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Abstract

Phases of gapped quantum liquids are topologically ordered and have very interesting
physical features that are completely robust against any local perturbation that do not
close the bulk energy gap. These universal properties are hidden in the ground states
of these systems, as different patterns of many-body long-range entanglement. In this
thesis we study the universal properties of gapped quantum liquids from various perspec-
tives. We propose the notion of Universal Wavefunction Overlap as a way of extracting
almost complete information about the underlying entanglement structure in a system
with topological order. We propose an efficient numerical methods to use these universal
wavefunction overlaps as topological order parameters and demonstrate their usefulness
with concrete numerical computations. In 2 + 1D these overlaps correspond to known
quantities and contain information about anyonic particle excitations. We show that in
3+ 1D, these overlaps contain information about linked multi-string braiding processes, in
particular three-string braiding.

In the second part of this thesis, we study boundary physics of systems with topological
order. We investigate the correspondence between edge and entanglement spectra for
non-chiral topological systems in general and with the presence of extra symmetries and
dualities. We also show that by local deformations of the fixed-point wavefunction on non-
chiral topological orders, all possible edge theories can be extracted from its entanglement
Hamiltonian. Finally we introduce the notion of fermionic gapped boundary and see how
the phase diagram of the simplest topological orders get enriched.
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Chapter 1

Introduction

Much of condensed matter physics and high energy physics has arguably developed on
drastically opposite philosophical foundations. High energy physics, in particular particle
physics, has succesfully developed pursuing a reductionistic worldview. Condensed matter
physics, on the other hand, has primarily investigated the unimaginable rich physics that
can emerge at low energies in systems with often boring and mundane high-energy degrees
of freedom. This program of emergent phenomena was more concretely explicated in Philip
Warren Anderson’s influential essay More is Different [7]. The rich emergent physics arises
in various phases of matter and one of the principal goals of condensed matter physics is
to classify and characterize the physics of all possible phases of matter.

For a long time Landau’s paradigm of spontaneous symmetry breaking [3, 9, 10, 11]
was the main framework to understand different states of matter. Within this paradigm,
phases of matter are characterized by local order-parameters gz?(x) and phase transitions by
spontaneous breaking of some global symmetry G down to a subgroup H. For continuous
symmetries, these phases will generally have gapless excitations called goldstone modes [12]
and their dynamics are described by nonlinear o-models on G/H. Futhermore, depending
on space dimensionality and the topology of the target space of the order-parameter g;(x),
these systems can have topological defects such as vortices, flux tubes, hedgehogs and so
on [13]. The Landau paradigm provides a rich framework where a large class of interesting
phases of matter can be analyzed. This together with Landau’s Fermi liquid theory [14, 15]
was for a long time thought to be the almost definitive theory for phases of matter.

With the discovery of Integer Quantum Hall Effect (IQHE) [10] and later Fractional
Quantum Hall Effect (FQHE) [17, 18] it became apparent that there exists states of matter
that are beyond the framework provided by Landau’s theory. This particular class of state



of matter was dubbed Topological Order [19] and exists in quantum systems with an energy
gap in the spectrum.

Often systems with topological order are presented as very exotic states of matter with
certain exotic behavior, which makes these systems appear very rare and artificial. In this
thesis we will have a different perspective, we will be thinking about topological order as
the most protected, robust and universal features of a system protected by nothing but an
energy gap. From this point of view, topological order is not something rare and artificial
but rather more appropriately something very deep and fundamental.

The main aim of this thesis is to study universal properties and invariants of gapped
quantum systems from various different perspectives. In the following sections we will
make a more careful definition of gapped quantum systems and introduce equivalence
relations between these that will define phases of matter with topological order. It turns
out that topological order belongs to a subclass of gapped systems called stable gapped
quantum liquids, which arguebly contain more or less all physically interesting gapped
systems. We will then discuss the entanglement properties of the ground states of gapped
quantum liquids and their importance. Then we will move on to universal properties of
excitations in systems with topological order. For bulk excitations, it turns out that long-
range features like statistics are universal; particles in 2+1D have anyonic statistics while
in higher dimensions we have anyonic strings, membranes etc. Finally we will discuss the
universal boundary physics of such states of matter.

The point of the discussion below is to help the reader understand what topologial order
is, starting from basic principles, and put the contributions of this thesis into context.

1.1 Gapped Quantum Systems

Any finite system naturally has gaps in the energy spectrum and therefore in order to
properly define the notion of gapped and gapless systems we need to consider the thermo-
dynamic limit. We wil primarily have spin systems (built out of qubits) in mind, but the
definitions can be readily extended to much more general degrees of freedom.

Image we have a sequence of graphs (or lattices) Gy, of N nodes (where N — oo as
k— 00, 1 < N’“Lk_N’“ < ¢9 and ¢q, s > 0) embedded on a manifold M with no boundary.
At each node i € Gy, place a local Hilbert space H; and construct the spaces Hy, as

My, = Q) Hi, (1.1)

€GN,

2



Energy
>

eiN/‘f

Figure 1.1: Energy spectrum of Gapped Quantum Systems in the thermodynamic limit.
For finite systems, below an energy gap A there can exist nearly degenerate states that
become exactly degenerate in the thermodynamic limit and form a ground state subspace
YV C H. The excited states above the energy gap can form a contiuum in the thermody-
namic limit.

for any & € N. A sequence of local Hamiltonians {Hy, }, .y o0 {Hwy }pen s called a
Gapped Quantum System if there exists a constant energy window of size A such that
(a) there are no eigenstates in this window for any N, and (b) the number of states below
this window is constant and their energy difference approaches zero as N, — oo (see figure
1.1) [20]. For each system size, we will call the subspace spanned by the states under the
gap A, for the ground state subspace Vy, or in other words Hy, = Vn, & ---.!

Equipped with a notion of a gapped quantum system, we would like to introduce
equivalence relations that define different phases of matter. We will primarily follow the
approach of [20] and [24], but also see [25] for some interesting insight into gapped quantum
liquids and beyond.

Loosely speaking, imagine we have the space of all gapped quantum systems G which
is a subset of all theories G C T (which also contains gapless theories). We would like
to think that each connected component of this space corresponds to a gapped quantum

Note that a generic Hamiltonian is gapless [21] and gapped systems are in this sense rare. But even
worse, the problem of proving that a system is gapped or gapless turns out to be undecidable [22, 23].



L Ground State = Product State

Quantum Phase Transition G a’P I ess
TQFT
|/

Figure 1.2: The figure illustrates the space of gapped quantum systems (more accurately,
stable gapped quantum liquids) inside the space of all theories. The blue regions correspond
to gapless systems, the orange region to short-range entangled systems while the red regions
to long-range entangled systems. The black dots are (gapped) RG fixed points where all
local degrees of freedom have been integrated out and only the universal physics is left
behind. SRE systems flow to a trivial theory with product state ground states, while
LRE systems are expected to flow to a Topological Quantum Field Theory (TQFT) at low
energies. Each connected component corresponds to a different topological phase.

phase, and gapped phases are thus classified by mo(G) (see figure 1.2). More precisely we
would like to say that two gapped Hamiltonians® H, and H; belong to the same phase
iff there exists a path of Hamiltonians H(\) such that H(0) = Hy and H(1) = H; and
H(\) is a gapped quantum system for any A € [0,1]. This is an equivalence relation and
equivalence classes under Hy ~ H; correspond to gapped quantum phases. We can also

2The notion of Gapped Quantum System is based on a sequence of Hamiltonians, defining the ther-
modynamic limit. But we will often just talk about them as a single Hamiltonian, as the meaning is
clear.



think about this on the level of quantum states. Given ground states |¢)(0)) and [¢(1)) of
Hy and Hj, respectively, there exists a (finite-time) quasi-adiabatic continuation between
these states

W) = UWIO), U = Texp (—z' / dsms)) (1.2)

where T is the path-ordering operator and H (s) is a local Hamiltonian. Again the Hamil-
tonian H(\) = U(XN)HoU(M\)T is gapped along the path and [1)()\)) is its ground state. The
form of H(s) is discussed in [24, 26, 27]. This approach has the advantage of being very
intuitive and connect to concepts of topology of the space of gapped quantum systems G,
but it turns out that there is a subtle step needed in order to define topological order. We
will formulate the above in a slightly different way, which also connects to more physical

concepts like entanglement.

It is known that a unitary finite time evolution with a local Hamiltonian can be sim-

ulated with a constant depth quantum circuit [24]. This means that we can replace the
time evolution in the definition above with unitary transformations of the form
_ W@ (N)
Ucive = U Uput - - Upd » (1.3)
where each of the N-layers is a piecewise local unitary operator U[E:v)l =1,U,a=1,...,N,

where {U;} is a set of unitary operators that act on non-overlapping regions. A transfor-
mation of the form (1.3) is called a Local Unitary (LU) transformation.

1.2 Gapped Quantum Liquids

Topological order is deeply connected to patterns of long-range entanglement of gapped
quantum systems, but in order to define these notions more precisely, it turns out that
we need to break gapped quantum systems into smaller classes. Not all gapped quantum
systems are well-behaved in the thermodynamic limit, since in the sequence {Hy, }ren,
Hamiltonians of different system sizes are not necessarily related to each other. We will
here define a subclass that consist of, as far as I am aware, almost all examples of physically
relevant gapped systems.

Starting with a Hamiltonian Hy, on Hy,, define a Hamiltonian on the Hilbert space
Hn,,, by adding a trivial system on the new degrees of freedom

Nyg41—Ny

HNk — fka+1 = HNk + Z Zi, (14)
=1

5



gLU gLU gLU gLU
. Hy, <— Hy,, <— Hy,,, <

ILU ILU ILU
gLU y gLU ’ gLU / gLU
Ny, Ni41 Ngya

Figure 1.3: Diagram showing the equivalence relation between two stable gapped quantum
liquids {Hn, }xen and {H}y, tren. If we ignore the condition that each layer should be
related by a gLU transformation, then this defines an equivalence relation on gapped
quantum systems (which includes non-liquids).

where Z; is the Pauli Z matrix acting on site i.> If for a sequence { Hy, }ien for any Hy, , the
ground state subspace of Hy, ., can be transformed to the ground state subspace of Hy;,
by a LU transformation, then we say that Hy, and Hy, , are connected by a generalized
Local Unitary (gL.U) transformation. We call a gapped quantum system satisfying this,
a Gapped Quantum Liquid. A gapped quantum liquid is stable, if the ground state
degeneracy is protected against any local perturbation.*

We can now modify our previous definition of gapped quantum phases: two stable
gapped quantum liquid systems are equivalent { Hy, } ~ {H, } if the ground state subspace
of Hy, can be mapped to the ground state subspace of Hj, by a LU transformation for all
N (see figure 1.3).% These equivalence classes, we will call topological order (TO). The
class that contains a Hamiltonian with a product state ground state, such as H =) . Z;,
will be called trivial topological order.

To summarize, the point of the above discussion was to point out that we are not
investigating universal properties of general gapped quantum systems but gapped quantum
liquids, which is not a big restriction as it contains most physically interesting gapped
systems. The equivalence relation based on gLLU transformations, where we allow the
addition of a trivial system, is analogous to stable equivalence of vector bundles where
instead of considering homotopy equivalence the equivalence is loosened to also allow the

30n a more general non-qubit system, one can add any gapped trivial term instead. The important
thing is that the new ground state should be the old ground state tensored with a product state.

4Tt turns out that gapped quantum liquids, besides topological order, contain symmetry breaking states
and other states with unstable degeneracy. The stability condition picks out the robust gapped systems. It
is possible to change the gLLU transformation into a so-called generalized stocahstic local transforma-
tion (gSL), which only captures the systems with topological degeneracy. For a more detailed discussion,
see [20].

5This is just another way of expressing the definition that two Hamiltonian are equivalent, if they are
connected along a stable gapped liquid path.



addition (Whitney summing) of trivial bundles and thus making the classification more
stable. This is exacly what is used to classify topological insulators and superconductors®,
where one allows the addition of trivial bands (bundles) and thus obtains a classification
based on topological K-theory [28]. The Bott periodicity of this ”periodic table”, is a
consequence of stable equivalence.

Note that gapped non-liquids can still have some sort of well-behaved thermodynamic
limit. For example if we modify (1.4) such that we add copies of the smaller system,
possibly with product states too, we can then relate Hy, <> Hy,,, via a LU transformation
by dissolving such a non-trivial layer. Systems with such a thermodynamic limit, will be
different from conventional topological order. It is believed that so-called fracton topological
order [29, 30, 31, 32, 33] and systems built out of layers of lower-dimensional topological
order, belong to gapped non-liquid systems [20, 25].

1.3 Long-Range Entanglement

As discussed above, we can think about the definition of topological order from the point-
of-view of states in the Hilbert space. From equation (1.4) it is clear how the gLU trans-
formation acts on the ground state subspaces {Vy, }ren; first the states are mapped to the
larger Hilbert space by tensoring them with a product state and then they are acted upon
by a LU transformation. The important point to note is that each layer of a LU transfor-
mation (1.3), separately acts on a local patch with a unitary operator. We can think of
this local action as a local modification of the state’s entanglement structure. Any state
that can be mapped into a product state (zero entanglement) by a gL.U transformation”,
we call a short-range entangled (SRE) state as any entanglement can be removed by
locally modifying the entanglement structure, over a finite number of layers. Any state
that cannot be transformed into a product state we will call a long-range entangled
(LRE) state.

Comparing with the above discussion about topological order, we see that short-range
entangled states are ground states of system with trivial topological order. While different
non-trivial topological orders have ground states that differ by their patterns of long-range
entanglement. This is a very interesting and significant understanding; topological order
is inherently related to global many-body (long range) entanglement of ground states and

SIn the language of this thesis, these correspond to free fermion SPT and (invertible) SET phases.

”As mentioned earlier, this is not completely accurate as gL.U transformations cannot map symmetry
breaking states into product states. The correct transformation to use are generalized stochastic local
(gSL) transformations. For more discussion see [20].



these patterns of entanglement are responsible for all the universal physics of the stable
gapped quantum liquid phase.

1.3.1 Topological Entanglement Entropy

Now the natural question is, how can we detect and distinguish different topological or-
ders from studying their ground states? A natural quantity to study is the entanglement
entropy. Consider a 241D topological order on a manifold of simple topology, like the
two-sphere S2. Split the Hilbert space into two spacial regions L and R, H = H; ® Hg,
with a boundary length of L between these regions. From the pure state pgz = 1) (1|2
contructed from a ground state |¢)) on S?, we can get a mixed state on L as p;, = Trg (pg2).
The entanglement entropy of pg2 is defined as the Von Neumann entropy of pr,

S(pr) = =Tr (prlog pr) . (1.5)

It turns out that this entanglement entropy has the following area-law scaling [31, 35, 30]
S=alL—-vy+0O(L™"), v>0. (1.6)

This might be a surprise, as random pure states are expected to have volume-law scaling
[37]. But there is a simple intuitive way to understand this result. Since gapped systems
have very short-range correlations, one expects the entanglement to be fairly short range.
One can make a simple (and quite trivial) toy model by tensoring valence bonds [i, j) =
\/Li (] Tids) — | 4iT;)) for random sites ¢ and j that are fairly close to each other. Now
splitting the Hilbert space into L and R, it is clear that only the valence bonds crossing
the boundary are ”cut” and thus contribute to the entanglement entropy, hence this gives
us an area-law scaling. The coefficient « is, however, clearly not universal. Note that this
implies that groundstates of gapped systems belong to a tiny submanifold of Hilbert space
and part of the motivation of the development of tensor networks is to parametrize this
submanifold.

The constant subleading term - is called the topological entanglement entropy
[34, 35] and is universal, meaning invariant under gapped local perturbations of the system
or equivalently invariant under gL.U transformations.® This quantity turns out to be equal
to v = logD where D is the total quantum dimension and directly related to physical
properties of topological excitations and the ground state degeneracy [38]. This implies
that long-range entanglement is like a constant entanglement over the full system, capable

8 Actually it is even stronger, it is invariant under gSL transformations.



of detecting global (topological) features of the manifold the system resides on. In fact, the
ground state degeneracy directly depends on the (co-)homology groups of the underlying
manifold. Note that if v # 0 we are guaranteed to have topological order, but even when
~v = 0 we can still have topological order.” The topological orders with v = 0 are called
invertible topological order and have no topological excitations in the bulk but do
have protected gapless boundary modes. It turns out that one can detect these (or gapless
boundaries of so-called chiral topological order) from the entanglement spectrum, which
is the spectrum of the entanglement Hamiltonian H.y, defined as [39, 10)]

1
pr = — exp (—Hent.) - (1.7)

A
The entanglement spectrum contains more information about the entanglement structure
of the state |¢). In chapters 5 and 6 we study the universal content of the entanglement
spectrum for non-chiral topological orders.

The topological entanglement entropy can be generalized to higher dimensions [11, 12]
and to topologically non-trivial bipartitions [13]. The entanglement entropy has several
weaknesses, for example it contains very limited information about the universal physical
properties of the system and it is hard to compute numerically.

In the next section we will discuss some very fundamental properties of the ground states
of quantum liquids, in particular local indistinguishability and propose another method to
extract topological information from the ground states.

1.3.2 Local Indistinguishability and the Mapping Class Group

Note that the stability condition implies that the ground states |¢);) of gapped quantum
liquids are locally indistinguishable, they can only be distinguished globally. Or in other
words, they form superselection sectors where

<¢i|@|¢j> = Codyj, (1.8)

9There are two competing definitions of topological order in the field, which we will call the east-
coast and west-coast definitions. The east-coast definition is the one used in this thesis. The west-coast
definition only considers states with v # 0 as having topological order. The difference between these are
so-called invertible topological order, which are considered to be trivial in the west-coast definition. These
invertible TOs have the property that they can be made trivial by stacking them on each other. One can
think of the west-coast definition as using a stronger equivalence relation, besides what we have discussed
it requires that two gapped systems that are related through stacking of invertible TOs, to be considered
equivalent.




in the thermodynamic limit'® for any local operator O. If any local operator existed that
had non-zero overlap between the different ground states, it could be used to split the
degeneracy. This, however, does not have to hold for non-local operators. It turns out, as
is highly plausible from the discussion so far, that the ground state degeneracy depends
only on the topological structure of the underlying manifold such as the number of non-
contractable homology cycles. Thus these states can be related to each other by non-local
operators that act on non-contractible homology cycles (lines, surfaces etc.), signifying the
non-trivial long-range entanglement hidden in these states.

A natural question is, can we extract more powerful information about the long-range
entanglement structure in these states than given by the entanglement entropy? We explore
this question in chapter 2. For any d-dimensional manifold M? we can associate a group
called the Mapping Class Group MCG(M?) that has an action on the homology cycles
of M4 Any group element A € MCG(M?) induces an action Mi’;‘ on the ground state
subspace V which rotates the ground states into each other. In other words, the ground
state subspace on M? forms a representation space of the group MCG(M?). It is hard to
implement this action on the ground state subspace for a generic gapped quantum liquid
(especially on the lattice)', but it is easy to implement an operator Oa acting on the
full Hilbert space for any A € MCG(M?). This will however bring us out the ground state
subspace and give us a very small overlap. The question is, can we extract the universal
pieace MZ-‘? from this overlap? In chapter 2 we conjecture the following scaling behavior

(Wil Oaltpy) = eV +UY) Mg, (1.9)
where V is the volume of M?. For a given topological order, we thus have mapping class
group representations on essentially any compact manifold. Each of these representations
constitute universal data that are not only much stronger than the topological entangle-
ment entropy, but might provide complete set of invariants for any topological order with
gappable boundary.!?

The exponential volume-law scaling makes it very hard to compute this quantity di-
rectly, numerically. In chapters 2 and 3 we propose a simple method to compute the

10Ty finite systems with non-zero correlation length there might be very small off-diagonal terms, origi-
nating from the exponentially small energy-split among the states. See figure 1.1.

HFor some intuition behind mapping class groups see section 2.B.

12Unless the Hamiltonian has some very special symmetries.

13The mapping class group is related to so-called topologically non-trivial diffeomorphisms. One could in
principle detect features of gapless boundaries, like the chiral central charge, by considering Berry-phases
of trivial paths of the diffeomorphism group, inducing a gravitational Chern-Simions term [44]. But these
are non-trivial to implement on the lattice. Although see [45].
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universal piece of this overlap from local information of a single ground state in the form
of a tensor network. These universal matrices can be used as topological order parameters,
detecting phase-transitions between different topological systems.

In 241D these quantities are well-known and directly related to physical features of
topological order, such as particle statistics and fusion. In chapter 4 we study a subset of
these invariants for 3 + 1D gapped liquids and show that they contain vital information
about statistics of excitations, such as information about a braiding process containing
three strings.

1.4 Topological Excitations

Having defined the notion of phases of gapped quantum liquids, discussed their ground
states and their relation to entanglement, we will turn to one of the most important uni-
versal physical features of these systems, namely the unusual statistics of bulk excitations.
It turns out that systems with topological order have anyonic particle-like excitations in
241D and higher-dimensional objects in higher dimensions.

Let us restrict the discussion to point-like excitations. Let us imagine that we have
N particles on R? and we will assume that particles cannot be on top of each other. If
we furthermore require that all particles are indistinguishable, we must identify all points
related by permutation of particles. The configuration spaces of such systems are

CRLN)=R™ —A,  CYRY,N)=(R™—-A) /Sy, (1.10)

where A = {(ry,...,ry) € R¥™|r; = r; for some i and j} is the set of configurations
where the position of at least two particles coincide and Sy is the permutation group. The
topological classification of paths in these spaces that return to the original configuration
is given by [10]

0, d>3,
Py, d=2"

Sy, d>3,

: 1.11
By, d=2 (1.11)

7 (C(R*,N)) = { 71 (CY(R?Y, N)) = {

where By is the braid group while Py is the colored braid group, where the strands are
colored so only braids that return to their original spot are allowed. This implies that only
bosons and fermions, corresponding to the symmetric and anti-symmetric one-dimensional
representations of Sy, can exist for d > 3.14

14 Tt turns out that any higher dimensional representations of Sy which is compatible with locality,
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In 2+1D we see that the exchange statistics of indistinguishable particles are given by
representations of By, while double exchange of two distinguishable particles correspond
to representations of Py [53, 54].15 However, for a given gapped system with topological
order there will be several types of particles. Each type with self-statistics corresponding
to a whole family of representations of By (depending on how many particles has been
created), while each pair with mutual-statistics corresponding to a family of representations
of Py. And what if a single particle encircles several other particles, which representation
corresponds to this scenario? It naively appears to be very complicated to describe particle-
statistics in 2+ 1-dimensions. However, we will below sketch how a natural algebraic theory
appears for gapped quantum liquids, that takes care of all this.®

1.4.1 Topological Types and Fusion

Consider the energy distribution of an excited state over space. If the excited state has a
higher energy density than that of the ground state only locally near a point z, we may
consider that energy lump as a point-like excitation. If this excited state can be created
by a local operator O, |r) = O.|Y), we will call the particle at = for a topologically
trivial excitation while if this is not the case we will say it is a topologically non-trivial
excitation. In general we say that two excitations are of the same topological type, if
we can go from one to the other by the action of local operators near the location of the
excitations. Excitations of topologically trivial type are often denoted as 1. It turns out
that topologically non-trivial excitations are created by line-like operators with the end-
points being the locations of the excitations. Each topological type can thus be thought
of as a superselection sector [H0].

We can always modify our Hamiltonian H to H + Vi, in order to trap a few excitations
locally but individually far from each other, such that the ground state of the gapped system

can be decomposed into tensor products of local Hilbert spaces of fermions and bosons with additional
quantum numbers [47, 48, 49]. In [50] Wilczek proposed to consider projective particle statistics based on
projective representations of Sy, but it was later shown to be inconsistent with locality [51]. Something
similar to non-abelian statistics for (pseudo-)particles in 341D is however possible, called projective ribbon
permutation statistics [52, 49].

50n topologically non-trivial manifolds we will get different results. For example, on a torus T2 we
will get the torus-braid group and as particels can now also wind around the non-contractible cyles of the
torus.

16This discussion partially follows lectures by Xiao-Gang Wen and [55]. We will not attempt to be
rigorous, but rather give an idea of how the underlying mathematical structure appears and what its
physical meaning is.
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Figure 1.4: On the left we have the degenerate subspace V(a ®0b,...), where ... represent
other excitations far from a and b. The degeneracy is robust against local perturbations if
a and b are far from each other. If a and b are brought near each other, or perturbations
in a region containing both a and b are allowed, the degeneracy will split. The right side
represents maximal splitting from a generic perturbation. Each block remain degenerate.
To represent this energy splitting, we write a @ b=cPd D e D f.

H + Virap, 1s an excited state of H.'” We will by a; denote an excitation of topological type
a at the position x;. The ground state subspace of H 4 Vi, corresponding to trapping
(ay,by,...) will be denoted by V(aq, bs, ... ), called the fusion space, with the dimension
dim V(ay,bs,...) > 1. If the degeneracy of the fusion space V(ay,...) is robust against
any local perturbations near x; we say that a is a simple type while if the degeneracy
is lifted we call it a composite type and think of it as being composed of several simple
types a = x @y @ .... Note that the lifting of degeneracy implies the following vector
space decomposition

V(Cll D bl,CQ, .. ) = V(al,CQ, .. ) D V(thg, .. ) (112)

We will assume that we have a finite number of simple topological types, also called anyon
types given by the set A = {a,b,c,...}. If we always have that dim V(ay,bs,...) = 1, we
say that the topological order is abelian, otherwise we say that it is non-abelian.

We can also define the notion of fusion of two anyons. Imagine a; and by at positions
x1 and w9, respectively, are much closer to each other than all other excitations. We will
denote this by a ® b and this can in general be considered as a composite type because
by acting with local operators in a region containing both x; and x5, we might be able to
split the degeneracy as V(a ®b,...) = @, 4 N2V(z, ... ), see figure 1.4. Based on this

1"Note that the system H = H + Virap, while being gapped with robust degeneracy against any local
perturbations, is not a quantum liquid as Hy, and Hy, ,, are not related by a gLU [20].
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energy splitting, we will define a fuston ring by the following fusion rules

a®b =P Nz, (1.13)
€A

where N Zj is an positive integer matrix saying how many times a given anyon type appears
in the decomposition. As we can fuse particles in different orders, we need to demand
associativity of the fusion product (¢ ® b) ® ¢ = a ® (b ® ¢) which gives us constraints on

the fusion coeflicients
> ONENGe =Y NENG. (1.14)

We will furthermore assume that the product (1.13) is abelian, a®b = b® a or equivalently
N® = Nb since there is no canonical way to define the order of fusion. This is true for

T

2 4+ 1-dimensions and above, but in 1 + 1-dimensions this cannot be assumed.

In [57], it was shown that topological excitations come in pairs and are created by line
operators, where the end-points are the excitations. If the line is turned into a loop, the
excitations annihilate. This implies that for each simple type a € A, we have another
a € A such that a fusion channel to the vacuum (trivial type) exists: a ®a =1 ...,
here a can be thought of as an anti-particle but we will call it the dual of a. The dual is
unique and for simple objects they have a unique channel fusing to the vacuum. Therefore
we have that dim V(aq, az) = 1 where the basis vector will be graphically represented as

a b

|ay, as) = Y . (1.15)

1

In general we can represent a fusion process by

a b
\ﬁ : (1.16)
C
where y1 represents possible multiplicities in the fusion channel p = 1,..., N%. For nota-

tional simplicity we will here ignore these multiplicities. Therefore the basis vectors of the
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fusion space with n excitations of type a, V(aq,...,a,), is given by

aq a9 as --- Qp

i)
9 ) (1.17)

1

This graphical notation makes it easier to label all the states in the fusion spaces and
has an intuitive physical interpretation: it is a space-time diagram showing the process of
creating particles from the vacuum when read from bottom up. We can directly compute
the dimension of this fusion space

dimV(ay, ... a,) =Y  NENZ Ny = = (IN)"7Y) | ~di +O(1/n),  (118)

Ty

where we have defined the matrices (N%), . = N2 and d,, is the largest eigenvalue of N*.'8
The large n-scaling of the fusion space dimension seems to imply that we can think of
each anyon of type a to be associated with a local Hilbert space of dimension d,. However
d, is often not an integer and the d! scaling is only accurate for large n. This is a very
important point, as the Hilbert space does not have a standard tensor product structure but
the information is rather stored non-locally among all the excitations. Only when brought
near each other, can we act on this space with local operators and split the degeneracy.
The number d, is called the quantum dimension of anyon type a and D? = Y aea d?
is the total quantum dimension and can be extracted from the ground state through
the topological entanglement entropy v = log D.

Imagine we chose a different basis of the fusion spaces by fusing in a different order,
these must be related by a basis change. These basis changes can be built from the most
basic one involving three anyons,

a b c a b c

d;ex
e = ZFabc T ) (119>
€A

d d

8The Perron-Frobenius theorem ensures that a real square matrix with positive entries, has a unique
largest real eigenvalue and all components of the corresponding eigenvector can be made stricly positive.
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where the basis change coefficients are often called F-symbol. From this we can compute
the basis change coefficient for larger number of anyons, however there might be many
different ways to step by step go from one basis to another. In the case of four anyons,
there are two ways to go from fusing from left to fusing from right. Since the coefficient
in both cases must match, this gives us constraints of the F-symbols schematically of the
form Y FFF =) FF. This equation is known as the pentagon equation. Remarkably,
due the McLane Coherence theorem if the pentagon equation is satisfied, all other basis
changes in V(ay, by, ... ) with (1.19) will automatically be consistent.

Before turning to braiding, let us reflect over what we have done. Usually local degrees
of freedom, say s = % spins, carry their own local Hilbert spaces H;. Fusing two spins
% ® %, gives rise to the ”fusion” of their individual Hilbert spaces H; ® Hs. But clearly
anyons do not behave the same way, the fusion space is a collective space shared among
all particles and stored non-locally. Adding another anyon to the system, the fusion space
changes in a highly non-trivial way. It is therefore hard to describe the anyons directly, we
have instead tried to extract information about them by studying the relations between
them. For example the fusion of two anyons were defined through degeneracy splitting
of the fusion spaces, which is shared with many other anyons. Even though the fusion
spaces do not have a nice tensor product structure like in the case of spins, the fusion rules
a ® b do give us many of the same properties. The idea of studying objects through their
relationship with other objects, rather than the structure of the objects themselves is the
essence of category theory. What we have constructed so far is called a symmetric
unitary fusion category, where the objects are the anyon type A and the fusion states
are the morphisms. The graphical notation (1.16) is literally the relation between different
anyons (objects).

1.4.2 Braiding

Having discussed the algebraic theory describing topological excitations in a gapped quan-
tum liquid, we will now turn to braiding.

Imagine we adiabatically tune V4, such that the simple type a; at location x; is rotated
around itself by 27r. The states in V(ay, by, . ..) can potentially acquire a geometric phase!?
e% . The phase 6, is called the topological spin of anyon type a. We can implement this
in our graphical notation by giving the lines a framing and think of them as ribbons, thus
whenever we undo a twist in the ribbon the corresponding state acquires a phase .

19Tt turns out that it is enough to assume that it is just a phase, and not a unitary matrix.
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It turns out that the right way to define the data for braiding is by introducing the
so-called R-symbol, defined graphically by

b, _a b a

N
q = R \/ : (1.20)
C C

The R-matrix cannot be arbitrary and must satisfy certain non-trivial constraints which
comes from consistency, one can go from one diagram to another in multiple ways giving
us multiple mappings between these states and consistency requires them to be equal.
Starting with three anyons, similar to the pentagon equation, we can derive a consistency
relation of the schematic form RFR = ) FRF that the R and F symbols must satisfy.
This is called the hexagon equation. Again the McLane Coherence theorem ensures that
no other consistency relations are needed.

Any solution of the pentagon and hexagon equations, will give us a consistent anyon
model and correspond to a particular topological order in 2+1D. If start with the graphical
notation (1.17), we can braid the anyons in any arbitrary way. By using the F' and R-
symbols, eq. (1.19) and (1.20), we can turn this braid diagram back into (1.17). This gives
us a map on the fusion space that is nothing but the wanted Braid group representations
discussed earlier.

The mathematical structure behind this is called a modular tensor category (MTC),*
and 2 + 1D topological orders can be classified by classifying MTCs. It naively appears
that the solution space of the pentagon and hexagon equations form a continuous algebraic
variety, but it turns out that they also containg gauge freedoms and after a gauge fixing,
the solution space becomes discrete. We say that MTCs are rigid, meaning that no contin-
uos deformations are possible. The classification of MTCs is an active research direction

[58].

These equations first appeared in the work of Moore and Seiberg on 1 4+ 1D Rational
Conformal Field theories [59, 60] which in turn are very closely related to topological order
in 2+ 1D [61, 62]. We will however not go into this very deep and interesting direction.

Important for this thesis are two crucial pieces of universal data in a MTC called the

20Gtricly speaking, we have only presented part of the definition of a MTC here.

17



modular S and T matrices®!

a b .
1 ab 6199:
Sab:@: EZNm de’ <12].)
zeC
Top = Oape’®. (1.22)

These matrices generate a projective representation of SL(2,Z) and satisfy the relations,

2w

(ST =esC, S*=C, C*=1 (1.23)

where c_ is called the chiral central charge and is another universal quantity. Note that

knowing S and 7', gives us ¢. mod 8, we will explain why when discussing boundary
e
T = 6ape’®». Here the T matrix is just the self-statistics while the S matrix gives us the
mutual particle statistics (up a normalization). Thus S and 7" matrices contain informa-
tion about statistics of particle excitations. Despite being properties of excitations, they
can be computed from the ground states by the universal wavefunction overlap (1.9) as

representations of the mapping class group of the torus.

physics. For abelian topological orders with N anyons these reduce to Sy, =

It turns out that from these matrices one can compute the fusion rules, given by the
Verlinde formula [63]. Knowing the fusion rules, one can solve the pentagon and hexagon
equations and potentially reconstruct the whole catagory theory. Thus until recently it was
believed that the S and T matrices can be used to compute any universal quantity in the
MTC, but counter examples were recently found [6, 65, 66]. New invariants were proposed,
but they are also in principle computable as mapping class group representations.?

For more details about modular tensor categories and their application to describe
anyon models, see [67, 50, 68].

A final note before we end this section. We have learned that topological excitations of
gapped quantum liquids form degenerate fusion spaces that are stored non-locally and thus
completely protected against local perturbations as long as the anyons are well separated.
Not only that, we can act on this space using braiding of particles which is a non-local

21This diagramatic notation can be defined by introducing inner products to our current construction.
In order to save space, we will not go through the details here.

22The smallest known examples are several rank 49 categories corresponding to discrete gauge theories
G = Z11 x Z5 with certain group cohomology twists [w] € H3(Z1; x Z5,U(1)). The group is of order 55,
and there are 5 inequivalent twists that produces a rank 49 category.
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operation and thus also protected against local perturbations. These important properties
has given rise to the proposal of using non-abelian anyons to do quantum computation,
an idea going under the name topological quantum computation [09, 70, 71]. Thus
topological order is a physical mechanism for fault tolerant error correction, rendering
millions of redundant qubits, as needed in conventional error correction codes, unnecessary.

1.4.3 Excitations in 3+1D

A bosonic topological order can only have bosonic and (emergent) fermionic particle ex-
citations in 3 + 1D as seen from (1.11). However, now we can also have string-like exci-
tations?® which opens up new and interesting possibilities. As mentioned previously, we
already know an example of such a topological order, namely the S-wave superconductor.
Here the string-like excitations are nothing but Abrikosov vortex strings [72] (known as
Nielsen-Olesen strings in high-energy physics [73]).

In [74] it was shown that the statistics of N unlinked string-like excitations are governed
by the Loop Braid Group LB)y. This group has two classes of generators, the first
corresponds to braiding the ith and 4 + 1th string worldsheets around each other?*

% i+1

These generators satisfy the the following relations
$iSj = $;8i, for |i—j]>1,
8iSi+1S8; = Si+15iSi+1, for 1 S /) S N — 2, (125)
s? =1, for 1<i<N-—1,

which forms to a permutation subgroup Sy C LBy. This is intuitive to understand as
if we shrink the strings to points, the worldsheets become the worldlines of particles and

23 Actually we must have string-like excitations in order to have a non-anomalous topological order. In
241D we can have string-like excitations in anomalous topological systems, which are unstable unless on
the boundary of a 3 + 1D topological system.

24The graphics has been borrowed from [74].
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from (1.11) we know that the statistics are given by Sy. The other class of generators
correspond to string excitations trading places by letting one of them go through the other

) i+1

)
=]

o; = (1.26)
These generators satisfy the relations
0,0; = 0;0;, for |i—7j|>1,
0i0i410; = 0;410;041, for 1<i< N -2,

which interestingly form a braiding subgroup of the loop braiding group By C LBy. These
two subgroups are intertwined inside LBy through the mixed relations

S0 = 0;S;, for |i—j]>1,
8;8i4+10; = 0;415;Si+1, for 1 S 1 S N — 2, (128)
0;0;4+18; = S;4+10:04+1, for 1 S 1 S N — 2.

The loop braid group LBy only describes braiding processes with unlinked string exci-
tations, however in 3 + 1D we can have many other interesting braiding processes. For
example we can have braiding processes of strings that are linked with each other in com-
plicated ways. Or particle-string braiding, for example of the Aharonov-Bohm type of more
nontrivial type where particle worldlines and string worldsheets form complicated links.?

Let us consider one particularly simple, but very important, type of linked string exci-
tation. Imagine we have N strings of types a, b, ... with a base string of type X threading
them all, see figure 1.5. Due to the base loop X, it is clear that the other strings cannot
shrink into a point and cannot perform braids of the type described by the generators
s; (1.24). Braid processes of the o; type (1.26) is still possible and this implies that the
statistics of these loops are governed by the usual braiding group By. Besides braiding,

It is very straightforward to write down 3 + 1D topological quantum field theories describing these
linking processes. Any BF-type theory has Aharonov-Bohm type braiding, abelian three-loop braiding
exist in A A A A dA twisted theories, non-abelian three-string braiding and abelian four-string braiding in
A* twisted theories, more complicated processes with one particle and two strings are given by AA AA B
twists. The discussing of these theories has not been included in this thesis as many related results were
published by other authors before completion.
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*
Figure 1.5: Linked string configuration with strings of type a, b, c, ... threaded by a string
of type X.

we can also fuse the strings a ® x b, with the base loop X present, similar to 2 4+ 1D. This
implies that for this type of linked excitations we can associate fusion spaces Vx(a,b,...)
and inherit the algebraic structure from 2 4+ 1D such as Fx and Rx-symbols and topolog-
ical spins 6,.x [75]. Note that the reference to the base loop X is crucial as which MTC
describing the braiding and fusion of the strings a,b,c,... can depend on X. This all
says that the category theory describing 3 4+ 1D topological order C*”, must have many
non-trivial MTCs C?” ”embedded” within it.

In chapter 4, using the universal wavefunction overlaps proposed in chapter 2, we
extract representations of the mapping class group of the three-torus, MCG(T3) = SL(3,Z),
from ground state wavefunctions of gapped quantum liquids. We show that these universal
quantities can be used to extract the following dimensional reduction of topological orders

P =P’ (1.29)
X

where the sum is over string types. Here C% is the MTC that describes the fusion and
braiding of strings a, b, c,... while penetrated by a base loop X. Such a linked-braiding
process is called three-string braiding.

This type of linked-braiding process is one of many possible in 3 + 1D, where many
cannot be described using dimensional reduction techniques. The construction of the
proper (higher) category C3” which provides a complete description of 3 + 1D topological
orders is an active research direction.

1.4.4 Bosonic vs Fermionic Locality

The notion of "locality” and "local operators” has been crucial for most of the discussion
above, but there is an important subtlety we need to point out. We usually think of our
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full Hilbert space as having a tensor product decomposition H = ), H; where H,; is a
Hilbert space for the degree of freedom located at i. Usually we think of a local operator
as only having support on a small connected region and commute with local operators
that have support far away. However, this excludes fermionic operators which do not
commute but rather anti-commute at long-separations and in this sense seem non-local.
When defining gapped quantum systems, topological type etc. it is therefore important to
distinguish between bosonic and fermionic locality. In a system with fundamental bosonic
degrees of freedom, like spin systems, we will only allow bosonic local operators and call the
corresponding topological system for bosonic topological order. While in a fermionic
system, like an electronic system, where the fundamental fermion appears in the spectrum
we can allow fermionic local operators as we want to consider a local electron to be a trivial
particle. These types of topological systems are called fermionic topological order.

Note that in a bosonic system we can have emergent fermions, but these are topological
excitations and do not change the nature of locality. However in fermionic systems we can
have a scenario where the local fermionic excitations are confined at low energies, and
thus bosonic locality emerges. Fractional Quantum Hall systems are fermionic topological
orders. S-wave superconductors correspond to Higgsing a U(1) gauge theory to a Z, gauge
theory since the Higgs field, the cooper pair, has charge 2. So despite originating from
fundamental fermionic degrees of freedom, superconductors are topologically ordered with
emergent bosonic locality [70]. Another example is the large U limit of the Hubbard model,
which is a fermionic theory, which can lead to gapped spin liquids with bosonic topological
order [77].

In the discussion above (and most of this thesis), we will be working with bosonic topo-
logical order. However, in chapter 7 this distinction of locality is crucial as we argue that
interfaces of different types of locality must be studied as they are relevant for experimental
scenarios.

1.5 Boundary Physics

Having discussed the ground states and bulk excitations of systems with topological order,
we will now discuss interesting universal features of the boundary physics. From very early
on it was realized that Integer Quantum Hall systems (a fermionic invertible topological
order in our nomenclature) posses quantized gapless edge modes that are completely pro-
tected against local perturbations [78]. Tt was later realized that Fractional Quantum Hall
systems have similar properties, with boundaries forming chiral Luttinger liquids [79, 80]
and the universal boundary dynamics in general described by chiral Wess-Zumino-Witten
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theories. The boundary physics has also been central in the experimental studies of FQHE.
It is now understood that boundaries of gapped quantum liquids are much richer yet and
even useful for classifying topological orders in different dimensions.

