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ABSTRACT 

Stress-controlled uniaxial "push-pull" fatigue testing was conducted on as-received (cast and 

extruded) and closed-die cast-forged and extruded-forged AZ80 Mg alloy. The as-cast material possessed 

random texture and somewhat symmetric cyclic responses. The extruded and forged materials possessed 

sharp basal texture and asymmetric cyclic responses. All materials exhibited tension/compression 

asymmetry in their cyclic response to varying degrees, depending on the thermomechanical processing 

conditions. It was discovered that the style of closed-die forging being investigated had spatially varying 

properties with texture orientations which varied based on the local forging directions and intensities 

which were dependent on the starting texture as well as the thermomechanical history. Under fatigue 

testing, the materials all developed some form of mean strain, with the nature and magnitude of this mean 

strain being dependent on primarily its texture intensity and propensity to twin in either tension or 

compression reversals. The type of mean strain (tensile or compressive) depends upon both the 

orientation and intensity of the starting texture of material. The texture induced ratcheting and resulting 

mean strain evolution was most pronounced in the as-cast material and had a significant impact on the 

fatigue life. Following forging, the material exhibited an increase in fatigue life of anywhere from 2 to 15 

times for the cast then forged material and more modest yet still significant 8 times longer at stress 

amplitudes around 140 MPa for the extruded then forged material. The extruded forged material exhibited 

similar fatigue lives to that of the base material at stress amplitudes which approached the yield strength. 

The nature of the mean stress development and degree of fatigue life improvement depended on the 

processing conditions and the type of base material (cast or extruded) utilized to create the forging. Two 

energy based models were utilized to predict the life of the forged material, and gave a reliable life 

prediction for a variety of material conditions that were investigated.  

Keywords: Magnesium, Forging, Fatigue Characterization, Ratcheting, Texture. 

1. Introduction 

 

There has been a strong motivation to increase fuel efficiency and decrease emissions in the 
automotive industry over the past several decades. Implementation of lightweight materials in structural 

applications are at the forefront of this effort, as this strategy can improve vehicle efficiency, longevity, 

and performance. Magnesium (Mg) and its alloys have significant promise in this area, with widespread 
applicability in fatigue-critical components, such as suspension control arms, since they are the lightest 

commercially available structural metal and their cyclic properties are similar to those of the heavier, 
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more conventional materials used in industry [1]. The focus of the present study is to examine the effect 

that closed die forging has on the monotonic, stress controlled cyclic behaviour and texture induced 

ratcheting of AZ80 Mg. 

Although there has been some limited work done on the fatigue behaviour of the AZ family of Mg 

alloys [2]–[10] virtually all of it is focused on cast, extruded or rolled varieties and not material processed 

by means of warm forging. Alongside this, many researchers have focused on the high temperature 

deformation behaviour of forged AZ80 [11]–[28] however little to no work had been done in the past on 
the characterization of forged Mg alloys. More recently, extensive work has been done thus far on the 

pioneering of characterizing forged Mg [29]–[35] especially its fatigue behaviour. He et al. [36] explored 

the influence on initial billet as well as die geometry (open-die vs. semi-closed) for a large AZ80 Mg 
component forged at 380°C. They found that with an open-die configuration over 32% of the final forging 

had an effective strain of less than 0.5 with large spatial variation in the strain indicating that a 

considerable part of the final component had not been sufficiently deformed to achieve the full benefit in 
material properties. However when utilizing a semi-closed die for the same forging only 3% of the final 

component had an effective strain of less than 0.5 indicating that virtually all of the forging had been 

evenly and sufficiently deformed. Furthermore, they stated that the semi-closed die forgings had an even 

and refined microstructure with virtually no material anisotropy in tensile properties between the 
longitudinal and transverse directions within the forging. Wang et al. [37] investigated the microstructure 

and mechanical properties of cast-homogenized AZ80 that was open-die forged at 8 mm/sec at 

temperatures ranging from 200-400°C and equivalent strains of 80-265%. They found that with 
increasing levels of equivalent strain the forged material exhibited higher tensile strengths and ductility, 

while the more ductile properties favoring higher forging temperatures. They also found that the 

maximum tensile strength was achieved when forged at 250°C at a maximum induced strain of 265%. 

Previous work by Gryguc et al. [33] investigated the monotonic and cyclic behaviour of as cast and cast-
forged AZ80 Mg in a simple open die configuration at 350°C and 450°C forging temperatures and rates 

ranging from 0.6 – 6 mm/sec. It was found that the mechanical properties are much more sensitive to 

forging temperature than forging rate and that even with an open die configuration the final component 
had been sufficiently deformed to have almost fully recrystallized and not exhibit any similarities to the 

base materials cast-dendritic microstructure. Furthermore, it was found that once forged, the material 

developed appreciable texture which was very different from that of the randomized as-cast materials 
texture, and this texture development influenced the mechanical response in both static and fatigue 

testing.  

