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Abstract 

An algorithm based on event-driven molecular dynamics theory was developed to rapidly 

generate periodic representative volume elements (RVEs) with nonuniform distributions for both 

unidirectional fiber-reinforced and spherical particle-reinforced composites. Detailed statistical 

analyses were conducted for assessing the ability to generate RVEs with nonuniformly dispersed 

microstructures and either constant or random inclusion sizes for a wide range of volume fractions. 

The generated microstructures were directly compared with available microstructural optical images 

of a composite material, showing excellent statistical correlation and providing validation for the 

developed RVE generation approach. For further validation, finite element analysis was conducted 

using the generated RVEs in order to evaluate volume averaged elastic constants. The expected 

isotropic characteristics of the RVEs were correctly calculated, and excellent correlations with 

experimental data from the literature provided additional support for the algorithm accuracy. The 

versatile algorithm can rapidly generate RVEs with realistic reinforcement dispersions and high 

volume fractions up to 80%, which is advantageous compared to other algorithms. The proposed 

algorithm can be used as a design tool to accurately evaluate and tailor the mechanical properties of 

distinct composite material systems, and for their microstructural assessment including local 

damage predictions. 

Keywords: Polymer-matrix composites (PMCs), High volume fractions, Computational micro-

mechanics, Representative volume element (RVE) generation, Nonuniform reinforcement 

dispersion, Event-driven molecular dynamics 
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1. Introduction 

Particulate- and fibre-reinforced composite materials have been extensively investigated due to 

their excellent mechanical and thermal properties, including high specific strength and stiffness, 

wear resistance, and tailorable coefficients of thermal expansion and thermal conductivity. Prior to 

designing a specific material system and optimizing corresponding structural components, the 

effective properties of composites can be evaluated through so-called computational experiments 

using a representative volume element (RVE) [1]-[7]. An RVE is an accurate depiction of the 

material's microstructure that is used to evaluate its effective macroscopic properties, thereby 

minimizing experimental testing during the early stages of design. An advantage with RVEs and 

related computational assessments is that the anisotropy of the composite material system can be 

directly tailored, and accurate microstructural assessments can be realized. 

Similar to an RVE, a periodic unit cell (PUC) model can also be used to evaluate properties of 

composite materials. PUCs have simplified structured patterns for the reinforcement phase and 

often adopt symmetric boundary conditions [8]-[10]. In practice, however, composite 

microstructures are rarely structured, thus PUC models may not be suitable for assessing their 3D 

mechanical properties [11]-[13]. In addition, the evolution of microstructural parameters for 

materials involving plasticity or evolving microscopic damage are often not of a structured nature, 

thus PUC methods may not be suitable for these problems since the implication that all regions of 

the material are damaged simultaneously is not realistic. 

Oh and Jin [14], [15] found that RVEs of unidirectional fibre-reinforced composites with 

random fibre arrangements, especially for high fibre volume fractions (HFVFs), resulted in 

variations in strain at fibre/matrix interfaces [14] and residual thermal stresses [15]. Gusev et al. 

[16] also found that the nonuniform microstructural fibre dispersion of a unidirectional glass/epoxy 

composite had significant influence on its transverse elastic properties. Recently, Ghayoor et al. 

[17] found that local stress values were more variable in nonuniform microstructures when 
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compared to periodic microstructures, and more likely to cause a disturbance of the load and stress 

distribution in the composite. Thus, to accurately assess the 3D mechanical properties and 

microstructural parameters of practical composites with high volume fractions, including predicting 

localized damage progression, it is important to generate realistic RVEs with random nonuniform 

reinforcement dispersions. 

Several research efforts have been devoted to generating RVEs using random distribution 

algorithms (RDAs) for composite materials. The classical approach of RDAs is the so-called hard-

core model (HCM), which assesses the position of newly generated random fibres to avoid overlaps 

[18], [19]. Due to the jamming limit with HCM algorithms, close packing [20], stirring, [21], [22], 

random sequential expansion (RSE) [23], and random sequential absorption (RSA) [24]-[26], 

algorithms have also been studied. Nonetheless, generating RVEs with higher fibre volume 

fractions in reasonable computational times remains challenging with these algorithms [27]. To 

overcome this limitation the nearest neighbour algorithm (NNA) [28] and modified NNA (MNNA) 

[29] were proposed, where random RVEs were generated with comparatively short computational 

times using nearest neighbour distribution functions. Recently, the elastic collision algorithm (ECA) 

was also proposed to generate RVEs with random fibre distributions [30]. After defining an initial 

fibre unit velocity for all fibres along a random direction, fibres displaced under an elastic collision 

law. However, the disturbance time interval is difficult to adjust for different volume fractions 

making the ECA impractical. 

A new efficient method for generating RVEs for HFVF composites utilizes the principles of 

molecular dynamics (MD) which involves tracking inter-particle interactions [31], and has been 

successfully applied to generate 2D RVEs of rigid disks with high volume fractions [32], [33]. One 

of the limitations with time-driven MD (TDMD) or random walking algorithms (RWA) is that they 

require small time-steps and integration of the equations of motion [34]. Donev et al. [35] presented 

a more rapid event-driven molecular dynamics (EDMD) algorithm which is suitable for high 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

4 

 

volume fractions without compromising accuracy. EDMD approaches schedule the sequence of the 

events that are predicted to occur in the future based on the present particle trajectories [36]. 

However, these algorithms can be difficult to implement, and the degree of nonuniformity for the 

resulting RVEs was not assessed in the reported studies. Recent work by Canalotti [37] has 

developed a new algorithm aimed to generate RVEs, and is among the first to do so for RVEs of 

composite materials containing HFVFs. 