Let us first define different types of boundaries. If we put a stable gapped quantum
liquid H on a manifold with boundary M, we have to specify boundary conditions BC
on OM. If the gapped quantum liquid remains gapped on a manifold with the boundary
condition BC, we will say that the pair (H,BC) has a gapped boundary, otherwise we
say it has a gapless boundary. If a gapless boundary remains gapless for any local
perturbation near the boundary, we say that the gapped quantum liquid H has protected
gapless boundaries, otherwise its boundary is gappable. For a system with gappable
boundary, we can define gapped boundary phases as we did above but only allow for
perturbations near the boundary (such that the bulk remains in the same phase).

1.5.1 Chiral and Invertible Topological Order

First we will discuss chiral topological order, which was the first class of systems found
and includes Fractional Quantum Hall systems. As discussed above there is another uni-
versal quantity hidden in the ground state, the chiral central charge c_. Systems with
c¢_ # 0 have chiral gapless boundary modes which are protected due to their chiral nature
and will generically break time-reversal symmetry. Physically these systems have a thermal
Hall effect, with the thermal conductivity [$1]

k3T
6 Y

Ky = C_ (1.30)
which transports energy between boundaries. The lack of energy-conservation on the
boundaries are captured by (perturbative) gravitational anomalies which are directly re-

lated to c_
Cr, — CRr

T, = *OLR 1.31
v 967]' 6] k 9 ( )
where c_ = ¢, — cp is the difference between the left and right central charges and R is the

Ricci scalar. Here the anomaly is with respect to small diffeomorphisms, which gives rise
to convervation of the boundary energy-momentum tensor (had there been no anomaly).
The bulk however also has an anomaly described by the gravitational Chern-Simons term
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which cancels the boundary anomaly through the usual Callan-Harvey inflow mechanism
[82]. This is a consequence of the descent relations of anomalies in different dimensions
[83]. Thus the universal number c¢_ says that the system has a thermal (”gravitational”)
version of the usual quantum Hall effect.

Systems with integer and fractional quantum Hall effect usually have charge conser-
vation (when considering both bulk and boundary), due to global U(1) symmetry, and
usually thought of in terms of the Hall conductivity. But if we perturb these systems
with charge non-conserving perturbations while preserving the bulk gap, like proximity
coupling to a superconductor, does the Hall effect survive? Due to the universality of the
chiral central charge, the answer is yes, even without charge conservation the thermal Hall
transport remains protected. And while the statistics of the bulk anyons are protected,
the fractional electric charge they carry is not under these perturbations.

It was shown in [50] that the chiral central charge only depends on the ground state
and for a local lattice Hamiltonian H = ), H;, a formula was derived

=SS S (1.33)

i€A jEB keC

where h;j; is related to thermal-averages of the commutators [H;, H;|. Interestingly this
implies that any Hamiltonian which is a sum of commuting terms must have c_ = 0, this
includes most exactly solvable models for topological order [69, 81].

Note that if we stack a chiral topological order with its time-reversed version, we will
have modes with both chiralities on the boundary. Now it is possible to write interaction
terms near the boundary that couples these modes and potentially gap them out, turn the
system into a non-chiral topological order. Actually this construction gives rise to a large
class of non-chiral topological systems often called doubled topological order. There
are however a subset of chiral topological orders where doubling will turn the system to
a trivial gapped system. These are called invertible topological order. This means
that systems with invertible topological order, have no anyonic excitations in the bulk but
do have protected gapless boundary modes. For bosonic topological order it turns out
that these systems have chiral central charges given by c. = 8k, k£ € N. Interestingly
the derivation of this result, is closely related to lattices used in the compactification of
Heterotic string theory [85, 86, 87]. This implies if one knows everything about the bulk
excitations, essentially the related modular tensor category, one will only know ¢ mod 8
as we can always stack the system with a invertible topological system without changing
the bulk statistics. This explains equation (1.23). The simplest of these is called the Fg-
state, which can be formulated as an abelian Chern-Simons theiry where the K-matrix is
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the cartan matrix of the Fg Lie algebra. The boundary of this system is described by a
Wess-Zumino-Witten theory with a (Es); affine Kac-Moody algebra.

1.5.2 Non-Chiral Topological Order and Gappable Boundaries

The topological orders in 2+1D with ¢ = 0 are called non-chiral topological orders
and those with gapped boundary conditions (in any dimension) are called topological orders
with gappable boundary. One natural question is whether there is anything universal
in the boundary physics of non-chiral topological orders now the only universal boundary
quantity mentioned so far is ¢ = 0. The answer yes, but the universal features are more
subtle.

In 241D it turns out that the number of different possible gapped boundary phases
for a non-chiral topological order is universal and completely determined by the statistics
of bulk anyons. Using different methods [88, 89, 90, 91], it has been shown that there is
a gapped boundary phase for each lagrangian subgroup. A lagrangian subgroups is a
subset of anyons M C A where all anyons in M are bosons, they all have trivial mutual
statistics among each other and for any anyon outside a ¢ M there is at least a b € M
such that a and b have non-trivial mutual statistics. The lagrangian subgroups represent
maximal number of bulk bosons that can consistently condense on the boundary to form
a gapped boundary phase. Perhaps surprisingly, there exists non-chiral topological orders
with no lagrangian subgroups and thus protected gapless boundaries without chirality.

There is a different way to understand how such a thing is possible. Imagine the
boundary is gapless and fine-tuned to be a conformal field theory (CFT), with equal number
of right moving and left moving modes (non-chiral). It turns out that the boundary primary
fields are labeled by the bulk anyons [61, 62]. In order to gap out the boundary, we need
to couple the right moving and left moving modes. But in order to couple these modes
consistently and be able to gap out a CF'T it must be modular invariant. If it is not possible
to couple the left and right moving modes such that the CFT partition function becomes
modular invariant, it will be impossible to gap out the boundary modes. Whereas in the
c_ # 0 case we had a perturbative gravitational anomaly, related to small diffeomorphisms,
the lack of modular invariance can be thought of as a global gravitational anomaly.
In other words, the theory is not invariant under large diffeomorphisms (the mapping class
group). Such CFTs are usually not considered well-defined and cannot exists in 1+ 1D and
cannot be regularized on a lattice, but they can consistently be realized, and regularized,
on the boundary of a 2 4+ 1D system.

Another very subtle universal features of 2 + 1D systems with gappable boundaries, is
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the relation between anyonic symmetries of the bulk and Kramers- Wannier du-
alites on the boundary. Anyonic symmetries are a subgroups of the permutations of bulk
anyons that preserves all statistics and fusions rules. It turns out that these symmetries
of the bulk system, give rise to Kramers-Wannier dualities on the boundary constraining
the global structures of the boundary phase diagram. In chapter 5 we see evidence of this
in case of Zy topological order, by studying boundary dynamics and entanglement spec-
trum of the ground state. We also find more non-trivial bulk-boundary relations, such as
conformal defects on the boundary emerging from bulk topological physics, giving rise to
interesting spectra of boundary primary fields. In chapter 7, we argue for the physical rel-
evance of a subtle generalization of lagrangian subgroups for bosonic topological systems.
With this generalizations, the Z, topological order gets an enhanced effective anyonic sym-
metry group giving rise to non-abelian Kramers-Wannier dualities on the boundary. The
boundary theory turns out to have very interesting features including lines of criticality
described by orbifold CFTs and fine-tuned points with unusual symmetries, like extended
supersymmetry. This relation between bulk and boundary physics will be studied further,
and in higher dimensions, in [92].

We already discussed that chiral and non-chiral topological orders with protected gap-
less boundaries, are protected due to gravitational anomalies. These theories can only
consistently exist on the boundary of a higher dimensional system. One could ask, do the
gapped boundary phases also have some anomalous feature? The answer turns out to be
yes. There exists anomalous topological orders which cannot be realized by a local bosonic
lattice model, but can be realized as a gapped boundary of a higher dimensional topological
order. It is believed that anomaly-free topological orders satisfy the principle of remote
detectability, meaning that every excitation can be detected via some remote operation
(i.e. by braiding). In section 1.4.1 we discussed fusion and fusion spaces, but if we had not
assumed commutative fusion rules we would have gotten a unitary fusion category,
which classifies the anomalous topological orders in 1+ 1D. This is because particles
in 14 1D cannot braid and cannot detect each other. Actually it turns out that there are
no non-anomalous bosonic topological orders in 1+ 1D. See more details in [93, 94, 95].

Thus the different gapped boundaries that are classified by lagrangian subgroups cor-
respond to different anomalous topological orders.

Boundaries of 3 + 1D topological orders can be more complicated, as there are both
anomalous and anomaly-free 2 + 1D topological orders and in general there can be an
infinite number different gapped boundary phases. It turns out that there are a finite
number of (anomalous) gapped boundaries if we mod out with anomaly-free topological
orders and these are classified by a generalization of lagrangian subgroups. We are studying
this in more detail in an ongoing work [96].
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There are many topics and many very interesting details that we were not able to cover
in this review of topological order, as this brief introduction is already too long. Despite
the technical nature of this introduction to topological order, we hope it gives the reader
enough context and background for the contributions of this thesis.

1.6 Overview of this thesis

Each chapter of this thesis is based on separate pieces of work where all except one has
been published in peer reviewed journals. The chapters has been kept as much as possible
close to the original published work. Therefore each chapter is largely self-containted, have
its own introduction and conclusion, and can in principle be read without reading other
chapters.

In chapter 2 we propose a way, called Universal Wave Function QOverlap, to extract
universal topological data from generic ground states of gapped systems in any dimen-
sions. Those extracted topological data should fully characterize the topological orders
with gapped or gapless boundary. For non-chiral topological orders in 2+ 1D, this universal
topological data consist of two matrices, S and T, which generate a projective representa-
tion of SL(2,Z) on the degenerate ground state Hilbert space on a torus. For topological
orders with gapped boundary in higher dimensions, this data constitutes a projective rep-
resentation of the mapping class group MCG(M9) of closed spatial manifold M?. For a
set of simple models and perturbations in two dimensions, we show that these quantities
are protected to all orders in perturbation theory. We also propose a simple and effective
numerical algorithm to compute these quantities using intrinsic gauge structure of local
tensors in a Projected Entangled Pair States (PEPS) tensor network.

Based on the proposal in chapter 2, in chapter 3 we introduce a systematic numerical
method based on tensor networks to calculate modular S and T" matrices in 241D systems,
which might fully identify topological order with gapped edges. Moreover, it is shown
numerically that modular matrices, including S and T matrices, are robust characterization
to describe phase transitions between topologically ordered states and trivial states, which
can work as topological order parameters. This method only requires local information
of one ground state in the form of a tensor network, and directly provides the universal
data (S and T matrices), without any non-universal contributions. Furthermore it is
generalizable to higher dimensions. Unlike calculating topological entanglement entropy
by extrapolating, which numerical complexity is exponentially high, this method extracts a
much more complete set of topological data (modular matrices) with much lower numerical
cost.
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I chapter 2 we conjectured that a certain set of universal topological quantities char-
acterize topological order in any dimension. Those quantities can be extracted from the
universal overlap of the ground state wave functions. For systems with gapped bound-
aries, these quantities are representations of the mapping class group MCG(M ) of the space
manifold M on which the systems lives. In chapter 4 we consider simple examples in 3 + 1
dimensions and give physical interpretation of these quantities, related to fusion algebra
and statistics of particle and string excitations. In particular, we will consider dimensional
reduction from 341D to 2+1D, and show how the induced 241D topological data contains
information on the fusion and the braiding of non-Abelian string excitations in 3D. These
universal quantities generalize the well-known modular S and 7" matrices to any dimension.

In a system with chiral topological order, there is a remarkable correspondence between
the edge and entanglement spectra: the low-energy spectrum of the system in the presence
of a physical edge coincides with the lowest part of the entanglement spectrum (ES) across a
virtual cut of the system, up to rescaling and shifting. In chapter 5, we explore whether the
edge-ES correspondence extends to nonchiral topological phases. Specifically, we consider
the Wen-plaquette model which has Z, topological order. The unperturbed model displays
an exact correspondence: both the edge and entanglement spectra within each topological
sector a(a = 1,...,4) are flat and equally degenerate. Here, we show, through a detailed
microscopic calculation, that in the presence of generic local perturbations: (i) the effective
degrees of freedom for both the physical edge and the entanglement cut consist of a spin-
1/2 chain, with effective Hamiltonians Hg,,, and H, , respectively, both of which have
a Zy symmetry enforced by the bulk topological order; (ii) there is in general no match
between their low energy spectra, that is, there is no edge-ES correspondence. However,
if supplement the Z, topological order with a global symmetry (translational invariance
along the edge/cut), i.e. by considering the Wen-plaquette model as a symmetry enriched
topological phase (SET), then there is a finite domain in Hamiltonian space in which
both Hgy,. and Hg, realize the critical Ising model, whose low-energy effective theory is
the ¢ = 1/2 Ising CFT. This is achieved because the presence of the global symmetry
implies that both Hamiltonians, in addition to being Z; symmetric, are Kramers-Wannier
self-dual. Thus, the bulk topological order and the global translational symmetry of the
Wen-plaquette model as a SET imply an edge-ES correspondence at least in some finite
domain in Hamiltonian space.

It is well known that the bulk physics of a topological phase constrains its possible
edge physics through the bulk-edge correspondence. Therefore, the different types of edge
theories that a topological phase can host constitute a universal piece of data which can
be used to characterize topological order. In chapter 6, we argue that, beginning from
only the fixed-point wave function (FPW) of a nonchiral topological phase and by locally
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deforming it, all possible edge theories can be extracted from its entanglement Hamiltonian
(EH). We give a general argument, and concretely illustrate our claim by deforming the
FPW of the Wen-plaquette model, the quantum double of Z,. In that case, we show that
the possible EHs of the deformed FPW reflect the known possible types of edge theories,
which are generically gapped, but gapless if translational symmetry is preserved. We stress
that our results do not require an underlying Hamiltonian and thus, this lends support to
the notion that a topological phase is indeed characterized by only a set of quantum states
and can be studied through its FPWs.

In chapter 7 we introduce the notion of fermionic gapped edges, a new kind of topological
gapped boundary theory of a bosonic abelian topological state. These gapped edges exist
naturally if the bosonic topological order is emergent from original, local fermionic degrees
of freedom, so that domain walls between the bosonic topological state and a fermionic
vacuum (such as a trivial band insulator) must be considered. Using the framework of La-
grangian subgroups of [89] and [90, 91], we argue that the condition that the self-statistics
of quasiparticles in a Lagrangian subgroup to be self-bosons should be removed. Physically,
this implies that quasiparticles which are self-fermions can possibly condense on the bound-
ary, leading to these fermionic gapped edges. We illustrate the presence of such a fermionic
gapped edge in a system with bosonic Z, topological order, and explicitly construct a mi-
croscopic model, the Z, Wen-plaquette model coupled to an array of Majorana fermions
(which can be considered as the ferminonic vacuum). We explore the rich phase diagram
of the edge theory of this model, which can be mapped to a variant of the Ashkin-Teller
model, and show that there are critical lines of ¢ = 1 Zs-orbifold boson CFTs separating
the three gapped phases, including critical points with exotic symmetries such as twisted
N = 2 supersymmetry. We also see that the notion of fermionic gapped edge leads to an
enhancement of the anyonic symmetries, as far as boundary physics is concerned, giving
rise to non-abelian Kramers-Wannier Dualities on the boundary, constraining the structure
of the boundary phase diagram.
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Chapter 2

Universal Wave Function Overlap
and Universal Topological Data from
Generic Gapped Ground States

This chapter was published in [1].

2.1 Introduction

Since the discovery the fractional quantum Hall effect (FQHE)[17, 18] and theoretical
study of chiral spin liquids, [97, 98] it has been known that new kind of orders beyond
Landau symmetry breaking orders exist for gapped states of matter, called topological
order. [99, | Topological order can be thought of as the set of universal properties of a
gapped system, such as (a) the topology-dependent ground state degeneracy [99, 100] and
(b) the non-Abelian geometric phases S and T of the degenerate ground states [19, :

], which are robust against any local perturbations that can break any symmetries. [100]
This is just like superfluid order which can be thought of as the set of universal properties:
zero-viscosity and quantized vorticity, that are robust against any local perturbations that
preserve the U(1) symmetry. It was proposed that the non-abelian geometric phases of the
degenerate ground states on the torus classify 241D topological orders. [19]

Interestingly, it turns out that non-trivial topological order is related to long-range
quantum entanglement of the ground state [24]. These long-range patterns of entanglement
are responsible for the interesting physics, such as quasiparticle excitations with exotic

30



statistics, completely robust edge states, as well as the universal ground state degeneracy
and non-Abelian geometric phases mentioned above.

Our current understanding is that topological order in 2+1 dimensions is characterized
by a unitary modular tensor category (UMTC) which encode particle statistics and gives
rise to representations of the Braid group, [103] and the chiral central charge ¢_ which
encode information about chiral gapless edge states [104, 105].

While the algebraic theory of 241D topological order is largely understood, it is natural
to ask whether it is possible to extract topological data from a generic non-fixed point
ground state.! Omne such proposal has been through using the non-Abelian geometric
phase S and T' [19, , , , , , 15]. Another is using the entanglement entropy
[34, 35] which has the generic form in 241 dimensions S = aL — v + O(7), where ~
is the topological entanglement entropy (TEE). It turns out that v = logD, where D
is the total quantum dimension and thus a universal topological property of the gapped
phase. A generalization of TEE to higher dimensions was proposed in [11]. A TQFT in
the continuum limit, such as a Chern-Simons theory, captures the pure universal physics
and therefore S = —~, while for a generic dynamical theory non-universal contributions
are non-zero. The topological entanglement entropy, however, only captures a small piece
of the data needed to characterize the topological order of a ground state. The question
is, can we from a non-fixed point ground state extract more data that could characterize
the underlying TQFT more fully?

Here, we would like to propose a simple way to extract data from non-fixed point ground
states, that could potentially fully characterize the underlying TQFT. We conjecture that
for a system on a d-dimensional manifold M9 of volume V with the set of degenerate
ground states {|to)}Y_,, the overlaps of the degenerate ground states have the following
form [109, 91]

($alOaltpp) = e VOV M2, (2.1)

where Oy, labeled by index A, are transformations of the wave functions induced by the
automorphism transformations of the space M% — M?, « is a non-universal constant, and
M* is an universal unitary matrix (upto an overall U(1) phase). M# form a projective
representation of the automorphism group of the space M9 — AMG(M?), which is robust
against any perturbations. We propose that such projective representations for different
space topologies are universal topological data and that they might fully characterize topo-
logical orders with finite ground state degemeracy. The disconnected components of the
automorphism group is the mapping class group: MCG(M?) = 7o[AMG(M?)]. We propose

Here, generic non-fixed point ground states refers to ground states of any generic gapped Hamiltonian,
not necessarily ideal fixed point Hamiltonians with special properties.
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that projective representations of the mapping class group for different space topologies
are universal topological data and that they might fully characterize topological orders with
gapped boundary. (For a more general and a more detailed discussion, see Ref. [91].) For
some more intuition behind our conjecture, we refer to the supplemental material.

For a 2D torus T2 the mapping class group MCG(T?) = SL(2,Z) is generated by a 90°
rotation S and a Dehn twist 7. The corresponding M4 are the unitary matrices S, T
which generate a projective representation of SL(2,Z). Compared to the proposal in Ref.
[19, , ], here we do not need to calculate the geometric phase for a family of ground
states and only have to consider a much simpler calculation — a particular overlap (with
the cost of a non-universal contribution with volume scaling). We will calculate this for
the simple example of Zy topological state studied in Refs. [110, , , , ] and
investigate the universality of this under perturbations such as adding string tension.

We note that a UMTC that describe the statistics of the excitations in 2+ 1D, can also
gives rise to a projective representation of SL(2,Z). We propose that the universal wave
function overlap eqn. (2.1) computes this projective representation. The representation is
generated by two elements S and T satisfying the relations

2mi

(ST =es-C, S?=0C, (2.2)

where C'is a so- called charge conjugation matrix and satisfy C? = 1. Furthermore we have
that & 52 a d*0, = e e- , where d, and 6, are the quantum dimension and topological spin
of qua&partmle a, respectlvely. This shows that the UMTC, or particle statistics, fixes the
chiral central charge mod 8. ? This constitutes a projective representation of SL(2,Z) on
the groundstate subspace on a torus, which encode how the groundstates transform under
large automorphisms MCG(7?). We believe that our higher dimensional universal quantities
(2.1) also encode information about the topological order in the ground state.

2The ambiguity of c_ can be understood by the existence of the so-called Eg state, which can be
realized by a Chern-Simons theory where the K matrix is the Cartan matrix of Eg. This theory has only
trivial bulk excitations since det K = 1 but boundary theory given by the affine Lie algebra (Fs)1, which
has ¢ = 8. Thus there is always the ambiguity of adding a Fgs state to a topological order without
changing the bulk excitations, but shifting the chiral central charge by 8. The chiral central charge is
related to perturbative gravitational anomalies on the edge, which signals lack of energy conservation,
or a gravitational parity anomaly from the bulk perspective. Physically, this corresponds to a thermal
Hall effect by the Callan-Harvey inflow mechanism [32] and is a consequence of the descent relations of
anomalies in different dimensions. Note that in the case ¢ = 0, the edge states are not chiral but they
can however still be completely robust. [89] This is related to global gravitational anomalies, ie modular
anomaly on the edge.
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2.2 Construction of degenerate set of ground states
from local tensor networks

Since topological order exist even on topologically trivial manifolds, all its properties should
be available from a local wave function. But we need to sharpen what we mean by a local
wave functions, since wave functions typically depend on global data such as boundary
conditions. Amazingly, there exist a surprisingly simple local representation of globally
entangled states using tensor network language. In particular, a tensor network state
(TNS) known as PEPS, is given by associating a tensor Tyi](aﬂ'y. .. ) to each site i, where
o; is a physical index associated to the local Hilbert space, and «, 3, are inner indices
and connect to each other to form a graph. Using this representation, the wave function
is given by

|y = ZtTr (T(E]T(z ) o, 00,0, (2.3)

{oi}

where tTr(...) contracts the tensor indices in the tensor product network. By choosing
the dimension of the inner indices large enough, one can approximate any state arbitrarily
well. This particular representation is especially interesting for the study of gapped states
since it automatically satisfies the area law, a property gapped ground states are known to
have [115, ]. One can think of TNS as parametrization of the interesting sub-manifold
of the Hilbert space, where ground states of local gapped Hamiltonians live.

Local tensor representation of wave functions is however not enough, it must be equipped
with a gauge structure [117]. Surprisingly, local variations of a tensor do not always cor-
respond to local perturbations of the Hamiltonian and can change the global topological
order. In order to approximate the ground state of a Hamiltonian with topological order
with gauge group G, it is important to search within the set of variational tensors with
symmetry GG. Arbitrarily small G breaking variations, might lead to tensor networks which
can approximate local properties of a system well but give wrong predictions about the
global properties.

In [118] a few concepts were introduced to characterize the symmetry structure of a
TNS. In particular dspace-IGG, which is the group of intrinsically dgpace-dimensional gauge
transformations on the inner indices that leave the tensors invariant. It was in particular
shown that in the case of the two-dimensional Z, topological state we have 2-1GG = Z,.
Furthermore it was shown that 2-IGG contains information about string operators and
can be used to construct the full set of degenerate ground states on the torus from a local

tensor representation. 3

3A related concept for a finite group G, is G-injective PEPS [119]. A G-injective tensor is a tensor
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The point of this discussion is the following. Imagine one is interested in probing
whether a 2D local gapped Hamiltonian has topological order described by gauge group G.
It is then important to search within the set of variational tensors with 2-IGG= G and keep
this symmetry intact during all variations and along renormalization group flows. This is
a necessary symmetry condition to probe the topological order [117]. If the ground state of
the system has topological order with gauge group G, how can we find out which kind of
topological order it has? For example, for G = Z, there are two theories with topological
order, the universality classes corresponding to the Z, toric code and the double semion
model.

This can be decided if one knows the corresponding modular S and 7" matrices. First
one can construct the set of ground states on a torus from the local tensor, by exploiting
its gauge structure as in [118]. Now one can extract the S and T matrices by considering
the overlaps (2.1). This will also fix the chiral central charge ¢_, modulo 8.

Thus the local data we need is = local tensor + gauge structure. From this gauge
structure we can twist the tensor to get the full set of ground states on a torus [118,
]. We shall call the natural basis we get from such a procedure for twist basis.

Y

We will in the following consider the Zy topological state. We can construct a local
tensor for this state in the following way. Let the physical spins live on the links of the

lattice, and give each link an orientation as in figure 2.1(b). Put a tensor Té%?”sg“) on
each site and require that
TS99 =1 if f+y—a—8=0 mod N, (2.4)

: (01020304)
otherwise T 5. 5

2.1(c))

= 0. This tensor has a Zy symmetry given by the tensors (see figure

B B

SO = duge ™, — Goge RO, (2.5)

which is invariant under a G-action on all inner indices simultaneously, together with the property that
one can achieve any action on the virtual indices by acting on the physical indices. It was shown that these
tensors are ground states of a parent Hamiltonian with TEE v = log|G|. This class of PEPS describe
the universality class of quantum double models D(G). Recently this was generalized to (G, w)-injective
PEPS [120], where the action of G is twisted by a 3-cocycle of w of G. It was shown that these PEPS
describes topological order in the university class of Dijkgraaf-Witten TQFT’s [121] and only depend on
the cohomology class [w] € H3(G,U(1)) of w.
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Figure 2.1: (a) Lattice under consideration, with the spins living on the links. (b) Tensor
network for Zy gauge theory. The lattice is chosen with the orientation shown. The tensors
live on the lattice sites and the dots represent the physics indices. (¢) Symmetry of the Zy
tensor.

2.3 Zy Topological Order

Equipped with the ground states of from local tensors, one can calculate the overlap (2.1)
to extract the universal topological properties.

As a simple example, let us calculate the overlap (2.1) for the case of Zy topological
state on the lattice in figure 2.1(a). For this simple example we will not use tensor product
representation for simplicity, since it can be calculated directly. See [2] for calculation of
(2.1) using tensor network and gauge structure.

Let there be a local Hilbert space H, ~ C[Zy] ~ C¥ associated to each link a € 2 with

basis {|o,)}2 L.

We will represent a spin configuration |o,,0,,...) using a string picture, where the
state on link a € 2 is represented by an oriented string of type o, € Zy with a chosen
orientation, and |0) corresponds to no string. There is a natural isomorphism H, — He-
for link a and its reversed orientation a* by |o,) V> |04«) = | — 04).

The ground state Hilbert space of the Zx topological order consists of an equal super-
position of all closed-string configurations that satisfy the Zy fusion rules.

The string-net ground state Hilbert space on T can be algebraically constructed in the
following way. Let A’ denote the set of triangular plaquettes and for each p € A’ define
the string operator BpA which act on the links bounding p, with clockwise orientation, by
|o) — |o+1 mod N). The set of all contractable closed loop configurations can be thought

35



of as the freely generated group Gpee = <{BA}p€A* >, modulo the relations (BPA)N ~ 1,
HPGA* B> ~ 1 and BSBS ~ BB, denoted as G = Giee/ ~. Similarly we let the

subgroup G C G% correspond to closed loop configurations on the square lattice links.
For the ground states on the torus, we need to introduce two new operators W, and
W,, corresponding to non-contractable loops along the two cycles of T?. These satisfy
(W)Y =1, = z,y. With these, we can construct the group GZB , corresponding to closed
string configurations with («, ) windings around the cycle (z,y), modulo N. Similarly,
let G be the group of all possible closed string configurations on the torus. These states

are orthonormal (gas|953) = 0gas.g.5-

The N2-dimensional ground state Hilbert space is then spanned by the following vectors

la, B) = |GXP|1/2 2 gupecer |9ap), where a, = 0,..., N—1. The construction can trivially

be extended to higher-genus surfaces.

This is the string-net basis for the Zy gauge theory. The ground states in the twist
basis corresponding to the tensor (2.4), are just the eigenbasis the operators W, and W,.
These are given by

[Pab) = Zv“‘”ﬂ” D9 gy, (2.6)

v QGGA

where v = e ~% and w; count how many times the string configuration g wraps around

the i'th cycle. Note that W |tw) = €% %the) and W, |the) = e 3 °|the). For later use,
note that |[G%| = N1 = N2E2-1 Gef| — NIASI- 12 = NP1 |Ga| = NG| and

|G| = N?|GYY).

2.3.1 Modular S and T-matrix from the ground state

We can now define two non-local operators on our Hilbert space Os,0r - H — H as in fig-
ure 2.2, mimicking the generators of the torus mapping class group in the continuum. Here
Os maps any spin configuration, to the 90 degree rotated configuration. Oy corresponds
to shear transformation and is defined as in figure 2.2. It is clear that since we are on the
lattice, these operators will not preserve the subspace of closed string configurations.

We can easily calculate the matrix elements of Or and Og between ground states. In
both cases, only |Gp| configurations have a non-zero overlap with the un-deformed ground
state. For the S transformation we find the overlap

<wab|(95’|¢ab> b5b a = Sab,dge_log(N)L2v (27)



Figure 2.2: Definition of S and T' transformations. The S transformation corresponds to
rotating configurations 90 degrees, while T' corresponds to a shear transformation. Note
that this transformation does not leave the space of closed loop configurations invariant.

where we have defined the modular S matrix Sy, 55 = 0, 50,—a. Similarly we have (ap|Or|tbas) =

Tab@,;e*log(N)Lz, where the modular 7" matrix is given by Ty, 25 = 04152055 One can readily
check that these satisfy eq. (2.2) with c. = 0 mod 8 and C\;, ;5 = dq,—ad_pp. Thus this
forms a projective representation of the modular group SL(2,Z).

In order to use Verlinde’s formula and generate the relevant UMTC, we need to put the
modular matrices in the quasi-particle basis*. This is done as follows, for the Zy theory
there are non-contractable magnetic operators on the dual lattice satisfying (I';)" = 1, and
with the commutation relations W,I', = e_%Fny and W,I', = e_%F;EWy. The basis
we are after corresponds to having a well-defined magnetic and electric flux through one
direction of the torus. In the eigenbasis of W, and I'y, |¢y.n), we find

1 27 = = 271
_ — =7 (mn+nm _ N mn
Smn,ﬁzﬁ = —=e N ( ) Tmn,ﬁzﬁ - 5m,r_n6n,ﬁe N ) (28)

N )

the well-known modular matrices for the Z model.

2.3.2 Perturbed Zy model

We will now consider a local perturbation to the Zy topological state. One interesting
perturbation is to add a magnetic field of the form 2>, (Z, + Z1), where Z, is a local
operator defined as Z,|o,) = ¢ 3 %|o,) ®. This perturbation breaks the exact solvability of
the model, but essentially corresponds to introducing string tension to each closed string

4In general we do not have a gauge theory and need another way to find the modular matrices in the
right basis. One way is to find a basis which satisfy certain special properties. In [122] it was shown for
several examples, that this basis is unique and leads to the right form of S and T.

5See [113] for analysis of models of this type.
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Figure 2.3: In the string-net basis, a modular S transformation flips the topological
sectors (a, 3) — (B,—a mod N), while a T transformation has the effect (o, ) —
(o, + B mod N).

configuration. This can be implemented by local deformation of the ground states of the

form
1

|Yab) 4 THO 2Dt g) (2.9)

| A|g€GA

[1 — cos(%Fo,)], which is

where A is a variational parameter. Furthermore L(g) = > ¢ ~

just the total string length for N = 2.

1
2

Performing a S transformation, we find the overlap

(b Osthgs) 4 Gl - Z ylb—ela-(+a)5 Z AE (2.10)

geG

If we view strings as domain walls of a Zy clock model on square lattice described by the
following Hamiltonian H = Z<Z.j> % [1 — oS (%’[Ui — aj])} ,0,0;=0,1,--- N —1, we find
that NdeGoDo AE9) = Z{Ul} e P can be viewed as the partition function of the Zy

clock model, where § = log(A). In the appendix below we show that in the disordered
phase of the Zy clock model,

Z(B) = Z e~ BH _ L?log(N)—f(B)L*+o(L™1) (2.11)
{oi}
to all orders in perturbation theory in [, where f(f) is a function of 5 only. Since

N deGaB A£9) can be viewed as the partition function of the Zy clock model with
O
twisted boundary condition, we find that

log ——25°0 < hLe Ve, (2.12)
NZQGGOO A
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where h and & are L independent constants. This is because the total free energies of the
Zy clock model with twisted and untwisted boundary condition can only differ by hLe /¢
at most. Putting everything together, we find that

A<wab’@S|w&E>A = Sab,al’;ei[log N+FBUA (L) (2.13)

The universal quantity, Sy, 5 is protected, to all orders in 3.

2.4 3D Topological States and SL(3,2)

According to our conjecture (2.1) there are similar universal quantities in higher dimensions
and it would be interesting to consider a simple example in three dimensions. For example,
the mapping class group of the 3-torus is MCG(7®) = SL(3,Z). This group is generated by

. /(010 . (100
two elements of the form [123] S= [0 0 1| and 7T = (1 1 0 |. These matrices act
1 00 0 01

on the unit vectors by S:(&,9,2)— (2,2,9) and similarly T:(2,9,2)— (@+79.9,2).
Thus S corresponds to a rotation, while T is shear transformation in the xy-plane. In the
case of 3D Zy model, we can directly compute these generators in a basis with well-defined

flux in one direction as [3]

& 1 2mi (Ge—ab) T 2ab

Sabc,aEé = N‘Sb,ée N v Topeare = 5a,&5b,55c766 N (2.14)
These matrices contain information about self and mutual statistics of particle and string
excitations above the ground state [3].

In the 2D limit where one direction is taken to be very small, the operator creating
a non-contractable loop along this direction is now essentially local. By such a local
perturbation, one can break the GSD from N3 down to N2. One can directly show that
the generators for an SL(2,Z) C SL(3,Z) subgroup exactly reduce to the 2D S and T'
matrices. [3]

2.5 Conclusion

In this chaper we have conjectured a universal wave function overlap (2.1) for gapped
systems in d dimensions, which give rise to projective representations of the mapping class
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group MCG(M 4), for any manifold M? These quantities contain more information than
the topological entanglement entropies [34, 35, 11], and might characterize the topological
order completely, like in two dimensions [19]. In the paper [2], we numerically study the
overlaps (2.1) for simple two-dimensional models and show that the universal quantities
are very robust against perturbations and unambiguously characterize phase transitions.
In [3] we study the universal quantities (2.1) for three-dimensional systems.
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Appendices

2.A Appendix A: Cumulant Expansion

Consider the following expansion, which only converges in the disordered phase

Z(B) =Y e =exp(log Z(B))

{oi}
Z'(0)
= exp <logZ(O) + 2(0) B
2.15)
L (ZO) 20 g e <
- Gw) T |
=exp | lo NL2+i—(_1)n g
- p g — n| Mn )
where p, is the n’th cumulant of the moment of H. In particular uy = (H)o, o =

(H?)o — (H)2, 3 = (H3)g — 3(H)o(H?)o + 2(H)3 and so on. All averages are evaluated
at f =0, (O) = % > {0,y O- Since the averages are taken in the extreme disordered
limit (infinite temperature), we have (H)y = 2L*(E(0;,0;))n = L?, where each of the 2L?
bonds contribute with the average energy (E(0y,0;))n = 3

More generally, consider the total energy to the n’th power

Z Z Ei (o) ... E; (an), (2.16)

where E;(o) = E(0; — 0i44) = 5 [1 — cos (2—[01- — 0i4a])]. From here we find

n\ 1 n
(H")o Z00) 2
) ‘ (2.17)
2_2<Z +SHE e F +>
} i#] i#j#k

where @ contain all possible terms where all F;(«) are at site ¢, while @ contain all

possible terms where all E;(«) are at ¢ and j, and so on. The first term is given by

> : —ZZ<) x) B (y )E;Mi(n). (2.18)

i
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Similarly, the next two terms are given by

B

S - T Y () MM (2.19)

i1#£12 11712 k=1

and
- 1<k;<n—2
n
POR=cE:Er D SIND SR (RN o
i1F£i0#1g 3 i1#£i27#i3 k1+ka+kz=n
X M, (k1) M, (k2) M, (k3),

where the symbol (k1, kQ,n me) = m is the multinomial coefficient. One can

verify that in general the expectation value takes the form

S LD S S (R

{ iy p=1 Zl?f"'#ip k1+-+kp=n

X Mi1 (kl) .. .Mip(kp)

1 &1 tshin n (2.21)
—O);H Z Z Z (k1>"'vkp)

iy {0}iy,....ip k1t-Fhp=n

> Mil(k:l)] - [ > Mip(k:p)] .

X
0i10i14+20i1+y OipTip+azTipty
The notation {c},, .. ;, stands for the set of o; for all i, except 0, 03, 1, Tir 4y - - - Tiys Tiptas Tipy-
2_ .
This sum is therefore Z (oYiyo 1 = NL°=3_ The other sum can be rewritten as follows

Mw

ZMi(k’) <) ZEq 0 — Oisa) E* (07 — 04y)

0i0i+zx0i+y 0i0i+x0i+ty
_ N3Z ( ) V(BT = NOAA(K).

Here we have defined the link-averages (E%)y = + >_ 4, E7(A) and the second line follows
from changing variables in the o sums. The N? factors together with the fact that Z(0) =

(2.22)
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NE* cancel the N¥°=3? factor. Now, since M(k:) does not depend on the site ¢ any more
we get another factor of Eh#___#p 1 = (L?),, where

(1), - FF(L +1)

iy - P D (D) (2.23)

is the descending Pochhammer symbol. Collecting all this together, we find the following
simplified expression for the total energy moments

(H"o =Y _ Cp(n)(L?),, (2.24)
p=1
with the coefficients

Con) =~ _Z (klnk) M(ky) ... M(k,). (2.25)

K1+ +kp=n

The usefulness of (2.24) comes from the fact that the L? dependence is explicitly factorized.

We note that the total energy moments in equation (2.24) goes as o(L?) in the volume,
and in particular do not contain any constant terms. The cumulants p,, are just sums and
differences of these moments, and are therefore of order o(L?). Thus the cumulants do not
have any constant terms at all.

Furthermore, it is well known from statistical physics that the free energy F(5) =
log Z(f) is an extensive quantity and scales as volume in the thermodynamic limit. This
implies that all the moments also scale as L? and the higher order terms must cancel out
(this can directly be verified for the first few moments using (2.24)). Thus we conclude
that

Z(ﬂ) _ elogNLz—fN(B)LL&-o(L*l)’ (2.26)

in particular there is no constant term to all orders of 5. As a few examples, we can use
(2.24) to calculate
_ pgr ot B 7
FB) = B = o+ o — s o6,
prog gt P 78°

_p_ 2 _ 7 .
fs(B) =5 S 96 512 2048 245760 T o(B"), (227)
B ==y 8 B
4 8 | 768 46080 ‘
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2.B Appendix B: Mapping Class Groups

In this appendix we will give a bit of intuition behind the conjecture in this chapter, based
on eq. (2.1). The discussion will be intuitive, rather than rigorous.

Topological order can be understood as patterns of long-range entanglement of ground
states, which are responsible for the protected physical properties of the systems such as
anyonic quasiparticle statistics and protected chiral edge modes.

Due to the patterns of long-range entanglement, the ground state degeneracy G.SD(M)
on any manifold M, is known to only depend on the topology of M and is completely
robust against any local perturbations that do not induce a phase transition. These states
{ |@/Ja)}gle(M) are locally completely indistinguishable, but globally distinguishable. In
order to distinguish them from each other, non-local operators must be used which usually
are of string, or higher dimensional p-brane type that wrap around non-trivial cycles of

M.

The question is, how can we probe for the universal global pattern of long-range entan-
glement and thereby extract the topological physics?

One way to do this is to study how the ground states (topological sectors) map into
each other under certain non-local transformations of the manifold that act on the global
degrees of freedom.

In order to give some intuition for what we mean, consider a gapped system on a two-
torus M = T?. By transformation on the torus we mean maps f : T2 — T2 which preserve
certain structures, for example we want them to be invertible and continuous. Meaning
that any set of points connected continuously to each other, map to points connected
continuously to each other, but the map, however, can be very non-local (see fig. 2.B.1).
The set of such maps we call AMG(T"?), the group of automorphisms of 72. This is a group
since it contains the identity map id € AMG(T?), defined by id(p) = p € T? and group
multiplication is given by composition of maps.

Note that the group AMG(T?) is not connected; some maps f € AMG(7T?) can be con-
tinuously deformed to the identity map f ~ id, while others cannot (see fig. 2.B.2). The
key thing to note is that, maps that are not continuously connected to the identity act
nontrivially on global degrees of freedom and will map different ground states into each
other.

Let AMG(7?) be the connected component containing the identity map. The object of
interest is therefore the group of all connected components MCG(7?) = AMG(T?)/AMG(T?), =
7o[AMG(T?)], where maps that differ by an element in AMGo(7?) are identified. This group
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Figure 2.B.1: Locally, elements f € AMG(7?) map points to other points in a continuous
fashion. The figure shows an example where points in a small local region is mapped onto
other points, where following some curve (blue dashed line) continuously we get a new
continuous curve. The map has to be continuous like this, globally. Doing this patch by
patch, we can both create elements in AMG(T?), that either can or cannot be continuously
deformed to the identity map.

Figure 2.B.2: Some maps f € AMG(T?) belong to the connected component containing the
identity AMGo(7?) C AMG(T?), Whlle others do not. One way to see the difference, is to
draw some closed loops and see where the loop is mapped to. It is easy to see that for
the map to the left, the image of the curve can be continuously deformed to the original
curve. While for the map to the right this cannot be done, thus the map does not belong
to AMGo(7) but to a non-trivial class in MCG(T?).

is usually called the mapping class group, and in the case of a two-torus one can show that
it is isomorphic to MCG(7T?) ~ SL(2,Z). Thus each element in MCG(7?) corresponds to a
class of globally non-trivial maps, while the identity element corresponds to the class of
maps in AMGo(7?).

