, we train mapping models f that map general word vector spaces
Google-wv to the three-dimensional sentiment space Warriner-EPA with a small dictionary,
and then expand the subculture sentiment dictionary Github-EPA by utilizing aligned
word vector models Github-wv-aligned introduced in Chapter 3. Evaluated on a affective
ratings dataset measured in the Github community (Themis-EPA), we demonstrate that
our proposed approach f(g) is a good approximation of the hidden function f ′. We denote
the trained mapping model as mapping-model as a reference.

Alhothali proposed to expand sentiment lexicons using a graph-based semi-supervised
method. Her method could achieve high correlation (τ = 0.51) and low error rate (mean
absolute error < 1.1) [1, 2]. Based on her work, we further explore using artificial neural
networks to acquire expanded sentiment lexicons. We compare the performance of using
graph based semi-supervised method, support vector regression as well as artificial neural
networks. The shortcoming of using a graph-based label propagation method in our case
is to induct sentiment lexicons for other domains, such as the Github culture. It is un-
avoidable to insert the word node into the graph and update the affinity matrix each time
predicting the EPA value for a new word vector. This process could be extremely time
consuming and require significant memory. On the contrary, supervised learning could
make label prediction offline, which is a great convenience. We further reduce the mean
absolute error rate from 1.1 to 0.6 with well-trained neural networks. Applying the model
to aligned Github word vectors, we finally obtain the sentiment dictionary for Github cul-
ture. At last, we carry out word level EPA comparison and analysis for general culture
and Github culture.

4.2 Background

Alhothali and Hoey first propose an extension to graph-based sentiment lexicon induction
methods by incorporating distributed and semantic word representations [2, 1]. Their work
shows the ability to generate a significant number of new sentiment assignments with high
accuracy. The highest correlation is 0.51, and the lowest error is less than 1.1, which

30

Figure 4.1: The workflow of EPA expansion on Github. In last chapter 3, we demonstrate
learning the hyperspace alignment function g. In this chapter, we focus on training the
mapping model f , which maps from word vector space to three-dimensional EPA space.

outperformed most label propagation models and approaches a supervised model (SVR).

In their work, they implement and evaluate label propagation using four different word
representations to build the similarity graph. The first is built based on the semantic
relationship between words. Two semantic lexicons used are WordNet dictionary (WN)
and paraphrase database (PPDB). The semantic-based similarity of any pair of words in
the vocabulary is calculated based on synonym relationships. The second method is based
on the count-based co-occurrence statistics that is aggregated from different corpora. N-
gram features from one million news articles dataset are also used to generate the word
pair co-occurrence matrix. Then they construct the statistical word vectors by computing
the smoothed positive point-wise mutual information (PPMI) of the co-occurrence matrix
and factorizing with truncated Singular Value Decomposition (SVD). The affinity matrix
is computed from the cosine distance of statistical word vectors. The third method uses
pre-trained word embeddings, and affinity matrix is computed using the cosine similarity
between vectors in space. The fourth method combines both semantic and distributional
information from the semantic lexicon (or dictionary) and word embeddings. The affinity
matrix is the averaged scores in method 1 and 3.

Comparing their induced EPA scores using the label propagation algorithm against
experimental values, it shows that the highest error rate (MAE) ranged between 0.8 and
1.3. The result of combining both semantic and neural word embedding is better than the
corpus-based or semantic lexicon-based algorithms. Moreover, it is comparable with those
generated using a supervised learning algorithm. With the induced lexicon, they further
predict reader’s reaction towards news articles.

31

4.3 Methods

The field of machine learning is traditionally divided into three sub-fields: supervised learn-
ing that observes labeled datasets denoted as (feature, label) pairs and predicts incoming
data in the future [11]; unsupervised learning that learns from a set of unlabeled data
and organizes the items [33]; reinforcement learning that repeatedly takes actions and gets
rewards from environment in order to maximize further benefits [86].

In this chapter, we introduce the models used in this thesis: graph-based semi-supervised
learning [12, 96], support vector regression [83, 7] and artificial neural network [80, 64] (Fig-
ure 4.2). Previous attempts to expand sentiment lexicons using the graph-based label
propagation algorithms achieve greater accuracy than other methods. In this thesis, we
further demonstrate that using neural networks could be a better choice.

4.3.1 Motivation

Previous studies and research have shown affect divergence does exist across cultures. We
believe that comparing with using general lexicon, using an affective lexicon for the specific
subculture can be beneficial to sentiment analysis research, and can explain some previous
findings. However, recruiting participants to annotate concepts would be difficult, and it
is not easy to ensure the collected data quality. This is because people would usually rush
through the survey, or could not fully understand the affective ratings questions. In this
thesis, we propose to use machine learning and word embeddings and give approximations
for subculture affective meanings.

As it shows in Fig. 4.1, we denote the mapping function from word vectors to affective
ratings in a general cultural setting as f , and the underlying function for a given Github
subculture as f ′. Function g represents the hyperspace alignment model. In this Chapter,
we propose that:

f ′(x) ≈ f(g(x)), (4.1)

and our method does capture subtle affect changes between the general culture and the
Github community subculture.

4.3.2 Graph-based Label Propagation

One of the significant problems in machine learning is that most data we have is unlabeled,
so we lack enough labeled dataset to train good classifiers. However, people recently

32

Figure 4.2: In this thesis, we propose using three methods to train the mapping models,
which are graph-based semi-supervised learning, support vector regression, and neural
network.

discovered that unlabeled data could be helpful as shown in Fig 4.3 [79]. The unlabeled
data provide information about data distribution so we can model more accurate decision
boundary. The idea of using labeled and unlabeled data to archive better performance
with less annotation effort is called semi-supervised learning [12, 96].

Graph-based label propagation is a commonly used semi-supervised learning algorithm,
which represents the whole dataset as a graph. It makes much sense because some datasets,
like social network, and citations, are in the format of a graph by nature. Nodes in the
graph are either labeled or unlabeled data which are connected to other nodes by some
defined distance functions. Labels propagate between nodes in each iteration under the
smoothness assumption, which proposes two instances should have similar output labels if
they are similar according to the graph.

There are two stages in a graph-based label propagation algorithm, which are graph
construction and label inference. In general, there are two methods in graph construc-
tion [58]. K-nearest neighbor (k-NNG) graph adds edges between an instance and its
k-nearest neighbors, while e-neighborhood method adds edges to all instances inside a ball

33

Figure 4.3: A illustration of why unlabeled data could be helpful [15]. The knowledge of
having more points in the banana shape allows to decide more accurate boundaries for
classification. Otherwise, the decision boundary would be a simple straight line separating
the two labeled nodes.

of radius e. Both methods have pros and cons. K-NNG results in an asymmetric and
irregular graph where edges and weights are unidirectional. E-neighborhood is sensitive
to the value of the radius. For example, unreasonably small radius leads to disconnected
components in the graph. Some other graph construction approaches include linear neigh-
borhood [13], b-matching [91] and fitting graph to vector data [16]. In this thesis, we
perform exhaustive parameter tuning experiments on the radius range in Section 4.5.1.

We first give some notations before the stage of label inference [97]. The algorithm is
based on a given labeled data L = (Xl, Yl) and unlabeled U = (Xu, Yu), where X is input
features (word embeddings) and Y is output labels (affective ratings). The graph weight
matrix is denoted as W by performing transformation kernels on edge distances. In this
thesis, we apply Gaussian kernel wij = e−‖xi−xj‖

2/2σ2
. Degree matrix is denoted as D where

Dii =
∑

jWij. We compute the random walk normalized Laplacian matrix ∆ = D−1W
so propagation becomes Y ← ∆Y . In order to power the graph towards convergence, we
clamp labeled the data to initial value with factor α after each round as follows:

Y (t+ 1) = ∆αY (t) + (1− α)Y 0,

where Y 0 is the initial labels, and Y (t) is the predicted labels from previous iteration.

34

Combining the initial values and calculated gradient, the algorithm is making adjustments
to predicted labels Y (t+1) at current iteration. The propagation continues til Y converges.
Or we can set pre-defined criteria to speed up the algorithm, for example, the algorithm
can calculate the average change Y (t + 1) − Y (t) and stop if the value becomes below a
threshold, or return after propagating for T iterations. Zhu et al. proved the clamping
method would finally converge close to a simple solution [97, 96].

Graph propagation has been widely applied to natural language processing areas. Wil-
son et al. and Blair et al. obtain good results in predicting polarity lexicons (positive or
negative) [94, 9, 89]. WordNet is commonly used in these tasks as it defines synonyms,
antonyms, etc., which gives much information to graph construction. In this theses, how-
ever, we mainly use word2vec models and the geometric features. We talk more about this
in the next section.

4.3.3 Support Vector Regression

Support vector machine (SVM) is a supervised learning algorithm used for solving classi-
fication and regression problems [36]. The main idea of SVM is to construct one or sets
of hyperplanes in a high dimensional space. Non-linear kernels are applied in SVM to
make data distributed in high space linear separable. A good separation in SVM is a set
of hyperplanes that has the most significant distance of the nearest instance of each cate-
gory, which refers to as “maximum-margin hyperplane”. Suppose we are given a training
dataset of n entries of the form (x0, y0), (x1, y1), ..., (xi, yi), ..., (xn, yn), where xi is a m-
dimensional feature vector, and yi is the category of item xi. The objective function of
SVM for classification is to optimize the normal vectors w to the hyperplane, that is:

minimize
1

2
‖w‖2 (4.2)

subject to

{
yi − wxi − b ≤ ε

wxi + b− yi ≤ ε
(4.3)

where the ε is a margin of tolerance.

The supported vector regression (SVR) shares the same idea of kernel and margin as
SVM in classification problems only with a few minor differences [83, 7]. Since the output is
a continuous real number in SVR instead of categorical label, there is a margin of tolerance
ε in the objective function as it is shown in Figure 4.4. That is to say, SVR solves this
function:

35

minimize
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i) (4.4)

subject to

yi − wxi − b ≤ ε+ ξi

wxi + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(4.5)

Some common kernels in SVM include the polynomial kernel, rbf and sigmoid. In our
experiment, we mainly use rbf kernels and set the ε as 0.05 and C = 10. We utilize the
implementation of SVR in sklearn 1 to train models. In this thesis, the input feature vector
x is word embeddings trained on corpora, and the output is 3-dimensional affective ratings.
For each affective dimension, we obtain a separate SVR regressor.

Figure 4.4: The Structure of SVR. yi = w · xi + b is the prediction for the sample. The
purple points are predictions within the ε error ranges, while yellow points are beyond the
margin.

1http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

36

4.3.4 Artificial Neural Networks

Artificial neural network (ANN) is inspired by biological neural networks that constitute
animal brains. The basic component in artificial neural networks is called the neuron,
which receives and processes signals and eventually triggers other neurons connecting to it.
Just as biological neurons, the connection between neurons varies in the signal strength,
which is defined as edge weights in artificial neural networks. Each neuron could decide
how it processes input signals, which is called activation function. Some commonly used
activation function include sigmoid, tanh and rectified linear functions.

