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Abstract 

This paper closely evaluates the interfacial bonding mechanism between titanium particles 

deposited on an aluminum alloy substrate by cold gas spraying followed by friction-stir 

processing (FSP). After cold spraying and FSP modification, the produced Al/Ti interface 

was studied using focus ion beam-transmission electron microscopy (FIB-TEM) analysis and 

auger electron spectroscopy. Formation of a well-bonded titanium aluminide reaction layer 

was observed at the interface with a thickness in the range of 10-20 nm and a coherent 

interface associated with an inter-diffusion distance of about 600 nm. The results of this study 

showed that the physical bonding phenomenon during cold spraying according to the well-

known adiabatic shear instability at the interface can be associated with chemical bonding 

and formation of an intermetallic layer at the interface during FSP modification. This is aided 

by the induced thermo-mechanical processing and deformation-assisted solid-state diffusion-

based reactions. Also, these possible interfacial bonding and intermetallic layer formation 

mechanisms were discussed based on the inter-diffusion of elements at the Al/Ti interface 

based on the well-established Boltzmann-Matano theory and kinetics models correlated with 

experimental observations. The main findings of this research highlight the role of FSP on the 

performance of cold spray coatings as a post-processing technique to promote densification 

and homogenization during processing by promoting nano-scale interfacial mechanisms and 

chemical bonding at the interface.  

Keywords: Aluminum substrate; Ti-coating; Cold spray; Friction-stir processing; Bonding 

mechanism; Modeling 
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1. Introduction 

Cold gas dynamic spraying is a new and versatile solid-state coating technology 

which can be easily implemented in the field. It utilizes the high velocity kinetically impact 

of particles upon the substrate to achieve bonding without melting. It only relies on severe 

plastic shear deformation to achieve deposition of the powder materials with minimum 

possible oxidation, structural/compositional changes, and undesirable phase transformations 

when compared to conventional high temperature thermal spraying technology [1, 2]. 

Beneficial residual stress induced by the peening process [3] and potentials for fatigue life 

enhancement of substrate [4] have added to the attractions of cold spray coating. Also, this 

technology can be implemented to repair the damaged structures and for rapid/additive layer 

by layer manufacturing with higher deposition rates as compared to the selective 

laser/electron-beam melting based methods [5-7].  

During the build-up of material by cold spraying, the adhesion of coated material is 

influenced by the cohesion and adhesion strengths mainly due to “particle to particle 

compaction” between the layers as well as the “particle to substrate interaction” in the first 

layer, respectively [8, 9]. Highly pressurized nitrogen or helium inert? gas streams in the 

range of 1.5 MPa are usually employed to fluidize and transfer the typically micro-sized 

particles on the substrate surface and accelerate them through a convergent-divergent type 

nozzle with a high velocity impact in the range of 500-1200 m/sec to produce strain rates in 

the order of 0.5×10
9
/s for nanosecond durations on impact, depending on the type of 

substrate, particles, carrier gas, flow gas temperature and nozzle design [10, 11].  

This new technology has attracted considerable attention in the academia for about ten 

years, which has spurred new industrial applications aside from thermal spraying methods, 

considering the unique performance of the coatings as well as the economic efficiency [12]. 
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Improvement of surface characteristics including indentation hardness, wear resistance, 

fatigue fracture, corrosion, electrical resistivity, and thermal conductivity were the main 

objects of cold spray depositions [13, 14]. The first application of cold gas spraying 

technology has involved manufacturing of dense and strongly bonded oxygen-free copper 

coatings with superior physical and mechanical properties [15]. Thereafter, it was extended to 

other materials sensitive to oxidation and heat, such as titanium, magnesium, metastable and 

nanocrystalline materials [16, 17].   

Since the integrity and performance of cold sprayed coatings can be controlled by the 

bonding quality between particles and substrate during high velocity impact process, 

understanding the nature of bonding mechanism is essential to explore new coating 

applications [18]. Mechanisms used to explain bonding during explosive welding [19] or 

shock wave powder compaction [20] processes are very similar to those involved during cold 

gas spraying, in terms of formation of material flow jet upon impact, subsequent widespread 

severe plastic deformation, and the related phase transformation phenomena at the interface. 

