Automatic Refactoring for Renamed
Clones in Test Code

by

Jun Zhao

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

(© Jun Zhao 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Unit testing plays an essential role in software development and maintenance, especially
in Test-Driven Development. Conventional unit tests, which have no input parameters, of-
ten exercise similar scenarios with small variations to achieve acceptable coverage, which
often results in duplicated code in test suites. Test code duplication hinders comprehen-
sion of test cases and maintenance of test suites. Test refactoring is a potential tool for
developers to use to control technical debt arising due to test cloning.

In this thesis, we present a novel tool, JTestParametrizer, for automatically refactoring
method-scope renamed clones in test suites. We propose three levels of refactoring to
parameterize type, data, and behaviour differences in clone pairs. Our technique works at
the Abstract Syntax Tree level by extracting a parameterized template utility method and
instantiating it with appropriate parameter values.

We applied our technique to 5 open-source Java benchmark projects and conducted
an empirical study on our results. Our technique examined 14,431 test methods in our
benchmark projects and identified 415 renamed clone pairs as effective candidates for
refactoring. On average, 65% of the effective candidates (268 clone pairs) in our test suites
are refactorable using our technique. All of the refactored test methods are compilable,
and 94% of them pass when executed as tests. We believe that our proposed refactorings
generally improve code conciseness, reduce the amount of duplication, and make test suites
easier to maintain and extend.

111

Acknowledgements

First, I would like to thank my supervisor, Professor Patrick Lam, for his invaluable
advice and guidance. I sincerely appreciate the opportunity to learn from him and his
patience throughout my master program. Without his knowledge and expertise which
were always available to me, I would not have completed this thesis.

[would like to thank Professor Michael Godfrey and Professor Derek Rayside for reading
my thesis and providing valuable feedback during their busy schedules.

In addition, I would like to thank my parents and my girlfriend Yuwei Jiao for their
endless love and support during my studies in Waterloo. Thanks to my former colleague Yi
Zhuang for his encouragement and help during my application to University of Waterloo.
I would also like to thank all my friends at University of Waterloo for their willingness to
help out whenever needed.

Finally, I would like to thank my colleagues Jonathan Eyolfson, Stephen Li, and Zeming
Liu, for helping me improve my work.

v

Dedication

I dedicate this thesis to my parents, who have always supported me no matter what.

Table of Contents

List of Tables viii
List of Figures ix
1 Introduction 1

2 Related Work 4
2.1 Clone Type Classification, 4
2.2 Test Code Refactoring 7
2.3 Clone Removal Refactoring, 8

3 DMotivating Examples 10
3.1 Typical Clones 10
3.2 Parameterizable Difference Categorization 20

4 Approach 23
4.1 Tools and Concepts 23
4.2 Parameterization Techniques L. 26

4.2.1 Type Parameterization oL, 26
4.2.2 Data Parameterization 27
4.2.3 Behaviour Parameterization 29
4.3 Refactoring Roadmap 31

vi

4.3.1 Input and Output

4.3.2 Workflow
4.3.3 Implementation Lo o
4.4 Limitations

5 Evaluation

5.1 Applicability
5.2 Correctness
5.3 Refactoring Quality
5.4 Case Study
5.4.1 JFreeChart
542 GSONo
5.4.3 Apache Commons Lang and Commons IO
544 Joda-Time oL
5.4.5 Summaryo
5.5 Threats to Validity

6 Conclusions and Future Work

6.1 Conclusions
6.2 Future Work
References

vii

41
42
43
44
45
46
47
49
23
95
25

57
o7
S7

59

List of Tables

5.1
5.2

2.3

Selected benchmark projects L 41

65% of the effective candidates (268 clone pairs) in our benchmark projects
are refactorable using our techniqueo 43

94% of the 268 refactored test method pairs execute without failures across
five benchmarks 44

Viil

List of Figures

2.1 Exact clones differ only by whitespace 4
2.2 Renamed clones differ by variations in variable names, literals, and comments 5
2.3 Gapped clones differ by one gapped statement 6
2.4 Semantic clones differ by specific implementations (iteration vs recursion) . 6
2.5 Renamed clones lie within method boundaries 7
3.1 MutableDateTime and Instant tests differ by types of the variable test . 11

3.2 Using generic types to abstract the types MutableDateTime and Instant . 13

3.3 Two DateAxis tests differ by argument values in the DateTickUnit con-
structor call Lo 14

3.4 Different integer literal values are parameterized as method arguments . . 16

3.5 Methods testCapListener, testFrameListener have similar structure but
instantiate different methods (DialCap vs ArcDialFrame), call different
methods (setCap vs setDialFrame), and use different method parameters
(Color.red vs COLOT.Eray) v v v v v v ittt 18

3.6 Test utility method dialPlotTestsTestListenerTemplate parameterizes
behavioural differences in method calls between methods testCapListener
and testFramelListener from Figure 3.5 19

4.1 Deckard detects testGetLastMillisecond and testGetFirstMillisecond
as a potential refactorable clone pair 24

4.2 JDeodorant maps statements between test methods testGetLastMillisecond
and testGetFirstMillisecond and identifies the clone differences 25

X

4.3
4.4

4.5
4.6
4.7
4.8

5.1

2.2
2.3

5.4

2.5

Refactoring example with primitive value casting from int to long 28

Common behavioural interface DialPlotTestsTestListenerAdapter<TDial>

and its implementations in Figure 3.6 0. 30
JTestParametrizer’s overall workflow 33
Combining clone pair instance AST nodes 36
Clone pair with nested behavioural differences 39
Parameterization of nested behavioural differences 40

JFreeChart contains similar testFindRangeBounds () methods which test
related types.o 46

Gson test suite contains similar test methods with differences in generic classes 47

Refactorable test methods testLeft_String and testRight_String both
access private fields of test class StringUtilsSubstringTest and contain
data and behavioural differenceso 49

Refactorable test methods testBelowThreshold and testAtThreshold both
access private fields of test class DeferredFileQutputStreamTest and con-
tain data differences. 51

Differing values in testRemoveBadIndexl and testRemoveBadIndex2 can
be parameterized locally o oo 54

Chapter 1

Introduction

Unit testing is a widely used technique for software developers to ensure proper code
behaviour. Ideally, each unit test verifies a specific function of a code unit, and the entire
suite of tests works collectively to maintain the system functionality, in a regression testing
application of unit tests; or can even guide development, in a Test-Driven Development
application [10].

Traditionally, unit tests are designed to run independently with no input parameters.
Thus, many unit tests in a suite exercise similar scenarios with small variations to achieve
acceptable coverage in unit testing frameworks. Such self-contained test cases often re-
sult in test code duplication, which increases maintenance effort in test suites and error-
proneness due to inconsistent updates while maintaining the suites.

Technical debt is a concept that describes the long-term effects of short-term expedients
in software development [I11]. Technical debt can accrue in test suites as in any other
software artifact. Test refactoring can be a powerful tool to address the technical debt
in test suites and improve the quality of test code. A number of techniques are available
to implement refactoring in test code. Tillman and Schulte have proposed parameterized
unit tests (PUTs) to improve the expressiveness of unit tests and to enable reusing the
common logic behind similar tests [37]. In addition, Saff proposed Theories to generalize
example-based tests as a lightweight form of specification [35]. Other techniques to refactor
test clones involve using different language features such as inheritance or generics.

We believe it is valuable to retrofit existing test cases to reduce code duplication.
Thummalapenta et al conducted an empirical study to generalize conventional unit tests
to parameterized unit tests manually, and they concluded that retrofitting existing unit
tests with parameterization is beneficial to detecting new defects and increasing branch

coverage [30]. Appropriate refactoring on existing test clones can also help make the tests
easier to understand and reduce the brittleness of test suites.

Existing clone detection techniques have traditionally been applied to production code.
However, our work contributes a novel application of clone detection techniques to test
code. Clone detection tools usually report a large number of refactorable candidates that
appear to be similar. Manually inspecting and refactoring detected candidates is both
time-consuming and error-prone [12]. Automatic refactoring techniques can be a useful
tool for developers to control test cloning and maintain their test suites.

Our goal is to help developers more easily refactor test clones. In this thesis, we present a
technique to automatically refactor similar test clones by parameterizing clone differences
and provide these refactoring suggestions to the developers. Our technique focuses on
parameterizing three types of differences (section 3.2) in clone pairs: (1) Type differences;
(2) Data differences; and (3) Behavioural differences. Our refactoring strategy involves
extracting a parameterized template utility method and instantiating it with appropriate
parameter values.

We have therefore implemented a tool, JTestParametrizer, which enables developers
to automate the test refactoring process, control duplicated test code, and improve the
quality of their test suites. We implemented our technique as an Eclipse Plugin application
using the Java Development Tooling (JDT) framework. For each clone pair, our tool uses
JDeodorant developed by Tsantalis et al [38] to perform AST node mapping and difference
detection. It then combines the mapped nodes to construct a combined clone tree, and
extracts a parameterized template to unify the type, data, and behavioural differences.
Finally, our tool then writes code that passes appropriate parameter values to the extracted
template method, thus instantiating specific test cases.

We conducted an empirical study on a collection of 5 Java-based open source benchmark
projects. The benchmark test suites contain test code ranging from 14,000 to 55,000 lines,
and 14,431 test methods in all. Our technique identified 415 renamed clone pairs in our
benchmark test suites as effective candidates for refactoring. On average, our technique
refactors 65% of the effective candidates (268 clone pairs). All of the refactored test
methods compile, and 94% of them pass when executed as tests. We manually inspected
the correctly refactored clone pairs for each benchmark project and found that, although
individual tests could be more complicated to understand and specific tests could become
more difficult to debug, our refactoring suggestions can make test suites more concise.
Appropriate refactoring reduces the amount of duplication and makes the suites easier to
maintain and extend.

Our main contributions are:

e a technique to provide refactoring suggestions for test-level clone pairs in existing
test suites;

e an implementation of that technique; and

e an empirical study of five benchmark projects using our technique.

Our tool is available under the MIT License at:

https://github.com/yannickzj/JTestParametrizer

https://github.com/yannickzj/JTestParametrizer

Chapter 2

Related Work

In this section, we first present the definitions of clone types that we use in our context.
We then discuss refactoring activities in test code. Finally, we discuss recent research work
in clone removal refactoring.

2.1 Clone Type Classification

Our technique aims to refactor method-scope renamed clones (Type II clones) in a test
suite. Such clones may be Type II clones (Definition 2) as well as structural clones (Defini-
tion 5) where the syntactic bound is a method boundary. In this thesis, we use the terms
method-scope renamed clones and renamed clones interchangeably.

In our context, we adopt the following definitions from Roy and Cordy’s work on clone
detection [34].

Definition 1 Type I clones are identical code fragments except for variations in whites-
pace (may be also variations in layout) and comments. We also refer to these as ezact
clones. Figure 2.1 presents an example of exact clones. These two code fragments differ
by whitespace and comments.

// exact clone instancel
if (a >=b) {
c =d+ b; // Commentl
d d + 1;

} else
c =d - a; // Comment2

// exact clone instance?2
if (a>=b) {
//Comment1’
c=d+b;
d=d+1;
} else // Comment2’
c=d-a;

Figure 2.1: Exact clones differ only by whitespace

Definition 2 Type II clones are structurally /syntactically identical fragments except
for variations in identifiers, literals, types, layout and comments. We also refer to these
as renamed clones. Figure 2.2 presents an example of renamed clones. The two fragments
vary in variable names, literals, and comments, but have the same syntactic structure.

// renamed clone instancel
if (a >=b) {
c=d+b; // Commentl
d=d+ 1;
} else
c =d - a; // Comment2

// renamed clone instance2: a ->m, b ->n, ¢ > x, d >y
if (m >=n) {

//Comment1’
X =y +n;
y=y+2

} else // Comment?2’
X =y - m;

Figure 2.2: Renamed clones differ by variations in variable names, literals, and comments

Definition 3 Type III clones are copied fragments with further modifications. Such
clones may not only contain variations in identifiers, literals, types, layout and comments,
but also differ by changed, inserted or removed statements. We also refer to these as gapped

clones. Figure 2.3 presents an example of gapped clones. The second clone instance differs
from the first clone instance with a gap of one inserted statement.

