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Abstract 

Theoretical, computational and experimental advances have led to easier access to more 

complex and robust hydrologic models.  

These hydrologic models may be used to support decision making by water managers and 

stakeholders. Modeler may choose to utilize a various combination of model diagnostics on 

different hydrologic data available to describe the model performance. The “goodness” of a 

specific diagnostic may depend on multiple factors (hydrologic complexity of basin, data 

availability, data used for evaluation, resources spent on model, validation methods, and intended 

use of model). Through the DCT, which explicitly evaluates a model’s skill at informing specific 

decisions, different model diagnostics are correlated to a model’s decision-support capability.  

In this thesis, a hydrologic model is used to evaluate three reservoir operation rule curves 

in the Lake of the Woods Watershed, based on ecological and economic impacts. Synthetic 

realities are generated through random sampling of parameters. Each synthetic reality is operated 

using all rule curves to determine the preferred rule curve for a given parameter set. Then, the 

model is calibrated to the synthetic realities’ using various calibration formulations. For each 

calibration, the model is evaluated on whether the model prefers the same rule curve preferred by 

the synthetic reality. After many of parameter set realizations, each incremental value of 

calibration formulation is assigned a similarity score to describe the probability of informing the 

correct decision. Using the correlation, the model’s capabilities and uncertainties may be more 

readily quantified and communicated to stakeholders. Results indicate specific calibration 

formulation may be beneficial to support specific decisions. 
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Chapter 1 

Introduction 

Global warming continues to be one of the major problems of the 21st century. Climate 

change brings many challenges to the hydrology community, as it alters the hydrologic cycles 

and subsequently impacts the quantity and quality of regional water resources (Gleick, 1989). 

Hydrologic models are commonly used to predict the impact of climate change on water 

resources and to aid in decision making process to accommodate climate change. Interplay 

between theoretical, computational, and experimental advancements has led development of 

more complex and robust hydrologic models (Paniconi and Putti, 2015). However, due to 

inherent heterogeneity and lack of data, many parameters in hydrologic models cannot be 

measured. As a result, calibration has become a crucial component in hydrologic modelling. 

Calibration involves varying parameter values within reasonable ranges until the differences 

between modeled outputs of system response and the corresponding observations are minimized. 

The model is considered calibrated when it reproduces historical data within some subjectively 

acceptable level of coherence (Konikow and Bredehoeft, 1992). Every model serves a different 

purpose, and the subjective acceptable level of coherence differs from model to model and user 

to user. To satisfy the various needs of modelers, researchers have developed numerous model 

diagnostics to represent level of coherence. However, a value of a specific diagnostic may be 

deemed acceptable for one model application but unacceptable for another. Such discrepancies 

arise from multiple factors, including: hydrologic complexity of basin, data availability, 

resources spent on model, validation methods, and intended use of model. The value of a model 

comes from its ability to reliably synthesize data needed for decision support that is unavailable 

in the real world (Klemes, 1986). Accordingly, a model must demonstrate how well it can 
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perform the kind of task for which it is intended. Since many model evaluation methods fail to 

test the model for its intended use, quantification of model performance still remains subjective. 

New model diagnostics continue to be published in literature, with no advancement in 

communicating the value of the new diagnostics in a practical applications. 

This thesis utilizes the Decision Crash Testing (DCT) method (Chlumsky, 2017) to 

bridge the gap between traditional model diagnostics and the evaluation of a model’s capabilities 

for its intended use. Since the goodness of a model diagnostic is heavily dependent on the 

model’s intended use, it only makes sense to evaluate the goodness of a model diagnostic for a 

specific scenario of model application.   

1.1 Goals and Objectives 

 This thesis has three main goals. The first goal is to hydrologic models suitable for DCT 

case study. The second goal of this thesis is to quantify the adequacy of commonly used model 

diagnostics in specific decision making contexts using the DCT framework. The third goal is to 

utilize the DCT framework to assess the optimal calibration objective formulation for a 

hydrologic model which will be used for a specific decision purpose. Achieving the goals 

required a realistic decision making scenario supported by a well-behaved hydrologic model.  

This thesis has three main objectives that follow from these goals. 

1. To develop and implement novel approaches for modelling lakes and reservoir operations 

in the Canadian Shield  

2. To present an implementation of DCT that can assess the utility of model diagnostics in a 

specific decision making scenario of reservoir operation rule curve selection 
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3. To quantify the effectiveness of different calibration objectives in a specific decision 

making scenario 

1.2 Thesis Organization 

 This thesis is comprised of six chapters, first of which serves as an introduction to the 

thesis.  

Chapter 2 provides relevant background about hydrologic modelling and challenges in 

the Canadian Shield. Then, it discusses both common and uncommon model evaluation methods 

and their inherent problems. This provides the justification of using the DCT framework and 

demonstrates how it may contribute to the state of modelling practice.  

Chapter 3 discusses the approaches taken to better represent the hydrology in the 

Canadian Shield. Special emphasis is given in modelling both complex lake systems and human 

operation. The model structure developed is deployed in two Canadian Shield basins: the 

Kaministiquia watershed and Lake of the Woods watershed. Model inter comparison is 

performed with two traditional hydrologic models, the GR4J model and the WATFLOOD 

model.  

  Chapter 4 discusses how the developed Lake of the Woods model might be used in a 

specific decision making context of reservoir release decision making (specifically rule curve 

selection amongst three alternatives for Rainy Lake). Implementation of operational behavior 

and mapping of model output to decisions is discussed. The model utilizes real examples form 

the report ‘Managing Water Levels and Flows in the Rainy River Basin’ (International Rainy and 

Namakan Lakes Rule Curve Study Board, 2017). Then, the key fundamentals of the DCT 

framework and how it can be implemented to quantify a model’s capability in informing rule 
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curve selection is discussed. Also, it demonstrates an objective comparison of different 

calibration objective formulations to support the rule curve decision making scenario.  

 Chapter 5 summarizes the thesis’ contribution to literature. The results of the thesis 

brings new perspective to one of the biggest topics of debate in hydrology (Kirchener, 2006): 

How important is it to get the right results for the right reasons?  Potential future improvements 

to the DCT framework is also presented.  
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Chapter 2 

Background 

This chapter provides the necessary background knowledge for understanding the 

significance of the research. General background regarding in hydrologic modelling and 

challenges are discussed. Then, different model evaluation methods are discussed along with 

their limitations. Finally, different requirements to overcome the shortcomings of traditional 

evaluation methods are discussed to illustrate the necessity of the thesis.  

2.1 Hydrologic Modelling  

 In this section, the purpose and classification of hydrologic models are presented. 

Challenges in modelling Canadian Shield hydrology is also highlighted. 

2.1.1 What are Hydrologic Models? 

 Hydrology is a science which treats movement of all phases of the earth’s water, with 

application in design and operation of hydraulic structures, water supply, wastewater treatment 

and disposal, irrigation, drainage, hydropower generation, flood control, navigation, erosion and 

sediment control, salinity control, pollution abatement, recreational use of water, and fish and 

wildlife protection. The role of applied hydrology is to help analyze the problem and aid in 

planning and management of water resources (Chow et al., 1988). Due to the heterogeneous 

nature of the natural systems and lack of resources, availability of hydrologic data is limited in 

space and time. To compensate and to make predictions regarding futures scenarios, researchers 

and hydrologists have developed mathematical models to simulate hydrology. Hydrologic 

models are used to synthesize a (continuous) record of some hydrologic variable Y, such as 

stream discharge, for a period T, from available concurrent records of other input variables X, Z, 
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etc. A model may be used to simulate hydrologic variable Y for future period of T, under 

forecasts of input variables X, Z (such as weather forecasts), thus making the model a forecast 

model. A model output may be used for complex decision making problems where the output is 

a function of hypothetical input scenarios, typically for water-management decisions. Klemes 

(1986) argues that a useful model is a model capable of adequately synthesizing data to inform 

decision making process.  

2.1.2 Model Classification  

Singh (2002) classified hydrologic models based on (1) process description; (2) 

timescale; (3) space scale; (4) techniques of solutions; (5) land use; and (6) model use. 

Depending on the description of the processes, hydrologic models may be classified as 

conceptual or physically-based (Refsgaard, 1997).  

In physically-based models, individual hydrologic processes are represented by 

individual physical representation of processes, driven by physically-meaningful and 

measureable parameters. Recent advancements in technology provide wider availability of 

spatially distributed parameter data, ranging from soil types and land use to radar rainfall, 

facilitating in production of simplified physically-meaningful distributed hydrologic models. 

Conceptual models, on the other hand, can be seen as data-driven models. Models attempt to 

transform model inputs (e.g., radiation, temperature, and precipitation) to appropriate model 

outputs (e.g., stream flow) through statistical and mathematical transfer functions. Conceptual 

models require large sets of observation data to adequately train the model to produce accurate 

outputs. Even with extensive training, conceptual models may have difficulty in predicting 

events beyond the conveyance of the training set (Todini, 2007). 
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The mathematical and physical equations used in hydrologic models are continuous in 

time and often space. However, analytical solutions are extremely difficult to obtain due to the 

complex nature of hydrologic systems. Therefore, numerical methods are used for most practical 

cases. General formulation involves partial differential equations in space and time. If the spatial 

derivatives are ignored, the models are called “lumped”. In “distributed” models, the output is a 

function of space and time. Strictly speaking, for a model to be truly distributed, all aspects of 

the models, including initial and boundary conditions, parameters, forcing functions, and sources 

and sinks must be spatially distributed (Singh et al., 2002). Due to practical limitation of data and 

discrete descriptions of watershed geometry, modelers may use “semi-distributed” models. Semi-

distributed models often use spatially distributed hydrologic response units (HRUs) to represent 

larger spatial areas as a single response unit with a unique response to a precipitation event. 

Properties within a single HRU are assumed to be homogenous.  

Appropriate model complexity is heavily dependent on the intended application of the 

model and data availability. Models intended for forecasting may be better suited to use of data-

driven models, as training sets become readily available after forecasts. Physically-based models 

may be more appropriate for application in what-if scenarios, such as land use change or 

reservoir operation change, in heavily instrumented basins. 

2.1.3 Challenges in Modelling Canadian Shield Hydrology 

 The Canadian Shield occupies one-third of Canada’s land area, comprising mainly of 

Precambrian rock that was glaciated by the Laurentide Ice Sheet to produce a rolling topography 

(Spence and Woo, 2008). The open water contained in wetland and lakes accounts for nearly 

25% of the Shield Area. Typically water storage within the bedrock is small. Although 

dependent on soil depth, Spence and Woo (2008) estimated water storage of the terrain to be 
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within 10 mm in Ontario. As a result, the lake system plays a critical role in water storage and 

runoff generation as response to precipitation events. Spence and Woo (2008) showed that the 

runoff generation from the catchments is dependent on the topography and connectivity of the 

lakes. Hydrology can be driven by the connectivity of the lakes where lakes become 

disconnected or connected depending on the season variation and elemental thresholds. Large 

lakes’ storage and release functions can overwhelm the seasonality of the land phase runoff, 

resulting in streamflow signal dominated by the hydraulic dynamics of the lakes. The fill-and-

spill response of the lakes is extremely difficult to model due to limitation in resources. Woo and 

Mielko (2008) utilized data on lake levels at half hour intervals, precipitation, ice fraction (from 

photography), flow into and out of lake, radiation, air temperature, and water temperature to 

model the fill-and-spill response of five lakes in the Northwest Territories. Such amount of 

hydrologic and forcing data is unavailable in most unmanaged reservoirs. Often, the impacts of 

the lake response are compensated through perturbation of physical and empirical parameters 

during the calibration period to match the hydrograph. Despite the difficulty, representation of 

the lake system is a crucial component in modelling the Canadian Shield hydrology.  