The required heat and material flow controlling interfacial bonding are generated by adiabatic 

shear instability and subsequent thermal softening [18, 21]. Adiabatic shear instability is a 

well-known micro-mechanism which has been introduced by Assadi et al. [22], and is a 

dominant feature of bonding during particle impact in cold spraying. This heating is induced 

by the high strain rate severe plastic deformation at the interface without any melting in a 

time period of less than 100 ns. Physical bonding involving this mechanism is achieved using 

gas flow rates higher than a critical impact velocity which depend on the gas pressure and 

temperature, as well as the powder and substrate thermo-mechanical characteristics, which all 

depend on the temperature, strain, and strain-rate fields produced during particle 

impingement on the surface [23, 24].  

Friction-stir processing (FSP) is an innovative and energy efficient adaption of 
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friction-stir welding (FSW), which was introduced by Mishra et al. [25, 26] mainly for the 

aim of localized surface microstructural modifications in metallic materials. In this solid-state 

processing technique, a non-consumable and specially designed rotating tool is forged on the 

surface of substrate, leading to localized frictional heating mainly due to the contact between 

shoulder and substrate. This causes the material to soften under the shoulder surface and 

around the pin as a result of induced severe plastic shear straining, and by traversing the tool 

along the pre-defined path, material is transferred from the leading edge to trailing, such that 

upon cooling a modified stirred zone is produced with a refined microstructure [27].  

This modification technique has been employed for the purpose achieving desirable 

material properties, including; (i) fabrication of ultra-fine grained metals to attain high strain 

rate superplasticity [28, 29], (ii) production of metal-matrix nanocomposites [30-33], (iii) 

homogenizing of powder metallurgy products [34-36], and (iv) eliminating the casting defects 

[27]. More recently, FSP was implemented as an effective post-processing technique to 

consolidate pores and remove the micro-cracks, enhance the uniformity, refine the 

microstructure, and subsequently improve the mechanical performance of cold sprayed 

coatings [37-45]. One possible and important effect of the FSP modification step can be its 

action as a thermo-mechanical treatment to improve the cohesive bonding strength of a cold 

sprayed interface by activating solid-state diffusion phenomena which can avoid possible 

detrimental grain coarsening during post annealing heat-treatment [38, 39]. However, the 

influence of friction-stir modification on the bonding mechanism and strength at the interface 

of the cold sprayed coating layer was not studied yet or addressed well.  

Therefore, the present research focused on the effects of post friction-stir processing 

to reveal the interfacial bonding mechanisms at the interface between cold-sprayed aluminum 

and titanium by using auger electron spectroscopy and transmission electron microscopy 

(TEM) analyses. Also, the possible phase transformations and interfacial phenomena at the 



  

 6 

interaction region were studied based on well-established diffusion kinetics theories.  

2. Experimental procedure 

A plate of AA5083-H34 aluminum alloy with a thickness of 10 mm and standard 

chemical composition as reported in Table 1 was used as the substrate. The sample surface 

was finely grinded and cleaned before cold spray coating. Pure titanium powder with a 

spherical morphology and a particle size in the range of 20-80 µm, as shown in Fig. 1, was 

supplied from the TLS Company (TLS, Germany) to utilize for coating. The coating was 

performed using an SST-P low-pressure cold spray machine equipped with a powder feeder 

(4000 series, 5MPE, USA) made by Centerline Company (Windsor, Canada). Nitrogen was 

used as the carrier gas through a convergent-divergent DeLaval nozzle with a length of 120 

mm and an orifice diameter of 2 mm for transferring the titanium particles from powder 

feeder on the surface of substrate. By optimizing the main cold spray processing parameters 

as gas pressure of 1.4 MPa (203 psi), gas temperature of 500 ºC, powder feeding rate of 2.24 

gr/min, stand-off distance of 12 mm, gun traverse speed of 2.5 mm/sec and hatching distance 

of 2.5 mm. A titanium coating layer with the thickness of around 800 µm was successfully 

deposited on the surface of aluminum substrate. After sectioning across the thickness, 

standard metallographic sample preparation was performed similar to the details in the refs 

[30, 46, 47].  

