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Abstract

The realization of fifth-generation mobile communication will require transceiver front-
ends that can handle data-rates of multi-gigabits per second. To provide such data-rates,
bandwidth in the hundreds of megahertz will need to be available; hence, moving to mil-
limeter wave frequencies is a must. Utilizing millimeter waves will provide a very high
level of integration to the transceiver system, and concepts such as massive multiple-input-
multiple-output could be exploited to enable higher data capacities. In order to design such
a front-end, accurate simulation tools for both the system and circuit levels are needed.
The first is needed because a high-level of integration prevents any opportunity for post-
fabrication tweaking; accurate simulation will optimize a first-pass design. The second is
essential to preserve the overall efficiency of the system; configurations incorporating a
large number of power amplifiers (PAs) will require new design methodologies to enable
linear and efficient operation. Unfortunately, existing transistor models cannot be used
for these simulations as they cannot predict the device behaviour under real-life operating
conditions (i.e., under modulated signal stimulus).

The objective of this thesis is to propose a transistor model that can be used in circuit
simulators under any stimulus, including modulated signals. This means that the proposed
model will need to be accurate both globally and locally. While the former property relates
to the compact modelling approach, the latter relates to behavioural modelling. Thus, the
proposed model will bridge the gap between the two modelling approaches.

This thesis starts by studying existing compact and behavioural modelling techniques
for radio frequency power transistors. These techniques will be grouped based on the com-
mon properties imposed by the model structure (i.e., model formulation and extraction
measurements) to help with problem identification. Based on this study, high-order net-
work parameters (HONPs) are proposed. HONPs represent a new set of Volterra-based
network parameters that are capable of completely describing weakly-nonlinear (WNL) be-
haviours of the transistor, and hence guaranteeing the local accuracy of the model. It will
be proven, in both measurement and simulation environments, that these parameters ex-
hibit the same properties of linear network parameters represented in power independency,
and solution continuity and uniqueness. Therefore, HONPs represent a true extension of
linear network parameters. Furthermore, HONPs will be extracted using continuous-wave
(CW) nonlinear vector network analyzer (NVNA) measurements, and their ability to pre-
dict the device WNL behaviours will be demonstrated using wideband multi-tone stimuli
in both simulation and measurement environments.

Next, a novel compact model that utilizes these parameters as a building block will be
proposed. New model formulations and extraction techniques will be presented. Model im-
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plementation will be performed in two parts. First, a small-signal model will be generated
using a new layered-neural network (NN) technique that allows testing different topolo-
gies for the extrinsic and intrinsic shells, in an automated manner. Second, an intrinsic
HONPs-based large-signal model will be constructed using a novel NN technique that al-
lows optimizing a nonlinear function to fit first and high-order derivatives simultaneously.

Finally, the proposed model will be tested under different circuit simulators (direct-
current, small-signal, harmonic balance and envelope simulators). Modulated signal val-
idations will be shown in the simulation environment. Also, a two-tone measurement
validation using a class-AB PA will be presented.
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Chapter 1

Introduction

1.1 Motivation

Fifth generation (5G) mobile communication has been attracting a lot of attention for the
past few years. Although it has not yet been standardized, there is a global consensus that
it should provide data-rates of multi-gigabits per second in order to support concepts like
machine to machine (M2M) communication and the “Internet of Things” (IoT) [1]. This
data-rate requirement cannot be achieved without moving to millimetre wave (mm-waves)
frequencies for two reasons. First, operating at mm-waves enables bandwidth (BW) in the
hundreds of megahertz [2]. Second, since the wave-length becomes very small, concepts
such as massive multiple-input-multiple-output (MIMO) can enable higher data capacities
[3, 4]. While there is ongoing research targeting implementation of the 5G standard that
examines the physical layer up to the application layer, this thesis targets the transistor
model - an essential element for the design of the front-end.

Computer-aided design (CAD) tools are critical to achieving an optimized first-pass
design that reduces time to market, yet moving to 5G will be challenging to the tran-
sistor models used by these tools. This is because the high level of integration required
for 5G front-ends will demand that accurate system-level simulation be incorporated into
the design process as post-fabrication tweaking will no longer be an option. Unfortu-
nately, existing transistor models cannot be used in such simulations because they are
not trustworthy when simulating real-life operating conditions, i.e., when simulated using
modulated signals. More importantly, achieving power efficiency for the whole system will
be challenging because of the large number of power amplifiers (PAs) that will be included.
This challenge is based upon the traditional methodology used to design PAs, which con-
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Figure 1.1: PAs design methodology flowchart. The red boxes (steps 1 and 2) illustrates
the conventional design methodology that aims to optimize PAs efficiency. The blue box
illustrates the extra step that needs to be added for simultaneous efficiency and linearity
optimization.

sists of steps 1 and 2 in Figure 1.1. Historically, there has always been a tradeoff between
efficiency and linearity, i.e., the more efficient the PA, the more nonlinear it becomes and
vice versa [5]. Since the PA is the most power-hungry block in the transmitter, the con-
ventional approach has been to optimize the PA to meet the efficiency specification. The
linearity specification, on the other hand, is addressed by another block called the linearizer
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which consumes extra power. While this additional power consumption is acceptable in
current mobile devices and base stations, the move to massive MIMO schemes will make
the linearizing blocks the dominant source of power consumption (each PA would require
a separate linearizer), and degrade the overall efficiency of the system. Therefore, an extra
step that allows concurrent design for both efficiency and linearity has to be added (step 3
in Figure 1.1). Again, existing transistor models cannot be used for such a design approach
as they cannot simulate operation under modulated signals.

1.2 Problem Statement

Existing transistor models are incapable of predicting the behaviour under modulated
signal stimuli. As a demonstration of this statement, a 20 W Doherty PA operating from
1.72 GHz to 2.27 GHz [6] 1 was used. The PA was designed using 10 W and 25 W gallium
nitride (GaN) high electron mobility transistor (HEMT) packaged devices from Cree to
meet the efficiency and output power requirements over the desired BW. A continuous-
wave (CW) stimulus was used for designing and measuring the PA, using steps 1 and 2 in
Figure 1.1, and good agreement between simulations and measurements was achieved. A
two-step test was performed as follows. The first step was to examine the transistor model’s
ability to predict the spectrum by exciting the PA in both simulation and measurement
environments with a 5 MHz wideband code division multiple access (WCDMA) signal
generated around a 2 GHz center frequency and reporting the output. The results are
shown in Figure 1.2. The second step was to examine the model’s ability to cancel the
nonlinearity exhibited by the fabricated PA which requires an accurate prediction of both
the amplitude and phase of the spectrum. This was achieved by using the measured output
signal from the first step to linearize the fabricated PA 2 and generate a predistorted signal.
The first step was then repeated using this predistorted signal as input (Figure 1.3).

It is obvious that there is a good agreement in the fundamental band between the
measured and simulated outputs for both cases, as can be seen in the zoomed-in portion
of the spectrum in Figure 1.3 (b). On the other hand, the third and fifth intermodulation
bands (from ±2.5 MHz to ±12.5 MHz) show clear disagreement (especially in the second
case where the measured PA output is linearized, and the simulated output is not). These
observations lead to the following conclusions. First, the transistor model did a great job
at predicting the device’s behaviour in the fundamental band - the equivalent of simulating
it under CW stimulus - as the linear response is most dominant in this band. Second, since

1This PA was designed by one of the EmRG [7] members, so the design schematic is accessible.
2Volterra-based digital predistortion (DPD) was used to linearize the PA.
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the passive circuitry around the PA has nothing to do with generating intermodulation
distortion (IMD) products, it cannot be blamed for the disagreement in the intermodulation
bands. In other words, the transistor model failed to predict the device performance under
modulated signal stimuli. Therefore, it cannot be used for accurate system-level simulations
or efficient/linear PA design.

This thesis bridges the gap between transistor compact models and black-box be-
havioural models by presenting a novel transistor model that is accurate both globally
and locally. While the first property allows using the model to design circuits, the later
allows predicting the behaviour of the transistor under modulated signal stimuli. The pro-
posed model utilizes the high-order network parameters (HONPs), also proposed in this
work, as the model’s building block. These parameters enable describing the device -at
any biasing point- by a weakly nonlinear (WNL) circuit and hence provide accurate cal-
culations of the current/voltage (I/V) derivatives. Therefore, the model should be able to
predict any WNL behaviour, including the behaviour under modulated signal stimuli. The
proposed model shows excellent ability in predicting the transistor’s large-signal behaviour
under modulated signal stimuli in the simulation environment, and the behaviour under
multi-tone stimuli in the measurement environment.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 presents a general overview of nonlinear
modelling approaches that exist in the literature. Linear measurement-based compact
models are explained, and then state-of-the-art nonlinear measurement-based models are
described. Furthermore, some of the most successful nonlinear behavioural modelling ap-
proaches will be investigated (in order to bring the local accuracy property to transistor
models).

Chapter 3 proposes a new set of parameters (HONPs) that can completely describe
WLN behaviours of nonlinear systems. HONPs formulations (in both Y and S forms),
properties and extraction techniques are presented. Also, HONPs ability to predict WNL
behaviours due to wideband multi-tone signal excitations is demonstrated in both simula-
tion and measurement environments.

Chapter 4 presents a novel technique to build technology-independent transistor small-
signal-models. A Layered-neural networks (NNs) technique that allows trying different
topologies for extrinsic and intrinsic shells is explained. Also, model implementation and
validation in Keysight ADS software are demonstrated.
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Chapter 5 extends HONPs concept, proposed in Chapter 3, to handle strong nonlinear
behaviours through a novel HONPs-based transistor compact model. A new NN technique
that allows constructing nonlinear functions from their derivatives is presented. Further-
more, the proposed model implementation in Keysight ADS software and validations under
different circuit simulators (DC, S-parameters, Harmonic Balance, and Envelope simula-
tors) are discussed.

The contribution of this work to the field is discussed in Chapter 6. Besides, possible
directions for future research work on this topic are discussed.
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Figure 1.2: (a) Stimulating the PA in both measurement and simulation environments
with a 5 MHz WCDMA signal around 2 GHz, and (b) the spectrum of the input signal
and both outputs.
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Figure 1.3: (a) Stimulating the PA in both measurement and simulation environments with
a predistorted 5 MHz WCDMA signal around 2 GHz, and (b) the spectrum of the input
signal and both outputs.
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Chapter 2

Nonlinear Modelling Techniques

2.1 Introduction

Device modelling approaches can be seen as occupying different places on a continuum,
as shown in Figure 2.1, the extremes being physics-based modelling (also known as white-
box modelling) and behavioural modelling (also known as black-box modelling). Physics-
based models assume the availability of all the detailed information (geometry, dimensions,
material properties, doping profile, band structure, etc.) of the device being modelled [8]. It
then discretizes the transistor geometry and finds the solution to a set of partial differential
equations at each cell. These equations are formulated based on Maxwell’s equation in the
case of modelling passive structures (i.e., the extrinsic shell of the transistor), and quantum-
mechanical equations to describe the intrinsic part of the transistor [9]1. This approach of
modelling is used on the device-level by semiconductor foundries. Although it is the most
general one, it requires a substantial amount of computational power for simulation which
makes it inefficient to use in circuit-level simulations.

Behavioural models, on the other hand, are constructed based on observations of the
input-output signal mapping of the device. This mapping can be as simple as using one
function to model a static single-input-single-output (SISO) system or using two nonlinear
differential equations to model the transistor as a dynamic dual-input-dual-output (DIDO)
system. This approach is ideal for intellectual property protection. It is also computation-
ally efficient (it takes very little simulation time and has good convergence properties),

1Extrinsic and intrinsic shells are common terminologies used in transistor modelling and will be ex-
plained in later sections of this chapter.
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Figure 2.1: The modelling spectrum.

thus used in system-level simulations. However, behavioural models are locally accurate
(because they are built with no knowledge of the internal construction of the system).
Therefore, restricting the validity of these kinds of models to the conditions under which
they were extracted; as such, they cannot be used in the PA design phase.

Compact models include everything in between the above two extremes. They are a
compromise between the generality of physics-based models and the computational effi-
ciency of behavioural models. Because of their ability to represent the device under a
broader zone of input stimuli with an acceptable level of accuracy, compact models rep-
resent the best option for circuit-level simulations. It is obvious from Figure 2.1, that
“compact model” is a very loose term. It can be particularly confusing when talking about
behavioural-based compact models which are quite distinct from black-box behavioural
models. The best way to define “compact model” is through the objective for which the
model was built, i.e., to design circuits (Step 1 in Figure 1.1). Therefore, compact models
are expected to work under different circuit simulators [direct current (DC), small-signal
and large-signal simulators].

From the discussion in Section 1.2, one can notice the use of two types of models.
First, a compact model was used to design the PA, and then a behavioural model was
built to linearize it. Since this thesis aims to bridge the gap between the two approaches,
the remainder of this chapter presents a review of the existing compact and behavioural
modelling techniques for radio frequency (RF) power transistors. They will be grouped
based on the common properties imposed by the model structure (formulation and extrac-
tion measurements) to help with problem identification, and hence pave the way to the
proposed model2.

2Since compact and behavioural modelling approaches have different objectives, no comparison will
be provided in this chapter. Yet, each approach will be compared separately with its equivalence in the
proposed work (Table 3.3 and Table 5.5).
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Figure 2.2: An example of a physics-inspired equivalent circuit of the transistor [10]. The
blue and red elements represent the extrinsic and intrinsic shells, respectively.

2.2 Compact Models

2.2.1 Linear Measurement-Based Compact Models

Transistor compact modelling approach approximates the transistor’s large-signal behaviour
using an equivalent circuit that is divided into two shells: an active intrinsic shell and a
passive extrinsic shell. While the first represents the part at which transistor action takes
place (the channel), the later represents everything outside the channel (often called tran-
sistor parasitics) [9]. The two-shell assumption is fundamental to this modelling approach
as it gives the equivalent circuit more physical significance (Figure 2.2) and hence simplifies
the extraction of its elements through a two-tier process. First, extrinsic shell elements are
extracted using ColdFET technique [11], where the transistor channel is turned off. Sec-
ond, intrinsic shell elements are extracted analytically using bias-dependent S-parameters
measurements. The most important step in this process is to find an equivalent circuit
that matches the transistor’s behaviour (S-parameters versus both frequency and biasing
grids). Therefore, different topologies (for each shell) exist in the literature for different de-
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(a)

(b)

Figure 2.3: Examples of different extrinsic and intrinsic topologies used in transistor com-
pact modelling: (a) 15-elements [12], and (b) 22-elements [13] models. G, D, and S stand
for the gate, drain and source, respectively.

vice technologies, e.g. 15-elements and 22-elements topologies are shown in Figure 2.3 (a)
and (b), respectively. It is worth mentioning that even within the same topology, optimiza-
tion techniques are a must [13, 14] for the following reasons. First, analytical expressions
for intrinsic shell elements cannot be found if the shell has more than eight elements3.
Second, solution uniqueness cannot be achieved due to unavoidable measurement uncer-
tainties [12]. Finally, given a prior-knowledge of the application, compact model accuracy
can be increased by optimizing some elements using large-signal measurements [15].

In order to save time and effort in compact model extraction and implementation, a

3Since intrinsic shell extraction depends on S-parameters, only four complex equations are available.
Therefore, only eight elements have to exist in order for the system to have a unique solution.
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Figure 2.4: The equivalent circuit for the intrinsic transistor in the technology-independent
approach. G, D, and S stands for the gate, drain and source, respectively.

technology-independent approach was introduced in [16]. The equivalent circuit for the
intrinsic transistor is shown in Figure 2.4 and consists of conduction and displacement
current sources per each port. These sources are found by integrating bias-dependent Y-
parameters. The frequency-domain constitutive relationships are expressed in (2.1) and
Y-parameters represent the first order Taylor expansion around DC biasing points (2.2).
Although this equivalent circuit has less physical significance, ColdFET technique is still
used to add more degrees of freedom in order to match the transistor’s behaviour [17].

ITotal1 (V1, V2) = ICond1 (V1, V2) + jωQ1(V1, V2)

ITotal2 (V1, V2) = ICond2 (V1, V2) + jωQ2(V1, V2) (2.1)[
ITotal1 (v1, v2)

ITotal2 (v1, v2)

]
=

[
ITotal1 (V DC

1 , V DC
2 )

ITotal2 (V DC
1 , V DC

2 )

]
+
[
Y
] [v1
v2

]
: (2.2)

[Y ] =

[
Y11 Y12
Y21 Y22

]
=


dICond1

dV1
+ jω

dQ1

dV1

dICond1

dV2
+ jω

dQ1

dV2

dICond2

dV1
+ jω

dQ2

dV1

dICond2

dV2
+ jω

dQ2

dV2


V1=V DC

1

V2=V DC
2

where,

ITotalp is the frequency-domain total current at port p

ICondp is the frequency-domain conduction current at port p

Qp is a charge source that represents the frequency-domain
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displacement current at port p

Vp is the large-signal voltage at port p

vp is the small-signal voltage at port p

V DC
p is the DC voltage at port p[
Y
]

is the frequency domain Y-parameters at (V DC
1 , V DC

2 )

The linear measurement-based compact modelling approach has a strong mathematical
foundation. Long-term memory effects (thermal and trapping) can be added as in [18–21].
It has a systematic way of extraction that requires a simple measurement setup. However,
compact models built using this approach have very bad prediction capability of nonlinear
behaviours such as harmonic and intermodulation tone generation.

2.2.2 Nonlinear Measurement-Based Compact Models

The evolution of measurement setups [22, 23] led by nonlinear vector network analyzers
(NVNAs), gave a whole different prospect to device modelling techniques. Although this
approach uses the same constitutive relationships given by (2.1) to model the transistor,
it is different from the linear measurement-based approach. Instead of linearizing the ex-
pressions around each biasing point, this approach builds the time-domain version of (2.1)
using the load-line concept. This concept exploits the NVNA’s capacity to measure the
large-signal time-domain voltage and current waveforms. Figure 2.5 shows an example of
three voltage and current waveforms projected at the I2/V2 plane producing three load-
lines. Hundreds of these load-lines should be generated to fully cover the modelling space
represented by the blue-shaded area in Figure 2.5, thus fulfilling the generality require-
ment described in section 2.1. These load-lines are gathered using a sophisticated active
source/load-pull setup [24]. The idea is to intelligently sweep the power and phase of the
incident power-waves (A-waves) as well as the DC biasing points, to generate current and
voltage waveforms that result in load-lines covering the required modelling space. Load-
lines are usually generated using two frequencies in order to simplify the fitting of the
constructed time-domain data. While the first frequency is chosen to be low enough such
that the behaviour of the conduction current is dominant, the second is chosen to be high
enough to do the opposite, i.e., to make the displacement current dominant.