2.2 Model Evaluation Methods 

 This section provides background knowledge in calibration techniques, common 

diagnostics, and validation techniques used in hydrologic modelling.  

2.2.1 Model Calibration Techniques 

 Many hydrologic model parameters may be unavailable due to limited access to field data 

or empirical nature of the parameters. Even physically-based parameters may be a conceptual 

representations of abstract watershed characteristics depending on scale and discretization of the 
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watershed. In such case, modelers are required to estimate model parameters to enable model to 

closely match the behavior of the real system it represents. A traditional method of parameter 

estimation is the “manual” calibration approach. A modeler with knowledge of the watershed 

and experience with the model would use trial-and-error procedure to adjust the parameters, 

while visually comparing the observations and simulated outputs using graphical plots (Gupta et 

al., 1999). Complicated interaction between model parameters can make manual calibration 

extremely time-consuming and frustrating. Nonetheless, manual calibration provides modelers 

doing the calibration with better understanding of parameter interaction and sensitivity of model 

outputs to model parameters.  

 To address the time-consuming and difficult nature of manual calibration, researchers 

have developed methods to speed up the estimation process through automatic calibration. Gupta 

et al. (1999) highlights the process of automatic calibration as follows: 

1. A period of calibration data is selected 

2. An initial guess is made as to the probable values (or range of values) for the parameters 

3. The model is run using these values for the parameters 

4. The “distance” between the model output and the observed data is measured using a 

mathematical equation called an objective function or model diagnostics 

5. An automatic optimization procedure (called a search algorithm) is used to search for the 

parameter values that optimize the value of the objective function 

An important choice made by the modeler in calibration is to choose the appropriate model 

diagnostic to be used. Past research has not proved possible to clearly demonstrate that a 

particular objective function is better suited for calibration of a model than some other (Gupta et 

al., 1998). Each objective function may be well suited for different parts of the hydrograph, and 
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an optimal objective function may vary from one model application to another. Utilizing a 

single-objective function for calibration requires an erroneous assumption that all the available 

information regarding one hydrologic variable can be summarized using a single aggregate 

measure of model performance (Tang et al., 2005). In a multi-objective calibration experiment, a 

set of solutions that optimizes more than one objective function is found. The objective functions 

may be the same diagnostic for multiple observation data sets, different diagnostics for a single 

data set, or any combination of data sets and diagnostics. The set of solutions is also known as a 

Pareto front, with is comprised of Pareto optimal solutions. A solution X* is classified as Pareto 

optimal when there is no feasible solution X that has  a better  objective function value in one or 

more objectives without degrading performance for at least one other objective function value.  

2.2.2 Commonly Used Metrics for Model Evaluation 

In order to test the model’s predictive abilities, modelers quantitatively assess the degree 

to which the model simulations match the observation data (Legates and McCabe, 1999). This 

quantitative assessment, also known as a model diagnostic, is the simplest form of model 

evaluation. Model diagnostics are often used to inform the model calibration process, where a 

range of model parameters are sampled to minimize the difference between the simulation results 

and the observation data, often expressed as a numerical diagnostic (Legates and McCabe, 1999). 

Moriasi et al. (2007) categorize these diagnostics into standard regression, dimensionless, error 

index, and graphical. Each diagnostic is designed to convey specific types of information, while 

inadequate with certain types of data. In most cases, these metrics are applied to comparison of 

an observed time series (e.g. hydrograph) to a modeled equivalent. In this section, four model 

diagnostics: root mean square error (RMSE), percent bias (PBIAS), Nash Sutcliffe Efficiency 

(NSE), and Kling Gupta Efficiency (KGE) are discussed in more detail.  
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RMSE, shown in equation 1, provides a mean error of the model error in the unit of 

interest.  

𝑅𝑀𝑆𝐸 =  √∑ (𝑋𝑖
𝑠𝑖𝑚−𝑋𝑖

𝑜𝑏𝑠)𝑛
𝑖=1

2

𝑛
                                                    (1) 

where 𝑥𝑖
𝑠𝑖𝑚is the simulated value at time step i, 𝑋𝑖

𝑜𝑏𝑠is the observed value at time step i, and n is 

the total number of observations. A RMSE of zero indicates an error-free model, and it is 

commonly accepted that a lower RMSE indicates a better performance. Although researchers 

have made efforts to set a guideline to qualify what is considered a low RMSE (Singh et al., 

2014), there is no widely-accepted standard threshold for adequate RMSE values. A RMSE-

observation standard deviation ratio (RSR) was developed to normalize the RMSE by taking the 

ratio between the RMSE and the standard deviation of the observation data (Moriasi et al., 2007). 

Percent bias, shown in equation 2, measures the average tendency of the simulated results 

to be larger or smaller than their observed counterparts.  

PBIAS=  
∑ (𝑋𝑖

𝑠𝑖𝑚−𝑋𝑖
𝑜𝑏𝑠)∗100𝑛

𝑖=1

∑ (𝑋𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

                                                 (2) 

A positive percent bias indicates model overestimation, and a negative indicates underestimation. 

Percent bias is commonly used to assist in quantifying water balance error by calculating the 

percent deviation of streamflow volume.  

NSE is one of the most widely used diagnostics in hydrologic modelling. It provides a 

normalized statistic that determines the relative magnitude of residual variance compared to the 

measured data variance. Computation of NSE is shown in equation 3.  
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NSE = 1 - 
∑ (𝑋𝑖

𝑜𝑏𝑠−𝑋𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑋𝑖
𝑜𝑏𝑠− 𝑋𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

2                                           (3) 

NSE ranges from -∞ to 1.0 with NSE = 1 being the optimal value. NSE has been recommended 

for use by the American Society of Civil Engineers (1995) and Lebates and McCabe (1999). 

Also, the extensive use of NSE in the hydrology community provides ample information on the 

reported values. Despite the convenience and popularity of the NSE, there have been numerous 

discussions about the suitability of the NSE (Gupta et al., 2009). NSE overestimates model 

performance for highly seasonal variables, such as snowmelt dominated basins. In some cases, 

low NSE may not necessarily indicate a poor model, but only that the observation data is very 

steady (Criss and Winston, 2008).  

 Weglarczyk (1998) showed a decomposition of NSE into measurements of three 

components: linear correlation, bias, and variability of the data. Subsequently, calibration of 

models using NSE can be viewed as optimizing a weighted objective function (and thus solving 

a multi-objective optimization problem). However, the bias term has a low “weight” when NSE 

is used with highly variable observation data (Gupta et al., 2009). Also, variability in flows is 

systematically underestimated so that the ratio of the simulated and observed data will tend to be 

equal to the correlation coefficient. This results in an underestimation of the peak flows when 

using NSE during the calibration process (Gupta et al., 2009). In contrast, the KGE metric, 

introduced as an alternative to NSE, incorporates equal weighting to correlation, bias, and 

variability of the data. The components of the KGE are shown in equation 4.  

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2                         (4) 

where 
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𝛼 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
, 

𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 

𝑟 =  
𝐶𝑜𝑣𝑠𝑜

𝜎𝑠𝑖𝑚 ∙ 𝜎𝑜𝑏𝑠
 

where 𝜎 represents standard deviation, 𝜇 represents mean, and 𝐶𝑜𝑣𝑠𝑜 represents covariance 

between simulated and observed values. KGE ranges from -∞ to 1.0 with KGE = 1 being the 

optimal value.  

Despite the effort to create different diagnostics to capture a variety of hydrologic 

signatures, the goodness of a diagnostic value remains highly subjective. Moriasi et al. (2007) 

has summarized various NSE and PBIAS values from multiple literature sources. The 

summarized values are shown in Figure 2.1. The relationship between the diagnostic values and 

performance ratings vary from paper to paper. Looking further into the papers referenced in 

Figure 2.1, it appears that determination of adequacy in performance rating is heavily dependent 

on author’s experience and judgement. Motovillov et al. (1999) claimed “Figure 5 shows the 

observed and simulated discharge values for a few basins in the NOPEX area for 2 years: one 

with ‘satisfactory’ agreement – 1986-87, and the other with ‘the worst’ agreement – 1988-89.” 

Author’s claim on the NSE being ‘satisfactory’ did not have any reference to literature. The 

goodness of a particular diagnostic may be a function of multiple factors, including the 

hydrologic complexity of the watershed, data availability, resources spent on model, validation 

methods, and intended use of the model.  
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Figure 2.1 – Various value and performance rating of NSE and PBIAS across a select set of  

studies in the literature reporting calibration results (Moriasi et al., 2007) 

2.2.3 Model Validation Techniques 

 A broad definition of validation includes any process that aims to verify the ability of a 

procedure to adequately accomplish a given task (Biondi, 2011).  Model validation techniques 

are predicated upon the philosophy that a model must be tested for its intended use. Since no 

simulation model is intended merely to show how well it fits the data used for its development, 

performance characteristics during the calibration period are insufficient evidence for a model’s 

satisfactory performance. Unfortunately, with the exception of forecasting, data for the model’s 

intended use is unavailable to test the model’s performance in its intended use– if it did, a 

simulation model would not be needed. Therefore, efforts need to be made to demonstrate a 
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model’s ability to generate results for a situation similar to that of which the model is developed 

to be used for (Klemes, 1986). Klemes (1986) had proposed two major levels of categories to 

define model validation approach or tests: 

 (1) Stationary conditions (physical conditions do not change with time), and 

(2) Nonstationary conditions (physical conditions change with time) - each of them being 

divided into hierarchical subgroups: 

In each of the two categories, Klemes (1986) proposed testing the model utilizing two different 

basins: 

 (a) The same station (basin) which was used for calibration, and 

 (b) A different station (basin). 

For each of the subgroups 1a, 1b, 2a, and 2b, an operational validation testing was proposed.  

Split-Sample Testing (SST) (1a) is the most basic form of calibration-validation process 

and the full description of this test as proposed by Klemes (1986) is as follows. SST should be 

used to test models used for stationary climate and land use conditions within the same basin 

used for calibration. The model which passes a SST can be used for filling-in missing segment 

of, or extending, a streamflow record. SST involves, calibration of model using the first 70% of 

the observation data and validation using the remaining 30%. Next, the model is calibrated using 

the first 30% and validated using the remaining 70%. The model qualifies as acceptable if both 

validation results are similar and acceptable The Proxy-Basin Test (PBT) (1b) should be used to 

test models used for stationary climate and land use conditions within an ungauged basin. 