Although the above numerical approaches have made significant contributions toward 

generating practical RVEs for composite materials, accurate and efficient generation of 

nonuniformly distributed RVEs for composites with HFVFs remains a challenge. In this study, a 

simple and efficient algorithm was developed to generate RVEs for composites with high 

reinforcement volume fractions. The developed algorithm is based on EDMD theory and utilizes the 

open-source software DynamO [38] to randomly generate nonuniform reinforcement coordinates 

for RVEs with specified volume fraction in a few minutes or several seconds. Bahmani et al. [39] 

utilized this method to generate non-uniformly distributed three-dimensional RVEs for continuous 

unidirectional fiber composites with constant fiber radius. Thus, the goal of this study was to 

generate RVEs with non-uniformly distributed particles of random size. The corresponding 

statistical assessment of the RVE reinforcement nonuniform dispersion was performed to determine 

the effectiveness of the algorithm, and includes validation with available microstructural optical 

images of a composite material. A subsequent aim was to use the generated RVEs for developing 

finite element micromechanical models using custom scripts in the commercial software Abaqus. 

The mechanical properties of the composite materials studied were determined, with the goal of 

providing additional validation for the developed RVE generation algorithm. Both unidirectional 

fibre-reinforced and particulate-reinforced composites with high reinforcement volume fractions 

were studied in order to showcase the versatility of the developed algorithm, and its ability to 

overcome the different challenges when generating RVEs for distinct materials. 
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2. Development of EDMD-based algorithm for RVE geometry generation 

2.1 Event-driven molecular dynamics overview 

In recent years, MD simulations based on time-stepping algorithms have been broadly used for 

simulating the mobility of molecules or atoms for various material systems. For particular cases, 

including the present study, capturing the key features of interactions between particles is required. 

Thus, the EDMD approach is more suitable for simulating discrete interaction potentials, with the 

ability to provide quantitative predictions [40], [41]. Fig. 1 illustrates the conceptual difference with 

respect to interacting particles between conventional time-stepping MD and EDMD methods.  

Considering two particles 𝑖 and 𝑗 with a relative separation distance 𝜎, a discontinuity crossing 

(i.e., event) is expressed as a search for the roots of an overlap function:  

 𝑓(𝑡) = |𝑟𝑖(𝑡) − 𝑟𝑗(𝑡)| − 𝜎, (1) 

where 𝑓(𝑡) is a measure of the distance from a discontinuity in the potential, 𝑟𝑖(𝑡) and 𝑟𝑗(𝑡) are the 

positions of the two particles. In order to solve for the event impulse, 𝛥𝑃, the appropriate solution to 

the conservation of energy (and momentum) equation is required: 
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Here, ∆𝑈 is the change in internal energy due to the discontinuity, 𝑚𝑖 and 𝑚𝑗 are the particle 

masses, and 𝑣𝑖 and 𝑣𝑗 are their velocities. The main objective is to track a series of event impulses 

and the resulting particle locations; further details can be found in Refs. [40], [41]. 

 

2.2 Generation of periodic RVEs with random reinforcement distribution 

In this study, the EDMD open source software DynamO was used within a customized algorithm 

to generate periodic RVEs with nonuniform distributions for two types of composite materials, 

namely unidirectional fibre-reinforced and particulate-reinforced composites. Within DynamO, 

each particle is initially assigned a random velocity vector and an event table is automatically 
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generated which defines all potential collisions between particles in the RVE space (see Refs. [40], 

[41] for full details). Thus, a realistic random particle distribution is effectively guaranteed for all 

particle regions, with a significantly reduced computational time.  Fig. 2 represents the algorithm 

flowchart for the generation of random RVE microstructures. Two cases were considered: (i) a 2D 

arrangement of circular fibres representing the cross-section of a continuous unidirectional fibre-

reinforced composite; (ii) a 3D arrangement of spherical particles representing a particulate 

reinforced composite. The detailed 4-step procedure outlined in Fig. 2 is described subsequently. 

The first step in using the algorithm involved preparing the input for the procedure, including 

the RVE size and reinforcement dimensions which can be constant or vary randomly depending on 

the script code (see Fig. 2). For unidirectional continuous fibre-reinforced composites the 2D cross-

section perpendicular to the fibres defined the simulation space, while for particulate-reinforced 

composites a 3D RVE model was required. During the subsequent step the simulation was 

initialized using the input values, which included defining the number of fibres/particles, collision 

times or events, and the initial position of the fibers/particles [39] - [41]. 

The third step required performing necessary operations within DynamO to generate the particle 

output coordinate files. For generation of 2D periodic random fibre RVEs, the concept of gravity 

was used. First, the constant radius spheres were packed in a 3D simulation space, then the spheres 

were released and allowed to “fall down” to a 2D plane or “floor” (see Fig. 3). The boundary 

constraints of the simulation floor along the in-plane directions were configured to generate the 

desired periodic RVE geometry. In order to control the periodic particle distribution along one 

direction, a “wall” type constraint was used to define the boundary of the simulation space. Fig. 3 

illustrates periodic constraints applied along the X-direction where particles can transfer randomly 

within the floor plane from one side to the other and particles can only cross the boundaries 

perpendicular to the X-direction. For generating RVEs with periodic geometry along both X and Y 

directions, the wall constraints were not required such that particles were allowed to freely cross all 
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boundaries. The total number of events were adjusted to control the total computational time, where 

for a personal computer with 3.4 GHz processor and 16 GB RAM, 100,000 events required 

approximately 10s on average to converge. 

For the generation of 3D RVEs for particulate-reinforced composites, all particles during the 

simulation moved under standard Newtonian dynamics without the influence of external forces. 

Based on the same rules for the 2D RVE simulations, the configuration file was defined to set the 

initial number and the sizes of spheres. Fig. 4 shows the results of three configuration steps. For 

high volume fraction RVE generation, a high density configuration using a linear compression 

algorithm [42] was utilized to decrease the computational time further. Through use of this method, 

a 3D periodic random RVE with 65% reinforcement volume fraction was generated in 

approximately 20 seconds.  