One of the most successful models that use this approach is Dynamic FET (DynaFET)
model. Initially proposed in [25], the model was extracted by measuring 8542 load-lines at
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Figure 2.5: An illustration of projecting load-lines on the instantaneous I2/V2 plot. The
green, red, and black lines represent voltage and current time domain waveforms, the
projected load lines, and the DC I/V curves, respectively. The blue-shaded area represents
the modelling space.

two frequencies: 2 GHz and 4 GHz, with power levels ranging from small-signal4 up to an
8 dB compression point. Further improvements were outlined in [27] where the model was
extracted by performing large-signal measurements at 100 MHz and S-parameters at 1.9
GHz. Self-heating and charge trapping were added to this model by introducing auxiliary
variables that are functions of the instantaneous dissipated power and the average terminal
voltages, respectively. In other words, by adding more degrees of freedom to (2.1). Time-
domain waveforms were constructed by measuring the first six harmonics in addition to
the DC component.

There are two main advantages of such an approach. First, the device is modelled
under large-signal operating conditions, and hence, more nonlinearities are stimulated and

4The small-signal power level is defined as a 20 dB back-off from the 1 dB compression point, because
at this point the compression level is 0.01 dB [26].
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modelled. Second, driving the device really hard, in terms of RF power5, allows it to be
modelled in regions closer to the breakdown without damaging it (as it enters this region
for a very short period). On the other hand, the models generated using this approach
suffer from a major problem that prevents them from accurately predicting the transistor
behaviour under modulated signals. This is because using the load-line concept to generate
compact models does not excite the full dynamics of the high-order partial derivatives of
the ports currents. These high-order derivatives are responsible for all nonlinear behaviours
needed to predict the performance under modulated signals, as will be explained later in
the proposed solution (Chapter 3 and Chapter 5).

Finally, it is worth mentioning that not all transistor compact models can be classified
into only one of the categories above. The dynamic-bias model [15, 28], for example, is a
linear measurement-based compact model that is locally tuned using the load-line concept
(assuming a priori-knowledge of the application).

2.3 Behavioural Models

2.3.1 The Volterra Series

The Volterra series is considered one of the most rigorous theories that deal with modelling
WNL behaviours [29]. It describes the total WNL response of the system as a summation
of different order responses (2.3) that are related to the input through Volterra kernels
(nonlinear impulse responses). Since dealing with the multidimensional convolution in
(2.3) is a complicated process, Volterra kernels can be expressed in the frequency-domain
as nonlinear transfer functions (2.5) by assuming the excitation has the general multi-tone
form in (2.4) [30].

y(t) =
N∑
n=1

yn(t) : (2.3)

yn(t) =

∫ ∞
−∞

. . .

∫ ∞
−∞

hn(τ1, . . . , τn)x(t− τ1) . . . x(t− τn)dτ1 . . . dτn

x(t) =
1

2

Q∑
q=−Q
q 6=0

Xqe
jωqt (2.4)

5While typical GaN devices can handle up to 5 W/mm of DC power, this approach can derive them to
reach an instantaneous power of 20 W/mm [27].
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yn(t) =
1

2n

Q∑
q1=−Q

. . .

Q∑
qn=−Q

Xq1 . . . XqnHn(ωq1 . . . ωqn)ej(ωq1+...+ωqn )t (2.5)

where,

y(t) is the total WNL response

yn(t) is the nth-order response

x(t) is the multi-tone excitation

n is the response-order

Xq is the complex amplitude of x(t) at ωq

Q is the total number of tones in x(t)

hn(τ1, . . . , τn) is the nth-order nonlinear impulse response

Hn(ωq1 . . . ωqn) is the nth-order nonlinear transfer function

The Volterra series is very accurate in predicting WNL behaviours such as intermod-
ulation distortion (IMD) bands. Therefore, different derivations of it are used in PAs
linearization [31, 32]. For example, a Volterra-based DPD was utilized to linearize the
PA in Section 1.2. However, it is difficult to use the Volterra series in transistor compact
modelling for the following reasons. First, being a black-box behavioural model limits the
validity of the Volterra kernels to the conditions under which they were extracted. Second,
the application of the Volterra series is limited to the WNL region of the device. In order
to handle strong nonlinear behaviours, high-order kernels need to be included which affects
the convergence of the series [33]. Finally, any attempt to extract Volterra kernels to cover
the entire transistor modelling space (and hence achieve the generality requirement) will
result in an explosion of the number of kernels.

2.3.2 Poly-Harmonic Distortion (PHD) -based Models

Poly-Harmonic distortion (PHD) concept [34, 35] was proposed to extend linear S-parameters
to predict nonlinear behaviours. It starts with the concept of multi-harmonic spectral
mapping- which states that if a nonlinear system is excited with a stimulus (A-wave) that
has spectral components on a harmonic grid, the response (B-Wave) will have spectral com-
ponents on the same grid- to derive the PHD describing function (2.6). Fp,k is a nonlinear
function that relates the kth spectral component of B-wave at port p to all the spectral
components of A-wave at all ports. According to (2.2), Y-parameters represent the first-
order Taylor expansion of the device describing functions around the DC operating point.
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Similarly, PHD-based models represent the first-order Taylor expansion of the describing
function (2.6) around the system’s large-signal steady-state due to both the stimulus and
the response. This new concept of operating points was referred to as the large-signal oper-
ating point (LSOP). To guarantee the analyticity of Fp,k (and hence its linearizability), the
complex amplitudes of the spectral components were added to the functional dependency
resulting in (2.7). Next, time-invariant mapping was assumed which allowed normalizing
the phases of all spectrum components with respect to the phase of the fundamental tone
of A-wave at port 1 as described by (2.8). Finally, the linearization of (2.8) is performed
around the LSOP to reach the formulation of X-parameters6 (2.9) [36, 37]. X(F ) represent

the large-signal response which is equivalent to the DC currents in (2.2). X
(S)
p,k;q,l and X

(T )
p,k;q,l

are interpreted in a similar way to S-parameters, i.e., they represent the contribution of
the lth-harmonic of A-wave at port q to the kth harmonic of B-wave at port p.

Bp,k = Fp,k(A1,1, A1,2, . . . , A2,1, A2,2, . . .) (2.6)

Bp,k = Fp,k(A1,1, A
∗
1,1, A1,2, A

∗
1,2, . . . , A2,1, A

∗
2,1, A2,2, A

∗
2,2, . . .) (2.7)

Bp,k = Fp,k
(
|A1,1|, A1,2P

−1, A∗1,2P
2, . . . ,

A2,1P
−1, A∗2,1P

1, A2,2P
−2, A∗2,2P

2, . . .
)
P k (2.8)

Bp,k = X
(F )
p,k (LSOP )P k

+
∑
q,l

[
X

(S)
p,k;q,l(LSOP )aq,lP

k−1 +X
(T )
p,k;q,l(LSOP )a∗q,lP

k+1
]

(2.9)

where,

aq,l is the small-signal A-wave at port q and harmonic l

Aq,l is the large-signal A-wave at port q and harmonic l

Bp,k is the large-signal B-wave at port p and harmonic k

P = ejφ(A1,1) is the the phase of A1,1

It is worth mentioning that X-parameters were first introduced to model well-matched
nonlinear devices. Therefore, for a 2-port device, only DC voltages at both ports (V1,0 and
V2,0) and the fundamental tone of the stimulus (A1,1) were considered the contributors to
the LSOP, i.e. LSOP = (V1,0, V2,0, |A1,1|). In order to handle strong nonlinear behaviours
that results from poor matching, load-dependent X-parameters were introduced by extend-
ing the LSOP to include the the fundamental tone of A-wave at the output port (A2,1),
i.e. LSOP = (V1,0, V2,0, |A1,1|, A2,1) [38]. Furthermore, Dynamic kernels were introduced

6X-parameters is a PHD-based model commercialized by Keysight.
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to model the dynamics of the nonlinear device [38, 39]. Also, frequency scalability was
added by introducing the admittance-space X-parameters (XY-parameters) [40].

A multi-harmonic source/load-pull setup [41] is needed in order to extract PHD-based
models [42]. First, an LSOP needs to be defined, and then an extraction tone is injected
to sweep all other variables sequentially. Other PHD-based models include Cardiff model
[43] and Pade’s model [44]. While the first uses the polar form of the PHD describing
function to separate between phase and amplitude nonlinearities (which leads to a quicker
model identification), the second use Pade’s approximation instead of the polynomials as
basis functions to extend the modelling space. PHD-based models have demonstrated an
excellent ability to model nonlinear behaviours. However, all these models are limited
by the PHD principle itself when it comes to solution generality. This is because high-
order responses are treated as first-order Taylor expansions of a multidimensional function
(2.6)-(2.9) which results in the following problems:

• It is quite difficult to determine which variables should be included in the LSOP
when handling strong nonlinearities, especially if there is no a priori-knowledge of
the application [37].

• Any attempt to generalize the solution, by including more variables in the LSOP (in
order to be used as a compact model) will result in an explosion of the modelling
space [42].

• The formulation of the PHD-based models in (2.6) as a multi-dimensional function
makes the model prediction highly dependent on the implementation and the inter-
polation techniques used by the simulator [45].

2.4 Conclusion

The basic assumption, as well as the fundamental limitation, in linear measurement-based
compact models, is that it is possible to recover a nonlinear function by measuring only
the DC and first-order components of its Taylor series expansion. Another significant dis-
advantage of this approach is the non-systematic method used to come up with equivalent
circuits because elements have to be empirically added to the model whenever the tran-
sistor technology is changed. Nonlinear measurement-based compact models, on the other
hand, depend on stimulating as many nonlinearities and dynamics in the transistor as
the characterization setup can manage. Although this seems to be the right approach to
modelling as it captures the nonlinear effects without any assumptions, it does not excite
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the full dynamics of the high-order partial derivatives of the ports currents. Thus, these
models lack the capacity to predict the device behaviour under modulated signal stimuli.

Black-box behavioural models are very accurate, yet their application is limited to
the conditions under which they are extracted. It is also difficult to cover the modelling
space required by compact models without having an explosion in the number of kernels.
Finally, even if one manages to extract these kernels, there is no mathematical framework
that allows utilizing them in transistor compact modelling.

In conclusion, compact models are hungry for more data that includes the transis-
tor’s nonlinear and dynamical behaviours. The main problem is the lack of mathematical
formulations that allows incorporating these data into one model that can be extracted
systematically. It is worth mentioning that none of the compact models mentioned in this
chapter was validated under modulated signal stimuli.
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Chapter 3

High-Order Network Parameters

3.1 Introduction

In this chapter, we take a step back and start with extending the original 2-port linear
network theory [46] to the WNL case. A Volterra-based system is used to derive a new set
of parameters that, once identified, can be used to describe WNL behaviours of the de-
vice under test (DUT) under any stimuli. These superset parameters are called high-order
network parameters (HONPs) and will be derived in two forms: high-order Y-parameters
(HOYPs) and high-order S-parameters (HOSPs). It will be proven, in both simulation and
measurement environments, that these high-order parameters are the correct extension
of the linear parameters (i.e. Y- and S-parameters) as they do not depend on the load
termination, power, or the stimulus used in the extraction process. In other words, they
only depend on the DUT. It will also be shown that HONPs inherit the main properties
of the linear parameters represented in power independency, continuity of the behaviour
across the modelling space (i.e. frequency and biasing grids), and solution uniqueness.
These properties are the main reason for the popularity of linear parameters. While the
first two properties limit the explosion of the modelling space1 and allow interpolating the
parameters, and hence reducing measurement time, the last one is of particular impor-
tance as it allows identifying any linear system with absolute mathematical certainty. A
misleading understanding of S-parameters is that they are extracted in the DUT linear
region of operation. In this chapter, it will be shown that HONPs are extracted while the
nonlinear DUT is operating in the same region as S-parameters. Therefore, this region will

1The modelling space for linear DUTs is represented by the frequency. For nonlinear DUTs , e.g. a
transistor, it is defined by both frequency and biasing points.
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be referred to as the WNL region. Finally, a multi-tone verification is presented to prove
HONPs capabilities in predicting WNL behaviours.

3.2 Modelling Domain

The relationship between the degree of the nonlinearity and the order of the response is an
important modelling concept that can greatly affect the results if not dealt with properly.
Nonlinear models can be represented in either one of the following domains: voltage/current
(V/I) or incident/reflected power-waves (A/B). While V/I domain is used to implement
models in circuit simulators, A/B domain is used to collect measurement data at microwave
frequencies. This is because, at microwave frequencies, signal generators can only set the
input incident power-wave rather than the input voltage. In order to illustrate the nature
of the problem, the following example is considered. Equation (3.1) describes a third-
degree nonlinear conductance where a, b and c are arbitrary constants. This element is
excited with CW voltage source, CW current source, and CW power source, respectively,
under HB simulator2 (Figure 3.1). The spectrum of the simulated voltage and current
at the nonlinear conductance are shown in Figure 3.2. Since there is no feedback in this
circuit and the nonlinearity is limited to the third-degree, the response is expected to
have components up to the third-order mixing product only. While this is true when
using a CW voltage source, stimulating the nonlinear element with a CW current source
results in an infinite-order mixing products (Figure 3.2 (a), and (b), respectively). This
behaviour can be justified by reversing (3.1) using the formula of power series reversion
[47], which results in an infinite-degree nonlinear resistor (3.2). This means that a third-
degree nonlinear conductance behaves as a third-degree nonlinearity only if excited with a
voltage source. Since the models considered in this thesis work at microwave frequencies,
power sources are used to excite the DUT with A-waves. Therefore, both voltage and
current will have infinite-order mixing products [Figure 3.2 (c)]. It is worth mentioning
that although both domains are linearly related through (3.3), the choice of the modelling
domain will affect the extracted HONPs (as will be shown in the next sections).

i(t) = av(t) + bv2(t) + cv3(t) (3.1)

v(t) = Ai(t) +Bi2(t) + Ci3(t) + . . . (3.2)

v(t) = (A(t) +B(t))
√
Zo

i(t) = (A(t)−B(t))/
√
Zo

(3.3)

2Keysight’s Advanced Design System (ADS) circuit simulator was used.
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Figure 3.1: The schematic of a nonlinear conductance excited using CW voltage source,
CW current source, and CW power source in HB simulator.

where,

aA = 1, a3B = −b, a5C = 2b2 − ac, . . .

V (t) is the time-domain voltage

i(t) is the time-domain current

A(t) is the time-domain incident power-wave

B(t) is the time-domain reflected power-wave

Zo is the characteristic impedance of the system.
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Figure 3.2: A comparison between voltage, current, and power-wave spectrums when ex-
citing the nonlinear element shown in Figure 3.1 with: (a) CW voltage source, (b) CW
current source, and (c) CW power source.
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3.3 High-Order Network Parameters (HONPs)

Formulations

In this section, the original 2-port linear network theory [46] is extended to the WNL case.
Although many equivalent representations exist in the linear case (e.g. Y, Z, S, H, etc),
only Y-parameters and S-parameters will be the points of focus here. This is because
the first is essential for compact model implementation in available circuit simulators3,
and the second is irreplaceable when it comes to measurements performed at microwave
frequencies.

3.3.1 High-Order Y-Parameters (HOYPs) Formulation

A 2-port linear network can be fully described by a set of four parameters. Figure 3.3
shows two topologies for Y-Parameters. Although these representations are equivalent
in the linear case, they are not in the nonlinear case. For example, if each element is
described by a polynomial [as in (3.1)], the ports currents of the first topology would have
terms containing v1v2 which are absent in the second topology. Also, port 1 current of the
second topology would have terms containing v22 that do not exist in the first topology4.
In order to maintain the generality of the theory, all high-order terms should be included
and hence the topology in Figure 3.4 is proposed. The relationship between ports voltages
and currents is described by (3.4)[

i1(t)

i2(t)

]
=

[
y
(1)
11 (t) y

(1)
12 (t)

y
(1)
21 (t) y

(1)
22 (t)

][
v1(t)

v2(t)

]

+

[
y
(2)
11 (t) y

(2)
12 (t) y

(2)
13 (t)

y
(2)
21 (t) y

(2)
22 (t) y

(2)
23 (t)

]
v21(t)

v22(t)

v1(t)v2(t)

 (3.4)

3Most of the existing commercial circuit simulators use Modified Nodal Analysis method to formulate
systems of differential equations, which will then be solved using numerical techniques. Therefore, imple-
menting compact models in the nodal form, i.e. ports currents are functions of ports voltages, helps in the
simulation convergence [47].

4This example shows the missing terms considering only second-order nonlinearities.
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(a)

(b)

Figure 3.3: Y-parameters equivalent circuits: (a) output-circuit-dependent-generator, and
(b) two-dependent-generator form [48].

+

[
y
(3)
11 (t) y

(3)
12 (t) y

(3)
13 (t) y

(3)
14 (t)

y
(3)
21 (t) y

(3)
22 (t) y

(3)
23 (t) y

(3)
24 (t)

]
v31(t)

v32(t)

v21(t)v2(t)

v1(t)v
2
2(t)


where vp(t) and ip(t) represent the time-domain voltages and currents at port p. y

(n)
kl (t) rep-

resents the time-domain nth-order network parameter and the subindexes k and l are used
similarly as in the original 2-port linear network theory. Although the system described
by (3.4) represents a DIDO Volterra system with dynamic kernels, a different mathemat-
ical treatment will be applied here [49] to allow both solution generality and systematic
extraction procedure that are necessary for compact model formulation and extraction (a
full analysis for the proposed system using Volterra Series is shown in Appendix A).

First, without loss of generality, the dynamics of these parameters are assumed to
be approximated by the first and high-order time-derivatives and time-integrals of the
ports voltages, which is a generalized case of the quasi-static assumption5. Therefore, the

5The quasi-static approach assumes that both conduction-currents and charge sources in Figure 2.4 are
static functions of the controlling voltages [10, 50], i.e., m = 0, 1 in (3.5). The purpose of this assumption
is to simplify the transformation from time-domain to frequency-domain without using convolution.
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Figure 3.4: First (blue), second (red), and third (grey) HOYPs equivalent circuit. Time
dependency is dropped for ease of notation.

time-domain high-order network parameters y
(n)
kl (t) in (3.4) become the integro-differential

operators Y
(n)
kl (P ) described by (3.5), where P is a differential operator as shown in (3.6)6.

The positive and negative values of m represent the mth-order time-derivative and time-
integral, respectively.