Each transformation A € MCG(7?), will induce a transformation of the ground states
tha) = MZ'5ths). The set of matrices M# for all A, form a representation of MCG(T?)
on the ground state subspace, and probes the global patterns of long-range entanglement,
thus contain information about the topological physics of the phase. Naively, these matrix
elements are given by computing the overlaps <wa|(§ 4|s), where O, are very non-local
maps acting on the full Hilbert space and induced by A € MCG(T?).
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However in general the maps O, do not leave the ground state subspace invariant
(unless we have ground-states of ideal TQFT’s), since the ground states contain local non-
universal information (short-range entanglement). Therefore the overlap of O 4|t) with
the ground states (¢, | will be a very small number and the question is: how can we extract

the universal matrices M from the overlaps (1|0 4|1h5)?

This is precisely the content of our conjecture in eq. (2.1). Further justification for this
conjecture will be given in future work.
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Chapter 3

Modular Matrices as Topological
Order Parameter by Gauge
Symmetry Preserved Tensor
Renormalization Approach

This chapter was published in [2]

3.1 Introduction

The most basic question in condensed matter is to classify all different states and phases.
Landau symmetry breaking theory is the first successful step to classify all phases [9, 10, 11].
However, the experimental discovery of Integer Quantum Hall Effect [16] and Fractional
Quantum Hall Effect [17] led condensed matter physics to a new era that goes beyond
Landau theory, in which the most fundamental concept is topological order [99, , ].
Topological order is characterized /defined by a new kind of ”topological order parameter”:

(a) the topology-dependent ground state degeneracy [99, ] and (b) the non-Abelian
geometric phases S and T of the degenerate ground states [124, , ], where both of
them are robust against any local perturbations that can break any symmetries [100]. This

is just like superfluid order being characterized/defined by zero-viscosity and quantized
vorticity that are robust against any local perturbations that preserve the U(1) symmetry.

Recently, it was found that, microscopically, topological order is related to long-range
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entanglement [35, 31]. In fact, we can regard topological order as pattern of long-range

entanglement [2/] defined through local unitary (LU) transformations.[31, 125, 126] Chiral
spin liquids, [97, 98] integral/fractional quantum Hall states [16, 17, 18], Zy spin liquids,
[110, 111, 127] non-Abelian fractional quantum Hall states, [128, 129, 130, 131] are examples

of topologically ordered phases. Topological order and long-range entanglement are truly
new phenomena, which require new mathematical language to describe them. It appears
that tensor category theory [132, 84, 24 , | and simple current algebra [128, ,

, ] (or pattern of zeros [138, , , , , , , , 110]) may be part of
the new mathematical language. For 241D topological orders (with gapped or gappless
edge) that have only Abelian statistics, we find that we can use integer K-matrices to
classify them.[117, , , , , 88]

As proposed in Ref. [124, , 102], the non-Abelian geometric phases of the degenerate
ground states, i.e. the Modular matrices generated by Dehn twist and 90 degree rotation,
are effective "topological order parameters” that can be used to characterize topological
order. Refs. [106, 45, , | makes the first step to calculate numerically modular
matrices using various methods. Actually, the relation of tensor network states (TNS) and
topological order has already been investigated by several papers [152, |. Ref. [154, ,

, | concluded that gauge-symmetry structure of TNS will give rise to information of
topological order. Unlike calculating topological entanglement entropy which in principle
needs to calculate the reduced density matrix with exponentially high computational cost,
extracting topological data through the gauge-symmetry structure of TNS has acceptable
lower cost.

In this chapter, we will give a systematical approach to calculate modular matrices,
using the wave-function overlap method proposed in Ref. [109; 1]. Our approach is based
on TNS and gauge-symmetry preserved tensor renormalization group. Gauge-symmetry
preserved RG differs from original tensor RG (TRG) in the sense that every step of TRG
will keep the gauge-symmetry structure invariant and manifest. The chapter is organized
as follows: I) we will first review the basic ideas of modular matrices and TRG; II) we
will explain the systematical method to calculate modular matrices based on TRG; I1I) we
will show the numerical results of modular matrices for the toric code and double-semion
topological orders,[110, , , , 84] which clearly identifies the correct topological
order and characterizes phase transitions.
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3.2 Review of Modular Matrices

Modular matrices, or T- and S-matrices, are generated respectively by Dehn twist (twist)
and 90° rotation on torus. The operation of twist can be defined by cutting up a torus
along one axis, twisting the edge by 360° and glueing the two edges back.

The elements of the universal 7- and S-matrices are given by: [109, 1]
Wil Iy = e VAT

A 2 3.1
<¢1|S|wj> _ efA/£ +0(1/A)Sij ( )

where |1);) form a set of orthonormal basis for degenerate ground space; and T and S are
the operators that generate the twist and the rotation on torus. A is the area of the system
and £ is of order of correlation length which is not universal.

The T- and S-matrices encode all the information of quasi-particles statistics and their
fusion.[103, 55] It was also conjectured that the 7T- and S-matrices form a complete and
one-to-one characterization of topological orders with gapped edge [121, , ] and can
replace the fixed-point tensor description to give us a more physical label for topological
order.

3.3 Review of Tensor Renormalization Group

To be specific, TRG here means double tensor renormalization group [156]. Essentially, a
translation invariant TNS can be written by definition as
) = Z tTe(T™ T2 T™N ) my ) |ma)...Jmy) (3.2)
mimsa..

where T™i’s are local tensors with physical index m; defined either on links or vertices;
and m;’s are local Hilbert space basis. (Sometimes m; is not written out explicitly if there
is no ambiguity). tTr means contracting over all internal indices of local tensors pair by
pair. The norm of the state is given by

(W|y) = tTe(TT...T) (3.3)

where, T is the local double tensor, which is formed by 7* and T tracing out physical
degree freedom.
T =) T (3.4)

my
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The essence of double TRG is to find fewer double tensors T", which keeps the norm
approximately invariant. Le.,

(YY) ~tTe(T'T"... T") (3.5)

This approximation can be done non-uniquely. And SVD TRG approach shall be
utilized in this chapter for its convenience and low cost. The procedure of SVD RG
approach is graphically explained in the Fig. 3.3.1 (c¢) and (d). Step (c) is to perform local
SVD to decompose double tensor T into T} and T5. In order to prevent the bond dimension
of internal indices from growing exponentially, only finite number D.,; of singular values
are kept. Step (d) is to do coarse graining, the tensors on new smaller square will form
a new double tensor T". After step (c¢) and (d), half of tensors will be contracted. For
a translation invariant TNS, after enough steps of SVD TRG, the double tensor will flow
to the fixed point double tensor, T¥,, which plays an essential role in the next section.
Topological data can be extracted from TY,.

Note that the above TRG approach suffers from the necessary symmetry condition
[154]. If the gauge symmetry is not preserved in each step of TRG, the approach will
be ruined by errors. And more importantly, the RG flow will arrive at some wrong fixed
point tensors. Gauge-Symmetry Preserved TRG is introduced in the next section in order
to prevent this happening. Another reason that normal TRG is not suitable here is that
during TRG, the gauge symmetry information is lost. So that in order to reproduce all
topological data, the gauge symmetry should be preserved.

3.4 Modular Matrices by (Gauge-Symmetry Preserved
Tensor Renormalization Group

In refs. [155, , |, the gauge structure of TNS is analyzed. It was concluded that by
inserting gauge transformation tensors to TNS, a set of basis for the degenerate ground
space will be obtained. More specifically, the ground states could be labeled as [¢(g, h)),
where g, h are gauge tensors acting on internal indices in two directions. Different ground
states can be transformed to each other by applying gauge tensors on internal indices of
a TNS. Therefore it is natural to think that since all ground states could be obtained,
by calculating all overlaps (¢;]T1;) and (1;]S]t;), the whole modular matrices could be
calculated. However, it is difficult to compute the overlap directly and keep track of the
non-universal contributions. See EQ. 3.1.
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Figure 3.3.1: Illustration for Symmetry Preserved Tensor Renormalization Group. First
(a) before SVD, block diagonalize double tensor T according to the Zy symmetry rule,
a+B+~v+dand o + 5+~ + ¢ are both even numbers. Therefore the indices of each
block matrices Bee, Beo, Boe, Boo represent whether av+ 8 and o + " are even or odd. (b)
Perform SVD in each block matrices and recombine the tensors coming out of SVD into
tensor T} and Ty, according to the rule a + 8+ ¢, o' + '+ €, v+ 5+ € and v/ + ¢ + €
are all even numbers. Le., tensor T7 and T, both obey Zy gauge symmetry. (c) and (d)
are the same procedures as TRG. (c) is to use SVD to decompose T into T} and T5. Only
D,y numbers of singular values will be kept. (d) is coarse graining. The four tensors on
the small square will form a new double tensor T”. Note that T3 and T are outcoming
tensors that are cut in another direction.

TRG will help reduce the difficulty, since one fixed point double tensor essentially
represents the whole lattice. Calculating on one double tensor is much easier and size
effects do not appear. However, normal TRG is not suitable here since gauge symmetry
needs to be preserved through every tensor RG step in order to insert gauge transformation
tensors.

To be more specific, let us consider the case of Zy topological order, which also makes
it clear in the next section. As already known in the refs. [155, ; |, tensor net-
work representation for Z, topological state has Zy gauge symmetry. The double tensor
T ga*yys5+ Will have a Zy x Z, gauge symmetry, where a, o*, 8, 5*,v,7*,6,0* = 0,1, and
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a, 3,7, 0 are indices coming from 7" while a*, 8*, v*, 6* are indices coming from 7™*. So the
double tensor with Z, gauge symmetry satisfies

Tala*lﬁlﬂ*l.y/,y*/6/6*/ = Taa*ﬁ,@*'y'y*&s* X (3 6)

Aaa/AgglAnW/A&;/ Ba*a*/Bg*B*/BA/*A/*/B(;*(;*/ ’
where repeated indices imply summation and tensor A, B € {I, 0.} generate the Zy X Z,
gauge symmetry on both layer of double tensor, which only act on internal indices. If a
double tensor has such a gauge symmetry, its elements are nonzero only when a4+ 3 +~v+9
and o* + B* + ~* + 0* are both even. !

In order to keep Zy x Zy gauge symmetry manifest at each RG step, we develop gauge-
symmetry preserved tensor RG (GSPTRG). Essentially, it differs from normal TRG only
when we do SVD. The double tensor needs to be block diagonalized by even or odd of
its indices, and then SVD is performed in each block and recombine the tensors coming
out of SVD into one tensor, just as the way to block diagonalize it. In each block, the
tensor elements have the same even or odd indices, which therefore is key to preserve Z,
symmetry manifest. The procedures are also explained in the Fig. 3.3.1.

After several steps of GSPTRG (c.f. Fig. 3.5.1), double tensor will flow to the gauge-
symmetry preserved fixed point tensor. Equivalent to calculate the overlap by brute force,
we can obtain the modular matrices by the following three steps:

1) inserting gauge symmetry tensors into double tensor; 2) performing rotation and
twist on one layer of fixed point double tensor; 3) tracing out rest indices.

The procedures are also explained in the Fig. 3.4.1. Actually the innerproduct of
ground states ((¢(¢’, h')[1(g,h))) (each ground state is obtained by inserting gauge tensors
on boundary) in topological phase will be diagonal with each element modulo 1. The
elements of T- and S-matrices are just reshuffle of elements ((¢(¢’,R')|v(g,h))). More
explicitly for the Z, topological state

(Wg' s I T (g b)) = ((g', W)l (g, gh) (3.7)
(W(g' )ISI(g,h) = (g, W)k, g7")) (3.8)
'For general Z model, the generators are {(A)ap = ei%cﬁéag}i\:()l. And due to Zy gauge symmetry,

the tensor will satisfy that only the components which summation of indices equal to 0 (mod N) will be
nonzero.
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Figure 3.4.1: Modular matrices from the fixed point double tensor T%,. Eight legs of
Ty, will all be traced over because of torus geometry. (a) By inserting Z, gauge tensors
g,h, g, 1 into Ty,, Ty,(g, h|g', 1) is obtained; and tracing over eight legs of T%,(g, h|g', ')
will give rise to overlaps of ()(¢', h')|1(g, h)), where |¢(g, h)) labels different ground states
with gauge symmetry on boundary. The elements of 7T- and S-matrices are just reshuffling
of (¥(g',W)|(g,h)), as illustrated in the Fig. (b) and (c). Fig. (b) represents 90° rotation
and Fig. (c) represents twist.

3.5 Modular Matrices for Z, topological order

Toric code model [69] is the simplest model that realize the Zy topological order [110),

]. Local physical states are defined on every link with spin up and down. In the
notation of string-net states, spin up represents a string while spin down represents no-
string. Essentially, the Zy topological state can be written as equal superposition of all
closed string loops:

[re) = > |X) (3.9)

where X represents a closed loop, and normalization factor is implicity in the above equa-
tion.

When putting the Z, topologically ordered state on a torus, the ground state degeneracy
is four and the quasi-particles are usually labeled by {1,e,m,em}. T- and S-matrices in
the twist basis[!] are given in Fig. 3.5.1c for g > 0.802.

It is easy to represent |t)rc) in terms of a tensor network. For the sake of convenience,
we replace local physical states |1) and |0) with [11) and |00) respectively. And combine
each |1) and |0) to its nearest sites. So local physical states now are on vertices without
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Figure 3.5.1: The trace of modular matrices S and 7" as functions of g display a very sharp
phase transition at critical point g. as increasing RG steps, for both Z, and double-semion
topological order. The Z; topological order transition point coincides exactly with the
results in Ref. [21] by another characterization.
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Figure 3.5.2: The T tensor and the G™ tensor that describes the ground state wave function
of the double semion model. The “virtual qubits” are in the “1” state in the shaded squares
and in the “0” state in other squares. The red line is the domain wall (string) between
“0” and “1” states of the virtual qubits. The blue (black) dots represent t,5,5 = —1

(tagys = 1).

extending Hilbert space. Here we choose the parameterization of Z; topological state
utilized in Ref. [21]

Tégg}é) = ¢*" T hen a+ B+ + 5 even

Rest elements of T are zeros.

When g = 1, it is |[¢)7¢) while when g=0, it is a trivial state |0000....0). Of course, when g
is driven from 0 to 1, it must undergo a phase transition.

We calculate T- and S-matrices along g. We find that when 0 < ¢ < 0.802, all
components of T- and S-matrices are 1, because the gauge twisting does not produce other
ground states in the trivial phase. When 0.802 < g < 1, it belongs to Z, topological phase,
since the T- and S-matrices for each g € (0.802,1] agrees with that of Z, topological
phase[!] (see Fig. 3.5.1c).

3.6 Modular Matrices for Double-semion model

The double-semion model[132, 841, | is another topologically ordered state with two
semions of statistics § = +7/2. In the notation of string-net states, the double-semion
ground state can also be written as superposition of all closed string loops:

[Ups) = Z(—)N"’"”S

X

X) (3.10)
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where X represents a closed loop, and Nj,.ps the number of loops. The above double-semion
state can be described by a TNS with the following tensors 7" and G™ at g = 1 (see Fig.
3.5.2):

Tlaa) (88" () (68") = taprs'0ap 07050500
t1000 = t1101 = —1, other t,gy5 = 1;
Gloan(s) = JaaOasdarp, (3.11)
11 o _ 0 _
910 =901 =9» Yoo = %11 = L,
9oo = 9oo = 910 = gon = O-
Note that if we view o = ', B = v, v/ = §, and ' = o as indices that label “virtual
qubits” in the squares, then the strings can be viewed as domain wall between the 70" and

71" states of the qubits. Also if we choose t,5,5 = 1, the above tensors will describe the
Z, topologically ordered state discussed previously.

The Z, gauge symmetry is generated by 0% ® o® acting on each internal indices (aa/)
followed by a transformation generated by u!,,, ¢ = t,1,b, 7 acting on the links of the four
orientations. Here u!,, must satisfy

b l
faﬁ»ylgl = utﬁ,y/ua(SIUBauglél (312)

where

fi000 = fo111 = Jfooro = fui1 = —1, others fop,5 = 1. (3.13)

Furthermore u!,,, must also satisfy

ngo/ = (uaa’) Jao! (uaa’)*

g;no/ = (uaa’) Yoo (uaa’)*'

ut:ub:(i —11)7 uT:ul=<_11 1)7 (3.15)

See [120] for a general analysis of twisted gauge structures.

After the GSPTRG calculation, we find a phase transition at g. = 0.802. The S- and
T-matrices for the nontrivial phase with g € (0.802, 1] are given by Fig. 3.5.1, which agree
with the modular matrices for the double semion model in string basis [158]. For the trivial
phase near g = 0, the modular matrices become T3 = So3 = 04,00,0-

(3.14)

We find that
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3.7 Conclusion

We have developed a systematic approach, gauge-symmetry preserved tensor renormaliza-
tion, to calculate modular matrices from a generic many-body wave function described by
a tensor network. The modular matrices can be viewed as very robust ”topological order
parameters” that only change at phase transitions. The tensor network approach gives rise
to S and T matrices in a particular basis which is different from the standard quasiparti-
cal basis.[124, , , , , 45, , , O] The trivial phase will result in trivial
modular matrices S = 1 and 7" = 1 (since there is no degeneracy on a torus), and the
topological phase will give rise to nontrivial modular matrices, which contain topological
informations, such as quasi-particles information, like statistic angle, fusion rule, quantum
dimension, etc.

In particular, a general algorithm can be developed: the tensor network ansatz can be
imposed with gauge symmetry G (or MPO symmetry, see below) in the beginning, and
the corresponding update algorithm, which is used to find ground states, also preserves
such a gauge symmetry. Therefore if the topological phase indeed has such a gauge theory
description, the ansatz obviously is better than the normal tensor network ansatz. In
Appendix B we perform such a benchmark computation using the Z, phase of the Kitaev
honeycomb model [56]. There we prepare an arbitrary tensor with Z, symmetry, find
the ground state (locally) numerically by gauge-symmetry preserved update and from
there compute the modular matrices. A similar tensor network computation of Kitaev
honeycomb model is developed in Ref. [159] where Z, gauge structure is also imposed but
expressed by Grassmann tensor network. The energy and nearest neighbor correlation are
computed there.

After the completion and publication of the preprint of this chapter, the notion of
(twisted) G-injectivity of [119, 120] was generalized to the matrix product operator (MPO)
case in [100] and it was shown that any string-net model is included with this generalization.
The method developed in this chapter can thus similarly be generalized to any MPO
symmetry and does not need any group structure (and thus not restricted to twisted
discrete gauge theories).

The universal wave function overlap [1] (3.1) applies to any dimension and have already
been investigated in exactly solvable models in 341D [1(1, 3, |. The method outlined
in this chapter can similarly be generalized to higher dimensions to extract universal topo-
logical information from generic gapped ground states.

Finally we note that although the universal wave function overlap [!] works for any
topological order, the machinery developed in this chapter in 2+1D only works for non-

57



chiral topological order (gapped boundaries) as formulated here. This is only because the
tensor network techniques used are best understood for non-chiral topological order, but a
generalization for chiral topological order would be both interesting and important.

After the publication of the work presented in the previous and current chapter, lots of
interesting work has been generated using these ideas. Some related to numerically detect-
ing topological order and others related to 3+1D topological systems (see next chapter). In
particular, I would like to mention [163]. There the ideas of this chapter was developed to
study a much more realistic system that has been studied theoretically and experimentally
for many years, namely the Heisenberg model on the Kagome lattice. It was shown that
the modular matrices computed in this fashion, are a very sensitive probe of a gap above
the ground-state. They find that the Heisenberg model is a gapped spin liquid with Z,
topological order and with a correlation length & ~ 10 unit cells. This long correlation
length explains the gapless behavior observed in many simulations on smaller systems.
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Appendices

3.A Appendix A: Robustness of modular matrices un-
der Z, perturbations

In the phase diagram Fig. 3.5.1, it already demonstrates that T- and S-matrices are very
robust characterization of topological order, which only depend on the phase. In order to
address on this issue more explicitly, we will perturb Z, topological state at g = 1, while
the perturbation also respects internal Z, gauge symmetry, i.e., the perturbation tensor 7"
is written as:

Té%fé”l‘sl =er when a+B+v+3d even (3.16)

where r is a uniform distributed random number ranging from [—1, 1] depending on o/, ',
~', 0, a, B, v, 0; and € represents perturbation strength starting from zero. The initial
tensor before RG will be T+ T".

As already shown in Ref. [21], Zy topological phase is robust under tensor perturba-
tions which respect the Z, gauge symmetry, while fragile under perturbations breaking
the Z, gauge symmetry. Here we start from perturbed tensor 7'+ T” and calculate mod-
ular matrices for different €’s, which will demonstrate the robustness of this topological
characterization3.A.1.

Numerically it demonstrates that when 0 < ¢ < 0.35, T- and S-matrices are always
eqn. 3.10. However, when ¢ > 0.35, the perturbations will possibly break the topological
phase (and possibly not). In this case, T- and S-matrices have three possibilities as shown
in the figure. Anyway, this calculation clearly demonstrates modular matrices are robust
characterization of topological phase.

3.B Appendix B: Gauge-Symmetry Preserved Update

For a typical tensor network algorithm, there are two main steps: updating local tensors
to lower the energy to ground state energy and contracting all local tensors to compute
physical quantities and norms. Here we only point out some details in gauge-symmetry
preserved update algorithm, since the details in contraction have already been reviewed in
the main text to some extent.
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Figure 3.A.1: Phase diagram under perturbation

We choose Kitaev honeycomb model as a benchmark. Kitaev honeycomb model is
defined on the honeycomb lattice with spins on each site and different interactions along
the three different links connected to each site

H=-J, Y ofoi—1J, Y olo!—J. > oo (B.1)

x—links y—links z—links

J, are coupling constants along the y—link. For simplicity we will assume they are all
positive. For the coupling constants .J, satisfying J, + J, < J, (or other permutations), a
gapped phase will be acquired that indeed is a toric code phase by perturbation analysis

[56].

We impose Z, gauge symmetry on our tensor network ansatz. I.e.; local tensors should
satisfy
e =0, if i+ j+kodd (B.2)
Other elements of tensors are random in the initial states before simple update. Gauge-
symmetry preserved update differs from simple update only when we do SVD. Again, what
we need to do in SVD approach is the following three steps: block diagonalization according
to gauge symmetry, SVD in each block and rearrange the outcoming tensors back to the
original form. Note that the gauge symmetry only acts on internal indices, so that block
diagonalization only happens for internal indices. The procedure is also summarized in the
figure B.1.
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Figure B.1: Tllustration of gauge-symmetry preserved simple update. (a) shows that tenor
Ty and T; are contracted and acted with local imaginary evolution operator represented
by the blue box. The legs with arrow are physical indices while legs without arrows are
internal indices. (b) Block diagonalization according to internal indices. Be. and B,
represent the matrices with both legs even and odd. (c¢) B.. and B,, are SVD-ed. (d) The
outcoming matrices are recombined into the original form as in figure (a).

We randomly pick up a few points in the gapped phase of Kitaev honeycomb model,
use gauge-symmetry preserved update to obtain the ground states by Z, symmetric ansatz
B.2. Modular matrices are calculated by the method explained in the main text, and the
result is exactly the same matrices found in the main text:

100 0 100 0
00 10 0100

S=1o100| =190 01 (B-3)
000 1 00 10
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Chapter 4

Universal Topological Data for
Gapped Quantum Liquids in Three
Dimensions and Fusion Algebra for
Non-Abelian String Excitations

This chapter was published in [7]

4.1 Introduction

For more than two decades exotic quantum states[16, 17, 18, 97, 98, , , , ,

, , | have attracted a lot attention from the condensed matter community. In
particular gapped systems with non-trivial topological order,[99, , | which is a re-
flection of long-range entanglement[24] of the ground state, have been studied intensely in
2+ 1 dimensions. Recently, people started to work on a general theory of topological order
in higher than 2 + 1 dimensions.[31, , 1, , 166]

In a recent work Ref. [1], we conjectured that for a gapped system on a d-dimensional
manifold M of volume V with the set of degenerate ground states {|to)}Y_; on M, we
have the following overlaps

(o] Oaltpg) = eV V2 (4.1)
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where O, are transformations on the wave functions induced by the automorphisms A :
M — M, «is a non-universal constant and M is a universal matrix up to an overall U(1)
phase. Here M form a projective representation of the automorphism group AMG(M),
which is robust against any local perturbations that do not close the bulk gap.[124, 101]
In Ref. [1] we conjectured that such projective representations for different space manifold
topologies fully characterize topological orders with finite ground state degeneracy in any
dimension. Furthermore, we conjectured that projective representations of the mapping
class groups MCG(M) = mo[AMG(M)] classify topological order with gapped boundaries.[124,

] These quantities can be used as order parameters for topological order and detect
transitions between different phases [2].

In this chapter we will study these universal quantities further in 3-dimensions for one
of the most simple manifolds, the 3-torus M = T%. The mapping class group of the 3-torus
is MCG(T?) = SL(3,Z). This group is generated by two elements of the form [123]

N

01
=10 0
10

o = O
)ﬂb

1
=11
0

O = O

0
0] . (4.2)
1

A

These matrices act on the unit vectors by S (,9,2) = (2,2,9) and similarly 7" :
(z,9,2) — (£+9, 9, 2). Thus S corresponds to a rotation, while 7" is shear transformation
in the xy-plane.

In this chapter, we will study the SL(3,Z) representations generated by a very sim-
ple class of Zy models in detail and then consider models for any finite group G, which
are 3-dimensional versions of Kitaevs quantum double models [69]. One can also gener-
alize into twisted versions of these based on the group cohomology H*(G,U(1)) by direct
generalization of Ref. [167] into 3+1D, which has been done for some simple groups in

Ref. [166, 168].

We will consider dimensional reduction of a 3D topological order C*” to 2D by making
one direction of the 3D space into a small circle. In this limit, the 3D topologically ordered
states C3P can be viewed as several 2D topological orders C?’, i = 1,2, --- which happen
to have degenerate ground state energy. We denote such a dimensional reduction process

as
P =Per. (4.3)

We can compute such a dimensional reduction using the representation of SL(3,Z) that
we have calculated.
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We consider SL(2,Z) C SL(3,Z) subgroup and the reduction of the SL(3,Z) represen-
tation BR3P to the SL(2,Z) representations R?":

R = PR, (4.4)
We will refer to this as branching rules for the SL(2,Z) subgroup. The SL(3,Z) represen-
tation R3P describes the 3D topological order C3” and the SL(2,Z) representations R?P

describe the 2D topological orders C?P. The decomposition (4.4) gives us the dimensional
reduction (4.3).

Let us use Cg to denote the topological order described by the gauge theory with the
finite gauge group G. Using the above result, we find that

Gl
ci =epcee’ (4.5)
n=1

for Abelian G where |G| is the number of the group elements. For non-Abelian group G

ci’ =Pz’ (4.6)
C

where @ sums over all different conjugacy classes C' of GG, and G¢ is a subgroup of G
which commutes with an element in C'. The results for G = Zy were mentioned in the
paper [1] (chapter 2 of this thesis).

We also found that the reduction of SL(3,Z) representation, eqn. (4.4), encodes all
the information about the three-string statistics discussed in Ref. [165] for Abelian groups.
For non-Abelian groups, we will have a “non-Abelian” string braiding statistics and a non-
trivial string fusion algebra. We also have a “non-Abelian” three-string braiding statistics
and a non-trivial three-string fusion algebra. Within the dimension reduction picture, the
3D strings reduces to particles in 2D, and the (non-Abelian) statistics of the particles
encode the (non-Abelian) statistics of the strings.

4.2 Zy Model in 3-Dimensions

In this section we will define and study the excitations of a Zx model in detail' and compute
the 3-torus universal matrices, eq. (4.1).

!Two-dimensional version of this model has previously been studied in for example Ref. [113].
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(a) (b)

Figure 4.2.1: (a) Lattice site of 3D cubic lattice. Ag act on spins connected to site s. (b)
2D plaquettes. B, acts on the four spins surrounding p. Choose a righthanded (z,y, 2)
frame, and let all links be oriented wrt. to these directions. This associates a natural
orientation to 2D plaquettes on the dual lattice.

Consider a simple cubic lattice with a local Hilbert space on each link isomorphic to the
group algebra of Zy, H; ~ C[Zy] ~ CN ~ spanc{|o)|c € Zy}. Give the links on the lattice
an orientation as in figure 4.2.1 and let there be a natural isomorphism H; — H;« for link
i and its reversed orientation i* as |o;) — |oy+) = | — ;). Let this basis be orthonormal.
Define two local operators

ZZ|0'1> = w’

Ti), Xiloy) = |o; — 1), (4.7)

i

where w = e**. These operators have the important commutation relation X;7Z; = wZ; X;.
Note that these operators are unitary and satisfy X = ZN = 1. For each lattice site s
and plaquette p define

A=11z]1l2. B=1]X I X (4.8)
€Sy JES— 1€0p4+ JjEOP—
Here s, is the set of links pointing into s, while s_ is the set of links pointing away from
s. B, creates a string around plaquette p with orientation given by the normal direction
using the right hand thumb rule. Then Odp. are the set of links surrounding plaquette p
with the same or opposite orientation as the lattice. One can directly check that all these
operators commute for all sites and plaquettes.

We can now define the Zy model by the Hamiltonian

Je Im
H3pzy = -3 Z (As+ Af) — =&

5 (B, + Bl), (4.9)

p
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where we will assume J, J,,, > 0 throughout. Since eigen(A,+ Al) = {2 cos(2¢)}y ", and
the similar for B, + B;, the ground state is the state satisfying

A|GS) = |GS),  B,|GS) = |GS), (4.10)

for all s and p. We can easily construct hermitian projectors to the state with eigenvalue
1 for all vertices and plaquettes

1 N— 1 N-1
ps = NZ Py = NZB};. (4.11)
k=0 k=0

The ground state is thus [G'S) =[], ps [ ], ppl¢)), for any reference state |¢)) such that |GS)
is non-zero. For the choice |¢)) = ]00.. > |0), the p; is trivial and the ground state is

thus
|GS) = H <% Z B;f) 0) =N Z lloops). (4.12)

= Z N string nets

The first condition in equation (4.10) requires that the ground state consists of Zy string-
nets, while the second requires that these appear with equal superpositions. Note that if
we had used eigenstates of X; instead, we would find that the ground state is a membrane
condensate on the dual lattice.

String and Membrane Operators

Now let [, denote a curve on the lattice from site a to b, with the orientation that it points
from a to b. And let X¢ denote an oriented surface on the dual lattice with 0% = C. Using
these, define string and membrane operators

o) = H Xi H X!, T[S = H A H Zj- (4.13)
i€l,  jelt, i€x;  jexy

Again [5 and %7 are defined wrt. the orientation of the lattice. Note that B, = W[dp],
where dp denotes a closed loop around plaquette p with right hand thumb rule orientation
wrt. the normal direction. Similarly, A; = I'[star(s)], where star(s) is the closed surface
on the dual lattice surrounding site s with inward orientation.

It is clear that the following operators commute
[W[lab], Bp} —0, Vp, and [r[zc], AS} —0, Vs (4.14)
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Figure 4.2.2: The cube represents the 3-torus 7, where the sides are appropriately iden-
tified. The red string represents [,, a closed non-contractable loop wrapping around the
x-cycle of the torus (orientation along the z-axis). Similarly two other non-contractable
strings, [, and [, can be defined. The blue surface 3, (orientation of normal along z-axis),
is a non-contractable surface with topology of T2. Similarly ¥, and X, surfaces can be
defined.

Furthermore it is easy to show that

[W[lab], AS} —0, s+#ab, [F[zc], Bp} —0, péC, (4.15)
while
AaW[lab] = w_l W[lab]Aa, AbW[lab] = W W[lab]Ab, (416)
and
B,I[Sc] = w*' T[Sc]B,, peC, (4.17)

where + depends on the orientation of Y.

Ground States on 3-Torus

The ground state degeneracy depends on the topology of the manifold on which the theory
is defined, take for example the 3-torus T%. Let [, [, and [, be non-contractible loops
along the three cycles on the lattice, with the orientation of the lattice. Similarly, let >,
¥, and X, be non-contractible surfaces along the three-directions, with the orientation of
the dual lattice (see figure 4.2.2). We can define the operators

wi=wl=][x], i=rzl=]]2 i=2y- (4.18)

J€El; JEY;
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These operators have the commutation relations

W,I; =w ' T,W;, i=x,y, 2. (4.19)

We can thus find three commuting (independent) non-contractible operators to get
N3 fold ground state degeneracy. For example |a, 3,7) = (W,)*(W,)?(W,)?|GS), where
a,B,v = 0,...,N — 1. This basis correspond to eigenstates of the surface operators
Cilag, ag, a3) = w®i ag,a3). Note that on the torus we get the extra set of con-
straints [[, A; = 1, [[, B, = 1. Let G be the group generated by B, for all p, mod-
ulo BB, = ByB,, BY =1 and [[, B, = 1. Furthermore define the groups Gas, =
(W,)(W,)?(W,)"G, then we can write the ground states as

a,8,7) = ——=— (4.20)
‘Gaﬂ'y geGZaﬁw

where |g) = ¢]0).

In 2D, the quasiparticle basis corresponds to the basis in which there is well-defined
magnetic and electric flux along one cycle of the torus. We can try to do the same in
three-dimensions. I'y, W, W, all commute with each other and we can consider the basis
which diagonalizes all of them. This basis is given by

’wabc - NZW po= vc‘a B 7> (421)

where a,b,c =0,..., N — 1. These are clearly eigenstates of I',,, and furthermore we have
that Wy |Yae) = W®|tape) and W, |[thape) = wC|tape). This basis is a 3D version of minimum
entropy states (MES).[100]

Excitations

Now lets go back to, say, this theory on S® and look at elementary excitations of our
model. An excitation correspond to a state in which the conditions (4.10) are violated in

a small region. Using the string operators, we can create a pair of particles by | — ¢, ¢.) =
Wlap)%|GS) with the electric charges

Aa| — e, q€> =w | —q., qe>v Abl — e, Qe> = w¥| — qe, qe>' (4'22)
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Figure 4.2.3: String and particle excitations. The red curve is the boundary of a membrane
on the dual lattice and correspond to a string excitation. The blue links are the ones
affected by the membrane operator and the green plaquettes are the ones on which B,
can measure the presence of the string excitation. The green line correspond to a string
operator on the lattice, in which the end point are particles. Mutual statistics between
strings and particles can be calculated by creating a particle-antiparticle pair from the
vacuum, moving one particle around the string excitation and annihilating the particles.

This excitation has an energy cost of AEarticles = 2Jc[1 — cos(zﬁqe)]. Furthermore we have
oriented string excitations by using the membrane operators |C, ¢n,,) = I'[Ec]?|GS), with

the magnetic flux
B,|C, qm) = w™|C,qm), p€EC, (4.23)

where the & depend on the orientation of C. This excitation comes with the energy penalty
APFEgying = Lenght(C)J,,[1 — cos(%”qm)].

One can easily show that all the particles have trivial self and mutual statistics, and the
same with the strings. Mutual statistics between particles and strings can be non-trivial
however, taking a charge g, particle through a flux ¢, string gives the anyonic phase w®%%m
where the + depend on the orientations. See figure 4.2.3.
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4.3 Representations of MCG(T?) = SL(3,Z)

Let us now go back to 7% and consider the universal quantities as defined in (4.1). In the
|, B, ) basis, the representation of the SL(3,Z) generators (4.2) is given by

Saprary = 0a,808,0y.ar, (4.24)
and 3
Tapyarpy = Oa,a 08,1450y, (4.25)
In the 3D quasiparticle basis (4.21) these are given by
S 1 i (ac—ab) 2mi g,
Sabc,éBE = N(Sb,ae ~ (ac—a )a Tabc,dBE = 5a,a5b,135c,é€ N (4-26)

For example in the simplest case N = 2, which is the 3D Toric code, we have

1
1
1
. —1
T = . ,
1
1
—1
and

1 1.0 0 1 1 0 0

1 1.0 0 -1 -1 0 0

1 -10 0 1 -1 0 0
g_l|t-10 0 -1 1 0 0
“9210 0 11 0 0 1 1
00 1 1 0 0 -1 -1
0 0 1 -1 0 0 1 -1

0 01 -1 0 0 -1 1

Interpretation of T

These matrix elements in this particular ground state basis, actually contain some physical
information about statistics of excitations. In order to see this, we can associate a collection
of excitations to each ground state on the 3-torus.
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Figure 4.3.1: The result of cutting open the 3-torus along the z-axis, can be represented by
a hollow solid cylinder where the inner and outer surfaces are identified, but there are two
boundaries along x. In the above, the compactified direction is y and the radial direction is
z, while the open direction is . We can see the N3 possible excitations on the boundaries
which give rise to 3-torus ground states uppon gluing. The four first states correspond to
1), lea), |myc) and [m.p).

First cut the 3-torus along the z-axis such that it now has two boundaries. We can
measure the presence of excitations on the boundary using the operators I';, W, and
W,. First take the state with no particle, |1) = %Zﬁv |B,7), in which all operators
have eigenvalue 1. Here |3,7) are states with 5 and 7 non-contractible electric loops
along the y and z axis, respectively. Now add excitations on the boundary using open
string and membrane operators (see fig. 4.3.1) |e,) = (W{li2))*|1), |my.) = (I'[X¢,])(1),
mes) = (e 1), leamye) = (Wlha)(CEe )11, leamas) = (Wlka))(T[Ze.)?[1),
myems) = (T[S, )°(D[Se.))[1) and [e,my em..o) = (W [lo])* (T[Se, (D [Ze.])?[1), where
a,b,c=1,...,N —1. Or more compactly, |eqm, m.yp), where a,b,c =0,..., N — 1. Here
l12 is a curve from one edge to the other, ¥, is a membrane between edges wrapping
along the y-cycle and ¢, is a membrane between edges wrapping along z-cycle. All these
have the same orientation as the (dual) lattice. These states have well-defined electric and
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magnetic flux wrt. I';, W, and W,. Here m, and m, correspond to the strings on the
boundaries, wrapping around the y and z cycles, respectively.

If we now glue the two boundaries together, we see that for each of these excitations
we have a 3-torus ground state

1) = [¥o00), leamie) = |Yaoc),
|€a) = [¥a00), leamap) = |Yabo),
[m1e) = [Yooe), [m1.ecmap) = |Yose),
\m2,b) = WObo), ’eaml,cm2,b> = Wabc>-

We can add other string excitations on the boundary, however they will not give rise
to new 3-torus ground states after gluing. We thus see a generalization of the situation in
2D, where there is a direct relation between number of excitation types and GSD on the
torus.

Now lets to back to the open boundaries, and consider making a 27 twist of one of the
boundaries, which will give some kind of 3D analogue of topological spin. It can be seen
that most states will be invariant under such an operation by appropriately deforming
and reconnecting the string and membrane operators. For example |e,) — |e,), which
implies that the particles e, are bosons. However we pick up a factor of w® for leama p)
and |e,my may), since the string corresponding to particle e, has to cross the membrane
corresponding to mayy. Physically this is a consequence of mutual statistics of the particle
and string excitation. We can consider these as 3D analogue of topological spin.

Now notice that this operation precisely corresponds to the T Dehn twist on the 3-torus
by gluing the boundaries (see fig.4.3.2). Thus T, as calculated from the ground state, should

27

contain information about statistics of excitations. Writing Ti. s5: = 0a,a0p50c,c€ N ab =

6(17(—151,71;5675’_2: ube, we get the following 3D topological spins

Ty = Tooo = 1, T., = Too = 1,

T, = Tooe = 1, Ty, = Tovo = 1,
Teaml’c - TaOc = 1, T‘eamzb — TabO — e%ab’
Tml,cm27b - TObc =1, Teaml,cmz,b = Tabc = e%ab

This exactly match the properties of the excitations. Thus the universal quantity T calcu-
lated from the ground state alone, contain direct physical information about statistics of
excitations in the system. Note that elements like Tml’cmz’b can be non-trivial in theories
with non-trivial string-string statistics.
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Figure 4.3.2: The Dehn twist T is along the 2 — y plane, thus it is natural to think of
T3 as a solid hollow 2-torus where the inner and outer boundaries are identified, here the
thickened direction is z. In this picture, we can think of 7" just as a usual Dehn twist of a
2-torus.

3D — 2D Dimensional Reduction

We can actually relate these universal quantities to the well-known S and T matrices in
two dimensions. Consider now the SL(2,Z) subgroup of SL(3,Z) generated by

) 100 ) 0 10
T =110 and Sw=1-10 0 (4.27)
0 01 0 01

One can directly compute the representation of this subgroup for the above Zy model,
which is given by

1 27w (P 5 27i
yr  _ — & —=7(abtab) yr o _ 55 2mab
Sabc,abe o N(sc,ce ) Tabc7ab5 - 5a,a5b,b5c,c@ . (428)
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Note that S32 = @), S2° and T3P = @7, T2P. In particular, for the toric code N = 2
we have

1 1 1 1
1 1 -1 -1
1 -1 1 -1
S N (S R I |
Syzi 11 1 1|
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
and
1
1
1
., —1
TV = .
1
1
—1

These N blocks are distinguished by eigenvalues of W,. Consider the 2D limit of the three-
dimensional Zy model where the z and y directions are taken to be very large compared
to the z direction. In this limit a non-contractible loop along the z-cycle becomes very
small and the following perturbation is essentially local

J.
H=Hypzy— (W, + Wi, (4.29)
where W, creates a loop along z. Since this perturbation commutes with the original
Hamiltonian, besides the conditions (4.10) the ground state must also satisfy W,|GS) =
|GS). Thus the N3-fold degeneracy is not stable in the 2D limit and the N? remaining
ground states are now |2D,a,b) = |tao). The gap to the state |gp.) is AE. = J.[1 —

cos(3rc)].