Passing the PBT demonstrates basic credibility in geographical transposability of the model. For 
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example, in order to simulate streamflow data for an ungauged basin C, two gauged basins A and 

B are selected within the region. The model is then calibrated using basin A and validated using 

basin B and vice versa. The Differential Split-Sample Test (DSST) (2a) is used to evaluate 

models developed for non-stationary conditions within the same gauged basin. Typically, DSST 

is used to test if a model can simulate data for future change in land use and/or climate. For 

changes in climate, the modeler needs to identify two periods with different climate conditions. 

The model is calibrated using one period and validated using the other. In general, the model 

should demonstrate its ability to perform under the transition required (e.g., wetter to drier 

climate). Testing a change in land use requires finding a gauged basin with historical data before 

and after a change in land use. The model is calibrated using data before the land use change and 

validated using the other. The Proxy-Basin Differential Split-Sample Test (PBDSST) (2b) is a 

combination of PBT and DSST used to generate streamflow data for a nonstationary conditions 

for an ungauged basin. Test should be applied for models that need to be both geographically and 

climatically (or land-use-wise) transposable. Many researchers aim for such universal 

transposability of hydrologic models; yet such success may not be achieved in decades to come. 

For modelling an ungauged basin C, the modelers need to identify to gauged basins A and B, 

with characteristics similar to those of basin C. Calibration would be performed using one 

climatic condition (e.g. dry) of A and validated using a different climatic condition of B. 

There are two limitations in the implementation of the DSST (Coron et al., 2014). First, it 

requires the modelers to identify in advance the climatic characteristics that will most likely play 

a key role in limiting the model transposability. Second, the number of transfer tests is usually 

small, limiting the ability to draw general conclusions and discovering the main drivers of model 

transposability from the results themselves. The General Split Sample Testing (GSST) tests both 
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similar and contrasting climatic conditions (Coron et al., 2014). GSST requires a calibration 

using one window of the available historical data, and validation using all other windows of 

historical data that do not overlap with the calibration period. This process is repeated for all 

possible windows of historical data. The GSST is illustrated in Figure 2.2.  

 

Figure 2.2 – Illustration of the GSST procedure (example with 18 years of historical data and 5 

year windows) (Coron et al., 2014) 

Refsgaard (1997) addressed the limitation in number of transfer tests by performing validation 

using spatially varying internal groundwater table levels in the Karup catchment in Denmark. 

Often, expectations are made that a successful split sample test on the outlet of a catchment and 

groundwater table indicate validity of simulation of internal flows and ground-water table levels 

(Refsgaard, 1997). The original model of the Karup catchment was calibrated and validated 

using a SST at station 20.05 and groundwater level simulations at wells 21, 44, 55, 8, 9, 11, and 

12 shown in Figure 2.3. 
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Figure 2.3 – Discharge gauging stations and groundwater observation wells of the Karup 

catchment (Refsgaard, 1997). 

Validation of model using discharge stations not used for calibration resulted in poor 

performance. There was a clear underestimation of the baseflow level and total runoff. The 

multi-site validation not only showed inadequacy in the internal model validity, but also 

provided guidance in the reason for inadequacy – inaccurately simulated groundwater levels.  

2.2.4 Crash Testing Concepts in Model Validation 

 The holy grail of hydrologic modelling has been achieving a degree of process 

understanding that enables development of model that provides physically realistic simulations 
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across different hydrologic environments, and at multiple spatial and temporal scales (Gupta et 

al., 2014). The poor performance of models under proxy-basin tests further strengthens the 

difficulty in achieving this holy grail. Andressian (2006) illustrates the need to take advantage of 

the extensive data sets now available to make common a large-sample approach to hydrologic 

investigations.  Large-sample hydrology tests can demonstrate robustness of the models, 

demonstrating the capabilities in regional and temporal transposability (Gupta et al., 2014). 

Andressian (2009) claims that hydrologic model testing should be similar to crash testing cars. 

During crash tests, cars are tested in conditions outside of intended use. The results are then 

interpreted by the end user of the car, allowing a choice in car based on the needs of the drivers. 

Only by testing hydrologic models under varying extreme conditions, can the model users fully 

understand the reliability, capabilities and limitations of the model. The rigorous nature of crash 

tests require hydrologic realism in the models. As a result, new model structures and processes 

can be identified during testing (Gupta et al., 2014).  

Coron et al. (2012) performed a crash test on hydrologic models using contrasted climate 

conditions in 216 Australian catchments. Three models, GR4J, MORDOR6, and SIMHYD Plus 

Routing were crash tested in these catchments. Through the crash testing, the authors aimed to 

study the transfer of model parameter sets between climatically contrasted periods. By 

performing the GSST on all catchments, the impact of both the spatial and temporal variability in 

climate on parameter transposability was tested. Large-sample testing methods were shown to be 

effective in testing model transposability, a key requirement for models to be used to synthesize 

data for which data is unavailable. Although the benefits of large-sample hydrology are clear, 

many challenges exist for practical implementation of such evaluation methods. Large-sample 

hydrology requires extensive volumes of relevant data sets. Often, such extensive volume of data 
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sets are difficult to acquire. Hydrologic data need to become more accessible through increase in 

more coherent reporting, storing, and sharing of data. Alternatively, depending on the required 

complexity of the catchment, hydrologic data may be synthesized (Mirus et al., 2012). 

2.3 Improved Model Validation Methods 

 In this section the limitations and issues with the traditional and existing validation 

techniques presented above are discussed. Alternative validation techniques that address the 

limitations and issues are introduced.  

2.3.1 Issues with Current Model Validation Methods 

Philosophically speaking, Popper (1968) argued that models can never be truly validated, 

but only invalidated. Konikow and Bredehoeft (1992) demonstrated insufficiency in current 

validation practice using case studies of failed decision making by validated models. Konikow 

and Bredehoeft (1992) claimed that model validation is merely a process used to organize our 

thinking, test ideas for their reasonableness, and indicate which the sensitive parameters are. 

More rigorous evaluation methods, such as crash tests and structural adequacy tests, are no 

different. Passing these evaluation methods can give increased confidence in the model, but 

never give absolute confidence in the validity of the model. The issue with the current evaluation 

practice can be addressed by the basic concept introduced by Klemes (1986) 30 years ago: 

models need to be tested for their intended use. Despite the intention of models to aid in decision 

making, policy management, and water resources management, models are only tested rigorously 

in the ability to match historical observations. Large-sample testing methods are fundamentally 

no different. Large-sample testing methods are more rigorous ways to test a model’s ability to 
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match historical data under varying conditions – not a tool to assess a model’s capability to 

support decision making, policy management, and water resources management.  

2.3.2 Using Models for Decision Making 

 Despite the advancement in science, there still exists a gap between environmental 

science and decision making. Science and policy serve different purposes, resulting in different 

values, interests, concerns, and perspectives between the scientists and policy makers. These 

differences complicates the communication between the two parties, degrading the value of 

models in decision making process. One barrier between environmental modelers and policy 

makers is the results of scientific models not being available in the form required by the decision 

makers (Jacobs, 2002). Hydrologic model output variable Y may not be readily transformable 

into metric required by the decision makers. Hence, collaboration between scientists, decision 

makers, and stakeholders is crucial to transpose model output into clear and comprehendible 

metric. Another barrier is the lack of uncertainty analysis in environmental model applications. 

Accurate uncertainty analysis is required to effectively characterize errors and limitations of the 

model. Liu (2008) claims that model output uncertainty should be transferred over to decision 

making scenario analysis, to (1) understand impacts stemming from alternative conditions; (2) to 

assess potential risks and opportunities; and (3) to identify ways to respond to risks and 

opportunities, thus enabling improved decision making and assessment. With the two barriers in 

mind, Liu (2008) proposes a framework in linking science with environmental decision making. 

The framework is comprised of 9 steps: problem formulation; scenario definition; conceptual 

modelling; model development; verification, calibration, and validation; model 

simulation/scenario construction; scenario analysis and assessment; implementation/decision 

making; and monitoring and post audit. Few concepts from Liu’s framework highlights the key 
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requirements for DCT. A clear outline of the decision context in both natural and human aspects 

is drawn, and stakeholders, scientists, and policy makers work together to develop a clear 

mapping of model output and decision making. During the verification, calibration, and 

validation process, Liu (2008) emphasizes that the performance criteria needs to be tailor-made 

to the specific decision context. A tailor-made performance criteria is desirable as it tests the 

model for its intended use.  

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Chapter 3 

Methods and Results of Modelling Canadian Shield Hydrology 

 In this section, strategies used to address issues with modelling Canadian Shield 

hydrology are discussed. Model structure and modelling strategies are deployed to two sites: 

Kaministiquia Watershed and Lake of the Woods Watersheds. Model performance against an 

alternative and commonly employed model structure is presented. 

3.1 Model Development 

 This section details of the overall model structure and explicit representation of Canadian 

Shield hydrology characteristics are discussed.  

3.1.1 Model Structure 

 Raven is a hydrologic modeling framework that allows various model configurations, 

from conceptual to physically-based and from lumped to fully-distributed (Craig et al., 2018). 

Raven’s modular design allows customization of hydrologic processes and forcing inputs for 

model development adequate for site and application. Raven’s physical representation of lakes 

and various reservoir operation functions made Raven suitable as the modelling platform for a 

case study of reservoir rule curve selection. The  hydrologic model structure follows closely, but 

not exactly, the multi-soil model developed by Robert Chlumsky at the University of Waterloo 

(Chlumsky 2017). The hydrologic process map is shown in Figure 3.1. Precipitation inputs are 

distributed into rainfall and snowfall based on temperature inputs. Then, precipitation is 

distributed across state variables, including lake storage, canopy, snow, ponded water, 

depression, surface storage, and soils. Water is redistributed across state variables through 

various hydrologic processes, then final flow is calculated through catchment routing.  
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Figure 3.1 – Hydrologic process diagram of the Raven model adopted from R.Chlumsky (2017).   

The model structure was setup to have either a bedrock outcrop (modelled with very thin 

soil) or deeper organic soil (with two soil layers) in a given sub-basin in order to accommodate 

the Canadian Shield landscape characterized by fractured bedrock layer under shallow soil 

layers. The depth of the fractured bedrock layer also acts as an extra calibration parameter, where 

extra storage in the fractured bedrock can help account for extra storage present in the landscape 

contributing to flow but not accounted for in the model, such as depressions and wetlands 

(Chlumsky, 2017). The conceptual soil profiles are shown in Figure 3.2. Model processes are 

relatively simple, a function of limited data availability of the case study sites. With additional 

data, such as measured radiation and snow depth and density, complex energy driven snow 

balance may be more adequate. Full input file with process description is in Appendix A. 