The final step (see Fig. 2) involved transforming the particle coordinates from the generated 

output file in step 3 to the commercial finite element software ABAQUS, and adjusting the RVE 

geometry to generate the proper periodic geometric model for subsequent finite element analysis. 

For high volume fraction simulations, there are more opportunities for particles to be in contact 

during RVE generation, however, in reality a small gap between fibres always exists due to very 

low but tangible particle crimp [22]. At the same time, contact between particles will lead to very 

small elements in FEA, which also causes unnecessary computational time or failure of 

convergence during analysis. Consequently, the minimum distance between particles in the 

developed algorithm was limited to 0.25% of the particle diameter. Furthermore, Python scripts 

were used to generate the solid model of the 2D RVEs and to ensure that periodic geometries were 

maintained, where two examples with single direction periodic boundaries are shown in Fig. 5 (one 

with constant diameter fibers and the other with variable diameter fibers). For the generated 3D 

RVEs, the spherical particles crossed all the face and edge boundaries, and customized Python 

scripts were used to ensure a 3D periodic geometry was maintained within the RVE. An example of 
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a generated RVE with random particle distribution and periodic geometry along all directions is 

shown in Fig. 6. 

3. Spatial statistical assessment of generated RVEs 

Statistical analysis was conducted for the generated RVE geometries in to asses the spatial 

distributions of the reinforcements and to verify their degree of nonuniformity. The corresponding 

results are presented in the subsequent sections. 

3.1  2D continuous fibre-reinforced composite RVEs 

For the continuous unidirectional fibre-reinforced composites considered, the size of the RVE 

was 150 × 150𝜇𝑚 and the fibre diameter was 6 𝜇𝑚, resulting in approximately 400 – 520 fibers 

within the RVE depending on the fiber volume fraction. Note that the size of the RVEs were chosen 

in order to allow for a statistically accurate microstructural representation of the material system 

and a means to analyze its elastic response, and relative to reported studies on RVE size generation 

are deemed sufficiently large [43], [44]. 

First, a radial distribution function (RDF) was used to assess RVEs with fibre volume fractions 

ranging from 10% to 80% having constant diameter fibers. The RDF, 𝑔(𝑟), describes the density 

deviation as a function of distance from a reference fibre, allowing for assessment of the degree of 

nonuniform distribution, and was calculated using the following averaging equation [45]: 

 𝑔(𝑟) =
2𝑉

𝑁(𝑁−1)

1

𝑉𝑟
∑ ∑ 𝜃(𝑟𝑖𝑗 − 𝑟)𝜃(𝑟 + ∆𝑟 − 𝑟𝑖𝑗)𝑖−1

𝑗=1
𝑁
𝑖=1 , (3) 

where 𝑟𝑖𝑗 is the distance between particles 𝑖 and 𝑗, 𝑁 is the number of particles, and 𝑁(𝑁 − 1)/2 

represents a weighting term. The term 𝑉 is the volume (or area in 2D) of the region, 𝑉𝑟 = 𝜋(2𝑟 +

∆𝑟)∆𝑟 is the area of the annulus with inner radius r and width ∆𝑟, and the function 𝜃(𝑥) is given by 

 𝜃(𝑥) = {
1,   𝑖𝑓 𝑥 > 0
0,   𝑖𝑓 𝑥 ≤ 0

, (4) 
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The product θ(𝑟𝑖𝑗 − 𝑟)θ(𝑟 + ∆𝑟 − 𝑟𝑖𝑗) is 1 if particles 𝑖 and 𝑗 are within a distance between 𝑟 and 

𝑟 + ∆𝑟 of each other, and 0 otherwise. When 𝑁 increases 𝑔(𝑟) tends to 1 as 𝑟 becomes sufficiently 

large, and periodic boundaries are considered to ensure that when r tends to infinity, the RDF is 1. 

For different fibre volume fractions, Fig. 7 shows a plot of 𝑔(𝑟) with respect to normalized 𝑟 

which is obtained by multiplying the distance by RDF × 2/(𝑁 − 1). The rightmost 𝑔(𝑟) curve with 

sharp peaks in Fig. 7 demonstrates the consistency of the distances between fibres in the RVE and 

thus a structured fibre arrangement, which was also observed for 80% fibre volume fraction and 

expected since the fibres are closely packed. For fibre volume fractions below 70% the magnitudes 

of the fluctuations were notably smaller, and the RDF values are more consistent which indicates a 

consistent nonuniform fibre distribution as shown in the RVE images in Fig. 7. For fibre volume 

fractions below 20%, 𝑔(𝑟) showed more variances with increasing r since the randomly distributed 

fibres were not consistent and the RVE contains matrix-rich regions. The radial distribution for 

complete fibre nonuniformity in the RVE will have a 𝑔(𝑟) tending to 1 when the radius of the 

annuli is increased, which is the case for the generated RVEs with fibre volume fractions below 

70%, and representative of observed fibre distributions for unidirectional composites. 

In order to validate the statistical assessment and the accuracy of the microstructural 

representation of the generated RVEs, a comparison of the RDF was made with a fabricated 

unidirectional fibre-reinforced composite from the study by Vaughan [28]. Based on Fig. 8a, the 

average fibre diameter was 6.6 𝜇𝑚 and the fibre volume fraction was approximately 59.2%. ImageJ 

[46] was used to extract the center coordinates of the fibres (see Fig. 8b), and the RDF was 

calculated based on the pixel distance as shown in Fig. 8c (red curve). The blue curve in Fig. 8c 

shows the RDF of generated nonuniform distribution with 60% fibre volume fraction, 

demonstrating a strong correlation with the experimental result which also tends to 1 with the 

increasing of the distance of the annuli. Note that the jump in RDF at a lower distance in the blue 
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curve of Fig. 8c is caused by the minimum distance between two fibres, which should be larger than 

the diameter of the fibres in simulation.  