It is easy to see that S,, and T}, on this set of ground states exactly correspond the
two dimensional Zy modular matrices and can be used to construct the corresponding
UMTC. Thus the 3D Zy model and our universal quantities exactly reduce to the 2D

versions in this limit. Furthermore, the 3D quasiparticle basis also directly reduce to the
2D quasiparticle basis.
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4.4 Quantum Double Models in Three-Dimensions

In this section we will construct exactly soluble models in three-dimensions for any finite
group GG. These are nothing but a natural generalization of Kitaev’s quantum double
models [69] to three-dimensions and are closely related to discrete gauge theories with
gauge group G. These models will have the above Zy models as a special case, but
formulated in a slightly different way.

Consider a simple cubic lattice ? with the orientation used above. Let there be a Hilbert
space H; ~ C|G] on each link [, where G is a finite group, and let there be an isomorphism
H; = Hye for the link [ and its reverse orientation I* as |g;) — |gi+) = |g;'). Furthermore
let the natural basis of the group algebra be orthonormal. The following local operators
will be useful

Li|z> = |gZ>, T_ﬁ|2> - 5h72|z>7

4.30
L2|2) = |zg7t), T"2) = 6p-1.]2). (4.30)

To each two dimensional plaquette p, associate an orientation wrt. to the lattice orientation
using the right-hand rule. For such a plaquette, define the following operator

Bu(p)| = Oar > :5zuz§1z51zL,h at @ >7 (4.31)

ZD ZD

and similar for other orientations of plaquettes. Note that the order of the product is
important for non-Abelian groups. To each lattice site s, define the operator

Ayls) = [T a0 [T 2200, (432)
I_ Iy

where [_ are the set of links pointing into s while [ are the links pointing away from s.
In particular we have that

(4.33)

2The model can easily be defined on arbitrary triangulations, but for simplicity we will consider the
cubic lattice.
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From these we have two important operators

1@ Z Ayl (4.34)

gelG

and B(p) = Bi(p), where 1 € G is the identity element. One can show that both these
operators are hermitian projectors. Furthermore one can check that they all commute
together

[A(s), B(p)] = 0, Vs, p,
[B(p), B(p/)} =0, Vp,p/,
[A(s), A(s)] =0, Vs, s

We can now define the Hamiltonian of the three-dimensional quantum double model as
H=-J> A(s)—JnY_ B(p). (4.35)
s p

Since the Hamiltonian is just a sum of commuting projectors, the ground states of the
system must satisfy

A(s)|GS) = B(p)|GS) = |GS), (4.36)

for all s and p. The ground state can be constructed using the following hermitian projector
pas = [1, A(s)[], B(p). If we take as reference state [1) = [1;,1;, ... ), we can write

IGS) = pas|1) = HA )|1). (4.37)

4.4.1 Ground states on 73

The easiest way to construct the ground states on the three-torus is to consider the minimal
torus, which is just a single cube where the boundaries are identified. The minimal torus
has one site s




and three plaquettes py, po, p3

b c b
b c c

One can readily show that the subspace HP=! satisfying B(p)|GS) = |GS) for p = p1, 2, ps3,
is spanned by the vectors |a, b, ¢) such that ab = ba, bc = ¢b and ac = ca. The last condition
A(s)|GS) = |GS) where on the basis vectors

A(s)a, b, ) = |G|Z|gag Lgbg ™", geg™t). (4.38)

geG

In the case of Abelian groups G, this condition is clearly trivial and then we have GSD =
|G|3. In general we can find the ground state degeneracy by taking the trace of the projector
A(s) in HB=1. This is given by

GSD =" (a,b,c|A(s)|a,b,c)
{abc}

Z Z 5ag ga5bg gb(ch gco

gEG {a,b,c}

(4.39)

where {a, b, ¢} is triplets of commuting group elements. One can actually easily check that
the following vectors span the ground state subspace

[Ylaba) = |G|Z\ga9 Lgbg ™", geg™"), (4.40)

geG
where [a,b,c] = {(a,b,¢) € G x G x G|(a,b,¢) = (gag™",gbg™"',gcg™"),g € G} is the
three-element conjugacy class and a, b, ¢ are representatives of the class.

4.4.2 3D S and T matrices and the SL(2,Z) subgroup

We can now readily compute the overlaps (4.1) for the above model for any group G. We
find the following representations of MCG(T?) = SL(3,Z)

Stabeasg = Vbl S ¥asa) = Ofape peal (4.41)
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and . .
Tiapd,abd = WPapdl T 1Vape) = Oapd.aabd> (4.42)
since §|¢[a,b,c]> = |¢[b,c,a]> and T|w[a,b,c}> = |w[a,ab,c]>'

Once again we can consider the subgroup SL(2,Z) C SL(3,Z) generated by (4.27).
The representation of this subgroup can be directly computed and is given by

Sifb dJlabd — (Yol S [Vapa) = Olape, a1 (4.43)

and
T[Zajb d,[a,b,e <¢[a byc| | ™ W} [@,b c]> 5[a,b,c],[a,&5,6] : (444)

Note that since ¢ is not independent of @ and b, in general we don’t have the decomposition
SEP = @LG:|1 SZP and TEP = @‘G‘ TZP, unless the group is Abelian.

4.4.3 Branching Rules and Dimensional Reduction

With the above formulas, we can directly compute the S and T generators for any group
G. In the limit where one direction of the 3-torus is taken to be very small, we can view
the 3D topological order as several 2D topological orders.

The branching rules (4.3) for the dimensional reduction can be directly computed by
studying how a representation of SL(3,Z) decomposes into representations of the subgroup
SL(2,Z) C SL(3,Z). For example, for some of the simplest non-Abelian finite groups we
find the branching rules

Cg? - C?@f b C2 D Cz2 3

Cy) =2Ch @2C3) & C5°,

CiY =Cpl @203 o C3P,

(324 :654 Ch o Ch 3P e 3P

(4.45)

In general we find the following branching in the dimensional reduction C&” = @ C&",
where @, sums over all different conjugacy classes C' of G, and G¢ is the centralizer
subgroup of G for some representative go € C. Similar to the G = Zy case above (4.29),
the degeneracy between the different sectors can be lifted by a perturbation creating Wilson
loops along the small non-contractible cycle of T, which is essentially a local perturbation
in the 2D limit.
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We like to remark that the above branching result for dimensional reduction can be
understood from a “gauge symmetry breaking” point of view. In the dimensional reduction,
we can choose to insert gauge flux through the small compactified circle. The different
choices of the gauge flux is given by the conjugacy classes C of G. Such gauge flux break
the “gauge symmetry” from G to G¢. So, such a compactification leads to a 2D gauge
theory with gauge group G and reduces the 3D topological order C3P to a 2D topological
order Cgf; . The different choices of gauge flux lead to different degenerate 2D topological
ordered states, each described by CZ2 for a certain Go. This gives us the result eqn. (4.6).
It is quite interesting to see that the branching (4.4) of the representation of the mapping
class group SL(3,Z) — SL(2,2Z) is closely related to the “gauge symmetry breaking” in
our examples.

In order to gain a better understanding of the information contained in these branching
rules, we will consider a simple example.

® 1| A A2 B B! C Ct C?
1|1 ]A A? B B! C Ct Cc?

Al AY | 1 A? B! B C Ct C?

A2 A2 | A2 1o Al g A? Bo B! B@ B! CtoC? CoC? Coct
B | B | B! B¢ B! 1 A20CaC'aC? |AlegA2pCaCt e C? B B! B¢ B! B¢ B!
B'|B'| B B¢ B! Ao A2 CaClaC?| 1A20CC @ C? B B! B¢ B! B¢ B!
clc|co cla C? Bo B! B @ B! 1A' C C?q A? Clo A?
ctlotct CeC? B@ B! B¢ B! C?p A’ |1¢AleC! Cq A?
c? | c? | c? CeoC! B@ B! B@ B! C'q A? C o A? 1¢ Ale C?

Table 4.4.1: Fusion rules of two-dimensional D(S3) model. Here B and C' correspond to
pure flux excitations, A! and A? pure charge excitations, 1 the vacuum sector while B!,
C!' and C? are charge-flux composites. If we add the subscript 3D, the table becomes a

list of the 3D particle/string excitations, and their fusion rules.

4.5 Example: G = 55

4.5.1 Two-Dimensional D(Ss)

Let us consider the simplest non-Abelian group G = S3. Let us first recall the 2D quantum
double models. The excitations of these models are given by irreducible representations
of the Drinfeld Quantum Double D(G). The states can be labelled by |C, p), where C
denote a conjugacy class of G while p is a representation of the centralizer subgroup
Gc = Z(a) = {g € Glag = ga} of some element in a € C (note that Z(a) =~ Z(gag™')).
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The symmetric group G = S3 consists of the elements {(), (23), (12), (123), (132), (13)},
where (...) is the standard notation for cycles (cyclic permutations). There are three
conjugacy classes A = {()}, B = {(12),(13),(23)} and C = {(123),(132)}, with the
corresponding centralizer subgroups G4, = S3, Gg = Z3, G¢ = Zz. The number of
irreducible representations for each group is equal to the number of conjugacy classes, 3
for G4 and G¢ while 2 for Gg. For simplicity we will label the particles corresponding
to the three different conjugacy classes by (1, A', A?), (B, B') and (C,C',C?). Here the
particles without a superscript, B and C, are pure fluxes (trivial representation), A and A2
are pure charges (trivial conjugacy class), while B!, C! and C? are charge-flux composites.
The fusion rules for the two-dimensional D(S;) model is given in table 4.4.1.

4.5.2 Three-Dimensional G = S3 Model

In three dimensions, the S3 model has two point-like topological excitations, which are pure
charge excitations that can be labelled by Al, and A2,. Here A' is the one-dimensional
irreducible representation of Ss and A? the two-dimensional irreducible representation of
S3. Under the dimensional reduction to 2D, they become the 2D charge particles labelled
by A and A?. The S; model also has two string-like topological excitations, labelled by
the non-trivial conjugacy classes Bsp and Csp. Under the dimensional reduction to 2D,
they become the 2D particles with pure fluxes described by B and C'. (For details, see the
discussion below.) We can also add a 3D charged particle to a 3D string and obtain a so
called mixed string-charge excitation. Those mixed string-charge excitations are labelled
by Bi,, C2,, and C35, and, under the dimensional reduction, become the 2D particles B?,
C? and C? (see Table 4.4.1).

We like to remark that, since a 3D string carries gauge flux described by a conjugacy
class B or C, the S3 “gauge symmetry” is broken down to G = Z, on the Bjsp string,
and down to G¢ = Z3 on the Csp string.

Under the symmetry breaking S3 — Zs, the two irreducible representations A' and A2
of S5 reduce to the irreducible representations 1 and e of Zy: A! — e and A% — 1®e. Thus
fusing the S3 charge A}, to a Bsp string give us the mixed string-charge excitation Bj3,.
But fusing the S3 charge A%, to a Bsp string gives us a composite mixed string-charge
excitation Bsp @ Baip. (The physical meaning of the composite topological excitations
Bsp @ Bjp, is explained in Ref. [55].) So fusing the two non-trivial S3 charges to a Bsp
string only give us one mixed string-charge excitation Bj,.

Under the symmetry breaking S5 — Zs, the two irreducible representations A' and A?
of S5 reduce to the irreducible representations 1, e; and ey of Z3: A — 1 and A? — e Ges.
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Figure 4.5.1: Three string configuration, where two loops of type b and c are threaded by
a string of type a.

Thus fusing the Ss charge A' to a Csp string still gives us the string excitation Csp. But
fusing the S3 charge A2, to a Csp string gives us a composite mixed string-charge excitation
C3p® C%p. So fusing the two non-trivial S3 charges to a C' string give us two mixed string-
charge excitations C3,, and C2,. We see that the fusion between point Sz charges and the
strings is consistent with fusion of the corresponding 2D particles.

Now, we would like to understand the fusion and braiding properties of the 3D strings
Bsp and Csp. To do that, let us consider the dimension reduction C3P = CZP & C30 & C3P.
Let us choose the gauge flux through the small compactified circle to be B. In this case
Cgf — C%f . C%’Qj is a Zy topological order in 2D and contains four particle-like topological
excitations 1, e, m, f, where 1 is the trivial excitations. e is the Z, charge and m the
Z, vortex, which are both bosons. f is the bound state of e and m which is a fermion.
The trivial 2D excitation 1 comes from the trivial 3D excitation 13p, and the Z, charge e
comes from the 3D charge excitation A'. The 3D string excitations B and B!, wrapping
around the small compactified circle, give rise to two particle-like excitations in 2D — the
Z, vortex m and the fermion f. In the dimensional reduction, the gauge flux B through
the small compactified circle forbids the 3D string excitations Csp, C3p, and Cz to wrap
around the small compactified circle. So there is no 2D excitations that correspond to the
3D string excitations Csp, Cip, and C2,. Because of the symmetry breaking Sz — Z,
caused by the gauge flux B, the 3D particle A%, reduces to 1 & e in 2D.

The above results have a 3D understanding. Let us consider the situation where two
loops, b and ¢, are threaded by string a (see Fig. 4.5.1). If the a-string is the type-Bsp
string, then the b and c-strings must also be the type-Bs3p string. So the type Bsp string
in the center forbids the 3D strings Csp, Cip, and C2, to loop around it. This is just like
the gauge flux B through the small compactified circle forbids the 3D string excitations

81



Csp, Cip, and C2, to wrap around the small compactified circle. So the type-Bsp string
in the center corresponds to the gauge flux B through the small compactified circle.

The fusion and braiding of the 2D particle e is very simple: it is an boson with fusion
e ® e = 1. This is consistent with the fact that the corresponding 3D particle A, is a
boson with fusion Al, ® AL, = 13p. The fusion and braiding of the 2D particle m is also
very simple, since it is also an boson m ® m = 1. This suggests that the 3D type-Bsp
string excitations has a simple fusion and braiding property, provided that those 3D string
excitations are threaded by a type-Bsp string going through their center (see Fig. 4.5.1).
For example, from the 2D fusion rule m ® m = 1, we find that the fusion of two type-Bsp
loops give rise to a trivial string

Bsp ® Bsp = 13p. (4.46)

As suggested by the 2D braiding of two m particles, when a type-Bsp string going around
another type-Bsp string, the induced phase is zero (i.e. the mutual braiding “statistics” is
trivial).

Similarly, we can choose the gauge flux through the small compactified circle to be C.
In this case C3¥ — C27, and 37 is a Z3 topological order in 2D which has 9 particle types:
1, e1, €2, my, My, €;m;l; j=12. In this case, the gauge flux C' through the small compactified
circle forbids the 3D string excitations Bsp and Bjj, to wrap around the small compactified
circle. So there is no 2D excitations that correspond to the 3D string excitations Bsp and
Bi,. The 3D string excitation Csp wrapping around the small compactified circle gives
rise to a composite Zg vortex m; @ my in 2D. (This is because there are two non-trivial
group elements in S3 that commute with a group element in the conjugacy class C'). Also,
from the S3 — Z3 symmetry breaking: A' — 1 and A? — e; @ ey, we see that the 3D
Al charge reduces to type-1 particle in 2D, and the 3D A%, charge reduce to a composite
particle e; & e in 2D.

The fusion of the composite 2D particle ¢ = mq @ mo is given by
cRc=21®c. (4.47)
This leads to the corresponding fusion rule for the 3D type-C5p loops
Csp @ C3p = 213p ® Csp or 13p @ Ayp ® Csp, (4.48)

provided that those 3D loops are threaded by a type-Csp string going through their center
(see Fig. 4.5.1). (The ambiguity arises because the 3D charge A}, reduces to 1 in 2D.)

Now, let us choose the gauge flux through the small compactified circle to be trivial.
In this case C3P — CZP, which has 8 particle types: 1, A', A?, B, B!, C, C', C?. The 3D
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string excitation Bsp and Cs5p wrapping around the small compactified circle gives rise to
the 2D excitation B and C. The fusion of the 2D particle C' is given by

CeC=10A'aC. (4.49)
This leads to the corresponding fusion rule for the 3D type-C5p loops
Csp ® Csp = 13p & Azp @ Csp, (4.50)

provided that those 3D loops are not threaded by any non-trivial string. The above fusion
rule implies that when we fusion two C3p loops, we obtain three accidentally degenerate
states: the first one is a non-topological excitation, the second one is a Ss charge A, and
the third one is a Sz string Csp.

Similarly, the fusion of the 2D particle B is given by
BeB=1oAaoCaoC' & C%. (4.51)
This leads to the corresponding fusion rule for the 3D type-Bsp loops
Bsp ® Bsp = 13p ® A3, @ Csp © C3p ® C3)). (4.52)

This way, we can obtain the fusion algebra between all the 3D excitations AL, A%, Bsp,

On the other hand, since the above 3D string loops are not threaded by any non-
trivial string, we can shrink a single loop into a point. So we should be able to compute
the fusion of 3D loops by shrinking them into a points. Mathematically we will define
shrinking operation &, which describes the shrinking process of loops.

Let £ denote the set of 3D particle and string excitations. We would like to make sure
that the shrinking operation is consistent with the fusion rules, ie S(a®b) = S(a)®S(b) for
a,b € £. One can indeed check that this is the case for the following shrinking operations

S(CSD) =1;p® A%D’ S(O?}D) = AgDa S(C??D) = A?’,Da

4.53
S(Bup) = Lap ® A2, S(Blp) = ALy & AZ,. (4.53)

So indeed, we can compute the fusion of 3D loops by shrinking them into points. In
particular, we find that the topological degeneracy for N type-Csp loops is 2V /2. The
topological degeneracy for two type-Bsp loops is 2. The topological degeneracy for N
type-Bsp loops is of order 3V in large N limit.
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a A B C
Symmetry Breaking | S5 — S5 | S5 — Z5 S3 — Z3
15p — 1 1 1
AéD — Al e 1
Az, — A? 16de e1 ® es
Bsp — B m -
Bi, — B! em -
CgD — C - my D ms
Cip — Cct - ermi @ erme
C32D — C? - €M P eamyo

Table 4.5.1: The situation of figure 4.5.1, where strings are wrapped around another string
of type a = A, B, C. Depending on a, fusion algebra and braiding statistics of each string
will be related to a particle of some 2D topological order, as computed from the branching
rules (4.6). See the text for more details.

The above example suggests the following. Given a topological order in 3D, C3P, one
may want to consider the situation illustrated in figure 4.5.1 where two loops b and c are
threaded with a string a, and ask about the three-string braiding statistics. One way to
compute this is to put the system on a 3-torus and compute the quantities (4.1), which give
rise to a SL(3,Z) representation. Then by finding the branching rules of this representation
wrt. to the subgroup SL(2,Z) C SL(3Z), one finds how the systems decomposes in the 2D
limit C3P = @, C?”, where there will be a sector i for each string type. The three-string
statistics with string a in the middle, will be related to the 2D topological order C2P. To
summarize:

e The representation branching rule (4.4) for SL(3,Z) — SL(2,Z) leads to the dimen-
sion reduction branching rule (4.3).

e The number of the SL(2,Z) representations (or the number of induced 2D topological
orders) is equal to the number of 3D string types in the 3D topological order C3P.

e The SL(2,Z) representations also contains information about two-string/three-string
fusion, as described by eqns. (4.46,4.48,4.50,4.52). The two-string/three-string braid-
ing can be obtained directly from the correspond 2D braiding of the corresponding
particles.
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4.6 Some general considerations

To calculate the braiding statistics of strings and particles, we first need to know the
topological degeneracy D in the presence of strings and particles before they braid. This
is because the unitary matrix that describe the braiding is D by D matrix. To compute
the topological degeneracy D, we need to know the topological types of strings and the
particles since the topological degeneracy D depends on those types.

We have seen that, from the branching rules of SL(3, Z) representation under SL(3,Z) —
SL(2,Z) (see eqn. (4.4)) we can obtain the number of the string types. How to obtain the
number of the particle types?

To compute the number of the particle types, we start with a 3D sphere S, and then
remove two small balls from it. The remaining 3D sphere will have two S? surfaces. This
two surfaces may surround a particle and anti-particle. So the number of the particle types
can be obtained by calculating the ground state degeneracy. But there is one problem with
this approach, the two surfaces may carry gapless boundary excitations or some irrelevant
symmetry breaking states.

To fix this problem, we note that the 3D space S? x I also have have two S? surfaces,
where I is the 1D segment: I = [0,1]. We can glue the space S? x I onto the 3D sphere
S3 with two balls removed, along the two 2D spheres S2. The resulting space is S? x S!.
This way, we show that the topological degeneracy on S? x S! is equal to the number of
the particle types.

For the gauge theory of finite gauge group G, the topologically degenerate ground states
on S? x St are labelled by the group elements g € G (which describe the monodromy along
the non-contractible loop in S? x S1), but not in an one-to-one fashion. Two elements g and
¢ = h~'gh label the same ground state since g and ¢ are related by a gauge transformation.
So the topological degeneracy on S? x S! is equal to the number of conjugacy classes of
G. The number of conjugacy classes is equal to the number of irreducible representations
of G, which is also the number of the particle types, a well known result for gauge theory.

Once we know the types of particles and strings, the simple fusion and braiding of those
excitations can be obtained from the dimensional reduction as described in this chapter.

4.7 Conclusion

In a recent work Ref. [1], we proposed that for a gapped d-dimensional theory on a manifold
M, the overlaps (4.1) give rise to a representation of MCG(M) and that these are robust
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against any local perturbation that do not close the energy gap. In this chapter we studied
a simple class of Zy models on M = T% and computed the corresponding representations
of MCG(T?) = SL(3,Z). We argued that, similar to in 2D, the T generator contains infor-
mation about particle and string excitations above the ground state, although computed
from the ground states. In an independent work Ref. [166], the authors studied the ma-
trices (4.1) using some Abelian models on 7. They argued that the generator S contains
information about braiding processes involving three loops.

Furthermore we studied a dimensional reduction process in which the 3D topological
order can be viewed as several 2D topological orders C3P = @, C?P. This decomposition
can be computed from branching rules of a SL(3,Z) representation into representations of
a SL(2,Z) C SL(3,Z) subgroup. Interestingly, this reduction encodes all the information
about three-string statistics discussed in Ref. [165] for Abelian groups. This approach,
however, also provide information about fusion and braiding statistics of non-Abelian string
excitations in 3D.

We also discussed how to obtain information about particles by putting the theory on
S% x S'. All this lends support for our conjecture[l], that the overlaps (4.1) for different
manifold topologies M, completely characterize topological order with finite ground state
degeneracy in any dimension.
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Chapter 5

Edge-Entanglement Spectrum
Correspondence in a Nonchiral
Topological Phase and
Kramers-Wannier duality

This chapter was published in [/]

5.1 Introduction

Quantum entanglement has been found to be very useful in characterizing topological states
of matter, which is not possible with conventional local order parameters. In particular, the

entanglement spectrum (ES)[39] is one such tool, and has been applied to many systems,
such as quantum Hall fluids[39, , , , , , , ], topological order[170,

, 177], topological insulators [178, , 180], fractional Chern insulators[181], symmetry-
protected topological phases [182, 183], quantum spin chains[184, 185, 186, 187] and ladders

|, and other spin and fermionic systems.

[ I I I b bl

5.1.1 Entanglement spectrum and edge-ES correspondence

The ES is defined as follows. Given a system’s ground state |¥), together with a bipartition
of the full Hilbert space H into parts L and R, so that H = H; ®H g, one forms the reduced
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density matrix py := Trg|¥)(¥| on L. Because of hermiticity and positivity, the reduced
density matrix can be written in the thermal form p;, = %e‘Hent-, where H,; is the so-called
entanglement Hamiltonian and Z = Tr(e ). The ES is then simply the eigenenergies

of the entanglement Hamiltonian.

This definition of the ES is an operational one. However, there exists a remarkable
observation made by Li and Haldane [39] for quantum Hall systems and by others in
subsequent works for (2 + 1)-d topological phases: in the cases where the system possesses
low energy states living near an open boundary of the manifold the system is placed on
(i.e. edge states), it was found that the low-lying edge spectrum of the physical boundary
Hamiltonian on L are in one-to-one correspondence with the low-lying spectrum of Hey.,
a so-called edge-ES correspondence. (This correspondence should not be confused with
the more established bulk-edge correspondence [78, 79, 80] also used in the context of
topological phases).

Analytic proofs of the edge-ES correspondence have been proposed, for example in
Ref. [10] for (2 + 1)-d topological states whose edge states are described by a (1 + 1)-d
CFT. In that work, a ‘cut and glue’ approach and methods of boundary CF'T were used,
and it was claimed that the edge and entanglement spectra should be equal up to rescaling
and shifting in the low energy limit. However, this method is only applicable to chiral
topological phases, where there are protected, physical chiral edge states appearing at an
actual spatial boundary of a system. For the case of a non-chiral topological phase, it is
unclear as to what information the ES will yield, or even if there is any form of the edge-ES
correspondence that exists[19].

5.1.2 Edge-ES correspondence in non-chiral topological order

It is thus the purpose of this chapter to explore the edge-ES correspondence in non-chiral
topological phases. Specifically we consider the Z; Wen-plaquette model [195] (unitarily
equivalent to Kitaev’s toric code model [69] in the bulk), and ask if some form of corre-
spondence exists. We choose to work on an infinite cylinder with a bipartition into two
semi-infinite cylinders terminated with smooth edges. The model on this geometry has four
topological sectors a (a = 1, -+ ,4) with four locally indistinguishable ground states (these
are states with well-defined anyonic flux), and therefore the edge theory on the semi-infinite
cylinder and ES of the full cylinder can be unambiguously defined within each topological
sector. For the unperturbed Wen-plaquette model, there is in fact an ezact edge-ES corre-
spondence because the edge and entanglement spectra in each a-sector are flat and equally
degenerate; thus, the two spectra agree perfectly up to rescaling and shifting. However,
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this correspondence is potentially lost in the presence of perturbations. Here, we present
a detailed microscopic derivation of the edge and entanglement Hamiltonians of the Wen-
plaquette model deformed by generic local perturbations, which allows us to compare the
two spectra and hence explore the edge-ES correspondence. This calculation constitutes
the main result of this chapter.

From our calculation, we find the following.

(i) Our calculation shows that the edge states (belonging to the lowest energy eigenspace)
of the unperturbed Wen-plaquette model on the semi-infinite cylinder are generated by so-
called boundary operators, which can be mapped to Z, symmetric operators acting on a
finite length (spin-1/2) spin chain, the effective low-energy degrees of freedom. The effects
of generic local perturbations to the Wen-plaquette model are to lift this degeneracy - we
find that the effective Hamiltonian in each topological sector a acting on these edge states,
Hgyge, 18 @ Zo symmetric Hamiltonian acting on the spin chain. The Z; symmetry can be
understood as arising from the bulk topological order: it is generated by a Wilson loop
operator wrapping around the cylinder.

(ii) We also find that the entanglement Hamiltonian HZ%, in each a-sector acts on a
(spin-1/2) spin chain of equal length, and is generated in part by the edge Hamiltonians
(Héygep + Higge p) of the two halves of the bipartition (L and R) and in part by Vi, a
perturbation spanning the cut. It is also Z, symmetric. However, HZ, is in general not
equal to the edge Hamiltonians, being different in some arbitrary way. Thus, there is in
general no edge-ES correspondence for generic perturbations, even in the low energy limit,

i.e. the low lying values of the edge and entanglement spectra do not match.

(iii) We do find a mechanism in which an edge-ES correspondence is established, though.
If we consider the Wen-plaquette model as a symmetry enriched topological phase (SET),
by supplementing the Z, topological order with a global translational symmetry along
the edge/entanglement cut, achieved by restricting perturbations to those that respect
the symmetry, then there is a finite domain in Hamiltonian space in which both H?

edge
and HZ, realize the critical (1 + 1)-d Ising model, which has the ¢ = 1/2 Ising CFT §s
its low energy effective theory. It is in this context that we have observed, in concrete
examples, the edge-ES correspondence being realized. This happens because the global
translational symmetry implies that the effective degrees of freedom of both the edge and
entanglement cut are governed by Kramers-Wannier self-dual Hamiltonians, in addition to
them being Z; symmetric, which is imposed by the topological order. The fact that the
Hamiltonians have Z, symmetry and Kramers-Wannier self-duality then further guarantees

that all perturbations about the ¢ = 1/2 Ising CFT must be irrelevant, giving us the result
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that the low lying values of the edge and entanglement spectra match upon shifting and
rescaling. We therefore see that by considering the Wen-plageutte model as a SET, the
topological order in the bulk together with the translation invariance of the perturbations
along the edge/cut guarantee an edge-ES correspondence at least in some finite domain in
Hamiltonian space.

It should be noted that there have been studies of the edge theories and ES of two-
dimensional spin systems within the framework of projected entangled pair state models
(PEPs)[196, 197], but this work uses standard techniques in perturbation theory and there-
fore offers a complementary approach to probing the edge-ES correspondence.

5.1.3 Structure of chapter

The rest of the chapter is organized as follows. In Sec. 5.2, we introduce the Wen-plaquette
model and solve for its edge theory on the semi-infinite cylinder by identifying boundary
operators and mapping them to Zy symmetric operators acting on a finite length (spin-1/2)
spin chain. We also calculate the entanglement spectra on the infinite cylinder by deriving
an effective spin ladder Hamiltonian whose ground states equal the ground states on the
infinite cylinder. Next, in Sec. 5.3, we consider the effects of perturbations to the Wen
plaquette model. We present a quick summary of the Schrieffer-Wolff (SW) transforma-
tion, central to the derivation of our results. Then, we derive the edge theory and solve
for the entanglement spectrum. This allows us to compare the edge-ES correspondence
for the perturbed Wen-plaquette model. Then, in Sec. 5.4, we identify the mechanism
to establish an edge-ES correspondence: we consider the Wen-plaquette model as a sym-
metry enriched topological phase (SET) with a global translational symmetry along the
edge/entanglement cut, which forces the edge and entanglement Hamiltonians to be ad-
ditionally Kramers-Wannier self-dual, resulting in the edge-ES correspondence. We also
provide a numerical example of the correspondence where the perturbations are uniform
magnetic fields acting on single spins. Lastly, in Sec. 5.5, we discuss the implications
of our findings and conclude. Appendix 5.A presents the Schrieffer-Wolff transformation
and necessary formulas, appendix 5.B presents the perturbation theory calculations for
the entanglement Hamiltonian, specifically, A’, defined in Sec. 5.3.3, while Appendix 5.C
presents the derivation of the edge and entanglement Hamiltonians of the Wen-plaquette
model on an infinite cylinder perturbed by uniform single-site magnetic fields, as considered
in Sec. 5.4.
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5.2 Exact Wen-plaquette model

5.2.1 Edge theory on semi-infinite cylinder

We first consider the unperturbed Z, Wen-plaquette model on a semi-infinite cylinder, L
(left), terminated with a smooth boundary, with the periodic direction along the y-axis.
The Hamiltonian is the sum of commuting plaquette terms,

H;, =—g (Z(’)plaq,—c> ——;—C, (5.1)

plag.

where Oplaq. = @ = 71 X27Z3X, is the four-spin plaquette operator, and {X;,Y;, Z;}

the set of Pauli matrices acting on site <. The energy scale g has been set to 1 and c is
a shift in energy such that the ground state energy of H; = 0. The number of sites L,
along y is taken to be even, in order to avoid having a twist defect line (i.e. a consistent
checkerboard coloring of the plaquettes can be made so that the elementary excitations e
and m live on plaquettes of different colors). Figure 5.2.1 shows the semi-infinite cylinder
with a checkerboard coloring.

Note that this is a choice of the Hamiltonian acting on the semi-infinite cylinder that we
have made, as we need to also specify boundary conditions on the edge of the manifold. In
particular, in eqn. (5.1), we have chosen free boundary conditions - we have simply taken
the Wen-plaquette model on a semi-infinite cylinder to be the sum of plaquette operators
with no additional commuting boundary Hamiltonian operators. The choice of different
boundary conditions - the addition of boundary operators - will naturally affect the edge-
ES correspondence, but we will only restrict our analysis to the case of free boundary
conditions in this chapter.

It will be useful to introduce the following graphical notation: we represent the Pauli
operators as red string operators Z; = # , X; = “w if the strings live on the grey
plaquettes (p); while we represent them as blue string operators Z; = A, Xi= N\ if
they live on the white plaquettes (p). For example, the white plaquette operator is given

by @ since the strings live on the grey plaquettes neighboring it.

Topological sectors of ground state subspace. The ground state subspace V 1, of the
Wen-plaquette model (defined by the plaquette condition @ = +1) on an semi-infinite

cylinder, similar to that of the infinite cylinder and of the torus, has four topological sectors
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Figure 5.2.1: Semi-infinite cylinder that terminates in the z-direction, with the periodic
direction along y. The grey plaquette and white plaquette operators are shown as blue
and red circles respectively. The boundary operators (BO) can be thought of as half of
the plaquette operators in the bulk (acting on the white (p) or grey (p) plaquettes). The
green ellipses on the edge correspond to the virtual, boundary spin degree of freedom. The
blue BO acts on a single virtual spin, while the red BO acts on a pair of nearest-neighbor
virtual spins.

a Vor =Nt 61)- They are distinguished by the eigenvalues of the two non-contractible
Wilson loop operators around the cylinder I 5 . and 'y, = g o where ' is the string

operator Z1X»73 - -+ X, living on the grey plaquettes, acting on the spins on the boundary,
as defined using the graphical notation above and similarly for I';, for the white plaquettes.
These operators commute with all Opjaq., square to 1, and thus have eigenvalues Qp, and
Q1. respectively taking values +1 each, giving the four topological sectors a ~ (Q L, Qr).
States within each topological sector a are said to have well-defined anyonic flux with
respect to fL and I'y.

Ground state degeneracy. The ground state subspace V) 1, is however not four-dimensional.
To find the ground state degeneracy, we need to find a maximal set of commuting and in-
dependent operators in addition to the plaquette operators. Besides I';, and I';, we can
have boundary operators (BO) S, = <p s SpL = (@ , where S, = Z3,_1 X5, and

1 L 1

L
Sp.1. = Z23Xop11 are half-plaquette operators or string operators acting on the spins on the

boundary. The strings thus start and terminate outside the boundary of the semi-infinite
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cylinder (see Fig. 5.2.1). There are L, /2 of each kind of operators. The BOs individually
commute with Oppq, I' and I'. However, [S, 1, S5.1] # 0 if p neighbors p, so a choice of a
maximal set of commuting and independent operators on the L semi-infinite cylinder is

{op, O, S5, f}L - {@ @ < 7 § }L. (5.2)

Note that I'j, is not included in the set because it can be formed by the boundary operators:
Iy = [I;55c- Thus Vo has four topological sectors a, such that Vo = @5_,Vi .,
each with L,/2 — 1 states labeled by the eigenvalues of S; 1, for a total dimensionality
dim(Vy 1) = 25v/2*1. Physically, these states can be thought of as having pairs of anyons
(e or m) that condense on the boundary - this process does not cost energy and thus the
ground state degeneracy is given by the number of ways we can condense the anyons on the
boundary. For this reason, these ground states can also be understood as edge states, and
from now on, the terms ‘lowest-energy states’ and ‘edge states’ will be used interchangeably
with ‘ground states’. We will also define the projector Py, onto the eigenspace Vg, for
future use.

At this point, we introduce a mapping of the boundary operators S, 1, and S; 1, to local
operators acting on a finite length (spin-1/2) spin chain. This mapping will be important as
it elucidates the tensor product structure of the edge theory on the semi-infinite cylinder.
Consider the Wilson loop operator §L partitioning V1 into two: Vy = @Q:ﬂV&)f,
labeled by Q. Each Q sector has dimension 2%v/2, which is isomorphic to a spin-1 /2
chain of length L, /2. Let us therefore associate a virtual spin-1/2 degree of freedom for
each p-plaquette (see Fig. 5.2.1). Here, we see that a (not unique) representation of the
operators Sy, 1, and S; j, acting on the L spin-1/2 chain for each Q1. can be found:

(;3 :Tlif’LforlgﬁS[:y/Q,
: ) (5.3)
<p ~ 7Ty for2<p<L,/2,

and [ {1 ~ QL x T [ TE 2.1 i.e. toroidal boundary conditions. One can check that the
bl Yy El

Pauli Sf)in operators reproduce the canonical anticommutation algebra of Sy, 1, and Sj . and
that § L= @1, is satisfied. Note that the Wilson loop § ; is mapped to the global spin-flip

operator Qj, := Hﬁ 75 1, with eigenvalues (), = 1. A similar representation can be found
for the operators S, rp and S; g acting on the spin-1/2 chain of R.

Higher energy subspaces. Higher energy subspaces V,~o are spanned by states for
which the plaquette condition @ = +1 is violated. As such, there is a spectral gap of
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at least +1 separating the ground state subspace from the higher energy subspaces. These
violations are generated by string operators that have at least one end point in the bulk.

For each higher subspace V,~¢,1, we can further define a notion of topological sectors
a, where a = 1,---4, in the following way: the subspace Vg., 1, is the space spanned by
all states in V§ ; which are acted upon by all possible products of finite-length (i.e. local)
string operators such that the number of end-points of these string operators in the bulk
of L is a. These sectors are called topological because the matrix element of generic local
operators using states belonging to different topological sectors vanishes.

Edge theory. The edge theory in each topological sector a is defined to be the Hamiltonian
HE,.  acting on the 254/~ edge states of the subspace V§  that give rise to the different
states’ energy levels. However, all states in V), ; have the exact same energy, and hence
the edge Hamiltonian for the exact Wen-plaquette model in each topological sector is

identically 0.
Let us summarize what we have learned:

e The effective low energy degrees of freedom (Vg? 1) at the boundary of the L semi-infinite
cylinder of length L, is a spin chain made of L,/2 virtual spin-1/2 degrees of freedom,
for each topological @, sector. The spin chain is generated by the boundary operators
Sp.r and S; 1 which are half-plaquette operators in the bulk. In the effective spin chain
language, these boundary operators are mapped to Z; symmetric spin-operators 7; ;75 ; |
and 7; ;. Without perturbations, Hgy,. ; is identically 0. With perturbations, there will be
dynamics on this effective spin chain, generated by these boundary operators. A similar
situation arises for the R semi-infinite cylinder.

5.2.2 Entanglement spectrum

Let us now solve for the four ground states of the exact Wen-plaquette model on the infinite
cylinder, and compute their entanglement spectrum for a bipartition of the infinite cylinder
into two semi-infinite cylinders. We can do this by putting two semi-infinite cylinders L and
R together, and gluing them with the plaquette terms that act on the strip of plaquettes
spanning the two cylinders. That is, we solve:

H=H;+ Hgr+ Hppg, (54)

where Hp is given by eqn. (5.1) (and correspondingly for Hpg), acting on the L and R
semi-infinite cylinders respectively, while Hyp = — Zplaq.estrip Oplaq.- The entanglement
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Figure 5.2.2: (Left) Gluing two semi-infinite cylinders of circumference L, together. The
L semi-infinite cylinder is colored red, the R semi-infinite cylinder is colored blue, while
the plaquette terms belonging to the strip are colored green. The entanglement cut is
naturally taken to be the divisor through the strip so that the system is bipartitioned into
the L and R semi-infinite cylinders. A checkerboard coloring has been made on the infinite
cylinder, and the L, /2 effective virtual spin-1/2 degrees of freedom are denoted by red and
blue ellipses living on the boundaries of the semi-infinite cylinders. (Right) The mapping,
eqn. (5.3), gives rise to an effective Hamiltonian acting on the spin-ladder system, with each
spin chain having L, /2 sites, which were previously the red and blue ellipses. The red and
blue plaquette operators have been mapped to z-rung and z-rung operators respectively.
The effective Hamiltonian’s ground states correspond to the ground states of the infinite
cylinder.

cut is naturally taken to be through the strip of plaquettes that divides the system into
the L and R subsystems, such that the full Hilbert space H is the tensor product of the
two semi-infinite cylinders: H = Hp ® Hg. Figure 5.2.2 shows the gluing process.

Now, H can also be written as H = @?:6:0 Va1 ® Vg r. Note that a plaquette operator
in Hp g is comprised of two matching boundary operators acting on the L and R cylinders,
for example Opjaq.estrip. (D) = Sp.r ® Sp.r (note that p is the same for L and R) and similarly
for p, which implies that its action must be such that the tensor product structure is
preserved, Hip : Vo ® Vo r — Vo, ® Vg r. Since Hpp is the sum of mutually commuting
terms, we can simply focus on its action on the Vy; ® Vy g sector because that is where
the ground states of the infinite cylinder live in.

Next, we employ the fact that there are topological sectors a and o’ in V; 1, and V, g to
further narrow down the subspace of the Hilbert space where the ground states reside in.

Consider the subspace given by tensoring subspaces of L and R with Q. #* Qr: Vg?f ®V§?§

. In this space, E . ® E e —1, which means that one of the plaquette conditions of the
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plaquettes in Hyp is violated. Thus, the ground states cannot live in this space. Conversely
it means that the ground states must have Q) = Qr = Q.
A similar argument can be made for § (with eigenvalues @Q;, = =£1), which would

L
yield Qp = Qr = @ for the ground states. This would imply that a = a’ for the ground
states (or equivalently a ~ (Qr, QL) = (Qr, Qr) = d as there is a one-to-one map between
a and (Q L, Q ). Let us therefore first consider projecting Hyr into the )-sector subspace

V(?L ® V(?R by the projector POC?L ® POC?R.
Using the mapping, eqn. (5.3), one possible representation of the strip-plaquette oper-

ators upon projection into V(?L ® V&? s 1s of operators acting on two spin chains (of length
L, /2 each) for the left and right cylinders:

— x x
Oﬁ — — Tﬁ,LTﬁ,R

O, = @ = 75,051,075, RTp-1,R>

for both ). These operators are called “z-rung” and “z-rung” operators respectively.