3.1.2 Explicit Representation of Canadian Shield Hydrology Characteristics 
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Figure 3.2 – Conceptual diagram of soil profiles in the model (Chlumsky, 2017) 

In Section 2.1.3, the impact of lake systems on the hydrograph and the need for an 

explicit representation of the lake systems was discussed. However, an explicit representation of 

a complex system of hundreds of small and inter-connected lakes is often unrealistic due to the 

limitation in data. For a simplified representation of such a complex lake system, a 

hydrologically equivalent lake (HEL) concept was developed. The HEL is similar to the 

hydrologic equivalent wetland (HEW) concept in the SWAT model, which is a synthetic wetland 

module developed to mimic the conveyance and retention of wetland storage (Wang et al., 

2008). HEL is a hypothetical lake that mimics the hydrologic response of the aggregate lake 

system. Whenever a flow gauge station is impacted by an upstream system of lakes based on GIS 

analysis and hydrograph analysis, a HEL was implemented directly upstream of the gauge. The 

GIS analysis involves inspecting for lakes above a threshold size connected to the gauge within 

proximity.  The hydrograph analysis involves visual assessment of smoothness of the 

hydrographs, potentially caused by upstream lakes.  Two user inputs are required for the HEL. 

The area of the HEL was calculated by summing up the area of the lakes above a threshold size 
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(10 km2). The outlet of the HEL was assumed to follow a rectangular weir-like structure shown 

in Figure 3.3. The rectangular weir equation is shown in equation 5. 

𝑄 =  
2

3
𝐶𝑊√2𝑔𝑠1.5          (5) 

where 𝐶 is the weir coefficient (1.6 for rectangular weir), 𝑊 is the weir width (m), 𝑔 is the 

gravitational acceleration (9.8 m/s2), and 𝑠 is the height above weir crest (m). The weir width 

of the outlet for a HEL was set as a calibration parameter, restricted to reasonable range based 

on GIS analysis (?) of the largest lake represented in the HEL.  

 Figure 3.3 shows a schematic of the simulated variables associated with a HEL or an 

explicitly represented lake.  ***Define all variables.  

 

Figure 3.3 – Rectangular weir-like outlet for HEL 

3.1.3 Modelling Operation in Managed Reservoir 

 A common application for hydrologic models by conservation authorities and 

hydropower companies is inflow forecasting for reservoir management. Based on short term and 

long term inflow forecasts, reservoir operators can determine how much water needs to be used 
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for electric generation to maximize electric generation and minimize negative impacts such as 

flood risks. For typical managed reservoirs, outflow data is readily available. Since the outflow is 

ultimately determined by the operators through adjustment of outlet structure, modelling the 

outflow using hydrologic model is nearly impossible without target values and regulations, as it 

would require modelling of human judgement. In historical modelling of managed reservoirs, the 

outflow becomes a forced outflow to the reservoir (model generated outflow of the reservoir is 

overridden with measured outflow), and model is calibrated to inflow. In order to test various 

reservoir operation strategies, a model needs to be capable of modelling the human decision in 

reservoir operations. Modelling human decisions requires guidelines and regulations that are 

assumed to be followed by operators.  

 In this thesis, a set of rules were applied to emulate operator controls. First, a target 

reservoir level which the operator aims to follow is required. In many authorities, upper and 

lower limits of stage as a function of time of year are provided through operational rule curves. 

Within the maximum and minimum reservoir levels for any given time of the year, an operator 

may decide to target different stage within the range, depending on current conditions and short 

term forecasts. For example, after a snowy winter, an operator may target a lower part of the 

band before spring to accommodate high spring melt. For the case study in this thesis, it was 

assumed that the operator follows the mid-point of the band. For operational implementation, the 

model was supplied with a time series of target stage levels over the simulation period. Mass 

balance of reservoir follows equation 6.  

∆𝑉

∆𝑡
=  𝑄𝑖𝑛

̅̅ ̅̅ − 𝑄𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ −  𝐸𝑇̅̅ ̅̅ − 𝐸𝑥𝑡̅̅ ̅̅ ̅                                             (6) 
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where 𝑄𝑜𝑢𝑡 is flow (m3/s), 𝑄𝑖𝑛 is reservoir inflow, 𝐸𝑇 is evapotranspiration (m/s), and 𝐸𝑥𝑡 is 

reservoir extraction (m3/s), averaged over time step. Target flow is calculated by utilizing target 

stage to determine necessary change in volume. At each time step t, the model calculates target 

flow Qtarget
t+1 based on target stage for time step t+1 using equation 7. 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡
              𝑡+1 =  −2 ∗

𝑉𝑡𝑎𝑟𝑔𝑒𝑡
              𝑡+1−𝑉𝑡

∆𝑡
+ (−𝑄𝑡 + (𝑄𝑖𝑛𝑡 + 𝑄𝑖𝑛𝑡+1) − 𝐸𝑇 ∗ (𝐴𝑡 + 𝐴𝑡+1) − (𝐸𝑥𝑡𝑡 + 𝐸𝑥𝑡𝑡+1)) (7) 

Target values are calculated based on target stage at time step t+1. 

Then, the target flow is averaged over the time step through equation 8.   

𝑄𝑡𝑎𝑟𝑔𝑒𝑡
              𝑡+1 =  

𝑄𝑡𝑎𝑟𝑔𝑒𝑡
              𝑡+1 + 𝑄𝑡

∆𝑡
                                                                            (8) 

 In most managed reservoirs, regulations and structural limitations restrict maximum and 

minimum flows from the outlet. Adequate research needs to be conducted to understand the 

regulations and structural limitations that the operators will follow to properly implement 

reservoir operations in hydrologic models for specific reservoirs. Four restrictions have been 

implemented in the model: minimum flow, minimum flow during drought, maximum flow based 

on stage, and maximum increase in flow over a time step. Summary of components involved in 

flow calculation is shown in Table 3.1. 
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Table 3.1 – Summary of components involved in flow calculations for reservoir operations 

Symbol Description Determination 

Qtarget
t+1 Flow required to reach 

target stage at t+1 

Equation 7 and 8 based on modelled 

values and target stage time series 

QMinDrought Minimum flow when stage 

is below drought level 

Regulations 

QMin Minimum flow when stage 

is above drought level 

Regulations 

QMax Maximum flow Hydraulic study of the outlet structures in 

case study 

Qdelta Maximum increase in flow 

over 1 day 

Regulations 

 

Calculation of flow for time step t+1 is determined by process shown in Figure 3.4.  

In a case where the flow is not restricted by regulations or outlet structure, maximum 

stage restriction values may be required to model operator behavior to keep reservoir stage 

within a limit. With a maximum stage constraint, outflow is calculated using equation 9.  

𝑄𝑜𝑢𝑡
        𝑡+1 =  −2 ∗

𝑉𝑙𝑖𝑚𝑖𝑡
           𝑡+1−𝑉𝑡

∆𝑡
+ (−𝑄𝑡 + (𝑄𝑖𝑛𝑡 + 𝑄𝑖𝑛𝑡+1) − 𝐸𝑇 ∗ (𝐴𝑡 + 𝐴𝑙𝑖𝑚𝑖𝑡𝑡+1) − (𝐸𝑥𝑡𝑡 + 𝐸𝑥𝑡𝑡+1)) (9) 

where volume and area is calculated using limiting stage. 
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Figure 3.4 – Workflow to determine outflow to model reservoir operation 

3.2 Kaministiquia Watershed Model 

 In this section, the first case study of Kaministiquia watershed is presented. During initial 

model development, impact of HEL representation was not tested in this watershed, as method 

was not fully developed during the initial model development. Later in the model development, 
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HEL was implemented to improve stage simulation at Kashabowie Lake. Impact of reservoir 

operation modelling and calibration strategies is also discussed.  

3.2.1 Kaministiquia Case Study Background 

 

Figure 3.5 – Watershed delineation of the Kaministiquia watershed (Liu, 2017) 

The Kaministiquia watershed is located west of Lake Superior, near Thunder Bay, 

Ontario. The watershed includes four dams and two generating stations managed by Ontario 

Power Generation (OPG). Initial Kaministiquia watershed model consists of 9 sub-models with 

varying number of sub-basins in each sub-model for a total of 27 sub-basins (Liu, 2017). During 

calibration and validation, outflow from upstream sub-basins were used as forced inflow for the 

sub-basin immediately downstream. The model was calibrated moving downstream at each of 
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the 9 sub-model outlets.  In forecast mode for use by OPG, the model will require predicted 

outflow data time series for the reservoirs (or a rule curve). Based on initial GIS work by Liu 

(2016) and Chlumsky (2017), the sub-basins were characterized by different soil layer type and 

vegetation. The two soil types are storage dominant (ABC2) and bedrock dominant (R1). Both 

soil types have a thin layer of soil at the top. The ABC2 profile is followed by a thicker layer of 

soil layer soil type with high permeability to allow water storage. The R1 type is followed by 

thick layer of soil layer with low impermeability to represent the bedrock layer. ABC2 profile is 

then followed by a thick layer of bedrock. Vegetation types are divided into deciduous forests 

and coniferous forests. The two vegetation classes have different seasonal leaf area index 

fraction for each month as shown in Figure 3.6. Model structure and hydrologic processes follow 

Section 3.1.1. Three sub-basins, Dog Lake Basin, Kashabowie Lake Basin, and Shebandowan 

Lake Basin, have managed reservoirs with outflow data. The model was calibrated to stage levels 

of the three reservoirs, with the measured outflows overriding modelled outflows. Model 

comparison against the GR4J model created by Liu (2017) is presented in the following section.  

 

Figure 3.6 – Monthly leaf area index fraction (Chlumsky, 2016) 

Since calibration was performed for each sub-model, land class and vegetation parameters differ 

from sub-model to sub-model. However, within a sub-model, basins with common land class or 

vegetation class share the same parameters. Table 3.2 summarizes each sub-basin with its 

vegetation class and soil profile. 
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Table 3.2 – Summary of sub-basins and physical characteristics 

Submodel Subbasin Vegetation Class Soil Profile 

1 

1 Mixed Deciduous ABC2 

2 Mixed Deciduous R1 

19 Lake Lake 
    

2 

30 Mixed Coniferous R1 

31 Mixed Coniferous R1 

32 Mixed Coniferous R1 

33 Mixed Coniferous R1 

35 Lake Lake 

36 Lake Lake 

37 Lake Lake 

39 Lake Lake 
    

3 

4 Mixed Coniferous R1 

5 Mixed Coniferous R1 

21 Lake Lake 

22 Lake Lake 
    

4 

6 Mixed Deciduous ABC2 

7 Mixed Deciduous ABC2 

8 Mixed Deciduous ABC2 

9 Mixed Deciduous ABC2 
    

5 11 Mixed Deciduous ABC2 
    

6 10 Mixed Deciduous ABC2 
    

7 17 Mixed Deciduous ABC2 
    

8 18 Mixed Deciduous ABC2 
    

9 

12 Mixed Deciduous ABC2 

13 Mixed Deciduous ABC2 

14 Mixed Deciduous ABC2 

15 Mixed Deciduous ABC2 
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3.2.2 Kaministiquia Watershed Model Calibration Formulation 

  The model was calibrated from 2005-10-01 to 2012-10-01 with the first year as a warm-

up period. In the Shebandowan Lake, the outlet structure was changed in 2009. As a result, the 

model calibration period was set from 2009-10-01 to 2012-10-01, with the first year as a warm-

up period. Calibration was performed using the OSTICH Optimization Software Tool (Matott, 

2017). Within OSTRICH, the Dynamically Dimensioned Search algorithm (Tolson and 

Shoemaker, 2007) was used for optimization, with a budget of 4,000 model runs which allowed 

convergence within reasonable computational cost.  