// gapped clone instancel
if (a >=b) {

c=d+ b; // Commentl
} else

c=d - a; // Comment?2

// gapped clone instance2
if (a >=b) {

c =d+ b; // Commentl

e = b; // This statement is added
} else

c =d - a; // Comment2

Figure 2.3: Gapped clones differ by one gapped statement

Definition 4 Type IV clones are two or more code fragments that perform the same
computation but are implemented through different syntactic variants. We also refer to
these as semantic clones. Figure 2.4 presents an example of semantic clones. Both functions
calculate the factorial of their argument n, but they are implemented in two different ways.
The first clone instance uses iteration, while the second one uses a recursive call.

// semantic clone instancel
int factorial (int n) {
if (n < 0) throw new IllegalArgumentException();
int result = 1;
for (int i = 1; i <= n; i++)
result = result * ij;
return result;

// semantic clone instance?2

int factorial (int n) {
if (n < 0) throw new IllegalArgumentException();
if (n == 0) return 1;
else return n * factorial(n - 1);

}

Figure 2.4: Semantic clones differ by specific implementations (iteration vs recursion)

6

Definition 5 Structural clones are simple clones (Type I, II, III, or IV') that lie within
a syntactic boundary following the syntactic structure of a particular language. These
boundaries can be a function boundary, statement boundary, class boundary, etc. Figure
2.5 presents an example of method-scope structural clones. These clones have method
boundaries; they are also renamed clones with variations in variable names, literals, types,
and method names.

// method-scope structural clone instancel
public void test1() {

TypeA t1 = new TypeAQ);

assertEquals(5, tl.getSomeValue());
}

// method-scope structural clone instance2
public void test2() {

TypeB t2 = new TypeBQ);

assertEquals (10, t2.getOtherValue());
}

Figure 2.5: Renamed clones lie within method boundaries

2.2 Test Code Refactoring

Refactoring test code was first proposed by van Deursen et al [10]. They indicated that
specific bad smells such as code duplication arose more often in test code than in produc-
tion code. They also described a set of test refactorings to eliminate these bad smells.
Meszaros [32] presented a detailed and systematic explanation of test patterns, including
roadmaps for manually refactoring test code. However, neither of the past works proposed
techniques to automate test refactoring.

Guerra and Fernandes [16] presented a framework for reasoning about test structure
and proposed a tool to perform simple refactorings. They also indicated that test code
refactoring should be different from application code refactoring and refactoring in test
code needed to keep the same verifications of the application code behaviour. While their
technique mainly focused on validating and refactoring the test structure inside a test class,
our tool can provide refactoring suggestions for developers to remove duplicated code in
test suites.

Similarly, Estefo [11] proposed a tool named TestSurgeon to help software engineers

7

restructure unit tests. Their approach profiles the execution information of unit tests and
defines a metric based on execution information to measure the similarity between test
methods. However, TestSurgeon does not refactor test code. Our technique automatically
refactors similar test clones and directly applies refactoring changes to source code.

2.3 Clone Removal Refactoring

Clone management plays an important role in software maintenance and evolution. While
some studies identified positive aspects of code clones in the software development life
cycle [23, 26, 15, 27], code duplication is often overall harmful for software system, resulting
in additional maintenance efforts [20, 28, 13, 9, 25, 30, 7, 19].

Extensive refactoring might not always be beneficial or practical [21]. Researchers
have proposed techniques to recommend clones for refactoring. Wang and Godfrey [11]
proposed a decision tree-based classifier to provide recommendations for refactoring. They
collected training data from three open source projects (646 clone instances) to reflect the
benefit, cost, and risk of clone refactoring and trained their model based on this refactoring
history data. Mondal et al [29, 33] defined a clone change pattern, Similarity Preserving
Change Pattern (SPCP), to mine software evolution history. They proposed a technique
to identify clones that follow this pattern as important candidates for refactoring. While
these techniques recommend opportunities for clone refactoring, they do not refactor the
duplicated code. These techniques also focus on non-test code.

Recent research has also investigated automatic clone refactoring. Tsantalis et al [39]
proposed a technique to investigate the applicability of lambda expressions for clone refac-
toring with behavioural differences. They conducted an empirical study to refactor a large
dataset of Type II and Type III clones, and found that lambda expressions are a useful
tool to increase the applicability of behavioural parameterization. Lambda expressions
are not the only language feature that developers can use to parameterize behavioural
differences between clones. Our tool introduces three parameterization techniques to pa-
rameterize type, data, and behavioural differences. Because we focus on method-scope
renamed clones in test suites, our technique provides more specific refactoring suggestions
than their results.

Tsantalis et al [38] propose a tool, JDeodorant, to analyze clone pairs and investigate
whether the differences between clones can be safely parameterized. Their technique aims
for general code; our focus on test code is novel. Their analysis involves nesting structure
matching, statement mapping, and precondition examination between input pairs of code

fragments. In our implementation, we use JDeodorant as the clone analysis tool to perform
statement mapping and code difference detection on test code.

Meng et al [31] designed and implemented an automated refactoring tool for clone
removal based on systematic editing (i.e., making similar changes to multiple locations).
Their technique uses six refactoring operations to extract common code and parameterize
differences in types, methods, variables, and expressions. Although systematic editing
indicates opportunities to remove code redundancy, relying on systematic edits could limit
the refactoring scope for clone removal. Our approach takes the results of clone detection
as input, which could be more flexible for developers to use. In addition, their tool has
limited support for parameterizing type variations, and cannot handle refactor when any
parameterized type (e.g., T) instantiates new objects (e.g., new T()) or retrieves the type
literal (e.g., T.class). Our technique can handle these cases and produce readable code.

Juillerat and Hirsbrunner [21] proposed an algorithm to refactor method-scope clones
using the Form Template Method pattern. Their transformation was only semi-automated.
Hotta et al [17] followed up with a technique to assist applying the Form Template Method
refactoring. Their approach handles gapped clones with the program dependence graph
and provides refactoring suggestions with a GUIL. However, their refactoring technique relies
on applying the Form Template Method design pattern, which requires a common abstract
superclass to store the extracted template method. Our technique can provide a broader
scope to refactor clones without extra levels of inheritance.

Balazinska et al [8] propose a refactoring approach to redesign clone methods using
the strategy design pattern. Their transformation factorizes the commonalities of clones
and parameterizes their differences. However, applying the strategy design pattern to
the redesign process introduces multiple levels of indirection to mask clone differences,
which significantly increases the size of the system. Moreover, their refactoring process
becomes more complicated for parameterizing the differences in local variable types. In
our approach, we use fewer levels of indirection to parameterize clone differences. Also,
our technique can easily handle type differences by introducing generic methods.

Chapter 3

Motivating Examples

Our work proposes and implements refactoring suggestions for test pairs that are method-
scope renamed clones. Such clones are exact method clones except for variations in iden-
tifiers, literals, and types [31].

In this section, we use three clone pairs from our benchmarks as examples to illustrate
the typical patterns that we found in the test suites and how our technique refactors these
clone pairs. Using these examples, we categorize the parameterizable differences observed
in our work.

3.1 Typical Clones

Example 1

Figure 3.1 presents a pair of renamed clones found in the test suite of the Joda-Time
project (version 2.10). This clone pair contains variables with different types (highlighted
in pink), declaring variables of types MutableDateTime and Instant respectively. After
instantiating variables with specific types, both of the methods then test the date and time
fields of the variables. Therefore, both test cases follow the same logic. The main difference
between the methods of this clone pair is the type difference in the variable declaration
and instantiation, which can be parameterized using generic methods.

10

// test method in org.joda.time.TestMutableDateTime_Basics

public void testGet_DateTimeField() {
MutableDateTime test = new MutableDateTime ();
assertEquals(1l, test.get(ISOChronology.getInstance().era()));
assertEquals (20, test.get(ISOChronology.getInstance().century0fEra()));
assertEquals(2, test.get(ISOChronology.getInstance().yearOfCentury()));
assertEquals (2002, test.get(ISOChronology.getInstance().year0fEra()));
assertEquals (2002, test.get(ISOChronology.getInstance().year()));
assertEquals(6, test.get(ISOChronology.getInstance() .month0fYear()));
assertEquals(9, test.get(ISOChronology.getInstance().day0fMonth()));
assertEquals (2002, test.get(ISOChronology.getInstance() .weekyear()));
assertEquals (23, test.get(ISOChronology.getInstance() .weekOfWeekyear()));
assertEquals(7, test.get(ISOChronology.getInstance().day0fWeek()));
assertEquals (160, test.get(ISOChronology.getInstance().day0fYear()));
assertEquals (0, test.get(ISOChronology.getInstance().halfday0fDay()));
assertEquals(1l, test.get(ISOChronology.getInstance().hourOfHalfday()));
assertEquals(1l, test.get(ISOChronology.getInstance().clockhour0fDay()));
assertEquals(1l, test.get(ISOChronology.getInstance().clockhourOfHalfday()));
assertEquals(1l, test.get(ISOChronology.getInstance().hourOfDay()));
assertEquals(0, test.get(ISOChronology.getInstance() .minuteOfHour()));
assertEquals (60, test.get(ISOChronology.getInstance().minute0fDay()));
assertEquals(0, test.get(ISOChronology.getInstance().second0fMinute()));
assertEquals(60 * 60, test.get(ISOChronology.getInstance().second0fDay()));
assertEquals(0, test.get(ISOChronology.getInstance().millisOfSecond()));
assertEquals (60 * 60 * 1000,

test.get (ISOChronology.getInstance().millis0fDay()));
try {
test.get ((DateTimeField) null);
fail(Q);

} catch (IllegalArgumentException ex) {2}

}

// test method in org.joda.time.TestInstant_Basics

public void testGet_DateTimeField() {
Instant test = new Instant ();
assertEquals(1l, test.get(ISOChronology.getInstance().era()));
assertEquals(20, test.get(ISOChronology.getInstance().centuryOfEra()));
assertEquals(2, test.get(ISOChronology.getInstance().year0fCentury()));
assertEquals (2002, test.get(ISOChronology.getInstance().yearOfEra()));

11

assertEquals (2002, test.get(ISOChronology.getInstance().year()));
assertEquals(6, test.get(ISOChronology.getInstance().monthOfYear()));
assertEquals(9, test.get(ISOChronology.getInstance().day0fMonth()));
assertEquals (2002, test.get(ISOChronology.getInstance().weekyear()));
assertEquals (23, test.get(ISOChronology.getInstance() .weekOfWeekyear()));
assertEquals(7, test.get(ISOChronology.getInstance().day0fWeek()));
assertEquals (160, test.get(ISOChronology.getInstance().day0fYear()));
assertEquals(0, test.get(ISOChronology.getInstance().halfday0fDay()));
assertEquals (1, test.get(ISOChronology.getInstance().hourOfHalfday()));
assertEquals(1l, test.get(ISOChronology.getInstance().clockhour0fDay()));
assertEquals(1l, test.get(ISOChronology.getInstance().clockhourOfHalfday()));
assertEquals(1l, test.get(ISOChronology.getInstance().hour0fDay()));
assertEquals (0, test.get(ISOChronology.getInstance().minuteOfHour()));
assertEquals (60, test.get(ISOChronology.getInstance().minute0fDay()));
assertEquals(0, test.get(ISOChronology.getInstance().secondOfMinute()));
assertEquals(60 * 60, test.get(ISOChronology.getInstance().second0fDay()));
assertEquals(0, test.get(ISOChronology.getInstance().millis0fSecond()));
assertEquals(60 * 60 * 1000,
test.get (ISOChronology.getInstance() .millis0fDay()));
try {
test.get ((DateTimeField) null);
fail();
} catch (IllegalArgumentException ex) {}
}

Figure 3.1: MutableDateTime and Instant tests differ by types of the variable test

Figure 3.2 shows our refactoring suggestion. To reuse the common logic behind the
clone pair in Figure 3.1, we propose abstracting the types MutableDateTime and Instant
as type parameters in the generic method testBasicsTestGet DateTimeFieldTemplate.
More specifically, the type MutableDateTime and Instant are subclasses of the type
AbstractInstant, and we can declare generic type TInstant constrained to extend the
type AbstractInstant to represent types MutableDateTime and Instant. The generic
method serves as a test utility method, which can be reused in the body of test cases by
passing in different concrete type parameters.

