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Abstract 

The fatigue behavior of as-cast and cast-forged ZK60 magnesium alloy was investigated via 

fully-reversed strain controlled fatigue tests at different strain amplitudes. Microstructure 

analysis, texture measurement, and SEM fracture surface characterization were performed to 

discern the reason of fatigue behavior improvement via forging, and also to explain the 

mechanism underlying crack initiation in both cast and cast-forged conditions. It was perceived 

that the forged alloy contains less amount of porosities and second phase particles in its 

microstructure. In general, the forged alloy showed longer fatigue life for all strain amplitudes, 

especially when the strain amplitude is lower than 0.4%. The forging process increased the 

fatigue strength at 10
7
 cycles from 0.175% to 0.22% strain amplitude. The microstructure 

obtained after fatigue test showed that twinning can be activated in the cast-forged alloy, once 

strain amplitude is higher than 0.4%. The interaction of twin bands with the grain boundaries can 

also adversely affect the fatigue life of the forged alloy. Also, the residual twins can develop 

tensile mean stress which affects the fatigue life negatively. Finally, the Coffin-Manson fatigue 

model and an energy-based fatigue model were employed to model the life of as-cast and cast-

forged materials. While some of the predicted lives by the former were out of the ±2x boundary 

bounds, the latter’s results were tightly clustered in ±1.5x bounds. 
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1. Introduction 

Since the 1920s, steel has been an integral material utilized in cars [1]. However, environmental 

concerns have driven new interests for cutting down on the vehicles’ mass. It was reported that 

10% reduction of the vehicles’ weight would lead to the saving of the cars’ fuel consumption 

rates of approximately 5% [2]. Therefore, magnesium (Mg), which is the lightest commercially 

available metal, has attracted the interest of the automotive industry [3]–[6]. 

Magnesium has a hexagonal closed-pack (HCP) crystallographic microstructure which brings 

about limited deformability at ambient temperature. According to the Taylor criterion, five 

independent deformation modes are needed to accommodate strains during a deformation for a 

polycrystalline material [7]; however, the HCP crystal structure provides Mg with a limited 

number of deformation modes which are active at low temperatures. Thus, twins are activated for 

homogeneous deformation which form strong basal texture and reduce the deformability at room 

temperature[8][9]. On the contrary, this mode of deformation cannot be activated along all the 

loading directions [10][11]. Workability will be improved at higher temperatures, as additional 

slip systems are sufficiently activated [12][13]. 

Die-casting is the most prevalent method of manufacturing of Mg parts for its economic 

advantages [14]. Nonetheless, it leaves casting defects such as porosities and inclusions in the 

microstructure which are deleterious to the material’s mechanical behavior [15]. Therefore, for 

structural applications, where high strength and workability are required, wrought Mg alloys are 

preferred over cast Mg alloys [6]. Wrought alloys have shown superior fatigue response and 

higher strength and ductility as a result of grain refinement and containing lower amount of 

defects with second phase particles [16][17][18][19][20]. 

Currently, the application of Mg alloys in the automotive industry is limited to non-load 

bearing components such as instrument panel, seat frame, and housing parts [6]. However, to 

accomplish the target of mass reduction, expanding its applications to the load-bearing 

components is indispensable. Accordingly, studying the mechanical behavior of wrought Mg 

alloys, and in particular, the fatigue behavior, has been the topic of a number of studies in the last 

decade. Main attention has been devoted to AZ-series of Mg alloys as compared to ZK-series. 

ZK- series Mg alloys have shown high strength and formability due to the presence of Zr as 

grain refiner [21][22][23]. Liu et al. [24] investigated the tensile and high cycle fatigue (HCF) 



  

behavior of extruded and T5 heat treated ZK60 under load-controlled fatigue. They reported that 

the T5 heat treatment refined the grain structure from bimodal to more equiaxed grains with 

higher pole figure intensity of fiber texture which basically improved the performance of ZK60; 

especially the fatigue strength improved from 140 to 150 MPa. Other studies [25][26][27] 

investigated the cyclic behavior of the extruded ZK60 along the extrusion direction through 

fully-reversed stress and strain controlled cyclic tests to understand the twining/detwinning 

activity. They revealed that the activation of twinning and detwinning during the cyclic loading 

increased with increasing the strain amplitude beyond 4% due to the asymmetric behavior in 

tension-compression, while the slip was dominated at lower stress/strain amplitude. 

Several manufacturing processes have been employed to achieve grain refinement 

through forming of Mg alloys [19][28][29] [30][31]. Among a wide variety of processing 

methods, forging is of particular interest because it has shown its promise to produce 

components with complex geometries [32][33][34]. However, only a few studies have been 

performed to isolate the contribution of the forging process to the cyclic behavior of Mg alloys. 

Vasilev et al. [35] carried out a study on the effects of multiaxial isothermal forging (MIF) on the 

microstructure and fatigue behavior of as-cast ZK60. The results demonstrated that nearly 80% 

of coarse grains volume fraction was refined after MIF, which causes better fatigue response in 

both LCF and HCF regimes. However, limited number of studies has been contributed to the 

effects of forging process on the as-cast Mg alloys in particular as-cast ZK60. Recently, Gryguc 

et al. [36], [37] and Toscano et al. [38] studied the influence of forging on the mechanical 

properties, and in particular cyclic response, of AZ80 and AZ31B Mg alloys, respectively. They 

revealed that a significant grain refinement was achieved in forged components, which improved 

the fatigue life of the cast or extruded Mg alloy.   In another study,  the authors have 

characterized the quasi static  tensile and compressive behavior of cast-forged ZK60 [39] and 

showed ZK60’s great potentials to be utilized in load-bearing components of vehicles. However, 

the fatigue behavior of the forged ZK60 alloy has not yet been comprehensively investigated. In 

this paper we investigate the fatigue behavior of cast and cast-forged ZK60. Toward this 

objective, strain controlled fully reversed push-pull fatigue tests have been performed. Texture 

and microstructural analysis, and SEM fracture surface analysis were carried out to discern the 

mechanical behavior, and to identify the mechanism underlying crack initiation and failure. 

Moreover, two common fatigue models were utilized to discuss the obtained fatigue results. 



  

2. Material and Methods  

 

The starting material in the present study was an as-cast ZK60 ingot with the dimensions of 300 

mm diameter and 500 mm length. The chemical composition of the alloy is presented in [39]. 

The ingot was then machined into cylinders with a diameter of 63.5 mm and a length of 65 mm, 

which were used as forging billets. Each billet was heated at the temperature of 450C for 3.5 

hours, and transferred to the forging anvil, which was also heated up to the same temperature. 

The open-die forging process was then performed at the ram speed of 390 mm/min along the 

radial direction, as shown schematically in Figure 1. As discussed in our previous study [39], the 

temperature of 450C was selected for the forging, as it is above the lowest melting temperature 

of the eutectic phase for ZK60, 339.5C [40]. It is therefore expected that the second phase 

particles were dissolved into the matrix, which could lead to a better forging response. Also, 

Hadadzadeh et al. [41] investigated the same material exploiting a Gleeble
®
 3500 thermal-

mechanical simulation testing system, and observed no incipient melting in the microstructure at 

450C. Regarding the ram speed of 390 mm/min, it should be stated that forging trials had been 

performed at four different speeds of 0.39 mm/min, 3.9 mm/min, 39 mm/min, and 390 mm/min 

[42]. It was observed that the mechanical behavior of the materials under compression loading is 

the same. Hence, for practical purposes, and to save the time and energy, the highest ram speed 

was chosen for investigation in this study. 

Microstructures and texture analysis were carried out on samples collected from both as-

cast and forged conditions. The samples were initially ground with SiC sand papers, and later 

polished with 6, 3, 1, and 0.1 micron diamond pastes. After that, polishing was performed using 

colloidal silica. Finally, the samples were etched utilizing an acetic-picral etchant. Texture 

measurement was done with a Bruker D8 Discover X-ray diffractometer equipped with an 

advanced 2D-detector using CuKα beam radiation at the voltage of 40 kV and current of 40 mA. 

The obtained diffraction patterns were evaluated using Bruker trademark software 

DIFFRAC.EVA. Further details about the texture analysis are explained in [43]. 