In this study, the effect of base material condition on the tensile/fatigue behaviour of AZ80 was 

examined in detail in a closed die forging with highly three-dimensional material flow. Furthermore, the 

spatial variation of mechanical properties throughout the forging was investigated and a texture and 
microstructural link to these properties were established. Furthermore, a correlation between the materials 

local texture and the mean strain development in the cyclic response is discussed. Results from a fully-

reversed stress-controlled fatigue test in the low-cycle regime are presented. Energy-based fatigue models 
were used predict the fatigue life of cast, extruded, cast-forged and extruded-forged AZ80 Mg, and their 

accuracy was also examined.   

2. Material and Experiments 

 

The material used in this investigation was commercially-available AZ80 Mg alloy in the forms of 

cast and extrusion (8.0 ±0.2% aluminum content, with other elements composition as per ASTM B91-12 
standard). The material was received from Magnesium Elektron North America Inc. in the form of as-cast 

and extruded billets in the as-fabricated condition. The dimension of  the as-cast billet are 300 mm in 

diameter and a length of 500 mm, while the extruded billet was a diameter of 63.5 mm and a length of 

1000 mm. The forging of the as-cast and extruded material was conducted at CanmetMATERIALS 

(Hamilton, Canada) using the billets having dimension of ⌀ 63.5 mm, 65-mm long. The as-cast billets 



  

were machined from the 300-mm diameter AZ80 casting, and the as-extruded billets were simply cut to 

length prior to forging.  All forgings were carried out on a 500-ton hydraulic press with a profiled upper 
and lower die with an I-beam shaped internal cavity. A typical forged part produced by these dies is 

shown in Figure 1. The billet and tooling were heated separately to 375°C for sufficient time to allow any 

thermal gradients to decay. The orientation of the billet to the press was such that the radial direction was 

along the direction of the press stroke (i.e. the direction of forging was parallel to the radial direction of 
the billet). Forging was carried out in a single step at a displacement rate of 20 mm/sec. Figure 1 

illustrates a forgings conducted at 375°C and 20 mm/sec. The forging direction (FD) is normal to the web 

face, with the longitudinal direction (LD) being parallel to the axis of the flanges and transverse direction 

(TD) being perpendicular to flange axis. In the image (b) a red rectangle denotes the interface between the 

forged component and the flash region. Everything internal to the denoted rectangle is considered a part 

of the forging and everything external is considered “flash” or scrap material. 

 

 
Figure 1 – (a) schematic of AZ80 Mg closed die forgings with asymmetric I-beam cross section conducted at (b) 375°C and 20 

mm/sec ram speed prior to trimming off the flash extruded then forged.  

The metallographic samples were prepared following the standard metallographic techniques 

outlined in ASTM E3-11 with acetic-picral etchant similar to that used by Roostaei et al. [38]. The 

microstructure was observed using a light optical microscope (LOM) and a scanning electron microscope 

(SEM), coupled with energy-dispersive X-ray spectroscopy (EDS). The average grain intercept method is 

used to quantify the grain size according to ASTM E112-12.  

The texture measurements were performed on polished samples using a Bruker D8-Discover 

equipped with a VÅNTEC-500 area detector, with a radius of 135 mm and using Cu-Kα radiation at 

40kV and 40 mA. During the measurement, the incident beam and the detector were placed at a fixed 2θ 
angle of 40°. The collimator size was 1.0 mm. The sample was mounted on the motorized stage, which 

was oscillated at an amplitude of 1.5 and 2.5 mm, and a speed of 3.5 mm s
−1

 and 5.5 mm s
−1

 for the X and 

Y axis, respectively. The samples were tilted between 0 and 75°, with a step of 15° considered as the Ψ-

scan, while the sample rotation, known as Φ-scan, was between 0 and 360°, with a step size of 5°. The 
sample was scanned for 20 s at each orientation. The Debye–Scherrer diffraction rings were collected 

using the area detector in a 2-D diffraction image.  Then, the incomplete pole figures for the {0002}, 

{10  0}, {10  1}, and {1  02} planes were extracted from the diffraction rings. The complete pole figures 

were then calculated using the DIFFRAC.Suite: Texture software. 
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Tensile test samples with geometries according to Roostaei et al. [38] and a 4 mm thickness were 

extracted from the as-received billet and closed die forged samples. The as-cast samples were extracted 

from a location within the billet where the middle of the gauge section was at 70% of the billets radius. 

The extruded samples were machined along the extrusion direction and from a location where the middle 

of the gauge section was at 50% of the billets radius. There were 15 test samples that were extracted from 

15 different locations throughout the closed die forging (all having their axis parallel with the LD 

direction), as shown in Figure 2 (d). These samples were later utilized for quasi-static and cyclic testing. 