Traditional calibration strategy involves calibration to estimated inflow data. Initial experiments 

showed poor performance in reservoir stage simulation when calibration to inflow. However, 

calibration to stage resulted in significantly improved stage simulation with a small deterioration 

in inflow simulation. As a result, calibration objective was formulated using reservoir stage to 

accurately capture both stage and inflow. Comparison of calibration to inflow is discussed 

further in Section 3.2.4. To capture fluctuation in stage during the calibration process, the NSE 

of change of reservoir stage at each time step (dh/dt) shown in equation 10 was incorporated into 

the objective function. Stage observations have much lower variance compared to flow 

observations. Incorporation of stage derivative into objective function resulted in better capturing 

of small fluctuations of stage. The objective function for calibration was set to maximizing the 

average of NSE of stage and NSE of change in stage over each time step. For sub-basins without 

reservoirs, model was calibrated to maximize the NSE of flow.  

NSE = 1 - 
∑ (

(ℎ𝑖+1
𝑜𝑏𝑠−ℎ𝑖

𝑜𝑏𝑠)

𝑑𝑡
−

(ℎ𝑖+1
𝑠𝑖𝑚−ℎ𝑖+1

𝑠𝑖𝑚)

𝑑𝑡
)

2

𝑛
𝑖=1

∑ (
(ℎ𝑖+1

𝑜𝑏𝑠−ℎ𝑖
𝑜𝑏𝑠)

𝑑𝑡
−

(ℎ𝑖+1
𝑜𝑏𝑠−ℎ𝑖

𝑜𝑏𝑠)

𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)𝑛

𝑖=1

2     (10) 
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3.2.3 Kaministiquia Watershed Model Results  

Summary of model performance during calibration period is shown in Table 3.3.  

Table 3.3 – Summary of Kaministiquia Watershed model calibration results when calibrated to 

NSE with inflow forced gauges bolded 

Sub-

model 

No. 

Flow/Stage  

Gauge Name 

Simulation 

Object 

Calibration Period 

GR4J Multi Soil 

NSE 
NSE 

(dh/dt) 
PCT_BIAS NSE 

NSE 

(dh/dt) 
PCT_BIAS 

1 
Silver Falls GS HW 

- Dog Lake 
Stage -0.15 0.45 -1 0.85 0.52 0 

2 
Kashabowie Lake  

Dam 
Stage -3.1 -0.05 1 -0.47 -0.29 0 

3 
Shebandowan Lake  

Dam 
Stage -0.81 0.35 -1 0.63 0.41 0 

4 
Kaministiquia at 

 Kaministiquia 
Flow 0.93 -- 4 0.92 -- -1.6 

5 
Kakabeka Falls  

GS HW 
Flow 0.98 -- 3 0.98 -- 2.8 

6 
Corbett Creek  
near Murillo 

Flow 0.66 -- 19 0.63 -- 9.9 

7 
Whitefish River  

at Nolalu 
Flow 0.72 -- 22 0.66 -- -27.7 

8 
Slate River near  

Thunder Bay 
Flow 0.6 -- 41 0.65 -- -10.8 

9 
Kaministiquia River  

above Fort William 
Flow 0.97 -- 1 0.98 -- -1.4 

 

The physically-based multi soil model performed much better than the GR4J model in simulating 

stage during the calibration period. In calibration to flow gauges, the multi soil model performed 

slightly worse in Kaministiquia, Corbett Creek, and Whitefish, and performed better in Slate 

River and Fort William. Biggest difference occurred at Whitefish River at Nolalu (difference of 

0.06 NSE).   

Model validation period was set to 2012-10-01 to 2015-10-01. Summary of model performance 

during validation period is shown in Table 3.4.  
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Table 3.4 – Summary of Kaministiquia Watershed model validation results when calibrated to 

NSE with inflow forced gauges bolded 

Sub-

model 

No. 

Flow/Stage  

Gauge Name 

Simulation 

Object 

Validation Period 

GR4J Multi Soil 

NSE 
NSE 

(dh/dt) 
PCT_BIAS NSE 

NSE 

(dh/dt) 
PCT_BIAS 

1 
Silver Falls GS HW 

- Dog Lake 
Stage -0.03 0.56 -14 -0.97 0.75 24 

2 
Kashabowie 
Lake Dam 

Stage -11.7 -0.73 -10 -60 -1.49 33 

3 
Shebandowan Lake  

Dam 
Stage -426 -0.22 68 -57 0.41 23 

4 
Kaministiquia at 

 Kaministiquia 
Flow 0.9 -- 7 0.92 -- -0.2 

5 
Kakabeka Falls  

GS HW 
Flow 0.97 -- 0 0.98 -- -0.2 

6 
Corbett Creek  

near Murillo 
Flow 0.79 -- 30 0.80 -- 27.5 

7 
Whitefish River  

at Nolalu 
Flow 0.65 -- 21 0.61 -- -17.9 

8 
Slate River near  

Thunder Bay 
Flow 0.74 -- 46 0.75 -- -1.6 

9 
Kaministiquia River  

above Fort William 
Flow No Validation Data Available 

 

Model showed poor performance in stage simulation at all three lakes during the validation 

period. Model showed aggregating volume error in stage simulation, increasing in high percent 

bias values. The multi soil model performed better than the GR4J model across all basins in 

simulating flow, except in the Whitefish River. 

3.2.4 Additional Strategies to Improve Reservoir Simulation  

 To correct the poor performance in validation period, simulation of reservoir operation 

was implemented to the model by restricting the maximum stage. Corrected validation results are 

shown in Table 3.5.  
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Table 3.5 – Summary of Kaministiquia Watershed maximum stage constraint corrected model 

validation results when calibrated to NSE 

Sub-

model 

No. 

Flow/Stage  

Gauge Name 

Simulation 

Object 

Validation Period 

Maximum Stage Constraint Corrected Initial Model 

NSE 
NSE 

(dh/dt) 
PCT_BIAS NSE 

NSE 

(dh/dt) 

PCT_BIA

S 

1 
Silver Falls GS HW 

- Dog Lake 
Stage 0.59 0.54 0 -0.97 0.75 24 

2 
Kashabowie 
Lake Dam 

Stage -0.76 -0.55 0 -60 -1.49 33 

3 
Shebandowan Lake  

Dam 
Stage -7 0.18 0 -57 0.12 23 

 

Figure 3.6 shows significant improvement in NSE for the multi-soil model compared to the 

GR4J model during the calibration period at Dog Lake.  

 

Figure 3.6 – Plot of Dog Lake stage during calibration period when calibrated to average of 

stage NSE and dh/dt NSE 

However, initial validation results showed volume error of 24% and a NSE of -0.97. One 

approach to correct the error was to apply a precipitation correction of 0.93. Multiplying all 
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precipitation by 0.93 produced good fit in stage graphs during the validation period, by reducing 

the total volume of water coming in to the basin, as shown in Figure 3.6.  

 

Figure 3.7 – Stage plot of rain corrected Dog Lake model in comparison with initial validation 

results 

Second approach to correct the error was to model operator behavior using maximum stage 

constraint.  

10 years of historical data showed annual maximum stage to be consistent near 421.56. Such 

result is most likely due to operational decision. To model the operator decisions, stage of the 

reservoir was set to 421.56 m. Figure 3.8 shows significant improvement in validation results. 
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Figure 3.8 – Plot of Dog Lake stage during validation period when calibrated to average of stage 

NSE and dh/dt NSE 

Similar to Dog Lake, a maximum stage constraint of 459.7 m was applied to Kashabowie Lake. 

Stage variance at Kashabowie Lake was less than 1 m. Modelling stage of reservoirs with low 

variance was a challenging task. A maximum stage constrain of 450.6 m was applied to 

Shebandowan Lake. Observation data during the validation period was flagged as possibly 

erroneous by OPG. Plots of stage simulation for Kashabowie Lake and Shebandowan Lake are 

shown in Figure 3.9 to 3.12. Kaministiquia River sub-basin was modelled with forced inflows 

coming from Shebandowan Lake and Dog Lake. Kakabeka Falls sub-basin used outflow from 

Kaministiquia river sub-basin as forced inflows. Kaministiquia River near Fort William sub-

basin used outflows from Kakabeka Falls, Corbett Creek, Whitefish River, and Slate River as 

forced inflows. Hydrographs of individual downstream sub-basins are shown in Appendix B 
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Figure 3.9 - Plot of Kashabowie Lake stage during calibration period when calibrated to average 

of stage NSE and dh/dt NSE 

 

Figure 3.10 - Plot of Kashabowie Lake stage during validation period when calibrated to 

average of stage NSE and dh/dt NSE 
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Figure 3.11 - Plot of Shebandowan Lake stage during calibration period when calibrated to 

average of stage NSE and dh/dt NSE 

 

 

Figure 3.12 - Plot of Shebandowan Lake stage during validation period when calibrated to 

average of stage NSE and dh/dt NSE 
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Another calibration strategy for managed reservoir is to calibrate to measured inflows 

calculated from measured stage value. This may be an interest to parties utilizing model for 

inflow forecasts. Such strategy optimizes a model’s ability to produce hydrologic variable of 

intended use. Reservoir inflow can be calculated using volume derived from stage using equation 

11.  

 𝑉𝑡 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 − 𝐸𝑥𝑡 + (𝑃 + 𝐸𝑇) ∗ 𝐴 + 𝑉𝑡−1                                 (11) 

Three sub-basins with explicit representation of reservoirs were calibrated to estimated inflows. 

Result shows that calibration to inflow show better inflow NSE, but significantly worse stage 

NSE. Figure 3.13 show inflow results when calibrated to stage and calibrated to inflow. 

Calibration to inflow had a NSE of 0.68 for inflow during the calibration period, where 

calibration to stage had a NSE of 0.55 for inflow.  

 

Figure 3.13 – Inflow hydrograph of Dog Lake when calibrated to stage and inflow 

Inflow hydrograph generated from calibration to stage was much smoother during low flow 

seasons, with higher peak estimations compared to inflow hydrograph generated from calibration 

to stage. Inflow hydrograph generated from calibration to stage had better fit to observation 
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inflow hydrograph during seasons with consistently high inflows, such as spring of 2008 and 

2012. NSE for stage was 0.83 when calibrated to stage and -8.62 when calibrated to inflow. 

Figure 3.26 shows drastic underestimation of stage when calibrated to inflow 

 

Figure 3.14 – Stage plots of Dog Lake when calibrated to stage and inflow 

The calibration experiment shows calibrating to stage adds another level of complexity to the 

objective function, ensuring model is producing the right results for the right reason. In any 

model application where reservoir stage is important, such as flood prediction and land data 

assimilation systems, it would be extremely beneficial to utilize stage data in the calibration 

objective. However, if the sole intent of the model is to forecast inflows, it may be more 

beneficial to use an inflow calibrated model with stage adjustments made before each forecasts. 

3.3 Lake of the Woods Watershed Model 

 In this section, the second case study of Lake of the Woods watershed is presented. 