Smooth dog-bone samples were machined from the as-cast and forged ZK60 materials. 

The specimen locations and corresponding labelling are shown in Figure 2(a) and (b) for the as-

cast and forged ZK60, respectively. The as-cast specimens were cut along two different 



  

directions, i.e., radial (RD) and longitudinal (LD) directions. To avoid inconsistency, all the 

samples from the as-cast billet were cut at the distance of the 75% of the billet radius. However, 

the specimens from the forged material were cut along only one direction, i.e., LD. The FD in 

Figure 2(b) represents the forging direction. The specimen geometry can be found in [39].  

Fatigue tests were performed under standard laboratory condition, as per ASTM 

E606/E606M-12 standard, using an Instron 8874 servo-hydraulic frame having a load capacity of 

±25 kN. Engineering strain values were measured during the tests using a uniaxial epsilon 

extensometer with a gauge length of 8 mm and travel distance of ±0.8 mm. All the experiments 

were conducted under fully revered (R = -1) strain controlled condition. The loading frequency 

was selected between 0.2 and 1 Hz to achieve the same strain rate of 10
-2

 sec
-1

 throughout the 

fatigue tests. At very low strain amplitudes and after the material’s behavior was stabilized, the 

tests were shifted to load controlled mode at a higher frequency of up to 30 Hz and continued up 

to 10
7
 cycles. Tests with no failure at 10

7
 cycles were stopped and considered as run-out tests. 

Fatigue life was assumed to be the life at rupture. Each test was at least once duplicated to verify 

the reproducibility of the results. The number of test specimens and percent replication was 

based on ASTM E739-10 standard. Finally, fracture surfaces were analyzed under SEM to 

describe the mechanism underlying the crack initiation, propagation, and final failure. 

 

3. Results and Discussion 

3.1. Texture and Microstructure 

Figure 3(a) and (b) depict the microstructure of the as-cast ZK60 in the un-etched and etched 

conditions, respectively. As seen, the microstructure of ZK60 cast is laden with dendrites and 

porosities. A secondary dendritic arm spacing (SDAS) of 35±6 µm and a grain size of 104 ±25 

µm was observed in the as-cast material. The presence of Zn- and Zr- rich intermetallics (MgZn2 

and Zn2Zr) in the microstructure has already been reported in the literature, detected using EDX 

line scanning and XRD analysis [39][40]. For the forged material, however, as shown in Figure 

3(c) and (d), grains were finer with the average size of 2–5 µm, and the porosity fraction was 

reduced significantly. Moreover, the volume fraction of second phase particles was reduced in 

the microstructure of forged alloy in comparison to the as-cast alloy, since during the forging 



  

process some intermetallics dissolve back into the matrix. While 15% volume fraction of the 

microstructure of as-cast ZK60 contained porosities and second phase particles, that amount was 

promisingly reduced to 5% for the forged alloy. This can lead to better fatigue response, as 

intermetallic particles are notable sites for crack initiation due to stress concentration [44]. 

Porosities can also play a major role in premature failure. These vacancies can coalesce and 

make a void leading to a crack that can cause the final fracture [45]. In addition, dendrites can 

accommodate pores and play as walls between the grains, and decreasing the SDAS results in 

superior strength of the material [46]. 

Figure 4 shows the texture measurement results for the as-cast and forged materials. 

While the as-cast alloy shows a random texture, where grains are not orientated mainly along any 

specific direction, a strong basal texture can be observed in the forged alloy. Specifically, the 

pole figures (PF) for the basal (0002) and prismatic         planes indicated a maximum 

intensity of 5.7 and 2.21, respectively; thereby, the HCP unit cell of the forged alloy are 

primarily aligned such that the c-axis is parallel to the forging direction. 

 

3.2. Quasi-static uniaxial tensile behavior 

A comprehensive investigation of the quasi-static uniaxial behavior of the as-cast and forged 

ZK60 alloys has already been delivered in the previous study by the authors [39]. Table 1 shows 

the tensile properties of the as-cast and forged alloy under uniaxial tensile loading along LD 

direction. As reported in [39], the quasi-static uniaxial behavior of ZK60 is similar in both, LD 

and RD directions at both as-cast and forged conditions. 

3.3. Cyclic behavior 

Fatigue tests were performed under strain control mode at different strain amplitudes ranging 

from 0.15% to 0.9%. Detailed summary of uniaxial cyclic tests is presented in Table 2 which 

includes the applied strain amplitudes (elastic and plastic strain amplitudes), the total life, the 

maximum and minimum stresses, and the elastic and plastic strain energy densities for the half-

life cycles. Figure 5 depicts the typical engineering stress-strain hysteresis loops for the second 

and half-life cycles at the total strain amplitudes of 0.3%, 0.5%, and 0.7% for the as-cast and 

cast-forged conditions. It is noticed that the cyclic behavior of as-cast ZK60 is symmetric during 

the whole cyclic life at different strain amplitudes (Figure 5(a), (b), and (c)), 3 distinct types of 



  

behavior can be inferred for the forged alloy. They are (i) symmetric (ii) partially symmetric and 

(ii) asymmetric behavior in hysteresis loops. Firstly, for the strain amplitudes lower than 0.4%, 

Figure 5(d), the forged alloy exhibits symmetric hysteresis loop in the second cycle, whereas no 

plateau in the compression reversal can be seen, which signifies that the twinning is not activated 

[11][47][48]. Moreover, while marginal strain hardening is occurring during the history of cyclic 

loading, as the tensile peak stress is increased in the half-life hysteresis, still no sign of twinning 

is present in the compression reversal. At higher strain amplitude of 0.5%, Figure 5(e), it is seen 

that twinning is driving the deformation under compression loading after the strain of ~ -0.3%, 

and detwining is active till about the strain of 0.03% in the second cycle. In contrast, the half-life 

hysteresis loop indicates that the strain is primarily accommodated by the slip mode of 

deformation, since no zero-work hardening plateau can be seen under compressive loading. It is 

believed that this remarkable change in the hysteresis loop shape is owing to the exhaustion of 

the new extension twinning happening, which is also seen for other wrought Mg alloys at 

different strain amplitudes [16][27]. Finally, as seen in Figure 5(f), the second and half-life 

hysteresis loops at the strain amplitude of 0.7% show sigmoidal shapes indicating the activation 

of extension twin and detwining under compressive and tensile loading, respectively. 

Additionally, an investigation on the evolution of internal stress during the cyclic deformation by 

               extension twins in the extruded ZK60 reported that the local intergranular stress 

drives the activation of detwining [49], thereby detwinning along the c-axis is starting in the 

reverse tensile loading with small external stress at the stress of ~ -100 MPa. 

Figure 6 shows the half-life hysteresis loops for the as-cast ZK60 for different strain amplitudes. 

It is noted that the shape of hysteresis loops as well as the peak stresses are symmetric in tension 

and compression reversals. This behavior is an evidence of slip being the dominant plastic 

deformation [26][50], which is attributed to the random texture in the cast Mg alloy. To be more 

specific, returning to the texture measurement (Figure 4(a)), ZK60 cast has no preferred unit cell 

orientation inside its microstructure. Therefore, extension twins will not take over during low 

deformation. Nevertheless, the hysteresis loop at the strain amplitude of 0.9% tends to be 

marginally sigmoidal shape, which is evidence for the mild activation of extension twins and 

detwinning at higher deformation levels. In fact, in a randomly textured material, some grains 

would have an orientation that is favorable for activation of twinning. As a result, at high strain 

amplitudes, some twining might happen for which the hysteresis loop would be sigmoidal; 



  

however, the hysteresis loop is still symmetric at the strain amplitude of 0.9%, as the amount of 

twinning may not be significant. Comparing with the half-life hysteresis loops in as-cast 

condition (Figure 6), the forged half-life hysteresis loops (Figure 7) exhibit asymmetric behavior 

above the strain amplitude of 0.4%.As seen in Figure 7, the hysteresis loops are almost 

symmetric up to the strain amplitude of 0.4% in terms of both the shape of hysteresis loop and 

the peak stresses. However, at the strain amplitudes higher than 0.4%, the hysteresis loops tend 

to be asymmetric. Such an asymmetric behavior stems from the strong basal texture developed 

during the forging process. According to Figure 2(b) and Figure 4(b), tensile loading on the 

fatigue specimen (along LD) applies contraction along the c-axis of HCP unit cells, then no 

twining occurs. However, compressive loading brings about extension along the c-axis, thereby 

twining takes over [47]. The twinning deformation is often characterized by very low hardening 

rates [48]. Thus, the strain hardening rate decreases by increasing the strain amplitude. On the 

other hand, under tensile loading, detwinning occurs inside the twinned grains which also 

accompanies with low strain hardening rate [51]. By contrast, following the detwining 

exhaustion, strain hardening rate increases dramatically. The increase in the hardening rate is 

attributed to the new orientation of HCP unit cells inside the grains of the alloy after detwinning 

that causes the activation of higher order non-basal slip systems, which has significantly higher 

critical resolved shear stress (CRSS), and compression twinning systems [52][53][54]. 