There are two stages of training a neural network: forward-propagation and back-
propagation. Forward-propagation refers to the process of calculating neuron values from
network input to the output layer by layer, while back-propagation is to adjust weight
matrices based on error functions.

There are many variants of the architecture of artificial neural networks. Multilayer
perceptron (MLP) is a fully connected neural network with at least three hidden layers of
nonlinearly-activating nodes [23]. It is a strong classification model dealing with some com-
plex problems, yet, the calculation complexity limits its feasibility. Convolutional neural
network (CNN) is a simplified neural network and widely applied in computer vision [50].
Neurons in convolutional neural networks share weight matrices in some degree. Further-
more, there are convolutional layers and pooling layers, which are easy to obtain compared
to fully connected layers. Other popular networks include recurrent neural network, gener-
ative adversarial network, etc. It is easy to design a new neural network architecture and
train models according to needs. The study of artificial neural networks is now referred to
as “deep learning”, and it is a trendy area both in industry and academia [53, 27].

In this thesis, we use word embeddings as the input vector, and EPA ratings as the
output vector (see Figure 4.6). We introduce the architecture of our neural network in
Section 4.4.3.

4.4 Evaluation

4.4.1 Datasets

Distributed label propagations, including graph-based semi-supervised method, support
vector regression supervised learning and neural network based, are implemented with pre-
trained word embeddings (see Chapter 3). The method described above relies on Warriner
et al. EPA lexicon, which contains 13,915 English words [93].

37

4.4.1.1 Pre-Trained Word Embeddings

In this thesis, we assume word embeddings trained on Google News corpus (Google-wv)
could represent the general meanings and understandings of words and phrases. The
word embedding model trained on Google News data using word2vec contains 3 million
300-dimensional word vectors 2. The word2vec approach learns phrases in a simple data-
driven approach, where unigram and bigram count are rating the scores. The obtained
subculture word embeddings are trained and aligned to Google News word embeddings
using the methods described in Chapter 3. In this thesis, we take Github as an example.
The Github word embedding model we use (Github-wv) consists 26,104 words and is
represented in a 300-dimensional vector space. It is trained on a Github corpus, which
includes the pull requests, commit comments and discussions from 4,124 repositories (see
Section 3.4.1).

4.4.1.2 Warriner EPA dataset

The Warriner EPA dataset [93] consists affective norms of valence (evaluation), arousal (ac-
tivity), and dominance (potency) (VAD) [10] collected from Amazon Mechanical Turk 3 for
13,915 words. The ratings range from 1 to 9. Since EPA ratings are within the range of -4.3
to 4.3, we scale it using min-max scaling method. Basically the min-max normalization is
a linear transformation given the formula:

yi =
xi −minA

maxA −minA
× (maxB −minB) +minB,

where xi is the given value from source space A, yi is the mapping value in target space
B, min and max stand for the minimum and maximum value in each space respectively.
Let denote the Warriner EPA dataset as Warriner-EPA as a reference.

As Figure 4.5a illustrates, the VAD scores do not distribute uniformly. Instead, they
look close to normal distributions. Since we try graph-based label propagation method,
which is a mostly linear transformation between neighbors, we would like to try to add non-
linear relationships to this algorithm and see if there is any improvement. After min-max
normalization to EPA space, we further normalize the data to Gaussian(0, 1) by subtracting
the average and dividing by the standard deviation (shown as Table 4.1): y = x−µ

σ
. Then

transform using cumulative distribution function: z = 1
2
Erfc(− y

−
√
2
). In such way, the

ratings distribute uniformly between 0 and 1.

2https://code.google.com/archive/p/word2vec/
3https://www.mturk.com/

38

(a) VAD Distribution of Warriner Dataset.
The ratings of affective dimension distribute
from 0 to 9 normally.

(b) EPA Distribution of Themis Dataset.
The ratings of affective dimension distribute
from -4.3 to 4.3 normally.

Figure 4.5: Green: evaluation/valence. Red: activity/arousal. Blue: potency/dominance.
The average values for evaluation/valence and potency/dominance are positive, however,
it is negative for activity/arousal.

4.4.1.3 Themis EPA dataset

In THEMIS.COG project, they ask 500 Github users to rate 587 concepts regarding their
evaluation, potency and activity polarity and strength. Each concept has 50 participants
ratings. Of the 50 people, there are 35 white and 15 non-white people. The observations
of the survey also include participant’s location, gender, nationality and more, but we
do not use that information in this thesis. Before using the collected data, we do some
processing for quality checks. We filter out those participants’ ratings who did not take
the survey seriously. The average skip time and average time spent on each concept are

Ratings Valence Dominance Arousal
Min 1.26 1.68 1.6
Max 8.53 7.9 7.79

Ratings Evaluation Potency Activity
Mean 0.20 0.55 -0.67
Std 1.51 1.30 1.25

Table 4.1: The VAD Distribution in Warriner’s dataset. valence=evaluation, domi-
nance=potency, arousal=activity.

39

Ratings Evaluation Potency Activity
Mean 0.16 0.60 -0.58
Std 0.87 0.71 0.59

Table 4.2: The EPA Distribution in Themis EPA dataset. The variance values of three
affective dimensions are half of the Warriner’s dataset.

used to measure respondents tendency in general. Direction checks (left, neutral, right) are
used as an indication of the participants give ratings in the same way, for example, all very
positive scores. We filter out participants who fail at least two checks. After processing the
raw data, there are more than 30 participants’ ratings left for each concept. We calculate
the average rating and standard deviation for each concept on three affective dimension as
an evaluation dataset (denoted as Themis-EPA).

In Figure 4.5b and Table 4.2, we show the distribution of evaluation-potency-activity
affective dimensions in collected Themis-EPA dataset. Compared with Warriner-EPA, the
affective ratings have close average values, however, they have small variances.

4.4.2 Methods for Sampling Seed Words

The training dataset has a significant impact on the performance of EPA expansion models.
In this thesis, we propose three methods of selecting words from lexicons and evaluate the
performance in the next section.

The first strategy adopts the Osgood et al. findings [68] (Table 4.3). They select 43
words (E+, E-, P+, P-, A+, A-) from a dictionary that are extremely expressive along
the dimension of evaluation, potency, and activity, either positively or negatively. We use
these 43 words as seed words along with another randomly picked word set. The second
strategy shares the idea of using descriptive words in the training process, however, instead
of fixed seed words, we set a threshold for each dimension and select at random from word
pools where the absolute EPA value for words is above the threshold. Note, to ensure the
trained models could learn equally in each EPA dimension, the word candidate pools are
independent of each other, which is to say, we avoid the cases where selected words are
all with high scores in a single dimension. For example, if selecting 300 tokens from the
lexicon and setting the threshold as 1.0, there are 400, 700, 800 concepts whose absolute
evaluation, potency, and activity scores are above the threshold. We select 100 out of
400, 700, and 800 respectively and combine the three subsets together as final selection.
Otherwise, a large portion of the selected 300 concepts would be the ones with strong

40

Words Seed Words
E+ good, nice, excellent, positive, warm, correct, superior
E- bad, awful, nasty, negative, cold, wrong, inferior,
P+ powerful, strong, potent, dominant, big, forceful, hard
P- powerless, weak, impotent, small, incapable, hopeless, soft
A+ active, fast, noisy, lively, energetic, dynamic, quick, vital
A- quiet, clam, inactive, slow, stagnant, inoperative, passive

Table 4.3: Osgood proposed 43 words that are extremely expressive on three affective
dimensions [68]. E+/E- represent those words are very good/bad; P+/P- represent those
words are very powerful/powerless; A+/A- represent those words are very active/inactive.

activity scores, which leads to bias in the training datasets. The third strategy makes a
random selection from all candidate words no matter how the EPA values look.

To explore the impact of seed words size, we carry out extensive experiments for the
three strategies with different settings of seed words numbers.

4.4.3 Neural Network Structure

In this project we use keras 4 to build and compile neural network models. At first, we
attempt to implement a convolutional neural network to predict EPA labels. However, the
results turn out to be rather disappointing even after careful tuning. MAE is around 1.0
and stays stable after the first epoch, which is far below our expectation because we believe
neural networks could get better results than semi-supervised training. So we discard using
convolution layers in the network and instead, we apply dense layers. The new network
structure gets better performance and beats all other algorithms. The architecture of our
neural network models is as shown in Fig. 4.6.

4.4.4 Evaluation Metrics

The Warriner’s dataset is divided into training and testing subsets at random to evaluate
the performance of EPA expansion models. The training dataset (denoted as EPA-training)
includes one-third of the whole data , which is 5000 words, while the testing part (denoted
as EPA-testing) includes 8000 words. We exclude those words that do not exist in the

4https://keras.io/

41

Figure 4.6: The Structure of Neural Network in EPA Expansion. The input vector has 300
dimensions. The first layer has 128 units followed with an “tanh” activation layer. The
second layer has same structure with the first layer except there are 32 units. The last
layer is a three-unit dense layer without activation function.

pre-trained word embeddings (Google-wv). Let us denote the predicted ratings using our
proposed approach as General-EPA. We use the mean absolute error (MAE) together with
the root mean square error (RMSE) as evaluation metrics to compare EPA-testing and
General-EPA.

4.4.5 Methods for Github EPA Expansion

As Figure 4.1 shows, since we have trained a mapping model f predicting the affective
meanings from general word embedding space Google-wv to EPA space Warriner-EPA, we
would like to apply the mapping model to Github corpus Github-wv-aligned and obtain the
affective lexicon for the Github subculture. Let denote the predicted affective meanings for
words in Github subcultures as Github-EPA. We evaluate the f(g) prediction performance
by comparing Github-EPA with Themis-EPA first. Then we try to describe the features
of Github subculture on the level of word usage.

42

4.5 Results and Discussion

In this chapter, we first compare different machine learning strategies to get good models
mapping from word vector space to EPA space. We carry out extensive parameter tunings
in Section 4.5.1. Then we apply the best model to predict the EPA value of the given
subculture words/phrases. Here we only explore on the Github word space. We evaluate
the EPA label induction on Github culture by calculating MAE/RMSE on a small human-
annotated lexicon. At last, we conclude some features describing the culture of Github.

4.5.1 Training Mapping Models to Predict EPA

To select the best model mapping from word vector space to EPA space, we train and
compare three machine learning algorithms under different parameter settings. Here we
list and explain the parameters used in our project in Table 4.4.

We would first discuss the performance of setting specific parameters for each algorithm
and then give horizontal comparisons of three models regarding EPA threshold and seeds
number (see Figure 4.10).