The quasi-static tensile tests were performed according to ASTM standard E8/E8M-15a using an MTS 

810 Servo-Hydraulic test machine operating in displacement control mode with a displacement rate of 1 

mm/min. Strain measurement was accomplished using a GOM ARAMIS 3D 5MP DIC system. The 

average strain rate within the gauge section of measurement was 1.4E−3 sec
−1

.  

The fatigue tests were performed as per ASTM E466-15 in an ambient environment using an MTS 

810 Servo-Hydraulic test machine operating in stress control mode at a frequency range of 0.1 Hz to 30 

Hz depending on the stress amplitude to maintain an approximately consistent loading rate between all 

tests. The strain was measured throughout the first 10,000 cycles using an MTS 632.26 extensometer with 

an 8-mm gauge and travel of ± 1.2-mm until stabilization of the cyclic hysteresis loop was achieved. The 

tests were conducted at a zero mean stress (i.e., RL = −1, fully reversed stress cycle) and stress amplitudes 

of between 140 MPa and 190 MPa. The failure criteria for the tests were considered to be final rupture of 

the specimen gauge section. The fracture surfaces after tensile and fatigue tests were examined using 

SEM techniques (FEI Quanta FEG 250 ESEM with EDX). 

3. Results and Discussion 

3.1 Microstructure and Texture 

Table 1 highlights the relationship between microstructural, monotonic and cyclic properties of as-

received (as-cast and as extruded) and forged (CF: Cast Forged and EF: Extruded Forged) AZ80. The 

conditions for forging were the same for both CF and EF at a forging temperature of 375°C and 20 

mm/sec of ram speed. The grain size is quite uniform throughout various locations of the as-received 

billets; however, there is notable spatial variation in the microstructure throughout the cross-section of the 

forgings. As such, the grain size and tensile properties are presented at two different locations within the 

forging, location 1 which is considered to be the top of the tall flange region of the forging and location 8 

which is considered the web region which connects the two flanges. Although beyond the scope of this 

study, 3D forging simulation revealed that in the final step of forging, the web region was the location 

that incurred the most amount of equivalent plastic strain, decaying as moving up the height of the flanges 

[39]. This is due to the complex material flow, which is expected, in a closed die forging of this cross 

section as well as the fact that the web region has the most amount of height compression relative to the 

initial billet diameter. Gryguc et al. [33] characterized the microstructure of as-cast AZ80 to consist of 

primarily α-phase, in which aluminium-rich β-phase (Mg17Al12) is precipitated along the grain boundaries. 

This agrees with the microstructure of as-cast AZ80 observed by Nový et al. [40], the grain morphology 

of which was very similar to that which is presented in this study, while the average grain size (80–140 

µm) was slightly more refined than that observed in this study. Finally, the Rockwell hardness presented 

in Table 1 is an average across the entire cross-section of the forging, however, as one might expect it 

also spatially varies to a moderate degree as shown by the contour plots in figures Figure 2 (d) and Figure 

3 (d). In these contour plots, areas in red represent the regions with the highest superficial hardness, and it 

can be seen that the web region (location 8-10) shows the highest indicated hardness in the cast-forged 

material. In the extruded-forged material, the spatial variation of hardness is much lower, and the selected 

scale exaggerates any non-uniformities, however it can be observed that the lowest hardness is 



  

consistently seen at the top and bottom corners of each flange. Figure 2 shows a summary of the 

microstructure, texture and superficial hardness variation for the cast-forged I-beam forging with Figure 2 

(a) (b) and (f) show the XRD pole figures for the basal and prismatic planes for 3 different locations 

within the forging (the tall flange (Location 1), short flange (Location 15) and web (Location 8)). 

Furthermore, Figure 2 (c) and (e) illustrate the microstructure for two locations in the forging, the tall 

flange, and web, respectively. It can be observed that the basal pole figure shows somewhat of a 

randomized pattern in both of the flange locations, however in the web region evidence of a less random 

and more intense texture can be observed by the pattern in the basal pole figure in Figure 2 (f). This 

somewhat randomized texture, which remains from the parent as-cast material, can be attributed to non-

fully recrystallized grain structure in certain regions of the forging as can be seen in both LOM images (c 

and e) where a somewhat coarse grain structure is still evident with little evidence of partial dynamic 

recrystallization (DRX) as noted in Figure 2 (c) and (e).  

Table 1- The relationship between microstructural, superficial hardness, and monotonic properties of as-cast, as-extruded and 
cast-forged (CF) and extruded-forged (EF) AZ80 Mg alloy. Tensile properties are presented first, followed by compressive 
properties in parenthesis, where available.  