Figure 8 presents the cyclic tension and cyclic compression curves for the as-cast and 

cast-forged ZK60. The curves were obtained by connecting the peak stresses of the half-life 

hysteresis loops at different strain amplitudes. The tensile and compressive peak stresses for the 

as-cast alloy were almost similar in comparison to the forged alloy. For the forged alloy, 

however, the tensile peak stresses were higher than the compressive ones for strain amplitudes 

higher than 0.4%. This concurs well with Figure 6 and Figure 7 where symmetric and 

asymmetric cyclic behaviors were observed for the as-cast and forged samples, respectively. 

The tensile quasi-static and cyclic behavior of as-cast and cast-forged alloys are depicted 

in Figure 9. It is noticed that at low strain values, the quasi-static and cyclic behaviors are 

approximately the same; however, with increasing the strain values, the cyclic curves become 

harder than the monotonic curves, which confirms the cyclic hardening behavior for the two 

materials. Figure 10(a) and (b) also show the evolution of stress amplitude during strain 



  

controlled test for the as-cast and forged ZK60, respectively. For the both conditions, as-cast and 

forged, the stress amplitude is almost constant at lower strain amplitudes up to 0.3%. However, 

stress amplitude has an increasing trend for higher strain amplitudes, which demonstrates cyclic 

hardening behavior. The variation of stress amplitude with the number of cycles has already been 

studied for extruded ZK60 [26]. The results for the extruded alloy were the same as the results of 

this study for the forged alloy. The stress amplitude did not change up to strain amplitude of 

0.35%, it started to increase for the strain amplitudes of 0.4% and higher. It was also reported 

that increasing the loading cycles increased the dislocation density which act as barriers against 

the movement other dislocation which builds up the resistance to plastic deformation resulting in 

cyclic hardening [55][56]. Moreover, at higher strain amplitudes, and in particular for the forged 

alloy, twining is an active mode of deformation under compression loading. Twin deformations 

in the compressive reversal are partially reversed in the subsequent tensile reversal, but some 

residual twins remain. The interactions of dislocation-twin besides twin-twin brings about the 

strain hardening [47][55][57].  

Figure 10(b) shows a drop in the stress amplitude at the strain amplitude of 0.9%. Also, in both 

Figure 8 and Figure 9, a decrease in the tensile peak stress is observed at the total strain 

amplitude of 0.9%. This behavior might be due to the micro-cracks formation near grain 

boundaries and twin tips, as has been previously observed for pure Mg [57]. With increasing 

strain amplitude, and accordingly the applied load, some micro-cracks may initiate inside the 

microstructure reducing the material’s ability to endure tensile loading. On the contrary, the 

compressive peak stress has increased at the strain amplitude of 0.9% (as seen in Figure 8), 

which can be due to crack closure occurring. Hence, micro-cracks deteriorates the strength of 

material under tension but not under compression. Aside from this, the drop in the maximum 

tensile peak had already been seen for extruded ZK60 Mg alloy after the strain amplitude of 

0.8% [26][27].  

The number of cycles to failure, Nf, against the applied total strain amplitudes (Δɛt/2) for 

the ZK60 Mg alloy in as-cast and forged conditions is depicted in Figure 11, along with some 

data available in literature for extruded ZK60 [25]. The as-cast alloy obtained lower fatigue life 

to that of the forged ZK60 Mg alloy at high strain amplitudes and significantly lower life 

compared to the forged alloy at low strain amplitudes. Also, the extruded ZK60 shows shorter 



  

fatigue life for the similar testing condition. It should be mentioned that the fatigue life is always 

higher in forged samples compared to the extruded materials above a total strain amplitude of 

0.4%. Additionally, a couple of run-out tests were run to assess the strain amplitude leading to 

10
7
 cycles (run-out). The run-out life was achieved at the total strain amplitude of 0.175% for the 

as-cast alloy, while the forged ZK60 could endure higher strain amplitude of 0.22%, which 

confirms the improvement of HCF response. It is reported that the high cycle fatigue life is 

controlled by the strength of materials [35][58]. Therefore, it is believed that higher strength of 

the forged alloy compared to the as-cast alloy can lead to the superior fatigue strength in the 

HCF regime. Additionally, the presence of intermetallics in the microstructure can cause stress 

concentration, which facilitates crack nucleation. As explained earlier, the forged ZK60 

contained less amount of porosities and intermetallics, which can contribute to the longer HCF 

life [58]. On the other hand, for strain amplitudes higher than 0.4%, twinning is active for the 

forged alloy due to the strong developed basal texture (as seen in Figure 4(b)). Twinned lamellas 

can be a zone for crack initiation leading into a premature fracture happening [57]. Moreover, the 

tension-compression asymmetry stemming from the induced texture (and not hydrostatic stress 

as is in the case of strength differential effect of high strength metals [59]) brings about tensile 

mean stress which affects the fatigue life adversely. Therefore, the similar fatigue lives for as-

cast and forged ZK60 in the LCF regime might be due to combination of different factors: i) 

improvement of fatigue response as a result of grain refinement and lower density of porosities 

and intermetallics, ii) the adverse effects of strong basal texture induced during the forging 

process. 

 

3.4 Fracture surface analysis  

SEM images of the fatigue fracture surface of as-cast and cast-forged samples at two strain 

amplitudes of 0.5% and 0.9% are presented in Figure 12. Fatigue crack initiation (FCI), fatigue 

crack growth (FCG), and final fracture (FF) areas are demarcated as the main features of the 

fracture surface. It is clear that the forged samples tested at different strain amplitudes shows 

multiple FCI sites while the as-cast sample exhibits lower number of FCI sites. In general, 

increasing the strain amplitudes, the FCG zone decreased which is the indication of shorter 

fatigue life as seen in Figure 11. At the same time, a wider FCG zone can be detected on the 



  

fracture surface of the forged sample compared to the as-cast sample indicating the longer 

fatigue life of the forged sample.  This can be due to the fact that the microstructure of the forged 

alloy contains finer grains and also that less volume fraction of porosities and inclusions exists in 

the material (Figure 3). Figure 13 depicts the crack initiation site of the as-cast alloy at higher 

magnifications. Most of the cracks have initiated from the open surface area as a consequence of 

the extrusion/intrusion of the slip bands formation, known as persistent slip band (PSB), or 

casting porosities. These porosities can join together and make voids leading to a crack 

formation. At the same time, the interactions between grains and PSB, which are made by cyclic 

irreversible slips, are reported to be a major drive for crack initiation in different metals, 

especially in HCF regime [60][61][62]. However, other studies [63] also stated that in the LCF 

regime, crack initiation and propagation proceed along PSB through dendritic cells in the as-cast 

alloys as well. Figure 14 shows the crack initiation sites of the forged alloy at the similar two 

total strain amplitudes at higher magnifications. As shown in Figure 14 (b), oxide layers are 

observed on the FCI sites. It is also noticed that the matrix was delaminated and formed a step 

like morphology during crack propagation. In addition, secondary cracks were also noticed in the 

matrix which is an indication of strengthening of the matrix (Figure 14(d)). As seen in Figure 15, 

micro-cliffs, step like morphologies parallel to the fatigue cracks, and fatigue striation (FS) are 

the main characteristics which are marked by arrows of the FCG zone. It is well established that 

the fatigue cracks are propagating perpendicular to the FS and parallel to the micro-cliffs [64]. 