Y
(n)
kl (P ) =

∞∑
m=−∞

Y
(n)
kl,mP

m (3.5)

Pv(t) =
d

dt
v(t) and P−1v(t) =

∫ t

−∞
v(z)dz (3.6)

The next step is to solve the system of nonlinear equations (3.4) using the Method of
Nonlinear Currents [30]. Both voltages and currents are divided into components with
different orders, and hence the superposition principle can be applied. Considering up to
the N th-order mixing products and assuming multi-tone excitations at both ports, ports

6Operator notation is used here to simplify equations readability.
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voltages and currents can be expressed as in (3.7).

vp(t) =
N∑
n=1

vp,n(t) : vp,n(t) =
1

2

Qn∑
q=−Qn
q 6=0

Vp,qe
j2πfqt

ip(t) =
N∑
n=1

ip,n(t) : ip,n(t) =
1

2

Qn∑
q=−Qn
q 6=0

Ip,qe
j2πfqt

(3.7)

where,

p = 1, 2 is the port number

vp(t) is the total time-domain voltage at port p

ip(t) is the total time-domain current at port p

vp,n(t) is the nth-order time-domain voltage at port p

ip,n(t) is the nth-order time-domain current at port p

Vp,q(t) is the complex amplitude of vp(t) at tone q

Ip,q(t) is the complex amplitude of ip(t) at tone q

Q1 is the number of fundamental tones in the multi-tone excitation

Qn is the number of all nth-order mixing product (harmonic and IMD) tones

In order to illustrate the concept, both the degree of nonlinearities and the order of the
response will be limited to three (N = 3). Therefore substituting by (3.5) and (3.7) in
(3.4) will result in (3.8), where the three current components represent first, second, and
third-order responses of the WNL system (3.9)-(3.11).[

i1(t)

i2(t)

]
=

[
i1,1(t)

i2,1(t)

]
+

[
i1,2(t)

i2,2(t)

]
+

[
i1,3(t)

i2,3(t)

]
(3.8)

[
i1,1(t)

i2,1(t)

]
=

[
Y

(1)
11 (P ) Y

(1)
12 (P )

Y
(1)
21 (P ) Y

(1)
22 (P )

][
v1,1(t)

v2,1(t)

]
(3.9)
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[
i1,2(t)

i2,2(t)

]
=

[
Y

(1)
11 (P ) Y

(1)
12 (P )

Y
(1)
21 (P ) Y

(1)
22 (P )

][
v1,2(t)

v2,2(t)

]

+

[
Y

(2)
11 (P ) Y

(2)
12 (P ) Y

(2)
13 (P )

Y
(2)
21 (P ) Y

(2)
22 (P ) Y

(2)
23 (P )

] v21,1(t)

v22,1(t)

v1,1(t)v2,1(t)


(3.10)

[
i1,3(t)

i2,3(t)

]
=

[
Y

(1)
11 (P ) Y

(1)
12 (P )

Y
(1)
21 (P ) Y

(1)
22 (P )

][
v1,3(t)

v2,3(t)

]

+

[
Y

(2)
11 (P ) Y

(2)
12 (P ) Y

(2)
13 (P )

Y
(2)
21 (P ) Y

(2)
22 (P ) Y

(2)
23 (P )

] 2v1,1(t)v1,2(t)

2v2,1(t)v2,2(t)

v1,1(t)v2,2(t) + v2,1(t)v1,2(t)



+

[
Y

(3)
11 (P ) Y

(3)
12 (P ) Y

(3)
13 (P ) Y

(3)
14 (P )

Y
(3)
21 (P ) Y

(3)
22 (P ) Y

(3)
23 (P ) Y

(3)
24 (P )

]
v31,1(t)

v32,1(t)

v21,1(t)v2,1(t)

v1,1(t)v
2
2,1(t)



(3.11)

Since the application of the integro-differential operators (3.5) to the exponential terms
in (3.7) results in (j2πf)m, rewriting (3.9)-(3.11) at fundamental, second and third-order
mixing product tones results in (3.12)-(3.14), respectively. [Y (1)(f)], [Y (2)(f)], and [Y (3)(f)]
are the first7, second and third HOYPs in frequency-domain (3.15) - (3.17).

1

2

Q∑
q=−Q

[
I1,1q
I2,1q

]
ej2πfqt =

1

2

Q∑
q=−Q

[
Y (1)(fq)

] [V1,1q
V2,1q

]
ej2πfqt (3.12)

1

2

Q∑
q=−Q

[
I1,2q
I2,2q

]
ej2πfqt =

1

2

Q∑
q=−Q

[
Y (1)(fq)

] [V1,2q
V2,2q

]
ej2πfqt

+
1

22

Q∑
q1=−Q

Q∑
q2=−Q

[
Y (2)(fq1 + fq2)

] V1,1q1V1,1q2V2,1q1V2,1q2
V1,1q1V2,1q2

 ej(fq1+fq2)t (3.13)

7First HOYPs represent the traditional linear Y-parameters.
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1

2

Q∑
q=−Q

[
I1,3q
I2,3q

]
ej2πfqt =

1

2

Q∑
q=−Q

[
Y (1)(fq)

] [V1,2q
V2,2q

]
ej2πfqt

+
1

22

Q∑
q1=−Q

Q∑
q2=−Q

[
Y (2)(fq1 + fq2)

] V1,1q1V1,2q2 + V1,1q2V1,2q1
V2,1q1V2,2q2 + V2,1q2V2,2q1
V1,1q1V2,2q2 + V2,1q2V1,2q1

 ej(fq1+fq2)t
(3.14)

+
1

23

Q∑
q1=−Q

Q∑
q2=−Q

Q∑
q3=−Q

[
Y (3)(fq1 + fq2 + fq3)

] 
V1,1q1V1,1q2V1,1q3
V2,1q1V2,1q2V2,1q3
V1,1q1V1,1q2V2,1q3
V1,1q1V2,1q2V2,1q3

 ej(fq1+fq2+fq3)t
[
Y (1)(f)

]
=

[
Y

(1)
11 (f) Y

(1)
12 (f)

Y
(1)
21 (f) Y

(1)
22 (f)

]
(3.15)

[
Y (2)(f)

]
=

[
Y

(2)
11 (f) Y

(2)
12 (f) Y

(2)
13 (f)

Y
(2)
21 (f) Y

(2)
22 (f) Y

(2)
23 (f)

]
(3.16)

[
Y (3)(f)

]
=

[
Y

(3)
11 (f) Y

(3)
12 (f) Y

(3)
13 (f) Y

(3)
14 (f)

Y
(3)
21 (f) Y

(3)
22 (f) Y

(3)
23 (f) Y

(3)
24 (f)

]
(3.17)

Important Remarks

• Since HOYPs equivalent circuit (Figure 3.4) represents a Volterra system, one can no-
tice the following similarities between the derivation above and the original Volterra
series formulation mentioned in Section 2.3.1. First, both HONPs and Volterra for-
mulations (2.3) describes the total WNL response of the system as a summation of
different order responses. Second, the use of the multi-tone formulation helped in
transforming the time-domain Volterra kernels into frequency-domain kernels. Sim-
ilarly, multi-tone formulations along with the generalized quasi-static assumption
helped in transforming the time-domain HOYPs into frequency-domain HOYPs.
Again, the relationship between HOYPs and DIDO Volterra kernels can be found
in Appendix A.

• Equation (3.15) represents the original Y-parameters for linear networks. The high-
order parameters described by (3.16) and (3.17) are the ones responsible for all
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second- and third-order WNL behaviours of the system. This means that the re-
sponses at the baseband and second-harmonic band are described by the same unique
set of second-order network parameters. Also, the responses at the third-IMD in the
fundamental band and the third-harmonic band are described by the same unique
set of third-order network parameters.

• The first terms in (3.13) and (3.14) represent the effect of the linear network on the
high-order responses, and they are important for two reasons. First, as mentioned in
Section 3.2, the use of power sources in the simulation environment to stimulate the
WNL system (3.4) will generate infinite-order tones at the input voltages. Second, in
the measurement environment, even though HONPs will be written in A/B domain
(as will be seen in the next subsection), infinite-order tones will still appear at the
input A-wave due to spur tones generated by any real-life source and the mismatch
at the DUT’s ports.

• First-order Y-parameters describe the relationship between ports first-order currents
and voltages only, i.e. [

I1,n
I2,n

]
6=
[
Y (1)

] [V1,n
V2,n

]
: n > 1 (3.18)

Instead, one should use (3.12)-(3.14).

3.3.2 High-Order S-Parameters (HOSPs) Formulation

HOSPs can be found by describing the original WNL system (Figure 3.4) in terms of ports
A and B-waves instead of ports voltages and currents. Following the same procedure in
(3.4) - (3.11), first, second and third HOSPs ([S(1)(f)], [S(2)(f)], and [S(3)(f)]) will be
described by (3.19) - (3.24) in the frequency-domain. It should be noted that although
HOSPs and HOYPs are mathematically equivalent, they are not when extracted in the
measurement environment as will be shown in the coming sections.

1

2

Q∑
q=−Q

[
B1,1q

B2,1q

]
ej2πfqt =

1

2

Q∑
q=−Q

[
S(1)(fq)

] [A1,1q

A2,1q

]
ej2πfqt (3.19)

1

2

Q∑
q=−Q

[
B1,2q

B2,2q

]
ej2πfqt =

1

2

Q∑
q=−Q

[
S(1)(fq)

] [A1,2q

A2,2q

]
ej2πfqt

30



+
1

22

Q∑
q1=−Q

Q∑
q2=−Q

[
S(2)(fq1 + fq2)

] A1,1q1A1,1q2

A2,1q1A2,1q2

A1,1q1A2,1q2

 ej(fq1+fq2)t (3.20)

1

2

Q∑
q=−Q

[
B1,3q

B2,3q

]
ej2πfqt =

1

2

Q∑
q=−Q

[
S(1)(fq)

] [A1,2q

A2,2q

]
ej2πfqt

+
1

22

Q∑
q1=−Q

Q∑
q2=−Q

[
S(2)(fq1 + fq2)

] A1,1q1A1,2q2 + A1,1q2A1,2q1

A2,1q1A2,2q2 + A2,1q2A2,2q1

A1,1q1A2,2q2 + A2,1q2A1,2q1

 ej(fq1+fq2)t
(3.21)

+
1

23

Q∑
q1=−Q

Q∑
q2=−Q

Q∑
q3=−Q

[
S(3)(fq1 + fq2 + fq3)

] 
A1,1q1A1,1q2A1,1q3

A2,1q1A2,1q2A2,1q3

A1,1q1A1,1q2A2,1q3

A1,1q1A2,1q2A2,1q3

 ej(fq1+fq2+fq3)t

[
S(1)(f)

]
=

[
S
(1)
11 (f) S

(1)
12 (f)

S
(1)
21 (f) S

(1)
22 (f)

]
(3.22)

[
S(2)(f)

]
=

[
S
(2)
11 (f) S

(2)
12 (f) S

(2)
13 (f)

S
(2)
21 (f) S

(2)
22 (f) S

(2)
23 (f)

]
(3.23)

[
S(3)(f)

]
=

[
S
(3)
11 (f) S

(3)
12 (f) S

(3)
13 (f) S

(3)
14 (f)

S
(3)
21 (f) S

(3)
22 (f) S

(3)
23 (f) S

(3)
24 (f)

]
(3.24)

3.4 HONPs Extraction Techniques and Properties

In this section, different extraction techniques are investigated. The objective is to show
that HONPs are a unique set of parameters that do not depend on the stimulus power nor
type, nor port termination. HONPs only depend on the system and, once identified, can
fully describe the WNL behaviour of it. In the simulation environment, HONPs will be
extracted using CW HB simulations. These parameters will then be applied to predict the
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Figure 3.5: HONPs extraction setup in Keysight ADS using a CW HB simulation.

system response under multi-tone excitation in Envelope simulator (in the WNL region).
A generic GaN HFET transistor model will be used as the DUT to mimic the real-life
measurement scenario.

3.4.1 Extraction and Validation Setups in Simulation Environ-
ment

Keysight ADS software is used for HONPs extraction and validation. Figure 3.5 shows
the extraction setup using a CW HB simulator, where power sources are used to excite
port 1 and 2 simultaneously. A Verilog-A switch is implemented to allow only one source
to be connected at a time while the other port is terminated by a 50 Ω load. Since
HONPs extraction procedure requires many customized sweeps, as will be shown in the
next subsections, MATLAB is utilized to control ADS simulations and collect the simulated
data.

Figure 3.6 shows a multi-tone validation setup using Envelope simulator, where base-
band I and Q files are uploaded to Data Access Components (DACs) then up-converted
to the carrier frequency fc using an IQ modulator. ADS is a circuit simulator, and hence
it solves for ports voltages and currents. A and B-waves are then calculated using (3.3).
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Figure 3.6: HONPs validation setup using Envelop simulation.

3.4.2 HONPs Extraction Techniques

Second and third HONPs are extracted sequentially using (3.13)-(3.14) or (3.20)-(3.21)
in the Y or S form, respectively. While first-order parameters are extracted using two
independent measurements, second-/third- order parameters need at least three/four in-
dependent measurements to be extracted. This is achieved by simultaneously stimulating
both ports with a CW excitation and controlling the power or phase-difference between
A-waves at ports 1 and 2 (A1 and A2) at the fundamental tone, as in Figure 3.7 (a) and
(b), respectively. It is worth mentioning that the first two measurements in Figure 3.7
(a) are simply the ones used to extract traditional S-parameters (one port is excited at
a time, while the other port is terminated by a 50 Ω load). This does not mean that
S-parameters have to be extracted under 50 Ω terminations. It is just a practical method
to measure them without the need for power calibration [in measurements 3 and 4 Figure
3.7 (a)] or NVNA measurements [in measurements 1 to 4 in Figure 3.7 (b)]. Controlling
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(a) (b)

Figure 3.7: HONPs extraction techniques: (a) Sweeping the power of the fundamental tone
between both sources, and (b) sweeping the phase-difference between the fundamental tones
at both sources. A1 and A2 are plotted at the fundamental frequency as amplitudes only
in (a) and in the polar form in (b). m is a measurement sweep index.

the phase-difference between A1 and A2 is preferred for the following reasons.

• More measurements are needed to make the system of equations in (3.13)-(3.14)/(3.20)-
(3.21) more well-conditioned. As in the case of traditional network parameters, some
elements are weaker than the others (e.g. S12 is much weaker than S21 in the case of
a transistor) and an ill-conditioned system will result in false identification of these
weak elements. While this might not be too problematic in the linear case, it is crit-
ical in the WNL case because we are interested in modelling a behaviour that is at
least 40 dBc less than the dominant linear behaviour. It was found empirically that
ten measurements represent a good compromise between HONPs extraction stability
and measurement time. Achieving this number of measurements by controlling the
power between the two ports is not practical due to dynamic range limitations of the
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Figure 3.8: A generic GaN HFET model used as a DUT in the simulation environment.

measurement setup, the WNL extraction region (will be discussed in the following
subsection), and the minimum step a real power source can achieve.

• HONPs are claimed to be power-independent (similar to traditional network param-
eters). Therefore, sweeping the power of the sources will be used to extract HONPs
at different power levels (phase-difference between A1 and A2 will be used to extract
them at each power level), and hence prove this property.

3.4.3 Simulated HONPs Properties: Power-Independency

A generic GaN HFET model (Figure 3.8) biased at (Vgs,Vds) of (-3.2, 12) V was used in
the simulation environment as a DUT (Figure 3.5). Ten random phase-difference values
were generated and first, second and third HONPs were extracted in both Y and S forms
at 800 MHz fundamental frequency, as described in the previous subsection.

Linear network parameters extraction region is defined by the amount of compression in
the fundamental tone. To measure S-parameters, for example, the signal has to be backed-
off such that the maximum compression in the fundamental tone is 0.01 dB [26]. This means
that setting the stimuli power to any value below this compression level will result in the
same set of S-parameters, and this is why S-parameters are power independent. The same
concept applies to HONPs; there is a specific extraction region where these parameters are
power-independent. Figure 3.9 shows simulated A and B-waves at 800 MHz fundamental
frequency versus power sweep (at one of the phase sweeps used for HONPs extraction).
Both ports are simultaneously excited with a CW power source (A1 and A2-waves), and
fundamental, second-harmonic, and third-harmonic tones are measured. In order to show
how these tones compress against the stimuli power, the slopes are calculated with respect
to A1 fundamental tone power (Figure 3.10). Ideal HONPs extraction region is defined
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Figure 3.9: An example of simulated A and B-waves at 800 MHz fundamental frequency.
Fundamental, second-harmonic, and third-harmonic tones are represented by blue, red,
and black lines, respectively. The x-axis (pwr) represents the number of power sweep
points at the same fundamental frequency and the same phase-difference between A1 and
A2 fundamental tones.

where fundamental, second-harmonic, and third-harmonic tones have slopes of one, two,
and three with respect to the fundamental tone input power.

It should be noted that high-order tones compress faster than fundamental tones. It was
found, in both simulation and measurement environments, that HONPs are best extracted
with a maximum compression of 0.2 dB in the high-order tones. Finally, Figure 3.11 and
3.12 show the real and imaginary parts of the extracted first, second, and third HOYPs 8

and HOSPs versus the fundamental tone power of the input stimuli (A1 and A2). While
these figures show a constant behaviour of HONPs against 30 dB range of input A1 and A2

power (the power-independence property), in real life, this range is very narrow because of
the limited dynamic range of the measurement setup (will be shown in next sections).

8While first HOYPs are measured in Ampere/Volt (A/V ), second and third HOYPs are measured in
A/V 2 and A/V 3, respectively. The units of HOSPs can be found similarly.
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Figure 3.10: The slops of (a) fundamental tone, (b) second-harmonic tone, and (c) third-
harmonic tone of both B1 and B2 with respect to A1 fundamental tone power. The x-axis
(pwr) represents the number of power sweep points at the same fundamental frequency
and the same phase-difference between A1 and A2 fundamental tones.
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Figure 3.11: Extracted real and imaginary parts of (a) first, (b) second, and (c) third
HOYPs at (Vgs,Vds)=(-3.2, 12) V and 800 MHz fundamental frequency versus fundamental
tone stimuli power. The red line represents the element value that will be used.
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Figure 3.12: Extracted real and imaginary parts of (a) first, (b) second, and (c) third
HOSPs at (Vgs,Vds)=(-3.2, 12) V and 800 MHz fundamental frequency versus fundamental
tone stimuli power. The red line represents the element value that will be used.
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3.4.4 Simulated HONPs Properties: Solution Continuity and
Uniqueness

The same simulation setup described in the previous subsection was used here, where
the fundamental frequency of both A1 and A2 was swept from 10 MHz to 6 GHz with a
frequency step of 40 MHz. Figures 3.13 and 3.14 show extracted first, second, and third
HOYPs and HOSPs, respectively. As mentioned in Subsection 3.4.2, more measurements
are needed in order for the system of equations used in HONPs extraction to be more
well-defined. This is demonstrated by extracting both HOYPs and HOSPs using four
and ten phase-difference values between A1 and A2 fundamental frequency (red and black
curves in Figure 3.13 and 3.14, respectively). It is obvious that the dominating elements
(the ones with larger values) are not affected by increasing the number of measurements.
However, the weaker elements need more measurements to be correctly identified. This can
be demonstrated mathematically by monitoring the conditioning number of the system.
Table 3.1 shows a comparison between the conditioning number of the system of linear
equations used in extracting second and third HOSPs and HOYPs using four and ten
measurements at 800 MHz fundamental frequency. It can be observed that increasing the
number of measurements results in a better-conditioned system, and hence more trusted
results. Yet, a more important observation is that extracting HONPs in the S form [using
(3.20) - (3.21)] is always more reliable than extracting them in the Y form [using (3.13)
- (3.14)] at microwave frequencies. This is because sources at microwave frequencies set
incident power-waves, not voltages, and hence the voltage spectrum will contain tones at
all the harmonic frequencies. These unwanted tones will make the second term in (3.13)
and second and third terms in (3.14), more effective than those in (3.20) and (3.21). That
is why the system conditioning number is significantly lower in the case of HOSPs than
HOYPs. It is also clear that HOSPs are almost not affected by increasing the number of
measurements (Figure 3.14). Have CW voltage sources been used instead of CW power
sources in the extraction schematic (Figure 3.5), HOYPs would have lower conditioning
number than HOSPs. However, this is an impractical case, and that is why one must
pay attention to the concept of modelling domain discussed in Section 3.2. Finally, the
formulations in (3.13) - (3.14) are linear with respect to the coefficients. This proves that
there is a unique solution for that system of equations. Also, the fact that the conditioning
number in Table 3.1 is very close to one indicates that the solution is stable.