Material 
Rate 

(mm/min) 

Temp 

(°C) 

Location in 

Billet   

Grain size  

(µm) 
HR-30T 

σYS   

(MPa)
 

εFail 

(%) 

σULT
 

(MPa) 

As-Cast - 
- 

70% of radius 178.9±67 27.2 92.8 (93.8) 7.4 (15.3) 220.9 (318.2) 

As-Ext - 50% of radius 18.0±0.7 35.4 195.4 11.3 341.1 (412.1) 

CF 

20 375 

Tall flange #1 37.7±5.3 19.9 110.7 7.2 239.8 

Web #8 23.2±3.9 26.9 175.0 14.1 312.1 

EF 
Tall flange #1 17.5±1.6 30.5 226.8 17.5 351.1 

Web #8 15.2±1.0 32.1 219.2 20.5 341.3 
 



  

 

Figure 2 – Microstructural characterization of Cast AZ80 forged at 375°C  and 20 mm/sec. Basal and 

prismatic pole figures are presented in locations 7 (a), location 15 (b), and location 8 (f) of the forging. 

Figure (c) and (e) show LOM images of locations 1 and 8, respectively within the forging (view in the 

longitudinal direction). Figure (d) denotes the spatial variation of superficial hardness (30T) in the 

direction normal to the cross-section of the forging. FD denotes forging direction, TD: transverse 

direction, and LD: longitudinal direction. 

 Figure 3 presents the same type of information in an identical format to that of Figure 2 however 

for the extruded and forged component. It is well known that AZ80 Mg has significant texture when 

processed by method of extrusion [32], and that forging reorients the texture in such a way that the c-

axises of the HCP crystal structure are parallel with the local forging direction [30]–[33], [41], [42]. Thus, 

it can be expected that not only will the extruded-forged component have an intense texture, but this 

texture will vary throughout the cross-section of the forging and be a function of the local forging 

direction and the complex three-dimensional material flow. This expectation is supported by the basal and 

prismatic pole figures presented in Figure 3 (a) (b) and (f), with relative intensities that are much higher 

than those of the cast-forged variety and spatially varying intensity peaks that align themselves to the 

local forging direction. Finally, the microstructural images in Figure 3 (c) and (e) show a much more 

refined microstructure relative to that of the cast-forged I-beam with the web region (location 8) having 

more refined structure (compared to location 1), which supports the fact that this region of the forging had 

the higher superficial hardness Figure 3 (d) and ductility as shown in Table 1. 
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Figure 3 - Microstructural characterization of AZ80 extrusion forged at 375°C  and 20 mm/sec. Basal and prismatic pole figures 

are presented in locations 7 (a), location 15 (b) and location 8 (f) of the forging. Figure (c) and (e) show LOM images of 

locations 1 and 8, respectively within the forging (view in the longitudinal direction). Figure (d) denotes the spatial variation of 
superficial hardness (30T) in the direction normal to the cross-section of the forging. FD denotes forging direction, TD: 
transverse direction, and LD: longitudinal direction. 

 

 

3.2 Monotonic and Cyclic 

Figure 4 shows the engineering stress vs. engineering strain tensile monotonic response for the as 

received and forged materials at two different locations within the forging. It can be observed that in 

both the CF and EF forgings, the web region has the highest ductility. Furthermore, the EF material 

has higher strength and ductility relative to the CF material, and a large increase in ductility once 

forged is apparent relative to the parent as-extruded material. The qualitative correlation can be made 

that in regions with higher equivalent strain imposed by forging (such as in the web region) possess a 

higher superficial hardness and superior strength and ductility to other regions of the forging, 

especially in the cast-forged material. For the extruded forged material, the yield and ultimate 

strength are fairly similar to the parent material, however, the ductility is much improved. Future 

work in this study is concentrating on lower temperature forgings, and it is expected that at 

temperatures ranging from 250-275°C a significant increase in strength can be achieved relative to 

the parent as-extruded material. 



  

 

Figure 4 - Tensile monotonic engineering stress-strain curves for as-received materials as well as cast-forged and extruded 
forged conditions in two different locations within the forging. The tall-flange corresponds with location 1 and the web 
corresponds to location 8.  

Figure 5 illustrates the cyclic stress-strain hysteresis response for the as-cast and cast-forged materials 

obtained during fully reversed (RL = −1) stress controlled testing at a stress amplitude of 190 MPa. The 

first cycle (reversals 2 and 3) is shown as symbols whereas the stabilized cycle is shown as solid lines. 