Model utilized an existing WATFLOOD model as a base case. Model was transposed into Raven 

for model inter comparison and utilization in rule curve study.  
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3.3.1 Lake of the Woods Case Study Background 

 The Lake of the Woods – Rainy Lake (LOWRL) basin is located west of Lake Superior, 

bordering Manitoba and Minnesota. Three reservoirs: Lake of the Woods, Rainy Lake, and 

Namakan Lake, are managed by the Lake of the Woods Control Board (LWCB) under 

regulations and rule curves set by the International Joint Commission (IJC) to mandate water 

usage and watershed protection for the benefits of both Canada and the United States. As part of 

the daily reservoir operation, the LWCB (2016) has developed a hydrologic model using 

WATFLOOD to forecast inflows. The extent of the WATFLOOD model and the watershed 

location are shown in Figure 3.15. 

 

Figure 3.15 – Map of extent of LOWRL watershed 
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 In this case study, the WATFLOOD model was transposed into a Raven model for utilization in 

rule curve study. A secondary objective of this process was to assess the ease of development 

and performance of Raven model created from geospatial data transposition of WATFLOOD 

inputs to Raven inputs. Other than the initial geospatial work to generate a semi-distributed 

watershed delineation, no additional geospatial data was required. The WATFLOOD model 

included 12 flow gauges and 4 inflow stations, with 34 reservoirs explicitly represented. Few 

flow gauges were located immediately downstream of the reservoirs. For the Raven model, sub-

basins were explicitly delineated with outlets located at the flow gauges and reservoir outlets in 

the WATFLOOD model. The delineations are shown in Figure 3.16. To ensure geospatial 

consistency between the models, cumulative drainage areas at the 12 flow gauges were 

calculated. Table 3.6 shows that the areas between the two models are within a reasonable 

margin of error. 
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Figure 3.16 – Basin delineation used for Raven model 

The original WATFLOOD model had 10 land class data in gridded format. Out of the 10, data 

on 9 of the land classes (agriculture, coniferous, deciduous, mixed, sparse, regenerating, wetland, 

water, and impervious) were used as Raven input. Mining was excluded as the fraction of land 

class area was nearly zero.   
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Table 3.6 – Cumulative drainage areas of WATFLOOD model and Raven model (km2) 

Station WATFLOOD Raven Percent Error 

Kawishi_Rive 611 638 4% 

Basswood 4711 4475 -5% 

Lac_La_Croix 12902 13220 2% 

Vermillion_R 2413 2351 -3% 

Atikokan_Riv 387 347 -10% 

Seine@Sturge 5732 5899 3% 

Turtle_River 4631 4742 2% 

Rainy@FF 37249 38090 2% 

Big_Fork_Riv 3661 3817 4% 

Little_Fork_ 4633 4667 1% 

Rainy@Manito 48867 49948 2% 

WR@Norman 67601 69311 3% 

 

Each grid in WATFLOOD had fractions to represent the relative composition of each 

land class in each grid cell. Each grid cell was assigned a sub-basin number to match the 

delineation for the Raven model as shown in Figure 3.17. For a given Raven sub-basin, the total 

land class composition was calculated based on the WATFLOOD land class fraction data at 

corresponding grid cells with the sub-basin number. Similarly, bank-full area and channel slope 

data was available at each grid cells. For each sub-basin, grids with bank-full areas greater than 

100 were assumed to be a part of the main channel in the sub-basin. The bank-full areas and 

channel slopes of the corresponding grid cells in the sub-basin were used to calculate the Raven 

channel profile at each sub-basin. Few parameters values required by Raven had equivalent 

counterparts in WATFLOOD. The summary of parameters with WATFLOOD counterparts that 

did not need additional calibration is shown in Table 3.7. Forcing functions for each sub-basin 
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followed an average of all values with grids with the corresponding sub-basin number. Each 

reservoir in WATFLOOD was represented as an explicit lake sub-basin in Raven. 

 

Figure 3.17 – Assignment of basin number to each grid cell 

Table 3.7 – Summary of Raven parameters with equivalent WATFLOOD counterparts 

Parameter Description Raven WATFLOOD 

precipitation lapse rate mm/m PrecipitationLapseRate rlapse 

temperature lapse rate dC/m AdidabticLapseRate tlapse 

fraction of swe as water in ripe snow Irreductible Snow Saturation whcl 

soil porosity Porosity spore 

upper zone retention mm Field_Capacity fcap 

wilting point - mm of water in uzs Saturated Wilt ffcap 

 

Many additional parameters required calibration. The full summary of Raven calibrated 

parameters is shown in Table 3.8. Two inherent issues arise with such approach in model 

development. First is the loss in information from redundant rescaling of data. The initial 

geospatial data was scaled to small grid sizes for WATFLOOD. Then, geospatial data was re-

averaged to fit larger sub-basins. Loss of geospatial information and corresponding increase of 



49 
 

error would be inevitable in rescaling process. Error from initial geospatial data would result in 

decrease in performance during both the calibration and validation period. Increase in error and 

uncertainty could easily be avoided by performing required geospatial data using the Raven 

delineation.  

Table 3.8 – Summary of Raven model parameters calibrated 

Parameter Description Min Max 

rs_min Rain snow transition temperature minimum -1.00E+00 1.00E+00 

rs_max Rain snow transition temperature maximum 1.00E+00 2.00E+00 

par_g_2 Irreducible snow saturation 0.00E+00 1.00E+00 

beta_agr HBV Beta parameter for infiltration (1 for each land class) 1.00E-01 2.00E+01 

perc_agr_1 Max percolation rate (2 for each land class) 1.00E-01 5.00E+01 

inter_agr Interflow rate (1 for each land class) 5.00E-02 5.00E+01 

dep_agr Depression (1 for each land class) 1.00E+01 1.00E+03 

basef_agr Baseflow coefficient ( 1 for each land class) 1.00E-02 1.00E+01 

basen_agr Baseflow exponent n ( 1 for each land class) 5.00E-01 4.00E+00 

petc_agr PET correction ( 1 for each land class) 1.00E-01 1.20E+00 

soild_agr_1 Top layer soil depth ( 1 for each land class) 1.00E-01 2.00E+02 

soild_agr_2 Bottom layer soil depth ( 1 for each land class) 1.00E-03 1.00E+03 

owpet_agr Openwater PET correction ( 1 for each land class) 2.50E-01 1.00E+00 

lrel_coef Lake release coefficient 1.00E-02 1.00E+00 

lpet_corr Lake PET correction 1.00E-01 1.20E+00 

mel_agr Melt rate ( 1 for each land class) 2.50E-01 7.50E+00 

max_ht_agr Max vegetation height ( 1 for each land class) 0.00E+00 3.00E+00 

max_lai_agr Max leaf area index ( 1 for each land class) 0.00E+00 1.00E+01 

max_lf_agr Max leaf conductance ( 1 for each land class) 0.00E+00 1.00E+01 

r01 Manning's coefficient (1 for each channel type) 0.0005 0.15 

weir_01 Weir structure width/coefficient (1 for each reservoir) 1.00E+00 5.00E+02 

tc_land Time of concentration multiplier 1.00E-02 5.00E+01 

tc_15 Time of concentration for wetland dominated basin 1.00E-02 5.00E+01 

 

Second issue is the over parameterization in Raven model from utilizing geospatial data for 

WATFLOOD. Land class classification and number of reservoirs should be minimized unless 

supported by data. Raven required a great number of parameters without a WATFLOOD 

counterpart for each land class type. As a result, model became over-parameterized, requiring 
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nearly 150 parameters to be calibrated. Such over-parameterization is likely to decrease model 

performance during validation period.  

3.3.2 Lake of the Woods Watershed Model Calibration Formulation 

The model was calibrated from 2004-10-01 to 2009-09-31 with the first year as a warm-

up period. Validation was performed from 2009-10-01 to 2015-09-31. Single objective 

calibration was performed using the Dynamically Dimensioned Search algorithm (Tolson and 

Shoemaker, 2007) in OSTRICH (Matott, 2017), with a budget of 20,000 model runs to allow 

model convergence in all experiments. Multi-objective calibration was performed using the 

Pareto Archived Dynamically Dimensioned Search (Asadzadeh and Tolson, 2013), with a budget 

of 20,000 model runs. The output of the calibration period was used as initial conditions for the 

validation period. Similar to the Kaministiquia watershed model, outflows from the three 

managed reservoirs (Lake of the Woods, Rainy Lake, and Namakan Lake) were overridden with 

observation data. Model was calibrated three times to different objective functions:  

1. The average NSE of 11 stream gauges 

2. The average 7-day running average NSE of four reservoir inflows (Lake of the 

Woods, Rainy Lake, Lac-la-Croix, and Namakan Lake)  

3. Multi-objective calibration to both stream gauges and inflows.  

Each of the gauges was weighted differently based on yearly average flow. Flow gauge at 

Manitou was given a weight of 0 as majority of the flow is determined by the upstream Rainy 

Lake with overridden flow. The Flow gauge at Lake of the Woods was also given a weight of 0 

as the outflow of Lake of the Woods is overridden by observation data.  
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3.3.3 Lake of the Woods Watershed Model Results 

Table 3.9 shows the calibration and validation results when model was calibrated to flow NSE.  

Table 3.9 – Calibration and validation results for calibration to flow NSE, with bolded NSE 

when model performs better by 0.05 or greater 

Number Station Weight 

Raven 

 NSE  

Calibration 

WATFLOOD  

NSE 

Calibration 

Raven  

NSE 

Validation 

WATFLOOD  

NSE 

Validation 

1 Turtle 0.145 0.74 0.76 0.8 0.69 

2 Atikokan 0.010 0.67 0.69 0.68 0.77 

3 Seine 0.171 0.64 0.72 0.69 0.6 

4 Manitou 0.000 0.92  0.86  

5 Little Fork 0.094 0.65 0.67 0.57 0.59 

6 Big Fork 0.073 0.65 0.68 0.45 0.7 

7 Vermillion 0.051 0.78 0.54 0.72 0.67 

8 Basswood 0.105 0.52 0.69 0.63 0.6 

9 Lac-la-Croix 0.336 0.78 0.84 0.76 0.85 

10 Kawishiwi 0.015 0.58 0.67 0.62 0.69 

11 Lake of the Woods 0.466 0.82 0.74 0.76 0.77 

12 Rainy Lake 0.279 0.9 0.92 0.9 0.96 

13 Lac La Croix 0.102 0.68 0.82 0.69 0.84 

14 Namakan 0.153 0.76 0.75 0.79 0.82 
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Table 3.10 shows the calibration and validation results when model was calibrated to inflow 

NSE.  