12

// parameterized template in
org.joda.time.TestBasicsTestGet_DateTimeFieldTemplate
public static < extends AbstractInstant>
void testBasicsTestGet_DateTimeFieldTemplate(Class< > clazzTInstant)
throws Exception {
test = clazzTInstant.newInstance();
assertEquals(1l, test.get(ISOChronology.getInstance().era()));
assertEquals (20, test.get(ISOChronology.getInstance().centuryOfEra()));
assertEquals(2, test.get(ISOChronology.getInstance().yearOfCentury()));
assertEquals (2002, test.get(ISOChronology.getInstance().year0fEra()));
assertEquals (2002, test.get(ISOChronology.getInstance().year()));
assertEquals(6, test.get(ISOChronology.getInstance().monthOfYear()));
assertEquals(9, test.get(ISOChronology.getInstance().day0fMonth()));
assertEquals (2002, test.get(ISOChronology.getInstance() .weekyear()));
assertEquals(23, test.get(ISOChronology.getInstance() .weekOfWeekyear()));
assertEquals(7, test.get(ISOChronology.getInstance().day0fWeek()));
assertEquals (160, test.get(ISOChronology.getInstance().day0fYear()));
assertEquals(0, test.get(ISOChronology.getInstance().halfday0fDay()));
assertEquals(1l, test.get(ISOChronology.getInstance() .hourOfHalfday()));
assertEquals(1l, test.get(ISOChronology.getInstance().clockhour0fDay()));
assertEquals(1l, test.get(ISOChronology.getInstance().clockhourOfHalfday()));
assertEquals(1l, test.get(ISOChronology.getInstance() . .hour0fDay()));
assertEquals (0, test.get(ISOChronology.getInstance().minuteOfHour()));
assertEquals (60, test.get(ISOChronology.getInstance().minute0fDay()));
assertEquals(0, test.get(ISOChronology.getInstance().secondOfMinute()));
assertEquals(60 * 60, test.get(ISOChronology.getInstance().second0fDay()));
assertEquals(0, test.get(ISOChronology.getInstance().millisOfSecond()));
assertEquals(60 * 60 * 1000,
test.get (ISOChronology.getInstance() .millisOfDay()));
try {
test.get ((DateTimeField) null);
fail();
} catch (IllegalArgumentException ex) {}
}
// refactored test method in org.joda.time.TestMutableDateTime_Basics
public void testGet_DateTimeField() throws Exception {
TestBasicsTestGet_DateTimeFieldTemplate
.testBasicsTestGet_DateTimeFieldTemplate(MutableDateTime .class);

13

// refactored test method in org.joda.time.TestInstant_Basics
public void testGet_DateTimeField() throws Exception {
TestBasicsTestGet_DateTimeFieldTemplate
.testBasicsTestGet_DateTimeFieldTemplate(Instant .class);

Figure 3.2: Using generic types to abstract the types MutableDateTime and Instant

Example 2

Figure 3.3 shows another duplication pattern. The only difference in this clone pair lies
in the argument values passed to the DateTickUnit constructor (highlighted in purple),
which is 1 and 10 respectively. The parameterized template method can be extracted by
abstracting the different integers as a method argument.

// test method in org.jfree.chart.axis.junit.DateAxisTests
public void testPreviousStandardDateMillisecondA() {
MyDateAxis axis = new MyDateAxis("Millisecond");
Millisecond mO = new Millisecond (458, 58, 31, 12, 1, 4, 2007);
Millisecond ml = new Millisecond (459, 58, 31, 12, 1, 4, 2007);

Date dO = new Date(m0.getFirstMillisecond());
Date end = new Date(ml.getLastMillisecond());

DateTickUnit unit = new DateTickUnit(DateTickUnit.MILLISECOND, '1);
axis.setTickUnit (unit);

// START: check dO
axis.setTickMarkPosition(DateTickMarkPosition.START);

axis.setRange(d0, end);

Date psd = axis.previousStandardDate(dO, unit);
Date nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

// MIDDLE: check dO
axis.setTickMarkPosition(DateTickMarkPosition.MIDDLE) ;

14

axis.setRange(d0, end);

psd = axis.previousStandardDate(dO, unit);
nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

// END: check dO
axis.setTickMarkPosition(DateTickMarkPosition.END) ;

axis.setRange(d0, end);

psd = axis.previousStandardDate(dO, unit);
nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

// test method in org.jfree.chart.axis.junit.DateAxisTests
public void testPreviousStandardDateMillisecondB() {

MyDateAxis axis = new MyDateAxis("Millisecond");
new Millisecond (458, 58, 31, 12, 1, 4, 2007);
new Millisecond (459, 58, 31, 12, 1, 4, 2007);

Millisecond mO
Millisecond ml

Date dO = new Date(mO.getFirstMillisecond());
Date end = new Date(ml.getLastMillisecond());

DateTickUnit unit = new DateTickUnit(DateTickUnit.MILLISECOND, 10);
axis.setTickUnit(unit);

// START: check dO
axis.setTickMarkPosition(DateTickMarkPosition.START);

axis.setRange(d0, end);

Date psd = axis.previousStandardDate(d0, unit);
Date nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

// MIDDLE: check dO
axis.setTickMarkPosition(DateTickMarkPosition.MIDDLE) ;

15

axis.setRange(d0, end);

psd = axis.previousStandardDate(dO, unit);
nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

// END: check dO
axis.setTickMarkPosition(DateTickMarkPosition.END) ;

axis.setRange(d0, end);

psd = axis.previousStandardDate(dO, unit);
nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

Figure 3.3: Two DateAxis tests differ by argument values in the DateTickUnit
constructor call

Figure 3.4 presents the results of our technique for the clone pair from Figure 3.3,
showing a case of parameterized unit tests [37]. Parameterizing the data difference makes
the refactored test cases more concise, effectively saving 21 lines of code from the original
clone pair with 54 lines. Refactoring also helps facilitate data-driven testing and reduces
the technical debt of the test suite maintenance when more tests with different data are
needed.

// parameterized template in org.jfree.chart.axis.junit.DateAxisTests
public void dateAxisTestsTestPreviousStandardDateMillisecondTemplate(int i1) {
MyDateAxis axis = new MyDateAxis("Millisecond");
Millisecond m0 = new Millisecond(458, 58, 31, 12, 1, 4, 2007);
Millisecond ml = new Millisecond(459, 58, 31, 12, 1, 4, 2007);
Date dO = new Date(m0.getFirstMillisecond());
Date end = new Date(ml.getLastMillisecond());
DateTickUnit unit = new DateTickUnit (DateTickUnit.MILLISECOND, il);
axis.setTickUnit (unit);
axis.setTickMarkPosition(DateTickMarkPosition.START);
axis.setRange(d0, end);
Date psd = axis.previousStandardDate(d0, unit);
Date nsd = unit.addToDate(psd);
assertTrue(psd.getTime() < d0.getTime());

16

assertTrue(nsd.getTime() >= d0.getTime());
axis.setTickMarkPosition(DateTickMarkPosition.MIDDLE) ;
axis.setRange(d0, end);

psd = axis.previousStandardDate(d0, unit);

nsd = unit.addToDate(psd);

assertTrue(psd.getTime() < dO.getTime());
assertTrue(nsd.getTime() >= d0.getTime());
axis.setTickMarkPosition(DateTickMarkPosition.END) ;
axis.setRange(d0, end);

psd = axis.previousStandardDate(d0, unit);

nsd = unit.addToDate(psd);

assertTrue(psd.getTime() < dO.getTime());
assertTrue(nsd.getTime() >= d0.getTime());

// refactored test method in org.jfree.chart.axis.junit.DateAxisTests
public void testPreviousStandardDateMillisecondA() {

this.dateAxisTestsTestPreviousStandardDateMillisecondTemplate(1) ;
X

// refactored test method in org.jfree.chart.axis.junit.DateAxisTests
public void testPreviousStandardDateMillisecondB() {

this.dateAxisTestsTestPreviousStandardDateMillisecondTemplate (/10) ;
X

Figure 3.4: Different integer literal values are parameterized as method arguments

Example 3

Finally, Figure 3.5 not only contains type and data differences which are similar to the
previous examples (highlighted in pink and purple respectively) but also introduces a new
type of difference in object method invocations (highlighted in orange). This time, the
clone tests still have the same structure, but they call methods with different names (i.e.,
setCap and setDialFrame). These different method calls can possibly be invoked on
receiver objects of different types (i.e., DialCap and ArcDialFrame). We would expect
methods with different names to have different behaviours. However, we can still refactor
these tests as they have the same structure.

17

// test method in org.jfree.chart.plot.dial.junit.DialPlotTests
public void testCapListener() {
DialPlot p = new DialPlot();
DialCap cl1 = new DialCap ();
p. setCap (cl);
p.addChangelListener (this);
this.lastEvent = null;
cl. setFillPaint (Color.red) ;
assertNotNull(this.lastEvent);
DialCap c2 = new DialCap ();
p. setCap (c2);
this.lastEvent = null;
cl. setFillPaint (Color.blue);
assertNull(this.lastEvent) ;
c2. setFillPaint (Color.green);
assertNotNull (this.lastEvent) ;
}
// test method in org.jfree.chart.plot.dial.junit.DialPlotTests
public void testFrameListener() {
DialPlot p = new DialPlot();
ArcDialFrame f1 = new ArcDialFrame ();
p. setDialFrame (f1);
p.addChangelistener (this);
this.lastEvent = null;
f1. setBackgroundPaint (Color.gray) ;
assertNotNull(this.lastEvent);
ArcDialFrame f2 = new ArcDialFrame ();
p. setDialFrame (£2);
this.lastEvent = null;
f1. setBackgroundPaint (Color.blue);
assertNull(this.lastEvent) ;
£2. setBackgroundPaint (Color.green);
assertNotNull(this.lastEvent);
}

Figure 3.5: Methods testCapListener, testFrameListener have similar structure but
instantiate different methods (DialCap vs ArcDialFrame), call different methods (setCap
vs setDialFrame), and use different method parameters (Color.red vs Color.gray)

18

Figure 3.6 shows our suggested refactoring for the code pair in Figure 3.5. The basic
idea is to extract the common interface, DialPlotTestsTestListenerAdapter, based on
the behavioural differences, then apply different implementations of the common interface
to individual test cases. Similar to the parameterization of data differences, we apply the
behavioural differences through the template method argument by passing specific interface
implementation objects.

// parameterized template in org.jfree.chart.plot.dial.junit.DialPlotTests
public < extends AbstractDiallayer> void dialPlotTestsTestListenerTemplate(
DialPlotTestsTestListenerAdapter< > adapter, Class< > clazzTDial,
Color colorl) throws Exception {
DialPlot p = new DialPlot();
vl = clazzTDial.newInstance();
adapter.set(p, v1);
p.addChangelistener (this);
this.lastEvent = null;
adapter.setPaint(vl, colorl);
assertNotNull(this.lastEvent) ;
v2 = clazzTDial.newInstance();
adapter.set(p, v2);
this.lastEvent = null;
adapter.setPaint(vl, Color.blue);
assertNull(this.lastEvent);
adapter.setPaint(v2, Color.green);
assertNotNull(this.lastEvent) ;

// common behavioural interface

interface DialPlotTestsTestListenerAdapter< > {
void set(DialPlot dialPloti, tDiall);
void setPaint(tDiall, Color colorl);

}

// behavioural implementation for testCapListener()
class DialPlotTestsTestCapListenerAdapterImpl implements
DialPlotTestsTestListenerAdapter< DialCap > {

public void set(DialPlot p, DialCap c1) {

p. setCap (cl);
}

19

public void setPaint(DialCap v1, Color colorl) {
v1l. setFillPaint (colorl);
}
}

// behavioural implementation for testFrameListener()
class DialPlotTestsTestFramelListenerAdapterImpl implements
DialPlotTestsTestListenerAdapter< ArcDialFrame > {
public void set(DialPlot p, ArcDialFrame f1) {
p. setDialFrame (f1);
}
public void setPaint(ArcDialFrame f1, Color colorl) {
f1. setBackgroundPaint (colorl);
}
}

// refactored test method in org.jfree.chart.plot.dial.junit.DialPlotTests
public void testCapListener() throws Exception {
this.dialPlotTestsTestListenerTemplate (new
DialPlotTestsTestCaplListenerAdapterImpl(), DialCap .class, Color.red) ;

// refactored test method in org.jfree.chart.plot.dial. junit.DialPlotTests
public void testFrameListener() throws Exception {
this.dialPlotTestsTestListenerTemplate (new
DialPlotTestsTestFrameListenerAdapterImpl(), ArcDialFrame .class,
Color.gray);

Figure 3.6: Test utility method dialPlotTestsTestListenerTemplate parameterizes
behavioural differences in method calls between methods testCapListener and
testFrameListener from Figure 3.5

3.2 Parameterizable Difference Categorization

Based on the above motivating examples and our observations during refactoring, we iden-
tify three basic types of parameterizable differences:

20

1. Type difference

Type differences include tests that differ in the classes that they declare or instantiate.
Note that the classes of different types are not necessarily subclasses of a common su-
perclass except for the class Object. We will describe our parameterization technique
for type differences in section 4.2.1.