To examine HONPs continuous behaviour across the biasing grid, Vgs and Vds were
swept from -4 to 0 V, and from 0 to 20 V, respectively. While a uniform step of 0.25 V was
used for Vgs sweep, a non-uniform step was used to cover Vds sweep with only ten points9.

9Steps of 0.5 and 4 V were used to sweep Vds from 0 to 2 V, and from 4 to 20 V, respectively.
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4 measurements 10 measurements

Second HOSPs 8.7 1.79
Third HOSPs 431 2.36

Second HOYPs 461 275
Third HOYPs 1.6e5 5.6e3

Table 3.1: A comparison between the conditioning number of the system of linear equations
used to extract both second and third HOSPs and HOYPs using four and ten measurements
in the simulation environment.

Figure 3.15 (a), (b), and (c) show the amplitude of the extracted first, second, and third
HOSPs versus frequency, Vgs, and Vds

10. Specific planes are plotted across this 3D modelling
space where the elements’ amplitudes are represented using colour maps. The continuity
of the behaviour can be observed from the smooth transitions between colours (elements’
amplitudes) within a particular plane and also at the intersection between different planes.
While this behaviour is expected from first HOSPs (traditional S-parameters), it is evident
that high-order parameters exhibit the same continuous behaviour across the modelling
space. Finally, Figure 3.15 (b), and (c) are of great importance as they sum up all second
and third-order nonlinear11 behaviours for this DUT (within the shown modelling space).

10Linear interpolations were used to refine both frequency and biasing grids, and only part of the
modelling space is shown for figures clarity.

11The term nonlinear was used instead of WNL because nonlinear behaviours can be found using HONPs
at different biasing points, as will be shown in Chapter 5.
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Figure 3.13: Extracted real and imaginary parts of (a) first, (b) second, and (c) third
HOYPs at (Vgs,Vds)=(-3.2, 12) V versus frequency. The red and black curves show the ex-
tracted elements using four and ten phase-difference values between A1 and A2 fundamental
tones, respectively.
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(c)

Figure 3.14: Extracted real and imaginary parts of (a) first, (b) second, and (c) third
HOSPs at (Vgs,Vds)=(-3.2, 12) V versus frequency. The red and black curves show the ex-
tracted elements using four and ten phase-difference values between A1 and A2 fundamental
tones, respectively.
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(c)

Figure 3.15: Amplitude (represent by the colour map) of the extracted: (a) linear S-
parameters, (b) second HOSPs, and (c) third HOSPs versus frequency, Vgs, and Vds in the
simulation environment. These particular planes are shown to prove HOSPs continuity
across the modelling space.
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3.4.5 Prediction of WNL Response Due To Multi-tone Excita-
tion Using HONPs

In order to verify that HONPs 12 can predict WNL behaviours, the same DUT (Figure 3.8)
biased at (Vgs,Vds) of (-3.2, 12) V was stimulated with a 20 MHz spaced 4-tone signal around
800 MHz under Envelope simulator (Figure 3.6). Simulated A1 and A2 and extracted
HOSPs (at the same biasing point) were then used in (3.20) and (3.21) to predict second-
order behaviours (baseband and second-harmonic band), and third-order behaviours (third-
IMD in the fundamental band and third-harmonic band). Figure 3.16 (a) and (b) shows
simulated and predicted second- and third-order behaviours for both B1 and B2, due to a 4-
tone excitation at 2.6 dBm average input power and 6.02 dB PAPR. HONPs demonstrated
an excellent ability in WNL behaviours predictions where a maximum amplitude error of
0.5 dB and a few degrees phase error can be observed. The average input power was
then increased to 8.6 dBm and simulated and predicted second- and third-order B1 and
B2 behaviours were plotted in Figure 3.17. Although the average input power was 6
dB more than the first case, the error in amplitude prediction increased to 1 dB. These
results confirm that HONPs are power independent. Figure 3.18 shows a case where the
average input power was further increased to 10.5 dBm. It is obvious that HONPs at
this biasing point could not predict the WNL behaviours of the DUT. This is because the
WNL assumption is not valid anymore and a new set of HONPs at a different biasing
point was excited. It is also worth noting that the first-order behaviour (represented in
fundamental tones) was also badly predicted, which again means that a different set of
linear S-parameters was excited. The use of multiple HONPs at different biasing points to
predict strong nonlinear behaviours will be discussed in Chapter 5.

12Modulated signal validations and linearization results are provided in Appendix B.
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Figure 3.16: Simulated and HONPs predicted: (a) second-order behaviours, and (b) third-
order behaviours for both B1 and B2. The stimulus is a 4-tone signal at 2.6 dBm average
input power and 6.02 dB PAPR.
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(b)

Figure 3.17: Simulated and HONPs predicted: (a) second-order behaviours, and (b) third-
order behaviours for both B1 and B2. The stimulus is a 4-tone signal at 8.6 dBm average
input power and 6.02 dB PAPR.
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(b)

Figure 3.18: Simulated and HONPs predicted: (a) second-order behaviours, and (b) third-
order behaviours for both B1 and B2. The stimulus is a 4-tone signal at 10.5 dBm average
input power and 6.02 dB PAPR.
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3.5 HONPs Extraction and Validation in Measure-

ment Environment

In this section, HONPs are extracted and validated in the measurement environment. Cree
CGH40006P 6 Watt GaN HEMT biased at (Vgs, Vds) of (-2.4, 3) V was used as a DUT.
Since the measurement setup has dynamic range limitations, a biasing point that stimulates
strong nonlinear behaviours of the DUT was chosen. First, extraction and validation setups
will be explained. Then, it will be demonstrated that measured HONPs have the same
properties discussed in the previous Section (the simulation environment). Finally, HONPs
ability to predict WNL behaviours will be validated using multi-tone excitations.

3.5.1 Extraction and Validation Setups in Measurement Envi-
ronment

Figure 3.19 shows a photo of the measurement setup, where different configurations are
used as follows:

• CW extraction setup

HONPs were extracted using Keysight N5242 PNA-X through NVNA software. The
PNA-X was configured as shown in Figure 3.20 (a), where internal sources 1 and 2
feed ports 1 and 3, respectively. Both sources were used simultaneously to stimulate
the DUT with a CW excitation, and the phase-difference between these two sources
was controlled. The internal attenuators were configured to keep signal levels at the
PNA-X receivers below -20 dBm, and hence guarantee their linearity.

• Two-tone validation setup

PNA-X internal sources outputs were combined (through an internal signal combiner)
and routed to feed port 1, Figure 3.20 (b). Each source controls one tone of the 2-
tone stimulus, and hence tone power, center frequency and tone spacing can be easily
controlled.

• Multi-tone validation setup

Keysight Arbitrary Waveform Generator (AWG) M8190A was used as a multi-tone
source along with the PNA-X internal receivers. A broadband Balun was used to
combine the AWG output and its inverse in order to generate signals with a better
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Figure 3.19: A photo of the measurement setup used in HONPs extraction and validation.

signal-to-noise ratio (SNR). This multi-tone signal was fed to the PNA-X as shown
in Figure 3.20 (c).

All these configurations use NVNA measurements which require absolute calibrations (vec-
tor, power, and phase calibrations). The receivers’ IFBW was set to 10 Hz which represents
a good compromise between measurement time and dynamic range. Keysight U9391G
comb-generator generates a 10 MHz frequency grid with stable phase relationships to se-
quentially measure the phase of the tones. A 10 MHz sine to square wave converter was
used to feed the comb generator for more phase stability at high frequency. Finally, two
bias tees were used for DC biasing.
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Figure 3.20: Different configurations of the HONPs measurement setup: (a) CW Extraction
setup, (b) 2-tone validation setup, and (c) multi-tone validation setup. The red lines show
PNA-X internal routing for each measurement configuration.
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Figure 3.21: An example of measured A and B-waves at 600 MHz fundamental frequency.
Fundamental, second-harmonic, and third-harmonic tones are represented by blue, red,
and black lines, respectively. The x-axis (pwr) represents the number of power sweep
points at the same fundamental frequency and the same phase-difference between A1 and
A2 fundamental tones.

3.5.2 Measured HONPs Properties: Power-Independency

Second and third HOSPs13 were extracted at five different A1 and A2 power levels (using
10 phase-difference values), where both PNA-X internal sources were set to 600 MHz
fundamental frequency, and their powers were swept from -8 to 0 dBm [using the setup
in Figure 3.20 (a)]. Figure 3.21 shows the measured fundamental, second-harmonic and
third-harmonic tones for A and B-waves at both ports. One should notice the following
significant differences between these measured waves and the simulated waves (Figure
3.9). First, A1 and A2 have second and third-harmonic components because of the spur
tones generated by any real-life signal generator. Second, a measured nth-order tone does
not have a slope of n versus the input power (as in Figure 3.10). Therefore, identifying

13As mentioned in the previous section, HOSPs extraction is more trusted than HOYPs extraction at
microwave frequencies. Thus, only HOSPs will be considered here.
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the extraction region in the measurement environment is more complicated than in the
simulation environment14.

Extracted first, second, and third HOSPs are plotted versus the input power in Figure
3.22 (a), (b), and (c), respectively. It is obvious that low-order parameters are more stable
versus input power than high-order parameters. This is because measurement noise affects
high-order tones more than low-order ones, as well as extraction error propagation from
low- to high-order parameters. Also, within the same set of parameters, weak elements can
be easily dominated by stronger elements, and hence wrongly identified [e.g. S3

14 and S3
22

in Figure 3.22 (c)]. This may represent a problem if many weak elements exist within the
same set of parameters and the only solution is to make the system more well-conditioned
by adding more measurements (more phase sweeps).

(a)

14A MATLAB code was optimized to identify the right WNL extraction region with minimum power
sweeps.
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Figure 3.22: The extracted real and imaginary parts of (a) first, (b) second, and (c) third
HOSPs at (Vgs,Vds)=(-2.4, 3) V and 600 MHz fundamental frequency versus fundamental
tone stimuli power. The red line represents the element value that will be used.
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3.5.3 Measured HONPs Properties: Solution Continuity and
Uniqueness

The frequency of the fundamental tones of A1 and A2 was swept from 10 MHz to 3 GHz with
a step of 20 MHz [Figure 3.20 (a)]. At each fundamental frequency, the correct extraction
power level was identified then ten phase-difference values were used to extract second and
third HOSPs. The black curves in Figure 3.23 (a), (b), and (c) show the extracted first,
second and third HOSPs versus frequency, respectively. HOSPs were extracted again using
only four phase-difference values (red curves in Figure 3.23). As mentioned before, using
more phase values is very important for correct identification of the weak elements. Table
3.2 shows a comparison between the system conditioning number in the case of four and
ten phase-difference values at 600 MHz fundamental frequency. It is obvious that using
ten values results in a more trusted HOSPs extraction. Again, the fact that the system
conditioning number is close to one is an indication of the solution stability.

4 measurements 10 measurements

Second HOSPs 12 1.19
Third HOSPs 512 2.86

Table 3.2: A comparison between the conditioning number of the system of linear equations
used to extract both second and third HOSPs using four and ten measurements in the
measurement environment.

The behaviour of measured HOSPs was then examined across the biasing grid by sweep-
ing Vgs and Vds from -4 to 0 V, and from 0 to 50 V, respectively 15. Figure 3.24 (a), (b),
and (c) shows the extracted amplitudes of first, second, and third HOSPs versus part
of frequency and biasing grids, where different planes were plotted in each dimension to
show the continuity of the behaviour that was expected from the simulation environment.
Again, Figure 3.24 (b) and (c) can completely describe second- and third-order nonlinear
behaviours of the DUT (within the shown modelling space).

15To reduce measurement time, the frequency step for these sweeps was increased to 50 MHz.
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Figure 3.23: Extracted real and imaginary parts of (a) first, (b) second, and (c) third
HOSPs at (Vgs,Vds)=(-2.4, 3) V versus frequency. The red and black curves show the ex-
tracted elements using four and ten phase-difference values between A1 and A2 fundamental
tones, respectively.
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Figure 3.24: Amplitude of the extracted: (a) linear S-parameters, (b) second HOSPs, and
(c) third HOSPs versus frequency, Vgs, and Vds in the measurement environment.
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3.5.4 Prediction of WNL Response Due To Multi-tone Excita-
tion Using HONPs

HONPs capability to predict WNL behaviours was tested using different multi-tone exci-
tations in the measurement environment. The same DUT [Cree CGH40006P 6 Watt GaN
HEMT biased at (Vgs, Vds) of (-2.4, 3) V] used for HONPs extraction was used here for
validation.

First, a 20 MHz spaced 2-tone signal with its center frequency swept from 340 to 700
MHz (with a step of 20 MHz) was used to excite the DUT [using the measurement setup
in Figure 3.20 (b)]. Measured and predicted second and third-harmonic bands of both B1

and B2 are plotted in Figure 3.25. Although a good agreement between measurements and
HONPs predictions can be seen, one should notice the following:

• While black and blue curves represent measured and predicted behaviours, the green
curve represents the effect of the linear network on the spur tones generated by the
source. It is critical to plot these green curves in the measurement environment
because in some cases, source nonlinearities might dominate WNL behaviours (e.g.
when using a driver). In other words, the first terms in (3.20) and (3.21) will dominate
the other terms. In this scenario, blue and black curves will still be in agreement,
but it would be due to traditional S-parameters, not the high-order parameters.

• Baseband and third-IMD behaviours are not reported in Figure 3.25. PNA-X internal
couplers roll-off is too large below 100 MHz, and it reaches -70 dB at 10 MHz.
Therefore, measuring a second-harmonic tone within the WNL extraction region
is impossible. Thus, the second HONPs at 20 MHz were not correctly identified,
and that is why baseband and third-IMD behaviours could not be predicted. This
problem can be solved by using a baseband extension for the PNA-X.

• The error in predicting tones below -90 dBm is too large because of the limited
dynamic range of all measurement equipment. This is obvious when predicting B1

third-harmonic band behaviours for frequencies higher than 1.6 GHz. This error
can be reduced by decreasing the receivers IFBW, yet the measurement time will
significantly increase. This tradeoff solely depends on the application.

Second, a wideband 8-tone stimulus (with 20 MHz frequency spacing) centred around
570 MHz was used to stimulate the DUT [Figure 3.20 (c)]. The signal PAPR was 7.3 dB,
and two average input powers were used: 4.9 and 7.6 dBm. Figures 3.27 and 3.28 show
measured and predicted second and third- order behaviours of both B1 and B2 for both
average input powers, respectively. The following remarks should be noted.
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• Figure 3.26 shows the measured spectrums for A and B-waves. While A1 spectrum
contains unwanted spur tones generated by the AWG, A2 spectrum contains tones
at all IMD and harmonic bands due to port 2 mismatch.

• The baseband prediction error of B-waves becomes acceptable at frequencies higher
than 80 MHz. This is because PNA-X internal couplers roll-off allows correct iden-
tification of second HONPs.

• Although the error in the baseband propagates to the third-IMD band, a good agree-
ment between measured and predicted amplitudes can be noticed due to the correct
prediction of some of the baseband tones.
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Figure 3.25: Measured and HONPs predicted: (a) second-harmonic band and (b) third-
harmonic band behaviours for both B1 and B2. The stimulus is a 2-tone signal with 20
MHz tone spacing, and the center frequency swept from 340 to 700 MHz.
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(a)

(b)

Figure 3.26: Measured A and B-waves spectrums for 160 MHz 8-tone stimulus centred
around 570 MHz with average input powers: (a) 4.9 dBm and (b) 7.7 dBm.
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Figure 3.27: Measured and HONPs predicted: (a) second-order behaviours, and (b) third-
order behaviours for both B1 and B2. The stimulus is an 8-tone signal at 4.9 dBm average
input power and 7.6 dB PAPR.
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Figure 3.28: Measured and HONPs predicted: (a) second-order behaviours, and (b) third-
order behaviours for both B1 and B2. The stimulus is an 8-tone signal at 7.6 dBm average
input power and 7.3 dB PAPR.
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3.6 Comparison

It is worth highlighting that HONPs represent Volterra kernels under the generalized quasi-
static assumption. This reduces the dimensionality of the kernels to one. For example, a
third-order Volterra kernel for a DIDO system is a six-dimensional function as it describes
all combinations between first-order tones at both ports that will result in a third-order
tone16. However, HONPs formulations presented in this chapter maintains the domain of
the function from exploding, and hence allow utilizing these parameters to build compact
models (as will be explained in Chapter 5).

Table 3.3 provides a comparison between the proposed HONPs and X-parameters. This
comparison is based on the work presented in this chapter and the discussion in Section
2.3.2.

3.7 Conclusion

A novel set of parameters (HONPs) that can completely describe WNL behaviours of any
nonlinear system were proposed. These parameters are believed to be the true extension
of traditional 2-port linear network parameters and were formulated in two forms: HOYPs
and HOSPs. HONPs were validated in both simulation and measurement environments to
have the following properties:

• HONPs are power independent in the WNL extraction region. While the lower limit
of this region is limited by the measurement setup dynamic range, the upper limit is
defined by the compression in both fundamental and high-order tones.

• HONPs are continuous across the modelling space, and hence can easily be interpo-
lated. In this work, the modelling space is defined by frequency and biasing grids as
the objective is to build a transistor compact model.

• HONPs formulations are linear with respect to the coefficients which proves the
uniqueness of them. Also, the conditioning number of the system of linear equations
used in HONPs extraction is close to one. Thus, it proves these parameters are stable
and can describe the WNL behaviour with great mathematical certainty.