The effective Hamiltonian, i.e. the projection of Hyg into Vé‘? . ® Vé‘? > 1s therefore

Ly/2
_ T _x z z z z
Heg = — Z(T@LT@R T LTh1, L5 RT—1,R)- (5.6)

p=1

This is a spin-ladder system (see Fig. 5.2.2), of length L,/2, with O, and O; coupling
the two chains. It also has a Z, symmetry generated by the global spin flip operator
Qp = 5 Tor, (whose eigenvalue is Qr,). Solving eqn. (5.6) for both Q will give us all four
ground states of the system.

Let us fix a Q. Define the (unique) state | 1), as the state that is a ground state of
Hy, with @ = Q and furthermore satisfies 72, = +1. Then we see that the other 2Lv/2

states spanning VSL comprise of all other possible spin configurations |7), generated by
75, acting on | 7);. The same is also true for R. The ground state of eqn. (5.6), or

equivalently of the full Hamiltonian, in this Q sector with Q = Qr = Qg is therefore given
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1+75,7

0.Q=~T] (TR) (1102l 1)+ QQul 1l 1ha)

ZIT LR+ QIF)L|T)R) (5.7)

= WZPQ’L’T>L T>R

where Pg = (1 + QLQL)/Q is the Z, projector onto the QO = ) sector in the L chain.
Thus, in total, there are four ground states on the infinite cylinder as claimed, each with
well-defined anyonic flux through the cylinder.

Lastly, from eqn. (5.7), it can be readily seen that the entanglement spectrum of |Q, Q)
is flat: the reduced density matrix on L is

1
PO = TerlQ.Q)(Q. Q1 = S P (5.8)

with 2L3/271 non-zero eigenvalues all of value 1/2Lv/2-1 The entanglement Hamiltonian

H¢, = —1In(p) is therefore also flat and acts on a virtual spin chain of length L, /2.

In summary:

e The entanglement Hamiltonian of the exact Wen-plaquette model in topological sector
a is flat and acts on a virtual spin-1/2 spin chain of length L, /2, similar to the case of the
edge Hamiltonian. Each entanglement Hamiltonian gives an ES with 2%+/2~! finite values.
The entanglement Hamiltonians can be derived by considering an effective Hamiltonian
acting on a spin-ladder system with length L, /2, for each Q = Q1 = Qg sector. Solving
the effective Hamiltonian in each Q sector gives two ground states distinguished by the
eigenvalue Q) = Q1 = @, for a total of four ground states overall.

5.2.3 Edge-ES correspondece
Since the edge Hamiltonian is identically 0, and the entanglement Hamiltonian flat, the

edge-ES correspondence is exact in this case: the two spectra are equal up to rescaling and
shifting. However, that is not to say that the flat entanglement spectrum is uninteresting:
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for example, the entanglement entropy in each topological sector can be readily calculated,
yielding

Se =Tr(p}Inp}) = (f/y/2 — 1) In2. (5.9)

From there the topological entanglement entropy[35, 34] 7,, defined to be the universal
sub-leading piece of the entanglement entropy, S, = a,L — 7, + - - -, can be extracted:

Yo =102, (5.10)

in agreement with the fact that |Q, Q) are the so-called minimum entangled states[195] on
the infinite cylinder.

We conclude:

e The edge-ES correspondence for the exact Wen-plaquette model is exact: all 2Lv/2-1
levels of the edge and entanglement spectra in a topological sector a conincide with a shift
and rescaling that is common to all sectors a.

5.3 Perturbed Wen-plaquette model

In this section, we perturb the Wen-plaquette model and derive both the edge theory on
the semi-infinite cylinder and entanglement spectrum of the ground states on the infinite
cylinder. We shall be precise as to what we mean by the edge theory in this case. The
general perturbed Wen-plaquette model on the full cylinder is

H:HL+HR+HLR+€(VL+VR+VLR>: (511)

where H; + Hr + Hpp is as before, in eqn. (5.4), while V, and Vi are perturbations
acting on each respective semi-infinite cylinder, and V7 g is a perturbation that spans the
cut. We assume that for weak enough perturbations, the lowest energy subspaces of Hy,
and Hj + €V}, are adiabatically connected. Thus, energy levels in the highly degenerate
subspace V1 of H acquire dispersions due to the perturbations, and split. The edge
theory or edge Hamiltonian Heqge,r is then defined to be the Hamiltonian acting on the
states in the lowest energy eigenspace of Hy + €V}, that generates the dynamics and hence
the dispersion.

The key to deriving this edge Hamiltonian and subsequently, the entanglement spec-
trum of the four ground states of eqn. (5.11), is the Schrieffer-Wolft (SW)[199] transforma-
tion. This is a transformation which perturbatively block diagonalizes a Hamiltonian if its
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original, unperturbed Hamiltonian was block-diagonal to begin with, which is the case for
the Wen-plaquette model. We begin this section by introducing the SW transformation
before then applying it to finding the edge and the entanglement Hamiltonians.

5.3.1 Mathematical preliminaries: Schrieffer-Wolff transforma-
tion

We present a concise but necessary introduction to the Schrieffer-Wolff (SW) transformation[199].
See Ref. [200] for all precise definitions and theorems concerning the SW transformation.

Let us be given a Hamiltonian H that has a low-energy eigenspace V, and a high-energy
eigenspace V,; separated by a spectral gap. Then Hy can be written as

Hy = PyHoPy + PiHy Py, (5.12)

where P, are projectors to V,, a = 0,1. Let us now add a small perturbation to the system
eV that does not commute with H,. We assume that the perturbations are weak enough
such that the new Hamiltonian can be written as

H:Ho—i-GV:ﬁoHpo—i—lepl, (513)

where there are still low-energy V, and high-energy V; subspaces separated by the spec-
tral gap. V, and V, are assumed to have the same dimensionality, and have significant
overlap. Then, we can find a unique direct rotation (i.e. unitary) U between the old and
new subspaces (UP,U" = P,) such that we can rotate H to a new Hamiltonian H’ with
eigenspaces V:

H :=UHU'" = P UHU'Py,+ PLUHU'P,. (5.14)

This is the so-called Schrieffer-Wolff transformation[199, 200]. It will be useful that U can
be written uniquely as U = e°, where S is an antihermitian and block off-diagonal (in
both V, and f)a) operator, and can be constructed perturbatively in e: S = )" ., €"S,,
S = —S,. The exact formulas for S, can be found in Ref. [200], and we reproduce them
in Appendix 5.A.

Though our discussion above has been limited to Hamiltonians with only two invariant
subspaces (low and high), the SW transformation can be readily generalized to Hamilto-

nians that have many invariant subspaces each separated by a spectral gap, such that the
Hilbert space H = €~ Va, see Ref. [201]. S will still be block-off-diagonal.
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The generalized Schrieffer-Wolff transformation is also referred to as the effective Hamil-
tonian method[202]. To second order in perturbation theory, H’, which by construction is
block-diagonal in V,, is given explicitly by

2

. Ni o\ _ s . . €
(i,a|H'|j, a) = E*0;5 + €(i, a|V]j, ) + 5 g
p#a

1 1
1, a|V|k, B)(k, B|V]], « + , 5.15
(sl 1, ), BIV ><E?_E]/j E;‘—E,f) (5,19

where |i,a) € V,, |j,8) € Vs and E¢ is the energy of |i, ). See appendix 5.A for the full
perturbative series of the effective Hamiltonian.

5.3.2 Edge theory on semi-infinite cylinder

As mentioned before, the SW transformation is suitable for use on the perturbed Wen-
plaquette model on the semi-infinite cylinder, H; + €V, because the unperturbed Hamil-
tonian Hy, is block-diagonal with spectral gaps separating the different energy eigenspaces.
To find the edge theory, Heqge 1, Wwe want to evaluate eqn. (5.15) (with V' — V7)) for the L
semi-infinite cylinder with states belonging to V) 1, the lowest energy subspace. Further-
more, we can make use of the fact that states with different Q; do not mix at any order in
perturbation theory, as the perturbations are local and cannot generate a global term that

mixes Q. sectors, so we can consider eqn. (5.15) restricted to states belonging to Vé?f.

However, since by construction H gig& ;, acts only on VOC? I, H e%ge, ; 1s generated solely from
virtual processes in the perturbative series (eqn. (5.15)) that map states in the ground state
subspace back to itself. These virtual processes are simply products of boundary operators
and plaquette operators on L.

To clarify this statement, let us show this for a particular second order term in a fixed
QL sector. Let vy and vy be two local perturbations, each of which are not sums of
perturbations, coming from V7, (which is generally a sum of local perturbations) that give
rise to a non-zero contribution in the matrix element, i.e., (¢, 0vy |k, B)(k, Blva |7, 0) # 0
for some i, j, k, 5. vo, is comprised of products of string operators with end points in the
bulk of the L semi-infinite cylinder. The number of end points in L determines (3, i.e. vy,
can link a ground state to a state with § excitations in L. This is a state which lives in
V3,1 Furthermore, this state is unique. Indeed, |k, 8) = vq,1[7,0), and so (I, y|vs |7, 0) =0
for any other state such that |l,vy) # |k, 3). Now, since (i,0|vy |k, ) # 0, vy, must be
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such that it creates the same bulk excitations as v, 1, in order to cancel out the excitations
of |k, ), modulo products of plaquette and boundary operators. The presence of the
boundary operators makes |7,0) potentially not equal to |7,0). Putting all these facts
together, we see that replacing |k, ) (k, 5| with the sum over all possible states in the
Hilbert space, i.e. >, [l,7)(l,7] = 1 for this v r,vs 1 does not change the value of the
matrix element, yielding the desired assertion:

(¢,0lv1 1|k, B)(k, Blva,Lld, 0) = (¢, 0]vy 1vs 1|7,0) =

wol IT @ x (e < ({5 15.0) (5.16)
{pl..p,p}
of vy rva L,

A similar argument can be made for terms of other orders in perturbation theory.
Since @ = +1 for the ground states, we therefore see that Her edge,, Ust be a function

of products of S, ;, and S 1, projected down into Vo?f

Hgige,L = fQL,L( (p [7, (ﬁ; L)- (517)

However, recall the mapping given by eqn. (5.3), which allows us to interpret the edge
Hamiltonian in terms of a more physical picture: a Hamiltonian acting on a spin chain.

The edge Hamiltonian in a Q -sector at finite order in perturbation theory is therefore
a local Hamiltonian acting on a spin-1/2 chain of length L, /2:

Hfzée,L fQLL(TvaTpLT 1,L)7 (5.18)

0,L
structed perturbatively, it generically appears at order e. Importantly, we also see that

the edge Hamiltonian is always Z, symmetric regardless of the type of perturbation. This
is not a surprising result because the two sectors of Z, in the spin language, given by the
generator )y, : Hp 5.1, correspond to the two topological sectors () = +1 of the Wilson

with toroidal boundary conditions given by Q. (ie. 72, = QLTE /2 L). Since it is con-
Yy bl

loop § , which are preserved under any local perturbations. The edge Hamiltonian in
L

each topological ~sector a then arises from projecting Hgige ;, into the relevant @) sector:
— Q

Hegger, = PorHogge 1P,

In summary:
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e The edge Hamiltonian of the perturbed Wen-plaquette model for the L semi-infinite
cylinder is given by H glge’ 1, eqn. (5.18), in each Q. sector. At any finite order in pertur-
bation theory, it is a Z, symmetric local Hamiltonian on the virtual spin chain. This is
guaranteed if the perturbations of the Wen-plaquette model are themselves local on the
cylinder. To further find the edge Hamiltonians in each topological sector a =~ (Q L, Qr),
we project into the Q) sector:

e

Hadge,L = PQ,LHe%g;e,LPQ,L, (5.19)

where Pg.;, = (1 4+ Q1Q1)/2. A similar result holds for the R semi-infinite cylinder.

5.3.3 Entanglement spectrum

We now find the ground states in each topological sector a of the perturbed Wen-plaquette
model on the infinite cylinder,

H:HL+HR+HLR+€(VL+VR+VLR>- (520)

The precise definition of each term can be found in eqn. (5.11).

Let us fix a sector a ~ (Q, (). There will now be corrections to the ground state leading
to a ES with dispersion. However, there now exists a difficulty in comparing the edge and
entanglement spectra. From eqn. (5.19), we see that H% . still has 2%v/27! eigenvalues;
but, there will be many more entanglement energies than the 2v/2=1 finite ones as found
in eqn. (5.7). What does it mean to compare the two spectra then? The resolution can
be found by looking at the general form of the perturbed ground state. Dropping the
normalization constant for now, for a fixed @, the perturbed ground state can be written

as

Q,Q) =) (P = M) lr)rIm)rt

’

Z (67,{1',04} |T>L|i7 a>R + E{i,oa}ﬂ'ﬁu a>L|T>R)
T,2,0>1 (521)
+ 3 Qiartinrlis )zl B
e

where (Pg), , are the matrix elements of the matrix Po = (1 4+ Q[ [, 77)/2, written in the
7% basis. A, ©,Z, () are coefficient matrices linking a state in L with another state in R
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and are small in magnitude (e or higher). Here |7'), € VOC?L, and |i,a) € V, 1 for a > 1.
The same holds true for states in R.

We have written the ground state in a way to emphasize the change in the entanglement
structure. Our claim is that for generic local perturbations, A has the form

A =PuA'Py, (5.22)

which is an order € correction which is related to HZ, . Here we have implicitly defined the

central object of interest, A’, which we will argue is related to the entanglement Hamilto-
nian.

Furthermore, A is generated by the terms Hg,. 1, Hoyue gy and (P ® P5g)Vir(Fsp @
P ). We sce that PoA'Pg is a 280/2 by 2L4/2 matrix with 2£4/271 eigenvalues that have
eigenvectors with Py = 1, linking states in VOQ,?L with Vé’? » Which is spanned by |7), ® |T)g.
© and = are generically order € corrections and links states in V&? . With Vo>or and Voo 1
with VO?R respectively. () represents order e corrections to the ground state in the space
Vazo0,L ® Vp>o,R-

We sketch here why A = PoA'Pq is related to the entanglement Hamiltonian. If we
form the un-normalized reduced density matrix on L, p¢ = Trg|Q, @)(Q, Q|, it will have a
dominant piece that looks like

(0 )aom. = 3 (Pg = Po(A + AP +---) , 1)1(7ls. (5.23)
where - - - refers to higher order terms. Since in a suitable basis Py = 1, (for a fixed Q),

the expression above can be approximated with an exponential (1 —x &~ exp(—=x) for small
z), and so the entanglement Hamiltonian is unitarily equivalent to Pg(A’ + A'1)Py.

The original, flat, non-zero 2£+/2~1 eigenvalues of Pg therefore become the non-zero
2Lv/2-1 eigenvalues of exp[—Pg (A’ + A'H)Pg], i.e.

1 — eig(exp[—Pgo (A + AHPg)), (5.24)

which are near 1 in magnitude. The entanglement spectrum &g, associated with these
eigenvalues is then calculated by taking —1 times the logarithm of the eigenvalues of the
reduced density matrix: . = eig(Po(A + A'T)Pg). Of course, there will be other levels
in the entanglement spectrum coming from the sub-dominant part of p¢, but they ‘flow
down from infinity’, as those .. ~ —In(e) ~ oco. These are not the levels of interest and
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Figure 5.3.1: TIllustration of the terms appearing in the first line of eqn. (5.26). The
Schrieffer-Wolff transformation rotates the perturbed Hamiltonian into a Hamiltonian that
is block diagonal in the old eigenspaces (so that P¢ = 12), and adds small dynamics due
to the perturbation on top of each space (H? ~ O(e)).

will therefore be ignored. Thus, we aim to derive only the new eigenvalues of the reduced
density matrix that are perturbed from the original non-zero values, up to leading order
corrections. These values are defined to be the ones that give rise to the relevant part of
the entanglement spectrum, and are the values of interest when comparing the edge to the
ES in the edge-ES correspondence.

Of course, the discussion above was to sketch the flow of the logic of our argument, and
we have to be rigorous in our derivation. They key step to solve for the ground states of
the perturbed system is to rewrite eqn. (5.11) in a way which makes obtaining the form of
eqn. (5.21) manifest - in other words, we want to reorder the perturbative series which gives
the tensor product structure automatically. The key is the Schrieffer-Wolff transformation.
We can rewrite Hj, + €V, within each topological sector (letting a ~ (Q L, Q1) also refer to
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the topological sector on the L semi-infinite cylinder) as
eSLPI(Hy + €Vy) Pie Siedt (5.25)

where Pp = 3 -, Ps . a projector onto the topological sector a. Py ; are the projectors
onto V4, (see Sec. 5.2.1). This can be done since local perturbatlons do not connect
topological sectors a at any order in perturbation theory.

The BCH expansion then allows us to expand it as
“SU(H&yep + Py + HYp + 2Py, + Hyp 4o )€’

:ZO[ CY,L gdge,L+Z L+Z SL,OéPa

a>1 a>1 a>1
N v o
large small
(=51 Hegger] + Z[_S%7 o] (5.26)
a>1
NS ~~ >
small
+ = Z — S, St aPs | + -,
a>1
NS ~~ >

small

and similarly for the theory on the R semi-infinite cylinder, Hg + €V, using o’ ~ (Qgr, Qr)
as the topological sector label. H ; are (at least) order e effective Hamiltonians acting
in Vg ; that generate the dynamics over a Py ; upon the addition of perturbations €V}, to
the system. All terms labeled ‘large’ are of order 1, while all terms labeled ‘small’ are at
least of order €. To help illustrate the meaning of the terms that appear in the first line
of the equation above between the exponentials, we have schematically plotted the energy
spectrum of the Wen-plaquette model under perturbations in Fig. 5.3.1. The Schrieffer-
Wolff transformation simply rotates the perturbed Hamiltonian into a Hamiltonian that is
block diagonal in the old eigenspaces (so that P2 = 12), and adds small dynamics due to
the perturbation on top of each space (H? ~ O(e)).

Now, we see that Hy = Hrr + Y oy (D, Pap + X w Pa '») is nothing but the orig-
inal, unperturbed Wen-plaquette Hamiltonian on the full cylinder [c.f. eqn. (5.4)] whose
ground states are given by eqn. (5.7), with a = o’ = (Q, () (hence justifying the use of
a single label a). The small terms in eqn. (5.26) (and similarly for R) can therefore be
thought of as perturbations to the large Hamiltonian, Hy, and their corrections to the non-
degenerate ground state (within each a sector) can be calculated in normal non-degenerate
wavefunction perturbation theory.
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Similarly, we can decompose €V r as

Vin=c > (P2 @ POFVir(PY @ PLY) (5.27)
a>0
Qr.Qr
because Vg is local and cannot mix different Q;, sectors (and similarly for Qg).

This decomposition allows us to identify the origins of the corrections of A, ©, = and (2,
at least to the first order process to the corrections to the ground states, eqn. (5.7). For a
fixed topological sector a, standard non-degenerate wavefunction perturbation theory tells
us to correct the ground states in the first order process as

Q.Q) =1Q,Q)o+ ) <eXC'|OZIaE“|Q’ Q)0 exe), (5.28)

exc.

where Ogpan are small corrections to the unperturbed Hamiltonian, |exc.) excited eigen-
states of the exact Wen-plaquette model, and AFE the energy difference of the excited and
ground states, which is always negative.

L+ HG

Thus we see that since H{ edge,

edge,
of the correction A. The other correction in A comes from (PQL ® Fy R)VLR(P L ® POQR)

R Vo L& VO R VO L® VO R it gives rise to part

Furthermore, both terms which contribute are symmetric under the Z, generators Q 1, and
Q r and so do not mix the @), and Q)i topological sectors. Together, A must be therefore
() symmetric, i.e. A =PgA'Pg, for some A’, as claimed. The exact derivation of A’ is left
to Appendix 5.B. It turns out that A’ is a Hermitian matrix, so that A’ = A’f.

Next, since S is block diagonal, [~S¢,nP5 ] : Vi, V5 — Vi @ Vi , and generates
= (the R equivalent generates ©). Similarly, other terms in the decomposition of Vx also
contribute to ©, = and (2.

Obviously, it is impossible to compute corrections to the ground state exactly for arbi-
trary local perturbations. However, it is still possible to say something concrete for generic
arbitrary perturbations. In general, A is of order e. We can then ignore © and = as they
give rise to €2 corrections in the eigenvalues of the reduced density matrix. Since we are only
concerned about corrections to the ground state which give the leading order corrections to
the entanglement energies (which are order € from A), we only need to keep corrections in
the dominant part of the reduced density matrix. The perturbed wavefunction, considered
to leading order, is then

Q.Q) = \/—Z Po — PoAPQ)w A7) LlT) R, (5.29)
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Z being a normalization factor. The reduced density matrix to leading order is then given
by eqn. (5.23),

i = exp [~ Hi] = TralQ. Q)(Q. Q
~ 2 (Pg— 2PgNPy) (5.30)
~ % exp [-2PoA'Pq]
leading to the identification
He. = 2PoA'Py. (5.31)
The entanglement spectrum, &7, , is given by
(€8 )n = 2eig(PoA'PQ)n (5.32)
where n = 1,2, --- ,254/271 Jabel the eigenvalues of eigenvectors that have Pg = 1.

To conclude:

e The entanglement Hamiltonian, HZ, , generically appearing at order € , is given by
eqn. (5.31), where A" is generated at lowest order by Hgy,, 1, +Heqge r and Vg (see Appendix
5.B). It is Z; symmetric and acts on a virtual spin chain of L, /2 sites, similar to the edge

Hamiltonians.

5.3.4 Edge-ES correspondence

From the calculation of A’ in Appendix 5.B and eqn. (5.32), we see that within each topo-
logical sector a, the edge Hamiltonian Hg,, Hedge r and the entanglement Hamiltonian
H¢ . differ from each other in two ways: (i) terms in the edge Hamiltonian are reproduced
in the entanglement Hamiltonian but with term-dependent rescaling factors, and (ii) addi-
tional terms arising from Vg appear in the entanglement Hamiltonian. Since this means
that Hgyee ; + Hegge g and Hg, can differ in a potentially arbitrary fashion, there is no
reason to expect that the edge spectrum will match the entanglement spectrum, even for
the low energy values. We therefore conclude that there is no edge-ES correspondence in

general.

However, we note that both Hamiltonians have remarkably similar structure: they both
act on a spin-1/2 chain of length L, /2, and are Z, invariant, i.e. they commute with the
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global spin flip operator [], 7¥, which is the Wilson loop operator in the bulk. The Z,
symmetry can therefore be understood as being enforced by the bulk topological order.

To summarize:

e There is no edge-ES correspondence, even in the low energy limit, for generic local
perturbations. However, both the edge and entanglement Hamiltonians are Zy symmetric
and act on a virtual spin chain of L,/2 sites.

5.3.5 Remarks

One might ask: what happens if A appears at order €*, n > 2 instead of at order €?
Of course, this situation is a result of fine-tuning the perturbations to the system. For
example, perturbing the Wen-plaquette model with only single-site magnetic fields (so
that Vzr = 0) will yield an edge Hamiltonian at order €2, and therefore A at order €* as
well. One has to now account for the additional contributions from O, = in eqn. (5.21) as
they will lead to €? corrections in the dominant part of the reduced density matrix, thereby
potentially modifying the entanglement spectrum.

However, the procedure to account for these additional contributions is clear: we sim-
ply perform non-degenerate wavefunction perturbation theory on |@, @) to a desired or-
der consistently in the reduced density matrix, using the decomposition eqn. (5.26) and
eqn. (5.27).

An explicit example showing how this is done is given in the next section (also refer
to appendix 5.C), where we consider a mechanism to achieve an edge-ES correspondence
in the low energy limit. We look at the case of uniform single-site magnetic fields as
perturbations and present the perturbative calculations to order €? explicitly. In that case,
we will see that the terms ©, = simply lead to a constant shift in the entanglement energies
of the entanglement spectrum, and so the relation that HZ, = 2PoA’P( still holds up to
a constant shift.

5.4 Mechanism for correspondence: Translational sym-
metry and Kramers-Wannier duality

In this section, we present a mechanism that ensures an edge-ES correspondence, at least in
a finite domain in Hamiltonian space. We consider the Wen-plaquette model as a symmetry
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enriched topological phase (SET) with the global symmetry being translational invariance
along the edge/entanglement cut. That is, we restrict ourselves to perturbations that are
translationally invariant along the width of the cylinder. In that case, both the edge and
entanglement Hamiltonians will be Kramers-Wannier (KW) self-dual.

It is not difficult to understand why this is so for the edge Hamiltonian. For the Wen-
plaquette model and for an even L, cylinder, we have assigned a consistent checkerboard
coloring of the plaquettes (see Fig. 5.2.1), in which e quasiparticles live on one color and m
quasiparticles live on the other color. However, this coloring is not unique, and we could
have swapped the two colors, effectively exchanging e <+ m quasiparticles, a so-called
electromagnetic duality. One can check that the fusion rules obeyed by the anyons are
invariant under this swap. This swap can also be thought of being effected by simplying
translating the Wen-plaquette model by one site around the circumference of the cylinder,
while keeping the underlying checkerboard coloring.

In terms of boundary operators, one sees that this swaps S, 1, with S; 1, which necessar-
ily leaves the physics of the edge or entanglement Hamiltonian invariant. However, recall
that in the spin chain language S, ~ 75, with S5 ~ 77,75, ;. These two operators
are precisely the Kramers-Wannier duals of each other. Translation by one site in the
Wen-plaquette model thereby effects a KW transformation in the spin chain.

Thus, if we restrict to translationally invariant perturbations, then a term that appears
in the edge Hamiltonian must also have its Kramers-Wannier dual appear in the edge
Hamiltonian with the same coefficient, since S, <+ S; leaves the physics invariant. Thus,
the edge Hamiltonian is Kramers-Wannier self-dual. It also follows that A, and therefore
the entanglement Hamiltonian is also Kramers-Wannier self-dual, as claimed.

Let us now analyze the edge and entanglement Hamiltonians in different Q sectors, H, Q

edge
and H,glt = 2/, respectively. These are local, Kramers-Wannier self-dual, Z, symmetric
Hamiltonians on a finite length spin chain, with Q giving the boundary conditions: Q=
+1 corresponds to periodic boundary conditions and Q = —1 to anti-periodic boundary

conditions. We claim that these Hamiltonians must be sitting at a phase transition.

First we argue the following. Let us be given a local gapped Zo symmetric spin Hamil-
tonian acting on an infinite spin chain. Let us assume that it spontaneously breaks the Zsy
symmetry. Its Kramers-Wannier dual is another local gapped Hamiltonian which does not
break spontaneously the dual Zy symmetry. The reverse is true if the original Hamiltonian
does not break the Zo symmetry; then, its KW dual will spontaneously break the dual Zs
symmetry .

The proof goes as follows. Consider the Hamiltonian on a finite spin chain. Since it is
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Z, symmetric, it must be a function of 7;* and 77777 ; only. The Hilbert space associated
with this spin chain be be split into the 1 eigenvalues of the Z, symmetry which is effected
by the global spin-flip operator S = [[, 7. We also have to assign boundary conditions, of
which there are two kinds: periodic bondary conditions (PBC) and anti-periodic boundary
conditions (APBC). Defining 7 = [[, 777/, gives us T = +1 for PBC and 7 = —1 for
APBC. We can consider a mapping between this quantum system and another quantum
system whose Hilbert space comprises of spins (labeled by i+ %) placed on the links (labeled
by (i,7 + 1)) of the original spin chain, i.e. a dual spin chain. Clearly, the two Hilbert
spaces’ dimensions are equal. Then, we can write down a dual Hamiltonian with the same
spectrum as the original Hamiltonian, with the identification that the dual Hamiltonian
is formed from the old Hamiltonian with 7 1 = T T4y and 77,77 1 = 7. This works
because the new operators defined above give a representation of the algebra of the old set
of operators. We see that this is nothing but the Kramers-Wannier transformation.

However, note that the KW transformation maps 7 <+ S and S <> T, where S is the
dual Z, symmetry generator [[, 77 and T the dual boundary condition selector [] JTETi
Now, if we assume that the original Hamiltonian with 7 = +1 spontaneously breaks the
Z, symmetry S, then it has two ground states that can be labeled by & = +1 which are
close in energy. The order at which the ground state degeneracy is broken is at order e~
for some mass scale m. Conversely, the Hamiltonian with 7 = —1 will have a ground state
with a domain wall between the above two vacua, and will thus have higher energy than
the ground states on the system with 7 = 41, with an energy difference on the order of
the mass gap. On the other hand, for a Z, preserving theory on 7 = +1, then there will
only be a single ground state with & = +1. The difference in energies of these ground
states with 7 = 41 will be exponentially small.

Now, let us take the limit as the length of the chain becomes infinite. In this limit,
the boundary conditions do not matter, and we should only consider sectors with different
S of the original Hilbert space and different S of the dual Hilbert space. From our ex-
position above, if the original Hamiltonian breaks the Zy; symmetry, then it will have two
degenerate ground states labeled by & = +1 with some energy E. However, after the KW
transformation, the dual Hamiltonian will now have only one state near E (it has S = +1)
- all other states have higher energies, with an energy difference of at least the mass gap.
Thus we see that the dual Hamiltonian does not break the dual Z, symmetry. Similarly,
if the original Hamiltonian does not break the Z, symmetry, it has only one state with
S = +1 that has lowest energy E’; all other states are separated in energy by the mass
gap. However, its dual Hamiltonian will have two states near energy E’, with S = +1.
Thus, we see that the dual Hamiltonian spontaneously breaks the dual Zy symmetry. This
thereby concludes the proof of our claim.
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Next, let us be given a Kramers-Wannier Z, symmetric self-dual Hamiltonian Hy, and
deform it by a small Zy symmetric perturbation H; which is odd under KW duality:

H = Hy+ hH,, (5.33)

where a KW transformation maps h — —h. If the deformed Hamiltonian H is gapped
and breaks the Z, symmetric spontaneously for some sign of h, it will not break it for the
opposite sign, and viceversa. Thus the theory must have a phase transition at h = 0! This

therefore concludes the proof that H @ and HY

edge o+ must be sitting at a phase transition.

Furthermore, it is natural to expect the phase transition to be generically of second
order. If that was the case, the KW self-dual Hamiltonians would be gapless (i.e. critical).
Now, a stronger statement can be made: if the dominant part of H e%ge and HZ, are the
transverse field Ising model ((1 4 1)-d Ising model), then the low energy spectra of both
Hamiltonians must be that of the ¢ = 1/2 Ising CFT. This is guaranteed because there are
no relevant deformations to the critical (1 + 1)-d Ising model that are both Z, invariant
and KW-even. To see this is true, list all relevant operators in the theory (i.e. with
scaling dimension A < 2): the spin primary field ¢ and the energy density primary field
e. Now o is Z, even, so this deformation does not appear in the edge and entanglement
Hamiltonians. On the other hand, € is Z, even but is KW-odd, so it cannot appear either.
Any deformations in the edge and entanglement Hamiltonians must therefore be irrelevant
- all renormalization flows are towards the ¢ = 1/2 Ising CFT.

This therefore shows that there is a finite domain in Hamiltonian space such that the
edge and entanglement Hamiltonians both realize the ¢ = 1/2 Ising CFT as their low
energy effective theory. It is therefore seen that in this case, the Wen-plaquette model,
considered as an SET with the global symmetry being translational invariance along the
edge/entanglement cut, realizes an edge-ES correspondence: the low lying values of both
the edge and entanglement spectra will match.

However, a note of caution should be pointed out here. There is no guarantee that the
edge and entanglement Hamiltonians will be both near the critical (1 + 1)-d Ising models,
even though it is natural to assume they should be. There are other models which are also
Z, symmetric and Kramers-Wannier self-dual, such as the tricritical Ising model or even
Z, symmetric Hamiltonians which break the KW-duality spontaneously (i.e. the model
realizes a first order transition, which the critical Ising model and tricritical Ising model
do not).

Thus, one cannot conclude that the edge and entanglement Hamiltonians must both be
the ¢ = 1/2 Ising CFT. For example, it could be that the edge Hamiltonian is a critical
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Ising model while the entanglement Hamiltonian is instead a tricritical Ising model. In
that case, there is no edge-ES correspondence in the way that we have defined, as the low
energy spectra clearly do not match. However, what is still guaranteed with the global
translational symmetry is that both the edge and entanglement Hamiltonians will be Z,
symmetric and Kramers-Wannier dual; thus, a weaker form of edge-ES correspondence
holds in which both Hamiltonians belong to the same class of Hamiltonians, whether or
not the specific form of the Hamiltonian is the critical Ising, tricritical Ising, or a first order
phase transition Hamiltonian.

In summary:

e Considered as an SET, the symmetry protection (translational invariant perturbations)
and the bulk topological order ensure that the edge and entanglement Hamiltonians of
the Wen-plaquette model are Kramers-Wannier self-dual and are Zy symmetric. If both
theories are close to the critical (14 1)-d Ising model, then since there are no relevant KW-
even and Z, symmetric perturbations to the model, this implies that there is a finite domain
in Hamiltonian space in which their low energy physics is a ¢ = 1/2 Ising CFT. There is,
therefore, an edge-ES correspondence in such a scenario (the low energy spectra match).
However, there is no guarantee that both Hamiltonians will always be critical Ising models,
as there are other Z, symmetric models which realize the Kramers-Wannier self-duality,
such as the tricritical Ising model or a Hamiltonian sitting at a first order phase transition.
Thus, a weaker form of the edge-ES correspondence instead holds, in which both the edge
and entanglement Hamiltonians belong to the same class of Kramers-Wannier even and Z,
symmetric Hamiltonians.

5.4.1 Analytical example: uniform single-site magnetic fields

We present an analytic and numerical illustration of our claim of the edge-ES correspon-
dence, in which both the edge and entanglement Hamiltonians realize the critical (1 + 1)-d
Ising models and thus have the ¢ = 1/2 Ising CFT as their low energy effective theory. Let
us consider the case of perturbations being uniform single-site magnetic fields:

eV =€) hxXi+hyYi+hzZ, (5.34)

where (hx, hy, hz) is a vector with entries of order 1. This perturbation is translationally
invariant along the edge/cut of the cylinder. On physical grounds it is the simplest possible
local perturbation of the toric code, and on theoretical grounds, it is the deformation of

112



the Toric code that is the most well studied, see existing literature on the subject, e.g.
Ref. [203, 204, 205].

Such a uniform single-site magnetic field generates an edge and entanglement Hamilto-
nian with the critical (1 + 1)-d Ising model as their dominant term at order €*: eqn. (5.19)
(Appendix 5.C.1 gives the detailed calculations) tells us that the edge Hamiltonians of each
topological sector are the critical periodic (Q = +1) /antiperiodic (Q = —1) transverse
field Ising Hamiltonians projected into the Zy sectors (@ = +1). Explicitly, the critical
(1 + 1)-d Ising model on a spin chain of length f}y /2, also called the transverse field Ising
model (TFIM), is given by

Ly/2

Hipny = - Z (T +15), (5.35)

p=1

with toroidal boundary conditions 75 = QTiy /29 and its decomposition into its Z, charge
sectors as follows:

H’?FIM,Q = PQH’?FIMPQ7 (5.36)

where Py = Hgi{z 7. This model is the lattice realization of the ¢ = 1/2 Ising CFT.

On the other hand, for the entanglement Hamiltonians (refer to Appendix 5.C.2 for the
calculation of the entanglement Hamiltonians), up to rescaling and shifting, we have the
following identification between states in the topological phase (left) and their entanglement
Hamiltonians to leading order (€?) (right):

) < H%_FI‘IM,-H?

le) < H%El‘IM,Av
Im) < HT_El‘IM,H»

le) < H”EFI‘IM,—D (5.37)

where the label {l,e,m,e = e x m} indicates that the states carry the corresponding
anyonic flux.

Thus, we see that there is an edge-ES correspondence in this case: both the edge and
entanglement Hamiltonians have the ¢ = 1/2 Ising CFT as their low energy effective theory.

5.4.2 Numerical example: uniform single-site magnetic fields

To check our predictions, we numerically solve for the ground states of the Wen-plaquette
model on an infinite cylinder with even L, sites on its circumference, L, = 20, with
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Figure 5.4.1: Rescaled and shifted entanglement spectra in each topological sector a for
Wen-plaquette model on an L, = 20 (even), infinite cylinder, for ehx = —0.01, ehy =
—0.015 and ehz = —0.02. The data points are marked by blue crosses. We have also plotted
the ¢ = 1/2 Ising CFT spectra in each sector for comparison (scaling dim. versus momenta),
with the identification that entanglement energy equals scaling dimension. They are given
by the green squares and circles. Squares and circles represent conformal towers labeled
by different primaries at the bottom of the towers, and double circles denote two-fold
degenerate states. (a) The ES of the ground state |I) with the identity anyonic flux through
the cylinder. This corresponds to the (Q,Q) = (+1,+1) sector of the TFIM, whose low
energy effective theory is the ¢ = 1/2 Ising CFT in the sector that the identity primary 1
& its descendants (green circles), and energy density primary e & its descendants (green
squares) belong to. The two points labeled T" are the holomorphic and antiholomorphic
stress-energy tensors. (b) ES of |e), the state with the electric anyonic flux. This gives the
(Q,Q) = (+1, —1) sector of the TFIM. This corresponds to the sector of Ising CFT which
the spin primary ¢ and its descendants belong to (green circles). (c¢) ES of |m), the state
with the magnetic anyonic flux. This gives the (Q, Q) = (-1, +1) sector of the TFIM, which
in turn corresponds to the sector of the Ising CFT (with a D, defect insertion[206, 207, 208])
which the disorder primary p and its descendants belong to (green circles). The spectra of
the conformal families from o and p conincide, and so do the entanglement spectra. (d) ES
of |¢), the state with the fermionic anyonic flux. This gives the (Q,Q) = (—1,—1) sector
of the TFIM. This corresponds to the sectot b the Ising CFT (with a D, defect insertion)
which the two Majorana fermion primaries ¢, and their descendants belong to (green
squares and circles).
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Figure 5.4.2: Rescaled and shifted entanglement spectra in each topological sector for the
perturbed Wen-plaquette model on an L, = 19 (odd), infinite cylinder. Shown also are
the ¢ = 1/2 CFT spectra with a conformal duality defect D, (see Fig. 5.4.1 for details
on labels). (a) The ES corresponds to the spectrum of the duality-twisted Ising model
with primary fields (0,1/16), (1/2,1/16). (b) The ES corresponds to the spectrum of the
duality-twisted Ising model with primary fields (1/16,0), (1/16,1/2).

perturbations of the form eqn. (5.34), using DMRG for infinite cylinders[209, |. Here,
ehx = —0.01, ehy = —0.015 and ehyz = —0.02. Starting from a random initialization of the
MPS, it was found that the DMRG algorithm converged to four orthonormal states, which
are the four ground states with well-defined anyonic flux through the cylinder. We then find
the entanglement spectrum associated with each ground state, and plot it against momenta
around the cylinder. Figure 5.4.1 shows the entanglement spectra in each topological sector
a of the Wen-plaquette model with the parameters described above.

Each spectrum has been (i) shifted and then (ii) rescaled by the same value across all
topological sectors a. The shift has been chosen so that the lowest entanglement energy
across all entanglement spectra is at entanglement energy 0, and the rescaling chosen so that
in the topological sector which contains the lowest overall entanglement energy, the lowest
entanglement energy at momentum K = +2 is at entanglement energy 2. In doing so, we
fix the identity primary (scaling dimension A = 0, momentum K = 0) and the holomorphic
and antiholomorphic stress-energy tensors (scaling dimension A = 2, momentum K = +2),
which are always present in a CF'T without defects. Remarkably, this common shift and
rescaling of the entanglement spectra across topological sectors a reproduces the ¢ = 1/2
Ising CFT spectra in the different charge sectors accurately; from Fig. 5.4.1(a), we can
identify the identity primary 1 [conformal weights (h,h) = (0,0)] and the energy-density
primary € ~ (1/2,1/2) with its descendants, which belong to the (Q, Q) = (+1,+1) charge
sector of the TFIM. In the CFT language this is the Zo = +1 sector of the usual diagonal
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¢ = 1/2 Ising CFT. From Fig. 5.4.1(b), we identify the spin primary o ~ (1/16,1/16)
with its descendants, which belong to the (Q,Q) = (+1,—1) sector of the TFIM. This
corresponds to the Zy = —1 sector of the Ising CFT. From Fig. 5.4.1(c), we identify the
disorder primary u ~ (1/16,1/16) with its descendants, which is identical to the spectrum
of o, belonging to the (Q, Q) = (—1,+1) sector of the TFIM. In this case, this corresponds
to the Zy = +1 sector of ¢ = 1/2 Ising CFT with anti-periodic boundary conditions. Lastly,
we identify the Majorana fermions ¢ ~ (1/2,0) and ¥ ~ (0, 1/2) and its descendants which
belong to the (Q, Q) = (—1, —1) sector of the TFIM. This corresponds to the Z = —1 sector
of the Ising CFT with anti-periodic boundary conditions. This is in agreement with the
theoretical prediction from our calculation, eqn. (5.37).

Lastly, even though our analysis in this chapter was restricted to the Wen-plaquette
model on an infinite cylinder with even L, circumference, we numerically solve for the
ground states of the perturbed Wen-plaquette model on an infinite cylinder with odd L,
circumference. The perturbation is as before, eqn. (5.34), with values as in the even cylinder
case. We take L, = 19. In this case, a consistent checkerboard coloring of the plaquettes
cannot be done. If one insists on placing a checkerboard coloring on the cylinder, there
is necessarily a line of topological defects where an e quasiparticle (as measured locally)
transmutes into an m quasiparticle upon crossing the line defect[210].