Figure 6 illustrates the same information for as-extruded and extruded-forged materials. For the CF and 

EF materials the locations within each forging where the cyclic response is presented is denoted in each 

caption. It can be observed that in the as-cast material the first cycle is characterized by a very large 

amount of plastic strain energy (or area enveloped by the hysteresis loop) and a large evolution in mean 

strain over the course of the first cycle (as can be seen by the disjointed tensile peaks for the first cycle 

hysteresis loop). This response can be attributed to the weak extension twinning in first tensile reversal 

which results in over 4% strain at 190 MPa. Although the as-cast material possesses a random texture, the 

weak twinning is caused by some proportion of grains being favorably oriented for extension twinning 

during the first reversal. Then, in the 2
nd

 and 3
rd

 reversals, the strain amplitude decreases as the material 

has already begun to accumulate both twin and dislocation density and cyclically harden. The twin 

density is not only a function of a number of cycles, it is also a function of the state of stress within each 

cycle as the twinning process is not fully reversible resulting in residual twin accumulation [33], [43]. 

Thus, the positive mean strain begins to decrease cycle by cycle as the material hardens, this eventually 

leading to the stabilized response where the hysteresis loop is symmetric in compression and tension and 

exhibits ~0.5% of tensile mean strain. Important to note is the shape of both the ascending and descending 

reversals in the as-cast material is only slightly sigmoidal as the twinning and detwinning process are 

diffuse, and only occur to grains which possess favourable orientation within the materials randomized 
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texture. The cast-forged material, however, exhibits a response with much fewer plastic strain energy, due 

to the fact that the strain required to achieve 190 MPa in tension is much lower in the cast-forged material 

as can be observed in Figure 4. Furthermore, as presented in previous studies [33], there is pronounced 

yield asymmetry in the cast-forged AZ80, more specifically the compressive yield is lower than the 

tensile, which manifests itself as a large strain range required to achieve 190 MPa in compression in the 

2
nd

 reversal. This results in a significant compressive mean strain in first cycle which continues as the 

material cyclically hardens to the stabilized response of the cast-forged material.) It can be seen in the 

cast-forged materials downward reversal of the first cycle that the reverse yielding is very sharp indicative 

of prominent compressive twinning due to the intense texture and associated large proportion of grains 

with a favourable orientation for extension twinning in compression. This sharp reverse yielding is 

characteristic of a large proportion of grains which twin to accommodate the deformation, Following this, 

a very sigmoidal ascending reversal occurs due to the vigorous detwinning which occurs [33]. As the 

cast-forged material cyclically hardens the plastic strain energy decreases as can be observed by the 

comparatively lower enveloped area by the stabilized hysteresis loop.  

 

Figure 5 - The axial cyclic behaviour of as-cast and cast-forged AZ80 at a fully reversed stress amplitude of 190 MPa. Forged 
samples were taken from location 3 in tall-rib 

Figure 6 depicts the hysteresis loops for the first cycle and the stabilized cycle for the extruded and 

extruded-forged material for a stress amplitude of 190 MPa. Due to the higher strengths of the extruded 

and EF materials (relative to the as-cast and CF varieties), in general, the plastic strain energy is always 

less for an equivalent stress amplitude. Both the as-extruded and EF materials display a similar first cycle 

response to that of the CF material, characterized by a very sharp reverse yielding due to extension 

twinning in compression followed by a vigorous detwinning process in the ascending reversal. Here the 

EF material has a much more pronounced reverse yielding in the descending reversal (relative to the 

extruded response). As the hysteresis loop presented here is for a sample taken from a web location, 

which possesses very intense texture. This intense texture is due to a dominant local forging direction 

with the vast majority of grains having a high propensity to exhibit extension twinning in compression 

due to their c-axis orientation being normal to the direction of loading. Important to note is the fact that 

the material with random texture (as-cast AZ80) has a positive mean strain with a very dynamic mean 

strain evolution whereas a material with appreciable texture (CF, as-extruded, and EF AZ80) has a 

negative mean strain. 
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Figure 6 – The axial cyclic behaviour of as-extruded and extruded-forged AZ80 at a fully reversed stress amplitude of 180 MPa. 
Forged samples were taken from location 10 in the web.  

Figure 7 illustrates the evolution of mean strain amplitude over the course of the cyclic testing. It can be 

seen that material with random texture (as-cast) will have diffuse extension twinning in the first reversal 

resulting in a large positive mean strain amplitude which decays as the material cyclically strain hardens. 

In contrast to this, all materials which possess appreciable texture (which have the c-axis oriented in a 

direction which is normal to the loading direction, such as the CF, extruded and EF samples), do not twin 

in the first reversal (as it is suppressed due to unfavourable grain orientation). That is, until the second 

cycle where they twin aggressively, resulting in a negative mean strain being developed. Since this 

detwinning process is more reversible in the significantly textured materials [43], the evolution of the 

mean strain is not as dynamic as the as-cast material despite the fact that they also cyclically strain 

harden. Important to note that the phenomenon of ratcheting (or accumulation of mean strain with 

accumulated cycles) is a direct artifact of the nature of as-cast Mg (or more generally, many randomized 

texture Mg alloys) to exhibit kinematic hardening during stress controlled cyclic testing. This ratcheting 

behaviour results in a dynamic evolution of mean strain where the hysteresis loop evolves in such a way 
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that the mean strain changes with accumulated cycles. 