4.5.1.1 Graph

Since we build a large network connecting labeled and unlabeled data in graph-based semi-
supervised learning, it matters a lot what strategy is used to construct the network. At first,
we believe the radius of neighbors and the ε in the Gaussian function are important because
the two parameters would shape the network structure and degree matrix. However, as
Fig 4.7 indicates, the value of ε used in Gaussian function does not play an important role.
Even though smaller ε makes the cosine distance differences more significant in degree
matrix, the model improves very little. Neighborhood radius affects model performance
as much as we expect, and the best setting would be around 0.6. Smaller radius reduces
the number of neighbors for each node. There are two downsides of a sparse network:
first, label propagation slows down due to the sparsity; second, rare words/phrases become
difficult to obtain a label for, even become disconnected from the network. While higher
radius leads to almost a fully connected graph, which increases overfitting but reduces the
convergence probability.

Propagation rounds also play an essential role in the final results. Some nodes that are
too far away from labeled nodes can only obtain values after specific iterations. In Fig 4.7
we show the changing curve under various iteration settings. As the figure indicates,

43

Graph-Based Label Propagation
enn radius of k-nearest-neighbors. labels will not be propagated to

nodes out of this range.

sigma Gaussian kernel params. wij = e−‖xi−xj‖
2/2σ2

iteration label propagation iterations.
alpha clamping factor. labeled nodes will be reset to initial value with

clamping factor.
SVR

epsilon Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
within which no penalty is associated in the training loss function
with points predicted within a distance epsilon from the actual
value.

Neural Network
epoch neural network model epoch number: one forward pass and one

backward pass of all the training examples.
batch neural network batch size: the number of training examples in one

forward/backward pass.
Common Parameters

epa epa threshold when constructing training dataset.
seed seeds number in training dataset.

Table 4.4: Parameter reference table for three models used in this chapter, which are
graph-based label propagation, support vector regression (SVR), and neural network. In
the following sections, we first do experiments on parameter tuning for each model, then
study on the common parameters. Finally we give comparisons of the best model using
three algorithms.

evaluation, potency, and activity vary from the sensitivity to iterations. As propagation
round increases to 50, the model performs significantly worse on potency axis and on the
evaluation a little bit, while better on activity axis. Increasing iterations after 50 rounds
could not make much difference to all three axes. Therefore we think 30 rounds should be
the best iteration setting.

Another parameter in the graph label propagation algorithm is the clamping factor α,
which is a trade-off between consistency of the graph and the consistency of the original
labels. Clamping to initial value enforces the algorithm converging to a global state. It is
called a hard clamping if α = 1, and relaxed clamping if α < 1, for example α = 0.8. We
train the model on 8,500 words and evaluate the prediction performance on 1,000 unlabeled

44

(a)

(b) (c)

Figure 4.7: Graph Propagation Parameter Tuning. Figure 4.7a shows the MAE values
on three affective dimensions of the graph propagation models trained with various enn
and sigma settings. Figure 4.7b shows how propagation iterations affect the model perfor-
mance (MAE). Figure 4.7c demonstrates the relation between clamping factor and MAE
value.

data selected randomly from the corpus and iterate for 50 rounds, and the result shows
that the overall performance improves as α gets close to 1. Relaxed clamping might slow
down learning rate. To make sure each node in the graph can converge to the solution, we
increase propagation iterations to 50 rounds in this experiment.

45

4.5.1.2 SVR

The value of ε specifies the margin within which no penalty is added to the loss function.
Usually ε is set to 0.1 as default. A wider epsilon-margin relaxes the objective function in
Equation 4.4, which might have a significant impact on the trained model.

We train SVR models on 8,500 labeled data and test the performance on 1,000 unla-
beled words, just as in previous Section 4.5.1.1. As Fig 4.8 shows, SVR algorithm slightly
achieves better results compared to the graph propagation method. Specifically, the MAE
of evaluation, potency and activity reduce from 0.77, 0.72, 0.78 to 0.72, 0.75, 0.74 respec-
tively. The value of ε has a different effect on the three dimensions as expected.

Figure 4.8: SVR Epsilon Tuning. We experiment on training SVR models with the epsilon
ranging from 0 to 0.5. The figure shows how epsilon affect the perforamance (MAE) of
three affective dimensions.

4.5.1.3 Neural Network

Here we mainly discuss setting epoch and batch size in neural networks. To avoid overfitting
and underfitting problems, we try to find the most appropriate training parameters. Just
as previous experiments, we select 8,500 labeled data at random for training and evaluate
on another 1,000 validation dataset logs. We plot the heatmap under epoch ranging from
5 to 200 and batch size ranging from 5 to 100. We can see from Fig 4.9, increasing training

46

Figure 4.9: Neural Network Epoch and Batch Size. We experiment on training neural
network models with different batch size and epoch settings. The figure shows the mean
absolute errors (MAE) on evaluation-potency-activity dimensions.

epoch over 100 would hurt the performance significantly due to overfitting. However, batch
size does not affect the performance a lot. 10 to 50 entries per batch should be good enough
for our neural network model.

4.5.1.4 Comparing Seed Words Threshold and Size

To evaluate three machine learning models, we compare the MAE results in Fig 4.10. As
we mention in Section 4.4.2, we try three strategies to construct training dataset: fixed
seed sets, random selection by EPA and random selection. Using fixed seeds did not work
as expected, mainly because of the limitation of labeled data. In Fig 4.10, we explore
constructing a training dataset of 600 words and testing on 1,000 words. We select lexicon
from datasets whose EPA is over the set threshold at least in one dimension. It is a random
selection when the EPA threshold is 0. We use the best-performing models from previous
parameter tuning here. We use the following parameter settings for each model by default
unless further specifying. Graph: enn(0.6), sigma(1.0), iteration(50), alpha(0.8); SVR:
epsilon(0.2); NN: epoch(50), batch(50).

Algorithms show variety to the EPA threshold sensitivity. The neural network model is
the most sensitive one because the MAE increases significantly as the EPA threshold grows
close to 2.0. On the contrary, graph-based semi-supervised model archives slightly better

47

(a) (b)

Figure 4.10: Parameter tunings for training dataset selection (parameter epa and seed). We
experiment on three machine learning models described above: graph propagation (graph),
SVR (svr), and neural network (nn). And we further test if applying uniformization
algorithm described in Section 4.4.1.2 can improve the performance or not (denoted as
True in the legend). Figure 4.10a and Figure 4.10b show the mean absolute error (MAE)
on three affective dimensions of the three models with and without uniformization.

results under high threshold settings. SVR is more neutral and stable overall, however,
there is a spike around 1.5.

We also test on a different scale of the training dataset. As it shows in Fig 4.10,
in general, the prediction MAE reduces as training data increases. Graph propagation
model is the most sensitive model in all. There is no significant difference across the three
models if using more than 4,500 training data; however, the graph propagation method is

48

(a) (b)

(c)

Figure 4.11: A comparison of the supervised learning models performance (SVR and NN).
Because of the limit of labeled data (vocab(Github-wv) ∩ vocab(Themis-EPA) = 434
labeled concepts), we apply 5-fold cross validation.

not doing well in predicting the evaluation axis. Fig 4.10 also shows the results of using
uniformization strategy introduced in Section 4.4.1.2. However, this improvement strategy
does not decrease the error rate as we expect.

4.5.1.5 Training Hidden Models within Github Subculture

Since we have obtained mapping models from Google-wv to Warriner-EPA, our next step is
to predict Github-EPA using Github-wv in conjunction with space alighment and mapping
models. Before applying f(g) to approximate the hidden function f ′, we would like to
evaluate the performance of training models from Github-wv to Github-EPA directly as a
benchmark.

We train models using three machine learning algorithms discussed above, however,
input word vectors are from Github-wv and output affective ratings are from Themis-

49

MAE Evaluation Potency Activity
Graph 0.69 0.71 0.83
SVR 0.61 0.62 0.60
NN 0.59 0.65 0.57

(a)

MAE Evaluation Potency Activity
Graph 0.77 0.73 0.78
SVR 0.72 0.75 0.74
NN 0.67 0.74 0.75

(b)

Table 4.5: Two approaches of training mapping models. Figure 4.5a shows the mean
error rate (MAE) of training on Github-wv word embeddings to predict 434 Themis-EPA
ratings, and Figure 4.5b shows the mean error rate of our proposed approach, training on
Google-wv word embeddings to 1,000 Warriner-EPA ratings.

EPA. Moreover, we experiment on using various scales of labeled concepts as training
words. There are 434 labeled concepts available in the intersected vocabulary of Github-
wv and Themis-EPA. We use 5-fold cross-validation to train the models. First, we split
the 434 words into five pieces, and there are four subsets with 87 words and one subset
with 86 words. Then we use each piece as the test dataset once, and the remaining
four pieces as training dataset. There are 347 (or 348) labeled concepts in the training
dataset after splitting. Of the training dataset, we select k words at random for model
training (denoted as size). The unselected words would not be used in this round. We
experiment on training models on a scale of 50 to 400 labeled words, where words might
be selected twice if selecting more than 347 (or 348). The MAE is the average result from
each cross-validation fold. We do not apply cross-validation within the training process.

Figure 4.11 shows the results of using SVR and NN mapping models on different scale
of training words. As the size of training words increases, the mean absolute errors decrease
on three affective dimensions. SVR mapping models can receive slightly better results be-
cause we train a SVR model for each affective dimension. However, we use a single neural
network model to predict three affective dimensions. The MAE values decrease greatly
with more than 50 words and are as low as (0.57, 0.61, 0.55) if training with 400 labeled
words. In Table 4.5, we further compare the performance of training mapping models
in the Github subculture and general culture. Metrics in Table 4.5a are evaluated on 434

50

words using the 5-fold cross-validation method discussed above, while metrics in Table 4.5b
are from 1,000 randomly selected concepts in general culture. In general, supervised learn-
ing methods (SVR and NN) can achieve better results than graph-based semi-supervised
learning. Modeling affective ratings in general culture has higher mean error rate as it
is shown. We think it is because Themis-EPA ratings have smaller standard deviations
compared to Warriner-EPA (see Figure 4.5).

4.5.1.6 Examples of Predicted EPA lexicon

Building on the results and discussions in the last section, we finally decide that the best
way to do EPA lexicon induction and expansion with pre-trained word vector representa-
tions is to utilize artificial neural network models. To test this, we go beyond the random
samples of 1000 as selected in the last section, instead we predict and evaluate on the whole
Warriner-EPA dataset. The MAE values in this section are calculated on 13,790 labeled
concepts. We select the seed words for model training process from the Warriner’s dataset
at random. To obtain the models with the best performance, we sample 8,500 concepts
from the dataset using the method described in Section 4.4.2 with the dimension threshold
set as 1.0. We train the models for ten epochs with ten entries per batch. Word vector
representations trained on Google News are the input vectors of our network models. We
predict the affect ratings for each word or phrase in Google-News-Word-Vectors and ex-
amine the results with ground truth collected by Warriner et al. We list part of the results
in Table 4.6. There are 13,790 out of 13,915 concepts in the intersected vocabulary of
Warriner-EPA and General-EPA, and the mean absolute errors of 13,790 words on three
affective dimensions are 0.63, 0.70, 0.74 respectively.