In this case, we obtain two ground states. This makes sense as the only Wilson loop
operator that exists is a string that wraps around the cylinder twice. The two ground
states can be taken to be eigenvectors of this Wilson loop operator. Figure 5.4.2 shows
the plots of the entanglement energies against momenta along a L, = 19 cylinder for both
ground states, with a common shifting and rescaling as follows. We shift the spectra of
the two ground states so that the lowest entanglement energy of one sector is at 1/16, and
we rescale both ES so that the next lowest entanglement energy in that sector is at 9/16.
The two ES exactly match the spectrum of the boundary theory computed directly using
perturbation theory

N-1 N-1
Hy = — (Z T T E ﬁﬁ) : (5.38)
=1 =1

with N = Ly;l, which is the Ising model with duality-twisted boundary conditions[211]. We
see that H, and H_ are related by complex conjugation, thus they have the same energy
spectrum but with opposite momenta which can also be seen from the numerical data.
Figure 5.4.2(a) shows the ES which corresponds to the spectrum of the duality-twisted
Ising model with primary fields (0,1/16), (1/2,1/16), while figure 5.4.2(b) shows the ES
which corresponds to the spectrum of the duality-twisted Ising model with primary fields

(1/16,0), (1/16,1/2).
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All these results can be understood from a CFT point-of-view, using the language
of conformal defects. The ¢ = 1/2 Ising CFT can be given different twisted boundary
conditions by insertions of conformal defect lines X, where the spectrum is then given by

the generalized twisted partition function][200] Zx = tr (X qLO*C/Z‘LqEO*C/M). In order to
be able to move the defects around without energy cost, we need X to commute with the
energy-momentum tensor, or equivalently [L,, X| = [L,, X| = 0 where L,, and L, are the

Virasoro algebra generators. The conformal defects are then classified by representations of
the Virasoro algebra, for the ¢ = 1/2 CFT we have three defects: Dy, D, and D,,. Crossing
the D, defect o goes to —o and it thus implement anti-periodic boundary conditions, while
for D, we have ¢ — p which is nothing but the Kramers-Wannier duality. The spectra
with these defect insertions are given by[200, , ]

Zy = ol? + Iy + [y

Ze = x 1>+ xoX1 + X1 X0, (5.39)

Ze = (Xo+x2)X 1 +x1(Xo+ X1)-
The spectra in Fig. 5.4.1(a) and 5.4.1(b) correspond to the insertion of the trivial (identity)
conformal defect Dy in the partition function, while the spectra in Figs. 5.4.1(c) and
5.4.1(d) correspond to the insertion of the conformal epsilon defect D.. These two cases

are distinguished by the absence and presence of a Wilson flux line in the ground states
of the bulk respectively, as measured by i This Wilson flux line terminates at the

1
2

boundary and is responsible for implementing anti-periodic BC, and thus can be thought
of as ‘inserting’ the conformal defect D, which has the same function. Next, the spectra in
Fig. 5.4.2 correspond to the insertion of the conformal duality defect D, in the partition
function. This duality defect is nothing but the endpoint of the topological line defect in
the bulk which comes from electro-magnetic duality. Thus this is completely consistent
with the following correspondence between bulk and boundary: electro-magnetic duality
< Kramers-Wannier duality, as seen several times in this chapter. Perhaps this hints that
one can understand defects in a CF'T as arising from defects in a topological phase of one
higher dimension, which has the CFT as its boundary theory[212]?

Lastly, if one can find a mechanism to protect the edge-ES correspondence in such cases,
then one can construct lattice realizations of CFTs with defects, by constructing the low-
energy effective edge Hamiltonian using the Schrieffer-Wolff transformation and identifying
a mapping from boundary operators acting in the bulk to local operators acting on some
effective low-energy degrees of freedom. In particular, for the case of the Wen-plaquette
model on the odd cylinder, we find by direct perturbative calculations the lattice realization
of a duality-twisted Ising model, which was only written down very recently by Ref. [211],
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eqn. (5.38).

5.5 Conclusion and discussion

In this chapter, we have studied the edge-ES correspondence in a non-chiral topological
phase, specifically concentrating on a phase with Z, topological order, the Wen-plaquette
model on an infinite cylinder. The main result of this chapter is a detailed, microscopic
calculation of both the edge and entanglement Hamiltonians, which exhibits the mechanism
for the absence or presence of the correspondence. We find through our calculation that the
correspondence, i.e., that the edge and entanglement spectra agree in the low energy limit
up to rescaling and shifting, is exact for the unperturbed Wen-plaquette model. However,
for generic local perturbations, there is no edge-ES correspondence.

We have managed to identify a mechanism to establish the edge-ES correspondence
though, by considering the Wen-plaquette model as a SET with the global symmetry
being translational invariance along the edge/entanglement cut. That is, if we deform the
Wen-plaquette model by perturbations that are restricted to be invariant under translation
by one site along the edge/cut, then both the edge and entanglement Hamiltonians are
Kramers-Wannier self-dual. There is then a finite domain in Hamiltonian space such
that both the edge and entanglement Hamiltonians have the ¢ = 1/2 Ising CFT as their
low energy effective theory, as there are no KW-even and Z, symmetric perturbations to
the critical (1 4+ 1)-d Ising model that are relevant. Thus, the edge-ES correspondence
is achieved in such a scenario. However, there is no guarantee that both the edge and
entanglement Hamiltonians will be near the critical Ising models, as there are other models
which are Kramers-Wannier even and Z, symmetric as well. Thus, a weaker form of the
edge-ES correspondence holds, in which both Hamiltonians belong to the same class of
Hamiltonians, even though the low energy spectra do not match.

Our approach of deriving an effective spin ladder Hamiltonian spanning the entangle-
ment cut can potentially be extended to prove some form of the edge-ES correspondence in
other non-chiral topological phases that are defined by a fixed point Hamiltonian consisting
of a sum of mutually commuting local terms. One would have to find a set of maximally
commuting operators on one half of the system, and also find a representation of the al-
gebra of the operators acting on the edge to derive an analogous spin ladder system. In
particular, we note that the extension of our calculations to the direct generalization of
Z, topological phases, Zy topological phases, is straightforward, and we leave it to future
work to explore the edge-ES correspondence in those cases.
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Appendices

5.A Schrieffer-Wolff transformation

In this appendix we introduce the Schrieffer-Wolff transformation which reproduces the
work of Ref. [200].

Let Hy be a Hamiltonian that has a low-energy eigenspace V, and a high-energy
eigenspace V; separated by a spectral gap. Hy can be written as

HO = P()Hopo + PlH()Pl, (540)

where P, are projectors onto V,, where a = 0,1. Let us add a small perturbation eV’
which does not commute with Hy. Assuming the perturbation is weak enough, the new
Hamiltonian will still have low and high-energy eigenspaces, Vy and Vi, which have the
same dimension as V, and V; respectively. That is,

H=Hy+ eV =PFPHPy+ PHP,. (5.41)

Then there exists a unique direct rotation (i.e. unitary) U that rotates the old and new
subspaces

UPU' = P,. (5.42)

By direct rotation, we mean the “minimal” rotation that maps P, to P,: among all
unitary operators U’ satisfying U'P,U"t = P,, the direction rotation U differs least from
the identity in the Frobenius norm. See Ref. [200] for the construction of a direct rotation.
In that case, we can rotate H to a new Hamiltonian H’ with eigenspaces V,:

H :=UHU' = P,UHU'Py+ PLUHU'P,. (5.43)

This is the so-called Schrieffer-Wolff transformation.

There exists a unique antihermitian and block-off diagonal (in both V, and V,) operator
S such that U = e and ||S|| < m/2. It is constructed perturbatively as follows.

First we introduce some notation. Decompose an operator X on the Hilbert space in
its block-diagonal X4 and block off-diagonal X,q parts:
Xd:PQXPO+(1—P0)X<1—P0),

5.44
XodzpoX(l—P0)+(1—P0)XPO. ( )
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Also given Y, an operator acting on the Hilbert space, define the linear map which is the
adjoint action of Y on other operators X that act on the Hilbert space:

~

V(X) = [V, X]. (5.45)

Lastly, define

(@] Xoalg) .y /-

X) = —" 4
£06) = 3 = G (5.46)
where [i) is an eigenvector of Hy with eigenvalue FE; and similarly for j. Note that £(X)
is by construction block off-diagonal.

Now, S can be written perturbatively as

S=> €S, S} =-5, (5.47)
n=1
where
Sl - L(‘/od)u
Sy = —£‘{d(51), B (5.48)
Sn = —E‘@(Snfl) + Zagjﬁszj(‘/od)n,h for n Z 3.
Jj>1
Here the coefficients a,, come from the Taylor series
- 2™ B
x coth(x) = Zagna:%, U =~ (5.49)
n=0
where B,,, are the Bernoulli numbers. We have also used the shorthand
FVaddm= D SureSn (Voa)- (5.50)
ny,,np>1
ni+--+nr=m
From here, the low-energy effective Hamiltonian of H’ is given by
Heg:= PyH'Py = PyHoPy + eRV Py + Y €"Hepi, (5.51)

n=2
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where

Hegp, = szj—1po§2j_l(%d)n—1po- (5.52)

Jj=21
by;—1 are the Taylor coefficients of tanh(z/2), i.e.

2(22" — 1) By,

oo (5.53)

tanh(x/Q) = Zbgn_1$2n_17 an—l =
n=1

To second order in perturbation theory, and with a basis of states |i, ) € V,, the matrix
elements of H' projected into V), is given explicitly

2
. /o _ pas ; ; 6_
(i,alH'j, ) = EX6;5 + €(t, a|V|], ) + 5 Ek

pra (5.54)

1 1
1, |V |k, k, BV, « + ,

where E? is the energy of |i, a).

The generalized Schrieffer-Wolff transformation to Hamiltonians that have many in-
variant subspaces, each separated by a spectral gap to the next subspace, such that the

Hilbert space H = €D, Va, is given in Ref. [201]. The generator of rotation S is still a
block off-diagonal hermitian operator, with its first term in its expansion given by
<Z.aa|v;)d|ja/6> . .
Sy = g ——— i, a) (5, Bl, (5.55)
“ E¥ — FE-
Z7]7a75 ? J
aFp

where |i,a) € V,, |j,8) € Vs and EY is the energy of |i,a). We will use this term in the
derivation of the entanglement Hamiltonian.

5.B Calculation of A\’ of the entanglement spectrum

In this appendix, we calculate A’, [see Sec. 5.3.3 eqn. (5.21)], obtained from standard non-
degenerate wavefunction perturbation theory. Our starting point is the perturbed Wen-
plaquette Hamiltonian on the infinite cylinder, H = Hy, + Hr + Hyr + €(Vi, + Vg + Vi),
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written according to the decompositions given by eqn. (5.26) and eqn. (5.27) using the
Schrieffer-Wolff transformation. This reorganizes the perturbative series to make the tensor
product structure of the new ground state manifest. We have:

H:HLR—l-ZOé(ZPg,L‘i‘ZPg:R)

a>1
la‘rfge
+ Z (H:dge,L + [=57, Hogger] + -+ + Z (HS,L"‘
a a>1
a a a a 1 a a a
(=S, aPy ]+ [=S57, Hy 1] + 5[_SL7 (ST, aPy )]+ )) (5.56)

—f—Z(---Rterms---)

te > (P2 @ PIVLR(PIE ® P2,
a>0
QrL.Qr

where the large part is simply the unperturbed Wen-plaquette model H; + Hgr + Hr, and
the other part is small (order € or higher) which comes from the perturbations e(V; + Vg +
VLR).

From section 5.2.2, it suffices to solve Hyp for the four ground states of the Wen-
plaquette model. The projection of Hyr onto a @) sector, under the mapping given by
eqn. (5.3), becomes a spin-ladder Hamiltonian:

Ly/2
- T _x z _z z z
Het = = Y (73075 R + T3 151 LA R T 1R); (5.57)

p=1

whose ground states (in each topological sector a ~ (Q, Q) ) are given by eqn. (5.7):
~ 1
Q,Q) = WZPQ!TMT)R, (5.58)

where |7); € VOQL is a spin configuration on the L spin chain. A similar statement holds
for |7)r on the R spin chain. Let us call the operator 7575 the ‘z-rung’ operator and
T5LTh-1.LT5.RTp—1.r the ‘z-rung’ operator.
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For each topologlcal sector a, we wish to calculate the corrections to the ground state
of eqn. (5.57) in its V VS?R tensor product structure, generated by the small part of

eqn. (5.56). To leadmg order in €, the relevant terms in H for each Q sector that generate
the changes in the two ground states of () are

He%ge,L + H edge,R + 6(]DOC,QL ® POC,QL)VLR(PO?L ® POC?L) (559)
From the mapping to virtual spin operators acting on the two spin chains, we can rewrite
the above as

JorT5T50751.0) + S m(Tm T RT51,0) (5.60)

QQ( p,L> pLT lL’TpR7 pRT lR)

where f5 and fQ r are as in eqn. (5.18) and gg the function associated with (P oL ®

Py L)VLR(P T ® POQL) There are also toroidal boundary conditions for both chains given

by Qy (i.e. BL= "Ti ;) on the L chain and similarly for the R chain.

Since both the original, unperturbed Hamiltonian eqn. (5.57) and the perturbation
equ. (5.60) are symmetric under Z, x Zs, generated by Q; = [I; 75, and Qr = 5 ThR:
it suffices to perform standard, non-degenerate wavefunction perturbation theory to the
ground states eqn. (5.58), which have Q;, = Qr = . We therefore need to solve for all
the eigenstates of Hg.

Eigenstates of Hog. Hogp is exactly solvable because all terms in it commute. However
there is one constraint: HLy/ ? T LTh 1L RTp-1.r = 1, and one term, Qr, not present in
H.g that commutes with it. Thus, all eigenstates of Heg can be uniquely labeled by the

eigenvalues of the set of commuting operators
Ly/2 Ly/2 A
{{T?,LTE,R}ﬁil 7{7—?,LTg—l,LTg,RT;gfl,R}ﬁLQ 7QL} . (5.61)

Note the choice of the z-rung operators from p = 2 to IN/y /2 only. The ground states of Heg
satisty 75,77 p = +1 and 77 ;75 4 ;75 g77 1 p = +1. There are two ground states given by
eqn. (5.58) with Q = Q.

Now consider the excited states of Heg that we will need in perturbation theory. Such
states can be built up from the ground states by acting products of the following mutually
commuting operators on them (they also commute with @y ):

=1T5p, forp= i,---,[:y/Qand
H T for p=2,---,L,/2, (5.62)

2<g<p

S

TR ™hew

S
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to give [] (sg/ :C) |Q, Q). These s-operators violate the z-rung or z-rung = +1 conditions

with an energy cost of 2¢g and 4g above the ground states respectively.

Ground state perturbation; calculation of A’. We are now ready to find the four
perturbed ground states of the Wen-plaquette model on the infinite cylinder. Let us find
the correction to the ground state |@, Q) for fixed (@, Q).

Consider first the contribution from Hg,. ; = Po.rfo (751, 75751 1)Po.r first. fa
contains products of 77 ; and 77 577 ; 1. Let us consider a generic first order term in fg 1
given by e(c[[ 7%, [172,72 1), where ¢ is the coefficient of the term (necessarily making
it hermitian). From the first order process in perturbation theory, the correction to the
ground state from this term is an order e correction given by

c , <Q, Q1 Sz/m( I1 TiL 11 TE,LTE—LL) |Q7 Q)
> A(Is77) : (5.63)

prod

[[5710.Q).

An explanation is in order. The sum is over all possible products [ s*/* which generate
all possible excited states ] s*/ x\@, @) (in the same topological sector), with the prime
denoting the exclusion of the trivial product. A(J]s*%) is the energy gap between the
ground state |@Q)) and the excited state defined by the product, which is always negative:
A < 0. We have also made use of the fact that Py ; = 1 on the particular ground state we
are working with.

It is not hard to see that the only contributions arise if (T]s**) ([T72, [172.771.1) =

1 or Q 1. That is, the excited states cancel the excitations over the ground states from
He%ge .- In other words, we have

zfr __ T z z
H 5= HTﬁ,L HTﬁ,LTﬁ—l,L or
z/x __ A T z _z
[Ts =@ (T I memnn) -

For the first case, the matrix element is 1, and so the excitation induced from H gge , on
the ground state is reproduced in the correction to the ground state, up to a negative
rescaling that depends on the energy difference of this excited state with the ground state.

For the second case, the matrix element is @ (since @ = @), and the correction to the

(5.64)
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ground state is

QL (H T?,L H Tg,LTél,L> |©7 Q)
~Qu (T I 7 emiorn) QQLIQ. Q) (5.65)

=Q (H TEC,L H Tg,LQ?—l,L) |Qa Q),

where in the second equality we have commuted Q 1, past the excitations. The () from the
matrix element cancels the ) from the correction to the ground statement, and so this

correction once again reproduces the excitation induced from H, ecfige’ ; on the ground state,
up to a negative rescaling 1/A([] s*/*).

Interestingly, we therefore see that each term in the edge Hamiltonian H e%ge’ ;, is repro-
duced as excitations to the ground state acting on the L spin chain, albeit with a negative
term-dependent rescaling 1/A(]] s*/%) < 0. That is,

induces corr. =0 ~
gdge,L - (Hedge,L>L ‘Q7 Q>

== Z (PQHgige,LPQ> ™ L|T) R,

T'T

(5.66)

7' T

where the the bar on H e%ge, ;, signifies that we reproduce each term in H, fflge, ;, but with each
term scaled by a positive rescaling: 1/]A(]] s*/7)).

In the above, we have introduced notation using double subscripts (two Ls). The L in
H glge .. corresponds to the form of the Hamiltonian acting on the L semi-infinite cylinder,
while the L of the parenthesis around it corresponds to operators acting on the L spin-

chain. Explicitly this means

7Q — g@
(Hedge,g‘>£ T “ledge,C (75,57—;71,57 7}?,5)7 (567>

where (, ¢ € {L, R}, and in the above case we have ( = { = L. We will use this notation
below.

It will be helpful to provide examples of both cases to make our discussion concrete.

Consider an example of the first case: a term 75, of H Sige’ ;, such that p # 1. Then, there

exists either a single operator (s3) or a product of two adjacent operators (sgs;_;) which

p
is the inverse of 75, i.e. itself. The energy difference A is —4 in this case. Consider next
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an example of the second case: Tfi in A, e%ge, .- One needs to multiply by S"’ng /2 to get QL.

NOW7 <Q7 Q|QL|Q7 Q>8Ey/2|Q7 Q>L = Q% (Sgy/QQAL> |Q7 Q) =T L‘Q Q) The excited state
involved in the process also has an energy difference of A = —4 from the ground state.

Concluding, we have the result that any 77, term that appears in HE edge,z, ShOWs up also in
the correction to the ground states:

induces corr. 1 x ~
Tg,L d—> 1 (Tﬁ,L)L |Q7 Q>
1
=— 72 (Par:Po),, I7)ilm) (5.68)

Next let us consider the corrections from Hgigo’ - By making use of the fact the
ground states satisfy the x-rung and z-rung operators = +1, we can convert H glge
ing on the R spin chain to it acting on the L spin chain: HT&RHTﬁRTﬁ_LR@,Q) =

15 11757 17L|Q, @), and our above analysis holds.

We therefore have

p act-

induces corr.
Heldge,R - ( edge, R) |Q Q>

- Z (PQHedge,RPQ>T, . 17 LI 7) R, (5.69)

where we remind the reader once again that it is the modified (term-dependent rescaled)
R edge Hamiltonian acting on the L spin degrees of freedom of the ground state.

Lastly, consider the contribution from e(P or @ POC?L)VLR(P 0 ® PU?L), which can be
written as g5(75 1, 75 175 1 1, To Ry TARTA-1,R) 1D the spin chain language. Like above, if 95
acts on the ground state ]Q, @), then we can convert terms that act on the R spin chain
to act on the L spin Chain SO that the overall contributions from Vi act only on the L

spin chain. For example, 7 R!Q Q) = 1.5 ,L|Q Q).
Thus,

VLR induces corr. _ (VLR)L |C~2’ Q>
- Z (PQVLRPQ)T/J 1T LIT) R, (5.70)

T T

where (VL R) ; 1s a term-dependent rescaled, R — L operators swapped version of Vi g.
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Therefore, we have calculated A and hence A”:

A= PQ(He%ge,L + He%ge,R + ‘_/LR)PQ = PQA,PQ. (571)

(Hgige,L + Ffﬁge,R + VLR>L differs from (He%geL - Hﬁg&R)L in two ways: the term

dependent rescaling |A(]]s*%)|, and also in a potentially arbitrary fashion from Vpg.
Thus, there is no reason to expect that the two spectra should match in the low-energy
limit, leading to the conclusion that there is no edge-ES correspondence in general.

a
ent.

netic fields as perturbations

5.C Derivation of H.y,., and for uniform mag-

In this appendix we calculate Hg,, ; and Hg, for the case of perturbations being uniform

ent.
single-site magnetic fields:

&V =e) hxXi+hyYi+hzZ:. (5.72)

This can be written as V' = V; + Vi where V} are the perturbations acting on the L
semi-infinite cylinder and Vg are the perturbations acting on the R semi-infinite cylinder.

5.C.1 Calculation of edge.L

We calculate Hgy,, ;, of the L semi-infinite cylinder according to the Schrieffer-Wolff trans-
formation, eqn. (5.51) and eqn. (5.54), for the perturbation V7, to lowest non-trivial order.

The zeroth order term is identically 0, since the unperturbed Wen-plaquette model on
the semi-infinite cylinder has a flat edge theory. Next, the first order (¢) term of the edge
Hamiltonian in each topological sector, ePy'; Vi By, is also identically 0 because single site
magnetic fields cannot connect states in Vg, to Vg ;. Thus, we have to go to second order
in e.

At this order, there can now be virtual processes that connect Vg to Vg . They are
mediated by excited states that are one unit of energy above the ground states. We can
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therefore simplify the the notation in eqn. (5.54) for the case of the Wen-plaquette model,
in each @) sector:

(i,0,QIH'7,0,Q) = =€ > (1,0, QIVL|k, 1){k, 1|VL]5,0,Q)

k
= —€%(i,0,Q|VLVL|4,0,Q), (5.73)

for [1,0,Q) € V&, and [k, 1) € V1 1.

Now, there are only two ways in which the above matrix element is non-zero. The first
case is when a term in the first V; annihilates a term in the second V. However, this
simply contributes to a diagonal matrix element whose value is the same for all states.
In other words, such a process just renormalizes the energy of the system. We will hence
disregard the contributions of this matrix element. The second case is when a term in
the first V7, combines with a term in the second V7, to form a boundary operator S, ;, or
Sp.r- This is now not a diagonal matrix element, and gives the lowest order non-trivial
dynamics to the edge Hamiltonian. Dropping the label {0} for notational convenience, the
edge Hamiltonian to second order in €2 simplifies to

Ly
<Z.a Q|H/|]7 Q) = _EQhZhX Z X
=1

<<i, Q21 X145, Q) + (i, Q| X111 21, @>)
Ly

= —2€2hzhx Z(Z, Q|Z1Xl+1|ja Q>
=1
Ly/2 Ly/2

= —9hzhx (i, Q) Z( O )gg( ) |l Q. (5.74)

From the mapping, eqn. (5.3), we can read off the edge Hamiltonian in each Q sector at
order €%

) Ly/2
He%ge,L = —2¢’hzhx Z (T;g,LTg—l,L + T?,L) ; (5.75)

p=1

with toroidal boundary conditions 7 ;, = QTLU /2, This is nothing but the critical periodic

(Q = +1) or antiperiodic (Q = —1) (1 + 1)-d Ising model, which is Z, symmetric and is
clearly at the Kramers-Wannier self-dual point.
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The edge Hamiltonian in each topological sector a is then found by projecting the Ising
model down into the relevant Z, = (), sector:

H:d:gge?le) = PQ,LHSjg&LPQ,L; (576)

where Pg = (1 +Q1Q1)/2, Qr = [[,7%,.

The edge Hamiltonian on the R semi-infinite cylinder at €2, H edge, i 18 1dentical, except
with the replacement 75 ;, with 75 g.

5.C.2 Calculation of H
We calculate HS, of the ground states of the Wen-plaquette model perturbed by uniform
single-site magnetic fields to lowest order in e. We start with the calculation of A" in
eqn. (5.71) of Appendix 5.B. Firstly note that Vg = 0, so Vg = 0 as well. Secondly note
that as discussed in Appenix 5.B, each term in the both edge Hamiltonians is reproduced in
A, acting on the L spin degrees of freedom, with a term-dependent rescaling that depends
on the energy difference between the ground state of Heg in eqn. (5.57) and the excited
states of Heg generated by the edge Hamiltonians. However, both edge Hamiltonians only
contain the terms TSL R and T IRTh 1L/ R and the excited states generated by these terms

acting on the ground states ]Q, @) give an energy difference of —4 (they violate 2 z-rung
operators or 2 z-rung operators respectively). Thus, in this case, the term-dependent
rescaling becomes a single, overall rescaling, and we have the result

1/ 5 ; 1/ 5
A/ = 4_1 (Hglge,L + H(Sige,R>L = 5 (He%ge,L>L7 (577)

where in the second equality we made use of the fact that (H, e%ge RIL = (]—Ie%1ge 1)L

At this point, it would be tempting to conclude from eqn. (5.31) and eqn. (5.32) that
the entanglement Hamiltonian is then precisely proportional to the edge Hamiltonian in
the lowest order in e. However, the identification HZ, = 2PoA'Pg is only valid if A’
appears at order e. In the case we are considering here, it appears at order €2, and so we
cannot directly identify the entanglement Hamiltonian.

To be consistent, we want to calculate all €2 corrections to the reduced density matrix
p%. This implies that in eqn. (5.21), we have to calculate A to second order in ¢, and ©
and = to first order in €. Thus our calculation of A’ in eqn. (5.77) is not entirely correct
as it is only a part of the €2 correction. Also, it might be the case that © and = give rise
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to undesirable €2 contributions in the dominant part of the reduced density matrix that

modifies the entanglement spectrum from that of the spectrum of the edge Hamiltonians.
However, we will show that in this case, (i) the other contribution to A’ is simply a constant,
(ii) the contributions from © and = simply contribute shift the entanglement Hamiltonian.
This calculation also explicitly shows how to perform calculations in our perturbative
framework to order €2, and by extension, to arbitrary order in e.

Result. We first state the result. To order €2,

1 ~
A=PoANPorL=Po.L (5 (Hgige,L>L + 0(62)> Po.r

@ = 6PQ7L & U_))Jlr
== EPQ’L ® Wa
Q~ O (5.78)

where w; and @y are (long) column vectors of unit strength denoting coefficients in front
of a state |7)p|i,a)g (v > 1), and |i, ) |T) g respectively. The exact expression or length
of W, and W, are unimportant here. ) is a matrix that appears at €2 as it requires at least
a second order virtual process to create an excitation to the ground state outside of the
space of two spin chains Vé’? L Vé’? R

With this result, let us form the reduced density matrix p¢ = Trz|Q, Q)(Q,Q|. To
order €2, we have the unnormalized reduced density matrix

p(i = Z ((1 + O(€2> -+ ’Lﬁlu_)’l)PQL

~Pou (HEs) Par) I7ulrls

7' T

+ Y (Por@dlm)Lli,alr +he)

T,0,a>1

+ Z - O(€) i, ), Blr- (5.79)
JBsh

To extract the entanglement spectrum, we find the eigenvalues of p$. This can be calculated
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in standard matrix perturbation theory, yielding the unnormalized eigenvalues
eig.(p7) =
<1 + 0(62) -+ uﬂzﬁl + w;w2> - elg (PQJJ (Hglge,L>L PQ}L> . (580)

Since w1, and Wi, are just numbers of order €2, we see that we can absorb the order €2
constants in the first term of the above expression into a constant shift of the second term,

which is nothing but the entanglement Hamiltonian. Thus, we have

Hey = Pau (Hys) Pau + const., (5.81)
at order €. Therefore, it is clear that in this case

gnt. = gdge,L (582)

up to shifting and rescaling, at order €2 - an edge-ES correspondence. The edge/ES Hamil-
tonians calculated in this case are the critical (14 1)-d Ising models, or the transverse field
Ising model, eqn. (5.35), projected into the different charge sectors (Z, labeled by @ and
toroidal boundary conditions labeled by Q) We have the following identification between
states in the topological phase (left) and their edge/ES Hamiltonians (right):

) < H%_FI‘IM,-&-I
)
)
)

e) < HT_PI‘IM,—D (5.83)

+1
le) < Higng 1

—1
Im) < Hypmg 11

where the label {I, m,e = e x m} indicates that the states carry the corresponding anyonic
flux.

Proof. We present the proof of our assertion, eqn. (5.78). First let us find the order ¢
corrections in © and =. We identify the relevant terms in eqn. (5.56) that contribute. Let
us concentrate on the contribution from perturbations on the right semi-infinite cylinder,
Vg. The term that contributes is [—S5%, aPy r)s specifically, the order-e term of S¢, which
is given by eqn. (5.55). By virtue of the fact that Vi is a sum of single-site magnetic fields
which can only connect the subspace Vg  to Vi through a single virtual process, we can
further distill the relevant term:

—e(PyrVrP'p +h. c.) (5.84)
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is the term that contributes to © to order e. The correction induced is

€Z<T|L<ia alrPrrVrPorlQ, Q) x |T)Lli, )k

T,

- eZ<T|L<i,a|RvR(;PQ,L|a>L|a>R) < |2l @b

=Y (Pou),, (i,alrVrlo)r x |7) i, ) p. (5.85)

where a = 1. Now, Vi = > _(w})sv§, where v§; are single-site magnetic fields. For each
Uk, VR acting on |o) g creates a unique excited state v§|o)g € V) which is unique - there is
no other v, such that vg|o)r = vi|o)gr. Thus, the label s identifies a unique excited state
|0€)r = v§|o)r. Using this result, we can write the correction as

> (Par),, (w)lm)Llo)r, (5.86)

from which we read off
O = 6PQ7L ® U_ﬂlL, (587)

as claimed. A similar analysis for the contributions from the perturbation V7, on the L
semi-infinite cylinder will yield

E = ePy.p, ® 1. (5.88)

Next, we show that A has the asserted form. We have already accounted for the H, e%ge, L

term, as it appears from the edge Hamiltonians, and so we only have to account for the
O(€é?) shift in A’ of eqn. (5.78).

This O(€?) shift arises from the second order process in perturbation theory. This
second order process corrects the state [n(?)) as

3 k) (KO V|10 (10)| V| £©)
(B — EOEY — EY)

k#n

l#n
L) (O [n @) (kO V [n)
& e 5y

(5.89)

1 <n(0)\V\k(°))(k(o)\V|n(0)>
(0)
p!" )2

— 5] 0 0
7 (BY -BD)y
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where \k(0)> refers to eigenstates of the unperturbed Hamiltonian. As it is a process which
involves two Vs it gives rise to contributions of at least order €2. In our case, the unper-
turbed Hamiltonian is the exact Wen-plaquette model Hy, + Hr + Hpg, and [n(¥) is the
ground state of the exact Wen-plaquette model on the infinite cylinder in each topological
sector, eqn. (5.58). Note that the second term evaluates to 0 because (n® |V |n(®) = 0.

Now, there are two contributions to O(e?). The third term in eqn. (5.89) simply rescales
n®) = |Q, Q) - this gives one source of the shift O(e?) in A’. The other source comes
from the [-Sf,[~SF, aPg ]| term in eqn. (5.56) (and also the R term), specifically with
the first order term S; of S¢ and S%. Expanding the two commutators and focusing on
the relevant term on the R cylinder gives us

[—S%, [=Sk, aPy p]] ~ EQP(i RVRPL RVrPy (5.90)

However making use of the fact that the each term in Vi = ) (w])sv} creates a unique
excited state above any given state in Vjp, it must be that the above term is simply
proportional (at order €*) to Py'p, i.e.

[—S%. [~Sk OCPS,RH ~ 52P(?,R- (5.91)

This then contributes ~ €2|Q, Q) in perturbation theory as well. A similar story holds for
the L term. Thus, we have identified the sources of the O(€?) shift in A’ of eqn. (5.78).

This concludes the proof of our claim.
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Chapter 6

Universal Edge Information from
Wave Function Deformation

This chapter was published in [5]

6.1 Introduction

Topological order (TO) in a gapped (2 + 1)-dimensional quantum many-body system is
believed to be characterized entirely by universal properties of its ground state(s) [213,

, , 35]. For instance, a nonzero topological entanglement entropy « in the ground
state indicates the presence of TO and is a measure of the total quantum dimension of
the underlying anyonic system [34, 35]. The braiding statistics of anyons in the theory is
another such universal property and can be extracted from the S and 7 matrices, computed
by measuring the overlap between the ground states transformed by modular matrices on
a torus [198, , 1, 215].

The different kinds of edge theories that a topological phase can support, when placed
on a manifold with a boundary, constitute another universal piece of data that we will
be concerned with in this chapter. It is well-known from the bulk-edge correspondence
that the topological physics of the bulk constrains the possible types of edge theories
[78, 79, 80, |. For example, in Abelian topological phases, it is understood that the
number of topologically distinct gapped edges is in one-to-one correspondence with the
number of Lagrangian subgroups of the anyonic model in the bulk, each of which is a
set of quasiparticles that obey certain braiding statistics within and without the set [89,
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, 91]. One very useful way of studying the edge theory of a given bulk is to look at
the entanglement spectrum [ES] (or entanglement Hamiltonian [EH]) of its ground state
|W), through the edge-ES (or edge-EH) correspondence [217]. The EH Hy. is defined
as follows. For a given bipartition of the system into two parts L and R, such that
the entanglement cut mimics the geometry of the physical edge in question, the EH is
obtained from p;, = e e where Z = Tr(e ") and p;, := Trp|¥)(¥] is the reduced
density matrix on L. The ES is then simply the eigenvalues of the EH. The edge-ES
correspondence states that the ES typically reproduces the universal, low-energy spectrum
of the edge [218, 4]. Tt is natural to conjecture that this correspondence applies not just to
the spectrum but also to the Hamiltonians in an edge-EH correspondence — such a view is

indeed supported by the recent work of Ref. [1].

However, here a quandary arises. A single quantum state gives a unique EH, i.e. a
single instance of an edge theory. Yet, as mentioned before, the universal features of
topological order, which include the set of possible edge theories, should all be contained
within a quantum state. Thus, a natural question that arises is: can one extract all possible
edge theories starting from only one quantum state (or a microscopically few number of
quantum states) believed to host the TO?

In this chapter, we argue that this is indeed the case: by locally deforming only one (or a
few) quantum state(s), one can extract the edge theories of the TO, at least perturbatively.
Concretely, we work with nonchiral topological phases, where the natural quantum states
that characterize the TO are the so-called fixed-point wave functions (FPWs), |[Yrpw)
[219, , 26, 84]. These are special quantum states obtained at the fixed-point of an
entanglement renormalization group flow in the space of quantum states, after all nonuni-
versal, short-ranged entanglement has been removed. We consider deforming the FPW as
such:

[rew) = [¢) = Q)i + €Vi) [rpw).- (6.1)

i

Here i is a region localized in space (not necessarily single-site), ¢ a small parameter and
V; some chosen operator with support on i. Our claim is that all edge theories of a
topological phase, obtained perturbatively from a fixed-point limit (more precisely, the
fixed-point Hamiltonian), can be extracted by studying the EH of the deformed FPW [|¢).
Furthermore, we can restrict the set of operators V; to have support only in L, so that
we can also study the edge theories through deformations of the reduced density matrix

135



directly:

pr = pr, = [®(Ii +€V;) : (6.2)

€L

PL [®(|z + €Vi)

€L

Note that there is no bulk Hamiltonian involved in this approach of studying edge the-
ories - thus, wave-function deformation lends even more support to the view that TO is
characterized by only a small set of quantum states.

At first sight, the possibility of extracting universal edge information simply from de-
formations of the FPWs is a rather surprising claim. This is so because the nth-Rényi
entropies of py are all equal for the FPW| so one would expect that beyond the topologi-
cal entanglement entropy, no further universal data about the edge can be extracted from
|ppw), which was indeed claimed in Ref. [221]. On the other hand, TO is characterized by
the “pattern of entanglement” in the wave function [34], and so all universal data including
that of the edge should be contained within the structure of the FPW.

In the rest of this chapter, we present both theoretical analysis and numerical evidence
to support the latter point of view. For the sake of exposition, we first illustrate our claim in
a specific model: the Wen-plaquette model [195], a quantum double of Z; with TO similar
to the toric code. We present a perturbative analysis to derive the EHs of the Wen-plaqutte
model from local deformations to its FPWs, comparing this to known results about its edges
theories. We also numerically confirm our analysis by showing that we can reproduce and
distinguish the two topologically distinct gapped edge theories that are well known to exist
for a system with Zs-toric code TO, by measuring a nonlocal order parameter. Then, we
present a perturbative argument for the validity of wave-function deformation for general
nonchiral topological phases that are described by string-net models. Finally, we discuss
potential applications of wave-function deformation and conclude.

6.2 Example: Wen-plaquette model

It is instructive to first illustrate concretely our claim of extraction of universal edge infor-
mation beginning from only the FPW in a specific model, before presenting the argument
for general nonchiral topological phases. We will focus on the Wen-plaquettte model in
this section.
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Figure 6.2.1: The infinite cylinder of width L, on which the Wen-plaquette model is defined
on, with the bipartition into two semi-infinite cylinders L and R. The red and blue strings
acting on the row of spins adjacent to the entanglement cut are the two noncontractible
Wilson loops wrapping around the cylinder, ' and I,

6.2.1 Edge theories of Wen-plaquette model, revisited

We first review known results about the edge of the Wen-plaquette model using the Hamil-
tonian approach (mainly following Ref. [1]; see also Ref. [196] for a Projected Entangled
Pairs States (PEPS) approach).

The Wen-plaquette model is a fixed-point Hamiltonian acting on a square lattice of
spin-1/2s, comprised of mutually commuting plaquette-terms:

H:-Zopz—Z@, (6.3)

and its ground states(s) are FPWs. O, = g\/pj = 71 X973X, is a plaquette-term, where

{X;,Y;, Z;} are the Pauli-matrices acting on site i. The emergent TO is bosonic Z,-toric
code, and so the system supports anyonic quasiparticle excitations labeled by {1,e,m, f}.
The geometry we consider here is an infinite cylinder of circumference L, (L, = 4n for some
integer n), with a smooth bipartition dividing the infinite cylinder into two semi-infinite
cylinders left (L) and right (R), mimicking the physical edge of a semi-infinite cylinder.
On such a geometry, there are four topologically distinct FPWs, each of which carries an
anyonic flux as measured by the two noncontractible Wilson loops I'* = 21 Xy - - Z 1 X1,
and I'" = X7, --- Xy, 171, wrapping around the cylinder, which we choose to act on
the circle of spins on L just adjacent to the entanglement cut, see Fig. 6.2.1.
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On the left (L) semi-infinite cylinder, which has a boundary, we know from the work
of Ref. [1] that the emergent degrees of freedom (DOF) which both the edge Hamiltonian
(EdH) and the entanglement Hamiltonian (EH) act on are pseudospin-1/2s, composed each
of two real spins on the boundary (see Fig. 6.2.2(a)). In addition, the algebra of boundary
operators (i.e. operators which act on these emergent DOF's) is generated by the operators
Z;X;y1, that each act on two boundary spins (i,7 4+ 1) of L. In terms of the pseudospin-
1/2s, a mapping to pseudospin operators that preserves the commutation relations of these
boundary operators can be found as follows:

Zgnlegn < T;f, ZQnX2n+1 e T;Terl, (64)

where 7% is an a-Pauli operator acting on the n-th pseudospin-1/2 (see also Fig. 6.2.2(a)).
We see that these are Z, symmetric, Ising-type terms 7,7 and 7777, ;. There is a similar
mapping for boundary operators on R. Thus, both the EdH and EH are made out of
linear combinations of products of 77 and 7,77, ,, which are therefore both Z, symmetric
Hamiltonians.

What are the different gapped edge theories of the Wen-plaquette model? From the
works of Refs. [89, 90, 91], we know that there are two known topologically distinct gapped
edges in a system with a bosonic Z,-toric code TO, which are given by the Lagrangian
subgroups {1,e} and {1, m}. In the language of the pseudospin DOFs, 7, and the form
of the edge Hamiltonian in terms of boundary operators, these two topologically distinct
gapped edge theories can be easily understood as the paramagnetic and ferromagnetic
phases of an emergent Z, Ising-type Hamiltonian, with the two phases separated by a
quantum phase transition described by a (1 + 1)-dimensional, ¢ = 1/2 Ising CFT.

Let us now realize a clean, canonical, Ising model on a physical edge to the lowest
nontrivial order in perturbation theory. Consider the following perturbation to the bulk
Hamiltonian defined on the semi-infinite cylinder L, Eq. (6.3):

Zz' + ]’LXZ, 1 even

. : (6.5)
hZZ + Xi, 1 odd

eV (h) = =€) _Vi(h), Vi(h) = {

€L

so that the full bulk Hamiltonian is H + ¢V (h). Here, € < 1 (the bulk gap is 1), and h
is a tunable parameter. It has been shown in Ref. [] that to O(€?), both the EdH on a
semi-infinite cylinder L and the EH of the ground state of H+€¢V (h) on an infinite cylinder
are proportional to (up to a shift) the emergent Ising Hamiltonian:

HIsing = - Z (7_757_7?4_1 + hQT;f) s (66)
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Figure 6.2.2: (a) The L semi-infinite cylinder with the boundary on the right. The numbers
label rows of spins. The red boundary operators Zs,_1Xs, get mapped to 77, while the
blue boundary operators Za, Xs,41 get mapped to 7.7, ;. 7,7 is an a-Pauli operator acting
on the emergent DOF's 7 at the edge, a pseudospin-1/2, depicted by the green ellipse. (b)
W(h) against h for an infinite cylinder of circumference L, = 20 and € = 0.001. Red
squares represent the numerical results obtained using the ground state of the EH on a
semi-infinite cylinder, while black circles represent the exact diagonalization results of a
bona fide Ising spin chain of length N = 10 — the agreement is virtually perfect. One can
clearly see that W(h) distinguishes between the two phases, ferromagnetic for h < 1 and
paramagnetic for h > 1, with the critical value at h = 1.
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acting on the pseudospin DOFs. The different FPWs (with which to calculate the EdH
and EH) give the boundary conditions on a circle (periodic/anti-periodic), and also the
different Z, symmetry sectors of G =[], 77 (see Ref. [1] for a more detailed explanation
of the symmetry sectors corresponding to different FPWs).