As shown in Figure 3.1, the matching variables test are declared and instantiated
with different types, MutableDateTime and Instant, respectively. Also, classes of
different types in Figure 3.5, DialCap and ArcDialFrame, are instantiated and as-
signed to variables of corresponding type.

2. Data difference

This group mainly refers to differences in literal values or variables of different data
types. We explain more details about how we parameterize data difference in section
4.2.2. Figure 3.3 presents an example of data difference in integer literal values. In
our refactoring work, we observed many instances of this difference type in test cases,
especially in some data-intensive test suites such as the Joda-Time benchmark.

3. Behavioural difference

Method calls are key actions in Object-Oriented Programming. Behavioural differ-
ences include tests that differ in the identity of the methods that they invoke. Java
method invocations include a receiver expression, method name, and actual param-
eter values:

<receiver expr>.<method name>(<actual parameter values>)

For this type of difference, we consider receiver expressions and method names. Dif-
ferences in actual parameters can be detected as data differences. Section 4.2.3 will
present more details about how we parameterize behavioural differences.

As discussed in Figure 3.5, the method pair of p.setCap and p.setDialFrame only
has a behavioural difference in its method name identifier, while the method pair of
cl.setFillPaint and f1.setBackGroundPaint contains differences in both receiver
expression and method name.

Our observations show that many differences in parameterized clones fit one of the
three above types. Our refactoring technique focuses on automatically parameterizing
these three types of differences in clone pairs. Other difference types are out of scope for
this work. Additionally, these basic parameterizable differences can appear individually or

21

together in a nested way. We apply the parameterization techniques in our approach in
a depth-first search (DFS) way to refactor the abstract syntax tree structure of the clone
pair, which we will describe in the next section.

22

Chapter 4

Approach

Our tool, JTestParametrizer, refactors renamed clones in test cases and provides these
refactorings as suggestions to the developers.

In this section, we first introduce the tools and concepts that we use in our approach.
Then, we present three parameterization techniques that we developed for refactoring test
cases and describe more implementation details about our approach. Finally, we discuss
the limitations of our refactoring technique.

4.1 Tools and Concepts

Abstract Syntax Trees (AST) are tree-based data structures widely used in compilers to
represent the structure of source code in a programming language [6]. These trees represent
text-based source code in a tree form. Each node of the tree denotes a syntactic element in
the source code. AST nodes can represent literal values, variable declarations, expressions,
statements, etc. ASTs are a convenient and powerful tool for programmatically analyzing
and modifying source code [1].

In our implementation, we use the Java Development Tooling (JDT) API [1] on the
Eclipse platform for parsing source code to ASTs. The JDT allows users to write, compile,
test, debug, and edit programs written in the Java programming language. The Eclipse
JDT API provides a large hierarchical organization of AST node types including different
types of nodes such as Ezpression, Statement, Type, Name, BodyDeclaration, etc. Each
type may contain dozens of concrete AST nodes. For instance, the Statement group has 22
kinds of statement nodes, and the Fxpression group contains up to 32 kinds of expression

23

nodes. To perform appropriate operations over such a complex object structure, our im-
plementation applies the wvisitor pattern, which allows flexibly defining specific behaviour
based on the AST node type.

Additionally, we use Deckard [15] to detect potential candidates for refactoring. Deckard
is a tree-based clone detection tool which is applicable to any language with a formally
specified grammar [18]. It reports clone candidates, which serve as raw inputs to our
refactoring system. We then use JDeodorant [38] as a library in our implementation to
perform clone analysis, which involves mapping corresponding AST nodes and identifying
the differences in clone pairs. JDeodorant is an Eclipse plugin that supports identifying and
resolving duplicated code smells in Java software [3]. Unlike Deckard, it does not detect
clone candidates, but focuses on clone analysis and refactoring with given clone candidates.
In our implementation, we use the analysis results from JDeodorant for further refactoring.

Figure 4.1 shows a pair of renamed clones detected by Deckard in the test suite of the
JFreeChart project (version 1.0.10). Manual inspection confirms that a data difference
(highlighted in purple) and a behaviour difference (highlighted in orange) exist in the
argument lists of the assertEquals method calls. Figure 4.2 presents the analysis results
from JDeodorant. JDeodorant can map statements between clone instances and identify
the differences in the arguments of the assertEquals method call. Our technique uses
this analysis information to provide refactoring suggestions.

// test method in org.jfree.data.time.junit.YearTests

public void testGetLastMillisecond() {
Locale saved = Locale.getDefault();
Locale.setDefault(Locale.UK);
TimeZone savedZone = TimeZone.getDefault();
TimeZone.setDefault (TimeZone.getTimeZone ("Europe/London")) ;
Year y = new Year(1970);
assertEquals(31632399999L , y. getLastMillisecond ());
Locale.setDefault (saved) ;
TimeZone.setDefault (savedZone) ;

// test method in org.jfree.data.time.junit.YearTests

public void testGetFirstMillisecond() {
Locale saved = Locale.getDefault();
Locale.setDefault(Locale.UK);
TimeZone savedZone = TimeZone.getDefault();
TimeZone.setDefault (TimeZone.getTimeZone ("Europe/London")) ;

24

Year y = new Year(1970);

assertEquals(=3600000L , y. getFirstMillisecond ());
Locale.setDefault (saved) ;

TimeZone.setDefault (savedZone) ;

}

Figure 4.1: Deckard detects testGetLastMillisecond and testGetFirstMillisecond
as a potential refactorable clone pair

Summary
Number of common nesting structure subtrees 1
Number of refactorable cases 1
Number of non-refactorable cases 0
Time elapsed for finding largest common nesting structure subtrees (ms) 0.0
Clones location Clones are declared in the same class
Number of node comparisons 50

{/-1\:) {Refactorable}

Mapping Summary

Number of mapped statements 8
Number of unmapped statements in the first code fragment 0
Number of unmapped statements in the second code fragment 0
Time elapsed for statement mapping (ms) 0.0
Clone type Type 2

Mapped Statements

ID Statement

g

Statement

Locale saved = Locale.getDefault();
Locale.setDefault(Locale.UK);

TimeZone savedZone = TimeZone.getDefault();
TimeZone.setDefault(TimeZone.getTimeZone("Europe/London™));
Year y = new Year(1970);

assertEquals(31532399999L, y.getLastMillisecond());
Locale.setDefault(saved);

TimeZone.setDefault(savedZone);

Locale saved = Locale.getDefault();
Locale.setDefault(Locale. UK);

TimeZone savedZone = TimeZone.getDefault();

TimeZone setDefault{ TimeZone.getTime Zone("Europe/London"));
Year y = new Year(1970);

assertEquals{-3600000L, y.getFirstMillisecond());
Locale.setDefault(saved);

TimeZone setDefault{savedZone);

Pdddd i

Figure 4.2: JDeodorant maps statements between test methods testGetLastMillisecond
and testGetFirstMillisecond and identifies the clone differences

25

4.2 Parameterization Techniques

Our examples in the previous section motivate three levels of refactoring:

e Type parameterization
e Data parameterization

e Behaviour parameterization

All of our refactoring techniques work at a per-method granularity. Our refactoring
strategy first extracts a parameterized template method from the clones, and then instan-
tiates it with the proper parameter values. We apply this strategy at all three levels.

4.2.1 Type Parameterization

A type-parameterizable clone includes entries with different type identifiers. Java includes
generics to abstract over types. The basic idea of generics is to allow types, including basic
data types such as Integer, String, and user-defined types, to be a parameter to methods,
classes, and interfaces. When the classes of different types are subclasses of a common
superclass except for the class Object, we add the common superclass as the bound of the
extracted generic type.

In the abstract syntax tree (AST), differences in type identifiers mainly exist in the
following two types of AST nodes:

e Variable declarations

A variable declaration in Java contains a type identifier and a variable name. For in-
stance, the following statement declares a variable test of the type MutableDateTime.

MutableDateTime test;

In renamed clones, paired variables declared with different types result in a type
difference. Type differences in this type of AST node can be easily parameterized
with generic methods.

As shown in Figure 3.2, MutableDateTime and Instant are different paired type
identifiers. They are abstracted as the type parameter TInstant in the parameterized
template, which can be later instantiated with MutableDateTime and Instant in the
test cases.

26

e Object instantiation

Java instantiates objects using the new operator. The following expression creates
an object of the type MutableDateTime.

new MutableDateTime()

When classes of different types are instantiated with constructor calls, there exist
type differences in the class instance creation node. To parameterize this type of
AST node, we use the generic class, Class<T> in the java.lang package, to unify
the type differences. This generic class provides a newInstance () method to create
a new instance of its generic type. Furthermore, in Java, writing . class after a class
name retrieves the Class object which represents the given class.

As shown in Figure 3.6, the argument clazzTDial of type Class<TDial> in the
parameterized template method is used to unify the type difference in new DialCap()
and new ArcDialFrame(). We invoke the newInstance() method of clazzTDial
to create a new class instance of TDial type, which parameterizes the DialCap and
ArcDialFrame classes.

4.2.2 Data Parameterization

A data-parameterizable clone has differences in literal values and variables of different
types. As shown in Figure 3.4, the main refactoring idea is to replace the differing values
with a parameter to unify the clone pair and pass the particular values as arguments to
the extracted template method in different test cases. The key to parameterizing data
differences is to determine the common compatible type for the pair of differing values.
Based on the data types of the value pair to parameterize, we take into account two groups
in our refactoring approach:

e Primitive values

Primitive values include numbers, characters, boolean literals, and variables of prim-
itive types. We use the following implicit casting order for Java number literals in
our data parameterization:

byte -> short -> int -> long
float -> double

27

The left-side value can be implicitly assigned to any right-side value. When the paired
values are of different primitive types, we use a best-effort approach to find the closest
assignment compatible common type with implicit casting. Figure 4.3 presents a
refactoring example with primitive value casting from the Joda-Time project (version
2.10). When we parameterize the primitive value pair of int and long, we use the
type long as the argument type. This widening conversion may not be desirable for
test coverage reasons. Developers need to review the test cases to further confirm
the refactoring suggestions. In our benchmarks, we observed 22 clone pairs with this
type of casting, accounting for 5% of our total effective refactoring candidates.

As a conversion of int or long to float, or of long to double, may lose precision,
it would not be desirable to parameterize value pairs of integer and floating-point
numbers. In our approach, we consider that integer values (byte, short, int, and
long) are incompatible with floating-point values (float and double). If there is no
compatible common type, the clone pair will be marked as non-refactorable.

Non-primitive values

Non-primitive values can be any variables of Java library types or user-defined types.
If the data pair binds with different non-primitive types, our technique tries to find
the nearest common superclass or interface of the data types as the parameter type.
When the differing non-primitive types share no common superclass or interface
except for the class Object, the clone pair will be marked as non-refactorable.

// test methodl in org.joda.time.field.TestMillisDurationField
public void test_getMillis_int() {
assertEquals(0, MillisDurationField.INSTANCE.getMillis(0));
assertEquals(1234, MillisDurationField.INSTANCE.getMillis(1234));
assertEquals(-1234, MillisDurationField.INSTANCE.getMillis(-1234));

// test method2 in org.joda.time.field.TestMillisDurationField

public void test_getMillis_long() {
assertEquals(OL, MillisDurationField.INSTANCE.getMillis(OL));
assertEquals(1234L, MillisDurationField.INSTANCE.getMillis(1234L));
assertEquals(-1234L, MillisDurationField.INSTANCE.getMillis(-1234L));

28

// parameterized template in org.joda.time.field.TestMillisDurationField
public void testMillisDurationFieldTest_getTemplate(long 11, long 12, long 13,
long 14, long 15, long 16) {
assertEquals (11, MillisDurationField.INSTANCE.getMillis(12));
assertEquals (13, MillisDurationField.INSTANCE.getMillis(14));
assertEquals (15, MillisDurationField.INSTANCE.getMillis(16));
X

// refactored test methodl in org.joda.time.field.TestMillisDurationField
public void test_getMillis_int() {

this.testMillisDurationFieldTest_getTemplate(0, 0, 1234, 1234, -1234, -1234);
b

// refactored test method2 in org.joda.time.field.TestMillisDurationField
public void test_getMillis_long() {
this.testMillisDurationFieldTest_getTemplate (0L, OL, 1234L, 1234L, -1234L,
-1234L);

Figure 4.3: Refactoring example with primitive value casting from int to long

4.2.3 Behaviour Parameterization

We parameterize methods with behavioural differences, that is, method invocation calls
having different signatures. These method calls must still have the same length argument
lists, but may have different method names, or perhaps different receiver objects. In
our approach, differences in method argument lists are unified before parameterization of
method invocation pairs. After parameterizing the argument lists, the argument lists may
then have comparable types. Therefore, the behaviour parameterization focuses on the
differences in receiver object and method name of the method invocation node.