4.5.2 Exploration on Expanded EPA lexicon

Since we have obtained models that could give relatively accurate predictions of word EPA
ratings, we apply it to the Github corpus. From the experiments and discussion above,
we determine to use artificial neural network models trained on 8,500 labeled words whose
EPA are above 1.0 in at least one dimension. The training process takes ten epochs with
ten entries per batch. Since the uniformization strategy does not improve prediction MAE
at all, we do not use it here. As Chapter 3 shows, the EPA lexicon induction is performed
on aligned word vectors of Github subculture. We use skip-gram word2vec model where
vectors are 300 dimensional and min count sets as 20.

We further evaluate the induced EPA lexicon of Github corpus with a collected Github
EPA lexicon (Themis-EPA). Of the 587 collected items representing people’s cognition

51

Word Warriner-EPA General-EPA Absolute Error
Good Predictions

disobey [-2.017, -0.636, 0.91] [-2.029, -0.64, 0.866] [0.01, 0.0, 0.04]
heating [1.13, 1.438, -1.507] [1.099, 1.439, -1.523] [0.03, 0.0, 0.02]

suffocation [-2.904, -2.24, 0.424] [-2.928, -2.267, 0.436] [0.02, 0.03, 0.01]
ram [-0.621, 0.664, -0.271] [-0.593, 0.656, -0.316] [0.03, 0.01, 0.04]

bureau [-0.231, 0.553, -1.327] [-0.197, 0.53, -1.379] [0.03, 0.02, 0.05]
boarder [0.302, 0.899, -1.313] [0.337, 0.924, -1.369] [0.04, 0.03, 0.06]

prejudiced [-2.597, -1.383, 0.271] [-2.55, -1.3, 0.292] [0.05, 0.08, 0.02]
intruder [-2.88, -2.226, 1.341] [-2.866, -2.168, 1.421] [0.01, 0.06, 0.08]

cranberry [1.733, 1.314, -1.466] [1.737, 1.379, -1.376] [0.0, 0.06, 0.09]
esteem [1.757, 2.295, -1.091] [1.802, 2.201, -1.1] [0.05, 0.09, 0.01]
pencil [0.893, 1.714, -2.202] [0.795, 1.675, -2.215] [0.1, 0.04, 0.01]
seam [0.42, 0.747, -1.66] [0.419, 0.671, -1.744] [0.0, 0.08, 0.08]
jelly [1.189, 1.231, -1.48] [1.242, 1.17, -1.535] [0.05, 0.06, 0.05]

degradation [-2.419, -1.936, -0.604] [-2.409, -1.815, -0.576] [0.01, 0.12, 0.03]
floozy [-1.118, -0.567, 0.271] [-1.205, -0.548, 0.221] [0.09, 0.02, 0.05]

negligee [1.544, 1.175, -0.035] [1.508, 1.198, -0.142] [0.04, 0.02, 0.11]
cram [-0.254, 0.539, -0.702] [-0.319, 0.572, -0.769] [0.07, 0.03, 0.07]

exorcism [-2.064, -1.493, 1.758] [-2.025, -1.588, 1.706] [0.04, 0.09, 0.05]
limo [1.473, 1.507, -0.757] [1.47, 1.542, -0.614] [0.0, 0.04, 0.14]

herring [0.006, 0.539, -1.869] [0.031, 0.47, -1.781] [0.03, 0.07, 0.09]
prone [-0.231, 0.843, -1.41] [-0.25, 0.71, -1.357] [0.02, 0.13, 0.05]
nest [0.893, 0.982, -1.869] [0.827, 1.072, -1.833] [0.07, 0.09, 0.04]

sprite [1.13, 1.231, -1.202] [1.121, 1.413, -1.213] [0.01, 0.18, 0.01]
pyramid [0.929, 1.272, -1.688] [0.777, 1.256, -1.652] [0.15, 0.02, 0.04]

Bad Predictions
download [1.307, 2.032, -1.521] [0.789, 1.706, -1.244] [0.52, 0.33, 0.28]

tourist [0.964, 0.359, -1.563] [1.18, 0.779, -1.069] [0.22, 0.42, 0.49]
specific [0.692, 1.521, -2.98] [0.751, 1.719, -1.611] [0.06, 0.2, 1.37]
margin [-0.172, 0.498, -1.368] [0.225, 1.222, -1.875] [0.4, 0.72, 0.51]
smarty [1.733, 2.613, -0.896] [1.241, 1.488, -0.884] [0.49, 1.12, 0.01]

taxi [-0.124, -0.359, -1.257] [0.015, 1.072, -1.197] [0.14, 1.43, 0.06]

Table 4.6: Examples of the results of our mapping model f (NN). We take word embeddings
Google-wv as input to the model, and compare the predictions (General-EPA) with ground
truths (Warriner-EPA).

52

Method LookUp General GitHub
Dimension E P A E P A E P A

Part
371 words

ACC 330 308 315 352 354 342 358 353 358
MAE 0.764 0.970 0.970 0.660 0.746 0.672 0.573 0.660 0.580
RMSE 0.962 1.175 1.281 0.835 0.893 0.944 0.757 0.833 0.813

All
428 words

ACC - - - 407 409 397 412 407 413
MAE - - - 0.639 0.734 0.645 0.579 0.664 0.564
RMSE - - - 0.813 0.879 0.910 0.768 0.833 0.793

Table 4.7: Comparison of the performance of using three methods. There are two subsets
in the table, part is the intersected concept vocabulary of Warriner-EPA, General-EPA,
Github-EPA, and all is the intersected concept vocabulary of General-EPA and Github-
EPA. We calculate the prediction accuracy (ACC), mean absolute error (MAE), and root
mean square error (RMSE). ACC is calculated by counting the number of predictions that
are within the range of (mean - std, mean + std) in Themis-EPA. The highest score are
underlined in the table.

on Evaluation, Potency, and Evaluation in Github community, there are 411 concepts
are predicted from the word vector Github-wv to the EPA model Github-EPA using the
approach introduced in this thesis. We evaluate the prediction performance on the Github
community using mean absolute error (MAE) rate and root mean squared error (RMSE)
rate. We want to verify that with the help of word embeddings, our proposed method
could capture subtle affective differences across subcultures. We compare the error rates
of using three methods (Warriner-EPA, General-EPA and Github-EPA) to the collected
EPA ratings in the Github community Themis-EPA:

• LookUp: use affect ratings in Warriner’s dataset if the concept exists (Warriner-EPA).

• General : predict affective ratings with trained models, general word embeddings as
input vectors (General-EPA).

• Github: predict affective ratings with trained models, the pre-trained and aligned(see
Chapter 3) Github word embeddings as input vectors (Github-EPA).

As it shows in Table 4.7, our proposed method outperforms the other two methods. In
general, our proposed method performs well on all three dimensions, with slightly higher
MAE on potency. We think it is because the mapping model we utilized, neural network,
does not perform very well (see Table 4.5b). Even though our model is trained the general

53

Word Warriner-EPA Themis-EPA Github-EPA General-EPA
Good Examples

option [1.75, 2.17, -2.09] [0.52, 1.12, -1.42] [0.56, 0.87, -1.43] [1.16, 1.54, -1.48]
core [1.53, 1.52, -2.02] [0.4, 0.69, -1.55] [0.18, 0.76, -1.58] [1.0, 1.86, -1.86]
code [-0.27, 0.06, -2.69] [0.1, 0.64, -1.27] [-0.07, 0.62, -1.52] [0.4, 1.33, -1.5]
super [2.55, 2.93, -0.62] [0.66, 1.43, -1.08] [0.68, 1.28, -1.37] [1.8, 1.47, 0.59]

promise [2.06, 2.32, -1.1] [1.27, 1.54, -0.85] [1.45, 1.66, -1.1] [2.98, 2.08, 0.24]
introduce [1.2, 2.83, -0.2] [0.66, 0.95, -1.46] [0.41, 1.12, -1.59] [1.45, 1.72, -0.95]
variable [0.47, 0.58, -1.45] [0.39, 0.75, -1.57] [0.05, 0.61, -1.64] [0.02, 0.45, -1.73]

statement [0.5, 2.9, -1.38] [0.16, 0.62, -1.41] [0.12, 0.88, -1.63] [1.1, 1.64, -1.5]
skilled [2.55, 3.65, 0.42] [1.24, 1.66, -0.68] [1.04, 1.6, -1.08] [1.88, 2.06, -0.12]
contain [0.12, 1.23, -2.35] [0.21, 0.53, -1.46] [0.21, 1.19, -1.45] [0.23, 1.28, -1.38]

assignment [0.59, 1.67, -0.34] [0.23, 0.8, -1.44] [-0.1, 0.88, -1.16] [0.61, 1.71, -1.25]
solve [1.66, 2.6, -0.48] [1.0, 1.25, -0.99] [0.91, 1.54, -1.4] [1.61, 2.06, -1.26]

performance [1.54, 2.99, 1.27] [0.8, 1.52, -0.71] [1.26, 1.41, -0.6] [1.87, 2.21, -0.66]
Not So Good Examples

unfriendly [-3.07, -0.47, -0.9] [-2.63, -1.25, -2.8] [0.34, 1.29, -1.12] [-2.3, -1.24, -0.36]
unreliable [-2.55, -0.79, -0.56] [-2.91, -1.32, -3.26] [-1.34, -0.62, -0.97] [-2.36, -1.82, -0.76]

useless [-2.48, -0.19, -0.42] [-2.68, -1.78, -3.18] [-1.89, -0.98, -1.15] [-2.27, -1.32, -1.13]
quiet [1.86, 1.4, -3.81] [-0.08, -0.31, -3.33] [-0.03, 1.5, -1.39] [1.51, 2.09, -2.06]

familiar [1.53, 3.35, -3.05] [0.66, 0.72, -1.63] [1.67, 1.99, 0.16] [1.91, 2.39, -1.89]
regular [1.41, 2.7, -1.45] [-0.22, 0.1, -2.02] [1.34, 1.93, -1.98] [0.38, 1.59, -2.07]

concerned [-0.34, -0.25, -1.03] [-0.59, -0.3, -2.33] [-1.01, 0.62, -0.73] [-0.2, 1.3, -0.82]

Table 4.8: Examples of predicted Github concepts’ EPA in detail.

54

culture using Google news word vectors, it receives better MAE and RSME scores on
Github lexicon on Evaluation and Activity.

To further demonstrate the necessity of using our proposed method for affective lexicon
induction, instead of training models on Themis-EPA directly (denoted as hidden model),
we evaluate the performances with Table 4.5a and Figure 4.11. Testing on 434 labeled
concepts, the MAE values on evaluation-potency-activity space of using our approach are
0.58, 0.66, and 0.56 respectively. If training with 300 labeled concepts with 5-fold cross-
validation, the MAE values of training hidden function f ′ are 0.59, 0.65, and 0.57, which is
close to our proposed approach. Therefore, using our method can save the cost of labeling
300 concepts manually. One shortcoming of training on Themis-EPA dataset directly is
that concepts in Themis-EPA dataset are mainly in the topic of software and programming.
We cannot ensure the performance when applying to a different topic. However, we think
our proposed method can do well because it learns from the whole space. Comparing the
results with Table 4.5a, our proposed approximation method f(g) is more feasible than
training the f ′ model directly.