A porous cold spray coating layer with about 70% densification is shown in optical 

macrographs of Fig. 2. Friction-stir processing (FSP) was considered to modify and 

consolidate the cold spray coating to improve its integrity. For this purpose, a Jafo manual 

milling machine was implemented by using a pin-less cylindrical tool with a shoulder 

diameter of 12 mm. To avoid the undesirable solid-state chemical reactions between FSP tool 

and titanium coating layer during process, a tungsten carbide tool was used. The processing 
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parameters used for FSP modification involved a tool rotational speed (w) of 900 rpm, 

traverse velocity (v) of 63 mm/min, with a constant plunge depth and nuting-angle of about 

0.5 mm and 2.5°, respectively. The effects of FSP modification step on the cold spray 

deposited titanium coating layer are shown in macro-images of Fig. 2, as well. In the 

composite field emission-scanning electron microscopy (FE-SEM) macro-images of Fig. 3, 

significant densification of the porous cold spray coating layer can be noted after this FSP 

step.  

The main objective of the present research is studying the interface between titanium 

coating layer and aluminum substrate after cold spray deposition and after FSP modification. 

A Zeiss Leo 1530 FE-SEM microscope (ZEISS, Germany) operated at an accelerated voltage 

of ~30 keV was used for imaging and chemical analysis. A thin foil sample was prepared 

from the interface by a ZEISS Crossbeam 540 focused ion beam-scanning electron 

microscope (FIB-SEM, ZEISS, Germany) and thereafter analyzed under two JEOL 2010F 

(JEOL, Japan) and FEI Titan LB (FEI, USA) microscopes with capabilities for high contrast 

and high resolution imaging, energy-dispersive X-ray spectroscopy (EDS), and electron 

energy loss spectroscopy (EELS) analysis. The Image-J software was employed for 

crystallographic diffraction analysis of the atomic orientations based on Fast Fourier 

Transform (FFT) algorithm. Furthermore, to monitor the chemical composition changes at 

the interaction layer auger electron spectroscopy (AES) analysis was performed by using a 

JAMP 9500F auger microprobe (JEOL-9500F, Japan) with a detection limit of up to ~5 nm 

combined on the ZEISS FE-SEM microscope. A line-scan analysis with distance intervals of 

about 100 nm was carried out across the Al/Ti interface. Mechanical property of the modified 

cold spray coating after FSP from different locations of coating layer as compared to the 

interface and base metals was elaborated in terms of micro-hardness mapping. A Buehler 

micro-indenter machine (Buehler, Germany) was used with a Vickers indenter and load of 
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300 gr for a 15 sec dwell time.  

3. Results and discussion 

3.1 Transmission electron microscopy characterization 

 Figures 4a-c and 4d-f show the FE-SEM images from the Al/Ti interface after cold 

spraying and FSP respectively. The locations for extracting the thin-foil samples are indicated 

in the same figures. Different ion milling/polishing steps to prepare the thin foil (<100 nm) 

for TEM analysis from the Al/Ti interface are presented in FE-SEM images of Fig. 5. In Fig. 

6, bright-field TEM images obtained using a JEOL microscope from the interface between 

aluminum substrate and titanium coating layer, with an embedded Ti-particle at the substrate 

are shown. The wavy morphology of interface can be attributed to the explosive-like strain 

field at the interface as induced by particles impingement during cold spraying process [48, 

49]. The EDS elemental mapping results by TEM analysis of the Al/Ti interface from two 

regions are presented in Fig. 7.  High magnification TEM images from the sub-grain structure 

of titanium close to interface in Fig. 8 indicates the formation of a cellular structure with an 

average size less than 200 nm caused by the severe plastic deformation of impact process in 

which, there is a short time for activating the static or dynamic restoration mechanisms. 

Figure 9 show a TEM image from the selected location of Al/Ti interface for further studies 

with more details within the interaction layer at high magnifications under the JEOL and 

Titan LB microscopes. In high resolution TEM images shown in Fig. 10, formation of a very 

thin layer from a different phase is observable. High magnification HRTEM images from the 

Al/Ti interface provide strong contrast between the aluminum and titanium alloy regions are 

shown in Fig. 11. The presence of a thin interaction layer with different contrast at the 

interface is clearly evident.  