 

Figure 7 – Mean engineering strain response during stress-controlled cyclic testing for both as-received material as well as cast-
forged and extruded-forged.  Cast-forged response is shown for location 3 and extruded-forged for location number 10 within the 
web.  

 

3.3 Fatigue Life 

S-N data for all four material conditions have been presented in Figure 8. Axial strain was recorded 

only during a subset of all of these tests in order to capture the cyclic response and to gather the necessary 

data to check the applicability of existing energy-based life prediction models. It can be seen that there is 

a large improvement in the as-received materials fatigue performance once forged, with a larger 

improvement coming in the low-cycle regime for the CF material (as there is a large improvement in 

strength once the coarse cast microstructure is refined via forging). Contrasting to this, the significant 

improvement in fatigue performance is seen in the high-cycle regime for the EF material (as the ductility 

of the materials improves dramatically once forged). For LCF fatigue, the role that the elevated yield 

strength of the cast-forged material is the dominant factor in the improvement in fatigue performance 

relative to the as-cast material. However, for the mid-cycle fatigue and HCF, the response is virtually 

purely elastic and the effects of defect driven fatigue failures become more significant. In general, the 

extruded and extruded-forged materials have superior fatigue performance to the cast and cast-forged 

varieties which is to be expected.  
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Figure 8 - S-N curves for as-cast and cast-forged (black) as well as as-extruded and extruded-forged (red) AZ80 Mg. Samples 
were taken from a variety of different locations throughout forging, location within forged billet denoted next to datapoint.   

3.4 Fracture Mechanisms 

Figure 9 illustrates the fracture surface for the cast-forged and extruded-forged material. Both 

surfaces are from samples at stress amplitudes of 190 MPa, which fractured at 2403 cycles and 6517 

cycles respectively. The cast-forged surface is from a sample extracted from location 3 in the forged billet 

and the extruded forged was extracted from location 10 since both these locations have a comparable 

superficial hardness as indicated by previous Figure 2d and Figure 3d. The cast-forged surface, Figure 9 

(a)(c)(e) exhibits multiple fatigue crack initiations (FCI’s) primarily from the surface or just beneath as 

well as a number of large secondary cracks which progress to the interior of the sample similar to that 

found by Chen et al. [44]. In contrast to this, the extruded-forged fracture surface, Figure 9 (b)(d)(f), 

exhibits only one prominent FCI again originating virtually at the surface with no major secondary cracks. 

Based on EDX analysis of the FCI site, it can be determined that the cast-forged sample had several of its 

cracks initiate at brittle β-Mg17Al12 intergranular precipitates which were located at the surface and could 

be either granular or lamellar in their morphology similar to those found in other investigations [37], 

[45]–[47]. The granular shape of the β-phase agrees well with observations made by Wang et al [37] who 

found the divorced eutectic β-phase to be distributed along the α-phase grain boundaries in the as-cast 

state, but following hot compression, this eutectic network was broken up into both granular and lamellar 

shapes. In contrast to this, the single FCI in the extruded-forged condition had a few particles of Al8Mn5 

compound that were located about 40 μm subsurface. Matrix debonding from these brittle particles 

appears to be the cause of crack initiation based on its proximity to the FCI and the intergranular faceted 

morphology of the fracture surface surrounding these granular particles emphasizing the brittle nature of 

that particular matrix/particle interface. Cai et al. [48] highlight the presences of this brittle compound 
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distributed in the grain interiors and boundaries of extruded AZ80, and the microstructure of their 

extruded material is very similar to that which was investigated in this study. 
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Figure 9 – Final fracture surfaces of the (a) cast-forged (b) and extruded-forged conditions for samples tested under stress 
control at 190 MPa. (a)(c)(e) are a cast-forged sample (b)(d)(f) are an extruded forged sample. FCI denotes fatigue crack 
location.  

3.5 Fatigue Life Modelling  

To quantitatively compare the damage incurred during cyclic loading in wrought Mg, numerous 

fatigue damage parameters, including stress-, strain-, and energy-based parameters have been proposed 

[42], [49]. Depending on the form of AZ80 being investigated the material response may vary between 

vigorous cyclic hardening [50], or even cyclic softening [51]. While successful attempts have been made 

to the model fatigue life of Mg alloys using stress-based damage model (e.g., [52] for hot-rolled AZ31B), 

in general, stress-based fatigue models are not ideal as they cannot accurately capture fatigue damage 

inflicted under these cyclic loading conditions. The objective of the following study is to investigate the 

suitability and accuracy of existing energy-based models at predicting the fatigue life of as-received and 

forged AZ80 material. The required material constants (model input parameters) were generated for each 

material condition according to the approach utilized in previous works [53], [54].  The energy-based two 

parameter model similar to Ellyin et al. [55] and Jahed-Varvani model [56] is examined here.  