Each striation mark denotes the fatigue crack propagation in each cycle. It is noticed that the FS 

marks on the fracture surface of the forged alloy are finer than those on the surface of as-cast 

alloy under the same strain amplitude. For instance, at the total strain amplitude of 0.5%, the 

average distance between the striations on the fracture surface of as-cast ZK60 is ~1.2 µm, while 

the forged material exhibits FS with average distance of ~0.65 µm. This corresponds well with 

the longer fatigue life of the forged alloy. At the same time, it is noticed that with increasing the 

strain amplitude (Figure 15(b) and Figure 15(d)), FS marks become coarser (~2.6 µm and 0.9 µm 

between the striations for the as-cast and forged ZK60, respectively, at the total strain amplitude 

of 0.9%) because more cracks opening lead to greater plasticity on each cycle. Figure 16 

represents the magnified FF zones on the fatigue fracture surface of the as-cast and forged ZK60. 

It is worth to mention that FF area for all testing conditions show tensile like morphology as 

illustrated in [39]. As depicted in Figure 16, the as-cast alloy resembles a quasi-cleavage surface 



  

with some dimples besides tear ridges. In contrast, more dimples can be observed on the fracture 

surface of the forged alloy. This is in correlation with the result obtained under tensile monotonic 

results (Table 1) that the forged alloy exhibits higher ductility. At the same time, the SEM 

images at the FF evident that intermetallics played a great roll in fatigue life (Figure 17). As 

discussed earlier that the volume fraction of intermetallics in the as-cast sample is higher than the 

forged sample (Figure 3). As displayed in Figure 17(a, b), the identified intermetallics on the 

fracture surfaces of as-cast samples tested at the different stress amplitude of 0.5% and 0.9% 

were ZnZr2 and MgZn2, which exhibits multiple cracks were the potential sites of the nucleation 

of cracks results premature failure and shorter the fatigue life. In contrast, the fracture surfaces of 

forged samples (Figure 17(c, d)) tested at the similar strain amplitudes shows less volume 

fraction of the intermetallic (only ZnZr2) results lower nucleation sites for the cracks leading to 

the longer fatigue life. The combined action of grain refinement, modification of texture and 

strengthening of the matrix by dissolving the intermetallics (solid solution strengthening) and 

reducing the defects has caused the forged sample to obtain longer fatigue life compared to the 

as-cast ZK60. Similar type of fatigue life enhancement was observed in cast forged AZ31B [38]. 

 

3.5 Fatigue modeling 

Fatigue is the primary failure mechanism in most engineering components hence the accurate 

prediction of the fatigue life of an in-service component is of critical importance. Several fatigue 

models were established to predict the fatigue life leading to the fatigue damage per cycle and 

compared with the experimental obtained fatigue life data [65]–[68]. The suggested models are 

either stress- strain- or energy-based. In this study, the stress based approached may not be 

suitable for modelling the ZK60 alloy subjected to strain-controlled fatigue testing [69]. At the 

same time, the well-established fatigue models presently available in literature were either for 

isotropic materials, or for other forms of wrought Mg alloys (such as rolling or extrusions) with 

different characteristics than the current forged ZK60 alloy. Therefore the present study adopted 

the following models to describe the cyclic behavior of the studied ZK60 alloy. 

The strain-life response of metals is often modeled by Coffin-Manson-Basquin 

(Morrow’s) equation [70][71]. The elastic strain and plastic strain amplitudes are defined by the 

Basquin and Coffin-Manson equations, respectively as: 



  

           
  

 

 
     

  (1) 

             
      

  (2) 

where,            and            are the elastic and plastic strain amplitudes, respectively. E is the 

modulus of elasticity, which is approximately 45 GPa for ZK60 Mg alloy [67] and close to the 

average modulus of elasticity obtained from cyclic tests, and    is the fatigue life.   
  and b are 

the fatigue strength coefficient and fatigue strength exponent, respectively, and   
  and c are 

fatigue ductility coefficient and fatigue ductility exponent, respectively. The total strain 

amplitude,   , is then obtained from:  

   
  

 

 
     

    
      

  (3) 

 

Eq. (1) and (2) were employed to calculate the Coffin-Manson Parameters which are listed in 

Table 3. Figure 18 represents the fatigue life predicted by the Coffin-Manson model versus the 

life obtained from the experiments. According to this figure, the majority of data points are 

located between the factor of 2 bound lines. However, two data points corresponding to    

      lay outside this domain. 

The Jahed-Varvani model (JV) [72] [73] was also employed in this study to predict the 

fatigue life of as-cast and forged ZK60. The JV model relates the fatigue life to a measure of 

strain energy, as opposed to the Coffin-Manson model relating the life to strain amplitude. The 

JV model accounts for the mean stress effects. Because energy is a scalar parameter, the strain 

energy corresponding to different stress/strain components can be manipulated algebraically, 

without the concern of different material orientation or loading direction [67]. According to this 

model, the total strain energy density is expressed by two terms: i) the positive elastic strain 

energy density,    
 , and ii) the plastic strain energy density,     [74]. The former part which 

accounts for the effect of mean stress can be calculated by Eq. 4, where      is the tensile peak 

stress of the hysteresis loop. In addition, the plastic strain energy density is calculated from the 

area inside the half-life hysteresis loop.  

   
  

    
 

  
 (4) 



  

 

Figure 19 displays the schematic of the total energy density obtained from the half-life hysteresis 

loop. 

 The strain energy density is then related to the fatigue life as: 

     
      

    
      

  (5) 

 

where   
 , B,   

 , and C are the fatigue strength coefficient, the fatigue strength exponent, the 

fatigue toughness coefficient, and the fatigue toughness exponent, respectively. The values of 

these parameters are calculated and listed in Table 4.  

Figure 20 displays the correlation between the predicted fatigue life and the experimentally 

obtained fatigue life of the as-cast and forged materials. As can be seen, the majority of the data 

points are banded within the lines of factor of 1.5 which shows the promise of JV model to 

predict the fatigue life of as-cast and forged ZK60 under uniaxial loading. 

 There was more scatter seen in the Coffin-Manson results due to the fact that Coffin-

Manson equation does not account for the mean stress effect, whereas mean stress are generated 

during fully reversed strain-controlled tests due to asymmetry. However, in the JV model, as 

indicated previously, the elastic part of the total strain energy density accounts for the means 

stress effect. . 

 

4. Conclusions 

In the present study, the cyclic behavior of as-cast and cast-forged ZK60 was studied at different 

strain amplitudes. From the above results and discussion, the following conclusions are made: 

1- While as-cast ZK60 displays symmetric hysteresis loops at different strain amplitudes, 

the shape of hysteresis loops for the forged material depends on the applied strain 

amplitude. For the strain amplitudes lower than 0.4%, the shape of the hysteresis loops is 

symmetric and dislocation slip governs the deformation. At the strain amplitude of 0.4%-

0.5%, twinning is activated under the compression reversal and detwinning occurs during 



  

the subsequent tension reversal during the first few cycles; therefore, the hysteresis loop 

shape is sigmoidal. However, the half-life hysteresis loop is symmetric, as no more 

twinning/ detwinning is happening. For strain amplitudes more than 0.5%, the applied 

stress is large enough to make twinning/ detwinning occurring during the whole life as a 

result of the basal texture, thereby the half-life hysteresis loop as well as the second cycle 

hysteresis loop is asymmetric. 

2- In general, forged ZK60 is exhibiting superior fatigue strength compared to the as-cast 

alloy owing to the grain refinement happening in the forged material and lower amount of 

porosities and second-phase particles inside its microstructure. 

3- Different mechanisms of crack initiation for the forged material are proposed. At high 

cycle fatigue regime, persistent slip bands (PSB) and intermetallics are the major cause of 

crack nucleation. On the other hand, for the strain amplitudes higher than 0.4%-0.5%, 

that twinning is occurring, the interaction between twin-twin bands besides twin-

dislocation can also form cracks leading to final fracture. 