To unify different method invocations, our parameterization carries out the following

steps:

1. We create a common interface to collect all unified behavioural methods with com-
patible signatures.

2. We add an argument, adapter, to the parameterized template method with the
common interface type. This argument serves as the receiver object for the refactored
operations.

29

3. For each pair of different method invocations in the clone pair, we extract an interface
method declaration into the common interface. More specifically, we abstract the
receiver object as the first parameter in the interface method declaration, then add
all the parameterized arguments to the interface method argument list. Note that
we can skip extracting the receiver object if the method invocations do not contain
a receiver object (static or implicit this).

Figure 4.4 revisits the example from Figure 3.6 and shows how we extract a com-
mon behavioural interface and its instantiations. We extract a common generic inter-
face, DialPlotTestsTestListenerAdapter<TDial>, to parameterize the behavioural dif-
ferences in the clone pair. This common interface contains two method declarations. The
method declaration set(...) unifies setCap(...) and setDialFrame(...), while the
method declaration setPaint(...) unifies setFillPaint(...) and setBackground-
Paint(...). For naming the unified method declarations, we use a best-effort approach
to extract the longest common parts of the pair of original method names. If the original
method names have no common parts, we assign unique names of the form actionN where
N is a counter that increments with each generated name.

// common behavioural interface

interface DialPlotTestsTestListenerAdapter< > {
void set(DialPlot dialPloti, tDiall);
void setPaint(tDiall, Color colorl);

}

// behavioural implementation for testCapListener ()
class DialPlotTestsTestCapListenerAdapterImpl implements
DialPlotTestsTestListenerAdapter< DialCap > {
public void set(DialPlot p, DialCap c1) {
p. setCap (c1);
}
public void setPaint(DialCap v1, Color colorl) {
vl. setFillPaint (colorl);
}
}

30

// behavioural implementation for testFrameListener ()
class DialPlotTestsTestFramelListenerAdapterImpl implements
DialPlotTestsTestListenerAdapter< ArcDialFrame > {
public void set(DialPlot p, ArcDialFrame f1) {
p. setDialFrame (f1);
}
public void setPaint(ArcDialFrame f1, Color colorl) {
f1. setBackgroundPaint (colorl);

}
}

Figure 4.4: Common behavioural interface
DialPlotTestsTestListenerAdapter<TDial> and its implementations in Figure 3.6

After unification of different behaviour, we define specific behavioural operations by
implementing each declared method in the common interface. Finally, we pass different
behavioural implementation variables of the common interface as arguments in the pa-
rameterized template method to perform appropriate behavioural operations. As shown in
Figure 4.4, both DialPlotTestsTestCapListenerAdapterImpl and DialPlotTestsTest-
FrameListenerAdapterImpl implement the same interface, DialPlotTestsTestListener-
Adapter<TDial>, with a set of different behavioural definitions. For instance, in the imple-
mentation of the interface method, void set(DialPlot, TDial), the classDialPlotTests-—
TestCapListenerAdapterImpl invokes the method setCap, while the class DialPlotTests-
TestFrameListenerAdapterImpl calls the method setDialFrame.

4.3 Refactoring Roadmap

Our refactoring tool, JTestParametrizer, is implemented as an Eclipse Plugin application,
which batch processes all clone pairs in the input file and directly applies refactoring
changes to the source files.

4.3.1 Input and Output

Our refactoring tool is designed to process a pair of test methods which are considered to
be duplicates. We expect these method-scope clones to be reported by a clone detection
tool like Deckard. The input of our refactoring technique is therefore the output of clone

31

detection along with a program to refactor. The user can also specify custom clone pairs
in the input file.

Each clone pair has two records about the clone instances. Each clone instance record
includes the following information:

e Clone group ID, an integer indicating the ID of the clone group to which the current
clone instance belongs;

e Source folder, indicating the root path of the source code;
e Package name (e.g. com.google.gson);

e (Class name;

e Method signature;

e Start and end line location.

Currently, we only refactor clone pairs in the same package. Clone pairs located in
different packages are not in scope for our refactoring work. Conceptually, it is not difficult
to apply our technique to clone pairs across different packages. However, we believe clone
pairs in different packages are less related to each other than those in the same package.
We thus choose to focus on refactoring clone pairs in the same package.

Our tool directly applies the refactoring changes to the targeted source files. If the clone
pair is located in the same test class, our tool adds a parameterized template method, the
common behavioural interface, and its implementation classes to the same class. When
the pair of test methods are in different test classes, we create a utility class to store the
parameterized template method and the common behavioural interface, while we put the
implementation classes of the common interface as inner classes in their corresponding test
classes. Additionally, all targeted test methods are modified in their source file.

4.3.2 Workflow

Figure 4.5 presents the basic workflow of our technique. From a high-level perspective, the
workflow consists of three major processes, and our refactoring technique fits in the Clone
Refactoring step.

32

Test source files

Clone Detection

|
: (7
! Clone Detection (Deckard)
E Clone pair candidates (input file)
S
' Clone Refactoring
: (7
! Refactorability analysis (JDeodorant)
i Construction of combined clone tree
E Extraction of parameterized template
1 - J
| : 1 \
: Instantiation of parameters
' N l J
| Refactored test methods (for review)
Testing
(7
Compilation and testing
. J

l

Test report

Figure 4.5: JTestParametrizer’s overall workflow

33

1. Clone Detection (Preprocessing)

First, we use popular clone detection tools to select refactoring candidates. In our pre-
processing work, we have tried some popular tools such as CloneDR [9], Deckard [15],
and CCFinder [22]. Finally we decided to use Deckard as our clone detection tool
because it is free software that easily works under Linux. It is also a tree-based,
accurate, and scalable code clone detection tool, which is easy to install and use.

After detecting the clone candidates with the clone detection tool, we use a simple
script to extract the clone pairs in the appropriate format from the clone detection
report. We save these results in the input file for the following processing. Also, the
user is free to modify the input file with a custom selection of clone pairs. Note that
our technique can work with other clone detection tools. Any clone detection tool
can be used as long as it generates output in the appropriate format.

2. Clone Refactoring

At this stage, our refactoring tool reads all the clone pairs from the input file and
starts to analyze and refactor the method-scope clones. Using the analysis results
from JDeodorant, our tool manipulates the abstract syntax tree (AST) structure of
the clone pair and directly applies changes to the source files.

After our tool finishes refactoring all the clone pairs, developers need to review the
modified test cases. They can continue to modify the refactored code, such as refac-
toring variable names or adding comments, to further improve the refactoring quality.
Also, local changes to a specific file or multiple files can be removed if the refactoring
changes are not desirable. It is easy to undo changes with the use of version control
tools like Git.

3. Testing

After applying appropriate refactoring, we build the modified test code under the
project build system, and look for compilation errors. If the project cannot be built
due to compilation errors, developers must make additional manual modifications
to erroneous refactored test code to eliminate the errors. Once the project can be
successfully compiled, we execute the test cases within the project test framework.
By inspecting the refactored code as well as the test results after refactoring and
those before refactoring, developers can determine the final refactoring quality and
decide whether to make further modifications or merge changes to the project master
branch.

34

4.3.3 Implementation

Following the workflow in Figure 4.5, our technique for refactoring renamed clone pairs
comes in the Clone Refactoring process. Our refactoring analysis is based on the AST
structure, which can represent a source code construct, such as a name, type, expression,
statement, or declaration.

More specifically, the roadmap of our refactoring technique consists of the following
major steps:

1. Refactorability analysis

First, our tool needs to ensure that a clone pair is actually refactorable. That is, the
pair should have isomorphic AST structure. We perform our analysis at AST node
level, which includes statement mapping, difference marking, and parameterization
analysis.

With the recent research in clone refactoring, we choose to use JDeodorant [38] as
the clone analysis tool to map the AST nodes and detect the differences in clone
pairs. Based on the analysis results from JDeodorant, we select the renamed clone
pairs (i.e, structurally /syntactically identical fragments except for variations in iden-
tifiers, literals, types, layout and comments [31]) as effective candidates for further
refactoring.

2. Construction of combined clone tree

With the results from the previous step, we have all the information about AST node
mapping and the differences in a clone pair. At this stage, we combine the mapped
nodes to construct a combined clone tree, which serves as the primary data structure
to unify the clone pair and extract the parameterized template.

Figure 4.6 illustrates how we construct a combined clone tree. The clone pair in-
stances have the same AST structure. That is, each node in one clone instance can
be mapped to its corresponding node in the other clone instance. From the previous
step, we collect all the mapped nodes with differences (highlighted in colors other
than green). Using this difference mapping information, we combine the nodes con-
taining differences in a bottom-up approach. For each pair of differing nodes, we
calculate the paths from the differing nodes to their root node (highlighted in red)
in the clone instances. We combine each pair of mapped nodes in these paths. Thus,
the combined node pairs are either differing nodes or nodes containing differences in
their child elements, while the nodes without combining in the combined clone tree
do not contain any differences.

35

T
Clone Pair Instance 1 " . [/[\ /\

‘ /N /\ Combined Clone Tree

Clone Pair Instance 2

Figure 4.6: Clone pair instances have the same AST structure and we combine each pair
of mapped nodes in the paths from the differing nodes to their root node

3. Extraction of parameterized template

After constructing the combined clone tree, we continue to extract the template to
unify the type, data, and behavioural differences with parameters. The parameteri-
zation technique described in section 4.2 is implemented by manipulating AST nodes
in the combined clone tree. We apply the wisitor pattern in our implementation
to define appropriate operations based on the specific AST node type that we are
refactoring.

Overall, we follow a top-down approach to extract the parameterized template. Our
implementation starts from the root node in the combined clone tree and examines
every node in a depth-first search (DFS) manner. Using the characteristics of the
combined clone tree, we can immediately figure out whether or not the current com-
bined node contains a difference itself or in its descendent nodes. If the current

36

node does not contain any difference, we can stop diving deeper to improve refac-
toring efficiency. When there exists a difference inside the current node, we apply
our parameterization techniques based on the difference categorization to unify the
combined nodes along the whole paired path. Finally, the template we extract is
represented in the form of the AST structure, which can be easily transformed to
the source code. In addition, we create the common interface at this stage if the
combined clone tree contains behavioural differences.

4. Instantiation of parameters

Finally, we pass the clone differences as parameters to the extracted template method
to implement different behaviour with specific data and types in the test cases. Based
on the type of clone difference, the generic template method extracted from the
previous step accepts parameters in two different ways:

e Type parameters

The generic types can be replaced with specific concrete types when the template
method is invoked in the body of test methods.

e Argument values

By making use of the common behavioural interface, different implementations
of the interface can be passed as arguments to the template, which enables
different behavioural operations with the compatible interface in the template
method execution. Similarly, the template method arguments are also able to
accept different data values to apply the data differences.

4.4 Limitations

As described in section 4.3.3, our technique uses JDeodorant [38] as the clone analysis tool
to map nodes at the AST structure level and detect the difference in the clone pair. The
approach we propose inherits JDeodorant’s limitations. JDeodorant does not support the
analysis of more than two clone fragments. Additionally, our technique is based on the
parameterization of clone differences. This parameterization refactoring approach works
less well when clone pairs cannot be fully parameterized. We discuss our limitations in
detail below.

37

Clone Multiplicity

Our refactoring tool only supports the analysis and refactoring of clone pairs, that is, clone
groups containing two method-scope clones. When it comes to clone groups with more
than two clone instances, our technique cannot be applied directly. The main difficulty lies
in determining and refactoring the differences across multiple clone instances.