Energy-based fatigue damage models have been used by many researchers for modeling the fatigue 

life of Mg alloys, e.g., Park et al. [5], [57] in rolled AZ31, Xiong et al. [50] for rolled AZ80, for many 

different Mg alloys and conditions, and Albinmousa et al. [54], [58] for extruded AZ31 under multiaxial 

loading to predict the fatigue life of wrought Mg alloys. In this study, the JV model [56] is utilized to 

predict the life of the as-received material. Recent work [33] has been done utilizing this model to predict 

the fatigue life of as-cast and cast-forged open-die forged AZ80 Mg with good reliability. However, to 

predict the fatigue life of the closed-die forged material, the two-parameter energy based model was 

utilized, as the data presented here is from stress-controlled testing and is not adequate for generating the 

requisite material constants for the JV model. A comparison of the predicted fatigue life for both models 

is also discussed for the as-received material. The details of these models and their application to predict 

the fatigue life of wrought Mg alloys are described in studies by Roostaei et al. [59] and Jahed et al [54] 

for the JV and two parameter model respectively.  

For the JV model, the energy-based parameters for cast AZ80 Mg found by Gryguc et al. [33] in a 

previous study are presented in Table 2. The fatigue life of the cast material was predicted for both the 

strain controlled test results presented in the previous study, as well as the stress-controlled stress results 

presented in this current study. Similarly, the fatigue life for the extruded material was also predicted. For 

the closed die forged material, a simple two parameter energy based model was used to correlate fatigue 

damage and predicted lives according to the relation: 

       
 

  (1) 

Where ΔWt, is the total strain energy density as defined by the plastic and elastic components and C and 

m are fitting constants (not to be confused with the fatigue toughness exponent ‘C’, utilized in the JV 

model). In general uniaxial loading, the total strain energy density is defined as: 

           
     

  
  (2) 

Qualitatively Eq. (2) represents the summation of the area within the stabilized hysteresis loop (plastic 

component) and the elastic “unloading” energy from the tensile peak of the hysteresis loop (elastic 

component)[54], [60]. Previous work by Jahed et al. [54] suggested that for various forms of wrought 

magnesium from the AM, AZ and ZK families, one unique set of fitting constants C and m could be 



  

utilized to predict the fatigue life in both uniaxial and multiaxial loading. Their study however did not 

include the AZ80 alloy or forged varieties of Mg. Fitting the fatigue data presented in Figure 10a with the 

generalized energy-life power relation in Eq. (1), a unique set of fitting constants were found for both the 

cast and wrought (extruded, CF and EF) varieties of AZ80 Mg presented in this study. The distinction is 

made between the cast and wrought forms in the implementation of this model as their microstructural 

attributes, texture and mechanical properties vary dramatically, and thus their cyclic characteristics should 

follow. Furthermore, Jahed suggested that various forms of wrought magnesium (extrusion, rolled sheet 

and rolled plate) can be characterized by the same unique set of fitting constants [54], similarly in this 

study, the data for the as-extruded and forged (CF and EF) material was grouped together and considered 

all to be of the “wrought” variety.  

 

Utilizing these energy based models, the total strain energy density vs. number of cycles is presented 

in Figure 10 (a). For the as-cast samples, the results presented were from a combination of all orientations 

(LD,RD,TD) whereas the as-extruded is only from the extrusion direction. As previously mentioned, all 

of the forged material sample orientations were from the longitudinal direction of the forged billet. For all 

materials a subset of the results presented in Figure 8 which had strain measurement throughout the test 

were utilized for life modelling as it is required for calculation of the energy based parameters and life 

prediction for both models. For the CF and EF conditions, samples were taken from different regions 

within the cross section of the forging, as denoted next to each datapoint (once again corresponding with 

the locations denoted in Figure 2d).  

Table 2 - Energy-based parameters for the JV and two parameter models for the as-cast, as-extruded, as well as closed die cast-
forged and closed die extruded forged at 375 deg C and 20 mm/sec. 