Table 3.10 – Calibration and validation results for calibration to reservoir inflow NSE, with 

bolded NSE when model performs better by 0.05 or greater 

Number Station Weight 

Raven 

 NSE  

Calibration 

WATFLOOD  

NSE 

Calibration 

Raven  

NSE 

Validation 

WATFLOOD  

NSE 

Validation 

1 Turtle 0.145 0.56 0.61 0.71 0.56 

2 Atikokan 0.010 0.71 0.46 0.75 0.69 

3 Seine 0.171 0.42 0.45 0.49 0.64 

4 Manitou 0.000 0.92  0.88  

5 Little Fork 0.094 0.5 0.4 0.51 0.29 

6 Big Fork 0.073 -0.28 0.55 0.07 0.67 

7 Vermillion 0.051 0.67 0.56 0.59 0.7 

8 Basswood 0.105 0.35 0.54 0.62 0.29 

9 Lac-la-Croix 0.336 0.79 0.84 0.81 0.8 

10 Kawishiwi 0.015 0.42 0.56 0.66 0.66 

11 Lake of the Woods 0.466 0.92 0.86 0.85 0.86 

12 Rainy Lake 0.279 0.93 0.94 0.94 0.97 

13 Lac La Croix 0.102 0.75 0.81 0.82 0.81 

14 Namakan 0.153 0.79 0.79 0.82 0.81 

 

Figure 3.18 shows the Pareto front of the multi-objective calibration experiment. Figure 3.19 

shows the plots of Pareto optimal during the validation period. WATFLOOD’s Pareto front 

dominates Raven model’s Pareto front.  
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Figure 3.18 – Pareto front of non-dominated solutions in multi-objective calibration to flow NSE 

and inflow NSE 
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Figure 3.19 – NSEs of Pareto optimal solution evaluations during the validation period 

Table 3.11 shows the calibration and validation results when model was calibrated using multi-

objective calibration. The NSE values presented are averages of the non-dominated solutions.  
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Table 3.11 – Average NSE of non-dominated solutions generated by multi-objective calibration 

during calibration and validation periods, with bolded NSE when model performs better by 0.05 

or greater 

Number Station Weight 

Raven 

 NSE  

Calibration 

WATFLOOD  

NSE 

Calibration 

Raven  

NSE 

Validation 

WATFLOOD  

NSE 

Validation 

1 Turtle 0.145 0.72 0.76 0.79 0.71 

2 Atikokan 0.010 0.69 0.66 0.71 0.71 

3 Seine 0.171 0.61 0.45 0.63 0.7 

4 Manitou 0.000 0.92  0.92  

5 Little Fork 0.094 0.62 0.64 0.62 0.51 

6 Big Fork 0.073 0.55 0.69 0.55 0.75 

7 Vermillion 0.051 0.76 0.59 0.76 0.68 

8 Basswood 0.105 0.47 0.72 0.47 0.7 

9 Lac-la-Croix 0.336 0.78 0.87 0.78 0.81 

10 Kawishiwi 0.015 0.54 0.71 0.54 0.72 

11 Lake of the Woods 0.466 0.89 0.89 0.89 0.9 

12 Rainy Lake 0.279 0.91 0.94 0.91 0.96 

13 Lac La Croix 0.102 0.7 0.82 0.7 0.86 

14 Namakan 0.153 0.77 0.86 0.77 0.82 

 

A summary of flow weighted average NSE for all experiments are shown in Table 3.12. 

 

Table 3.12 – Overall NSE comparison between Raven and WATFLOOD 

Calibration Objective Flow NSE Inflow NSE Multi Objective 

Model Raven WATFLOOD Raven WATFLOOD Raven WATFLOOD 

Flow NSE - Calibration 0.70 0.75 0.53 0.62 0.67 0.71 

Inflow NSE - Calibration 0.82 0.80 0.89 0.87 0.86 0.89 

Flow NSE - Validation 0.69 0.71 0.62 0.62 0.69 0.72 

Inflow NSE - Validation 0.80 0.84 0.87 0.88 0.86 0.90 

 

Multi-objective calibration showed to be beneficial in improving validation period results. In the 

Raven model, multi-objective calibration resulted in same flow NSE compared to flow calibrated 

experiment, with only 0.01 lower in inflow NSE compared to the inflow calibrated experiment. 

In the WATFLOOD model, model performed better in both flow and inflow NSE compared to 

all calibration experiments. Experiment shows multi-objective calibration can improve validation 

results through increase in physical realism in the model. Overall difference in weighted NSE 
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between the WATFLOOD model and the Raven model was ~0.03. WATFLOOD performed 

better in south-eastern basins draining to Lac-la-Croix, including gauges at Basswood, 

Kawishiwi, and Lac-la-Croix. Raven performed better in northern basins draining to Rainy Lake, 

including gauges at Turtle, Seine, and Atikokan. Another major difference between the Raven 

model and the WATFLOOD model was the run time. The Raven model took approximately 12 

seconds for a single model run during calibration, while the WATFLOOD model took 

approximately 4 minutes. The substantial reduction in runtime of Raven model makes Raven 

suitable for computationally expensive experiments, such as the DCT. 

The hydrographs of the calibration experiments are presented in Appendix C. 
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Chapter 4 

Assessing and Improving Hydrologic Models Used for Decision Making 

 In this chapter, the utility of the Lake of the Woods Raven model in a real-life decision 

making scenario is introduced. After an overview of the utility, an assessment of model’s 

capabilities in the decision making scenario is performed using Decision Crash Testing (DCT). 

The DCT informs the limitations of the current model and preferred calibration objective 

function for a specific decision making scenario.  

4.1 Case Study – Selection of Reservoir Operation Rule Curve 

 This section presents the problem background and key aspects for implementation of rule 

curves to the Lake of the Woods model. 

4.1.1 Rule Curve Motivations in Rainy Lake 

 In 2015, a study was performed by the International Rainy and Namakan Lakes Rule 

Curves Study Board (IRNLRCSB) for the International Joint Commission (IJC) to reevaluate 

operating rule curves for the Rainy Lake based on (IRNLRCSB, 2015): 

 Protecting shorelines from flood damage 

 Ensuring water levels for hydroelectricity generation 

 Protecting natural environments 

 Recreational use of lakes 

 Water quality 
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Hydrologic models, along with water quality models, hydraulic models, and global climate 

models were utilized to inform stakeholders the various impacts of different rule curve 

alternatives. The original study evaluated 6 rule curve alternatives among 7 key study themes: 

Fish, Wildlife, Economic Impacts, Archeological Resources, Vegetation, Invertebrates, and 

Water Quality. The 7 key study themes are broken down into 36 sub-categories, with many of 

the sub-categories requiring external studies, hydraulic models, global climate models, water 

quality models, and water temperature models. For this thesis, three rule curve alternatives with 

the greatest impacts on categories impacted by outputs of hydrologic model were selected for 

analysis and comparison via DCT. Since the goal of the DCT was to assess the utility of the 

hydrologic model, evaluation criteria impacted by the output of hydrologic model were 

necessary. The following three evaluation criteria that can be mapped from hydrologic model 

output were selected: 

 Ecological benefit (based upon survivability of fish and wildlife determined by lake 

levels) 

 Economic benefit (based upon volume of water over not used for electricity generation) 

 Flood Damage Reduction (based upon stage of lake during a storm event during a spring 

snowmelt) 

In summary, the DCT assesses the model’s utility in comparing three rule curves on their impact 

on three evaluation criteria relevant to model outputs. 

4.1.2 Flow Restrictions at Rainy Lake 

 In Section 3.1.3, the importance of regulatory and hydraulic restrictions governing 

reservoir operation was discussed. The Rainy Lake has regulations on flow restrictions outlined 
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by the IJC. Also, the natural features in the river channel between the lake outlet and the dam 

restricts the rate of flow out of Rainy Lake (CHC, 2010). When Rainy Lake level is below the 

drought line, the minimum flow is reduced to 65 m3/s. Otherwise, minimum flow is 100 m3/s. 

The drought levels outlined by IJC is shown in Figure 4.1.  

 

Figure 4.1 – Drought line of Rainy Lake determined by IJC (CHC, 2010) 

 Based on a hydraulic study the Natural Research Council Canada (2011), the stage - maximum 

discharge relationship of Rainy Lake is shown in Figure 4.2. For assessment of high lake level 

scenarios, the full gates open operation (5-10) was assumed. At each time step during model 

simulation, the maximum possible flow was calculated based on current lake levels.  
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Figure 4.2 – Stage-Discharge relationship of Rainy Lake at different gate configurations 

(Natural Research Council Canada, 2011) 

Limitations on increase of flow over a time step were not incorporated to the test as the 

limitation was not a constraint in the IRNLRCSB study.  

4.1.3 Rule Curve Options at Rainy Lake 

Three rule curves were evaluated in the case study. Rule Curve A is the operational rule 

curve at the time of study. Rule Curve B is a modified version of the Rule Curve A with a lower 

spring target for increase in spring flood damage reduction. Rule Curve C incorporates a lower 

winter drawdown for increase in ecological benefit with decrease in economic benefit. For model 

simulation, the target for reservoir operation was set to the median between the low and high 

stage values of the rule curve.  
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Figure 4.3 – Operational rule curve A used by LWCB with high and low targets  

 

 

Figure 4.4 – Operational rule curve B modified from rule curve A with lower spring target to 

reduce flood risks 
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Figure 4.5 – Operational rule curve B modified from rule curve A with low winter drawdown to 

improve ecological benefits 

 

4.2 Evaluation Criteria in Rule Curve Selection 

 In Chapter 2, the importance of clear transposition between hydrologic model outputs to 

evaluation criteria was discussed. In this section, the clear transposition of model outputs to 

evaluation criteria comprehendible to stakeholders is discussed. 

4.2.1 Ecological Benefits 

Ecological benefits are calculated based on probability of survivability of four species 

(Walleye, Whitefish Egg, Common Loon, and Muskrat) which is dependent of water level 

rise/fall over a specific period. The four species are impacted by water levels at different times of 

the year to assess model’s capabilities in performing at different times of the years. The 

probability or survivability of the four species are summed for a final score, with the maximum 
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score of 4. The probability of survivability dependent on water level rise and fall is summarized 

in Table 4.1 Corresponding Julian dates were estimated using Figure 4.6 For maximizing 

ecological benefit, the rule curve resulting in highest probability of survivability would be 

deemed as most desirable and selected as the “preferred” decision in DCT. 

 

Figure 4.6 – Mean annual water temperature of Rainy Lake for the period of 2011-2014. The 

outer envelope represents the 95% confidence interval of values (Marshall and Foster, 2015) 

 

 

Table 4.1 – Summary of probability of survivability of species dependent on water level 

Specie: Walleye 

Period Description: Ice Out to Water Temp 11 deg C 

Julian Date Range: 71 - 140 

     

Drop/Rise Value (m) PS 

Drop  < 0.1 1 

Drop  > 1 0 

Rise < 0.5 1 

Rise > 2.5 0 
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Specie: Whitefish Egg 

Period Description: Mid November to Ice Out 

Julian Date Range: 319 - 71 

     

Drop/Rise Value (m) PS 

Drop  < 0.5 1 

Drop  > 2 0 

Rise < 0.5 1 

Rise > 2 0 

   

Specie: Common Loon 

Period Description: 3 Weeks before to after Ice Out 

Julian Date Range: 92-141 

     

Drop/Rise Value (m) PS 

Drop  < 0.3 1 

Drop  > 0.8 0 

Rise < 0.15 1 

Rise > 0.4 0 

   

Specie: Muskrat 

Period Description: Winter (November to March) 

Julian Date Range: 319-90 

     

Drop/Rise Value (m) PS 

Drop  < 0.15 1 

Drop  > 0.6 0 

Rise < 0.15 1 

Rise > 0.33 0 

 

4.2.2 Economic Benefits 

 There are two powerhouses (one Canadian and one American) that utilize water from 

Rainy Lake for electricity generation. The maximum flow for electricity generation is 150 m3/s 

and 250 m3/s for the Canadian and American powerhouses respectively. Therefore, any flow 

greater than 400 m3/s would be potential energy wasted by releasing over the spillway. To 
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calculate the economic benefit of each rule curve, a total sum of water over the spillway was 

calculated. Additional calculations would be required to convert volume of water to economic 

value, but volume was assumed to be sufficient for comparison between rule curves. For 

maximizing economic benefit, the rule curve with lowest volume of water released over the 

spillway would be deemed as most desirable and selected as the “preferred” decision in DCT. 