In order to provide additional statistical assessment of the dispersion of fibers within the RVEs, 

Voronoi tessellations were computed using functions provided by the commercial software Matlab 

[47]. These routines create cells around each individual fiber center point which represents the area 

in space that is closer to that point than any other point. The edges of each cell are perpendicular to 

the connection of two near neighbors in the Voronoi tessellation. Fig. 9 demonstrates the Voronoi 

tessellations of the centers of the fibres in random distribution fibre with different volume fractions. 

From Fig. 9, all the axes are normalized to (0,1) and we can clearly see that the densities increase 

with increasing fibre volume fraction. For 62% volume fraction, the arrangement of the fibres are 

almost structured while for lower volume fraction distributions clusters in some regions are 

observed. 

In order to be more consistent with the real composites, RVEs with random fiber diameters were 

generated using the EDMD-based algorithm, and the nearest neighbour distance distributions were 

applied to assess this method. It should be noted that the variation in fiber diameter considered was 

from 80-100% of the constant diameter. Fig. 10 shows the nearest neighbour distances of the 2D 

RVE with the same size in the blue histogram and random sizes in the red one. The blue curve and 

red dash curve are the fit curves of these two distributions respectively. For the RVEs with same 

size fibers the nearest neighbour distance has a lower limitation, while for the random size the 

histogram is bilateral. Figure 10 demonstrates the robustness of the random distribution EDMD-

based method. 

3.2  3D particulate-reinforced RVEs 

For the particulate-reinforced composites the 3D RVEs were 200 × 200 × 200𝜇𝑚 in length, 

with a constant spherical particle diameter of 19 𝜇𝑚, resulting in more than 400 particles within the 
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RVE (depending on the inclusion volume fraction), and a statistically accurate microstructural 

representation of the material system. The generated particle volume fractions included 30%, 40%, 

50%, and 60%. The spatial statistical metric considered in this study were near neighbour analysis, 

Voronoi domain analysis and 3D autocorrelation analysis to assess the degree of nonuniformity for 

the generated RVEs. 

 

3.2.1 Near neighbour analysis in 3D 

The commonly used functions for 3D spatial distribution analysis are K, F, and G functions [48], 

which are based on the near neighbor distance. The K-function in three dimensions is defined as: 

 𝐾(𝑟) =
|𝐵|

𝑛2
∑ ∑

𝐼(‖𝑥𝑖−𝑥𝑗‖≤𝑟)

𝑤(𝑖,𝑗)𝑗≠𝑖
𝑁
𝑖=1  (5) 

where 𝐼(∙) equals to 1 when the condition in the brackets is satisfied and the edge effect corrections 

is described by 𝑤(𝑖, 𝑗), which indicates the fraction of the circumference of the 𝑖th particle with 

radius ‖𝑥𝑖 − 𝑥𝑗‖ within the RVE cube. For the complete spatial randomness (CSR) distribution, the 

K-function equals to 4𝜋𝑟3 3⁄ .  

The F-function is an empty space function which represents the distance from each grid point to 

the nearest observed point as follows: 

 𝐹(𝑟) =
1

𝑔
∑ 𝐼(𝑑𝑖 ≤ 𝑟)

𝑔
𝑖=1  (6) 

A fine grid in the RVE cube is set for estimating the F-function and 𝑑𝑖  is the distance of the 𝑖th grid 

point to the nearest point. For the CSR distribution, the theoretical F-function is  1 −

𝑒𝑥𝑝(−4𝜆𝜋𝑟3 3⁄ ), where 𝜆 is the intensity of uniform Poisson process, which represents the 

probabilities for random points in time for a process.  

Instead of measuring the distance of grid point and its nearest point, the G-Function directly uses 

the distance of 𝑖th point to the nearest point. 
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 𝐺(𝑟) =
1

𝑛
∑ 𝐼(𝑑𝑖 ≤ 𝑟)𝑛

𝑖=1  (7) 

The theoretical G-function of CSR is 1 − 𝑒𝑥𝑝(−4𝜆𝜋𝑟3 3⁄ ). 

Figure 11 (a), (b) and (c) show these three spatial distribution functions for RVEs with 30% and 

60% volume fractions, illustrating that the cumulative density recovery profiles of random 

distribution in RVEs with different fibre volume fractions are approximately the same. The Poisson 

distribution of particles which is shown by red dash line is also compared with the generated 

random distributions depicted by the blue solid lines. For higher fibre volume fraction the K-

function shows disturbance around the Poisson distribution, while for lower volume fraction the 

generated random distribution correlates very well with the Poisson distribution. A close correlation 

between the K-function of the generated random and Poisson distributions implies that the 

generated RVE has greater degree of randomness and thus is a closer representation of a practical 

unidirectional fiber-reinforced composite. This is further confirmed by the F-function in Fig. 11(b) 

which also shows a good correlation with the Poisson distribution. The G-function of the generated 

RVEs with different fibre volume fractions are shown in and 60% fibre volume fractions. 

According to Fig. 11 (a) and (c), where for an increase of volume fraction the spatial 

distributions deviate more from the CSR. Since the random distribution were generated with solid 

spherical particles instead of points, the G-function shows a jump from the distance of 19 μm, 

which is the diameter of the particles.  

 

3.2.2 Voronoi domain analysis 

The Voronoi tessellation in 2D is defined as a set of polygon areas surrounding each point (i.e., 

fibre center), where all points in the corresponding region of the specific point is closer to that point 

than to any other. For 3D application, such a Voronoi tessellation is defined by a set of polyhedron 

in which every point is closer to the corresponding point than to any of its neighbours. These 
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polyhedrons are also called Voronoi domain. In order to demonstrate the anisotropies of the random 

distribution, Voronoi Domain Direction Vectors (VDDV) here are used by means of summing the 

area weighted vectors of each facet of the polyhedrons [48].  