Material 

JV Energy Based Model  
Two Parameter 

Energy Based Model 

Ee’
 

(MJ/m
3
)

 
Ef’

 

(MJ/m
3
) 

B
 

C 
C 

(MJ/m
3
) 

m 

Cast [33] 3.5861 68.39 -0.309 -0.555 35.255 -0.467 

Extruded 5.4468 634.19 -0.273 -0.962 

40.478 -0.456 Cast-Forged 
- 

Extruded-Forged 
 

     As can be observed in Figure 10b, with regards to the as-cast material life prediction, almost all the life 

estimations fall within the bounds of a factor of 2.5, with almost equal numbers of data being under and 

over predicted. It can be observed that the cast-forged material has a larger amount of scatter amongst the 

data, which can be attributed to the aforementioned spatial variation in mechanical properties throughout 

the forging and the fact that the samples were taken from different locations throughout the same forging. 

For the cast-forged material, location 8 (as denoted by in both Figure 10a and b) is considered an outlier, 

as it has a significantly higher total strain energy density for a given life compared with all the other 

material varieties. This results in an expected conservative life prediction as both the JV and two 

parameter models overestimate the fatigue damage for this particular location within the forging. This 

overestimation is a direct result of the spatial variation in both texture and monotonic properties that can 

be observed in Figure 2 and Figure 4 respectively. More specifically, the web region (location 8) has a 

comparatively different texture and dramatically different strength and ductility in comparison to other 

regions within the forging like the flanges. This spatial variation in properties between the web and 

flanges is much less pronounced in the extruded-forged material albeit still marginally evident.  Since the 



  

web region of the cast-forged material has a considerably higher strength and ductility relative to the other 

locations in the forging for which the fitting constants are more representative of, the resulting life 

prediction is overly conservative at location 8 for the cast-forged material and lies well outside of the 

bounds of a factor of 2.5. Excluding this anomaly, the remainder of the life predictions using the two 

parameter model are quite reasonable and fall within the bounds of a factor of 2.5. 

     Figure 10c illustrates the fatigue life prediction for the as-received material (cast and extruded) for 

both of the models implemented here. It can be observed that for the as-cast material, both the two 

parameter and JV energy based models give very similar life estimates, which is to be expected since the 

fitting constants were generated specifically for cast material. However, it can be observed that the JV 

model gives a more accurate prediction for the as-extruded material as the two parameter model 

consistently predicts higher lives than “ideal”. This can be attributed to the two parameter model being 

calibrated using data from all three forms of wrought material (extruded, CF and EF) which can be 

considered to be an accurate (albeit more approximate) approach.  
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Figure 10- (a) JV damage parameter evolution with a number of cycles to failure for both as-received and forged AZ80 Mg; and 
(b) the correlation between two parameter predicted fatigue life and experimental life for both as-received and forged AZ80 Mg. 
(c) the correlation between prediction of two parameter and JV energy based model predictions for the as-received material. 
Locations within the billet for each forging are denoted beside each datapoint. The dashed lines in (b) and (c) denote bounds of 
±2.5 
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4. Conclusions 

 

Uniaxial quasi-static and fully-reversed fatigue experiments were conducted at various stress 

amplitudes, ranging from 140 – 190 MPa of as-cast, as extruded, cast-forged and extruded-forged AZ80 
Mg alloy. The effects of various starting microstructure/texture and thermomechanical history on the 

quasi-static properties were investigated on a comparative basis. Based on the results the following 

conclusions can be drawn:   

1. Following forging, both the cast-forged and extruded-forged material exhibited an increase in 

fatigue life in some instances of up to 15 times for a given stress amplitude. The degree of fatigue 

life improvement depending on the processing conditions and the type of base material. 

2. All materials exhibited tension/compression asymmetry to varying degrees, depending on the 

thermomechanical processing conditions. It was discovered that the style of closed-die forging 

being investigated had spatially varying properties with texture orientations which varied based 

on the local forging directions and intensities which were dependent on the starting texture as 

well as the thermomechanical history.  

3. The as-cast material possessed a random texture and exhibited diffuse extension twinning in the 

first reversal of cyclic testing at high-stress amplitudes. All of the textured materials cast-forged, 

extruded and extruded forged possessed sharp texture which resulted in extension twinning in 

compression during the second reversal at higher stress amplitudes.  

4. Under fatigue testing, the materials all developed some form of mean strain, with the nature and 

magnitude of this mean strain being dependent on primarily its texture intensity and propensity to 

twin in either tension or compression reversals. The type of mean strain (tensile or compressive) 

depends upon both the orientation and intensity of the starting texture of the material.  

5. The texture induced ratcheting and resulting mean strain evolution was most pronounced in the 

as-cast material and had a significant impact on the fatigue life.  

6. Strain energy density was demonstrated to be a good parameter for predicting the fatigue damage 

for both cast and wrought forms of AZ80 Mg. Both a simple two parameter and more complex 

four parameter Jahed-Varvani energy based models were able to provide reliable life prediction 

for cast, extruded and closed-die forged AZ80 Mg at a variety of different stress amplitudes.  
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