16For more details, please refer to Appendix A.
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Finally, the proposed HONPs showed excellent ability in predicting WNL behaviours due
to wideband multi-tone signal excitations. HONPs also showed great ability in predicting
WNL behaviours under modulated signals and proved that they can be used for lioearizat-
ing the DUT (Appendix B).
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Chapter 4

Compact Model Implementation
Part 1:
Linear Measurement-Based Compact
Model Implementation using Neural
Networks

4.1 Introduction

The extraction process of linear measurement-based compact models mentioned in Section
2.2.1 requires the following steps. First, an equivalent circuit has to be assumed for both
extrinsic and intrinsic shells. Second, initial values for extrinsic shell elements are found
(using ColdFET) and de-embedded. Intrinsic shell values are then extracted for all biasing
points (using HotFET), and then the whole process has to be repeated until the resulting
S-parameters match the measured ones (within an acceptable error). Now, what if the
desired performance cannot be met? The answer is to try a different topology that has
more elements, i.e. more degrees of freedom.

This chapter proposes a novel technology-independent linear-measurement based com-
pact model. A powerful implementation technique using neural networks (NNs) that en-
ables testing different topologies for intrinsic and extrinsic shells -in an automated manner-
is proposed. The transistor’s equivalent circuit is represented by a custom NN that is built
as cascaded layers, and both extrinsic and intrinsic elements are extracted in one step (at
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Intrinsic
DUT

∏-Shell

T-Shell

Figure 4.1: A schematic of the proposed linear-measurement based compact model. The
blue-shaded area represents the extrinsic shell generation as successive T and Π-shells.

all biasing and frequency points). Thus, there is no need for going back and forth be-
tween ColdFET and HotFET. The proposed technique uses a general intrinsic topology in
order to avoid derivation of complex analytical expressions, as well as a general extrinsic
layered-topology.

4.2 Intrinsic and Extrinsic Shells Implementation us-

ing Neural Networks

The proposed compact model is built as layers (Figure 4.1). This is achieved by generating
custom NNs in MATLAB to map the relationships between ports voltages and currents
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Ygs

Ygd

Ym YdsV1 V2

I2I1

Figure 4.2: The Y-parameters equivalent circuit used as the intrinsic DUT of the proposed
compact model.

using linear Y and Z-parameters1. First, an intrinsic shell is created followed by an extrinsic
shell that is composed of successive T and Π-shells.

4.2.1 Intrinsic Shell NN

Technology-Independent compact models use any of the linear Y-parameters equivalent cir-
cuits shown in Figure 3.3 as the intrinsic shell. In this work, the output-circuit-dependent-
generator form will be used (Figure 4.2), where the four complex admittances (Ygs, Ygd,
Ym, and Yds) are related to Y-parameters2 (in frequency-domain) through (4.1).[

Y11(f) Y12(f)
Y21(f) Y22(f)

]
=

[
Ygs(f) + Ygd(f) −Ygd
Ym(f)− Ygd Yds(f) + Ygd(f)

]
(4.1)

In physics-based compact models, the intrinsic shell topology is modified (by adding
more physical elements, e.g. resistances, inductances, capacitances, diodes, etc) until it
matches the DUT intrinsic behaviour as shown in Figure 2.3 (a) and (b). The technology-
independent approach, however, matches the DUT intrinsic behaviour using the same
topology for the intrinsic shell. This is achieved through two proposed implementation
techniques that include the use of behavioural (non-physical) elements.

The first technique utilizes the generalized quasi-static assumption mentioned in Section
3.3.1 to describe the four admittances in Figure 4.2 using (4.2). This approach is important
because it simplifies the transformation between frequency-domain and time-domain by

1It is worth noting that this procedure is the opposite of extrinsic shell de-embedding [11, 51].
2In this chapter, only linear network parameters are considered because the objective is to build a linear

measurement-based compact model.
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replacing (jω)m with dm/dtm. Therefore, a compact model that is based on frequency-
domain Y-parameters can still be implemented in time-domain. It is worth mentioning
that terms with m = 0 in (4.2) are of special importance as they represent a bridge
between physics-based and technology-independent compact models. Thus, optimizing
an extrinsic shell to force the intrinsic DUT to have only these terms might enhance
the prediction capability of the model. Admittance-space X-parameters (XY-parameters)
[40], for example, were proved to be frequency scalable even though X-parameters are
not. Although both X and XY-parameters have the same information, the implementation
of XY-parameters (using only jω as frequency dependency) allows them to predict the
behaviour at frequencies different than the ones used in extraction. Finally, quasi-static
intrinsic shells can be implemented in time-domain (using Verilog-A) or in frequency-
domain [using Symbolically Defined Device (SDD) components in ADS].

Yx(f) =
∞∑
m=0

[(jω)2mgx,m + (jω)2m+1Cx,m] : x ∈ {gs, ds,m, gd} (4.2)

Figure 4.3 (a) and (b) shows two NNs that represent the quasi-static intrinsic shell in case
of m = 0 and m = 0, 1 (4.2), respectively. These NNs have the angular frequency (ω) as
input (in addition to a vector of ones) and the real and imaginary parts of Y-parameters
as targets. Only input weights (IW ’s) (4.3) are trained while other weights (W ’s) are
vectors and matrices of fixed values [Appendix C (C.1)]. Since intrinsic shell elements are
bias-dependent, a superset is used in (4.3) as a biasing index, where K is the total number
of DC biasing points.

IW1 =
[
g
(1)
gs,0 g

(1)
gd,0 g

(1)
m,0 g

(1)
ds,0 . . . g

(K)
gs,0 g

(K)
gd,0 g

(K)
m,0 g

(K)
ds,0

]T
IW2 =

[
C

(1)
gs,0 C

(1)
gd,0 C

(1)
m,0 C

(1)
ds,0 . . . C

(K)
gs,0 C

(K)
gd,0 C

(K)
m,0 C

(K)
ds,0

]T
IW3 =

[
g
(1)
gs,1 g

(1)
gd,1 g

(1)
m,1 g

(1)
ds,1 . . . g

(K)
gs,1 g

(K)
gd,1 g

(K)
m,1 g

(K)
ds,1

]T
IW4 =

[
C

(1)
gs,1 C

(1)
gd,1 C

(1)
m,1 C

(1)
ds,1 . . . C

(K)
gs,1 C

(K)
gd,1 C

(K)
m,1 C

(K)
ds,1

]T
(4.3)

The second technique exploits NNs ability to replicate any behaviour. Thus, eight
NNs can be used to reach eight expressions that represent the real and imaginary parts
of the four admittances in Figure 4.2. These expressions are then implemented in ADS
using SDD components. It is worth noting that this technique can only be implemented in
frequency-domain. Also, having complex frequency dependencies in the model slows the
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(a)

(b)

Figure 4.3: The proposed NNs that represent the quasi-static intrinsic shell using (4.2) for:
(a) m = 0, and (b) m = 0, 1.

simulation speed and might affect its convergence. Therefore, this technique is preferred to
be used with nonlinear circuits that have complex frequency behaviours. For example, it
can be used to build nonlinear models for PAs where input and output matching networks
generate frequency behaviours that cannot be matched using the first technique. Another
use for this technique is to generate large-signal-models. The detailed implementation of

92



this technique will be discussed in the next chapter (Section 5.2.2).

4.2.2 Extrinsic Π and T -Shells NNs

Figure 4.4 (a) shows a Π-shell, which consists of three conductances (g1 g2, and g3) and
three capacitances (C1 C2, and C3), added to the DUT. The relationship between the
resulting total Y-parameters, DUT Y-parameters and Π-shell components is described by
(4.4). [

Y11 Y12
Y21 Y22

]Total
=

[
Y11 Y12
Y21 Y22

]DUT
+

[
g1 + g2 −g2
−g2 g3 + g2

]
+ jω

[
C1 + C2 −C2

−C2 C3 + C2

] (4.4)

Figure 4.4 (b) shows the proposed NN representation for (4.4), where the inputs are ω, a
vector of ones, and the DUT’s Y-parameters, and the outputs are the real and imaginary
parts of total Y-parameters. Since extrinsic shell elements are bias-independent, only six
elements represented as input weights IW1 and IW2 (4.5) are trained while other weights
(W ’s) are vectors and matrices of fixed values [Appendix C (C.2)].

IW1 =
[
g1 g2 g3

]T
IW2 =

[
C1 C2 C3

]T (4.5)

Similarly, Figure 4.5 (a) shows a T -shell, that consists of three resistances (R1 R2, and
R3) and three inductances (L1 L2, and L3), added to the DUT. The relationship between
the resulting total Z-parameters, DUT Z-parameters, and T -shell components is described
by (4.6), where the proposed NN representation is shown in Figure 4.5 (b). Again, only six
elements represented as input weights IW1 and IW2 (4.7) are trained while other weights
(W ’s) are vectors and matrices of fixed values [Appendix C (C.3)].[

Z11 Z12

Z21 Z22

]Total
=

[
Z11 Z12

Z21 Z22

]DUT
+

[
R1 +R2 R2

R2 R3 +R2

]
+ jω

[
L1 + L2 L2

L2 L3 + L2

] (4.6)

IW1 =
[
R1 R2 R3

]T
IW2 =

[
L1 L2 L3

]T (4.7)
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C1 C3

C2

g1 g3

g2

DUT

∏-Shell

(a)

(b)

Figure 4.4: The addition of a Π-extrinsic shell to the DUT: (a) schematic, and (b) proposed
NN representation.
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DUT
L1 R1 L3R3

L2

R2

T-Shell

V1

I1 I2

V2

Extrinsic Extrinsic 

V1

Intrinsic 

V2
Intrinsic +

-

+

-

++

--

(a)

(b)

Figure 4.5: The addition of a T -extrinsic shell to the DUT: (a) schematic, and (b) proposed
NN representation.
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4.2.3 Generating the Full Neural Network Algorithm

Figure 4.6 shows the algorithm used for building the compact model using the proposed
layered NNs technique. First, an intrinsic layer is generated with m = 0, followed by one
T and one Π-extrinsic shells (T -Π-shell). The generated NN is then initialized and trained
using Levenberg-Marquardt back-propagation algorithm with a target mean squared error
(MSE) of 1e-6, where all Y-parameters (versus both biasing and frequency grids) are used
as targets. If the required MSE could not be reached, then another T -Π-shell is added (up
to three shells). If the generated network is still not sufficient to meet the required MSE,
the intrinsic-layer is updated to include m = 0, 1 and then the same steps are repeated.
The following remarks should be noted.

• Y-parameters of the intrinsic shell need to be converted to Z-parameters before adding
the first extrinsic T -shell (4.6). This is achieved by using the NN shown in Figure
4.7, where the input is a complex 2 × 2 matrix [A] and the output is the inverted
version of this matrix [A]−1. All weights (W ’s) are fixed for this NN [Appendix C
(C.4)]. This matrix inversion NN has to be inserted between each extrinsic T and
Π-shells as well.

• The back-propagation algorithm is used for NNs training to minimize a cost function
that includes either Y, Z, or S-parameters3. Equation (4.8), for example, shows a
cost function described by the MSE between real and imaginary parts of measured
Y-parameters and those generated by the NN (associated with a superset NN ). K is
the total number of DC biasing points and x ∈ {11, 12, 21, 22}.

MSE =
1

K

K∑
k=1

∑
x

[Real(Yx − Y NN
x )2 + Imag(Yx − Y NN

x )2] (4.8)

Z-parameters can be used in the cost function instead of Y-parameters by choosing
the last extrinsic layer to be a T -shell or a Π-shell with a matrix inversion NN (Figure
4.7). Finally, to use S-parameters in the cost function, another NN that converts Y-
parameters to ∆×S-parameters is used (Figure 4.8), where ∆ is described by (4.9),
and W ’s have fixed values [Appendix C (C.5)].

∆ =(1 + ZoY11)(1 + ZoY22)− Z2
oY12Y21 (4.9)

where Zo is the system characteristic impedance.

3The last layer of the extrinsic shell determines the type of network parameters used as targets and
consequently used in the cost function.
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End

Start

Add invert matrix layer

Generate intrinsic shell 
m=0

MSE< 1e-6
No

Yes

Add invert matrix layer

Train using Levenberg-
Marquardt Backpropagation 

Algorithm

Number of
T-∏-shells

 <3

Generate intrinsic shell 
m=[m,m+1]

Add T-extrinsic shell

Add ∏-extrinsic shell

No

Yes

Reset

Figure 4.6: A block diagram explaining the algorithm used for generating the proposed
model using NNs.
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Figure 4.7: The proposed NN for inverting complex 2× 2 matrices.

Figure 4.8: The proposed NN to convert Y-parameters to ∆×S-Paraemters, where ∆ is
described by (4.9).
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• Table 4.1 shows the number of layers added by each NN shell in addition to the
number of elements that will be trained. It should be noted that the matrix inversion
NN (Figure 4.7) is the bottleneck of the proposed compact model implementation as
it adds eight extra layers each time it is being used. Also, it uses a 1/x activation
function, hence slowing down both training speed and convergence.

# of layers
# of elements

that will be trained

Quasi-static intrinsic shell
3 8×K

m = 0
Quasi-static intrinsic shell

5 16×K
m = 0, 1
Extrinsic

3 6
Π-shell

Extrinsic
3 6

T -shell
2× 2 complex

8 0
matrix inversion
Y-parameters to

4 0
∆×S-parameters conversion

Table 4.1: The number of layers and elements that will be trained added by each NN shell,
where K is the total number of DC biasing points.

• In order to improve the NN training, all capacitances and inductances, as well as
input angular frequency (ω) are normalized with respect to the maximum ω value.

• Since intrinsic shell elements are functions of DC biasing points, attention should be
paid when using resistances in extrinsic T -shells as the intrinsic DC values become
different than the extrinsic DC values (Figure 4.5). As a result, intrinsic shell elements
become functions of a different DC biasing grid described by (4.10). It should be
noted that the new biasing grid is nonuniform (even if the original biasing grid used
by the measurement setup was uniform), which makes it more challenging to train
compact models. Therefore, all extrinsic T -shells will have only inductances.[

V1
V2

]Intrinsic
DC

=

[
V1
V2

]Extrinsic
DC

−
[
R1 +R2 R2

R2 R3 +R2

] [
I1
I2

]
DC

(4.10)
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L1 (nH) L2 (nH) L3 (nH) C1 (pF) C2 (pF) C3 (pF)

1st T -shell 0.87 0.046 0.88
1st Π-shell 0.41 -0.005 0.4

Table 4.2: The extracted extrinsic T -Π-shell elements values of the generated model.

4.3 Validation

For validation purpose, simulated S-parameters were generated for Cree CGH40010P 10
Watt GaN HEMT using ADS. Vgs and Vds were swept from -4 to 0 V, and from 0 to 50 V,
respectively. While a uniform step of 0.5 V was used for Vgs sweep, a nonuniform step was
used to cover Vds range using 12 points. The frequency was swept from 0.1 to 4 GHz with
a step of 0.2 GHz.

The algorithm described in the previous section was applied. Figure 4.9 shows the final
NN (compact model), where an intrinsic layer with m = 0, 1 and one T -Π-extrinsic shell
were sufficient to achieve the required MSE. Table 4.2 and Figure 4.10 show the extracted
extrinsic and intrinsic elements, respectively. Although the extracted inductances and ca-
pacitances could be forced to have positive values and ColdFET could have been used to
initialize the extrinsic shell, this was not considered as the objective was to build a tech-
nology independent compact model (as stated in Section 4.1). The generated model was
implemented in ADS using SDD components, as shown in Figure 4.11 (a). S-parameters
were then simulated using biasing and frequency grids finer than the grids4 used in training
(to test the interpolation capability of the proposed technique), and compared to original
S-parameters. The proposed technique showed a great ability to match the required S-
parameters with a total percentage error of 2.8 % (the generalized error expression (4.11)
was used [52]). A sample of original and simulated S-parameters at four biasing points is
shown in Figure 4.11 (b)-(e).

%Error = 100×

√∑K
k=1

∑
x |Sx − SNNx |2∑K

k=1

∑
x |S2

x|
: x ∈ {11, 12, 21, 22} (4.11)

Finally, it is worth mentioning that the quasi-static intrinsic shell technique should be
limited to m ≤ 2. As shown in Figure 4.10, g1’s and C1’s values are in the range of 1e-23
and 1e-33 because they are multiplied by ω2 and ω3, respectively. These ω values are too
big and might cause large-signal simulators to diverge. An alternative approach is to use

4The new Vgs, Vds, and frequency steps were 0.2 V, 1 V and 0.1 GHz, respectively.
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the second technique for intrinsic shells (Section 4.2.1), where a solution is guaranteed to
be found.

4.4 Conclusion

A novel technique to build a technology-independent linear-measurement based compact
model was proposed, where layered-NNs were used to try different topologies for extrin-
sic and intrinsic shells. This technique eliminates the need to derive complex analytical
expressions for each topology. It also extracts both extrinsic and intrinsic shell elements
simultaneously without going back and forth between ColdFET and HotFET. Finally, the
ability of the proposed model to reproduce S-parameters was validated in the simulation
environment.
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Figure 4.9: The generated NN using the proposed layered-NNs technique.
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(b)

Figure 4.10: The extracted intrinsic elements versus the biasing grid: (a) conductances,
and (b) capacitances.
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(b) (c)
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Figure 4.11: (a) The implementation of the proposed compact model in ADS. Original [red
(x)] and simulated [blue (-)] S-parameters at four biasing points (b) (Vgs, Vds) = (−4, 1) V,
(c) (Vgs, Vds) = (−2.5, 5) V, (d) (Vgs, Vds) = (−1.5, 50) V, and (e) (Vgs, Vds) = (0, 20) V.
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Chapter 5

Compact Model Implementation
Part 2:
HONPs-Based Compact Model

5.1 Introduction

The advancements in transistor compact modelling have been driven by the ever-increasing
challenges and intensified requirements circuit designers face. In the particular case of
high-power transistors, used in power amplifiers (PA) for wireless communication, compact
models have mainly aimed for accurately predicting both output power and efficiency. Gen-
erally, they can be divided into two main categories. The first category includes compact
models that are extracted using DC and S-parameters measurements (linear measurement-
based compact models mentioned in Chapter 4). Recently, however, they have been out-
performed by the second category, which takes advantage of the nonlinear vector network
analyzer (NVNA) measurements to enhance the model’s performance under large-signal
conditions (nonlinear measurement-based compact models mentioned in Section 2.2.2).
State-of-the-art NVNA-based compact models, e.g. the DynaFET model [25, 27] and the
Dynamic-bias model [15, 28], have demonstrated a great ability to predict device perfor-
mance under continuous wave (CW) stimulus at the fundamental and harmonic frequencies,
which is adequate to design for output power and efficiency. However, they fall short in
enabling the optimization of the PA linearity at its design stage under modulated signal
stimuli.

A well-known fact about behavioural modelling is that “N th-order I/V derivatives are
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Figure 5.1: The 2-Port LSM used in compact model implementation.

needed to model N th-order distortion” [53]. Failing to meet this condition is the main rea-
son why existing compact models do not achieve the required accuracy under modulated
signal stimuli. In this chapter, a novel large-signal-model (LSM) that bridges the gap be-
tween compact and behavioural models is proposed. The proposed LSM utilizes high-order
network parameters (HONPs), introduced in Chapter 3, as the compact model building
block. Therefore, enables describing the device, at any biasing point, by a weakly nonlinear
(WNL) circuit, and hence enabling accurate calculations of I/V derivatives. The upcoming
sections discuss the model formulation and implementation using neural networks (NNs).
Also, the model validation in both simulation and measurement environments will be
demonstrated.