4- The Coffin-Manson fatigue model and the energy-based JV model were assessed in terms 

of the fatigue life prediction for the as-cast and forged ZK60. Both models yielded 

predictions with the 2x band, however, due to consideration of mean stress through 

elastic strain energy density, the JV model predictions were confined within 1.5x band. 

Acknowledgment 

 

This work is financially supported by the Natural Sciences and Engineering Research Council of 

Canada, the Automotive Partnership Canada (APC) program under APCPJ 459269-13 grant with 

contributions from Multimatic Technical Centre, Ford Motor Company, and Centerline Windsor. 

The authors would also like to thank Jonathan McKinley and Lucian Blaga of 

CanmetMATERIALS for the forgings. 

 

 

References 

 



  

[1] W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, and P. De Smet, “Recent 

development in aluminium alloys for the automotive industry,” Mater. Sci. Eng. A, vol. 

280, no. 1, pp. 37–49, 2000. 

[2] H. Friedrich and S. Schumann, “Research for a ‘new age of magnesium’ in the automotive 

industry,” J. Mater. Process. Technol., vol. 117, no. 3, pp. 276–281, 2001. 

[3] B. L. Mordike and T. Ebert, “Magnesium Properties - applications - potential,” Mater. Sci. 

Eng. A, vol. 302, no. 1, pp. 37–45, 2001. 

[4] D. Eliezer, E. Aghion, and F. H. Froes, “Magnesium science, technology and 

applications,” Adv. Perform. Mater., vol. 5, no. 3, pp. 201–212, 1998. 

[5] M. Easton, A. Beer, M. Barnett, C. Davies, and G. Dulop, “Magnesium Alloy 

Applications in Automotive Structures,” JOM, vol. 60, no. 11, pp. 57–60, 2008. 

[6] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry,” Int. J. 

Adv. Manuf. Technol., vol. 39, no. 9–10, pp. 851–865, 2008. 

[7] R. von Mises, “Mechanik der plastischen Formanderung von Kristallen,” ournal Appl. 

Math. Mech. für Angew. Math. und Mech., vol. 8, no. 3, pp. 161–185, 1928. 

[8] E. Meza-garc, P. Dobroˇ, J. Bohlen, D. Letzig, and K. Ulrich, “Deformation mechanisms 

in an AZ31 cast magnesium alloy as investigated by the acoustic emission technique,” 

Mater. Sci. Eng. A, vol. 462, no. 1–2, pp. 297–301, 2007. 

[9] S. R. Agnew and Ö. Duygulu, “Plastic anisotropy and the role of non-basal slip in 

magnesium alloy AZ31B,” Int. J. Plast., vol. 21, no. 6, pp. 1161–1193, 2005. 

[10] X. Y. Lou and M. Li, “Hardening evolution of AZ31B Mg sheet,” Int. J. Plast., vol. 23, 

pp. 44–86, 2007. 

[11] D. W. Brown, A. Jain, S. R. Agnew, and B. Clausen, “Twinning and Detwinning During 

Cyclic Deformation of Mg Alloy AZ31B,” Mater. Sci. Forum, vol. 539–543, pp. 3407–

3413, 2007. 

[12] T. Al-Samman and G. Gottstein, “Dynamic recrystallization during high temperature 

deformation of magnesium,” Mater. Sci. Eng. A, vol. 490, no. 1–2, pp. 411–420, 2008. 

[13] A. Chapuis and J. H. Driver, “Temperature dependency of slip and twinning in plane 

strain compressed magnesium single crystals,” Acta Mater., vol. 59, no. 5, pp. 1986–1994, 

2011. 

[14] F. Pan, M. Yang, and X. Chen, “A Review on Casting Magnesium Alloys : Modification 

of Commercial Alloys and Development of New Alloys,” J. Mater. Sci. Technol., vol. 32, 

no. 12, pp. 1211–1221, 2016. 

[15] H. Mayer, M. Papakyriacou, B. Zettl, and S. E. Stanzl-tschegg, “Influence of porosity on 

the fatigue limit of die cast magnesium and aluminium alloys,” Int. J. Fatigue, vol. 25, pp. 

245–256, 2003. 

[16] A. A. Roostaei and H. Jahed, “Role of loading direction on cyclic behaviour 

characteristics of AM30 extrusion and its fatigue damage modelling,” Mater. Sci. Eng. A, 



  

vol. 670, pp. 26–40, 2016. 

[17] J. Albinmousa, H. Jahed, and S. Lambert, “Cyclic behaviour of wrought magnesium alloy 

under multiaxial load,” Int. J. Fatigue, vol. 33, no. 8, pp. 1127–1139, 2011. 

[18] A. A. Roostaei and H. Jahed, “Multiaxial cyclic behaviour and fatigue modelling of 

AM30 Mg alloy extrusion,” Int. J. Fatigue, vol. 97, pp. 150–161, 2017. 

[19] Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A 

wealth of challenging science,” Acta Mater., vol. 61, no. 3, pp. 782–817, 2013. 

[20] S. R. Agnew, J. A. Horton, T. M. Lillo, and D. W. Brown, “Enhanced ductility in strongly 

textured magnesium produced by equal channel angular processing,” Scr. Mater., vol. 50, 

no. 3, pp. 377–381, 2004. 

[21] C. Bettles and M. Gibson, “Current wrought magnesium alloys: Strengths and 

weaknesses,” Jom, vol. 57, no. 5, pp. 46–49, 2005. 

[22] J. D. Robson and C. Paa-Rai, “The interaction of grain refinement and ageing in 

magnesium–zinc–zirconium (ZK) alloys,” Acta Mater., vol. 95, pp. 10–19, 2015. 

[23] J. S. Chun and J. G. Byrne, “Precipitate Sterngthening Mechanisms in Magnesium Zinc 

Alloy Single Crystal,” J. Mater. Sci., vol. 4, pp. 861–872, 1969. 

[24] W. C. Liu, J. Dong, P. Zhang, Z. Y. Yao, C. Q. Zhai, and W. J. Ding, “High cycle fatigue 

behavior of as-extruded ZK60 magnesium alloy,” J. Mater. Sci., vol. 44, no. 11, pp. 2916–

2924, 2009. 

[25] Y. Xiong and Y. Jiang, “Fatigue of ZK60 magnesium alloy under uniaxial loading,” Int. J. 

Fatigue, vol. 64, pp. 74–83, 2014. 

[26] Y. Xiong, Q. Yu, and Y. Jiang, “An experimental study of cyclic plastic deformation of 

extruded ZK60 magnesium alloy under uniaxial loading at room temperature,” Int. J. 

Plast., vol. 53, pp. 107–124, 2014. 

[27] Q. Yu, J. Zhang, Y. Jiang, and Q. Li, “An experimental study on cyclic deformation and 

fatigue of extruded ZK60 magnesium alloy,” Int. J. Fatigue, vol. 36, no. 1, pp. 47–58, 

2012. 

[28] R. Jahadi, M. Sedighi, and H. Jahed, “ECAP effect on the micro-structure and mechanical 

properties of AM30 magnesium alloy,” Mater. Sci. Eng. A, vol. 593, pp. 178–184, 2014. 

[29] S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica, and P. K. Liaw, “Texture evolution 

of five wrought magnesium alloys during route a equal channel angular extrusion: 

Experiments and simulations,” Acta Mater., vol. 53, no. 11, pp. 3135–3146, 2005. 

[30] S. H. Park, S. G. Hong, W. Bang, and C. S. Lee, “Effect of anisotropy on the low-cycle 

fatigue behavior of rolled AZ31 magnesium alloy,” Mater. Sci. Eng. A, vol. 527, no. 3, pp. 

417–423, 2010. 

[31] S. Hasegawa, Y. Tsuchida, H. Yano, and M. Matsui, “Evaluation of low cycle fatigue life 

in AZ31 magnesium alloy,” Int. J. Fatigue, vol. 29, no. 9–11, pp. 1839–1845, 2007. 



  

[32] M. Madaj, M. Greger, and V. Karas, “MAGNESIUM-ALLOY DIE FORGINGS FOR 

AUTOMOTIVE APPLICATIONS,” Mater. Tehnol., vol. 49, no. 2, pp. 267–273, 2015. 