In Fig. 12, VDDVs are described along with the histograms of the population components. For 

30% and 60% volume fractions of the generated random distributed RVEs, the VDDVs are showing 

randomness very well in the left two vector diagrams. The x, y and z components of each VDDV 

have an even probability distribution between -1 and 1 as seen in the right two histograms, which 

further shows that the randomness of RVEs with the presented fibre volume fractions are well 

generated. 

 

3.2.3 3D Autocorrelation analysis 

Three-dimensional autocorrelation analysis describes the relative position of each particle in a 

region relative to every other particle, and not only to the nearest particles. A 3D autocorrelation 

diagram is depicted by taking one particle as a reference and plotting the relative positions of all 

other particles within a spherical region. This region is composed of many layers, and within each 

layer the density of particles is used to define density recovery profile, DRP (see Ref. [49], [50] for 

details). 

The leftmost plots in Fig. 13a and b show the 3D autocorrelation analysis DRPs, in a distance 

distribution, for RVEs with randomly distributed particles and 30% and 60% particle volume 

fractions, while the leftmost plot in Fig. 13c corresponds to an RVE with hexagonal distribution and 

30% volume fraction. The remaining plots in Fig. 13 present distance distributions and two 

direction distributions of the random particles relative to the reference particle (i.e., azimuthal 

angle, theta, and elevation angle, phi), which make up the spherical coordinate autocorrelation tri-

histogram plots. The constant DRP values at an average magnitude within the spherical region for 

Fig. 13a and b demonstrate that these RVEs have consistent nonuniformly distributed particles, 
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while for Fig. 13c there is a clear variation of DRP within the region. The deviation from the 

average value of density may represent particle clustering (i.e., increased value) or low density 

zones. 

For the direction distribution analysis shown in Fig. 13a and b, the generated RVEs have 

consistent particle densities in all radial directions for both the theta and phi angles, which is 

represented by circles with smooth edges. This further implies that the particles in these RVEs have 

consistent nonuniform random distributions. In contrast, for the RVE with hexagonal particle 

distribution the theta angle and phi angle have some peaks in the plots.    

 

4. Mechanical property assessment of generated RVEs 

A high-fidelity assessment of the mechanical properties of composites was the main motivation 

for developing an algorithm to randomly generate realistic RVEs with nonuniformly distributed 

reinforcements. Accordingly, the degree of RVE nonuniformity, and thus the reliability of the 

developed EDMD-based algorithm, can be examined further by evaluating mechanical properties for 

both unidirectional fibre-reinforced and particulate-reinforced composites. For this purpose, the 

commercial FEA software ABAQUS was utilized and the predicted values of the engineering 

constants along different material directions were compared for both materials. 

4.1  Material description 

The continuous E-glass fibre-reinforced Epikote 828/NMA/BDMA (100:60:1) epoxy system 

assessed by Tong et al. [51] was considered in this study. For the unidirectional fibre-reinforced 

glass/epoxy composite, the constituent isotropic elastic properties were determined by approximating 

typical values for E-glass fibers and epoxy resins found in the literature [52], [53]. The resulting 

constituent property values were 𝐸1𝑓 = 72GPa, 𝐸1𝑚 = 3.35GPa, 𝜈12𝑓 = 0.21, and 𝜈12𝑚 = 0.35, 
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and were used for analysis of both the glass fiber/epoxy and glass particle/epoxy composite. RVEs 

with various volume fractions were analyzed for both composites materials studied. It should be noted 

that although the random RVEs generated all had periodic geometries (see Figs. 5 and 6), periodic 

boundary conditions were not applied for FEA where instead symmetric boundary conditions were 

used for simplicity. 

4.2 Numerical micromechanical finite element analysis 

4.2.1 Continuous unidirectional glass fibre-reinforced/epoxy composites 

It was assumed that the unidirectional glass fibre-reinforced/epoxy composites undergo linear 

elastic plane strain deformation when loaded in tension along the transverse fibre directions, thus the 

generated 2D RVEs were considered for obtaining the transverse elastic response of the composite. 

The square shaped RVEs had lengths of  500 𝜇𝑚  and randomly distributed fibres with  20 𝜇𝑚 

diameter (initially constant). Three-node linear plane strain elements (i.e. CPE3) were used to mesh 

each RVE, and it was assumed that the fibres and matrix are perfectly bonded. In order to evaluate 

the composite transverse modulus, 𝐸22, and the Poisson ratio 𝜈23, a horizontal strain of 0.5% was 

applied to the right side of the RVEs, while for evaluation of 𝐸33 and 𝜈32 a vertical strain of 0.5% 

was applied to the top side of the RVEs (see Fig. 14). Well-known volume averaging techniques [52], 

not included here for brevity, were used to evaluate the elastic constants. For the 2D model area 

averaging is equivalent to volume averaging since the reinforcement fibers are continuous. 

Furthermore, assuming a linear elastic response the volume averaged modulus can be written in terms 

of volume averaged stress and the corresponding volume averaged strain, while the corresponding 

Poisson’s ratio is evaluated as follows: 

 𝐸𝑘𝑘 =
∑ 𝜎𝑘𝑘

𝑖 𝐴𝑖𝑁
𝑖=1

∑ 𝜀𝑘𝑘
𝑖 𝐴𝑖𝑁

𝑖=1

, 𝜈𝑗𝑘 = −
∑ 𝜀𝑘𝑘

𝑖 𝐴𝑖𝑁
𝑖=1

∑ 𝜀𝑗𝑗
𝑖 𝐴𝑖𝑁

𝑖=1

 (8) 

where 𝑁 indicates the total number of elements in the RVE mesh, 𝜎𝑘𝑘
𝑖  and 𝜀𝑘𝑘

𝑖  respectively denote 

the normal stress and strain components for element i, and 𝐴𝑖 is the area of element i. 
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Resultant normal stress distributions for a 2D RVE with 62% fibre volume fraction for both 

loading cases are depicted in Fig. 14, which illustrates that stress concentrations located at the 

fibre/matrix interfaces were aligned with the loading direction as expected. Also, the magnitude of 

the local normal stresses greatly depends on the distance between fibres, where maximum normal 

stresses resulted in regions with higher fibre concentrations as shown in Fig. 14. Using Eq. (8) and 