5.2 HONPs-Based Compact Model Formulation and

Implementation

Compact model formulations have to be driven with both model implementation and model
extraction in mind. Since most of the existing commercial circuit simulators use Modified
Nodal Analysis method, implementing compact models in the nodal form, i.e. ports cur-
rents are functions of ports voltages, helps in the simulation convergence [47]. Thus,
the 2-port LSM shown in Figure 5.1 is used in the literature to describe transistor com-
pact models as two nonlinear current sources (ITotal1 and ITotal2 ). Each current source is
then divided into conduction (ICond) and displacement (IDisp) current sources to simplify
model extraction (5.1), where IDisp is expressed as a time derivative of a charge source
(Q). In technology-independent linear measurement-based compact models, for example,
conduction and displacement currents are constructed from the real and imaginary parts
of Y-parameters, respectively. In nonlinear measurement-based compact models, they are
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Figure 5.2: First (blue), second (red), and third (grey) HOYPs equivalent circuit.

identified separately by exciting the transistor with low-frequency and high-frequency stim-
uli (as mentioned in Section 2.2.2).

ITotalp [V1(t), V2(t)] = ICondp [V1(t), V2(t)] + IDispp [V1(t), V2(t)]

= ICondp [V1(t), V2(t)] +
d

dt
Qp[V1(t), V2(t)]

(5.1)

where,

ITotalp is the large-signal time-domain current at port p

ICondp is the large-signal time-domain connection current at port p

IDipsp is the large-signal time-domain displacement current at port p

Qp is the large-signal time-domain charge source at port p

Vp is the large-signal time-domain voltage at port p

p = 1, 2 is the port number.

The proposed compact model uses HONPs (Figure 5.2) as the model’s building block,
and hence conduction and displacement current sources are built in frequency-domain from
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the real and imaginary parts of HONPs. Each one of these sources can be described as a
nonlinear function of the ports voltages and frequency, I(V1, V2, f). Since frequency and
voltages cannot be implemented as indexes of the same nonlinear function in circuit simu-
lators, the original function I(V1, V2, f) is divided into two nonlinear functions: X(V1, V2)
and Z(f), as described by (5.2)1. While the first function describes HONPs as static cur-
rent derivatives with respect to voltage, the later takes care of their dynamics. The details
of these two functions and their implementations are discussed in the following subsections.

Ip(V1, V2, f) = Xp(V1, V2)Zp(f) (5.2)

where p = 1, 2 is the port number.

5.2.1 High-Order Current Derivatives NN: X(V1, V2)

Linear Y-parameters represent the first-order derivatives of ports currents with respect to
ports voltages (2.2) [16]. Similarly, by comparing HONPs in the Y-form (HOYPs) (3.4)
to the two-dimensional Taylor Expansion (TE) of Ip(V1, V2, f) around (V1,dc, V2,dc) (5.3),
HOYPs represent currents high-order derivatives with respect to voltages (5.4)-(5.6). [Y (1)],
[Y (2)], and [Y (3)] are first, second, and third-HOYPs and the dependency of X on V1 and
V2 is removed for notation simplicity.

TE =
∑

06l,m6n
l+m6n

1

l!m!

∂l+mIp(V1, V2, f)

∂V l
1∂V

m
2

∣∣∣∣V1=V1,dc
V2=V2,dc

× vl1vm2 (5.3)

[
Y (1)

]
=

[
Y

(1)
11 Y

(1)
12

Y
(1)
21 Y

(1)
22

]
=


∂X1

∂V1
Z1(f)

∂X1

∂V2
Z1(f)

∂X2

∂V1
Z2(f)

∂X2

∂V2
Z2(f)

 (5.4)

[
Y (2)

]
=

[
Y

(2)
11 Y

(2)
12 Y

(2)
13

Y
(2)
21 Y

(2)
22 Y

(2)
23

]
(5.5)

=


1

2

∂2X1

∂V 2
1

Z1(f)
1

2

∂2X1

∂V 2
2

Z1(f)
∂2X1

∂V1V2
Z1(f)

1

2

∂2X2

∂V 2
1

Z2(f)
1

2

∂2X2

∂V 2
2

Z2(f)
∂2X2

∂V1V2
Z2(f)


1For the proposed compact model final formulation, please refer to (5.12).
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Figure 5.3: A one-hidden-layer feedforward NN with S hidden neurons that represents
X(V1, V2). Matrix notation is used to describe I, V , B and C, where their sizes are shown
above each circle.

[
Y (3)

]
=

[
Y

(3)
11 Y

(3)
12 Y

(3)
13 Y

(3)
14

Y
(3)
21 Y

(3)
22 Y

(3)
23 Y

(3)
24

]
(5.6)

=


1

3!

∂3X1

∂V 3
1

Z1(f)
1

3!

∂3X1

∂V 3
2

Z1(f)
1

2

∂3X1

∂V 2
1 V2

Z1(f)
1

2

∂3X1

∂V1V 2
2

Z1(f)

1

3!

∂3X2

∂V 3
1

Z2(f)
1

3!

∂3X2

∂V 3
2

Z2(f)
1

2

∂3X2

∂V 2
1 V2

Z2(f)
1

2

∂3X2

∂V1V 2
2

Z2(f)


Unavoidable measurements uncertainties make X(V1, V2) non-conservative over the mod-
elling space. Therefore, X(V1, V2) cannot be calculated by directly integrating the deriva-
tives (5.4)-(5.6) because the integration is path-dependent. Hence, forcing the integration
through a particular path will degrade the model’s accuracy thus wasting the benefits
gained by using HONPs. This problem is referred to as the integrability condition [9], and
few solutions were presented in the literature for the linear parameters case. In [17], integra-
tion path (IP) was included in the modelling space resulting in a 3D function X(V1, V2, IP),
which was then implemented as a 3D table-based model. A more elegant solution was in-
troduced in [54], where an adjoint neural network (NN) was simultaneously trained along
with the original NN to provide the charge functions given only the partial derivative data.
This technique was then used in Keysight NeuroFET Model [55].

In this work, the integrability problem is more complicated because of the introduc-
tion of high-order derivatives represented by HOYPs. A new NN technique -that allows
optimizing a nonlinear function to simultaneously fit first and high-order derivatives- is
proposed. Figure 5.3 shows a one-hidden-layer feedforward NN with S neurons and a
hyperbolic tangent (tanh) activation function. This NN has two inputs (V1, V2) and one
output [X(V1, V2)] and can be described by (5.7), where Is,1, Is,2, Vs and Bs are the sth neu-
ron’s parameters and C is a constant. These parameters are shown in the matrix form (5.8)
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in Figure 5.3 and are trained, using any of the back-propagation algorithms, to generate
X(V1, V2) that matches specific training target with an acceptable error.

X(V1, V2) =
S∑
s=1

Vstanh(Is,1V1 + Is,2V2 +Bs) + C (5.7)

I =

[
I1,1 I2,1 . . . IS,1
I1,2 I2,2 . . . IS,2

]T
V =

[
V1 V2 . . . VS

]
(5.8)

B =
[
B1 B2 . . . BS

]T
While X(V1, V2) is the unknown in this problem, its derivatives can be identified from

HOYPs. Therefore, (5.7) is derived up to the nth-order and the results are shown in (5.9),
where each nth-order derivative gives n+1 expressions. Custom NNs were then built using
MATLAB to map these expressions, Figure 5.4. The following remarks should be noted:

• The original parameters I, V , and B (showed in yellow circles) are the only param-
eters that will be trained while other weights (W ’s) are vectors and matrices with
fixed values [Appendix D (D.1)].

• nth-order derivative networks use nth-order derivative hyperbolic tangent [tanh(n)] as
activation functions. It is worth mentioning that these functions are non-monotonic,
Figure 5.5. Therefore, an active-range was assigned to each function to limit their
training to a range where they exhibit a monotonic behaviour. This technique speeds
up the training and prevents it from being trapped in local minima.

• Simultaneous training for the first, second, and up to the nth-order derivatives versus
K biasing points is illustrated in Figure 5.4, where the red rectangles show inputs
and targets at corresponding biasing points.

• Since different orders of HOYPs have different orders of magnitudes, training weights
were adjusted to give all HOYPs the same weight in the training cost function.

∂nX(V1, V2)

∂V n
1

=
S∑
s=1

VsI
n
s,1tanh

(n)(Is,1V1 + Is,2V2 +Bs)

∂nX(V1, V2)

∂V n−1
1 V2

=
S∑
s=1

VsI
n−1
s,1 Is,2tanh

(n)(Is,1V1 + Is,2V2 +Bs)
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... (5.9)

∂nX(V1, V2)

∂V1V
n−1
2

=
S∑
s=1

VsIs,1I
n−1
s,2 tanh(n)(Is,1V1 + Is,2V2 +Bs)

∂nX(V1, V2)

∂V n
2

=
S∑
s=1

VsI
n
s,2tanh

(n)(Is,1V1 + Is,2V2 +Bs)

where n = 1, 2, . . . , N

5.2.2 Dynamics NN: Z(f)

HONPs dynamics refer to any frequency behaviour they exhibit (Figure 3.13) and are mod-
elled in two steps. First, Z(f) is implemented using another one-hidden-layer feedforward
NN (Figure 5.6) with R neurons and a tanh activation function (5.10), where Jr, Ur and Dr

are the rth neuron’s parameters and E is a constant [matrix notation is shown in (5.11)].
The input to this NN is frequency (f), and the output is multiplied by the derivatives of
X(V1, V2) as in (5.4)-(5.6).

Z(f) =
R∑
r=1

Urtanh(Jrf +Dr) + E (5.10)

J =
[
J1 J2 . . . JR

]T
U =

[
U1 U2 . . . UR

]
(5.11)

D =
[
D1 D2 . . . DR

]T
Figure 5.7 shows the implementation of the multiplication process between the derivatives
NN (Figure 5.4) and the dynamics NN (Figure 5.6), where W ’s are fixed wights [Appendix
D (D.2)]. The inputs and targets are illustrated using the matrices in the black dotted
rectangles for K biasing points and L frequency points (the red rectangles represent inputs
and targets at corresponding biasing-frequency points).
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Figure 5.4: The proposed NN for the first, second, and up to the nth-order derivatives
(matrix notation is used) of X(V1, V2). The red rectangles show inputs and targets at
corresponding biasing points.
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(a) (b)

(c) (d)

Figure 5.5: Activation functions used in (a) original, (b) first-order derivative, (c) second-
order derivative, and (d) third-order derivative NNs.

Figure 5.6: A one-hidden-layer feedforward NN with R hidden neurons that represents
Z(f). Matrix notation is used to describe J , U , D and E, where their sizes are shown
above each circle.
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Second, as shown in Chapter 3, HONPs do not have the same frequency dependency,
and hence one more degree of freedom needs to be added. For example, first-order deriva-
tives of I1(V1, V2, f) with respect to V1 and V2 result in Y

(1)
11 and Y

(1)
12 , respectively. Since

the behaviour of these two parameters (at a particular biasing point) versus frequency is
not the same, (5.4) does not have enough degrees of freedom to model them. Therefore,
another parameter M is introduced as in (5.12), and the final implementation is shown in
Figure 5.8. W ’s are fixed wights [Appendix D (D.3)], and the inputs are same as in Figure
5.7. It is worth mentioning that increasing M by one adds a complete set of derivatives
and dynamics NNs, i.e. a complete set of the parameters shown in yellow circles.

Ip(V1, V2, f) =
M∑
m=1

Xp,m(V1, V2)Zp,m(f) (5.12)

where p = 1, 2 is the port number.

5.2.3 DC Solution

One of the most important aspects of modelling is solution consistency, i.e. the same
result is expected when simulating the model under different simulators [56]. Since the
model is built from bias-dependent HONPs, correct DC solution is crucial for correct
model performance. The problem arises from the fact that ICond is constructed from RF
measurements, and hence it is different from ICond at DC [IDisp has no effect at DC (5.1)].
In [16, 57], the DC solution was implemented behaviourally by defining a frequency below
which RF dispersion effects are neglected as described by (5.13), where ICondDC and ICondRF

are DC and RF conduction currents, respectively, and H(f) has low-pass characteristics.
A circuit implementation of (5.13) can be realized using a choke coil to separate between
ICondDC and ICondRF [17]. Another implementation of the DC solution was carried out in time-
domain by describing ICond as DC current and adding RF dispersion effects as a small
disturbance around it [58, 59].

ITotal(V1, V2, f) = ICond2 (V1, V2, f) + IDisp2 (V1, V2, f) (5.13)

= H(f)ICondDC (V1, V2) + [1−H(f)]ICondRF (V1, V2) + jπfQ(V1, V2)

In this work, DC solution is realized as shown in Figure 5.9, where an NN that represents
(5.12) is added to the NN in Figure 5.8. This implementation forces the generated nonlinear
function to have correct derivatives at RF (i.e. HOYPs) and also correct values at DC (i.e.
DC solution). It should be noted that the final NN with the DC constraint has the same
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Figure 5.7: Implementation of the multiplication process between derivatives NN (Figure
5.4) and dynamics NN (Figure 5.6).
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Figure 5.8: Final implementation of HONPs-based compact model (5.12).
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Figure 5.9: The proposed NN realization of DC the solution.

inputs in Figure 5.7, but with zeros added to the frequency vector to represent DC, and
the corresponding target is ICondDC .

5.2.4 Remarks

• The generated compact model has four current sources (5.1), each source is imple-
mented as a separate NN (Figure 5.8) with different S, R, and M values. The
generated functions are then implemented in Keysight ADS software using Symbol-
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Figure 5.10: The compact model implementation in ADS.

ically Defined Device (SDD) components, as shown in Figure 5.102. DC constraint
NNs (Figure 5.9) are added to both ICond1 and ICond2 to force correct DC solutions.
IDisp1 and IDisp2 , however, are trained as Q sources, i.e. their values are divided by ω.
Therefore, no DC constraint NN needs to be added as their contribution at DC is
guaranteed to be zero (5.1). It is worth mentioning that ICond and IDisp are generated
from the real and imaginary parts of HOYPs, respectively.

• Although the proposed dynamics NN (Figure 5.6) can model any frequency be-
haviour, using a large number of neurons (R) may cause convergence problems in
large-signal simulators (Harmonic Balance and Envelope simulators). Thus, utilizing
the layered-technique (proposed in Chapter 4) to optimize an extrinsic shell that
puts less stress on the intrinsic shell implementation is recommended. For example,
optimizing an extrinsic shell to eliminate resonance behaviours from intrinsic HOYPs
results in smaller R needed for the dynamics NN.

• The proposed compact model implementation can be realized in time-domain by
utilizing the generalized quasi-static assumption mention in Section 3.3.1. This im-
plementation will maintain the causality of the model. However, it is not guaranteed
to find an extrinsic shell that forces all HOYPs dynamics [Z(f)’s] to have (ω)n

frequency dependency.

2The generated expressions for both X and Z function are too complex to be implemented manually
in ADS. Therefore, this schematic is generated by MATLAB as a Netlist file and then loaded into ADS
circuit simulator.
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# of layers
Elements that

will be trained

1st-order derivative 9 B , I , V

each nth-order derivative 5 None
where n > 1

Dynamics NN 2 J , D , U , E

DC constraint NN 4 C

Table 5.1: The number of layers added and elements that will be trained by each NN in the
proposed technique (for M = 1). The size of each element is indicated in the corresponding
figure for each NN.

• The DC solution can be realized without the DC constraint NN by adding zeros
to the input frequency vector in Figure 5.7 and adding DC Y-parameters to the
corresponding targets. C can then be adjusted to shift the resulting output to meet
the actual solution. However, having the DC solution as a separate target results in
better training for the model.

• Levenberg-Marquardt back-propagation algorithm is used for NNs training. The
objective is to minimize an MSE cost function that includes all derivatives (and DC
solutions in the case of ICond1 and ICond2 ) as targets. Since HOYPs were proven to
be continuous over V1, V2, and frequency (Chapter 3), they are interpolated over a
finer biasing-frequency grid. Therefore, more data is available to train the NN which
improves the accuracy of the generated model. It is worth mentioning that low-order
models require interpolating HOYPs over a finer biasing grid than high-order models.

• The generated model can be interpolated by circuit simulators -within its modelling
space- and is expected to correctly predict up to the nth-order behaviours. However,
it does not have any extrapolation capability.

• Table 5.1 shows the number of layers added and elements that will be trained by
each NN in the proposed technique (for M = 1). High-order models take more time
to be trained. This is because the model’s complexity, represented by the number
of layers and targets, increases with its order and also because of the nature of the
activation functions used in the implementation (Figure 5.5).

• Table 5.2 summarizes all degrees of freedom in the proposed NN technique.
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Role

S
• The number of neurons in the derivatives NN.

• Affected by the number of derivatives and the number of biasing points.

R
• The number of neurons in the dynamics NN.

• Affected by the frequency behaviour of a particular parameter.

M
• The number of derivatives and dynamics NNs used.

• Affected by the difference in frequency behaviour between different parameters.

Table 5.2: A summary of all degrees of freedom in the proposed NN technique.

5.3 Validation

5.3.1 Theoretical Validations

As a proof concept, a Cree CGH40010P 10 Watt GaN HEMT was used in Keysight ADS
simulation environment as a DUT. Vgs was swept from -4 to 0 V with a step of 0.5 V,
and Vds was swept from 0 to 56 V with 23 points. First, second, and third-HOYPs were
extracted using CW stimulus, as illustrated in Chapter 3, from 10 MHz to 3 GHz (15
points were used to sweep the specified frequency range). The following three compact
models were constructed using the proposed NN technique3:

• 1st-Order Model: built from first-HOYPs (linear Y-parameters).

• 2nd-Order Model: built from first and second-HOYPs.

• 3rd-Order Model: built from first, second, and third-HOYPs.

For the three models, S, R, and M values -for the four current sources in Figure 5.10- were
optimized to give a good compromise between training time and accuracy (Table 5.3). It
is important to note that “N th-order models are capable of predicting up to N th-HONPs”.
For illustration purpose, the resulting expression for ICond2 in each model was derived up
to the third-order derivatives, resulting in the real parts of first, second and third-HOYPs.
These derivatives were then compared to the original HOYPs used for training, and the
resulting MSE is reported in Table 5.4. It is obvious that 3rd-Order Model was the only

3Since this is the same DUT used in Section 4.3, the extrinsic circuit in Table 4.2 was de-embedded.
Therefore, the proposed NN technique was used to model the intrinsic part of the DUT.
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1st-Order 2nd-Order 3rd-Order

Model Model Model

ICond1 (15 , 2 , 2) (15 , 2 , 3) (20 , 2 , 6)

IDisp1 (15 , 2 , 2) (15 , 2 , 3) (20 , 2 , 6)

ICond2 (15 , 2 , 3) (15 , 2 , 4) (20 , 2 , 6)

IDisp2 (15 , 2 , 2) (15 , 2 , 3) (20 , 2 , 6)

Table 5.3: The values of (S , R , M) for each current source in the three models.

model that could predict all HOYPs (with an acceptable error). Figure 5.11 (a), (b), and
(c) show these derivatives versus the original target used in training at (Vgs,Vds) of (−2.5, 5)
V. It is worth mentioning that false prediction of I/V derivatives (i.e. HOYPs) results in
false prediction of the corresponding high-order behaviours, as will be illustrated in the
next validations.