[33] G. Yu, “Forging Specimen Design for Magnesium Alloys,” (Master’s Thesis), Retrieved 

from Univ. Waterloo Database, 2016. 

[34] D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, M. Wells, B. Williams, and J. 

McKinley, “Effect of Forging on Microstructure, Texture and Compression Behavior of 

Extruded AZ31B,” in Proceedings of the 3rd Pan American Materials Congress, Springer 

International Publishing, 2017, pp. 347–354. 

[35] E. Vasilev, M. Linderov, D. Nugmanov, O. Sitdikov, M. Markushev, and A. Vinogradov, 

“Fatigue Performance of Mg-Zn-Zr Alloy Processed by Hot Severe Plastic Deformation,” 

Metals (Basel)., vol. 5, no. 4, pp. 2316–2327, 2015. 

[36] A. Gryguc, S. K. Shaha, S. B. Behravesh, H. Jahed, M. Wells, B. Williams, and X. Su, 

“Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg,” Int. J. Fatigue, vol. 

104, pp. 136–149, 2017. 

[37] A. Gryguc, S.K. Shaha, H. Jahed, M. Wells, B. Williams, J. McKinley, “Tensile and 

fatigue behaviour of as-forged AZ31B extrusion,” Fract. Struct. Integr., vol. 38, pp. 251–

258, 2016. 

[38] D. Toscano, S. K. Shaha, B. Behravesh, H. Jahed, and B. Williams, “Effect of forging on 

the low cycle fatigue behavior of cast AZ31B alloy,” Mater. Sci. Eng. A, vol. 706, no. 

May, pp. 342–356, 2017. 

[39] S. M. H. Karparvarfard, S. K. Shaha, S. B. Behravesh, H. Jahed, and B. W. Williams, 

“Microstructure , texture and mechanical behavior characterization of hot forged cast 

ZK60 magnesium alloy,” J. Mater. Sci. Technol., 2017. 

[40] W. Yu, Z. Liu, H. He, N. Cheng, and X. Li, “Microstructure and mechanical properties of 

ZK60 – Yb magnesium alloys,” Mater. Sci. Eng. A, vol. 478, no. 1–2, pp. 101–107, 2008. 

[41] A. Hadadzadeh, S. K. Shaha, M. A. Wells, H. Jahed, and B. Williams, “Recrystallization 

behavior and texture evolution during hot deformation of extruded ZK60 magnesium 

alloy,” in Conference: Materials Science and Technology 2016, MS&T 2016, Location 

Salt Lake City, UT, USA, Date: Oct 23-27, 2016, pp. 281–288. 

[42] S. M. H. Karparvarfard, S. K. Shaha, A. Hadadzadeh., S. B. Behravesh, H. Jahed, M. A. 

Wells, and B. Williams, “Characterization of Semi-Closed Die-Forged ZK60 Mg Alloy 

Extrusion,” Magnes. Technol. 2017, pp. 329–334, 2017. 

[43] D. Toscano, S. . Shaha, S. B. Behravesh, H. Jahed, M. A. Wells, B. W. Williams, and J. 

McKinley, “Effect of Forging on Microstructure, Texture and Uniaxial Properties of Cast 

AZ31B Alloy,” J. Mater. Eng. Perform., vol. 26, no. 7, pp. 3090–3103, 2017. 

[44] J. B. Jordon, J. B. Gibson, M. F. Horstemeyer, H. El Kadiri, J. C. Baird, and A. A. Luo, 

“Effect of twinning, slip, and inclusions on the fatigue anisotropy of extrusion-textured 

AZ61 magnesium alloy,” Mater. Sci. Eng. A, vol. 528, no. 22–23, pp. 6860–6871, 2011. 

[45] S. K. Shaha, F. Czerwinski, W. Kasprzak, and D. L. Chen, “Tensile and compressive 



  

deformation behavior of the Al-Si-Cu-Mg cast alloy with additions of Zr, V and Ti,” 

Mater. Des., vol. 59, pp. 352–358, 2014. 

[46] W. R. Osorio, P. R. Goulart, S. G. A, N. C. Moura, and A. Garcia, “Effect of Dendritic 

Arm Spacing on Mechanical Properties and Corrosion Resistance of Al 9 Wt Pct Si and 

Zn 27 Wt Pct Al Alloys,” Metall. Mater. Trans. A, vol. 37, pp. 2525–2538, 2006. 

[47] L. Wu, A. Jain, D. W. Brown, G. M. Stoica, S. R. Agnew, B. Clausen, D. E. Fielden, and 

P. K. Liaw, “Twinning–detwinning behavior during the strain-controlled low-cycle fatigue 

testing of a wrought magnesium alloy, ZK60A,” Acta Mater., vol. 56, no. 4, pp. 688–695, 

2008. 

[48] S. R. Agnew and  and J. J. B. Christopher A. Calhoun, “What is in a Strain Hardening 

‘Plateau’?,” in Magnesium Technology 2016, Springer International Publishing, 2016, pp. 

189–194. 

[49] L. Wu, S. R. Agnew, D. W. Brown, G. M. Stoica, B. Clausen, A. Jain, D. E. Fielden, and 

P. K. Liaw, “Internal stress relaxation and load redistribution during the twinning–

detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A,” Acta 

Mater., vol. 56, no. 14, pp. 3699–3707, 2008. 

[50] S. Kim, S. Hong, J. Lee, C. Soo, J. Yoon, and H. Yu, “Materials Science & Engineering A 

Anisotropic in-plane fatigue behavior of rolled magnesium alloy with { 10 − 12 } twins,” 

Mater. Sci. Eng. A, vol. 700, no. May, pp. 191–197, 2017. 

[51] X. Z. Lin and D. L. Chen, “Strain controlled cyclic deformation behavior of an extruded 

magnesium alloy,” Mater. Sci. Eng. A, vol. 496, pp. 106–113, 2008. 

[52] S. R. Agnew, M. H. Yoo, and C. N. Tomé, “Application of texture simulation to 

understanding mechanical behavior of Mg and solid solution alloys containing Li or Y,” 

Acta Mater., vol. 49, no. 20, pp. 4277–4289, 2001. 

[53] Z. Keshavarz and M. R. Barnett, “EBSD analysis of deformation modes in Mg-3Al-1Zn,” 

Scr. Mater., vol. 55, no. 10, pp. 915–918, 2006. 

[54] S. R. Agnew, D. W. Brown, and C. N. Tomé, “Validating a polycrystal model for the 

elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction,” Acta 

Mater., vol. 54, no. 18, pp. 4841–4852, 2006. 

[55] G. Proust, C. N. Tomé, A. Jain, and S. R. Agnew, “Modeling the effect of twinning and 

detwinning during strain-path changes of magnesium alloy AZ31,” Int. J. Plast., vol. 25, 

no. 5, pp. 861–880, 2009. 

[56] N. a. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: 

Theory and experiment,” Acta Metall. Mater., vol. 42, no. 2, pp. 475–487, 1994. 

[57] Q. Yu, J. Zhang, and Y. Jiang, “Fatigue damage development in pure polycrystalline 

magnesium under cyclic tension-compression loading,” Mater. Sci. Eng. A, vol. 528, no. 

25–26, pp. 7816–7826, 2011. 

[58] Y. Estrin and A. Vinogradov, “Fatigue behaviour of light alloys with ultrafine grain 

structure produced by severe plastic deformation : An overview,” Int. J. Fatigue, vol. 32, 



  

no. 6, pp. 898–907, 2010. 

[59] J. Casey and H. Jahedmotlagh, “THE STRENGTH-DIFFERENTIAL EFFECT IN 

PLASTICITY,” Int. J. Solids Struct., vol. 20, no. 4, pp. 377–393, 1984. 

[60] H. Mughrabi, R. Wang, K. Differt, and C. Fatigue, “Fatigue Crack Initiation by Cyclic 

Slip Irreversibilities in High-Cycle Fatigue,” Fatigue Mech. Adv. Quant. Meas. Phys. 

Damage, STP30551S, J. Lankford, D. Davidson, W. Morris, R. Wei, Ed., ASTM Int. West 

Conshohocken, PA, pp. 5–45, 1983. 