If h < 1, the ground state of Eq. (6.6) realizes the ferromagnetic phase, while if A > 1,
then it realizes the paramagnetic phase. When h = 1, so that there is full translational
symmetry around the cylinder, the EAH and EH are both the critical Ising model, which
realizes the ¢ = 1/2 Ising CFT in the low-energy limit, as expected from Ref. [1] using
arguments of Kramers-Wannier self-duality.

6.2.2 Edge theories of Wen-plaquette model from wave-function
deformation

Our aim now is to recover the phase diagram of Eq. (6.6) starting from only the FPWs
of the Wen-plaquette model, and to show how wave-function deformation can be used to
extract this information.

To be precise, we work with |¢ppw) that has the identity flux, i.e. it is an eigenstate of
both the I'* and I Wilson loops wrapping around the cylinder with eigenvalues +1. This
choice of FPW selects for the Z,-symmetric sector of the Ising Hamiltonian with periodic
boundary conditions'. Now, the FPWs of the model are defined by the flux-free conditions,
O, = +1 for every plaquette p. Note that these conditions do not require the notion of a
Hamiltonian, even though the states that satisfy these conditions are obviously realized as
the ground states of Eq. (6.3). The unnormalized FPW with the identity flux is given by

[weew) = |1 (#) 11 (I +20p) 10)£10) &, (6.7)

a=e,m p

where [0),[0) g is a reference state. (I + O,) is a projector onto the flux-free sector, and
I L(I 4+ I'*) projects onto the +1 eigenvalues of the noncontractible Wilson loops on

a=e,m 2

the cylinder, I'* and I'™.

'Tf we had chosen to work with the other FPWs, then we get entanglement Hamiltonians which corre-
spond to Ising models with different boundary conditions and symmetry sectors. Namely, the FPWs with
the e or m anyonic flux give rise to entanglement Hamiltonians that are the periodic Ising model in the
G = —1 symmetry sector or the antiperiodic Ising model in the G = 41 symmetry sector (the spectra of
both are the same), while the FPW with the f anyonic flux gives rise to an entanglement Hamiltonian
which is the antiperiodic Ising model in the G = —1 symmetry sector.
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Now, to recover the edge physics of the Wen-plaquette model, we locally deform only
the L half of the FPW given by Eq. (6.1), using V; = V;(h) as in Eq. (6.5), so that
[Yrpw) — [¢'(h)). We find, combining (1) a perturbative calculation in the representation
of the FPW in terms of pseudospin variables 7 (see the Appendix A for the details), and
(2) the detailed calculations performed in Appendices B and C of Ref. [1], that

ph, = N exp (—4€’P1 HLDO) + O(€%), (6.8)

Ising

restricted to the G = +1 symmetry sector. That is, Hy. is proportional to the Z-
symmetric periodic Ising model, Eq. (6.6), which is also proportional to the edge Hamil-
tonian. In contrast, for the (undeformed) FPW,

PL = NP+1. (69)

Eq. (6.8) is an instance of the concrete expression of our claim — that the EH Hepy. in pf,
obtained only from deformations to the wave function of the Wen-plaquette model, indeed
informs us about the edge physics, given by Eq. (6.6). Note the striking contrast between
pr of the FPW and p/, of the deformed FPW: the former has a flat ES and only tells us
about the topological entanglement entropy of the topological phase, while the latter has
an ES that gives us information about the edge.

However, if the EH of the deformed FPW not only reproduces the spectrum of the
EdH, but is also proportional to it, then we should be able to directly obtain the phase
diagram of Eq. (6.6) by measuring a suitable order parameter in the ground state |GS(h)) L
of the EH. Typically, the order parameter that distinguishes between the ferromagnetic and
paramagnetic phases in the Ising Hamiltonian is the local order parameter 7;7, which detects
symmetry breaking. However, because Eq. (6.6) is actually an emergent Hamiltonian acting
on pseudospin DOFSs,; certain emergent operators cannot be realized by the underlying,
original, degrees of freedom. In particular, there is no way to realize the Zs-odd local
operator 77 (which one would typically measure to detect symmetry breaking in such a
model) in terms of the local boundary operators Z;X; 1, as the latter all get mapped to
Zy-even operators (see Eq. (6.4)). One therefore has to measure a nonlocal order parameter
to distinguish between the two phases; two possible choices are the open string operators

We = AD.CRRE ZLy/Q_lXLy/Q < 7_1x7_2w i 'Tgy/4,
W™ =25X5+ 21, 2X 1,241 € T(TL, a5 (6.10)

acting on spins of L adjacent to the entanglement cut (they are not the closed string
operators I'® or I'"). Intuitively, W¢ and W™ measure the amount of anyonic condensation
of e and m quasiparticles respectively on the boundary [39, 90]. Since these two operators
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are Kramers-Wannier duals of each other, it suffices to measure only one; we choose to
measure only W¢. The expectation value is then computed in the ground state of the EH:

W(h) = (GS(h)|,We|GS(R));. (6.11)

When L, — oo, the order parameter should show a kink at » = 1 where the quantum
phase transition is. For h < 1, W(h) should be vanishing, signifying the ferromagnetic
phase, while for 4 > 1, W(h) should increase as a power law W(h) ~ (h — 1)? with some
critical exponent (3, and saturate at 41, signifying the paramagnetic phase.

We implement this procedure and obtain the phase diagram numerically. We utilize
an exact representation of |¢ppw) on an infinite cylinder with circumference L,, encoded
in a matrix product state (MPS) that wraps around the cylinder in a snake-like fashion
[107]. We deform the MPS according to Eq. (6.1) with deformations given by Eq. (6.5),
and then extract the Schmidt vector corresponding to the largest singular value in the
Schmidt decomposition, which gives us |GS(h)) .

Fig. 6.2.2(b) shows the plot of WW(h) against the tuning parameter h, for L, = 20
and € = 0.001 (the results are insensitive to the exact values of € as long as € < 1). As
expected, W(h) shows a sudden increase from 0 in the region h < 1 to +1 in the region
h > 1, with the transition at A = 1. For comparison we have also plotted W(h) of a bona
fide Ising spin chain of length N = L,;/2 = 10 with periodic boundary conditions, Eq. (6.6),
obtained via exact diagonalization. The agreement is virtually perfect. This shows that we
have successfully extracted the two known gapped edges in this system with Z,-toric code
TO, by locally deforming only |¢rpw). Note crucially that at no stage of the numerical
illustration was there any optimization of the MPS tensors.

6.3 General argument for nonchiral topological phases

Having illustrated how wave-function deformation works in a concrete example, the Wen-
plaquette model, we now make the case for the validity of wave-function deformation in
general nonchiral topological phases. As seen from the preceding section, the crucial point
was that both the EAH of the Wen-plaquette model and the EH obtained through just
a local deformation of its FPW act on the same emergent DOFs and are generated by
the same algebra of boundary operators. Thus, wave-function deformation of the FPW
could be used to explore the space of edge theories and extract the desired universal edge
information, which we did successfully.

Our aim in this section is to therefore argue that the same line of reasoning is true
for general nonchiral topological phases. Concretely, we consider nonchiral topological
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phases for which there is a string-net description, and perform a Schrieffer-Wolff(SW)
transformation[199] to derive the edge Hamiltonian and entanglement Hamiltonian, be-
ginning from a fixed-point Hamiltonian and its corresponding fixed-point wave function
respectively. We will see that the forms of both the edge Hamiltonians of a given theory
and the entanglement Hamiltonians of its deformed FPWs (given by Egs. (6.1) or (6.2))
are the same, both being generated by the same algebra of boundary operators acting on
the same emergent DOF. Thus, this would imply that the universal edge information of a
topological phase is contained within the FPW and can be extracted by locally deforming
the FPW and studying its EH. Note that since the arguments presented in this section are
perturbative in nature, they do not constitute a mathematical proof of our claim; how-
ever, the calculation done for the specific case of the Wen-plaquette model in the previous
section, together with the numerical evidence presented, constitute strong evidence for the
validity of the line of reasoning below.

6.3.1 Edge Hamiltonian

The starting point is the fixed-point Hamiltonian of a generic nonchiral topological phase
on a lattice, described by a string-net model [34]:

H=->"P, (6.12)

iCM

where P; are commuting projectors, acting on a spatially local (not necessarily single-site)
region ¢ of a closed manifold M, so that the ground state subspace consists of states that
satisfy P, = +1 for all 2. The ground state subspace is typically degenerate, split into
different topological sectors, differentiated by noncontractible Wilson loops around the
manifold.

Note that the condition P, = +1 for all ¢ also precisely defines the fixed-point wave
functions of the nonchiral topological phase, so that a Hamiltonian is actually not needed
to describe these wave functions which characterizes this phase. However, we will use this
fixed-point Hamiltonian to give meaning to the term ‘edge theories’ of a topological phase.

Consider now if the manifold M is instead open, so that it has a boundary OM. Then,
if Eq. (6.12) still describes the Hamiltonian on M, in addition to the microscopic ground
state degeneracy given by the different topological sectors, there will be a macroscopic
ground state degeneracy within each topological sector, given by emergent local degrees of
freedom (DOF) on the boundary. One can remove this degeneracy by imposing boundary
conditions on dM, which amounts to adding small (¢ < 1) local perturbations €V acting
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near OM, so that the full Hamiltonian is H +¢€V. The edge theory of the topological phase
can then be understood as the low energy subspace of H + €V, which can be calculated,
for example, using the Schrieffer-Wolff(SW) transformation:

1
Hedge = P()HPO + EP()VP() + —62 Z

PoVP, VP

M-i—-

2 4
J7#0

R 6.13
where Py is the projector onto the ground state subspace, and P; is the projector onto
the higher energy subspaces. We see from the above expansion that the only terms which
contribute to the edge Hamiltonian are those that commute with all P;, since they preserve
the ground state condition P, = +1. That is, [PoV Py, Pi| = 0, [PoVP, VP, P] = 0, and
SO on.

We define A as the maximal set of algebraically independent Hermitian operators that
each acts locally on the manifold M and which commutes with all P;. That is, A is
comprised of algebraically independent operators a; which satisfy

laj, P;] = 0 for all i, (6.14)

such that support(a;) is in M. Obviously, all P, and the noncontractible Wilson loops
are in A, but on an open manifold, there will be typically many more local operators
a;, with support near the boundary 0M, localized around site j, that also satisfy this
condition. We will hence call them ‘boundary operators’. The boundary operators of A
then generates (by virtue of being a maximal set of algebraically independent operators)
the edge Hamiltonian — that is, Heqge, given by Eq. (6.13), must be a linear combination
of products of a;:

Heqge = Z Ciy, iy @iy~ " Qg (6.15)

where ¢;, ... ; is a coefficient denoting the weight of the string of boundary operators

a;, - -+ a;, and the sum is over such strings.

If the discussion above seems cryptic, it is instructive to go back to the example of the
Wen-plaquette model considered in the previous section. There, the Hamiltonian Eq. (6.12)
is given by Eq. (6.3), and an example of a boundary operator a; € A is Z; X;,1, which we
see is both localized near the boundary and commutes with all plaquette operators O, in
the bulk. Furthermore, the set of all such boundary operators Z;X;,; indeed generates
Heage, see Eqs. (6.4) and (6.6) (see also Ref. [1]).

Note that the boundary operators a; in general obey nontrivial commutation relations
between themselves, which give rise to an algebra B4 that we will call the ‘boundary
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operator algebra’ (c.f. Eq. (6.4) for the Wen-plaquette model). Because of this nontrivial
algebra, the edge theory will have a nontrivial dispersion relation. Also, if the operators
a; are chosen as local as possible, then the condition that one adds local perturbations eV
to H translates to the fact that the edge Hamiltonian will also obey some approximate
sense of locality on dM, since the support of the terms in the expansion of Eq. (6.13) can
only grow linearly with the order of €. Also, a local perturbation V' ensures that the edge
theory can be defined within each topological sector of the bulk theory without ambiguity,
as mixing between topological sectors will be suppressed by an exponentially small factor
~ €l where L is the length scale associated with the boundary OM.

6.3.2 Entanglement Hamiltonian of deformed FPW

Now, we shift perspectives and start from the fixed-point wave functions of a topological
phase defined on a closed manifold M. We assume an entanglement cut of M into two
parts L and R, mimicking the physical cut. Our aim in the following is to argue that
the entanglement Hamiltonian that emerges from wave-function deformation of the FPW
is also generated by A, the maximal set of algebraically independent operators that act
locally and which commutes with all P;. If so, then that would imply that the space of EHs
and the space of EdHs are equivalent (at least perturbatively), and so edge information of
the topological phase can be extracted from wave-function deformation, thereby supporting
our claim.

We have the following Schmidt decomposition of the FPW:
[Yrpw) =T H P|Pjcr = +1)|Prcr = +1), (6.16)

iNOM#0

where P;;, are projectors that have support entirely in L/R, while projectors P; are those
that span the entanglement cut. I' is some Wilson line/loop that chooses the FPW of a
particular topological sector. Since [F;, Pj;] = 0, it must be that P; can be decomposed into
products of elements of A, and Ag. Here Ag is the set A, defined previously, corresponding
to the { = L/R semi-infinite cylinder. That is, schematically, P, = > f](ar) fr(ar), for
some functions f}' IR As an example, a plaquette term in the Wen-plaquette model that
straddles the entanglement cut is Zr 1 Xg1Zr2X1 2 which can be written as Z; X1, ®
XRr1Zp2, where the two terms of the tensor product belong to Ay, to Ag respectively.

Thus, the Schmidt decomposition of the FPW must be

1 N
[Vrpw) = Vi ; |a}) @ |ag), (6.17)
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where N is the multiplicity that gives the correct topological entanglement entropy of
the topological phase, and |a} /R> are states in the ground state subspace of the open
manifolds My g, schematically distinguished by the boundary operators a; /R € Ar/r
(recall the macroscopic degeneracy in the case of open manifolds which can be resolved by
the boundary operators). This gives the reduced density matrix on L:

1
where P{ is the projector onto the ground state manifold (of H as in Eq. (6.12)) restricted
to the topological sector chosen by I'. We see from this that the ES is flat, as the ES of
the FPW should be.

Next we deform the reduced density matrix as in Eq. (6.2). If we write @),(l; + €V;) =
X exp(eV;) ~ exp() 5, €"5,) (Sn is given by the Baker-Campbell-Hauserdoff formula; in
particular, S; = ), V;), then we have the deformed reduced density matrix

1
o~ — | Py +e{S,PL}+0() |, (6.19)
N v \ -— /
h v

where {-} is the anticommuator and we have interpret Eq. (6.19) as a ‘perturbation’ v on
a ‘unperturbed’ Hamiltonian h. We now apply the SW transformation to the Hamiltonian
h + v, like before, but to instead obtain the ‘higher-energy’ subspace perturbatively. Here
[|h]| = 1 and ||v|| ~ € so the use of the SW transformation is justified. We have, to the
two lowest orders in e,

(6.20)

€2 PEUP&)POF
2 1-0 '

1
i = 57 (P5 -+ ePBoPS +

Comparing the above to the perturbative expansion of the edge Hamiltonian given by
Eq. (6.13), there is more than structural similarity of the expansions; there is also algebraic
similarity. Since P} is non other than the projector onto the ground state manifold of the
fixed-point Hamiltonian H on M, it follows that (p/ )nien must also be generated by A,
the maximal set of local, algebraically independent operators in M that commute with
all P;, similar to Heqge. Furthermore, since the deformations of the FPW were local to
begin with, (o} )nign is also approximately local on M. There is one more step to the
entanglement Hamiltonian He, : one has to take the logarithm of (p/ )nign, but it is clear
that the entanglement Hamiltonian will also be generated by A, although the notion of
locality might be affected. However, to lowest order in €, the entanglement Hamiltonian will
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still be approximately local. An explicit example of the above calculations for a particular
model, the Wen-plaquette model, can be found in Appendix A and also Ref. [1].

Thus, we have argued that the forms of both the edge and entanglement Hamiltonians
are the same, both being generated by A. This implies that the space of entanglement
Hamiltonians obtained from a local deformation of the FPW is the same as the space of
edge Hamiltonians obtained from various bulks, at least perturbatively. It is natural to
assume then that for some local perturbation V' to the fized-point Hamiltonian H which
gives some edge Hamiltonian, there exists a suitable choice of local deformations {V;} to
the FPW such that the EH reproduces the edge Hamiltonian. Of course, our arguments
above do not provide an explicit recipe for constructing this map; this map depends on
the specific nonchiral topological phase in question, as one would have to find both the set
of operators A and also the boundary operator algebra B4 that these operators satisfy.
However, we believe that we have managed to present convincing arguments for our claim:
that universal edge information can be extracted solely from local deformations of the
FPWs of a nonchiral topological phase.

6.4 Discussion and conclusion

In this chapter, we have argued through both analytical and numerical means that using
wave-function deformation on the FPWs, one can extract the different edge theories that
a nonchiral topological phases can support, at least perturbatively. We stress that this
process does not require a bulk Hamiltonian, as firstly the FPW can be defined by local
consistency relations, and secondly the deformation is done at the wave function level.
Since the different edge theories that a topological phase can support is a universal piece
of data of the TO, this lends support to the belief that TO is characterized solely by a set
of quantum states.

Wave-function deformation can potentially be used to distinguish between systems with
different TO. For example, two FPWs can have the same topological entanglement entropy
(such as the Z, Kitaev toric code and Z; double semion which both have v = log2), but
extraction of the different edge theories they can host can be used to further differentiate
between them. Furthermore, the study of edge theories using wave-function deformation
can be readily applied to other nonchiral topological phases, especially since FPWs take
simple representations in terms of tensor networks [222, ; , 224] — in particular, this
allows for a numerically relatively inexpensive way of exploring the space of edge theories
as no numerical optimization is indeed. For instance, a study of the edge theories of the
Z3 Wen-plaquette model has been conducted [225].
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As a closing remark, we note that the analysis done in this chapter was perturbative in
nature, controlled by the small parameter €. Since we see that we can go from the FPW
to any gapped or gapless boundary type, and since the local deformation is invertible, it
follows that we can go from any boundary type to any boundary type of the topological
phase, starting from a perturbative deformation of the FPW. This is likely to be true
also for any nonperturbative deformation, as long as we do not destroy the TO. However,
here one would potentially have to ‘dress’ the order parameter operators (Eq. (6.10))
appropriately, see Ref. [20]. It may thus be possible to explore the entire phase diagram
of edge theories of a topological phase starting from a state |¢)) with a certain edge theory
(i.e. not necessarily the FPW): one could move in this phase space of edge theories by
locally deforming |¢)) (nonperturbatively) to produce another state [¢)') with a different
edge theory, even if the two edge theories are separated by a phase transition.
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Appendices

Appendix: Perturbative calculation of entanglement
Hamiltonian (EH)

First we rewrite the FPW of the Wen-plaquette model, Eq. (6.7), in terms of boundary
pseudospin-1/2 degrees of freedom, 7, as explained in the main text and in Ref. [1]. This
representation will also illustrate the pattern of entanglement (Z,-toric code TO) contained
in the wave function.

The product over the plaquettes p in Eq. (6.7) splits into 3 sets: those that act on
L, those that act on R, and those that act on the strip of spins where the entangle-
ment cut is defined through. Define |L) as [ o, 5(I + O,)]0); and similarly for R. Here
|0)1|0) g, the reference state in Eq. (6.7), is chosen in such a way that (Zs, Xoni1)r|L)|R) =
(XonZont1)r|L)|R) = |L)|R) for all n, where n labels the spins on both L and R adjacent

to the entanglement cut (i.e. this fixes the gauge of the reference state).

With this choice of reference state, |L) can be represented as the state with pseudospin
configuration | 11 -+ 1) (i.e. all 7,8 are pointing up), and there is a similar representation
for |R). Furthermore, the mapping of boundary operators (e.g. Z;X; acting on L) to
pseudospin operators is given by Eq. (6.4). Since the plaquettes acting on the strip (through
which the entanglement cut is made) are comprised of a product of two boundary operators
from the L and R cylinders, the FPW can be written as a superposition of pseudospin
configurations on the L and R halves:

[Wrpw) = > Pulr)ilm) e =Y |m)ilm)s, (6.21)

where P, is the projector on the G = [[, 77 = +1 symmetry sector, and |7) is a state
with a certain pseudospin configuration (e.g. | TJJ -+ }1)). Two different pseudospin
configurations are orthogonal: (7’|7) = 6,/ ,, and |7y) = |7) +|7), where T is the completely
flipped configuration of 7. Ignoring the projector, one can intuitively see that this state
is a loop quantum gas — it is an equal weight superposition of loops on the cylinder. The
different configurations 7 correspond to the different ways loops cross the entanglement
cut; |7) must pair with only |7)z or |T)g in order to form a closed loop.

We deform the FPW |¢ppw) of the Wen-plaquette model, Eq. (6.7) (or Eq. (6.21)),
according to Eq. (6.1) with V; = V;(h) as given by Eq. (6.5), and calculate the EH of the
reduced density matrix p;. Note that the manipulations here are formally similar to that
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of Ref. [1], but the logic is fundamentally different: there, the perturbative calculation was
performed for deformations to the Hamiltonian, while here, the perturbative calculation is
performed for deformations to the wave function.

Now, we note that the V;s split into two sets — those that act on spins in the bulk of L
(that is, away from the entanglement cut), and those that act on the circle of spins in L
living adjacent to the entanglement cut. The former set simply renormalizes |7);, — |T)z,
which is still an orthogonal set, and so we drop the tilde label in our discussion. We
therefore see that the change of the entanglement spectrum comes only from deformations
to the wave function on spins next to the entanglement cut.

The deformed FPW, to O(e?), is then

Wmy= I  G+e)d Imiln)z

i€ L,adj. to cut

= (I +ed Vi +262Z%Vj> > oIl e (6.22)

i<j

Consider the O(e) effect of the deformation. This generates terms |a).|7)r where |a)p
is a new ket orthogonal to all the pseudospin configurations |7}, (specifically it is a state
describing an excitation in the bulk). Consider next the O(€?) effect of the deformation.
This generates two kinds of states. If V; and V; are not adjacent, then we also obtain a
state |ay)r|T)p. But if j =i+ 1 ie. that V; is next to V}, then they can form boundary
operators Z; X; 11, so that the deformed FPW contains new states |7')|7)r for some 7/, 7.
The crucial point is that there is now additional coupling between states that are labeled
only by pseudospin configurations which are beyond the diagonal |7, )1|7)r ones. These
off-diagonal terms |7’)1|7)r generate the EH.

Specifically, from the mapping given by Eq. (6.4), Vo, _1Van|70) 0| 7) R <> BT 7 ) L|T) R+

-~ and Vo Vot |74 ) | T) r+ < 7277 |T)L|T)R + - -, so that the deformed FPW is
¢/ (R))
=> (I +268 ) (Timi + hQTif)) [T )Ll R+
= (Py1 — 2P HYPS) 7)) m)r+ - (6.23)
where --- refer to terms such as O(e)|a)p|T)r. At this stage, we are done: from the
detailed calculation performed in Appendices B and C of Ref. [1], we see the --- terms do
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not contribute to the EH at leading order, and so

pr = Trrld’ () (W' (h)]
=N exp (—462P+1HPBC> + 0(63). (6'24)

Ising

That is, the EH is proportional (up to a constant shift) to the periodic Ising Hamiltonian
projected into the G = [], 77 = +1 sector, which in turn is proportional to the edge
Hamiltonian (EdH) of the Wen-plaquette model. This is Eq. (6.8) in the main text.
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Chapter 7

Fermionic gapped edges in bosonic
abelian topological states via fermion
condensation

This chapter has not been published.

7.1 Introduction

Topologically ordered phases of matter in (241)-d are gapped many-body states with
patterns of long-range entanglement [24]. These patterns of entanglement give rise to a
host of universal features, which are protected from any local perturbations that do not
close the bulk gap. Among these features include quasiparticle excitations with fractional
statistics and charges, topology-dependent ground state degeneracies and interesting edge
physics. The most famous examples of topological phases are the fractional quantum hall
(FQH) states, which have been experimentally realized.

A universal quantity characterizing the edge of a gapped system is the so-called chiral
central charge c_. Systems with c_ # 0 are said to have chiral topological order and posses
gapless modes which are impossible to gap out (modulo closing the bulk gap) and so they
are maximally protected. Systems with ¢ = 0 correspond to non-chiral topological order
and one might ask whether these edges have any additional universal features, inherited
from the bulk topological order.
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In particular, an interesting question is the following: since the edge of a non-chiral
topological phase is not intrinsically protected, how many different kinds of topological
distinct gapped edges are there? Here a gapped edge is defined as a gapped domain wall
between the topological phase and the vacuum (a topologically trivial gapped state). This
question has been answered thoroughly in ref. [39, 85] for abelian topological states (see also
[90, 91]). There it was found that the classification of topologically distinct gapped edges is
completely given by Lagrangian subgroups M consisting of subsets of quasiparticles of the
theory: the presence of each M is a necessary and sufficient condition for a gapped edge.
Physically, each M corresponds to a maximal set of quasiparticles in the theory that can
condense on the boundary, leading to a topologically distinct gapped edge. Therefore, the
different kinds of edge theories is a universal feature constrained by the bulk topological
physics. Interestingly there is the possibility of a non-chiral topological phase having no
Lagrangian subgroups, which implies that it has gapless edge modes which are protected
by something more subtle than symmetry or chirality [39].

However, there is a subtlety involved in defining a vacuum or ‘topologically trivial
gapped state’. Depending on the notion of locality in the vacuum — bosonic or fermionic,
there can be two kinds of vacua. That is to say, the topologically trivial local excitations
in the vacuum can be either bosonic or fermionic in nature, such as in a Ising paramagnet
for the former and a trivial band insulator for the latter. In the works mentioned above, it
was always implicitly assumed that a gapped edge of a bosonic topological phase implied a
domain wall between a bosonic topological phase and a bosonic vacuum, and in particular,
meant that the possibility of a fermionic vacuum was not considered.

A natural question is, does it even make sense to consider gapped boundaries between
bosonic topological orders and fermionic vacua? We would like to argue that the answer
is yes, one must consider this generalized scenario for computing the number of gapped
boundary types if the bosonic topological order emerges from a system with local fermionic
degrees of freedom (such as a system of electrons).

This can naturally happen if a system with local fermionic degrees of freedom is in a
gapped phase where the local fermions are confined at low energies, and thus lead to a
topological order with bosonic locality. An example is the large U limit of the Hubbard
model, which can lead to gapped spin liquids with bosonic topological order [77]. Another
example is a two-dimensional s-wave superconductor which, due to the Higgs mechanism
and charge 2 of the Higgs field (Cooper pair), at low energy is described by a Z, gauge
theory and thus have topological order [76]. Therefore a case where a bosonic topological
phase has a domain wall with a fermionic vacuum could occur, for example, between a
two-dimensional superconductor and a band insulator.
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In this chapter, we analyze the gapped edges that appear at the junction between a
bosonic topological phase and a fermionic vacuum. In this scenario, we find new gapped
edges, in principle beyond the ones found in [39, 90, 91], which we call fermionic gapped
edges.

These new edges can be understood in two ways: 1) in the framework of Lagrangian
subgroups M in Ref. [89], we show that the condition to find M, which states that quasi-
particles in M must be self-bosons, should be modified to allow self-fermions as well. We
will see below that this condition arises from an allowed physical process of ‘fermion con-
densation’: if and only if a quasiparticle in the bosonic topological phase is a self-fermion,
then it can combine with a real fermion on the boundary in a process reminiscent of ‘Cooper
pairing’ to condense on the boundary. This leads to the new fermionic gapped edges. 2)
We also provide a modular invariance argument and show that a relaxation of the modular
invariance constraint on the partition function from Z(7) = Z(7 + 1) to Z(7) = Z(7 + 2)
generates these new fermionic gapped edges.

To illustrate the presence of a fermionic gapped edge, we consider a system with bosonic
Z, topological order. The bosonic topological state hosts an array of topological quasiparti-
cles {1,e,m, f}. It is well understood that there are two Lagrangian subgroups M, = {1, e}
and M,,, = {1, m} which correspond to condensing the two self-boson quasiparticles, e and
m respectively, leading to two topologically distinct gapped edges. However, if we consider
the more general notion of gapped edge, we find that there will be an additional Lagrangian
subgroup M; = {1, f} corresponding to condensing the self-fermion quasiparticle — this
leads to a new, topologically distinct fermionic gapped edge. We further demonstrate the
process of fermion condensation explicitly in a microscopic model, the Z; Wen-plaquette
model [195] (unitarily equivalent to the Kitaev toric code model [69]) coupled to an array of
Majorana fermions (the gapped fermionic vacuum), showing clearly the mechanism of con-
densation of the f-quasiparticle. We then explore the rich phase diagram of the edge theory
of this model by mapping the edge theory to a modified Ashkin-Teller model. We show that
there are critical lines of ¢ = 1 Zy-orbifold boson CF'Ts separating the three gapped phases,
including ones with exotic symmetries such as twisted N = 2 supersymmetry. Another
feature is that the Z, electro-magnetic duality of the Z, topological order, is effectively
extended to a full S3 symmetry, corresponding to permutations of all quasiparticles. This
implies that the boundary theory is equipped with a non-abelian Kramers-Wannier duality,
constraining the phase diagram considerably. This is indeed directly observed in the study
of the boundary theory.

The chapter is organized as follows. Sec. 7.2 presents a brief but necessary review
of the formalism for characterizing abelian topological order using abelian Chern-Simons
theory. Sec. 7.3 presents our work— we analyze the domain wall between a bosonic abelian
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topological phase and a fermionic vacuum. We argue for the modification of the condition
in the Lagrangian subgroups M that quasiparticles in M should be self-bosons to include
self-fermions. We also provide a modular invariance argument. In sec. 7.4, we provide a few
examples, and in particular illustrate the fermionic gapped edge in a system with bosonic
Z, topological order. We further explicitly construct a microscopic model realizing this
topological order: the Z, Wen-plaquette model coupled to an array of Majoranas fermions
at the boundary. Sec. 7.5.3 analyzes the phase diagram of this model. We conclude with
a discussion in sec. 7.6.

7.2 'Topological order and gapped edges

7.2.1 Characterization of topological order

In this section, we briefly review (2+1)-d abelian Chern-Simons theory. The review in
this section largely follows [90]. A systematic description of all abelian topological states
is believed to given by (2+41)-d abelian Chern-Simons (CS) theory [105], described by a
Lagrangian density with a non-singular, integer K-matrix

1
;C = EK]JGW)‘aiayai, (71)

where af, I = 1,--- ;rank(K) are compact U(1) gauge fields,and p,v, A are (2 + 1)-d
space- tlme 1ndlces The topologically non-trivial quasiparticles are described by integers
vectors l Where two integer vectors [ and I’ describe topologically equivalent quasiparticles
if ! = 4+ KA, where A is an integer vector. Therefore, the integer lattice in rank(kK)
dimensions, modulo this equivalence relation, defines a discrete group consisting of the
quasiparticles, with the number of topologically distinct quasiparticles given by |Det(K)|.
Vectors KA describe local particles, which are always bosons or fermions.

If the K-matrix has all diagonal elements that are even integers, then the K-matrix
is said to be even and all local particles are bosons — such a K-matrix describes bosonic
topological order; otherwise, the K-matrix is said to be odd and the microscopic degrees of
freedom must contain fermions (possibly in addition to bosons) — such a K-matrix describes
fermionic topological order. The signature of the K-matrix is defined to be the number of
positive eigenvalues minus the negative eigenvalues.

The mutual statistics of two quasiparticles labeled by [and I are given by

05 = 2l K" mod 2, (7.2)
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Figure 7.2.1: (a) Self-statistics and (b) mutual statistics of quasiparticles. Different colors
and shadings correspond to dlfferent qua81partlcle types, while x illustrates the presence
of a local fermion. Only the self-statistics (a) will have an ambiguity of 7 in the presence
of a local fermion, since in (b), any possible phase from the local fermion will cancel due
to the double exchange in the mutual statistics.

while the self-statistics (also called exchange statistics) of a quasiparticle [is given by

0 TR { mod 7 for fermionic topological order, (7.3)

mod 27 for bosonic topological order.

We can understand the difference in the condition for the self-statistics for fermionic and
bosonic topological order as follows. In fermionic topological order, there exists local
fermions which are topologically trivial, in the sense that the creation and removal of these
local fermions are effected by local operators acting on the system. Hence, a non-trivial
quasiparticle can come ‘bound’ together with an odd or even number of local fermions,
and there is a sign ambiguity of 7 if one attempts to compute the self-statistics of a pair
of quasiparticles. In order to achieve a consistent notion of self-statistics, one has to mod
out this m phase ambiguity. No such ambiguity happens for the mutual statistics since
there is a double exchange of quasiparticles, leading to a cancellation of the 7 phase of the
fermions. This ambiguity is depicted in Fig. 7.2.1.

Note that different K-matrices can specify equivalent topological states if they have
the same quasiparticle content. One such transformation is K — WTKW, where W is
an integer matrix with |Det(WV)| = 1, while another transformation is by extending an
even (odd) K-matrix to K’ = K @& Ky, where K is an even (odd) even-dimensional, zero
signature matrix with |Det(K,)| = 1. Extending K to K’ in this way does not add any
topological quasiparticles, so K’ and K describe the same topological order.

The abelian Chern-Simons theory in the bulk, eqn. 7.1, possesses gapless edge states
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described by a (1+1)-d Luttinger liquid theory [105]:

K
Logge = Tjjaxabfam — V182104, (7.4)

where V;; is a positive-definite velocity matrix. The number of left and right moving
bosons, n; and ngr are set by the number of positive and negative eigenvalues of K re-
spectively. The electron operators W; and quasiparticle operators x;on the edge are given
by

O =17 = eiﬁd’, (7.5)

where [ is an integer vector labeling the quasiparticles and ®;s are real compact scalar
fields: ®; ~ ®; 4+ 27. When ®; has integer scaling dimension, the “electron” is a boson,
while if it has half-integer scaling dimension, it is a fermion.

This Luttinger liquid theory describing the edge, eqn. 7.4, is gapless. Local, backscat-
tering terms can be added to the Lagrangian to generate an energy gap in the edge theory.
Note that since backscattering terms gap out left and right moving modes in equal num-
bers, a K-matrix with non-vanishing signature can never be fully gapped. Hence, for an
abelian topological phase to be possibly fully gapped, it is a necessary (but not sufficient)
condition for the K-matrix to have vanishing signature.

In this chapter, we restrict ourselves to K-matrices that have non-vanishing signature
and dimension 2N - in other words, systems with non-chiral, abelian topological order.

7.2.2 Gapped edges

In this section, we present the classification derived in [39, 90, 91] for all topologically
distinct gapped edges an abelian topological state can support when placed next to a
topologically trivial bosonic vacuum, in terms of the Langrangian subgroups M of topo-
logical quasiparticles in the theory.

A gapped edge in an abelian topological state next to a topologically trivial vacuum
is possible if and only if there exists a subset of quasiparticle types, called a Lagrangian
subgroup M, such that

1. All quasiparticles in M have trivial mutual statistics, i.e. e

M,

mm’ = 1 for any m, m’ €
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2. Every quasiparticle that is not in M has nontrivial mutual statistics with at least one
quasiparticle in M, that is, if [ ¢ M, then there exists an m € M with e%m #£ 1,

and for bosonic abelian topological order,
3. All quasiparticles in M must be self-bosons, i.e. e”» =1 for all m € M.

The proof of this involves going from this abstract Lagrangian subgroup language to null
quasiparticles and then to adding local backscattering terms to the edge Lagrangian [39].

We give a physical picture as to what the set M describes: this is the set of quasi-
particles that can be simultaneously condensed at the edge, consistently. Condensation is
the idea that we can create a quasiparticle/quasihole pair m,m deep in the bulk from the
vacuum state (not to be confused with the vacuum system!), adiabatically move them to
two points a, b far away from each other using a Wilson line operator W,, 4, but both near
the boundary, and then annihilate them by two exponentially localized operators U,, U, at
points a, b respectively, to return the system back to the vacuum state. That is,

UanWm,ab|¢vac> = |¢vac>‘ (76)

Intuively, the notion of a gap in the bulk and the edge is required to be able to adiabatically
move the quasiparticles in the bulk, and also to be able to condense them by exponentially
localized operators U, and U, at the edge.

However, not all quasiparticles can be consistently condensed on the boundary, which
leads to the three conditions to find M. Condition 1 in the definition of M can be under-
stood as the statement that all quasiparticles of different types in M can be simultaneously
condensed, regardless of the order in which they are condensed. If a pair of quasiparti-
cles are not mutual bosons, then there is an inconsistency arising from the non-trivial
mutual statistics— hence all quasiparticles in M must be mutual bosons . Condition 2
can be thought of as the statement to find the maximal set of quasiparticles that can
be simultaneously condensed on the boundary in order to obtain a topologically distinct
gapped edge. All other quasiparticles not in M must be confined after condensation of
quasiparticles of M, i.e. they must be able to be ‘detected’ through an Aharanov-Bohm
type measurement. Otherwise, they can be added to M without leading to a new type of
gapped edge. Condition 3 for bosonic abelian topological states is also a self-consistency
condition for condensation of two pairs of quasiparticles of the same type but in different
order. However, as we will argue later, this self-consistency condition relies on the fact the
exponentially localized operators U, and U, are bosonic in nature (they mutually commute
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if separated far apart), and should be relaxed if, at the boundary, U, and U, can acquire
different commutation relations due to different notions of locality in the vacuum.

Now, one can also understand the domain wall between two different theories A; and
As harboring two different kinds of topological order using a simple and well-known trick
called the folding trick. We can imagine folding A, back onto A;, to obtain a boundary
between the topological phase A; x A, and the topologically trivial gapped (bosonic) phase,
thus reducing the analysis to the one we have presented above — finding the Lagrangian
subgroups M of A; x A,. Here A, is the parity-reversed copy of Ay, which is necessary
because the folding trick changes the parity of the state that is being folded.

7.3 Fermionic gapped edge

7.3.1 Lagrangian subgroup formalism and fermion condensation

In this section, we consider the topologically distinct gapped edges of a bosonic abelian
topological phase interfaced with a fermionic vacuum. Luckily most of the analysis follows
from a small modification of the arguments given in [39], however we will spell out some of
the details and give a physical picture behind the processes leading to a fermionic gapped
edge.

We can model this set-up as follows: let K7o be the K-matrix corresponding to a
bosonic abelian topological state living in the left half-plane, and let K; describe K-matrix
of the topologically trivial fermionic gapped system system living in the right half-plane.
This condition requires Ko to have only even numbers along the diagonal and vanishing
sign. The fermionic vacuum can be easily characterized by the following K-matrix; K; =

0o -1
there are local fermionic degrees of freedom).

(1 0 > , since | K| = 0, the sign vanishes and the diagonal contains odd numbers (thus

Although this combined system of fermionic and bosonic locality seems strange, we
can directly map into a problem we know how to deal with. We can attempt to use the
folding trick, which instructs us to view the bilayer system Ko @ K; as having fermionic
topological order since the combined K-matrix is odd. We therefore have to use the
fermionic version of finding Lagrangian subgroups in Sec. 7.2.2, which leads to possibly
more Lagrangian subgroups and hence more gapped edges. However, the folding trick does
not give much insight into the physics involved — clearly, the actual topological order (in
the non-folded system) is still bosonic in nature, so what does it really mean to treat the
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combined system as having fermionic topological order? We would like a physical reason
as to the appearance of more gapped edges without reference to the folding trick. What
precisely about the locality nature of the vacuum allows for more quasiparticles in the
topological phase to condense?

The key point is that in the original, unfolded system, while the self and mutual statis-
tics of the quasiparticles in the bosonic topological phase indeed remain unchanged, the
commutation relations of the exponentially localized operators U, and U, in Eqn. 7.6 that
annihilates the quasiparticles on the boundary at points a and b respectively can change
if we pair each operator up with a localized fermionic operator from the vacuum near the
boundary, such as y, a Majorana fermion operator. Precisely, we can have

Ue = Ue ® xe, §=a,b, (7.7)

which is still an exponentially localized operator at the boundary that removes the quasi-
particle and creates a real fermion in the vacuum at the same time. Also, more importantly,
if [Uq,, Up) = 0, then {Ua, Ub} — (. Using U, this change in the commutation relation does
not affect condition 1 and condition 2 to find M as described in Sec. 7.2.2. However, it does
affect condition 3. First let us understand condition 3 better. Let the self-statistics of the
m particle be 6,,. We want the order in which we condense two pairs of m quasiparticles
on the boundary to be irrelevant, so consider the following process:

3 U,
U, |
< x Ny = (U UaWa) (UaUWo ) (7.8)
I Ud 3

which should bring the system back to the vacuum state. Here W, ;; is a Wilson loop from
point ¢ to j on the boundary for the particle of type m. Then, Eq. (7.8) is equivalent to

\a \a
\b ; \b
(UUg)(U,U) 6 e (UU)(UUg)
‘C <C
Us ’
= O : Ub i
: » U
| Ui
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However, there is a phase factor e~ due to the self-statistics of m, and so Eqn. (7.6) and
(7.9) are inconsistent if 6,, # 0 — that is, if they are not self-bosons. Now consider if we
use U instead of U to annihilate the quasiparticles on the boundary. Then we have

(0,000 éﬁ (GO
d <‘d

| (7.10)

where once again (UaﬁCWmﬂc) is understood to happen before (UbﬁdWm,bd). Crucially
now, the RHS of Eqn. (7.10) now has a phase factor (—1) x ¢ which can made equal to
unity if 6,, = m — that is, if the quasiparticles are self-fermions, they can self-consistently
condense. We see that condition 3 should then be relaxed to allow both self-bosons and
self-fermions in the Lagrangian subgroup.