Some complex precipitates within the aluminum matrix are visible close to the 
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interface in Fig. 9, as well. Complex Al-Fe-Mn-Si precipitates with semi-spherical 

morphologies within the aluminum alloy matrix are shown with strong Z-contrast are 

revealed by high angle annular dark field (HAADF) TEM in Fig. 11d. To study the crystal 

structure and chemical composition of this interaction layer at the interface, further 

examinations were followed by high resolution imaging, crystallographic orientation, and 

elemental chemical analysis using the Titan LB TEM microscope. High resolution TEM 

images from this interaction layer between aluminum and titanium at the interface are 

illustrated in Fig. 12. The thickness of the layer varies in the range of 10-20 nm. The variation 

may be associated with the induced temperature and strain fields during cold gas spraying 

process. However, an average thickness size of around 10 nm can be estimated for this 

interaction layer. In high magnification HRTEM images in Fig. 13, the orientation of atoms 

at the interface with respect to substrate and coating layer can be evaluated. In atomic 

orientations, some wavy shape flow paths can be seen which can be attributed to the severe 

shear straining action of rotating tool during FSP [50, 51].  

The FFT analysis results and crystallographic orientations are discussed and presented 

in combination with an HR-TEM image from the interaction layer in Fig. 14. Based on the 

FFT analysis and the related diffraction spot patterns from the interface, the new phase at the 

interaction layer appears to correspond to a titanium aluminide compound showing a D022 

tetragonal crystal structure with a d-spacing of ~2.29 A  in accordance with the lattice 

constants of Al3Ti phase [33, 52, 53]. This interaction layer exhibits a great atomistic 

matching with the both aluminum substrate and titanium coating layer by showing two 

crystallographic orientation relationships as    
3

112 111
AlAl Ti

  and    
3

112 101
Al Ti Ti

 , 

respectively (see Fig. 14). Moreover, the EELS elemental mapping chemical analysis results 

from the interaction layer at high magnifications as demonstrated in Fig. 15 are in a good 

agreement with the apparent Ti-Al phase identification. The extend of reaction layer at the 
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interface is traceable based on the oxygen map of EELS analysis showing some build-up of O 

element at a layer with a thickness in the range of 10-20 nm. However, since there is only a 

slight difference between the level of oxygen in the titanium matrix and interface, it seems 

that the oxygen was only diffused as impurity in the structure of intermetallic layer at the 

interface, and there is a low probability for formation of a compound structure which includes 

oxygen.  

Formation of this thermodynamically-stable titanium aluminide phase at the 

interaction layer which produced a well-bonded interface between the aluminum substrate 

and titanium coating layer after cold spraying and subsequent FSP modification is a result of 

involved thermo-mechanical phenomena [37, 54]. Therefore, this “interaction layer” actually 

can be considered as a “reaction layer” by formation of a new chemical compound at the 

interface based on the inter-diffusion of elements during thermo-mechanical process. The 

interfacial bonding mechanisms between substrate and coating layer for the studied system 

can be proposed to involve “chemical bonding” by formation of the mentioned intermetallic 

layer at the interface. This is complimentary to “physical bonding” according to the well-

established adiabatic shear instability at the interface as introduced by Assadi et al. [22] for 

bonding between the metallic particles and substrate during cold spraying process [55-58]. It 

seems that FSP also has beneficial influence on the kinetics for development of intermetallic 

layer at the interface due to thermo-mechanical post-treatment action and accordingly the 

related solid-state chemical reactions aided by intense plastic deformation during process.  