[61] U. Essmann, U. Gösele, and H. Mughrabi, “A model of extrusions and intrusions in 

fatigued metals I . Point-defect production and the growth of extrusions,” Philos. Mag. A, 

vol. 44, no. 2, pp. 405–426, 1981. 

[62] K. Gall, G. Biallas, H. J. Maier, P. Gullett, M. F. Horstemeyer, D. L. Mcdowell, and J. 

Fan, “In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in 

vacuum and water vapor environments,” Int. J. Fatigue, vol. 26, pp. 59–70, 2004. 

[63] K. E. N. Gall, G. Biallas, H. J. Maier, P. Gullett, M. F. Horstemeyer, and D. L. Mcdowell, 

“In-Situ Observations of Low-Cycle Fatigue Damage in Cast AM60B Magnesium in an 

Environmental Scanning Electron Microscope METHODS,” Metall. Mater. Trans. A, vol. 

35, no. January, pp. 321–331, 2004. 

[64] S. K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen, “Monotonic and 

cyclic deformation behavior of the Al-Si-Cu-Mg cast alloy with micro-additions of Ti, V 

and Zr,” Int. J. Fatigue, vol. 70, 2015. 

[65] K. N. Smith, P. Watson, and T. H. Topper, “Stress-Strain Function for the Fatigue of 

Metals,” Journal of Materials, vol. 5. pp. 767–778, 1970. 

[66] J. Albinmousa and H. Jahed, “Multiaxial effects on LCF behaviour and fatigue failure of 

AZ31B magnesium extrusion,” Int. J. Fatigue, vol. 67, pp. 103–116, 2014. 

[67] H. Jahed and J. Albinmousa, “Multiaxial behaviour of wrought magnesium alloys – A 

review and suitability of energy-based fatigue life model,” Theor. Appl. Fract. Mech., vol. 

73, pp. 97–108, 2014. 

[68] J. Dallmeier, O. Huber, H. Saage, and K. Eigenfeld, “Uniaxial cyclic deformation and 

fatigue behavior of AM50 magnesium alloy sheet metals under symmetric and 

asymmetric loadings,” Mater. Des., vol. 70, pp. 10–30, 2015. 

[69] Y. C. Lin, Z. H. Liu, X. M. Chen, and J. Chen, “Stress-based fatigue life prediction 

models for AZ31B magnesium alloy under single-step and multi-step asymmetric stress-

controlled cyclic loadings,” Comput. Mater. Sci., vol. 73, pp. 128–138, 2013. 

[70] J. Dallmeier, O. Huber, H. Saage, K. Eigenfeld, and A. Hilbig, “Quasi-static and fatigue 

behavior of extruded ME21 and twin roll cast AZ31 magnesium sheet metals,” Mater. Sci. 

Eng. A, vol. 590, pp. 44–53, 2014. 

[71] S. Begum, D. L. Chen, S. Xu, and A. A. Luo, “Low cycle fatigue properties of an 

extruded AZ31 magnesium alloy,” Int. J. Fatigue, vol. 31, no. 4, pp. 726–735, 2009. 



  

[72] H. Jahed and A. Varvani-farahani, “Upper and lower fatigue life limits model using 

energy-based fatigue properties,” Int. J. Fatigue, vol. 28, pp. 467–473, 2006. 

[73] H. Jahed, A. Varvani-farahani, M. Noban, and I. Khalaji, “An energy-based fatigue life 

assessment model for various metallic materials under proportional and non-proportional 

loading conditions,” Int. J. Fatigue, vol. 29, pp. 647–655, 2007. 

[74] F. Ellyin, K. Golos, and Z. Xia, “In-Phase and Out-of-Phase Multiaxial Fatigue,” J. Eng. 

Mater. Technol., vol. 113, no. 1, pp. 112–118, 1991. 

 

  



  

Table Captions: 

Table 1. Mechanical properties of as-cast and forged ZK60 under monotonic tensile loading 

Table 2. Cyclic tests summary for the half-life cycle for as-cast and forged ZK60 Mg alloy 

Table 3. Coffin-Manson parameters for the as-cast and cast-forged ZK60 magnesium alloy 

Table 4. The energy parameters of JV fatigue model for the tested as-cast and cast-forged ZK60 

magnesium alloy 

  



  

Figure Captions: 

Figure 1. (a) Schematic illustration of the open-die forging process; (b) the final ZK60 sample 

after forging at 450⁰C with the ram speed of 390 mm/min  Note: LD-longitudinal 

direction, RD-radial direction and FD-forging direction. 

Figure 2. Schematic depiction of the specimen locations and directions in (a) as-cast and (b) 

forged ZK60 

Figure 3 Typical optical microstructures of as-cast ZK60 in unetched (a), and etched conditions 

(b) and forged ZK60 in unetched (c) and etched conditions (d) 

Figure 4. The (0002) basal and         prismatic pole figures (PF) for (a) as-cast ZK60, (b) cast-

forged ZK60 Mg alloy [39] 

Figure 5. Typical engineering stress-engineering strain hysteresis loops for the as-cast (a, b, c) 

and forged (d, e, f) ZK60 Mg alloy at different total strain amplitudes of 0.3% (a, d), 

0.5% (b, e), and 0.7% (c, f) 

Figure 6. Half-life hysteresis loops for as-cast ZK60 obtained from fully-reversed strain 

controlled fatigue tests at different strain amplitudes of (a) 0.2 -0.5% and (b) 0.6-0.9%. 

Figure 7. Half-life hysteresis loops for forged ZK60 obtained from fully-reversed strain 

controlled fatigue tests at different strain amplitudes of (a) 0.2 -0.4% and (b) 0.5-0.9%. 

Figure 8. Cyclic behavior of as-cast and forged ZK60 obtained by connecting the peak stresses of 

the half-life hysteresis loops at different strain amplitudes. Note: T is for tensile peaks on 

and C is for compressive peaks 

Figure 9. Comparison of the cyclic tensile and quasi-static tensile behavior for as-cast and forged 

ZK60 

Figure 10. The variation of stress amplitude vs. number of cycles for (a) as-cast and (b) forged 

ZK60 under different strain amplitudes 

Figure 11. Strain-life data obtained from fully-reversed strain controlled cyclic tests for cast and 

cast-forged ZK60 

Figure 12. SEM images of fatigue fracture surfaces of ZK60 Mg alloy at different strain 

amplitudes (a) as-cast at    0.5%, (b) as-cast at    0.9%, (c) forged at    0.5%, and 

(d) forged at    0.9% (Yellow arrows indicate the position of FCI sites, and the dashed 

lines represent the boundary between the FCG and the FF zones) 

Figure 13. SEM images of FCI locations in as-cast ZK60 tested at strain amplitudes of εa=0.5% 

(a-c), and εa=0.9% (d, e) 

Figure 14. SEM images of fatigue fracture surfaces for cast forged ZK60 tested at a strain 

amplitude of 0.5% (a, b) and 0.9% (c, d) showing the crack initiation sites with (d) 

secondary cracks and delamination of the matrix. 



  

Figure 15. SEM images of the FCG regions of ZK60 under different strain amplitudes (a) as-cast 

at εa=0.5%, (b) as-cast at εa=0.9%, (c) forged at εa=0.5%, and (d) forged at εa=0.9% 

Figure 16. SEM images of the FF regions of ZK60 under different strain amplitudes (a) as-cast at 

εa=0.5%, (b) as-cast at εa=0.9%, (c) forged at εa=0.5%, and (d) forged at εa=0.9% 

Figure 17. SEM images with EDX spectrums of the FF regions of ZK60 under different strain 

amplitudes (a) as-cast at    0.5%, (b) as-cast at    0.9%, (c) forged at    0.5%, and 

(d) forged at    0.9% 

Figure 18. Predicted life vs. experimental life for as-cast and forged ZK60 Mg alloy using the 

Coffin-Manson model 

Figure 19. Schematic illustration of positive elastic and plastic strain energy densities [74] 

Figure 20. Predicted life versus the experimental life for as-cast and forged ZK60 Mg alloy using 

the JV fatigue model 

 

 

 

  



  

 

 

 

 

    

 

 

 

Figure 1. (a) Schematic illustration of the open-die forging process; (b) the final ZK60 sample 

after forging at 450C with the ram speed of 390 mm/min  

Note: LD-longitudinal direction, RD-radial direction, and FD-forging direction. 