MSE
1st-Order 2nd-Order 3rd-Order

Model Model Model

Re[Y
(1)
2,1 ] , Re[Y

(1)
2,2 ] 2.7e-8 2.6e-7 4.1e-6

Re[Y
(2)
2,1 ] , Re[Y

(2)
2,2 ] , Re[Y

(2)
2,3 ] 910 1.6e-7 3.6e-6

Re[Y
(3)
2,1 ] , Re[Y

(3)
2,2 ] , Re[Y

(3)
2,3 ], Re[Y

(3)
2,4 ] 1.1e5 4.3e6 8.1e-6

Table 5.4: An example of HOYPs prediction error by different compact model orders.

(a)
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(b)
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(c)

Figure 5.11: Predictions of (a) first-HOYPs, (b) second-HOYPs, and (c) third-HOPYs
[versus frequency at (Vgs,Vds) of (−2.5, 5) V] using different compact model orders. The
dotted red rectangles represent zoomed-in versions of the corresponding plots.
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5.3.2 Simulation Validations

The 3rd-Order Model extracted in the previous subsection was used under different circuit
simulators in ADS software as follows. Figure 5.12 (a) shows simulated DC IV curves
for the generated model and the original DUT. The excellent match between both curves
indicates that the DC constraint NN (Figure 5.9) was able to force ICond2 to have a correct
DC solution. Small-signal simulations were then performed on the generated model. Figure
5.12 (b)-(e) shows simulated S-parameters for 3rd-Order Model and the DUT at four DC
biasing points. The ability of the model to correctly predict S-parameters is due to the
fact it was able to correctly predict first-order I/V derivatives.

In order to show the ability of the proposed model to predict strong nonlinear be-
haviours, a class-AB PA was designed at 0.9 GHz fundamental frequency using Cree model.
The transistor was biased at (Vgs,Vds) of (−2.75, 28) V and the simulated output power and
power added efficacy (PAE) were 39 dBm and 67.4 %, respectively. Both 1st-Order Model
and 3rd-Order Model were simulated under exactly the same PA circuit conditions. Figure
5.13 (a)-(d) shows the simulated output power under CW stimulus at the fundamental,
second, third, and fifth-harmonic tones. The following should be noted:

• 3rd-Order Model showed better performance in the fundamental band because both
1st and 3rd-Order Models were trained using the same HOYPs data. The vertical
shift in the performance of the 1st-Order Model is due to a training issue, which can
be solved by interpolating first-HOYPs over a finer biasing grid before training.

• 1st-Order Model failed to predict the behaviour at the second and third-harmonic
tones because it could not predict second and third-HOYPs (Table 5.4).

• As expected, both models failed to predict the behaviour at the fifth-harmonic tone.
However, 3rd-Order Model performance is better which enhances the simulation con-
vergence.

Finally, a 20 MHz 4C-WCDMA signal was used to stimulate the PA. The signal’s
PAPR was 7.14 dB, and the simulated PA peak power was 38.6 dBm. The simulated
output spectrum at the fundamental band is shown in Fig 5.13 (e). While the 1st-Order
Model failed to predict the spectrum, the 3rd-Order Model succeeded at predicting it almost
to the end of the third-IMD (IMD3) band. The (normalized mean-square-error) NMSE of
the output IQ signal (compared to Cree model output) is -15.3 and -30.6 dB for 1st- and
3rd-Order Models, respectively.
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Figure 5.12: Original [red (x)] and simulated [blue (-)]:(a) DC IV curves, and S-parameters
at (b) (Vgs, Vds) = (−4, 1) V, (c) (Vgs, Vds) = (−2.5, 5) V, (d) (Vgs, Vds) = (−1.5, 50) V, and
(e) (Vgs, Vds) = (0, 20) V.
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Figure 5.13: The simulated output power for Cree model and both 1st and 3rd-Order Models
under CW stimulus at (a) fundamental, (b) second, (c) third, and (d) fifth-harmonic fre-
quencies. (e) The simulated output spectrum of the fundamental band under 4C-WCDMA
signal.
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5.3.3 Measurement Validations

First, second, and third-HOYPs were measured for Cree CGH40006P 6 Watt GaN HEMT4

using the setup in Figure 3.19. Vgs, Vds, and frequency were swept from -4 to 0 V, from
0 to 50 V, and from 10 MHz to 3 GHz, respectively. Both 1st and 3rd-Order Models were
generated and used in Keysight ADS software to simulate a fabricated class-AB PA, biased
at Vgs of 25 V and Ids of 100 mA [60]5. A 20 MHz 2-tone signal centred around 850 MHz
was used to stimulate the PA. The following was noticed:

• 3rd-Order Model demonstrated better capability in predicting nonlinear behaviours
such as gain compression and IMD3 components within the fundamental band, Figure
5.14 (a) and (b), respectively.

• As mentioned in Section 3.5.4, it is practically impossible to measure second-HONPs
below 100 MHz due to the PNA-X internal couplers roll-off. The false identification
of second-HONPs at 20 MHz reflects directly in the model ability to predict IMD3.
This problem can be solved by adding a baseband extension to the PNA-X.

• The limited dynamic range of the measurement setup makes it difficult to identify
HONPs in the saturation region of the transistor (because it is less nonlinear than the
triode region). This means that the contribution of HONPs in this region to strong
nonlinear behaviours can be neglected. However, the proposed NN needs data in this
region to be trained. This problem affects the accuracy of the generated model and
will be tackled in the future work6.

5.4 Comparison

Table 5.5 shows a comparison between the proposed HONPs-based compact model and
state-of-the art large-signal models in the literature.

4These are the same measurement shown in Section 3.5 and will be used here to generate the proposed
compact model.

5This PA was designed by one of the EmRG [7] members, so the design schematic is accessible.
6A simple solution is to decrease the receivers IFBW, yet the measurement time will significantly

increase (especially in the case of generating compact models were long sweeps are required to cover the
entire modelling space).
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(a)

(b)

Figure 5.14: Measured PA (a) gain at 0.85 GHz, and (b) left and right IMD3 components,
both versus input power.
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5.5 Conclusion

An HONPs-based compact model that can predict strong nonlinear behaviours under mod-
ulated signals was proposed. It handles the transistor behaviour at any biasing point as a
WNL circuit described by HONPs. The model extraction is carried out using low-power
NVNA-based CW measurement data. The proposed model demonstrated an excellent abil-
ity to predict the transistor’s large-signal behaviour under modulated signal stimuli in the
simulation environment. It also showed a good capacity to predict the measured AM/AM
characteristics and IMD3 of the corresponding class AB power amplifier under multi-tone
stimuli.
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Chapter 6

Conclusion

The realization of 5G front-ends will require accurate simulations for both system and
circuit levels. While first is needed because the high-level of integration prevents any
opportunity for post-fabrication tweaking, the second is essential to preserve the overall
efficiency of the system. Unfortunately, existing transistor models cannot be used for these
simulations as they cannot predict the device behaviour under real-life operating conditions
(i.e., under modulated signal stimulus). The main aim of this thesis was to propose and
develop a transistor compact model that can predict the behaviour under modulated signal
stimuli.

As a first step, HONPs -a new set of Volterra-based parameters- were proposed. These
parameters were proven, in both simulation and measurement environments, to be power
independent, continuous across the modelling space and unique. HONPs formulation allows
using them to cover the required modelling space without having an explosion in the
number of parameters. HONPs were extracted systematically using low power CW NVNA
measurements and were capable of predicting the device WNL behaviour under wideband
multi-tone stimuli.

Next, a novel compact model was developed in two steps. First, a new small-signal
modelling technique was proposed using layered-NN. This technique allows optimizing
both intrinsic and extrinsic topologies in order to fit the device small-signal performance.
Second, a new large-signal model that utilizes HONPs as a building block was proposed.
The implementation of this model was performed by introducing a new NN technique that
allows constructing nonlinear functions from their derivatives. The proposed model is both
globally and locally accurate and was validated under DC, small-signal and Harmonic Bal-
ance simulators. Its ability to predict strong nonlinear behaviour was demonstrated using
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a CW harmonic Balance simulator. A modulated signal validation was also performed in
the simulation environment using a 20 MHz 4C-WCDMA signal under envelope simula-
tor. Also, a two-tone validation was performed in the measurement environment using a
fabricated class-AB PA.

6.1 Summary of Contributions

The objective of this thesis was to develop a novel transistor compact model that can be
used in circuit simulators under modulated signal stimuli. This goal was achieved through
the following key contributions:

1. A novel set of parameters that allows describing the nonlinear system WNL be-
haviours were presented. The formulation of these parameters allows the solution
generality that is necessary for transistor compact modelling. Also, they are system-
atically extracted using low power CW NVNA measurements.

2. A small-signal modelling technique was proposed that allows optimizing intrinsic and
extrinsic topologies without the need for driving complex analytical expressions or
going back and forth between ColdFET and HotFET.

3. A novel HONPs-based large-signal model for the intrinsic transistor was proposed
that allows building nonlinear functions from their derivatives (i.e., from HONPs).
The generated model can accurately calculate current/voltage derivatives, and hence
predicting the behaviour under modulated signal stimuli.

6.2 Future Work

In this thesis, we have presented a new set of parameters that simplifies characterizing and
analyzing nonlinear systems, and as an application, a novel transistor compact model was
proposed. This work can be extended into several lines of research.

The focus of this work was on HONPs presented in Chapter 3. A baseband extension
can be added to the measurement setup to allow accurate extraction of the second-HONPs,
and hence accurate prediction of the third-IMD products in the fundamental band. It
would be interesting to investigate the ability of these parameters to linearize nonlinear
systems under ultra-wideband stimuli using mixer-based receiver characterization. This
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is of great importance to the predistortion field, especially after moving to 5G and being
limited by the receiver’s bandwidth 1. Also, HONPs ability to predict the stability of
nonlinear systems under large-signal operating conditions can be studied.

Another interesting topic for future research would be studying the effect of the ex-
trinsic shell on the frequency behaviour of HONPs. In Chapter 4, a layered-technique was
proposed for optimizing the model’s equivalent circuit shells (intrinsic and extrinsic) to fit
linear Y-parameters. Including high-order parameters in this technique would be necessary
for improving the HONPs-based compact model proposed in Chapter 5. Also, the proposed
NN technique that builds nonlinear functions from the derivatives should be optimized to
handle noisy and missing measurements. This, along with the baseband extension of the
measurement setup, shall allow testing the model under modulated signal stimuli in the
measurement environment. Lastly, it would be worthwhile to investigate adding thermal
and trapping effects to this model, which would include studying HONPs under different
stimuli, such as pulsed and dynamic-biased stimuli.

1Simulation validations is provided in Appendix B.
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Appendix A

DIDO Volterra and HONPs

A.1 System Description

This appendix illustrates the relationship between HOYPs (proposed in Chapter 3) and
Volterra kernels. Only first and second-order kernels will be derived as they are sufficient to
convey the concept without dealing with complicated mathematical expressions. Figure A.1
shows HOYPs equivalent circuit, which is described by (A.1)1. Applying the generalized
quasi-static assumption for the elements dynamics result in (A.2), where operator notation
is used (3.6). HOYPs are assumed to be known [(3.15)-(3.17)] as the objective here is to
solve for Volterra kernels.

It is worth mentioning that there is a difference between extracting Volterra kernels and
applying them to find the WNL response of the system. For example, while Volterra kernels
have to be extracted using non-commensurate signals, they can be applied when exciting
the system with commensurate signals. Also, when extracting DIDO Volterra kernels,
the signal at both ports will be assumed to have components at the same frequency grid.
However, once these kernels are extracted, they can be applied to find the WNL solution
even if both ports are excited with different signals2. This can be easily achieved using the
Method of Nonlinear Currents, as the superposition principle can be applied.

1In order to simplify the equations readability, the definitions of all the symbols used in this appendix
equations are listed in Section A.4.

2The same applies to HONPs extraction and application as these parameters are based on the Volterra
Series.

135



Figure A.1: First (blue), second (red), and third (grey) HOYPs equivalent circuit. Time
dependency is dropped for ease of notation. is1 and is2 represent the input sources used to
extract Volterra kernels.
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+
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A.2 DIDO Volterra Formulations

Time-domain SISO Volterra formulation and the transformation between time-domain ker-
nels (nonlinear impulse responses) and frequency-domain kernels (nonlinear transfer func-
tions) were shown in (2.3)-(2.5). Similarly, one could start with the time-domain DIDO
Volterra formulation, with time-domain kernels in (A.3) [61], and use the multi-tone for-
mulation in (A.4) to reach the formulation with frequency-domain kernels in (A.5). The
semicolon in these expressions separates between port 1 and port 2 parameters. In order to
find Volterra kernels for the WNL system described by (A.2), the Harmonic Input Method
will be used [30, 62].

vp(t) =

n1=N1
n2=N2∑
n1=0
n2=0

(n1,n2) 6=(0,0)

vp,n1n2(t) : (A.3)
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∫ ∞
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. . .

∫ ∞
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ip(t) =
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jωqt (A.4)
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1
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Q∑
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. . .

Q∑
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. . .
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(A.5)
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It is worth mentioning that assuming both ports are excited with signals that have
components at the same frequency grid (Section A.1) simplifies the process of extracting
Volterra kernels. This is because Volterra kernels will be described by Hp,n1n2(ωq1 . . . ωqn)
instead of Hp,n1n2(ωq1 . . . ωqn1

;ωr1 . . . ωrn2
), where both of them are defined in Section A.4.

In the following subsections, both first and second-order Volterra kernels will be derived
using the mentioned assumption. However, the general solution to Volterra kernels (when
both ports are excited with signals that have components at different frequency grid) will
be mentioned in Section A.2.3.

A.2.1 First-Order DIDO Volterra Kernels [H1(ω1)]

First-order frequency-domain kernels (first-order transfer functions) are found as follows.
First, the inputs (is1 and is2) in Figure A.1 are assumed to be 1-tone unite amplitude
complex signals (A.6). These inputs are substituted in (A.5) to find the overall voltage
response at port p described by (A.3), where N1 = 1 and N2 = 1. Second, the resulting
voltages (A.7) are inserted in the original system of integro-differential equations (A.2).
Since the application of the integro-differential operators in (A.2) to the exponential terms
in (A.5) results in (jω)m, (A.2) can be rewritten as (A.8). Finally, first-order kernels can
be found by equating the first-order terms (terms with ejω1t) in (A.8), because sinusoidal
functions are orthogonal with respect to time. The resulting kernels are expressed in the
matrix form by (A.9). [
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]
=
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=
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A.2.2 Second-Order DIDO Volterra Kernels [H2(ω1, ω2)]

The extraction procedure of second-order frequency-domain kernels (second-order transfer
functions) is similar to the procedure described in the previous subsection. The inputs (is1
and is2) in Figure A.1 are assumed to be 2-tone unite amplitude complex signals (A.10).
Repeating the same procedure in (A.7)-(A.9), and then equating the second-order terms
(terms with ej(ω1+ω2)t) yields (A.11).[
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[
A
(
[H1(ω1)], [H1(ω2)]
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A.2.3 DIDO Volterra Kernels: General Solution

The purpose of the black-box behavioural modelling approach is to quickly identify the
systems kernels and use them to predict the response under the same conditions. Therefore,
one might be interested in the general solution of Volterra kernels with no assumptions on
the type of excitation. The derivation will not be shown here. However, the full solution
to first and second-order Volterra Kernels are expressed by (A.12) and (A.13). It should
be noted that these expressions can be reduced to the simpler expressions in the previous
section if both ports are assumed to be excited with signals that have components at the
same frequency grid.
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(A.13)

where,
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A.3 Conclusion

The relationship between the proposed HONPs and DIDO Volterra kernels was illustrated.
It is evident that identifying HONPs is sufficient to identify Volterra kernels. However,
HONPs formulation allows solution generality without suffering an explosion in the dimen-
sionality of parameters.

A.4 Definitions

• ip(t) is the total time-domain WNL current at port p.

• vp(t) is the total time-domain WNL voltage at port p.

• [y(n)(t)] is the time-domain nth-HOYPs in the matrix form.

• [Y (n)(f)] is the frequency-domain nth-HOYPs in the matrix form.

• P =
d

dt
is a differential operator.

• np is the response-order of port p.
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• vp,n1n2(t) is the time-domain voltage component of order n1 + n2 at port p.

• Ip,q is the complex amplitude of i(t) at ωq and port p.

• Q is the total number of tones in i(t).

• hp,n1n2(τ11, . . . , τ1n1 ; τ21, . . . , τ2n2) is the nonlinear impulse response of order n1 + n2.

• (τ11, . . . , τ1n1 ; τ21, . . . , τ2n2) represents all combinations between the time delays at
port 1 and port 2, i.e., all combinations between τ11, . . . , τ1n1 and τ21, . . . , τ2n2 .

• Hp,n1n2(ωq1 . . . ωqn1
;ωr1 . . . ωrn2

) is the nonlinear transfer function of order n1 + n2.

• (ωq1 . . . ωqn1
;ωr1 . . . ωrn2

) represents all combinations between different tones at port
1 and port 2, i.e., all combinations between ωq1 . . . ωqn1

and ωr1 . . . ωrn2
.

• Hp,n1n2(ωq1 . . . ωqn) is the nonlinear transfer function of order n1+n2 when both ports
are excited with signals that have same frequency grids.

• [H1(ω)] is the frequency-domain first-order DIDO Volterra kernels in the matrix form,
when both ports are excited with signals that have same frequency grids.

• [H2(ω1, ω2)] is the frequency-domain second-order DIDO Volterra kernels in the ma-
trix form, when both ports are excited with signals that have same frequency grids.

• [H1(ωq;ωr)] is the general frequency-domain first-order DIDO Volterra kernels in the
matrix form.

• [H2(ωq1 , ωq2 ;ωr1 , ωr2)] is the general frequency-domain second-order DIDO Volterra
kernels in the matrix form.
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Appendix B

HONPs Modulated Signal
Validations in Simulation
Environment

B.1 Introduction

This appendix illustrates the ability of the proposed HONPs to predict nonlinear be-
haviours under modulated signal stimuli in the simulation environment. It also provides
a simulation proof that these parameters can be used to linearize nonlinear DUTs. This
is of great importance because HONPs are extracted using mixer-based receivers. Thus,
using them for linearization solves the receiver bandwidth limitation problem that the
predistortion field faces, especially after moving to 5G.