3.2 Auger electron spectroscopy analysis from the Al/Ti interface 

Auger electron spectroscopy is a highly surface-sensitive quantitative elemental and 

chemical-state analysis technique to attain the compositional information from the sample 

allowing one to characterize the nanoscale features by exciting auger electrons and 

quantifying the energy and intensity of emitted electrons with a typical interaction depth of 
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less than 5 nm [59]. Fig. 16a,b presents results of characterization of the interaction layer by 

this surface analysis technique. The gradual variation in the chemical composition of 

aluminum and titanium elements across the interface is clearly seen in this figure. The 

presence of an inter-diffusion layer with the thickness of ~600 nm at the interface, which can 

be attributed to inter-diffusion of aluminum and titanium elements across the interface, based 

on these auger spectroscopy analysis results is evident (see Fig. 16c). A sharp transition of 

elements across the interface indicates the low thickness of intermetallic layer at the 

interaction region which agrees well with the direct HR-TEM observations shown in Fig. 13. 

Also, this concentration gradient profile was used for diffusion modeling to predict the inter-

diffusion coefficient and the thickness of reaction layer as will be explained in what follows.  

3.3 Diffusion modeling 

3.3.1 Inter-diffusion coefficient and Boltzmann-Matano theory 

Although the interaction time during particle impact is <100 ns in cold spray which 

may be not enough for diffusion, there is evidence that a limited diffusion occurred at the 

interface because of the high temperature imposed during subsequent FSP treatment. The 

Al3Ti intermetallic layer at the interface can be formed mainly by diffusion of aluminum 

through titanium in the Al-Ti diffusion couple [60, 61]. The Boltzmann-Matano diffusion 

theory [62] can be employed for modeling the diffusion phenomenon in concentrated alloys 

as induced by chemical composition gradient. In our case, the inter-diffusion coefficient is 

indicated by parameter D  in the non-steady-state one dimensional Fick’s second law 

diffusion equation [63]: 

C C
D

t x x

    
   

    
                                                                                                                (1) 

where C  is the concentration of tracer element as a function of position ( x ) and time ( t ). By 
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substituting a new variable as 
x

t
   (also known as Boltzmann parameter) in the above 

relation, the partial differential equation is transformed to a simple ordinary differential 

equation [63]. 

2

dC d dC
D

d d d



  

 
  

 
                                                                                                              (2) 

The inter-diffusion coefficient can be derived after application of boundary condition ( 0C   

for    , and 
0C C  for    ) [63]: 

 
0

1

2

C
dx

D C xdC
t dC

  
   

  
                                                                                                    (3) 

where 0xdC   is the Matano-plane [63]. Darken [63] introduced the inter-diffusion 

phenomenon based on the actual driving force as chemical free-energy gradient:  

  A A B BD C X D X D                                                                                                              (4) 

0 exp
Q

D D
RT

 
  

 
                                                                                                                 (5) 

where X  is the atomic fraction of elements, 
0D  is the pre-exponential factor depending on 

temperature, Q  is the activation energy for diffusion, R  is the gas universal constant (~8.314 

J.mole
-1

.K
-1

), and T  is the processing temperature [63].  

The auger electron spectroscopy chemical analysis along the scan-line across interface 

in Fig. 16a as results shown in Fig. 16b with a high spatial resolution was considered as input 

of concentration gradient for both theories to predict the inter-diffusion coefficient. 

Temperature of stirred zone inside the pure titanium during FSP was taken as 950 °C for the 

employed processing parameters [64, 65], which is higher than the α to β phase 
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transformation temperature (~882 °C) for pure titanium [66]. Therefore, high temperature 

severe plastic deformation of pure titanium during FSP was accomplished under the β-phase 

crystal structure. In this research, the temperature on the surface of titanium coating under the 

shoulder action maybe can reach to the such high values, but temperature at the interface that 

accelerate the inter-diffusion of elements across the interface would be certainly lower than 

the melting of aluminum. Pre-exponential factors for diffusion of aluminum (considering its 

concentration in the examined AA5083 aluminum alloy of ~93%) through the β-phase pure 

titanium and vice versa at this range of assessment for temperature of SZ were considered as 

0 6 2 15.31 10 .AlD m s    and 
0 4 2 13.03 10 .TiD m s   , respectively [53, 61, 67, 68]. Also, the 

activation energies for these diffusion phenomena were estimated in the literature as 