 

  

Figure 2. Schematic depiction of the specimen locations and directions in (a) as-cast and (b) 

forged ZK60  
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Figure 3 Typical optical microstructures of as-cast ZK60 in unetched (a), and etched conditions 

(b) and forged ZK60 in unetched (c) and etched conditions (d) 
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Figure 4. The (0002) basal and          prismatic pole figures (PF) for (a) as-cast ZK60, (b) cast-

forged ZK60 Mg alloy [39] 
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Figure 5. Typical engineering stress-engineering strain hysteresis loops for the as-cast (a, b, c) 

and forged (d, e, f) ZK60 Mg alloy at different total strain amplitudes of 0.3% (a, d), 0.5% (b, e), 

and 0.7% (c, f) 
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Figure 6. Half-life hysteresis loops for as-cast ZK60 obtained from fully-reversed strain-

controlled fatigue tests at different strain amplitudes of (a) 0.2 -0.5% and (b) 0.6-0.9%. 
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Figure 7. Half-life hysteresis loops for forged ZK60 obtained from fully-reversed strain-

controlled fatigue tests at different strain amplitudes of (a) 0.2 -0.4% and (b) 0.5-0.9%. 
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Figure 8. Cyclic behavior of as-cast and forged ZK60 obtained by connecting the peak stresses of 

the half-life hysteresis loops at different strain amplitudes 

Note: T is for tensile peaks on and C is for compressive peaks 

 
Figure 9. Comparison of the cyclic tensile and quasi-static tensile behavior for as-cast and forged 

ZK60 
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Figure 10. The variation of stress amplitude vs. number of cycles for (a) as-cast and (b) forged 

ZK60 under different strain amplitudes 
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Figure 11. Strain-life data obtained from fully-reversed strain controlled cyclic tests for cast and 

cast-forged ZK60 
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Figure 12. SEM images of fatigue fracture surfaces of ZK60 Mg alloy at different strain 

amplitudes (a) as-cast at    0.5%, (b) as-cast at    0.9%, (c) forged at    0.5%, and (d) 

forged at    0.9% (Yellow arrows indicate the position of FCI sites, and the dashed lines 

represent the boundary between the FCG and the FF zones) 
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Figure 13. SEM images of FCI locations in as-cast ZK60 tested at strain amplitudes of    0.5% 

(a-c), and    0.9% (d, e)  
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Figure 14. SEM images of fatigue fracture surfaces for cast forged ZK60 tested at a strain 

amplitude of 0.5% (a, b) and 0.9% (c, d) showing the crack initiation sites with (d) secondary 

cracks and delamination of the matrix.  

  

(a) (b) 

(c) (d) 

20 µm 

5 µm 200 µm 

Secondary cracks 

Delamination of Matrix 

Oxides 

FCI 

FCI 

100 µm 



  

 

  

  

Figure 15. SEM images of the FCG regions of ZK60 under different strain amplitudes (a) as-cast 

at    0.5%, (b) as-cast at    0.9%, (c) forged at    0.5%, and (d) forged at    0.9%  
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Figure 16. SEM images of the FF regions of ZK60 under different strain amplitudes (a) as-cast at 

   0.5%, (b) as-cast at    0.9%, (c) forged at    0.5%, and (d) forged at    0.9%  
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Figure 17. SEM images with EDX spectrums of the FF regions of ZK60 under different 

strain amplitudes (a) as-cast at    0.5%, (b) as-cast at    0.9%, (c) forged at    0.5%, 

and (d) forged at    0.9% 
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Figure 18. Predicted life vs. experimental life for as-cast and forged ZK60 Mg alloy using the 

Coffin-Manson model 
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Figure 19. Schematic illustration of positive elastic and plastic strain energy densities [74] 
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Figure 20. Predicted life versus the experimental life for as-cast and forged ZK60 Mg alloy using 

the JV fatigue model 
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Table 2. Mechanical properties of as-cast and forged ZK60 under monotonic tensile loading 

 

0.2% offset yield 

strength (MPa) 

Ultimate tensile 

strength (MPa) 

Fracture strain 

(%) 

As-Cast 138 ± 0 279 ± 3 15 ± 1 

Forged 163 ± 10 286 ± 4 26 ± 3 

 

  



  

    Table 3. Cyclic tests summary for the half-life cycle for as-cast and forged ZK60 Mg alloy 

Specimen 
condition 

Strain 
amplitude 

(%) 

Elastic 
strain 

amplitude 
(%) 

Plastic 
strain 

amplitude 
(%) 

max 
stress 
[MPa] 

min 
stress[MPa] 

Life 
Elastic strain 

energy 
density[MJ/m3] 

Plastic strain 
energy 

density[MJ/m3] 

As-cast 

0.9 0.439 0.461 198 -197 750 0.44 1.95 

0.9 0.428 0.472 203 -183 709 0.46 1.95 

0.8 0.420 0.380 191 -188 1338 0.40 1.47 

0.8 0.421 0.379 192 -186 818 0.41 1.48 

0.7 0.407 0.293 187 -167 1563 0.39 0.99 

0.7 0.398 0.302 187 -171 1194 0.39 0.99 

0.6 0.391 0.209 185 -167 1388 0.38 0.67 

0.6 0.384 0.216 179 -166 2040 0.36 0.67 

0.5 0.359 0.141 164 -160 2858 0.30 0.49 

0.5 0.363 0.137 164 -163 2321 0.30 0.49 

0.4 0.315 0.085 160 -123 4149 0.28 0.24 

0.4 0.314 0.086 149 -134 4996 0.25 0.23 

0.3 0.271 0.029 122 -121 14417 0.17 0.07 

0.3 0.269 0.031 128 -114 15299 0.18 0.07 

0.3 0.256 0.044 114 -117 27137 0.15 0.06 

0.2 0.184 0.016 81 -84 516579 0.07 0.01 

0.2 0.190 0.010 85 -87 165385 0.08 0.01 

0.175 0.175 0.000 73 -74 >10000001 0.06 0.00 

0.15 0.150 0.000 66 -64 >10000000 0.05 0.00 

Forged 

0.9 0.416 0.484 197 -179 832 0.43 1.81 

0.7 0.420 0.280 220 -161 1707 0.54 1.01 

0.7 0.427 0.273 221 -164 1674 0.54 0.99 

0.5 0.359 0.141 180 -144 3976 0.36 0.37 

0.5 0.355 0.145 176 -143 7041 0.34 0.38 

0.4 0.324 0.076 154 -139 13090 0.26 0.28 

0.4 0.295 0.105 138 -130 17152 0.21 0.28 

0.3 0.256 0.044 125 -116 58490 0.17 0.11 

0.3 0.268 0.032 115 -117 82445 0.15 0.11 

0.25 0.238 0.012 105 -110 105616 0.12 0.03 

0.25 0.221 0.029 97 -104 536971 0.10 0.03 

0.22 0.220 0.000 92 -93 >10000000 0.09 0.00 

0.2 0.200 0.000 88 -88 >10000000 0.09 0.00 

 

 



  

Table 4. Coffin-Manson parameters for the as-cast and cast-forged ZK60 magnesium alloy 

fatigue parameter As-cast ZK60 Forged ZK60 

  
  (MPa) 442 510 

b -0.12 -0.12 

  
  0.31 0.37 

c -0.62 -0.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 5. The energy parameters of JV fatigue model for the tested as-cast and cast-forged ZK60 

magnesium alloy 

fatigue parameter As-cast ZK60 Forged ZK60 

  
  (MJ/m

3
) 4.20 4.30 

B -0.30 -0.27 

  
  (MJ/m

3
) 1525.50 290.60 

C -0.92 -0.70 

 

 

  



  

 

 

Highlights 

 Cyclic behavior of ZK60 Mg alloy cast prior to and after forging process is studied. 

 

 Microstructure modification after forging leads to better fatigue response. 

 

 Forged alloy asymmetric fatigue behavior is due to the induced sharp basal texture. 

 

 ZnZr2 and MgZn2 intermetallics are main source of crack initiation. 

 

 An energy-based fatigue life model closely estimated the cyclic life. 

 