We list part of our prediction with collected data in Table 4.8. Most verbs and nouns
could get good predictions, for example, option, core, introduce, solve, etc. The EPA rat-
ings obtained from our approach are very close to those collected from Github community
members. However, adjectives are biased greatly, for example, quiet, unfriendly, and con-
cerned. The word unfriendly is seen as very bad and powerless both in the general culture
and the Github subculture. But the predicted result from our model shows slightly good
and very powerful, which does not agree with the ground truths.

Figure 4.12: Comparison of EPA distribution between general culture Themis-EPA and
Github community Github-EPA. The evaluation, potency, and activity ratings in Github
subculure are more concentrated with smaller standard deviations, comparing with the
general culture.

With the induced EPA lexicon on Github community, we can see how affective mean-
ings are different across subcultures. We give some examples in Table 4.9. Most nouns

55

Word Warriner-EPA Github-EPA Absolute Difference
Verb

ensure [0.964, 1.618, -1.563] [1.066, 1.674, -1.527] [0.1, 0.06, 0.04]
assign [-0.172, 1.314, -1.368] [0.011, 1.359, -1.241] [0.18, 0.04, 0.13]
handle [0.988, 1.673, -1.688] [0.662, 1.691, -1.661] [0.33, 0.02, 0.03]
revise [0.432, 1.604, -1.632] [0.572, 1.641, -1.428] [0.14, 0.04, 0.2]

regulate [0.313, 1.106, -1.035] [0.349, 1.144, -1.38] [0.04, 0.04, 0.34]
assist [1.248, 2.24, -1.299] [1.377, 1.896, -1.371] [0.13, 0.34, 0.07]

Noun
horse [1.366, 1.272, -0.743] [1.236, 1.265, -0.82] [0.13, 0.01, 0.08]

booklet [0.739, 1.148, -1.591] [0.643, 1.047, -1.562] [0.1, 0.1, 0.03]
four [0.432, 1.189, -1.813] [0.464, 1.189, -1.595] [0.03, 0.0, 0.22]

academy [0.503, 0.816, -1.285] [0.421, 1.035, -1.328] [0.08, 0.22, 0.04]
vendor [0.467, 0.982, -1.216] [0.717, 0.962, -1.137] [0.25, 0.02, 0.08]

sow [0.254, 1.314, -1.368] [0.293, 1.067, -1.305] [0.04, 0.25, 0.06]
Adjective

unavailable [-1.627, -1.549, -1.174] [-1.616, -1.339, -1.045] [0.01, 0.21, 0.13]
dense [-0.254, 0.401, -1.535] [-0.368, 0.391, -1.406] [0.11, 0.01, 0.13]

similar [1.142, 1.396, -1.758] [1.005, 1.43, -1.598] [0.14, 0.03, 0.16]
conducive [0.586, 1.369, -1.174] [0.516, 1.284, -1.356] [0.07, 0.08, 0.18]

unavailable [-1.627, -1.549, -1.174] [-1.616, -1.339, -1.045] [0.01, 0.21, 0.13]
compatible [1.65, 2.074, -0.91] [1.493, 1.842, -1.087] [0.16, 0.23, 0.18]

Emotion
amazed [3.141, 1.825, 1.744] [0.747, 1.411, -1.208] [2.39, 0.41, 2.95]

calm [2.36, 3.664, -4.203] [0.409, 1.139, -1.359] [1.95, 2.53, 2.84]
confused [-2.112, -0.913, -0.577] [-2.46, -1.19, -0.015] [0.35, 0.28, 0.56]
happy [4.229, 3.346, 1.883] [2.815, 2.672, -0.387] [1.41, 0.67, 2.27]
glad [3.141, 3.056, -1.368] [3.02, 2.358, -0.199] [0.12, 0.7, 1.17]

anxious [-1.295, -0.885, 2.091] [0.33, 1.068, -1.187] [1.62, 1.95, 3.28]
amused [2.549, 1.576, -0.59] [0.407, 1.208, -1.284] [2.14, 0.37, 0.69]
afraid [-3.129, -2.876, 0.59] [-0.906, -0.031, -0.338] [2.22, 2.84, 0.93]

Table 4.9: Detailed comparison of EPA lexicon between general culture and Github com-
munity.

and verbs agree on the polarity in both cultures and have slight differences regarding af-
fective dimension strength. However, we find words representing human sentiments have

56

significant differences across the two subcultures. The word happy is (4.2, 3.3, 1.8) in
general culture context, however, it is (2.8, 2.6, -0.4) as predicted in Github community.
Similar to the word glad, which is (3.1, 3.0, -1.4) in general environment while (3.0, 2.3,
-0.2) in Github. Generally, sentiment words in Github are not as active as they are in the
general environment. The word afraid tends to be more neutral because its EPA reduces
from (-3.1, -2.8, 0.6) to (-0.9, -0, -0.3). To verify our hypothesis, we plot the distribu-
tions of each affective dimension (see Fig 4.12). It is interesting that words and phrases in
Github are more neutral and with a lower standard deviation. We conclude two possible
reasons for this. Firstly, people treat the Github community as a workplace, instead of
social media. Therefore, they do not express much sentiment in the texts and try to be
neutral in general. Secondly, people in Github subculture are mainly programmers who
know about software/hardware, and they are talking about those topics most of the time.
The composition of members and topics might have an impact on the affective space.

4.6 Conclusion

In this chapter, we introduce a new method of label induction using neural networks.
From the previous work of Alhothali et al. [2], we implemented the EPA label predic-
tion with graph propagation at first. We also compare it with using supervised learning
methods, supported vector machine and artificial neural network. The results show that
well-tuned neural network could receive the lowest prediction error in general. We also
explore the impacts of different seed words selection strategy and label uniformization,
which are not thoroughly investigated by any researchers before. The best model trained
could hit no more than 0.7 MAE on average, which is much better results compared to
previous work (MAE < 1.1) [1, 2].

By the well-tuned neural network model, we further predict words EPA labels for
Github community. According to most studies, EPA distributions show varieties between
cultures to some extent. Taking the Github word vectors obtained in Chapter 3, we
predict and extend the EPA lexicon for Github community. To evaluate the performance,
we compare the prediction with data collected online. The result shows our prediction is
very close to empirical studies with (0.5, 0.6, 0.5) MAE value on Evaluation, Potency and
Activity dimensions.

We give further comparisons and list the differences in people’s cognitions between
cultures. It shows obvious differences, especially regarding words that represent sentiments.
We find that in general affective meanings of nouns and verbs are highly agreed across
cultures. However, people show different understandings and reactions regarding words

57

related to sentiments and emotions. It is probably related to the nature of collaboration
on Github community.

58

Chapter 5

State Prediction

5.1 Introduction

Natural language texts are meant to express or impact individuals’ sentiments. Studies
have shown that the underlying sentiments expressed or triggered by sentences are highly
related to conversational contexts. People speak and react differently to groups of people
under various circumstances. For example, people tend to be frank and direct talking
with families and friends and feel the most comfortable. However, we try to be careful
and sometimes a bit nervous communicating with workmates. Another example is that
objective statements present factual information (e.g., a baby dies after being left in the
car for over 8 hours) are taken more seriously posted in the newspaper than social media.

In this chapter, we focus on analyzing individuals’ sentimental reactions triggered by
sentences in different context settings. Using the extended Evaluation-Potency-Activity
lexicon obtained in Chapter 4, we show the feasibility of subculture sentiment analysis
without manually collected sentiment lexicon. Sentences are decomposed into a subject-
verb-object (SVO) model, and we compute the predicted sentiment towards each of the
components. The research work of Affect Control Theory (ACT) provides a computational
regression model of EPA to handle affect state prediction of contextualized concepts. One
drawback of ACT is that the regression model can change under different cultural con-
texts. Therefore, we would not use ACT in this thesis, mainly because of the lack of the
subculture’s regression models. Instead, we propose to use the Long Short-Term Mem-
ory (LSTM) network to infer the affective states. Performance evaluation is conducted
using a news-headlines dataset which has a subject, an act and an object annotated by
participants on Mechanical Turk [1]. The result shows that LSTM using word embedding

59

representation or inducted EPA lexicon performs as well as using the original ACT model.
We also experiment on applying the model to the Github corpus. Due to the lack of human
annotated affective states on Github, we could not evaluate our prediction. However, the
results indicate there is less controversy in the Github community.

5.2 Background

5.2.1 Related Work

Sentiments have been studied extensively in many fields like computer science, psychology,
and sociology in recent years. Although there is psychological evidence showing sentiments
are perceived in more than one dimension, most proposed theories adopt discrete appraisal
theory by representing sentiments with discrete labels, such as positive, negative, neutral,
or happy, sad. Some commonly used features in sentiment analysis include part-of-speech
tagging, n-grams, term weighting, sentiment lexicons, and syntactic dependencies [71].
Unsupervised learning approaches usually calculate the difference between the point-wise
mutual information (PMI) and determine the semantic orientation of sentence or docu-
ment. Advanced approaches build more structured models by taking semantic taxonomy,
the interaction of words or bag-of-words techniques into consideration. A framework is
proposed by Coecke et al. which constructs a sentence vector as a function of its word
vectors [14]. There are several recent studies tackled to predict readers’ sentiments instead
of from the writers’ perspective.

Ahothali and Hoey explore predicting sentiments for each news headline using an aug-
mented EPA lexicon and ACT equations [1]. They decompose sentence into subject-verb-
object and associate subject with the actor, verb with the behavior and object with the
object in ACT. The collected news headline dataset consists of 2,080 headlines from a group
of news websites from the period of 1999 to 2014. Recruited participants from Mechanical
Turk are asked to locate the subject, behavior, and object of each sentence and indicate
their sentiments in the EPA format. Their approach yields a precision between 71% and
82% on the news headline dataset, which outperforms most supervised learning models.

MingLei Li et al. further propose to use LSTM learning method using word embeddings
to predict the affective states of a described event [54]. They claim the method outperform
the linear model in the ACT and most importantly, there is no need to construct affect
lexicons manually. They perform the research on a corpus of 515 sentences in SVO forms
with a vocabulary of 106, which are annotated by 25 females and 25 males. The best

60

LSTM model in their work achieves around 0.3 error rate on three affective dimensions.
This paper inspires us to apply supervised learning models instead of using ACT equations.

5.2.2 LSTM

Humans’ thinking does not start from scratch every second, but instead, it is based on
understanding of previous words and the context. Traditional machine learning models
and neural networks could not do this as they lack of memory mechanisms. Recurrent
neural networks address this issue by adding loops in the network architecture, which
allows the output information from previous input to persist in future incoming data. If
we unroll the loop, a recurrent neural network can be thought of as multiple copies of the
same network. The chain-like nature of recurrent neural network reveals the relationship to
sequences and lists, which makes it receive tremendous success in various natural language
processing tasks, including speech recognition, translation, sentiment analysis, etc.