1220.8 .D

AlQ kJ mole  and 
1325 .D

TiQ kJ mole , respectively [61, 67, 68]. Since the heating 

during FSP process is mostly attributed to the frictional flow of materials on the surface and 

induced by the rotating shoulder of tool [25, 69], by considering the shoulder diameter of 12 

mm and tool traverse velocity of 63 mm/min, the holding time for each point at peak 

temperature of FSP can be estimated around 11.4 sec. In Fig. 16c, the calculated inter-

diffusion coefficient ( D ) is plotted as a function of position (composition) according to the 

both of Boltzmann-Matano and Darken’s theories. Based on the plot, and by equating left and 

right areas, the 
mX , which described the Boltzmann-Matano interface, is determined to be 

~1.35 µm. As expected, the maximum inter-diffusion coefficient is measured at about 

8.6×10
-14

 m
2
.sec

-1
 with a very sharp peak at the interface. This value was utilized in the 

kinetics model for prediction of intermetallic layer formation and growth at the Al/Ti 

interface during subsequent friction-stir modification as will be explained in what follows.  

3.3.2 Kinetics of intermetallic layer formation and growth at the interface   

Formation of intermetallic compounds between the dissimilar metals in thermally-
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activated processes is a common phenomenon due to diffusion bonding by inter-diffusion of 

different atoms across the interface [33, 61, 70, 71]. The growth of the reactive layer at the 

interface is controlled by high temperature bulk/volume diffusion and its kinetics can be 

described by a relation between temperature and time of annealing in an Arrhenius equation 

[70]: 

2 nx KD t                                                                                                                           (6) 

0.exp
Q

K K
RT

 
  

 
                                                                                                                (7) 

2

0 exp nQ
x t K D

RT


 
  

 
                                                                                                    (8) 

where x  is the thickness of the reactive layer at the interface,   is a proportionality constant 

(~4), K  is the parabolic coefficient, D  is the inter-diffusion coefficient at the interface 

(~8.6×10
-14

 m
2
.sec

-1
), n  is the diffusion exponent (~2.2), t  is the holding time at processing 

temperature during FSP (~11.4 sec), 
0K  is the temperature-independent pre-exponential 

factor (~6700 m
2
.sec

-1
), Q  is the activation energy for diffusion of aluminum through 

titanium (~220.8 kJ.mole
-1

), R  is the gas universal constant (~8.314 J.mole
-1

.K
-1

), and T  is 

the temperature at the interface (<933 K, i.e., melting temperature of aluminum) during FSP 

without pin on the surface of pure titanium [61, 70]. By substituting these equivalent values 

for the case of present study in the above equation, the thickness of intermetallic layer at the 

interface due to reactive chemical bonding is found to be 17.5 nm, which is consistent with 

the experimental results of direct HR-TEM observations from the Al/Ti interface in the range 

of 10-20 nm (see Figs. 10 to 14).    

3.4 Indentation hardness  

Figure 17 illustrate the indentation Vickers micro-hardness maps from the aluminum 
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substrate, toward the interface and titanium coating layer. As seen, the aluminum substrate 

has a hardness value of ~95 HV. By cold spray coating and thereafter friction-stir 

modification, the hardness of Ti-coating layer is considerably increased mainly due to (i) 

densification, (ii) grain refinement, (iii) chemical reactions, and (iv) martensitic phase 

transformation as induced by severe plastic deformation/stirring action of rotating tool and 

exposing against the atmosphere during process [37]. A maximum hardness number of up to 

~630 HV is attained on the surface layer in contact with the tool shoulder. This extreme 

surface hardening corresponding to a 700% increase can be mainly due to the surface 

oxidation (TiO2) and nitride formation (TiN) by absorption of O and N elements during 

process as well as the coating densification and grain size reduction induced by superior 

plastic material flow field of shoulder on the surface. As shown, by taking distance from the 

surface layer toward the interface with the aluminum substrate, the hardness value is 

gradually decreased down to values less than 200 HV. Also, it seems that the interaction layer 

did not show a noticeable effect on the micro-hardness profile. Titanium aluminide phase has 

a high hardness value in the range of 600-700 HV [33, 51], however, owing to its low 

thickness at the interface (~10 nm) cannot have a significant affect the indentation hardness.  