𝐸22 as a metric, a mesh sensitivity analysis was performed with the 62% fibre volume fraction RVE 

to determine the appropriate element size for all RVEs analyzed. Fig. 15 demonstrates the effect of 

mesh size on 𝐸22, which indicates that an element size lower than 30  𝜇𝑚2 leads to a convergence of 

the results. For this study, an element size of 30 𝜇𝑚2 was utilized for all 2D RVEs. 

Table 1 presents the evaluated elastic constants for the RVE with 𝑉𝑓 = 0.62. The predicted 

Young’s moduli correlate better with the experimental data [53] in comparison to the Halpin-Tsai 

predictions [54], while the evaluated Poisson’s ratios correlate well with experimental data for both 

cases. Furthermore, unidirectional fibre-reinforced composites typically exhibit transversely isotropic 

behaviour in accordance with Eq. (9), thus the consistency of the elastic properties in both transverse 

directions of the RVE can be used to assess the degree of nonuniformity of the fibres and provide 

another form of validation for the RVE generation algorithm. 

 𝐸22 = 𝐸33, 𝜈23 = 𝜈32,
𝜈32

𝐸33
=

𝜈23

𝐸22
 (9) 

 

As can be inferred from Table 1, the relations defined by Eq. (9) held for the RVE analyzed. These 

results highlight that the fibres have been ideally distributed in the RVE in both transverse 

directions, suggesting that the EDMD-based algorithm can generate practical RVEs.  

To further demonstrate the capability of the algorithm to generate RVEs with nonuniform fibre 

distributions, five different RVEs with the same Vf = 62% were assessed. The evaluated volume 
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averaged transverse modulus for these RVEs is presented in Table 2, demonstrating consistency in 

the obtained results and stability of the EDMD-based algorithm. 

Additional FEA was conducted for a number of similar RVEs with a wide range of fibre volume 

fractions (i.e. 𝑉𝑓 = 0.30, 0.40, 0.50, 𝑎𝑛𝑑 0.62). The corresponding mechanical properties are shown 

in Table 3 along with predictions obtained using Halpin-Tsai expressions. These results reveal that 

the algorithm can randomly generate practical nonuniformly distributed RVEs since predicted 𝐸22 

and 𝐸33 values for a specific fibre volume fraction are similar in magnitude, which was the main 

focus of the study. These results also highlight that the developed algorithm can generate consistent 

nonuniform randomly distributed RVEs over a wide range of fibre volume fractions. It should be 

noted that the predicted moduli have a notable discrepancy in comparison with those predicted using 

the Halpin-Tsai relation, which assumes a certain structured arrangement of fibres (i.e., not randomly 

distributed). A similar range of discrepancy was also reported by Pathan et al. [55]. 

In order to enhance the consistency of the FE model with real UD composites and further validate 

the RVE generation algorithm, additional simulations were performed on the RVEs with random 

diameter fibers for two high fiber volume fractions (i.e. 𝑉𝑓 =  0.50 and 0.62). The calculated volume 

averaged transverse modulus for these models were compared to the constant diameter RVE models 

presented in Table 1 in Fig. 16. It is clear that the adverse consequence of inequality of fibre size can 

alter the elastic constant up to 10% for the E-glass/epoxy material considered in this study. It is worth 

noting that same volume fraction was obtained using two distinct fibre distributions.   

4.2.2 Glass particle-reinforced/epoxy composites 

The validity of the EDMD-based algorithm to randomly generate 3D periodic RVEs for 

nonuniformly distributed particulate-reinforced composites was also examined. Particles have been 

chosen instead of fibres here to test the capability of the algorithm in generating more complex 

geometries with distinct limiting conditions. In the analysis, cubic RVEs with length  200 𝜇𝑚 and 
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constant spherical particle diameter of  19 𝜇𝑚  with various particulate volume fractions were 

produced. Three-dimensional 4-node linear tetrahedron elements (i.e. C3D4) were utilized to mesh 

each RVE, and the particles were perfectly bonded to the matrix. The 3D linear elastic RVEs were 

subjected to normal strains of 0.5% along the principal directions in order to obtain the corresponding 

elastic constants. Similar to Eq. (8), now using volume averaged stresses and strains, the moduli and 

Poisson’s ratios were evaluated using the following: 

 𝐸𝑘𝑘 =
∑ 𝜎𝑘𝑘

𝑖 𝑉𝑖𝑁
𝑖=1

∑ 𝜀𝑘𝑘
𝑖 𝑉𝑖𝑁

𝑖=1

, 𝜈𝑗𝑘 = −
∑ 𝜀𝑘𝑘

𝑖 𝑉𝑖𝑁
𝑖=1

∑ 𝜀𝑗𝑗
𝑖 𝑉𝑖𝑁

𝑖=1

 (10) 

where 𝑉𝑖 denotes the allocated volume of ith element. Fig. 17 shows the Mises stress distribution for 

an RVE with 60% particle volume fraction under an applied uniaxial displacement. Similar to the 

2D RVEs, the local stress concentrations was found to be greater in regions with higher particle 

packing, and the maximum stresses for both matrix and fibres were observed in the same regions. 