In principle, this argument just shows that if the boundary between a bosonic topolog-
ical order and a fermionic vacuum is gapped, it must satisfy the criterion of Lagrangian
subgroups without the self-boson condition. One still needs to show that having a bosonic
topological order with a fermionic Lagrangian subgroup, one will be able to gap out the
edge modes. This part of the analysis is however identical to the purely fermionic case and
shown in ref. [89].

It is not hard to see that the modification of condition 3 to allow both self-bosons and
self-fermions to be in the Lagrangian subgroup is actually equivalent to the situation if we
compute self-statistics in the bosonic TO using the fermionic version of Eqn. 7.3 — that is,
if we consider the bosonic topological phase as having fermionic topological order instead.
Therefore, the folding trick gives an equivalent result to our analysis, except that in our
approach we have explicitly elucidated the process of fermion condensation as the physical
mechanism for fermionic gapped edges.
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7.3.2 Modular invariance formalism

In this section! we give an alternative argument for the presence of fermionic gapped edges,

related to the discussion given in Ref. [216]. This description has the advantage that it
works for non-abelian theories too and can be computed from properties that in principle
are available from the ground states[!, 2]. More details regarding the bosonic case can be

found in Ref. [220].

Imagine a domain wall between two gapped systems, each described by an effective
Chern-Simons theory. It is well-known that the boundary theory will be a conformal field
theory [61, 62], with conformal families labeled by each topological particle in the bulk.
If there are i, = 1,...,ny topological excitations of the left and ig = 1,...,ng on the
right, we have the corresponding characters Xi and XiLR' The first quasiparticles, 17, = 1
and ir = 1, will always be taken to be the identity quasiparticles on the L or R part
respectively.

In order to be able to gap the conformal field theory (and regularize it on a lattice),
a necessary condition is that there are no global gravitational anomalies, i.e. there are no
anomalies with respect to large diffeomorphims. In other words, the partition function on
the torus

ZMZLZRX’LL XZR( )7 (711)
iLiR
must be modular invariant[39], where M;,;. € Ny and 7 is the complex-valued modular

parameter characterizing the torus. Under modular transformations S : 7 — —1/7 and
T :7— 7+ 1, the characters transform as

X (=1/7) = Six*(7), XH(r+1) = Tpx"(7),
XA(=1/7) = Sp'x"(r), X7+ 1) = T X (),
where (S, T1) and (Sg,Tg) are the modular matrices[56, 89] for the anyon theory on the

left and right, respectively. The condition for modular invariance Z(7) = Z(—1/71) =
Z(1 + 1) gives us the constraints

SLM = MSR, TLM = MTR, ./\/lu =1. (712)

The last condition comes from the fact that the theory must always contain the conformal
family corresponding to the identity operator and that it must be unique [59]. These

"'We would like to thank Huan He for insightful discussions about the modular invariance approach.
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conditions are similar to the ones stated in Ref. [216]. Furthermore it was shown that
these conditions are equivalent to the notion of Lagrangian subgroups for bosonic abelian
topological order, and thus are also sufficient in this case. The discussion however changes
for a theory containing fermions: the condition Z(7) = Z(7 + 1) must be replaced by the
weaker condition Z(7) = Z(7 + 2)[89, 227]. With these weaker conditions we arrive at the
following constraints on M:

SgM = MSg,  TiM=MT; My =1 (7.13)

Any solution M will correspond to a possible gapped boundary, solutions of Eqn. (7.12)
correspond to bosonic gapped edges while the extra solutions of Eqn. (7.13) correspond to
fermionic gapped edges.

Using these weaker conditions in the proof given in the appendix of Ref. [216] we
conclude that for bosonic abelian topological order, these conditions for fermionic gapped
edges are equivalent to the ones given in section 7.3.1.

7.4 Examples

7.4.1 Z, topological order

We illustrate the presence of a fermionic gapped edge in a system with bosonic abelian

g (2)> The Kitaev toric code

model is an example of a system with such topological order.

Z, topological order, described by the K-matrix Kg = (

We first use the Lagrangian subgroup formalism. From sec. 7.2.1, we see that this
bosonic topological state hosts an array of four topological quasiparticles which can be
labeled {1,e,m, f}. 1 is the trivial quasiparticle, e and m are the electric and magnetic
quasiparticles respectively, which are both self bosons (6. = 0, = 0) but mutual semions,
i.e. having mutual braiding statistics (femm = Ome = ), while f is the fermion quasiparticle
which is a self-fermion (fy; = 7) and have semionic mutual statistics with both e and m
(‘gef = me = 7T).

If the vacuum is bosonic, there are two bosonic Lagrangian subgroups which are known:
M. ={1,e} and M,,, = {1, m}, corresponding to two topologically distinct bosonic gapped
edges, and which physically correspond to being able to condense e and m quasiparticles
respectively. However, if we allow for a fermionic vacuum, then from our prescription, the
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self-fermion f can condense, which leads to one more Lagrangian subgroup My = {1, f},
corresponding to a fermionic gapped edge.

We next consider the modular invariance approach for the same system. We have the
following modular matrices (in the basis of quasiparticles {1,e,m, f}):

1 11 1 1
1 11 1 -1 -1

T, = . I L (7.14)
-1 1 -1 -1 1

interfaced with a trivial vacuum T = Sp = 1. Since T7 = 1, we just need to consider
find the right eigenvectors of Sy with eigenvalues 1 with My; = 1. There are the following
three solutions

M. =(1,1,0,0), M, =(1,0,1,0), M;=(1,0,0,1). (7.15)

M, and M,, correspond to the two bosonic gapped boundaries, as they are also right
eigenvectors of Ty, with eigenvalue 1, while M is a fermionic gapped boundary as it is not
a right eigenvector of Ty, with eigenvalue 1, but only of T7.

7.4.2 Zy topological order

It is straightforward to generalize the Lagrangian subgroup analysis to systems with bosonic
Zy topological order. For odd N, there are no topological quasiparticles that are self-
fermions, and so no new Lagrangian subgroups will be generated. Thus, no new topologi-
cally distinct gapped edges can be realized by coupling the odd N bosonic Zy topological
state to a system of topologically trivial fermions. However, for even N, the situation is

much richer. For example consider taking a general fermion f = (g), one can directly
2q

2 -
check that it cannot be detected through mutual statistics by a charge b = ( Eq ‘ ;C) for

rel’l ~ and y € Z,. These extra charges are all bosons. Any fusion of these charges also

have trivial mutual statistics with each other. Thus for a ¢ € Z such that % € Z and

% € Z the charges
92 -
(g) and <£ x> (7.16)
2q g Y

generate a fermionic Lagrangian subgroup corresponding to a fermionic gapped boundary.
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7.4.3 Ising x Ising

A more interesting example for the modular invariance formalism is to consider the Ising x
Ising theory, which can be described by doubled non-abelian Chern-Simons theories[132].
This model is non-abelian and thus beyond the formalism discussed earlier. Furthermore it
contains fermionic particles which mean it might have fermionic gapped boundaries. The
modular S and 7" matrices are given by[210]

T7, = Diag (1,67%, —1,6%, 1, —e%i, -1, —67?7 1> ,

1 6 1 6 2 6 1 ¢ 1
6 0 —¢ 2 0 -2 ¢ 0 —¢
1 —¢ 1 ¢ -2 6 1 —¢ 1
e 2 6 0 0 0 —¢ 2 —¢
Sp=7{2 0 -2 0 0 0 -2 0 2|,
6 -2 ¢ 0 0 0 —¢ 2 —¢
1 ¢ 1 —¢ -2 —¢ 1 ¢ 1
6 0 —¢ -2 0 2 ¢ 0 —¢
1 ¢ 1 —¢ 2 —¢ 1 —¢ 1

where ¢ = /2. The vacuum is given by Sgp = 1 and Tz = 1. One can readily find that
there are two solutions to the conditions Eqn. (7.13) labeled by b:

M, = (1,0,b,0,1—b,0,b,0,1), be {0,1}. (7.17)

Here b = 0 corresponds to a bosonic gapped edge and was found in Ref. [210]. For b =1
we have a fermionic gapped edge.

7.5 Microscopic model: Z, Wen-plaquette model

So far all the arguments for a fermionic gapped edge have been at the level of the underlying
field theory of the system. It will be helpful and enlightening to explicitly show the process
of fermion condensation and the presence of a fermionic gapped edge in a microscopic
model.

The model we consider in the remainder of the chapter is the Z, Wen-plaquette model
acting on spins on a square lattice (unitarily equivalent to the Kitaev toric code), which
is a microscopic Hamiltonian realizing the bosonic Zy topological order described in the
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previous section, coupled to an array of Majorana fermions (the fermionic vacuum) on
the boundary. We give a quick summary of the set-up and results: the full Hamiltonian
is parameterized by two variables that change the coupling type between the spins and
fermions, which produces all three topologically distinct edges. We find that the phase
diagram in these two variables splits into three distinct gapped regions separated by con-
tinuous lines of ¢ = 1 Zy—orbifold CFTs where the gap closes. Each gapped region in this
phase diagram corresponds to a particular topologically distinct gapped edge theory in the
topological phase.

7.5.1 Model

Consider the Z, Wen-plaquette model on a semi-infinite plane. This is a model defined on
a square lattice with spin-1/2 degrees of freedom living on the vertices (also called sites).
The boundary of the lattice is taken to be ‘smooth’-that is, the lattice is terminated
beyond a certain line of spins. This line of spins forms an infinite 1d chain of spins that we
will call the ‘boundary spins’. Next, we will adorn the square lattice with a checkerboard
coloring—white and grey. Such a choice of coloring is not unique, but in our analysis, we
will always consistently work with one such choice. We label white plaquettes by a roman
alphabet such as p, and grey plaquettes by an additional tilde label, such as p. Focusing
our attention on the boundary spins, we label these spins with the set of integers (the
choice of origin is arbitrary), but with the condition that two adjacent spins (7,7 + 1) form
a face of a grey plaquette in the bulk if 7 is even, while they form a face of a white plaquette
in the bulk if 7 is odd. The coloring and labeling is made clear in Fig. 7.5.1.

Now, the Hamiltonian on this half of the system is given by

Hi=—Y 0,=- %" @ (7.18)

peEplaq. pEplag.

where O, = @ = 71 X2Z3X, is a plaquette-operator acting on four spins around a

plaquette as shown pictorally, with {X;,Y;, Z;} representing the Pauli-matrices on site i.
The energy scale has been set to 1. Here we find it useful to introduce the following
graphical notation: we represent the Pauli operator Z; as a blue (red) string operator //Z
( //Z ) and X; as \\z ( \\7 ) if the strings live on white (grey) plaquettes, and we
color the string black if the coloring does not matter. This model realizes the bosonic Z,
topological order we wish to consider.
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Figure 7.5.1: The semi-infinite square lattice on the left with a chain of Majorana fermions
(big black dots) on the right. A checkerboard coloring (white [p] and grey [p]) has been
made on the square lattice, and we have also colored the ‘plaquettes’ outside the lattice. A
labeling of the boundary spins has been made such that two adjacent spins (¢,74 1) form a
face of a grey plaquette in the bulk if ¢ is even, while they form a face of a white plaquette in
the bulk if 7 is odd. Boundary string terms Z; X;,; are represented as non-wavy open blue
and red string operators if 7 is even or odd respectively, with end-points outside the lattice.
Notice that the blue(red) boundary operators live entirely on white(grey) plaquettes. The
wavy lines represent the coupling between the boundary terms to Majorana operators x;.
The two composite operators shown here are both terms in Hy : Z; X;11 ® ixiXiy1- The
green ellipses represent pseudo-spins of two real spins and the blue ellipses represent pairing
of Majorana fermions, defined in the main text.

On the other semi-infinite plane, let us duplicate the square lattice of the Wen-plaquette
model, but replace each spin-1/2 degree of freedom living on the vertices of the lattice with
a Majorana fermion site y. Any two Majorana modes y, and Y, obey the anticommutation
relations {x4, Xo} = 2dap. In our model, we will only couple the spin-system to Majorana
fermions that live directly adjacent to it; thus, we can simply treat the combined system
as the semi-infinite Wen-plaquette model coupled to an infinite 1d chain of Majorana
fermions, and discard the other Majorana fermions. Each Majorana fermion in this chain
can therefore be labeled with the same label as its neighboring boundary spin. Then, the

167



full Hamiltonian is given by
H(01,02) = HW +6H5(91,02), (719)

where € < 1, the energy gap in the bulk, and Hpy(6;,0,) represents the local boundary
(denoted by 0) terms coupling together the spins living adjacent to the Majorana fermions
(to be specified below), parameterized by (61, 62), where both 6y,0, € [0, 7/2].

The boundary terms in Hy are given by

Hy(61,05) =cos b H, + sin by cos 6, H,,

7.20
+ sin 0 sin 0o Hy, ( )

where as the labeling suggests, H., H,, and H represent couplings that realize a particular
edge theory corresponding to e,m and f quasiparticles respectively, and only affect the
spins and Majorana fermions that live next to each other. They are given as follows:

H, = — Z ZiXip — Z UXiXit1s

i€even i€odd
Hy = — Z ZiXiy1 — Z IXiXit1,
i€odd i€even

Using the graphical notation introduced above, the term Z; X;,; is a red (blue) boundary
string operator with end-points outside the lattice that lives on grey(white) plaquettes if
is even(odd). See Fig. 7.5.1 for an illustration of these operators.

The parameters (61, 0) tune the strengths of the various edge theories. At the special
points (61,602) = (0,0), Hy gives a pure H, edge theory, where e-quasiparticles are con-
densed on the boundary but m and f ones are confined, while (6, 6,) = (7/2,0) gives a
pure H,, edge theory, where m-quasiparticles are condensed on the boundary but e and
f ones are confined, and lastly (61,6,) = (7/2,7/2) gives a pure H; edge theory, where
f-quasiparticles are condensed on the boundary but e and m ones are confined — this is
the fermionic gapped edge, which we will analyze below. Note also that at these special
points, the full Hamiltonian is exactly solvable because all terms commute.

It is expected that the edge theory remains in the same phase (i.e. the gap does not
close) as these special edge theories upon tuning (6,62) away from these special points
(thus, the special points can be understood as fixed points in the RG sense), until the
values of (0, 6;) are such that the strengths of two boundary theories are comparable and
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the system undergoes a phase transition. We will thoroughly analyze the phase diagram of
this model below, and also study the nature of the phase transition between the different
topological gapped edges.

7.5.2 Rationale for model

Before proceeding to the analysis, let us explain how the Hamiltonian in (7.19) was ob-
tained. To begin we must understand a few key properties of the Wen-plaquette model.
The knowledgeable reader can skip the discussion of these properties and continue with
the text after Eqn. (7.24).

Firstly, the Wen-plaquette model is an exactly solvable model as the plaquette terms
O, mutually commute. Thus, the ground state subspace is spanned by states which satisfy
all O, = +1, the so-called flux-free condition, while excitations above the ground state
subspace are because of plaquette violations: some O, = —1.

Secondly, plaquette violations come in pairs and they are generated by the generalized
string operators acting on the ground state, also called Wilson line/string operators:

Wjexc.) = |wgs > (722)

PYP p’

Here W,  is a string 7 of neighboring Z,s and Xys (a and b are sites in the bulk) that con-
nect plaquettes p and p’. Only the end points of a string are physical, i.e. two strings ¥,
with the same end points p, p’ give rise to the same excited state W, [Vgs.) = W o N Ygs. >

The plaquette violations live at the end points of the string, at the plaquettes p and p/,
and we can understand these plaquette violations as the presence of a quasiparticle—anti-
quasiparticle pair. Note that these string operators live entirely on either the white or grey
plaquettes (i.e. they can only connect p with p’, or p with p/, and not p with p).

Thirdly, there are four different kinds of quasiparticles {1,e,m, f} in this model and
they are anyons with statistics as described in sec. 7.4. They can be understood as follows.
Two e- quasiparticles at p,p’ are created by a white string operator Wyﬁyﬁ,, while two m-
quasiparticles at p,p’ are created by a grey string operator W, o . An f-quasiparticle can
be understood as a bound state of an e and m and is hence created by a bound string of e
and m type. A canonical ordering of the application of W.,_ Yot and W, ., type strings that
creates e and m quasiparticles respectively has to be chosen in this case.

Fourthly, a quasiparticle is unconfined in the bulk. This means that there is no energy
cost to moving a quasiparticle. If |t,,_,) is an excited state with two m-quasiparticles at
p, P, then we can move one of the m quasiparticles to a neighboring white plaquette (say,
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Figure 7.5.2: Movement and condensation of quasiparticles. The blue string operator
initially depicts a state with two m-quasiparticle excitations at the plaquettes p,p’. To
move an m-quasiparticle from p’ to p” in the bulk, we act on it with U Zj;/_}pu, where a is the
bulk site that connects the plaquettes p’ and p”. In this case, U, ;qu,/ = Z,. Condensation
of a quasiparticle so that it ends up outside the boundary involves applying the same
movement operators. In the diagram, the local operator U{;:q = Z; acting on the boundary
site ¢ condenses an m-quasiparticle that initially lived inside the bulk (at p) to a plaquette

outside the bulk (at ¢). The green ellipses represent pseudo-spins, defined in the main text.

p’ — p”) by the action of a local unitary operator ng acting on site a, either Z, or X,

I*)p//
that connects the two white plaquettes p’ and p”. This is simply nothing but the shortest
m-Wilson string possible.

More precisely, the move is given as
move
|Ym—m) = W, |thgs) — U;Z
= W’Y;,p// |wgs>

Both states before and after the move have similar energy. Fig. 7.5.2 shows such a move-
ment.

s [mm) (7.23)

Similarly, moves can be defined for the other quasiparticles, and they are given as
follows.

1. Moving an e quasiparticle from p’' to p”: Acting by Ujﬁ/ﬁ where a is the site that

~77
p//

connects p’ and p”, and US = Z, or X, depending on the orientation.
P’ =D
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where @ is the site that

7

2. Moving an m quasiparticle from p’ to p”: Acting by U.",
p’ —p
connects p’ and p”, and U)" = Z, or X, depending on the orientation.
P —p

m

3. Moving an f quasiparticle from (p/,p’) to (p”,p"): Acting by U¢ where a

~ ~ Y
p/_>pl/ ap/_>pll

is the common site connecting (p/, p’) with (p”, p”), and the local unitaries are defined
as in the e and m move case.

By successively applying the local movement operators, we can move a quasiparticle any-
where in the system. In particular, if the Wen-plaquette model is defined on a system with
a boundary, we can move a quasiparticle to the boundary by applying the local unitaries
so that the resulting string v has an end-point living on a ‘plaquette’ outside the system.
The last local unitary U, that effects this move is the ‘exponentially localized” operator in
Eqn. (7.6) that effects condensation. See Fig. 7.5.2 for an illustration of condensation.

Fifthly, for the Wen-plaquette model on a manifold with a boundary, there will be
a macroscopic ground-state degeneracy as the plaquette conditions (O, = +1) do not
uniquely define a microscopic number of ground-states. As shown in Ref. [1], one can
further distinguish the states in this macroscopic ground-state subspace by the set of
boundary terms Z; X, ;1 (the set of operators which maximally commute is if we take all
i € even or all i € odd) that act on two adjacent spins (7,7 + 1) on the boundary, which all
commute with O,,. It is clear from our previous discussion then that the Z; X, s, depending
on their coloring, are the shortest e or m Wilson strings that have two end-points outside
the boundary. To be precise, say that ¢ € odd, then,

ZiXi1 = Wipiila, (7.24)

where p,p + 1 are ‘plaquettes’ outside the Wen-plaquette model. See fig. 7.5.3 for an
illustration of these operators. A ground state that satisfies Z; X;,; = +1 for some i € odd
can then be understood as having some e-quasiparticles condensed at the boundary. Thus,
the large number of ground states in the ground-state manifold for the Wen-plaquette
model on a system with a boundary can be distinguished by the different configurations of
condensed quasiparticles at the boundary.

We are now in a position to understand the rationale behind the boundary terms in
Eqn. (7.21) that realizes the different topologically distinct gapped edges. If we have the
Hamiltonian Hy + H., the ground state, in addition to being flux-free (given by Hy), is
then also a condensate of e-quasiparticles (given by H,, and furthermore we can ignore
the Majorana part of the system for now as it decouples from the spins). Importantly,
the theory is gapped as excitations are given by violations to the conditions O, = +1 or
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Figure 7.5.3: Boundary operators that measure condensation of quasiparticles. Left: an
example of the shortest f-Wilson string operator on the boundary. The red string forms
a loop which is a plaquette operator and is 41 in the ground state subspace. Middle: an
example of the shortest e-Wilson string operator on the boundary. Right: an example
of the shortest m-Wilson string operator on the boundary. The green ellipses represnt
pseudo-spins, defined in the main text.

Z;X;1 1 = +1 which are finite in magnitude. Similarly, Hy + H,, gives a gapped theory
with the ground state being a condensate of m-quasiparticles. So, we see that the two
boundary terms H, and H,, give rise to the topologically distinct gapped edges labeled by
the Lagrangian subgroups M, = {1, e} and M,, = {1, m} respectively.

In order to realize the fermionic gapped edge we must condense the f-quasiparticle.
Hence, we need to redefine the exponentially localized operator that annihilates the f-
quasiparticle on the boundary as in Eqn. (7.7). That is, we need to redefine the f-
quasiparticle move defined below Eqn. (7.23) on the boundary. There, we allow the f
quasiparticle to pair up with the Majorana fermion. Thus, the move of an f-quasiparticle
from a bulk plaquette pair (p/,p’) to a boundary plaquette pair (p”,p”) is now given by

Ul =us, U @™y, (7.25)

P —p p'—p
(the phase factor is chosen to produce a factor of (i) in the Wilson loop below) where i
is the boundary site that connects the pairs. This operator Uif is still unitary, and more
importantly, is a local operator. This is important because it means that the condensation
of one f-quasiparticle can be performed locally. Now, using this local move and forming
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the shortest f Wilson string W/ on the boundary, we arrive at

WY o = ZiXi @ ixixis if i € odd, )
Wgzﬁrlb = Z;Xi11 @ ixiXi+1 if ¢ € even. :

Amazingly, all W/|,, even neighboring ones, commute. Therefore, the ground state of
Hw + Hf = Hy — ), Z;X;41 ® iX;Xi+1 is now both flux free and a condensate of f-
quasiparticles, and the theory is gapped! This is an example of the fermionic gapped edge
alluded to in this chapter, corresponding to the Lagrangian subgroup M, = {1, f}.

7.5.3 Analysis of model

Having given the rationale behind the model, we now analyze the phase diagram of the
Hamiltonian which realizes mixed boundary conditions,

H(0:1,05) = Hy + eHy(61,065), (7.27)

in full detail, given by equations (7.19), (7.20), and (7.21), and where € < 1. Specifically,
we look at the phase diagram in the parameter range 6,6, € [0, 7/2].

Low energy effective Hamiltonian

We wish to only analyze the ground state of H(6;,60,). Assuming that e < 1 so that the
boundary term Hy does not close the gap of the ground state manifold of Hyy to the excited
states, we can simply look at the effective low energy Hamiltonian of H (6, 6,), which can
be calculated by the Schrieffer-Wolff transformation, as used in Ref. [1].

In essence, we look at the algebra of the operators of Hy: W€|g, W™|g, W/|5 and ix;Xit1,
acting in the flux-free sector of Hy,. Now, boundary Wilson string operators of the same
type commute with each other, and clearly, Wilson string operators, even of different types,
commute if they have disjoint support. The same is true for the iy;x;+1 operators: if such
an operator has disjoint support with any other operator, the two operators commute.
Otherwise, they might give rise to non-trivial commutation relations. We thus only have
to worry about boundary terms that have overlapping support (on either spins or Majorana
fermions). Then we have the following non-trivial commutation /anticommutation relations
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for operators with overlapping support:

{ p+1|37 perl‘a}

{ p+1|67 ,p+1|8}

{ p+1|‘97 perl‘a}

{w, p+1|87 ZXZX’L+1|’L€even} =0,

{W51l0,ixixit1licoaa} = 0, (7.28)
[Wp‘,ﬁ—f—l |9, iXiXi+1liceven) = 0,

[Wf,p+1|8a X Xi+1icoda) = 0,

[pr+1|5’ pp+1|3] 0,

[Wep+1|8’ pP+1|3] 0.

We can find a representation of this algebra using two sets of spin-1/2 variables, o and T,
each obeying the Pauli algebra, by the following identification:

e zZ Z
m x
f YA
W~,15+1|3 = 000 1T Tt 799
(7.29)
W’p+1|8 _> O-’I’L ’fL77

iXiXit1licodd = Tp
ZXZXZ+1|Z€€V€H — T, n+17

where the o, operator acts on a pseudo-spin (n) comprised of two adjacent real spins,
and the 7, operator acts on pairs (labeled also by n) of adjacent Majorana fermions (see

Fig. 7.5.1).

Then, the low energy effective Hamiltonian of Hy + eHy(6y,602) simply becomes a
Hamiltonian acting on a spin-ladder system:

Hegp(01,0:) = € <—cos€12( oioi i + 1)

n

— sin #; cos By Z (J + 7.7, n+1) (7.30)

n

—sinelsinﬁgz (0Lo% \TiTi 1+ orT )) .

n
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Here we can drop the constant € for the rest of the analysis because it is an overall mul-
tiplicative factor. Written in this form, this is nothing but a variant of the Ashkin-Teller
model, which has been well studied. However, the Hamiltonian usually studied in the
literature is when the model is parameterized as such:

_ E z _z x Z _z x
HAT - (0n0n+1 + Oy + TnTn+1 + Tn)

" (7.31)
=AY (opoi i o).

There, it is known that the model is critical for all values of A € [—v/2/2,1), and is
described by a ¢ = 1 Zs-orbifold CFT with orbifold radius given by

1

2 T -
Ho = 2 cos~H(—=\)

(7.32)

To translate the parameter range to our model, we have cosf; = sinf; cosf, > 0, while
A = tan 92.

Phase diagram, order parameters and dualities

Phase diagram. — The parameters (6,0:) tune the relative strengths of the various edge
theories, and lie in ;1,05 € [0,7/2]. As such, the vector (sin 6 cos 6y, sin 6; sin 0, cos 6;) is
a unit vector pointing in the upper quadrant of the sphere S?, and so the phase diagram
of this model is the 2-d suface area of the upper quadrant of S2?. For simplicity, we can
project this surface onto the plane defined by x + y + z = 1, by shooting rays from the
origin to the surface of the upper quadrant. Each ray will hit the plane and surface of the
upper quadrant at only one point each and is thus an invertible mapping. The projection
onto the plane of the surface of the upper quadrant will then be an equilateral triangle,
with the three corners given by the special points (61, 602) = (0,0), (7/2,0) and (7/2,7/2).
Fig. 7.5.4 shows the projection of the upper quadrant of the unit sphere S? onto the plane
x + 1y + 2z = 1 which gives an equilateral triangle.

At the corners of the triangle, the edge theories are gapped and are purely H., H,, or
Hy corresponding to (6q,6) = (0,0), (7/2,0) and (7/2,7/2) respectively. The effective
Hamiltonians there are exactly solvable because all terms commute. In a finite region away
from these special points, it is expected that the gap will not close and the edge theory
remains in the same phase as the phase defined by the closest corner of the triangle (in
some sense, the corners are the fixed points of the RG flow). This will be made precise
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Figure 7.5.4: Projection of upper quadrant of the unit sphere S? onto the plane z+y+2z = 1
which gives an equilateral triangle.

below by defining suitable order parameters that show a phase transition between the dif-
ferent phases. We will find from using the order parameters that the equilateral triangle
is divided into three regions separated by three critical lines meeting at a common point
in the middle of the triangle. One of these critical lines is the known critical line of the
Ashkin-Teller model corresponding to cosf; = sin6; cos 6 alluded to before. Because of
our restrictions on the range of 01, 60,, A, as defined in the previous section, which governs
the orbifold radius for this critical line, only ranges from [0, 1]. Fig. 7.5.5 shows the result-
ing phase diagram on the equilateral triangle.

Order parameters and dualities.—We define order parameters that produce the phase dia-
gram shown in fig. 7.5.5. To detect the M. phase, we wish to find an order parameter
that measures the presence of a condensate of e-quasiparticles, i.e. that it takes non-zero
values in the M, phase and is vanishing outside it. This implies that the order parameter
must be non-local; indeed, from (7.29), the order parameter for detecting an e-condensate
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Figure 7.5.5: Projected phase diagram of Eqn. (7.30). The phase diagram is split into 3
different regions corresponding to the 3 gapped edge theories labeled by M., M,,, and M.
The gapped regions are separated by critical lines. Red lines are the critical lines, while red
points are the fixed points of the RG flow. Black solid arrows in the triangle depict RG flow
lines schematically, while dotted arrows indicate dualities. The three corners correspond
to (01,6) = (0,0), which realizes a pure H, edge theory, (6,60:) = (7/2,0), which realizes
a pure H,, edge theory, and (6, 02) = (7/2,7/2), which realizes a pure H; edge theory.

should be

(Og) := lim (0707.,.), (7.33)

m—r0o0 nontm

where n is some arbitrary pseudospin, and the expectation is taken in the ground state.
By similar reasoning the order parameter for detecting an m-condensate should be

(0,) = tim ([[ o2, (7.34)

k=1

177



and for an f-condensate the order parameters should be

(Op) == Um (6207 . TrTE )

n’n+m'n ' 'n+m

m— 00
CAES X | ) (7.35)
k=1

One might worry about the presence of two different order parameters for the M;
phase: these came about because we arbitrarily subdivided our square lattice into grey
and white plaquettes, and so the order parameters measure condensation of ‘different’ f-
quasiparticles residing at different sites at the boundary. However, this division is arbitrary
and not physical, and we expect that (Oy,) = (Oy,).

Indeed, this is guaranteed by the many Kramers-Wannier dualities that the effective
Hamiltonian (7.30) possesses. Consider the line L., that bisects the line that connects the
M. and M points on the phase diagram (see fig. 7.5.5). Two points on the phase diagram
which are related by the reflection about L., are equivalent—that is, the two theories are
the same. The reflection is effected by the simultaneous local unitary mappings on both
chains

OpOnpy & Oy

(7.36)

z z, 2
Th g TnTn+1,

each one of which is the usual Z, Kramers-Wannier duality mapping that is encountered
in, for example, the transverse field Ising model. Accepting the phase diagram of fig. 7.5.5
for now, this implies that the gapped phase of M, gets swapped with M,,, while M
maps to itself. There is also another way to effect this duality: one can perform a swap of
the two spin chains o <+ 7.

Consider next the line L.;. Two points on the phase diagram of the model are also
equal under reflections about this line, and the local unitary mapping is given by

z

z z _z z,_z
Jn0n+1 e Jn0n+1TnTn+1

(7.37)

x z, T
Th S UnTn+1.

Here M, <+ My, while M, maps to itself. Lastly, the same is true for the line L,,;. The
mapping is

x T, T
o, — 0,.Th

(7.38)

z, 2 z _z z, 2z
TnTn+1 < 0n0n+1TnTn+1.
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We have M,,, <+ M, while M, maps to itself.

The lines Lep, Leg, Lys, are self-dual under their respective mappings - this implies for
example, for a fixed value of sin 6, sin 6s, if the theory has a phase transition it must be
along the line L.,,. Note that however this does not imply that the line is guaranteed to
be critical. The same analysis also holds for the lines L.; and L.

Using the dualities, we can understand how the order parameters are related. The order
parameter (O,) is equal to the value of (O,,) under a reflection across Le,,. Also, applying
the two different ways to effect L.,, in succession leaves the model invariant; however, we
have that Oy, <> Oy, so (Oy,) = (Oy,), as expected.

It is interesting that the critical lines contain very interesting theories with emergent
symmetries, such as twisted N' = 2 superconformal symmetry [227]. One can also, starting
from the Ising decoupling point, explicitly construct the marginal operators on the lattice
that deforms the conformal field theory. Actually this is exactly how the Ashkin-Teller
model can be constructed.

7.5.4 Numerics

We perform numerics to confirm the phase diagram of fig. 7.5.5. Using DMRG[2258] we
solve for the ground states of the effective model given by Eqn. (7.30) (setting € = 1), for
a system size of L = 200 (for each spin chain), with open boundary conditions (OBC). We
have also added weak pinning fields n(o7 + o + 77 + 77) (n = 0.05 < 1) at the ends of
the chains to explicitly break the Zy x Zy symmetry that the model has, in order to avoid
obtaining a cat state as the ground state in the symmetry breaking phase. We do not
expect the weak pinning fields to alter the analysis of the model as argued in the previous
sections.

In the definition of the order parameters, the limit m — oo is just an idealization,
and for finite systems, m is necessary finite. In our numerics, we choose n = 10 and
n 4+ m = 190, which we find offers a very good balance between avoiding boundary effects
from the OBC and m being large enough to simulate the thermodynamic limit. Deep in
the expected gapped regions we find essentially exact results (truncation error < 107!2),
while nearer the expected critical lines the DMRG slows down significantly indicating the
presence of criticality.

Fig. 7.5.6 shows the contour plot of the order parameter Q.. One can quite clearly
see that the order parameter is non-zero and in fact almost maximal in the region of the
triangle that encompasses the point M., while it is vanishing outside of it. This region
defines the region of the phase diagram that belongs to the gapped phase M..
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Figure 7.5.6: Contour plot of the order parameter (O,) for a system with open boundary
conditions. Here the length of each chain is L = 200. One can see clearly that the
order parameter is non-zero and in fact almost maximal in the region of the triangle that
encompasses the point (6q,02) = (0,0), while it is vanishing outside of it. This defines the
gapped phase M.. The thin, light blue region emanating from the middle of the triangle
to the bottom is an artifact of the system being at criticality there-the numerical error
from the exact results to the result from the DMRG approach is large, and is expected to
vanish upon taking the maximum bond dimension allowed in the simulations to co, which
is impossible to achieve in practice.

We next plot the order parameter Q. We find that the order parameter is non-
zero and in fact almost maximal in the region of the triangle that encompasses the point
(01,05) = (m/2,7/2). This defines the region of the phase diagram that belongs to the
gapped phase M. We also find numerically that the order parameter Oy, gives the same
result as Oy,, in agreement with our analysis.
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Figure 7.5.7: Contour plot of the order parameter (Oy,) for a system with open boundary
conditions, which we find (not shown) is equivalent to (Oy,). Here the length of each chain
is L = 200. The region of the phase diagram where the order parameter is non-zero and
in fact maximal defines the gapped phase M.

For the last phase M,,, we again obtain similar results using the order parameter O,,.

Criticality, central charge and entanglement entropy
To confirm that the red lines of fig. 7.5.5 are in fact critical, we use DMRG to study periodic

systems of size L = 50 along these critical lines and compute the entanglement entropy
Sp(x) of a subregion of size z. From there, we can extract the central charge ¢ from the

181



S(x)

18}

16+ .

1.4r

1.2+ o

0.0 0.2 0.4 0.6 0.8

121

100 © @ @ @00 © 060606006060 0 0 00 0 0 0 0

0.8

0.6

0.4r

0.2+

0 5 10 15 20 25

Figure 7.5.8: (a). Entanglement scaling Sy (z) for a length-z subregion of a periodic system
with L = 50 for one point along the critical line. By fitting to the CFT prediction, we
extract a central charge ¢ = 1, consistent with known results from the Ashkin-Teller model
that the theory is described by a Zs-orbifold CFT. (b). Extracted central charge values
along the line L.,,. The extracted central charge is essentially constant at ¢ = 1 from the
beginning of L., to the middle of the triangle, beyond which it quickly decays, indicating
a loss of criticality.
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entanglement scaling given by CFT calculations [229, ]

L
Su() = In [; sin (%)} . (7.39)
Fig. 7.5.8 shows the results. We see from the scaling results that extracted central charge is
indeed ¢ = 1, consistent with the known results that the Ashkin-Teller model is described
by a Zy-orbifold CFT at the critical line. Beyond the midpoint of the triangle, the extracted
central charge quickly decays, indicating a loss of criticality.

Putting the numerical results from the order parameters and entanglement scaling
together, we therefore obtain the phase diagram of fig. 7.5.5.

7.5.5 Anyonic symmetry and Kramers-Wannier dualities

In this section we will give a short discussion regarding an observation of an interesting,
but usually overlooked, universal feature of the boundary phase diagram.

The boundary of a chiral topological order is always gapless, where the gap is protected
against any local perturbation not closing the bulk gap, and characterized by a universal
number c_, the chiral central charge. In the case of a non-chiral topological order we have
c_ = 0, however the boundary still contain universal features. One feature, as discussed
in [89, 90, 91] and this chapter, is that the number of distinct gapped boundary types
is directly related to the bulk topological order, either through the notion of Lagrangian
subgroups or S and T matrices.

Here we will explore another interesting feature related to anyonic symmetries and
(potentially non-abelian) Kramers-Wannier dualities.

An anyonic symmetry group A is a subgroup of the permutation group Sy, permuting
the anyons in a given topological order while leaving the statistics and fusion rules invariant.
For an abelian topological order, this is given by[231]

N;((ikt)f(j) =N, i];' (Fusion rules),
0,y = 0; mod 7 or 27 (Self-statistics),
Os(iyo(y) = Uij (Mutual-statistics),

where o is an element of the subgroup A of the permutation group Sy, for a system
with N anyons. Here the modulo 27 is for a system with bosonic topological order and
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modulo 7 is for fermionic topological order. We can define the action of this symmetry
on a Lagrangian subgroup o(M;), by its action on individual anyons in the subgroup. An
immediate consequence of the above invariance properties is that if M, is a Lagrangian
subgroup, then o(M;) will also be. In other words, it will leave the set of Lagrangian
subgroups M = { My, M, ..., M, } invariant

U(Mi) = M&(i)7

where ¢ is a permutation of the Lagrangian subgroups, induced from o, the anyonic sym-
metry of the anyons.

This implies that the bulk anyonic symmetry gives rise to some sort generalized Kramers-
Wannier duality on the boundary, constraining the phase diagram of the boundary theory.
This can be considered as another universal feature of topological order, the bulk anyonic
statistics, through the anyonic symmetries, constrain the global structrue of the boundary
phase diagram. Or in other words, anyonic symmetries in the bulk implies generalized
Kramers-Wannier dualities on the boundary.

An example of this is the Zy topological order which has a Z, anyonic symmetry
corresponding to the electro-magnetic duality. In ref. [1] we showed that this symmetry
gives rise to the usual Kramers-Wannier duality of a Ising spin chain. This correspondence
can be seen in more details when considering periodic boundary conditions and twist defects

[

As argued in this chapter, if we allow for fermionic gapped edges we need to take the
self-statistics to be defined only modulo 7. This enhances the effective anyonic symmetry
from Z, to the full permutation groups S3. As discussed in section 7.5.3, we indeed saw
that the phase diagram is constrained by a non-abelian S3 Kramers-Wannier duality. We
can also understand each critical line in the phase diagram as having a Kramers-Wannier
self-duality (M. < M,,), (M. <> M;) and (M, <> My) corresponding to a subgroup
Z, C S5 of the anyonic symmetry, while the tricritical point where all three critical lines
meet as realizing the full S3 symmetry.

Another signature of this duality can be seen when considering periodic boundary condi-
tions and twist defects, where different symmetry sectors and conformal defects are mapped
to each other in non-trivial ways under the action of the bulk anyonic symmetry or bound-
ary Kramers-Wannier duality. We examples of this in chapter 5. The relation between
anyonic symmetries and generalized Kramers-Wannier dualities and their generalizations
will be discussed in an upcoming work [92].

The model discussed here is closely related to the fermionic model discussed in [232],
where the anyonic symmetries are realized as lattice symmetries. In this realization one can
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explicitly construct Kramers-Wannier self-dual boundary conditions protected by lattice
symmetries (similar to [1]) [233].

Another interesting aspect of this observation is that Kramers-Wannier dualities, and
other aspects of spin-chains, can be understood from a holographic point-of-view as bound-
ary theories of TQFT’s. This opens up a route to study non-abelian Kramers-Wannier
dualities [92] more systematically using (2+1)-dimensional topological order.

7.6 Conclusion

In this chapter, we have argued for the presence of a new topological gapped edge, the
fermionic gapped edge, supported at the junction between a bosonic abelian topological
state and a topologically trivial fermionic vacuum. We have presented two approaches to
understanding this edge theory: one, through the Lagrangian subgroup formalism devel-
oped by [39, 90, 91], and two, through the modular invariance formalism. The presence
of fermionic modes on the boundary implies that for the first case, the self-statistics of
the quasiparticles must change, thereby possibly giving new Lagrangian subgroups which
correspond to a topologically distinct gapped edge; while for the second case, the condi-
tion for modular invariance must be relaxed from Z(7) = Z(7 + 1) to Z(7) = Z(1 + 2),
thereby offering potentially more solutions to the condition of gapping the CFT on the
boundary. Physically, the fermionic gapped edge can be understood as a condensate of
fermionic quasiparticles at the boundary.

To illustrate and substantiate our arguments, we have also explicitly constructed a
microscopic model, the Z, Wen-plaquette model coupled to an array of Majorana fermions
on the boundary, and showed how fermionic condensation occurs in this model by redefining
the microscopic moves for the fermionic quasiparticles. We have thoroughly analyzed the
low energy effective Hamiltonian of this model through both analytic and numerical means,
and showed that the phase diagram is indeed divided into three regions corresponding to
the three topologically distinct gapped edges of the underlying bosonic topological order.

In upcoming work [92] we will discuss the relation between anyonic symmetries in
Topological Quantum Field theories in d+ 1-dimensions and generalized Kramers-Wannier
dualites in d-dimensions. In another work [96] we classify gapped boundaries and generalize
the notion of lagrangian subgroups to 3 + 1-dimensional topological order.
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