The current technique could be extended to support multi-clone refactoring. We could
first select a clone member among the clone group as the master instance, which serves
as the reference to identify the differences in the clone group. By applying our mapping
approach to every combination of clone pairs between the master instance and the other
members in the clone group, the difference information across clone instances could be
collected with the same reference (master instance). This difference information could be
further summarized to determine the global differences across all clone instances. With
the same parameterization techniques described in section 4.2, the parameterized template
could be extracted and multiple test methods refactored in a similar way to the proposed
approach.

In principle, there is no problem with applying our technique to more than two clone
instances. It is a straightforward extension that we have not explored yet. Our technique
can conveniently refactor any two members of a N-member clone set.

Access Issue

Another limitation of our approach is the access issue to private fields or methods when the
clone pair instances located in different classes need access to their private class members.
For clone pairs across different classes, our refactoring technique extracts a parameterized
template method in a new utility class located in the same package. Thus, the template
method has no access to the private members of the original class of the clone pair, which
leads to an access issue if the template method needs to access private class members
(fields or methods). In our benchmarks, we observed 48 clone pairs with this access issue,
accounting for 12% of the effective refactoring candidates.

Currently, we simply mark the clone pairs with this issue as non-refactorable clone
groups. Access modifiers of the related clone classes can be refined according to developers’
needs. There are other ways to access private members, through reflection, but that would
be detrimental to code quality. Developers should manually inspect this type of clone
candidates to determine whether refactoring is appropriate.

38

Consecutive method calls

When refactoring consecutive method calls in the fluent pattern, our technique may lead to
undesirable refactoring results, which can make the tests more complicated to understand.

Figure 4.7 presents a motivating example. This example illustrates a pair of naive test
clones for the builder pattern. Using a fluent interface pattern, the variable builder invokes
consecutive method calls to perform a series of object mutations. When transformed to
the AST representation, the behavioural differences exist in multiple levels of a nested
method invocation node. Applying our technique to these nested behavioural differences
might decrease refactoring quality, especially when the number of nested levels increases.

// clone pairl
public void testBuilder1() {
Builder builder = new Builder()
.setA1()
.setB1()
.setC1()
.build();
// other duplicated statements

3

// clone pair2
public void testBuilder2() {
Builder builder = new Builder()
.setA2()
.setB2()
.setC2()
.build();
// other duplicated statements

Figure 4.7: Clone pair with nested behavioural differences

Figure 4.8 shows the parameterized template method and the common behavioural
interface refactored by our approach. With our parameterization techniques, the consecu-
tive behavioural differences are parameterized in a nested way, which generates complicated
adaptive method calls in the template method. This nesting effect could be more severe if
the clone pair contains more consecutive differences in the nested method invocation node.

39

Therefore, developers must use code review to avoid this side effect and confirm refactoring
results.

// parameterized template
public void testBuilderTemplate(BuilderTestAdapter adapter) {
Builder builder =
adapter.setC(adapter.setB(adapter.setA(new Builder())))
.buildQ);
// other duplicated statements

// common behavioural interface
interface BuilderTestAdapter {
Builder setA(Builder builder);
Builder setB(Builder builder);
Builder setC(Builder builder);
}

Figure 4.8: Parameterization of nested behavioural differences

JDeodorant Issues

Our refactoring tool exposed the following issues in JDeodorant which cause our refactoring
to fail:

e Statement mismatch

JDeodorant applies an optimal mapping approach which is intended to minimize the
number of differences between the members of a clone pair [38]. However, JDeodorant
sometimes mismatches statements, which can cause test failures in the refactored test
methods or unpredictable exceptions in the refactoring execution.

e Missing of difference mapping in the arguments of constructor calls

We also observe that JDeodorant misses differences in the arguments of constructor
calls when creating class instances with the new operator. Thus, the clone pair
cannot be appropriately refactored with our technique if there exist differences in the
argument list of the class instance creation node.

40

Chapter 5

Evaluation

To evaluate our refactoring tool, we performed an empirical study and applied our tech-
nique to a collection of 5 Java-based open source benchmarks, shown in Table 5.1. We
selected these benchmarks for evaluation because they are all popular and active open
source projects across different application domains. Overall, our selected benchmarks to-
tally have 157,205 lines of production code (Main LoC) and 182,364 lines of test code (Test
LoC).! The benchmark test suites contain test code ranging from 14,137 to 55,491 lines,
and in total 14,431 test methods.

Table 5.1: Selected benchmark projects

L . Main Test
Benchmark Description Version LoC LoC
JFreeChart Java chart library 1.0.10 83,039 44,892
Gson JSON representation conversion 2.8.5 8,131 14,137
Apache Commons Lang Java API helper utilities 3.7 27,428 48,530
Apache Commons 10 IO development library 2.5 9,836 19,314
Joda-Time Standard date and time library 2.10 28,771 55,491
Total 157,205 182,364

'LoC data generated using CLOC [2].

41

With the above benchmarks, we evaluate our technique along the following dimensions:

e Applicability

This dimension measures how often our refactoring technique can apply to the tests
in the benchmarks.

e Correctness

In the scope of our work, a correct refactoring means that the pair of refactored test
methods can be built without compilation errors, and all tests of the project test suite
pass after the application of refactorings. Note that all test cases in our benchmarks
declare passing results before our refactorings.

e Refactoring quality

Assessing the quality of a refactoring appears to be an open question in practice, and
for code in general, not just test cases. In the context of test case clone refactoring,
we chose to evaluate the quality of refactoring results by evaluating the refactored
tests from perspectives including conciseness, repetition, extensibility, maintenance
cost, understandability, and debuggability.

Overall, our technique refactors 65% of detected renamed clone pairs (268 clone pairs)
in our benchmark test suites. All of the refactored test methods compile, and 94% of them
execute as unit tests and declare passing results. While our refactoring could potentially
make individual tests more complicated to understand and more difficult to debug, we
believe that our proposed refactorings generally improve code quality regarding conciseness,
repetition, extensibility, and maintenance cost. Finally, we individually discuss results for
each benchmark project.

5.1 Applicability

Using our proposed technique, we refactored the detected clone candidates for each bench-
mark. Table 5.2 summarizes the applicability of our technique on the selected benchmarks.
The Total tests column denotes the number of test methods in the benchmark. The De-
tected clone pairs column lists the total number of potentially refactorable clone pairs
reported by the Deckard clone detection tool. Detected clone pairs include refactoring can-
didates of renamed (Type II) and gapped (Type III) clones. The Effective candidates col-
umn presents the number of renamed clone (Type II) pairs identified by JTestParametrizer,

42

while the Refactorable column counts the number of renamed clone (Type II) pairs that
our technique can actually refactor. Finally, the Refactoring rate column reports the per-
centage of refactorable clones as a fraction of the effective candidates.

Table 5.2: 65% of the effective candidates (268 clone pairs) in our benchmark projects are
refactorable using our technique

Benchmark Total tests Detectg d Eﬁectlve Refactorable Refactoring

clone pairs candidates rate
JFreeChart 3934 107 65 49 75%
Gson 1050 31 14 10 1%
Commons Lang 4068 144 93 65 70%
Commons 10 1157 78 56 38 68%
Joda-Time 4222 249 187 106 57%
Total 14431 609 415 268 65%

Based on our refactoring results, our technique can parameterize a significant fraction of
effective candidates, ranging from 57% for the Joda-Time project to 75% for the JFreeChart
project. Our technique examined 14,431 test methods across five benchmark projects and
identified 415 of those as effective candidates for refactoring. On average, our empirical
analysis found that 65% of the effective candidates (268 clone pairs) are refactorable using

our technique.

5.2 Correctness

To assess the correctness of our technique, we run entire test suite after the application
of all possible refactorings for each benchmark. We believe that using the project testing
frameworks is an effective and efficient way to evaluate the refactoring correctness. We will
also discuss the threats to validity of this assessment in section 5.5.

Table 5.3 reports the testing results of the refactored test methods on our benchmarks.
The Refactored tests column shows the number of refactored clone pairs. The Compilability
column reports the ratio of successfully compiled test methods, while the Test failures
column reports the number of failures in the refactored test cases. Finally, we calculate
the percentage of correctly refactored clone pairs, which can be run and tested without
failures in the JUnit framework, as the correct refactoring rate in the last column.

43

Table 5.3: 94% of the 268 refactored test method pairs execute without failures across
five benchmarks

Benchmark Refactored Compilability ~ Test failures 'Correct

tests refactoring rate
JFreeChart 49 100% 0 100%
Gson 10 100% 0 100%
Commons Lang 65 100% 4 94%
Commons 10 38 100% 3 92%
Joda-Time 106 100% 10 91%
Total 268 100% 17 94%

Our technique enjoys a high correct refactoring rate, reaching over 90% of the refactored
test methods in all of the selected benchmark projects. Overall, we refactor 268 test
method pairs across five benchmarks, where all of the refactored tests are compilable, and
94% of them execute without failures. Manual inspection of the test failures confirms
that the failures are caused by JDeodorant issues. As discussed in section 4.4, we might
not appropriately refactor a clone pair due to occasional statement mismatching between
the clone pair instances or a missing difference mapping in the arguments of constructor
calls. Thus, developers still need to review refactorings to eliminate JDeodorant issues and
confirm the final refactoring results.

5.3 Refactoring Quality

In practice, evaluating the effect of refactoring on software quality remains an open ques-
tion. In this work, we qualitatively evaluate the quality of the refactoring results that
our tool proposes. We compare test methods before and after refactoring, manually in-
specting and analyzing the correctly refactored clone pairs for each project. We consider
the following perspectives: conciseness, repetition, extensibility, maintenance cost, under-
standability, and debuggability. Our manual evaluation suggests the following conclusions:

Conciseness Because our refactoring extracts the common logic in the template method,
the refactored tests are more concise, especially when the clone instances only contain a
small number of differences in relatively large method bodies.

44

Repetition With our proposed parameterization technique, we remove much repeated
code and effectively reduce the duplication code smell.

Extensibility = We consider the ease with which developers may add additional test cases
using the refactored utility methods. By replacing the arguments in the parameterized
template method with different values, developers can reuse the same testing logic with
different input data, which enables extending the test suite easily. This perspective brings
to mind clone groups with more than two elements; we believe that our technique can be
reasonably extended to handle such groups. Additionally, we will also consider integrating
JUnit Theories [5] with our tool in the future to further improve the extensibility of test
suites.

Maintenance cost Normal test case maintenance often involves work on similar test
cases, which is error-prone and tedious. In particular, maintaining clones in the test suite
needs multiple changes across the test clones, resulting in a heavier technical cost for
software maintenance. Our technique can effectively reduce this maintenance cost. Since
the duplicated code fragments are extracted in one place, developers can easily maintain
the corresponding tests without multiple modifications.

Understandability = This perspective is a measure of whether the refactored test meth-
ods are easier to understand for developers. By introducing the generic type and additional
common behavioral interface, our technique could make individual tests more complicated
to understand because they include a new layer of abstraction. However, we believe that
our arguments show that the suite of refactored tests is collectively easier to understand
and maintain.

Debuggability This perspective describes how easy or convenient it is for developers
to find what is wrong with the failed tests and the related main source code. While,
after refactoring, test failures could be more difficult to diagnose (due to the extra layer of
abstraction), we argue that it does not require costly debugging efforts and it is a reasonable
trade-off to improve the other aspects of code quality.

5.4 Case Study

We next present specific refactoring examples for each of our benchmarks in more detail.

45

5.4.1 JFreeChart

JFreeChart is a Java library that facilitates the display of professional quality charts in
applications. The JFreeChart test suite (version 1.0.10) consists of 367 test classes in
24 packages. In particular, this benchmark contains similar test methods which test re-
lated types. Figure 5.1 shows that the test methods named testFindRangeBounds() in
classes HighLowRendererTests and CandlestickRendererTests are identical except for
variations in the declared type of the variable renderer and its initializer. The classes
HighLowRenderer and CandlestickRenderer are related types to each other; they are
both subclasses of the class AbstractXYItemRenderer. Using the taxonomy in section 3.2,
we identify these variations as type differences. Our technique can provide high-quality
refactoring suggestions for these similar clones.