One major problem in recurrent neural networks is the gap between relevant information
and the point where it is needed. Sometimes the gap is small, for example, if we are trying
to predict the last word in “the clouds are in the sky”. However, there are also cases
where we need more context, for example, if trying to predict the last word in the text “I
grew up in France... I speak fluent French”. In this case, the gap becomes very large and
recurrent neural networks become unable to connect that information in practice. Long
Short-Term Memory networks (LSTM) is an extension of recurrent neural network and
capable of learning long-term dependencies [41, 26]. It keeps the chain-like structure, but
the repeating module has a unique structure called gates.

Gates are designed to let information through optionally. They are composed of sigmoid
neural net layers and a pointwise multiplication operation. A LSTM cell at position t
consists of four parts: an input gate vector it, a forget gate vector ft, an output gate vector
ot and a cell state vector ct. Furthermore, the output of each cell is denoted as ht. An
LSTM structure can be described by the following sets of equations:

it = σ (Uixt +Wiht−1 + bi)

ft = σ (Ufxt +Wfht−1 + bf)

ot = σ (Uoxt +Woht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Ucxt +Wcht−1 + bc)

ht = ot ◦ tanh(ct)

(5.1)

61

where σ is the sigmoid activation function, ◦ is the element wise produce, bi, bf , bo, bc are
the bias. The cell produces current output ht based on the current input xt and previous
output ht−1. Ui, Uf , Uo, Uc,Wi,Wf ,Wo,Wc are model matrix that are learning during the
training process.

Our proposed LSTM model consists of three modules, which takes the word vector
representations of subject-verb-object extracted from sentences. We do a final classification
on the last hidden layer to predict sentiments. We train the LSTM model for each sentiment
state of each role in an event. Fig 5.1 shows the architecture of LSTM.

Figure 5.1: The structure of LSTM used to predict EPA states of SVO model. The
architecture consistes three layers: the input SVO word embeddings layer, the LSTM
layer, and the output affective state layer. There are two hidden dense layers connected
between the outputs from LSTM layer and the final output.

5.3 Evaluation

To train and evaluate the performance of predicting subject and object’s sentiments evoked
from event-based sentences, we use a news headlines dataset collected by Ahothali [1]. The
dataset consists 2,080 news headlines from a group of news websites and archives (BBC,
CNN, Reuters, The Telegraph, Times) ranging from 1999 to 2014. Participants located in

62

North America are recruited with an approval rate above 90%. They are asked to locate
the subject, behavior, and object of each sentence and rate each component’s sentiment in
the format of EPA. They have excluded ratings filled with blanks, zeros or similar values.
The inappropriate subject, verb, and object from are also excluded.

We also try to use a Github comment dataset collected by Rishi [75]. This dataset
consists of 834 pull requests from Github and a total of 3,000 comments. Each comment is
labeled by four people regarding the sentiments expressed. The ten sentiments are thanks,
sorry, calm, nervous, careless, cautious, aggressive, defensive, happy, and angry.

To evaluate the performance of our proposed LSTM method, we test the MAE error
rate between prediction and ground truth. To obtain sentiment from Evaluation-Potency-
Activity space, we calculate and sort Euclidean distances between predicted EPA position
and ten anchor sentiment words mentioned above. Since word embeddings are used as
LSTM model inputs, we map EPA to sentiments using the affective meanings in Warriner-
EPA or Github-EPA, depending on which culture or subculture to analyze.

5.4 Results and Discussion

5.4.1 SVO EPA Prediction

Our proposed LSTM model is first evaluated in predicting the evoked sentiments towards
news headlines by comparing the generated EPA to the ground truth. We extract subject-
verb-object component from sentences using NLTK Stanford Parser and fill failed parsing
values with human annotations collected by Ahothali [1]. The Stanford Parser constructs a
probabilistic parse tree representing the structure of the sentences to identify grammatical
components. Taking the word vector representations of subject, verb, and object, we train
separate LSTM models to predict sentiments towards the event, subject, behavior, and
object in the EPA dimensions. We set the dropout rate for LSTM layer to be 0.2 and
add two dense layers before the final output layer. There are 1,535 news headlines in the
labeled dataset, so we apply k-fold cross validation where k = 5. The results are shown in
Table 5.1.

We further attempt to map predicted EPA values to ten basic sentiments mentioned
above. Due to the lack of human-labeled sentiments evoked by news headlines, we do not
have accurate evaluations. Instead, we calculate cosine distances on EPA dimension to
infer sentiments, which allows us to get a sense of our models’ performance. We utilize
the Warriner-EPA as the sentiment dictionary. The sentiment that has the smallest cosine

63

Identity Event Subject Behavior Object
Dimension E P A E P A E P A E P A

MAE 0.56 0.60 0.58 0.53 0.55 0.55 0.53 0.57 0.57 0.56 0.56 0.57
RMSE 0.76 0.81 0.80 0.74 0.77 0.72 0.79 0.82 0.79 0.77 0.77 0.77

(a) The prediction results of using our proposed LSTM approach.

Identity Subject Object
Dimension E P A E P A

MAE 1.11 1.25 1.27 1.09 1.26 1.27
RMSE 1.38 1.24 1.33 1.33 1.56 1.54

(b) The results from previous work. [1].

Table 5.1: Affective prediction of 1,535 event-based sentences. MAE=mean absolute error.
RMSE=root mean squared error. LSTM model can achieve better results compared with
using ACT [1].

distance to human annotated EPA ratings is taken as human annotated sentiment. The
sentiment that has the smallest cosine distance to predicted EPA ratings using LSTM model
is taken as model predicted sentiment. We select the top three out of ten sentiments and
add one score if there is at least one element in common. Of the 1,532 news headlines, there
are 1,441 and 1,429 hits for predicting the subject’s and object’s sentiments respectively.
Here we list part of our predicted sentiments which look quite reasonable (see Table 5.2).

5.4.2 Sentiment Prediction on Github Comments

With the well-trained LSTM models that could predict EPA scores from subject-verb-
object word embeddings in sentences, we further test on a Github comments dataset.
Before we input data to our models, we first split and extract SVO components from
Github comments. Using the Stanford Parser, there are only 976 sentences left, which
is probably because the collected comments are not well formatted, which increases the
difficulty of grammatical components extraction. We conclude three reasons for the Parser
performs poorly on the Github comments dataset.

• Github comments are very casual sentences and lack of enough context.
For example: “Done. Renamed timestamp to freeze-date”, “ah yeah I missed that
one, typo. fixed”, and “:) Ya probably not.”. In these examples, there are not

64

Headline
Ground Truth Model Prediction
ETS ETO ETS ETO

Bomb kills 18 on military bus in Iran careless cautious careless sorry
Massive earthquake strikes Chile aggressive aggressive sorry nervous

House speaker offers comprehensive
pension fix

happy happy happy cautious

Behind the Masks in Ukraine, Many
Faces of Rebellion

aggressive aggressive aggressive aggressive

Stomp the Yard” has winning moves in
its weekend debut

happy nervous happy cautious

Table 5.2: LSTM model’s results on predicting basic sentiments. ETS and ETO are
sentiments towards subject and object respectively. SVO elements extracted by parser are
denoted as: subject, behavior, and object.

necessarily to be a subject, verb or object and group members can understand clearly.
However, programs fail to analyze the structure.

• Abbreviations and terminologies are commonly used in the Github community.
For example, “I haven’t really grasped that code, but comparing the diff where that
code was introduced, maybe should it use?” and “Nope, I don’t have this in my repo
local repo. So it isn’t my code at all”. Word diff and repo are abbreviations for
“difference” and “repository”. It is hard for the program to tell the true meanings
in the Github culture.

• A few comments are not collected properly in the raw data.
We are not sure about the reason, but it is obvious that long sentences are partly cut
off. For example, “As this enum is public, it might make sense to give it a more C#
friendly name... How do you feel about,, ...”, and “Bug, as it’s... again instead of ...
Fixing this with my refactor and adding a unit test because I am getting afraid :)”
There is no way for the parser to understand the sentence structure correctly.

Even though the SVO Parser does not work well on the Github comments data, we still
try to evaluate the performance of predicting evoked sentiments. Of the 976 comments, we
pick the top three out of ten sentiments as our prediction and add one score if any predicted
sentiment appears in the ground truth set. For example, if the top three sentiments
predicted by the model are calm, sorry, happy, and the human annotation is sorry, we
count it as a successful prediction (hit). Otherwise, it is not a hit if the human annotation

65

is sad. There are 215 hits in the result if selecting the top three predicted sentiments.
Moreover, there are 466 hits if increasing the threshold to top four. Here we show part
of our results in Table 5.3. Even though the results are not as good as using state-of-art
methods [76, 75], there are some reasonable predictions.

Comments Human Prediction
The easiest fix would be to just change
that line to since the only reason it’s
there is to define something the win-
dows headers don’t.

calm, cautious sorry, cautious

Indeed. I think the ”extra” is a typo
– sort of redundant. I’ll fix this in the
docs.

calm, sorry sorry, thanks, cautious

Ouch! My bad on this one. I reverted
this back to the original implementa-
tion.

careless, sorry sorry, thanks, cautious

I don’t think this is right. aggressive, cautious sorry, cautious, careless
I like the name change. is more granu-
lar and clear to me

calm thanks, calm

I’ve got an OSX machine here so I’ll be
sure to test any changes I make from
hereon out. Though I think the C code
is safe now :)

calm, cautious, thanks thanks, happy

Separate non-related issue, isn’t it? cautious, defensive cautious, nervous

Table 5.3: Apply LSTM model to predict Github comments sentiments. The SVO parser
could extract from 976 Github comments successfully. We use the LSTM model to predict
sentiments triggered by those sentences.

5.5 Conclusion

In this chapter, we show an application of using our proposed EPA induction method to
predict individuals’ sentiments. Different from previous work, we train an LSTM model
instead of using the ACT, mainly because of the lack of experimental regression param-
eters in a given subculture. We show the average error rate of training LSTM models is
between 0.55 and 0.60. Moreover, we can predict discrete sentiments with accuracy over

66

93%. We further test the models on a Github comments dataset. Even though the accu-
racy is not very satisfying, we believe it could be a promising direction to go. There are
mainly three reasons that hurt the prediction performance. Firstly, Github sentences lack
enough context compared to news headlines. Secondly, there are many abbreviations and
terminologies used in Github community, and our model cannot distinguish polysemy in
fine-grained level. Thirdly, the data that we use is not well-structured. Moreover, we find
the Stanford Parser fail to extract more than a half of the collected Github comments.
Therefore, we can consider ask human to annotate SVO identities to improve the data
quality. Also, we can set up rules to remove meaningless sentences.

We also want to compare individuals’ sentiments triggered by sentences between general
culture and Github community. We believe this could provide evidence of affect divergence
across culture and subculture. For example, do people feel the same when someone says
encouraging things? Also, do people express negative sentiments in the same way even if
in different environment settings? We could explore more in this direction with carefully
constructed sentence lists in the future.