 

4. Conclusions 

The present research presents in-depth characterization of the interfacial bonding between 

titanium particles and aluminum substrate during cold gas spraying followed by friction-stir 

processing. Based on the findings, the adiabatic shear interlocking bonding mechanism 

between aluminum and titanium in cold spray is aided by a chemical bonding via deformation 

assisted solid-state chemical inter-diffusion of elements during FSP which leads to formation 

of a titanium aluminide (Al3Ti) intermetallic reaction layer with a thickness of ~10-20 nm 
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within an inter-diffusion distance of ~600 nm. This new phase also exhibits excellent 

matching according to the    
3

112 111
AlAl Ti

  and    
3

112 101
Al Ti Ti

  crystallographic 

orientation relationships with the aluminum and titanium matrices, respectively. The presence 

of the inter-diffusion layer was backed up by inter-diffusion modeling of Al and Ti elements 

considering the real thermo-mechanical conditions for pure titanium during FSP 

modification. The Boltzmann-Matano and non-steady-state diffusion-based kinetic theories 

predicted the inter-diffusion coefficient ( D ) and the formation of an intermetallic layer at the 

interface in agreement with the experimental observations on the occurrence of chemical 

bonding during FSP.   
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Figure captions 

Figure 1. (a, b) FE-SEM images from the titanium particles and (c) powder size distribution.  

Figure 2. Stereographic macro-images from the thickness cross-section of cold sprayed and 

friction-stir modified titanium-coating layer on the aluminum alloy substrate.  

Figure 3. The combined FE-SEM macro-image showing the selected regions for FIB sample 

extraction from the coating interface with aluminum substrate after cold spray and FSP steps.  

Figure 4. FE-SEM images from the Al/Ti interface after (a-c) cold spray deposition and (d-f) 

friction-stir modification.  

Figure 5. FIB sample preparation from the Al/Ti interface of FSP modified coating.  

Figure 6. Bright-field TEM images from the Al/Ti interface after cold spray impact and FSP.  

Figure 7. EDS elemental mapping analysis results from the prepared Al/Ti interface.  

Figure 8. Grain structure of Ti-coating upon impact of cold spray deposition and thermo-

mechanical action of FSP process.  

Figure 9. TEM image showing the interface between aluminum substrate and titanium coating 

layer for more detailed studies.  

Figure 10. Reaction layer under JEOL TEM contrast imaging at high magnification.  

Figure 11. Titan LB TEM images showing the reaction layer between aluminum substrate and 

titanium coating layer.  

Figure 12. HR-TEM images from the Al/Ti interface showing the wavy flow paths induced by 

severe plastic action of FSP process.  
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Figure 13. Atomic orientation at the interaction zone between aluminum and titanium at the 

interface.  

Figure 14. Crystal structure analysis by FFT analysis from the interface.  

Figure 15. EELS elemental mapping analysis results from the Al/Ti interface.  

Figure 16. (a) The SEM image from Al-Ti interface showing the indexing points for Auger 

analysis. (b) Auger electron spectroscopy line-scan analysis results from the interaction zone at 

the interface. (c) The Boltzmann-Matano prediction results of inter-diffusion coefficient for 

aluminum though titanium.  

Figure 17. Indentation hardness maps for the FSP modified cold sprayed sample from the (a) 

base metal toward the (b) Al/Ti interface and (c) coating layer.  
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Table 1. Chemical composition for the studied AA5083 aluminum alloy as substrate (wt%).   

Element Al Mg Zn Mn Fe Si Ti 

AA5083 alloy Base 4.5 0.7 0.85 0.11 0.08 0.015 
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Research highlights: 

 Friction-stir processing was employed to modify the structure of porous Ti-coating layer on the 

surface of an AA5083 alloy. 

 Interaction layer between Al and Ti during cold spray coating and subsequent FSP step was 

studied.  

 FIB-STEM analysis revealed the formation of a titanium-aluminide layer with average size of 10-

20 nm at the interface.  

 Diffusion modeling based on the auger spectroscopy analysis input predicted the same results.  

 Chemical bonding was reported as the dominant mechanism during cold spraying deposition.  
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