// test methodl in org.jfree.chart.renderer.xy.junit.HighLowRendererTests
public void testFindRangeBounds() {
HighLowRenderer renderer = new HighLowRenderer ();
OHLCDataItem iteml = new OHLCDataItem(new Date(1L), 2.0, 4.0, 1.0, 3.0, 100);
// other identical statements

// test method2 in org.jfree.chart.renderer.xy.junit.CandlestickRendererTests
public void testFindRangeBounds() {
CandlestickRenderer renderer = new CandlestickRenderer ();
OHLCDatalItem iteml = new OHLCDataltem(new Date(1L), 2.0, 4.0, 1.0, 3.0, 100);
// other identical statements

// parameterized template in
org.jfree.chart.renderer.xy.junit.RendererTestsTestFindRangeBoundsTemplate

public static < extends AbstractXYItemRenderer>
void rendererTestsTestFindRangeBoundsTemplate (
Class< > clazzTRenderer) throws Exception {

renderer = clazzTRenderer.newlInstance();
OHLCDatalItem iteml = new OHLCDataltem(new Date(1L), 2.0, 4.0, 1.0, 3.0, 100);
// other identical statements

46

// refactored test methodl in
org.jfree.chart.renderer.xy.junit.HighLowRendererTests
public void testFindRangeBounds() {
RendererTestsTestFindRangeBoundsTemplate
.rendererTestsTestFindRangeBoundsTemplate (HighLowRenderer .class);

// refactored test method2 in
org.jfree.chart.renderer.xy. junit.CandlestickRendererTests
public void testFindRangeBounds() {
RendererTestsTestFindRangeBoundsTemplate
.rendererTestsTestFindRangeBoundsTemplate (CandlestickRenderer .class);

Figure 5.1: JFreeChart contains similar testFindRangeBounds () methods which test
related types

5.4.2 Gson

Gson is a Java serialization/deserialization library which enables conversion between Java
Objects and JSON. The Gson test suite (version 2.8.5) includes 101 test classes in 10
packages. In particular, this benchmark contains method clones which test classes with type
parameters. Figure 5.2 shows a typical refactoring example with differing generic classes
LinkedTreeMap and LinkedHashTreeMap. Unlike in Figure 5.1, the differing types in this
clone pair, identified as type difference, contain type parameters (e.g., LinkedTreeMap
<String, String>). We can still handle this case. Our technique parameterizes the
differing generic types by adding bounds to the extracted generic type.

// test methodl in com.google.gson.internal.LinkedTreeMapTest
public void testLargeSetOfRandomKeys() throws Exception {
Random random = new Random(1367593214724L);
LinkedTreeMap<String, String> map = new LinkedTreeMap<String, String> ();
String[] keys = new String[1000];
// other identical statements

47

// test method2 in com.google.gson.internal.LinkedHashTreeMapTest
public void testForceDoublingAndRehash() throws Exception {
Random random = new Random(1367593214724L) ;
LinkedHashTreeMap<String, String> map =
new LinkedHashTreeMap<String, String> (;
String[] keys = new String[1000];
// other identical statements

// parameterized template in
com.google.gson.internal.LinkedTreeMapTestTestTemplate
public class LinkedTreeMapTestTestTemplate {
public static <TLinkedTreeMapStringString extends AbstractMap<String, String>>
void linkedTreeMapTestTestTemplate(Class<TLinkedTreeMapStringString>
clazzTLinkedTreeMapStringString) throws Exception {
Random random = new Random(1367593214724L) ;
TLinkedTreeMapStringString map =
clazzTLinkedTreeMapStringString.newInstance();
String[] keys = new String[1000];

// other identical statements

// refactored test methodl in com.google.gson.internal.LinkedTreeMapTest
public void testLargeSetOfRandomKeys() throws Exception {
LinkedTreeMapTestTestTemplate
.linkedTreeMapTestTestTemplate (LinkedTreeMap .class) ;

// refactored test method2 in com.google.gson.internal.LinkedHashTreeMapTest
public void testEqualsAndHashCode() throws Exception {
LinkedTreeMapTestTestEqualsAndHashCodeTemplate
.linkedTreeMapTestTestEqualsAndHashCodeTemplate (LinkedHashTreeMap .class) ;

Figure 5.2: Gson test suite contains similar test methods with differences in generic
classes

48

5.4.3 Apache Commons Lang and Commons 10

Apache Commons Lang and Apache Commons 1O are projects of the Apache Software
Foundation. Commons Lang is a Java utility library providing extra methods for ma-
nipulating Java core classes, while Commons 10 is a Java utility library to assist with
IO functionality. The Apache Commons Lang test suite (version 3.7) consists of 172 test
classes in 14 packages, and the Apache Commons IO test suite (version 2.5) contains 112
test classes in 9 packages.

These two benchmarks include a number of refactorable tests. While refactoring the
Apache Commons benchmarks, we noticed that some clone pairs located in the same
classes access private fields of their original class. Figure 5.3 and Figure 5.4 present two
refactorings of clone pairs with differences in private fields that we found in the test classes
StringUtilsSubstringTest and DeferredFileQutputStreamTest. Our technique can
still handle these cases. Since the pair of clone instances are in the same class, we extract
the parameterized template method as a class member. Thus, the template method can
access the private members of the original class of the clone pair.

// private fields in org.apache.commons.lang3.StringUtilsSubstringTest
private static final String FO0 = "foo";

private static final String BAR = "bar";

private static final String FOOBAR = "foobar";

// test methodl in org.apache.commons.lang3.StringUtilsSubstringTest
public void testLeft_String() {

assertSame(null, StringUtils. left (null, -1));

assertSame(null, StringUtils. left (null, 0));

assertSame(null, StringUtils. left (null, 2));

assertEquals("", StringUtils. left ("", -1));
assertEquals("", StringUtils. left ("", 0));
assertEquals("", StringUtils. left ("", 2));

assertEquals("", StringUtils. left (FOOBAR, -1));
assertEquals("", StringUtils. left (FOOBAR, 0));
assertEquals(FO0 , StringUtils. left (FOOBAR, 3));
assertSame (FOOBAR, StringUtils. left (FOOBAR, 80));

49

// test method2 in org.apache.commons.lang3.StringUtilsSubstringTest
public void testRight_String() {

assertSame(null, StringUtils. right (null, -1));

assertSame(null, StringUtils. right (null, 0));

assertSame(null, StringUtils. right (null, 2));

assertEquals("", StringUtils. right ("", -1));
assertEquals("", StringUtils. right ("", 0));
assertEquals("", StringUtils. right ("", 2));

assertEquals("", StringUtils. right (FOOBAR, -1));
assertEquals("", StringUtils. right (FOOBAR, 0));
assertEquals (BAR , StringUtils. right (FOOBAR, 3));
assertSame (FOOBAR, StringUtils. right (FOOBAR, 80));

// parameterized template in org.apache.commons.lang3.StringUtilsSubstringTest
public void stringUtilsSubstringTestTestStringTemplate (
StringUtilsSubstringTestTestStringAdapter adapter, String stringl) {
assertSame(null, adapter.actionl(null, -1));
assertSame(null, adapter.actionl(null, 0));
assertSame(null, adapter.actionl(null, 2));

assertEquals("", adapter.actionli("", -1));
assertEquals("", adapter.actionl("", 0));
assertEquals("", adapter.actioni("", 2));

assertEquals("", adapter.actionl(FOOBAR, -1));
assertEquals("", adapter.actionl(FOOBAR, 0));
assertEquals(stringl, adapter.actionl(FO0OBAR, 3));
assertSame (FOOBAR, adapter.actionl(FOOBAR, 80));

// common behavioural interface

interface StringUtilsSubstringTestTestStringAdapter {
String actionl(String stringl, int il);

b

20

// behavioural implementation for testLeft_String()
class StringUtilsSubstringTestTestLeft_StringAdapterImpl implements
StringUtilsSubstringTestTestStringAdapter {
public String actionl(String stringl, int il) {
return StringUtils. left (stringl, il);
b
}

// behavioural implementation for testRight_String()
class StringUtilsSubstringTestTestRight_StringAdapterImpl implements
StringUtilsSubstringTestTestStringAdapter {
public String actionl(String stringl, int il) {
return StringUtils. right (stringl, il);
}
}

// refactored test methodl in org.apache.commons.lang3.StringUtilsSubstringTest
public void testLeft_String() {
this.stringUtilsSubstringTestTestStringTemplate(
new StringUtilsSubstringTestTestLeft_StringAdapterImpl(), F00);

// refactored test methodl in org.apache.commons.lang3.StringUtilsSubstringTest
public void testRight_String() {
this.stringUtilsSubstringTestTestStringTemplate(
new StringUtilsSubstringTestTestRight_StringAdapterImpl(), BAR);

Figure 5.3: Refactorable test methods testLeft _String and testRight _String both
access private fields of test class StringUtilsSubstringTest and contain data and
behavioural differences

// private fields in org.apache.commons.io.output.DeferredFileQutputStreamTest
private final String testString = "0123456789";
private final byte[] testBytes = testString.getBytes();

// test methodl in org.apache.commons.io.output.DeferredFileQutputStreamTest
public void testBelowThreshold() {
final DeferredFileOutputStream dfos =
new DeferredFileQutputStream(testBytes.length + 42 , null);

ol

try {
dfos.write(testBytes, O, testBytes.length);
dfos.close();

} catch (final IOException e) {
fail ("Unexpected IOException");

}

assertTrue(dfos.isInMemory());

final byte[] resultBytes = dfos.getData();
assertEquals(testBytes.length, resultBytes.length);
assertTrue (Arrays.equals(resultBytes, testBytes));

// test method2 in org.apache.commons.io.output.DeferredFileOutputStreamTest
public void testAtThreshold() {
final DeferredFileOutputStream dfos =
new DeferredFileQutputStream(testBytes.length , null);
try {
dfos.write(testBytes, O, testBytes.length);
dfos.close();
} catch (final IOException e) {
fail ("Unexpected IOException");
}

assertTrue(dfos.isInMemory());

final byte[] resultBytes = dfos.getData();
assertEquals(testBytes.length, resultBytes.length);
assertTrue(Arrays.equals(resultBytes, testBytes));

// parameterized template in
org.apache.commons.io.output.DeferredFileOutputStreamTest
public void deferredFileQutputStreamTestTestThresholdTemplate(int i1) {
final DeferredFileQutputStream dfos = new DeferredFileOutputStream(il, null);
try {
dfos.write(testBytes, O, testBytes.length);
dfos.close();
} catch (final IOException e) {
fail("Unexpected IOException");
}

o2

assertTrue(dfos.isInMemory());

final byte[] resultBytes = dfos.getData();
assertEquals(testBytes.length, resultBytes.length);
assertTrue(Arrays.equals(resultBytes, testBytes));

// refactored test methodl in
org.apache.commons.io.output.DeferredFileOutputStreamTest
public void testBelowThreshold() {
this.deferredFileOutputStreamTestTestThresholdTemplate(testBytes.length + 42);

3

// refactored test method2 in
org.apache.commons.io.output.DeferredFileOutputStreamTest
public void testAtThreshold() {
this.deferredFileOutputStreamTestTestThresholdTemplate (testBytes.length);

}

Figure 5.4: Refactorable test methods testBelowThreshold and testAtThreshold both
access private fields of test class DeferredFileOutputStreamTest and contain data
differences.

5.4.4 Joda-Time

Joda-Time is a widely used library providing a quality replacement for the Java date and
time classes. The Joda-Time test suite (version 2.10) consists of 159 test classes in 7
packages. Based on our analysis, Joda-Time has the most refactorable test clones (106
clone pairs) in the selected benchmarks. We also found that many test clone pairs are
in the same classes with a small number of differences. These clones can be refactored
effectively using our technique. Figure 5.5 shows two test methods located in the same
class. The clone instances have similar test method names, testRemoveBadIndex1 and
testRemoveBadIndex2. The only difference lies in the bad index values passed to the
argument list of the method call set.remove(. . .), which fits in the type of data differences
using the taxonomy in section 3.2. We can easily extract a template method in the same
class by parameterizing this data differences.