67

Chapter 6

Conclusion

Human sentiments are complicated states of mind deriving from experiences, circum-
stances, behaviors and so on. In recent years, sentiment analysis has received much at-
tention in many fields, as it plays a significant role in a variety of real-world problems.
Most researchers treat sentiments as binary scores or distinct labels. However, we find
multi-dimensional space to be a comprehensive and universal representation of human sen-
timents. Affect control theory models sentiments in Evaluation-Potency-Activity space,
which provides a practical method to do identity, behavior and sentiment reasoning and
analysis. Most of the proposed machine learning approaches in the sentiment analysis area
rely heavily on human annotations. Affect control theory researchers spend a long time
collecting human’s EPA ratings for thousands of concepts in several regions and countries.
They demonstrate that the semantic differentials of a three-number profile indicate affec-
tive meanings related to a particular culture. Therefore, the collected human annotations
become unreliable if investigating in a subculture or online culture.

In this thesis, we propose a framework to solve the scalability issue. We show that
our automatic affective meanings recognizer could capture subtle EPA profile changes
by taking pre-trained word embeddings. We further show the possibility of predicting
sentiments evoked from sentences in different cultural contexts using our expanded EPA
lexicons. Finally, the experiment results support our hypothesis, that cultural divergence
in affective dimensions have been embedded in distributed word representations, and some
affect meanings could be much different across subcultural environments. Basically, our
framework has three steps to obtain the induced affect lexicon for any given culture:

1. Collect a text corpus for the desired culture (subculture), community, region or coun-
try.

68

2. Train word embeddings using the collected corpus and align the high dimensional
space to general culture space.

3. Input pre-trained word vectors to mapping models and obtain output affective rat-
ings.

Comparing to recruiting a group of participants and collecting individual ratings for
each concept, our method is easy to carry on and close to the ground truths. We test
the average error rate of using human annotations, predictions using general word rep-
resentations and predictions using specific corpus’s word representations to evaluate the
performance. The results show our method yields the highest accuracy. We conclude three
reasons for the biases of our prediction:

1. Information loss when aligning word vector spaces.
We build models to align high dimensional spaces using two methods: Singular Value
Decomposition (SVD) and Multilayer Perceptron (MLP). MLP model yields the
higher accuracy in general, however, there is at least 0.5 error rate in the best case.
Therefore there is a certain percentage of unavoidable information loss when doing
the space transformation.

2. Information loss when mapping from word vector space to affect space.
We attempt to model the mapping function using three methods: Graph-based semi-
supervised learning (GP), Supported Vector Regression (SVR) as well as the Neural
Network (NN). In general, the neural network models get the highest accuracy with
the limited training data. Again, there is unavoidable information loss when doing
the mapping.

3. The nature of induction and approximation. Basically, our proposed method is trying
to find the approximation of mapping function from word vectors to affective ratings
under a given context. We use the general word vectors and human labeled affect
meanings to measure the shifts. We doubt if the bias of such approximation could
be eliminated.

6.1 Future Work

In this thesis, we only explore a little of using the induced EPA lexicon to predict sen-
timents triggered by sentence due to the lack of a comparable sentence dataset. A more

69

comprehensive design and study could be further conducted to evaluate predicted affect
meanings’ performance on practical problems. Moreover, we can integrate our results into
the THEMIS project and explore how sentimental difference plays a role in group cooper-
ations.

Concerning the word vector space alignment method, there are more things could be
done to clean the data. For example, comments like “fix bugs...” and “typo :(” could be
filtered out as they provide little useful information. Users’ comments under the same pull
requests could be grouped as they share the same context.

With regard to the affect lexicon expansion method, there are several approaches can
be applied to enhancing the quality of the generated lexicon. For example, phrases and
multi-word terms could not be accepted by the current framework. We can think of some
improvement methods to obtain their word vector positions and predict affect meanings.

In general, our proposed framework in this thesis provides a new direction to obtain
affect meanings lexicon in sentiment analysis. Also, we contribute toward an enhanced
understanding of the semantic differential, affect differences, and cultural divergence. There
are multiple directions can be explored in the future, and many projects could be done
using the proposed work.

70

References

[1] Areej Alhothali and Jesse Hoey. Good news or bad news: using affect control theory to
analyze readers’ reaction towards news articles. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1548–1558, 2015.

[2] Areej Alhothali and Jesse Hoey. Semi-supervised affective meaning lexicon ex-
pansion using semantic and distributed word representations. arXiv preprint
arXiv:1703.09825, 2017.

[3] Cecilia Ovesdotter Alm and Richard Sproat. Emotional sequencing and development
in fairy tales. In International Conference on Affective Computing and Intelligent
Interaction, pages 668–674. Springer, 2005.

[4] Scott Ambler. Agile modeling: effective practices for extreme programming and the
unified process. John Wiley & Sons, 2002.

[5] Silvio Amir, Ramón Astudillo, Wang Ling, Bruno Martins, Mario J Silva, and Isabel
Trancoso. Inesc-id: A regression model for large scale twitter sentiment lexicon in-
duction. In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 613–618, 2015.

[6] Amir Bakarov. A survey of word embeddings evaluation methods. arXiv preprint
arXiv:1801.09536, 2018.

[7] Debasish Basak, Srimanta Pal, and Dipak Chandra Patranabis. Support vector re-
gression. Neural Information Processing-Letters and Reviews, 11(10):203–224, 2007.

[8] Plaban Kumar Bhowmick. Reader perspective emotion analysis in text through en-
semble based multi-label classification framework. Computer and Information Science,
2(4):64, 2009.

71

[9] Sasha Blair-Goldensohn, Kerry Hannan, Ryan McDonald, Tyler Neylon, George A
Reis, and Jeff Reynar. Building a sentiment summarizer for local service reviews. In
WWW workshop on NLP in the information explosion era, volume 14, pages 339–348,
2008.

[10] Margaret M Bradley and Peter J Lang. Affective norms for english words (anew):
Instruction manual and affective ratings. Technical report, Citeseer, 1999.

[11] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on Machine
learning, pages 161–168. ACM, 2006.

[12] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[13] Gang Chen, Yangqiu Song, Fei Wang, and Changshui Zhang. Semi-supervised multi-
label learning by solving a sylvester equation. In Proceedings of the 2008 SIAM In-
ternational Conference on Data Mining, pages 410–419. SIAM, 2008.

[14] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations
for a compositional distributional model of meaning. arXiv preprint arXiv:1003.4394,
2010.

[15] Wikimedia Commons. File:example of unlabeled data in semisupervised learning.png
— wikimedia commons, the free media repository, 2016. [Online; accessed 4-October-
2018].

[16] Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman. Fitting a graph to
vector data. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 201–208. ACM, 2009.

[17] Ann Devitt and Khurshid Ahmad. Sentiment polarity identification in financial news:
A cohesion-based approach. In Proceedings of the 45th annual meeting of the associ-
ation of computational linguistics, pages 984–991, 2007.

[18] Paul Ekman. Are there basic emotions? 1992.

[19] Siamak Faridani. Using canonical correlation analysis for generalized sentiment anal-
ysis, product recommendation and search. In Proceedings of the fifth ACM conference
on Recommender systems, pages 355–358. ACM, 2011.

72

[20] Ethan Fast, Binbin Chen, and Michael S Bernstein. Empath: Understanding topic
signals in large-scale text. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, pages 4647–4657. ACM, 2016.

[21] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. Placing search in context: The concept revisited. In
Proceedings of the 10th international conference on World Wide Web, pages 406–414.
ACM, 2001.

[22] Barbara L Fredrickson. The role of positive emotions in positive psychology: The
broaden-and-build theory of positive emotions. American psychologist, 56(3):218,
2001.

[23] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer percep-
tron)a review of applications in the atmospheric sciences. Atmospheric environment,
32(14-15):2627–2636, 1998.

[24] Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. Word embeddings
quantify 100 years of gender and ethnic stereotypes. Proceedings of the National
Academy of Sciences, 115(16):E3635–E3644, 2018.

[25] Aparna Garimella, Rada Mihalcea, and James Pennebaker. Identifying cross-cultural
differences in word usage. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 674–683, 2016.

[26] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. 1999.

[27] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[28] Jamie Guillory, Jason Spiegel, Molly Drislane, Benjamin Weiss, Walter Donner, and
Jeffrey Hancock. Upset now?: emotion contagion in distributed groups. In Proceedings
of the SIGCHI conference on human factors in computing systems, pages 745–748.
ACM, 2011.

[29] Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit comments
in github: an empirical study. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 352–355. ACM, 2014.

73

[30] Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. Learning bilin-
gual lexicons from monolingual corpora. Proceedings of ACL-08: Hlt, pages 771–779,
2008.

[31] William L Hamilton, Jure Leskovec, and Dan Jurafsky. Cultural shift or linguistic
drift? comparing two computational measures of semantic change. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing. Conference
on Empirical Methods in Natural Language Processing, volume 2016, page 2116. NIH
Public Access, 2016.

[32] William L Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings
reveal statistical laws of semantic change. arXiv preprint arXiv:1605.09096, 2016.

[33] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning. In
The elements of statistical learning, pages 485–585. Springer, 2009.

[34] Vasileios Hatzivassiloglou and Kathleen R McKeown. Predicting the semantic orien-
tation of adjectives. In Proceedings of the 35th annual meeting of the association for
computational linguistics and eighth conference of the european chapter of the asso-
ciation for computational linguistics, pages 174–181. Association for Computational
Linguistics, 1997.

[35] Carleen Hawn. Take two aspirin and tweet me in the morning: how twitter, facebook,
and other social media are reshaping health care. Health affairs, 28(2):361–368, 2009.

[36] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf.
Support vector machines. IEEE Intelligent Systems and their applications, 13(4):18–
28, 1998.

[37] David R Heise. Affect control theory: Concepts and model. Journal of Mathematical
Sociology, 13(1-2):1–33, 1987.

[38] David R Heise. Understanding social interaction with affect control theory. New
directions in contemporary sociological theory, pages 17–40, 2002.

[39] David R Heise. Surveying cultures: Discovering shared conceptions and sentiments.
John Wiley & Sons, 2010.

[40] David R Heise. Cultural variations in sentiments, 2014.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

74

[42] Stanis law Jastrzebski, Damian Leśniak, and Wojciech Marian Czarnecki. How to
evaluate word embeddings? on importance of data efficiency and simple supervised
tasks. arXiv preprint arXiv:1702.02170, 2017.

[43] Kenneth Joseph and Kathleen M Carley. Relating semantic similarity and semantic
association to how humans label other people. In Proceedings of the First Workshop
on NLP and Computational Social Science, pages 1–10, 2016.

[44] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and
Tomas Mikolov. Fasttext. zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651, 2016.

[45] Jaap Kamps, Maarten Marx, Robert J Mokken, Maarten De Rijke, et al. Using
wordnet to measure semantic orientations of adjectives. In LREC, volume 4, pages
1115–1118. Citeseer, 2004.