This appendix is organized as follows. First, HONPs implementation as a behavioural
model in Keysight ADS circuit simulator is illustrated. Second, modulated signal vali-
dations are provided. Then, a new extraction technique is discussed to improve HONPs
capability to linearize strongly nonlinear systems. Finally, the conclusion is presented.

B.2 Model Implementation

In Chapter 5, neural networks were utilized to generate a large-signal nonlinear model
using HONPs at multiple bias points. In this section, HONPs at a single bias point are
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SDD2P

Figure B.1: HONPs implementation as a behavioural model in Keysight ADS circuit sim-
ulator.

implemented as a standalone behavioural model. This was achieved by implementing
equation (3.4) in Keysight ADS circuit simulator using a two-port Symbolically Defined
Device (SDD2P) component, as shown in Figure B.1. Extracted first, second, and third-
HONPs were then implemented as table-based parameters versus frequency using Data
Access Components (DACs).

B.3 Modulated Signal Validations

In order to verify that HONPs can predict WNL behaviours under modulated signal stimuli,
the same DUT used in Chapter 3 (Figure 3.8) is used here. It was biased at (Vgs,Vds) of
(-3.2, 12) V and first, second, and third-HONPs were extracted in the frequency range
of 10 MHz to 6 GHz (40 frequency points were used). The HONPs model in Figure B.1
was generated and excited using two modulated signal stimuli under Envelope simulator
(Figure 3.6):

• Signal 1: a 20 MHz 4C-WCDMA signal with 7.14 dB PAPR around 1.4 GHz [Figure
B.2 (a)]

• Signal 2: a 50 MHz 10C-WCDMA signal with 10 dB PAPR around 800 MHz [Figure
B.2 (b)]

Table B.1 compares between simulated first, second and third-order behaviours of the
DUT and the HONPs model due to Signal 1 and Signal 2, at four average input power
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(a) (b)

Figure B.2: (a) Signal 1: a 20 MHz 4C-WCDMA signal with 7.14 dB PAPR around 1.4
GHz, and (b) Signal 2: a 50 MHz 10C-WCDMA signal with 10 dB PAPR around 800
MHz.

levels. An example of the simulated B1 and B2 spectrums due to Signal 1 at -8.9 dBm
input average power is shown in Figure B.4. The following remarks should be noted:

• Since the generated HONPs model is a third-order model, only first, second, and
third-order responses are expected to be well-predicted. For example, fourth-order
responses in both the baseband and the second-harmonic band are poorly predicted.
Also, fifth-order responses in the fundamental and third-harmonic bands are poorly
predicted (these different-order responses are illustrated in Figure B.4). Therefore,
the NMSE values reported in Table B.1 represent only second and third-order re-
sponses in the specified bands.

• Left and right adjacent channel power ratio (ACPRL and ACPRR, respectively)
were used as an indication of whether the DUT is operating in the WNL region or
the strongly nonlinear region. The HONPs model demonstrated a good ability to
predict WNL behaviours for ACPR values below 40 dBc.

• B1-wave baseband spectrum values are too small (below -110 dBm) to be correctly
predicted by the model. Therefore, it was not reported in Table B.1.

In order to validate HONPs ability to linearize nonlinear DUTs, digital predistortion
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Figure B.3: An illustration of DPD concept.

(DPD) was used. DPD incorporates a nonlinear function before the nonlinear DUT to
pre-distort the input signal. The resulting cascaded system of both the DPD and the
nonlinear DUT behaves linearly in terms of the output gain and phase versus the input
power (Pin), as shown in Figure B.3 [63]. DPD was applied to the DUT for the different
stimuli and input average power levels discussed earlier, using the simulated B2-wave,
and the results are reported in the lower part of Table B.1. Three metrics are used to
describe the performance of the DPD: NMSE and error vector magnitude (EVM) between
the output and the original input, and the ACPR reduction. It is evident that a good
linearization (i.e. NMSE and EVM are below -40 dB and 1%, respectively, and ACPR
reduction by 10 dB) was achieved for ACPR values below 40 dBc. Deriving the DUT with
higher input average power resulted in a poor prediction of the output and hence poor
linearization results (simulation # 4 of Table B.1). Figure B.5 shows B2-wave spectrums
before and after applying DPD with the ACPR value in each case. Figure B.9 shows
both gain distortion and phase distortion (AM/PM) before and after applying DPD for
the different stimuli and input levels reported in Table B.1. It is worth mentioning that
HONPs showed a great ability for linearizing the DUT as long as it is working in the WNL
region. Also, the model shows the same performance regardless the type of the stimulus,
which is predicted from the discussion presented in Chapter 3.
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Stimulus Signal 1 Signal 2

Simulation # 1 2 3 4 1 2 3 4

Pin (dBm) -14.9 -8.9 5.4 -2.9 -17.7 -11.7 -8.2 -5.7

Pout (dBm) 0.7 6.7 10.1 12.4 -4.3 5.3 8.7 11.1

ACPRL (dBc) 61 49 42 38 59 47 41 37

ACPRR (dBc) 61 49 42 38 58 46 40 36

N
M

S
E
B

1

F (dB) -48 -48 -44 -35 -37 -37 -36 -33

2H (dB) -33 -25 -28 -16 -31 -27 -24 -14

3H (dB) -35 -18 -7 0.6 -28 -13 -3 3

IMD3 (dB) -55 -33 -18 -7.7 -13 -12 -3 3

N
M

S
E
B

2

F (dB) -50 -49 -47 -31 -41 -40 -36 -28

2H (dB) -34 -22 -18 -9 -30 -20 -13 -7

BB (dB) -29 -24 -40 -10 -19 -18 -14 -9

3H (dB) -34 -21 -15 -5 -29 -18 -10 -3

IMD3 (dB) -52 -31 -17 -7 -21 -15 -8 -2

w
/o

NMSE (dB) -44.6 -41.4 -35 -31 -40.9 -36.6 -31.5 -27.9

EVM (%) 0.58 0.84 1.7 2.8 0.8 1.4 2.6 4

w
it

h
D

P
D

ACPRL (dBc) 89 71 56 44 85 66 51.6 41

ACPRR (dBc) 87 70 55 44 81 63 50 40

NMSE (dB) -49 -44 -42 -36 -42.6 -42.4 -39.3 -32

EVM (%) 0.35 0.63 0.72 1.6 0.74 0.76 1.07 2.5

Table B.1: The resulting NMSE in the first, second, and third-order behaviours between
B1 and B2-waves of the DUT and the HONPs model. F , 2H, BB, 3H, and IMD3 refer to
the fundamental band, second-harmonic band, baseband, third-harmonic band and IMD3
band, respectively. The lower part of the table shows both NMSE and EVE without (w/o)
and with DPD.
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Figure B.4: Simulated and HONPs predicted B1 and B2-waves spectrum at the funda-
mental band, second-harmonic band, baseband, third-harmonic band due to Signal 1
stimulus.
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Figure B.5: B2-wave spectrums before and after applying DPD (for the stimuli and input
average power levels reported in Table B.1).
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Figure B.6: Gain distortion and AM/PM versus the input power before and after applying
DPD due to: (a) Signal 1, and (b) Signal 2 stimuli (for the input average power levels
reported in Table B.1).
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B.4 Linearizing Strongly Nonlinear Systems using

HONPs

The previous section showed that the HONPs model works well for both predicting and
linearizing WNL behaviours (defined by ACPR values below 40 dBc) due to modulated
signal stimuli. This section extends HONPs ability to linearize responses with ACPR values
up to 30 dBc. This was achieved by borrowing the large-signal operating point (LSOP)
concept from X-parameters and applying it to HONPs as follows. DPD assumes a priori-
knowledge of the type of the stimulus. Therefore, a large-signal tone with an average
power of 2.6 dBm was applied at 1.4 GHz (which are the average input power and the
center frequency of Signal 1 stimulus, respectively)1. This large-signal tone in addition to
the DC biasing point were assumed to be the LSOP, and HONPs were extracted using the
same technique explained in Chapter 3. Table B.2 shows both prediction and linearization
results, and the following should be noted:

• Stimulating the DUT with a large signal tone at a fixed frequency while using small-
signal tones at both ports to sweep the required frequency range generates IMD
tone. Only the small-signal fundamental tone and its harmonics are used for HONPs
extraction. Also, it is important to maintain a non-commensurate relationship be-
tween the large-signal tone and the small-signal tone frequencies. In other words, the
large-signal IMDs and harmonics should not fall on top of the small-signal harmonics.

• Extracting the HONPs model around an LSOP showed an improved ability to predict
and linearize nonlinear behaviours with ACPR up to 30 dBc. Figure B.8 shows B2-
wave spectrums before and after applying DPD for the different stimuli and input
power levels reported in Table B.2.

• The poor prediction of second-order behaviours in both the baseband and the second-
harmonic band indicates that a fourth-order model needs to be generated.

• It was proved in Chapter 3 that HONPs are power independent, and hence they
have the same value as long as they are extracted in the WNL region (Figure 3.11).
Extracting HONPs around an LSOP is more difficult than in the original case as
it is more complicated to identify the extraction range of these parameters. Figure
B.7 shows the extracted parameters versus the fundamental tone input power. It
is evident that the injection of a large-signal tone reduces the region where these
parameters are power independent.

1The same was applied for Signal 2 stimulus.
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Figure B.7: The real and imaginary parts of the extracted HOSPs around an LSOP versus
fundamental tone input power at 1.1 GHz. The solid lines represent the correct value of
the element.

• Figure B.9 shows both gain distortion and AM/PM before and after applying DPD
for the different stimuli and input levels reported in Table B.2.

B.5 Conclusion

HONPs at a single bias point were used as a standalone behavioural model. Their ability
to predict and linearize WNL behaviours due to modulated signal stimuli were validated in
the simulation environment. The model proved to be stimulus-independent, which confirms
the results in Chapter 3. Finally, HONPs were extracted around an LSOP in order to tune
the model towards DPD applications. Good linearization results were reported for ACPR
values up to 30 dBc.
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Stimulus Signal 1 Signal 2

Simulation # 1 2 3 4 1 2 3 4

Pin (dBm) -11.4 -4 -0.1 2.6 -17.7 -6.8 -3.7 -1.4

Pout (dBm) 5.9 13.1 16.7 18.9 1.17 11.9 14.7 16.7

ACPRL (dBc) 59.5 44.5 35.8 29.7 65 42 36 31

ACPRR (dBc) 59.4 44.4 35.7 29.6 64 42 35 30

N
M

S
E
B

1

F (dB) -38 -36.6 -35 -34 -36 -35 -34 -34

2H (dB) 11 -14.4 -6 -7.1 11.3 7.1 -5 -6

3H (dB) 1.15 -1.9 -10.7 -14.3 1.9 -4 -11 -11

IMD3 (dB) -35.2 -24.5 -22.3 -20.5 0.8 -3 -10 -10

N
M

S
E
B

2

F (dB) -25 -24 -23 -21 -25 -23 -23 -21

2H (dB) 2.4 4.1 8 8.2 3 5 6 5

BB (dB) 3.5 6 7 -1.2 3 6 6 1.5

3H (dB) -19 -21 -25 -13.8 -19 -20 -20 -12

IMD3 (dB) -25 -23 -22 -15.8 -16 -24 -26 -16

w
/o

NMSE (dB) -43.8 -37.3 -28.8 -22.6 -41 -32.8 -26.5 -21.8

EVM (%) 0.64 1.4 3.64 7.4 0.89 2.3 4.7 8.1

w
it

h
D

P
D

ACPRL (dBc) 73 62.9 52.7 43.5 80 60 50 43

ACPRR (dBc) 73 62.4 52.3 43.1 80 59 50 42

NMSE (dB) -48.6 -43.7 -42 -36 -42.1 -41.5 -39 -34

EVM (%) 0.37 0.65 0.8 1.6 0.78 0.8 1.1 2

Table B.2: The resulting NMSE in the first, second, and third-order behaviours between
B1 and B2-waves of the DUT and the HONPs model. F , 2H, BB, 3H, and IMD3 refer to
the fundamental band, second-harmonic band, baseband, third-harmonic band and IMD3
band, respectively. The lower part of the table shows both NMSE and EVE without (w/o)
and with DPD.
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Figure B.8: B2-wave spectrums before and after applying DPD (for the stimuli and input
average power levels reported in Table B.2).
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Figure B.9: Gain distortion and AM/PM versus the input power before and after applying
DPD due to: (a) Signal 1, and (b) Signal 2 stimuli (for the input average power levels
reported in Table B.2).
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Appendix C

Chapter 4 Neural Networks Fixed
Weights

• Figure 4.3

[W
(k)
1 ] =



1 1 0 0
0 −1 0 0
0 −1 1 0
0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, [W

(k)
2 ] =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 −1 0 0
0 −1 1 0
0 1 0 1


, [W

(k)
3 ] =

[
ones(4×1)

]

(C.1)

• Figure 4.4

[W
(k)
1 ] =



1 1 0
0 −1 0
0 −1 0
0 1 1
0 0 0
0 0 0
0 0 0
0 0 0


, [W

(k)
2 ] =



0 0 0
0 0 0
0 0 0
0 0 0
1 1 0
0 −1 0
0 −1 0
0 1 1


, [W

(k)
3 ] = [diagonal(8×8)] (C.2)
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• Figure 4.5

[W
(k)
1 ] =



1 1 0
0 1 0
0 1 0
0 1 1
0 0 0
0 0 0
0 0 0
0 0 0


, [W

(k)
2 ] =



0 0 0
0 0 0
0 0 0
0 0 0
1 1 0
0 1 0
0 1 0
0 1 1


, [W

(k)
3 ] = [diagonal(8×8)] (C.3)

• Figure 4.7

[W1] =



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, [W2] = [diagonal(8×8)] ,

[W3] =

[
1 −1 0 0 −1 1 0 0
0 0 −1 1 0 0 −1 1

]
, [W4] = [diagonal(2×2)] ,

[W5] =

[
ones(8×1) zeros(8×1)
zeros(8×1) ones(8×1)

]
, [W7] =

[
1 1

]
, (C.4)

[W8] =
[
ones(8×1)

]
, [W9] =

[
diagonal(8×8) diagonal(8×8)

]
,
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[W6] =



0 0 0 1 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0


• Figure 4.8

[W1] =



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, [W2] = [diagonal(8×8)] ,

[W3] =

[
1 −1 0 0 −1 1 0 0
0 0 −1 1 0 0 −1 1

]
, [W4] = −Z2

o



1 0
0 0
0 0
1 0
0 1
0 0
0 0
0 1


, (C.5)
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[W5] = Zo



−1 0 0 1 0 0 0 0
0 −2 0 0 0 0 0 0
0 0 −2 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 1 0 0 −1


, [W6] = −Z2

o



1
0
0
1
0
0
0
0



where, Zo is the system characteristic impedance.
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Appendix D

Chapter 5 Neural Networks Fixed
Weights

• Figure 5.4

[W1] =

[
ones(S×1) zeros(S×1)
zeros(S×1) ones(S×1)

]
, [W2] =

[
diagonal(2S×2S)

]
,

[W3] =

[
diagonal(S×S)
diagonal(S×S)

]
, [W4] =

[
diagonal(S×S) diagonal(S×S)

]
,

[W5] =
[
diagonal(S×S)

]
, [W6] =

[
ones(1×S) zeros(1×S)
zeros(1×S) ones(1×S)

]
,

[W7] =

diagonal(S×S) zeros(S×S)
zeros(S×S) diagonal(S×S)
zeros(S×S) diagonal(S×S)

 , [W8] =

diagonal(S×S) zeros(S×S)
zeros(S×S) diagonal(S×S)
zeros(S×S) diagonal(S×S)

 ,

[W9] =

diagonal(S×S)
diagonal(S×S)
diagonal(S×S)

 and its size = (n+ 1)S × S, [W10] =
[
diagonal(3S×3S)

]
,

[W11] =

[W
(1)
11 ] [W

(2)
11 ]

[W
(3)
11 ] [W

(4)
11 ]

 , [W12] =

[W
(1)
12 ]

[W
(2)
12 ]

 : (D.1)
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[W
(1)
11 ] =


diagonal

((n+ 1

2

)
S ×

(n+ 1

2

)
S

)
: n is odd

diagonal

((n
2

+ 1
)
S ×

(n
2

+ 1
)
S

)
: n is even

,

[W
(2)
11 ] =


zeros

((n+ 1

2

)
S ×

(n− 1

2

)
S

)
: n is odd

zeros

((n
2

+ 1
)
S ×

(n
2
− 1
)
S

)
: n is even

,

[W
(3)
11 ] =


zeros

((n+ 1

2

)
S ×

(n− 1

2

)
S

)
: n is odd

zeros

((n
2

)
S ×

(n
2

)
S

)
: n is even

,

[W
(4)
11 ] =


diagonal

((n+ 1

2

)
S ×

(n+ 1

2

)
S

)
: n is odd

diagonal

((n
2

)
S ×

(n
2

)
S

)
: n is even

,

[W
(1)
12 ] =


diagonal(S×S) zeros(S×S)
diagonal(S×S) zeros(S×S)

. . .
diagonal(S×S) zeros(S×S)

 and its size =


(n+ 1

2

)
S × 2 : n is odd(n

2

)
S × 2 : n is even

,

[W
(2)
12 ] =


zeros(S×S) diagonal(S×S)
zeros(S×S) diagonal(S×S)

. . .
zeros(S×S) diagonal(S×S)

 and its size =


(n+ 1

2

)
S × 2 : n is odd(n

2
+ 1
)
S × 2 : n is even

[W13] =


diagonal(S×S)
diagonal(S×S)

. . .
diagonal(S×S)

 , [W14] =
[
diagonal([(n+1)S×(n+1)S]

]
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• Figure 5.7

[W1] =

[
ones(1×S) zeros(1×S)
zeros(1×S) ones(1×S)

]
, [W2] =

[
ones(2×1)

]
, [W6] =

[
ones((n+1)×1)

]

[W3] =

 ones(1×S) zeros(1×S) zeros(1×S)
zeros(1×S) ones(1×S) zeros(1×S)
zeros(1×S) zeros(1×S) ones(1×S)

 , [W4] =
[
ones(3×1)

]
, (D.2)

[W5] =


ones(1×S) zeros(1×S) . . . zeros(1×S)

zeros(1×S) ones(1×S) . . . zeros(1×S)
. . . . . . . . . . . .

zeros(1×S) zeros(1×S) . . . ones(1×S)

 and its size = (n+ 1)× (n+ 1)S

• Figure 5.8

[W1] =
[
diagonal(2×2)

]
, [W2] =

[
diagonal(3×3)

]
,

[W3] =
[
diagonal((n+1)×(n+1))

]
(D.3)

• Figure 5.9

[W1] =
[
diagonal(S×S)

]
, [W2] =

[
ones(1×S)

]
(D.4)
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