93

// test methodl in org.joda.time.convert.TestConverterSet
public void testRemoveBadIndex1() {
Converter[] array = new Converter[] {cl, c2, c3, c4};
ConverterSet set = new ConverterSet(array);
try {
set.remove (/200 , null);
...// other identical statements

}

// test method2 in org.joda.time.convert.TestConverterSet
public void testRemoveBadIndex2() {
Converter[] array = new Converter[] {cl, c2, c3, c4};
ConverterSet set = new ConverterSet(array);
try {
set.remove(-1, null);
...// other identical statements

}

// parameterized template in org.joda.time.convert.TestConverterSet
public void testConverterSetTestRemoveBadTemplate(int i1) {
Converter[] array = new Converter[] {cl, c2, c3, c4};
ConverterSet set = new ConverterSet(array);
try {
set.remove(il, null);
// other identical statements

// refactored test methodl in org.joda.time.convert.TestConverterSet

public void testRemoveBadIndex1() {
this.testConverterSetTestRemoveBadTemplate (200) ;

}

54

// refactored test method2 in org.joda.time.convert.TestConverterSet

public void testRemoveBadIndex2() {
this.testConverterSetTestRemoveBadTemplate (=1) ;

b

Figure 5.5: Differing values in testRemoveBadIndex1 and testRemoveBadIndex2 can be
parameterized locally

5.4.5 Summary

This section discussed specific refactoring results for each of our selected benchmark projects.
Overall, our technique can provide useful refactoring suggestions to remove duplicated code
smell. Our proposed refactorings work well for the clone pairs with a small number of dif-
ferences (e.g., test clones in Joda-Time).

Also, our technique can handle some edge cases. When the differing types in clone
pairs contain same type parameters, our technique can parameterize this type difference
by adding bounds to the extracted generic type. For clone instances located in the same
class, our technique can parameterize differences that access private fields of the original
class.

5.5 Threats to Validity

The selection of 5 benchmark projects from different application domains (IO development,
chart display, date and time, etc.) aims to reduce threats to external validity. However,
no benchmark can capture all possible code styles in test suites. Furthermore, the overall
size of our selected benchmark test suites does not exceed 190 kLoC. Larger benchmark
test suites may present different results from those in our empirical study.

Our tool is designed to refactor JUnit tests. Additional work would be required to
extend our results to non-JUnit or non-Java benchmarks.

Our technique is based on the three levels of refactoring to parameterize type, data,
and behaviour differences in clone pairs. Our refactoring results do not apply to clone pairs
with other types of differences.

In our work, we consider a refactoring correct if the refactored test methods are compi-
lable and all tests can pass after the application of the refactoring. This assessment might

95

not guarantee that the test code behaviour before and after refactoring remains unchanged,
although we expect such cases to be rare.

Another threat to construct validity is that we manually evaluate the quality of our
refactorings. Our consideration from the perspectives of conciseness, repetition, extensibil-
ity, maintenance cost, understandability, and debuggability aims to mitigate this threat.
However, evaluating from other perspectives could lead to different conclusions.

We believe that we have reasonably mitigated the threats to external validity through
benchmark selection and have adequately reduced evaluation biases through consideration
from a relatively large number of perspectives. Our empirical study presents an accurate
evaluation of our technique on JUnit test suites.

o6

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents a technique to automatically refactor method-scope renamed clone
pairs in JUnit test suites. We implemented a tool, JTestParametrizer, which helps devel-
opers easily refactor test clones.

In our approach, we introduce three levels of refactoring to parameterize type, data, and
behaviour differences in clone pairs. Our technique works by extracting a parameterized
template utility method from clone instances. It then creates code that passes appropriate
parameter values to the extracted template method for instantiating specific test cases.

We performed an empirical study by applying our technique to 5 open-source Java
benchmarks. On average, 65% of the renamed clone candidates (268 clone pairs) in our
test suites are refactorable using our technique. All of the refactored test methods are
compilable, and 94% of them declare passing results when executed as tests. Manual
inspection suggests that our proposed refactorings generally improve the code quality re-
garding conciseness, repetition, extensibility, and maintenance cost. We believe that our
work enables the broader use of automatic techniques for test clone refactoring, leading to
more maintainable and more robust test suites.

6.2 Future Work

In this thesis, we present a technique for refactoring similar tests in test suites. In the
future, there are multiple directions that we can explore to enhance our tool and improve

57

refactoring quality:

e Java 8 introduces lambda expressions as a new feature to support functional program-
ming. When refactoring clone pairs with a small number of behavioural differences,
we can use lambda expressions as specific implementations of common interface meth-
ods to make the refactoring suggestions more succinct. Instead of creating new inner
classes, lambda expressions can be used as syntactically shorter alternatives to im-
plement concrete behaviour, especially when there is only one behavioural difference
between the clone instances.

e We would like to introduce JUnit Theories [5] in our tool to parameterize data
differences. In practice, developers are likely to use a set of data points for testing
a specific functionality. Theories can be a clean and powerful tool to perform data
parameterization. We can combine this JUnit feature with our current system to
provide more flexible refactoring suggestions for developers.

e Finally, we would also like to extend our system to support multi-clone parameteri-
zation. In our detected refactorable candidates, we observe that clone groups usually
contain two or more instances. To automatically refactor multiple similar tests, we
would need to determine and combine differences across multiple clone instances.
Section 4.4 presents one possible solution using the current technique. The present
work is a useful first step towards multi-clone test refactoring.

o8

References

1]

[10]

Abstract syntax tree — Eclipse. https://www.eclipse.org/articles/
Article-JavaCodeManipulation_AST/. Accessed: 2018-10-15.

Count Lines of Code. https://github.com/AlDanial/cloc. Accessed: 2018-10-15.

JDeodorant — Github. https://github.com/tsantalis/JDeodorant. Accessed:
2018-10-15.

JDT programmer’s guide. https://help.eclipse.org/neon/topic/org.eclipse.
jdt.doc.isv/guide/jdt_int.htm. Accessed: 2018-10-01.

Theories (JUnit API). https://junit.org/junitd/javadoc/4.12/org/junit/
experimental/theories/Theories . html. Accessed: 2018-09-30.

V Aho Alfred, Sethi Ravi, and D Ullman Jeffrey. Compilers: principles, techniques,
and tools. Reading: Addison Wesley Publishing Company, 1986.

Brenda S Baker. On finding duplication and near-duplication in large software systems.
In Reverse Engineering, 1995., Proceedings of 2nd Working Conference on, pages 86—
95. IEEE, 1995.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. Partial redesign of Java software systems based on clone analysis. In
Reverse Engineering, 1999. Proceedings. Siath Working Conference on, pages 326—-336.
IEEE, 1999.

Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Software Maintenance, 1998.
Proceedings., International Conference on, pages 368-377. IEEE, 1998.

Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

29

https://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/
https://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/
https://github.com/AlDanial/cloc
https://github.com/tsantalis/JDeodorant
https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.isv/guide/jdt_int.htm
https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.isv/guide/jdt_int.htm
https://junit.org/junit4/javadoc/4.12/org/junit/experimental/theories/Theories.html
https://junit.org/junit4/javadoc/4.12/org/junit/experimental/theories/Theories.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. Managing
technical debt in software-reliant systems. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, pages 47-52. ACM, 2010.

Dustin Campbell and Mark Miller. Designing refactoring tools for developers. In
Proceedings of the 2nd Workshop on Refactoring Tools, page 9. ACM, 2008.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent
approach for detecting duplicated code. In Software Maintenance, 1999.(I1CSM’99)
Proceedings. IEEE International Conference on, pages 109-118. IEEE, 1999.

Pablo Estef6. Restructuring unit tests with Testsurgeon. In Proceedings of the 34th In-
ternational Conference on Software Engineering, pages 1632-1634. IEEE Press, 2012.

Nils Gode and Jan Harder. Clone stability. In Software Maintenance and Reengineer-
ing (CSMR), 2011 15th European Conference on, pages 65-74. IEEE, 2011.

Eduardo Martins Guerra and Clovis Torres Fernandes. Refactoring test code safely.
In Software Engineering Advances, 2007. ICSEA 2007. International Conference on,
pages 44-44. TEEE, 2007.

Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Identifying, tailoring, and sug-
gesting form template method refactoring opportunities with program dependence
graph. In Software Maintenance and Reengineering (CSMR), 2012 16th European
Conference on, pages 53-62. IEEE, 2012.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceedings of the 29th

international conference on Software Engineering, pages 96-105. IEEE Computer So-
ciety, 2007.

J Howard Johnson. Substring matching for clone detection and change tracking. In
ICSM, volume 94, pages 120-126, 1994.

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do
code clones matter? In Software Engineering, 2009. ICSE 2009. IEEE 31st Interna-
tional Conference on, pages 485-495. IEEE, 2009.

Nicolas Juillerat and Beat Hirsbrunner. Toward an implementation of the “form
template method” refactoring. In Source Code Analysis and Manipulation, 2007.

60

22]

23]

[24]

[25]

[26]

SCAM 2007. Seventh IEEFE International Working Conference on, pages 81-90. IEEE,
2007.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Transac-
tions on Software Engineering, 28(7):654—670, 2002.

Cory Kapser and Michael W Godfrey. “cloning considered harmful” considered harm-
ful. In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages
19-28. Citeseer, 2006.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. In ACM SIGSOFT Software Engineering Notes, volume 30,
pages 187-196. ACM, 2005.

Kostas A Kontogiannis, Renato DeMori, Ettore Merlo, Michael Galler, and Morris
Bernstein. Pattern matching for clone and concept detection. Automated Software
Engineering, 3(1-2):77-108, 1996.

Jens Krinke. Is cloned code more stable than non-cloned code? In Source Code
Analysis and Manipulation, 2008 Eighth IEEE International Working Conference on,
pages 57-66. IEEE, 2008.

Jens Krinke. Is cloned code older than non-cloned code? In Proceedings of the 5th
International Workshop on Software Clones, pages 28-33. ACM, 2011.

Angela Lozano and Michel Wermelinger. Assessing the effect of clones on changeability.
2008.

Manishankar Mandal, Chanchal K Roy, and Kevin A Schneider. Automatic ranking
of clones for refactoring through mining association rules. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software FEvolution
Week-IEEE Conference on, pages 114-123. IEEE, 2014.

Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In ICSM, volume 96,
page 244, 1996.

Na Meng, Lisa Hua, Miryung Kim, and Kathryn S McKinley. Does automated refac-
toring obviate systematic editing? In Proceedings of the 37th International Conference
on Software Engineering-Volume 1, pages 392-402. IEEE Press, 2015.

61

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education, 2007.

Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. Automatic identifi-
cation of important clones for refactoring and tracking. In Source Code Analysis and
Manipulation (SCAM), 2014 IEEE 14th International Working Conference on, pages
11-20. IEEE, 2014.

Chanchal Kumar Roy and James R Cordy. A survey on software clone detection
research. Queens School of Computing TR, 541(115):64-68, 2007.

David Saff, Marat Boshernitsan, and Michael D Ernst. Theories in practice: Easy-to-
write specifications that catch bugs. 2008.

Suresh Thummalapenta, Madhuri R Marri, Tao Xie, Nikolai Tillmann, and Jonathan
de Halleux. Retrofitting unit tests for parameterized unit testing. In International
Conference on Fundamental Approaches to Software Engineering, pages 294-309.
Springer, 2011.

Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 253-262. ACM, 2005.

Nikolaos Tsantalis, Davood Mazinanian, and Giri P. Krishnan. Assessing the
refactorability of software clones. IEEE Transactions on Software Engineering,
41(11):1055-1090, November 2015.

Nikolaos Tsantalis, Davood Mazinanian, and Shahriar Rostami. Clone refactoring with
lambda expressions. In Proceedings of the 39th International Conference on Software
Engineering, ICSE ’17, pages 60-70, Piscataway, NJ, USA, 2017. IEEE Press.

Arie van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. Refactoring
test code. In Proceedings of the 2nd international conference on extreme programming
and flexible processes in software engineering (XP2001), pages 92-95, 2001.

Wei Wang and Michael W Godfrey. Recommending clones for refactoring using design,
context, and history. In Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, pages 331-340. IEEE, 2014.

62

	List of Tables
	List of Figures
	Introduction
	Related Work
	Clone Type Classification
	Test Code Refactoring
	Clone Removal Refactoring

	Motivating Examples
	Typical Clones
	Parameterizable Difference Categorization

	Approach
	Tools and Concepts
	Parameterization Techniques
	Type Parameterization
	Data Parameterization
	Behaviour Parameterization

	Refactoring Roadmap
	Input and Output
	Workflow
	Implementation

	Limitations

	Evaluation
	Applicability
	Correctness
	Refactoring Quality
	Case Study
	JFreeChart
	Gson
	Apache Commons Lang and Commons IO
	Joda-Time
	Summary

	Threats to Validity

	Conclusions and Future Work
	Conclusions
	Future Work

	References