[46] Philipp Koehn and Kevin Knight. Estimating word translation probabilities from
unrelated monolingual corpora using the em algorithm. In AAAI/IAAI, pages 711–
715, 2000.

[47] Philipp Koehn and Kevin Knight. Learning a translation lexicon from monolingual
corpora. In Proceedings of the ACL-02 workshop on Unsupervised lexical acquisition-
Volume 9, pages 9–16. Association for Computational Linguistics, 2002.

[48] Zornitsa Kozareva, Borja Navarro, Sonia Vázquez, and Andrés Montoyo. Ua-zbsa:
a headline emotion classification through web information. In Proceedings of the 4th
international workshop on semantic evaluations, pages 334–337. Association for Com-
putational Linguistics, 2007.

[49] Austin C Kozlowski, Matt Taddy, and James A Evans. The geometry of culture:
Analyzing meaning through word embeddings. arXiv preprint arXiv:1803.09288, 2018.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[51] Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Statistically signif-
icant detection of linguistic change. In Proceedings of the 24th International Confer-
ence on World Wide Web, pages 625–635. International World Wide Web Conferences
Steering Committee, 2015.

75

[52] Alberto Lavelli, Fabrizio Sebastiani, and Roberto Zanoli. Distributional term rep-
resentations: an experimental comparison. In Proceedings of the thirteenth ACM
international conference on Information and knowledge management, pages 615–624.
ACM, 2004.

[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[54] Minglei Li, Qin Lu, Yunfei Long, and Lin Gui. Affective state prediction of con-
textualized concepts. In IJCAI 2017 Workshop on Artificial Intelligence in Affective
Computing, pages 45–57, 2017.

[55] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele Lanza,
and Rocco Oliveto. Sentiment analysis for software engineering: How far can we go?
In Proceedings of 40th International Conference on Software Engineering, 2018.

[56] Kevin Hsin-Yih Lin, Changhua Yang, and Hsin-Hsi Chen. Emotion classification
of online news articles from the reader’s perspective. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology-Volume 01, pages 220–226. IEEE Computer Society, 2008.

[57] Bing Liu and Lei Zhang. A survey of opinion mining and sentiment analysis. In
Mining text data, pages 415–463. Springer, 2012.

[58] Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-
supervised learning. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 679–686, 2010.

[59] Batja Mesquita and Nico H Frijda. Cultural variations in emotions: a review. Psy-
chological bulletin, 112(2):179, 1992.

[60] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[61] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among lan-
guages for machine translation. arXiv preprint arXiv:1309.4168, 2013.

[62] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

76

[63] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[64] Tom M Mitchell. Artificial neural networks. Machine learning, 45:81–127, 1997.

[65] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
github for engineered software projects. Empirical Software Engineering, 22(6):3219–
3253, 2017.

[66] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. Do developers
feel emotions? an exploratory analysis of emotions in software artifacts. In Proceedings
of the 11th working conference on mining software repositories, pages 262–271. ACM,
2014.

[67] Nicolas Nicolov, William Allen Tuohig, and Richard Hansen Wolniewicz. Automatic
sentiment analysis of surveys, December 10 2009. US Patent App. 12/481,398.

[68] Charles E Osgood. The nature and measurement of meaning. Psychological bulletin,
49(3):197, 1952.

[69] Charles E Osgood. Dimensionality of the semantic space for communication via facial
expressions. Scandinavian journal of Psychology, 7(1):1–30, 1966.

[70] Charles Egerton Osgood, William H May, Murray Samuel Miron, and Murray S Miron.
Cross-cultural universals of affective meaning, volume 1. University of Illinois Press,
1975.

[71] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classi-
fication using machine learning techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10, pages 79–86. Asso-
ciation for Computational Linguistics, 2002.

[72] W Gerrod Parrott. Emotions in social psychology: Essential readings. Psychology
Press, 2001.

[73] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and emotion:
sentiment analysis of security discussions on github. In Proceedings of the 11th working
conference on mining software repositories, pages 348–351. ACM, 2014.

[74] Delip Rao and Deepak Ravichandran. Semi-supervised polarity lexicon induction.
In Proceedings of the 12th Conference of the European Chapter of the Association for

77

Computational Linguistics, pages 675–682. Association for Computational Linguistics,
2009.

[75] Deepak Rishi. Affective sentiment and emotional analysis of pull request comments
on github. Master’s thesis, University of Waterloo, 2017.

[76] Deepak Rishi, Jesse Hoey, Mei Naggappan, Kimberly B Rogers, and Tobias Schroder.
Emotion and interaction processes in a collaborative online network.

[77] Sascha Rothe, Sebastian Ebert, and Hinrich Schütze. Ultradense word embeddings
by orthogonal transformation. arXiv preprint arXiv:1602.07572, 2016.

[78] Masoud Jalili Sabet, Heshaam Faili, and Gholamreza Haffari. Improving word align-
ment of rare words with word embeddings. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers, pages
3209–3215, 2016.

[79] Lawrence K Saul and Sam T Roweis. Think globally, fit locally: unsupervised learning
of low dimensional manifolds. Journal of machine learning research, 4(Jun):119–155,
2003.

[80] Robert J Schalkoff. Artificial neural networks, volume 1. McGraw-Hill New York,
1997.

[81] Peter H Schönemann. A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10, 1966.

[82] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. Offline
bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv
preprint arXiv:1702.03859, 2017.

[83] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statis-
tics and computing, 14(3):199–222, 2004.

[84] Philip J Stone, Dexter C Dunphy, and Marshall S Smith. The general inquirer: A
computer approach to content analysis. 1966.

[85] Md Arafat Sultan, Steven Bethard, and Tamara Sumner. Back to basics for monolin-
gual alignment: Exploiting word similarity and contextual evidence. Transactions of
the Association for Computational Linguistics, 2:219–230, 2014.

78

[86] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.
MIT press, 1998.

[87] James Chi-shun Tsiao, David Yinkai Chao, and Peter P Tong. Natural-language
voice-activated personal assistant, May 8 2007. US Patent 7,216,080.

[88] Peter D Turney, Michael L Littman, Jeffrey Bigham, and Victor Shnayder. Combining
independent modules to solve multiple-choice synonym and analogy problems. arXiv
preprint cs/0309035, 2003.

[89] Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Hannan, and Ryan McDonald. The
viability of web-derived polarity lexicons. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics, pages 777–785. Association for Computational Linguistics, 2010.

[90] Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd
international conference on Machine learning, pages 977–984. ACM, 2006.

[91] Jun Wang, Tony Jebara, and Shih-Fu Chang. Graph transduction via alternating
minimization. In Proceedings of the 25th international conference on Machine learning,
pages 1144–1151. ACM, 2008.

[92] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph and
text jointly embedding. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1591–1601, 2014.

[93] Amy Beth Warriner, Victor Kuperman, and Marc Brysbaert. Norms of valence,
arousal, and dominance for 13,915 english lemmas. Behavior research methods,
45(4):1191–1207, 2013.

[94] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual polarity
in phrase-level sentiment analysis. In Proceedings of the conference on human language
technology and empirical methods in natural language processing, pages 347–354. As-
sociation for Computational Linguistics, 2005.

[95] Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. Aligning
knowledge and text embeddings by entity descriptions. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 267–272,
2015.

79

[96] Xiaojin Zhu. Semi-supervised learning literature survey. Computer Science, University
of Wisconsin-Madison, 2(3):4, 2006.

[97] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld. Semi-supervised learning with
graphs. PhD thesis, Carnegie Mellon University, language technologies institute, school
of computer science Pittsburgh, PA, 2005.

[98] Alexey Zobnin. Rotations and interpretability of word embeddings: the case of the
russian language. In International Conference on Analysis of Images, Social Networks
and Texts, pages 116–128. Springer, 2017.

80

Glossary

alignment-model A statistical function that do word embedding hyperspace transfor-
mation. 12

General-EPA Affective ratings for the general culture generated by our proposed method.
xi, 42, 51–54

Github-comments A dataset consisting of pull requests, issue comments and commit
messages from 4,124 Github repositories. 17, 18, 81

Github-EPA Affective ratings for the Github subculture generated by our proposed
method. xi, xiv, 30, 42, 49, 53–56, 63

Github-wv Word embeddings trained on Github-comments without alignment. xi, xiv,
17, 18, 20–22, 26, 38, 49, 50, 53

Github-wv-aligned Word embeddings trained on Github-comments and aligned to the
Google-wv hyperspace. x, 18, 19, 26, 27, 30, 42

Google-wv Word embeddings trained on Google News corpus 1. x, xi, 17–19, 26, 27, 30,
38, 42, 49, 50, 52, 81

mapping-model A machine learning model that can measure affective meanings from
word embeddings. 30

Themis-EPA A dataset collected in THEMIS.COG project 2 consisting of affective rat-
ings in evaluation, potency, and activity dimensions (EPA) for 587 concepts. xi, xiv,
30, 40, 42, 49–51, 53–55

1https://code.google.com/archive/p/word2vec/
2https://themis-cog.github.io/

81

Warriner-EPA A dataset collected by Warriner et al. consisting of affective norms of
valuence, arousal, and dominance (VAD) for 13,915 concepts [93]. xi, 19, 30, 38, 40,
42, 49–54, 56, 63

82

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions and Outline

	Related Work
	Sentiment Analysis
	Evaluation-Potency-Activity Model
	Hyperspace Alignmemt
	Sentiment Lexicon Induction
	Affective State Prediction
	Sentiment Analysis on Github Data

	Natural Language Processing
	Bag of Words
	Distributed Word Representation
	Word Similarities

	Alignment Word Space
	Introduction
	Background
	Method
	Linear Transformation
	Stochastic Gradient Descent
	Singular Value Decomposition

	Evaluation
	Github Dataset
	Pre-trained Word Embeddings
	Anchor Words Selection Strategy
	Metrics

	Results and Discussion
	Part One
	Part Two
	Part Three

	Conclusion

	EPA Expansion
	Introduction
	Background
	Methods
	Motivation
	Graph-based Label Propagation
	Support Vector Regression
	Artificial Neural Networks

	Evaluation
	Datasets
	Pre-Trained Word Embeddings
	Warriner EPA dataset
	Themis EPA dataset

	Methods for Sampling Seed Words
	Neural Network Structure
	Evaluation Metrics
	Methods for Github EPA Expansion

	Results and Discussion
	Training Mapping Models to Predict EPA
	Graph
	SVR
	Neural Network
	Comparing Seed Words Threshold and Size
	Training Hidden Models within Github Subculture
	Examples of Predicted EPA lexicon

	Exploration on Expanded EPA lexicon

	Conclusion

	State Prediction
	Introduction
	Background
	Related Work
	LSTM

	Evaluation
	Results and Discussion
	SVO EPA Prediction
	Sentiment Prediction on Github Comments

	Conclusion

	Conclusion
	Future Work

	References
	Glossary