The evaluated elastic constants for a wide range of particle volume fractions are presented in Table 

4. The equivalency of 𝐸11 , 𝐸22 and 𝐸33  (and similarly 𝝂𝟏𝟐 , 𝝂𝟏𝟑  and 𝝂𝟐𝟑 ) for a specific volume 

fraction suggests isotropic behavior of the particulate composite in all principal material directions, 

which is expected since the particles are spherical in shape and nonuniformly distributed. These 

results demonstrate that for a particle-reinforced composite the developed RVE generation algorithm 

can generate consistent nonuniform randomly distributed particle distributions in three-dimensional 

space. Moreover, the algorithm can reliably generate periodic geometries for high volume fractions. 

The stability of the algorithm in generating random RVEs with the same particulate volume 

fraction was also assessed by comparing the corresponding Young’s moduli as shown in Table 5 for 

four particle volume fractions. The consistency of the results for a specific volume fraction further 

reveal the ability of the developed algorithm to generate truly random RVEs for various volume 

fractions ranging from low to high. 
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To analyze the repercussions of discrepancy between the particle diameter, the results from two 

volume fraction RVEs (i.e. 𝑉𝑓 =  0.30 and 0.40) were compared to those obtained for the constant 

diameter RVEs from Table 4 in Fig. 18. Again, the significance of including a variable particle size 

on mechanical properties of the glass particle/epoxy composite studied is notable. It should be noted 

that in this figure the elastic moduli in one direction (i.e., E11) were presented with the average of 

elastic modulus along the principal material directions. 

5. Conclusions 

An effective and versatile algorithm based on event-driven molecular dynamics theory was 

developed for rapidly generating random representative volume elements (RVEs) with 

nonuniformly distributed reinforcements with either constant or random sizes for two distinct types 

of composites, specifically unidirectional continuous fibre-reinforced and spherical particulate-

reinforced. RVEs were generated with a range of reinforcement volume fractions up to 80%, which 

is an advantage over existing methods that require considerable computational resources and/or 

cannot converge for high volume fractions. The computational requirement to generate all the RVEs 

in this study was no more than 20 seconds on a stand-alone personal computer. Detailed statistical 

analyses were conducted to assess the uniformity of the reinforcement dispersions for the randomly 

generated RVEs. Comparisons with microstructures of actual composites from the literature 

demonstrated that the generated RVEs exhibit consistent nonuniform and realistic spatial 

dispersions, and provided validation for the developed RVE generation algorithm. Furthermore, 

finite element analysis was performed on the generated RVEs to provide additional validation for 

the developed algorithm. For the unidirectional fiber-reinforced composites analyzed, the evaluated 

RVE volume averaged elastic constants were equivalent in both transverse fibre directions for all 

volume fractions considered. Thus, the expected transversely isotropic response was confirmed 

which indicated that the nonuniform dispersion of fibers in the randomly generated RVEs was 
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indeed representative of the actual material. For the particulate-reinforced composites analyzed the 

evaluated elastic constants demonstrated an isotropic response along all principal directions, which 

further verifies the accuracy of the random RVE generation algorithm. 

The validated results presented provide confidence in the ability of the developed algorithm to 

rapidly generate realistic RVEs with high reinforcement volume fractions for various types of 

composite materials. In practice, the algorithm can be used as a design tool to accurately evaluate 

and tailor the mechanical properties of distinct material systems for a specific structural application, 

and for accurate microstructural assessment including predictions of microscopic crack progression 

which requires RVEs with realistic nonuniformly dispersed reinforcements. Nevertheless, 

additional studies are required to extend the microstructural characterization of the materials 

considered and broaden the applicability of the developed algorithm. The algorithm can be applied 

to generate RVEs for aligned discontinuous fiber-reinforced composites with high fibre volume 

fractions, which are representative of emerging extruded or additively manufactured composites. 
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Figure Captions 

Fig. 1. Schematic of time-stepping method and event-driven algorithm. 

Fig. 2. Algorithm flowchart for random RVE generation. 

Fig. 3. RVE generation procedure for 2D randomly distributed fibres with X-direction periodic 

geometry by utilizing (a) same size and (b) random size. 

Fig. 4. RVE generation procedure for 3D randomly distributed spherical particles with fully 

periodic geometry. 

Fig. 5. Examples of generated 2D RVEs with randomly distributed fibres having periodic geometry 

along X-direction and 𝑉𝑓 = 0.62. 

Fig. 6. Generated 3D RVE with randomly distributed spherical particles and Vf = 30%. 

Fig. 7. Radial distribution functions (RDF) for randomly distibuted 2D RVEs with different volume 

fractions, and structured rectangular distribution. 

Fig. 8. (a) Experimental image of unidirectional composite cross-section from Ref. [28], (b) 

corresponding center coordinates of the fibres prossessed by ImageJ, and (c) comparison of radial 

distribution functions (RDF) for  real transverse cross-section of unidirectional composite based on 

“pixel distance” with red curve, and  for generated random RVE with blue curve. 

Fig. 9. The Voronoi tessellation of the centers of fibres in random distribution for different volume 

fractions. 

Fig. 10. Nearest neighbour distance distributions for 2D random particles generated by EDMD 

method with same size (blue histogram and blue fit curve) and random size (red histogram and red 

dash fit curve) 

Fig. 11. Nearest neighbour distance distributions analyses for 3D random particles generated by 

EDMD method with (a) K-function, (b) F-function and (c) G-function 

Fig. 12. Voronoi domain analysis of random distribution in 30% (a) and 60% (b) volume fractions 

by using Voronoi Domain Direction Vectors 

Fig. 13. 3D Autocorrelation analysis and density recovery profile for RVEs with (a) 30% Vf and 

random distribution, (b) 60% Vf  and random distribution, and (c) 30% Vf  and structured hexagonal 

distribution. 

Fig. 14. Normal stress distribution along loading directions for 2D RVEs with 𝑉𝑓 = 0.62, (a) 

horizontal loading, and (b) vertical loading. 
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Fig. 15. Effect of mesh size on transverse Young’s modulus for 2D RVE with 𝑉𝑓 = 0.62. 

Fig. 16. A comparison of volume averaged transverse elastic modulus for RVEs with constant 

diameter and variable diameter fibres, for a glass fiber/epoxy UD composite with 𝑉𝑓 = 0.50 and 

0.62. 

Fig. 17. Mises stresses contours for 3D RVE with Vf = 0.60: (a) particles and (b) matrix. 

Fig. 18. A comparison of volume averaged elastic modulus for RVEs with constant diameter and 

variable diameter particles, for a glass particle/epoxy  composite with 𝑉𝑓 = 0.30 and 0.40. 
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Tables 

Table 1. Evaluated and experimental elastic constants for randomly distributed 2D RVE with 𝑉𝑓 =

0.62. 

 𝑬𝟐𝟐 (GPa) 𝑬𝟑𝟑 (GPa) 𝝂𝟐𝟑 𝝂𝟑𝟐 

FEA 14.452 14.324 0.344 0.338 

Halpin-Tsai 15.18 15.18 0.33 0.33 

Experimental [51]  13 13 0.3 0.3 

Error 1a (%) 4.79 5.64 7.5 5.62 

Error 2b (%) 11.16 10.18 14.7 12.67 
a Comparing FEA result with Halpin-Tsai formula 
b Comparing FEA result with experimental data 
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Table 2. Evaluated transverse elastic modulus for randomly distributed 2D RVEs with Vf = 0.62% 

and different random geometries. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

𝑬𝟐𝟐 (GPa) 14.45 14.38 14.14 14.64 14.98 

Error 1 a (%) 0.46 0.95 2.6 0.84 3.18 
a Results were compared with the average of these five models 
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Table 3. Evaluated elastic constants for randomly distributed 2D RVEs with different Vf. 

𝑽𝒇 (%) 
𝑬𝟐𝟐 (GPa) 𝑬𝟑𝟑 (GPa) 𝝂𝟐𝟑 𝝂𝟑𝟐 𝑬𝟐𝟐

𝑬𝟑𝟑
 

𝝂𝟐𝟑

𝝂𝟑𝟐
 

𝑬𝟐𝟐𝝂𝟑𝟐

𝑬𝟑𝟑𝝂𝟐𝟑
 

FEM / Ref. [54] 

30 (1) 6.10/6.91 6.00/6.91 0.500/0.46 0.493/0.46 1.017 1.009 1.008 

40 (2) 7.57/8.74 7.52/8.74 0.471/0.42 0.468/0.42 1.006 1.007 0.999 

50 (3) 9.70/11.12 9.67/11.12 0.424/0.37 0.420/0.37 1.003 1.010 0.994 

62 (4) 14.45/15.18 14.32/15.18 0.344/0.32 0.338/0.32 1.008 1.018 0.991 

Error 

(%) 

𝑬𝟐𝟐 (GPa) 𝑬𝟑𝟑 (GPa) 𝝂𝟐𝟑 𝝂𝟑𝟐 𝑬𝟐𝟐

𝑬𝟑𝟑
 

𝝂𝟐𝟑

𝝂𝟑𝟐
 

𝑬𝟐𝟐𝝂𝟑𝟐

𝑬𝟑𝟑𝝂𝟐𝟑
 

FEM / Ref. [54] 

%Diff(1) 11.8 13.3 8.3 7.3 1.72 0.93 0.78 

%Diff(2) 13.4 14.0 12.2 11.4 0.64 0.68 0.04 

%Diff(3) 12.72 13.01 14.60 13.51 0.33 0.95 0.62 

%Diff(4) 4.8 5.6 7.5 5.6 0.89 1.78 0.87 
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Table 4. Evaluated elastic constants for randomly distributed 3D RVEs with different Vf. 

𝑽𝒇 

(%) 

𝑬𝟏𝟏 

(GPa) 

𝑬𝟐𝟐 

(GPa) 

𝑬𝟑𝟑 

(GPa) 
𝝂𝟏𝟐 𝝂𝟏𝟑 𝝂𝟐𝟑 

𝑴𝒂𝒙(𝑬𝟐𝟐)

𝑴𝒊𝒏(𝑬𝟑𝟑)
 

𝑴𝒂𝒙(𝑬𝒊𝒊−𝑬𝒋𝒋)

𝑨𝒗𝒈(𝑬𝒌𝒌)
(%)  

30 5.907 5.903 5.927 0.324 0.326 0.32 1.004 0.41 

40 8.274 8.321 8.352 0.314 0.312 0.302 1.009 0.37 

50 10.349 10.138 10.417 0.292 0.2982 0.286 1.028 2.71 

60 15.459 15.179 14.87 0.262 0.272 0.28 1.040 3.88 
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Table 5. Evaluated elastic modulus for randomly distributed 3D RVEs with different volume 

fractions and random geometries. 

𝑽𝒇 (%) 𝑬𝟏𝟏
𝟏 * 𝑬𝟏𝟏

𝟐 * 𝑬𝟏𝟏
𝟑 * 

30 5.907 5.941 5.942 

40 8.056 8.274 8.139 

50 10.349 10.864 10.704 

60 15.301 15.537 15.459 
* The superscripts correspond to the RVE model number. 
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Highlights 

- Novel algorithm developed to rapidly generate RVEs with nonuniform reinforcement dispersions 

for high volume fraction unidirectional and particulate composites 

- Statistical assessment of reinforcement dispersions reveal RVEs are representative of real 

microstructures, and validated by comparison with actual composite microstructures 

- RVEs with volume fractions up to 80% were rapidly generated without convergence issues 

- Computational microscopic assessment provided means to evaluate volume averaged mechanical 

properties, with excellent correlation to available experimental data 

- Developed algorithm can be used as design tool to accurately evaluate and tailor properties of 

distinct composite materials 
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