4.2.3 Flood Damage Reduction  

 The IJC has defined 337.5 m as an emergency state level for Rainy Lake. Above the 

emergency level, shoreline erosion and property damage is likely to occur. In 2014, Rainy Lake 

recorded high lake level of 338.74 m as shown in Figure 4.7. Running the inflow calibrated 

Raven model with Rule Curve A produced maximum stage of 338.82 m. In other words, the 

inflow calibrated model predicted the flood stage within 0.1 m without utilizing forced outflow 

data. This demonstrates that the flow constraints and rule curve operation produce realistic stage 

values. Rule curves were evaluated on the reduction of peak stage from the 2014 flood event. For 

maximizing flood damage reduction benefit, the rule curve with the lowest peak stage during a 

storm event would be deemed as most desirable and selected as the “preferred” decision in DCT. 

 

Figure 4.7 – Stage records of Rainy Lake from five biggest historical floods (Water Levels 

Committee of the International Rainy-Lake of the Woods Watershed Board, 2015) 
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Figure 4.8 – Raven model simulated stage using rule curve A in comparison with observed peak 

during 2014 storm event 

4.3 Decision Crash Testing for Model Assessment 

 In this section, the methodology of DCT and its application in model utility assessment 

are discussed.  

4.3.1 Generation of Synthetic Observations 

 In hydrologic model evaluation techniques, one difficulty in testing the model for its 

intended use is the unavailability of the correct answer. For example, assume a model is utilized 

to make a decision on upgrading a bridge to accommodate a 100-year storm event that has not 

happened in the past. Before the storm happens, there would be no stage data responding to a 
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generate inflow using storms smaller than a 100-year storm, and used to generate stage levels 

with a 100-year storm event. Similar problem occurs for rule curve selection. The historical data 

is generated using rule curve A for operation. When the model is used to evaluate rule curve B 

and rule curve C, simulation results do not have corresponding observation data, as the reservoir 

has never been operated using rule curve B or rule curve C. Traditional approach would calibrate 

the model to inflow data (using rule curve A), test the model with rule curve B and C, and 

assume the model is capable of informing rule curve performance based on various evaluation 

criteria (stage, volume, and peak stage).  

 A similar problem has been addressed in synthetic calibration experiments.  If a 

researcher has developed a new optimization algorithm for calibration of hydrologic models, 

researcher may want to test the calibration approach using historical observation data. Once 

calibration experiment has been performed, the imperfection in hydrograph fit could be an 

attribution of two factors: 

1. Error in model structure and observation data, resulting in impossible perfect fit between 

model simulation and historical data 

2. Error in optimization algorithm or calibration strategy, incapable of finding the optimal 

parameter set  

To assess which factor is impacting the performance, researchers can perform a synthetic 

calibration experiment. In a synthetic calibration experiment, the observation is generated from 

random sampling of model parameters. Then the same model is calibrated using the optimization 

algorithm. Since observation data is generated from the model used for calibration experiment, 

an optimal parameter set that generates perfect fit exists. Calibration may be repeated to ensure 

robustness. The synthetic calibration scheme is shown in Figure 4.9.  
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Figure 4.9 – Example of synthetic calibration experiment to test optimization algorithm 

Concepts from the synthetic calibration experiments can be utilized to address issue of 

data unavailability in decision making scenarios using a hydrologic model. Here, by random 

sampling of parameters, a “synthetic reality” is created using the model. In the synthetic reality, 

all hydrologic observation data is available, as it is assumed that the model with the randomly 

generated model parameters is the truth. Any decision criteria can readily be evaluated through 

model evaluation. To make synthetic reality consistent without observed hydrologic data, two 

safeguards were implemented. Without any safeguards, randomly generated parameters may 

result in unrealistic hydrologic data that would never be found in real life. Testing a hydrologic 

model’s capability in simulating unrealistic hydrologic data is unnecessary, simulation of 

unrealistic hydrologic data would not be an intended use of a hydrologic model. Random 

sampling of parameters was performed on a select number of parameters within a specified 

range. Range was determined from initial calibration of model to historical inflow data. Range 
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was between +/- 50% from parameters calibrated to inflow. Next, the synthetic reality was tested 

to ensure it had a peak response useful for decision making experiment. A parameter set was 

rejected if the peak response to the 2014 flood was less than the emergency level of 337.5 m.  

4.3.2 DCT Methodology 

 Decision Crash Testing (DCT) is a novel fit-for-purpose model evaluation method to 

rigorously test a model’s capability in supporting decision making. The key concept behind the 

DCT is that if a hydrologic model is incapable of making the correct decisions when calibration 

to data guaranteed by a simplified synthetic reality, it would be naïve to believe that the same 

model is capable of making the correct decision in a much more complex actual reality. In DCT, 

the model to be used in real application is calibrated to the synthetic reality observation data 

using the intended method of calibration strategy for real model application. Then, the model is 

given a decision making scenario and tested on whether the correct decision is made compared to 

the decision made in synthetic reality. Since the synthetic reality is generated using a random 

sample of model parameters, with enough calibration budget, the model should be able to 

generate near perfect fit to the synthetic reality. With this near perfect fit, model is likely to make 

the correct decision. A calibration run of a model with a budget of 10,000 requires 10,000 model 

runs. At each model run, the model generates a different NSE and different hydrologic outputs. 

Utilizing the hydrologic outputs at each model run, the decision made in a given model run is 

determined. In a decision record file, results from each model run is archived by recording the 

NSE and the decision for each evaluation criteria. A decision record file for a calibration run 

with 10,000 models runs archives 10,000 records of NSE and three decisions, one for each 

evaluation criteria. Then, the decision record file is used to establish a correlation between NSE 

and decision making capabilities of the model for a specific evaluation criteria. The process can 
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be repeated many number of times using additional realization of synthetic realities, N, allowing 

the model to be tested rigorously, similar to crash testing concepts. General DCT scheme for rule 

curve selection is illustrated in Figure 4.10 

 

Figure 4.10 – DCT setup workflow used for rule curve selection experiment 

Detailed steps of DCT implemented for the case study are: 

1. Randomly sample model parameters to generate synthetic reality 

2. Operate synthetic reality model using Rule Curves A, B, C and record performance in 

ecological, economic, and flood damage reduction for synthetic reality 

3. Determine rule curve rankings for each criteria for the synthetic reality (i.e. For synthetic 

reality n, the ranking for ecological benefits measured by probability of survivability is 

Rule Curve C > Rule Curve A > Rule Curve B) 

4. Calibrate base model to synthetic reality generated inflows  
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a. For each model run n’ in calibration, record the NSE for model run 

b. Run the model with parameter set n’ using Rule Curves A, B, C, and record 

performance in ecological, economic, and flood damage reduction 

c. Determine rule curve rankings for each evaluation criteria for model run n’ 

d. Compare rule curve rankings from model run n’ to rule curve rankings for 

synthetic reality n from step 3 for each evaluation criteria 

e. For model run n’, record the NSE and a correct/incorrect for each evaluation 

criteria  

5. Repeat steps 1-4 N times 

At the end of a DCT experiment, N number of decision record files are populated. For each 

decision record file, the results are summarized into NSE bins. For example, out of the 10,000 

model runs, all model runs with NSE between 0.5 and 0.55 were extracted. For each NSE bin, 

the similarity score was calculated for each evaluation criteria using equation 12.  

Similarity score = 
# of Correct in NSE Bin

Total # of model runs in NSE Bin
                       (12) 

A similarity score can be compared to a model’s probability to inform the correct decision. With 

100 decision record files, 100 similarity score values are populated for each NSE bin. Within a 

NSE bin, the mean and standard deviation in similarity score can be calculated.  

  

4.4 DCT Results and Calibration Objective Formulation 

 In this section, DCT results from different calibration objective formulations are 

discussed. For the different calibration objective formulations, the same set of synthetic realities 
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was utilized so that the only difference among the different experiments is the calibration 

objective. 

4.4.1 Results Based on Calibration to Different Objective Gauges 

 The DCT experiment was performed to the two objective functions: the weighted average 

of NSE at 11 stream gauges and the weighted average of a 7-day running average NSE at four 

reservoir inflows. Figure 4.11 shows a box whisker plot of DCT experiment results with 

calibration to inflow NSE. Figure 4.11 shows the similarity score of rule curve ranking for 

economic benefit (volume of water over spillway). The box whisker plot shows the maximum, 

25 percentile, median, 75 percentile, and minimum similarity score for each NSE bin. For 

example, the average similarity score value for model runs with a NSE range between 0.65 and 

0.70 is 70%, suggesting that models within this NSE range have 70% likelihood of correctly 

informing the decision making. 
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Figure 4.11 – Box whisker plot of similarity score for economic benefit when calibrated to 

inflow NSE 

Another interpretation for the plot is the model can correctly rank the rule curves based on 

economic benefit greater than 70% of the times when calibrated to inflow NSE greater than 0.65. 

There exist synthetic realities where the similarity score are near 95% and synthetic realities 

where the similarity score are near 20% in the NSE bin of 0.60 to 0.65. Low similarity score 

values can be a result of a synthetic reality where the randomly sampled parameter set results in 

small differences in volumes of water spilled among the three curves. As a result, this becomes a 

hard decision for the model to make.  Figure 4.12 and Figure 4.13 shows the box whisker plot 

for ecological benefit and flood damage reduction benefit, respectively. Both ecological benefit 

and flood damage reduction decisions are dependent upon stage levels. With models operating 

using the same rule curves under same regulations, similarity score consistently remain high 

despite the changes in NSE. Results show level dependent decision criteria are relatively 

insensitive to model performance compared to level independent decision criteria, given that the 

reservoir operating strategy remains consistent. 
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Figure 4.12 – Box whisker plot of similarity score for ecological benefit when calibrated to 

inflow NSE 

 

Figure 4.13 – Box whisker plot of similarity score for flood damage reduction benefit when 

calibrated to inflow NSE 
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In order to compare impact of gauge selection for calibration on decision making ability, the 

DCT was performed with calibration to NSEs of flow gauges. Individual box whisker plots can 

be found in Appendix D. Figures 4.14 to 4.16 show comparison of mean similarity score for 

calibration to each calibration objectives. Calibration to inflow showed better similarity score 

than calibration to flow gauges across all evaluation criteria when NSE > 0.65.  

 

Figure 4.14 – Comparison of mean similarity score for economic benefit based on calibration to 

inflow versus calibration to stream flow 
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Figure 4.15 – Comparison of mean similarity score for ecological benefit based on calibration to 

inflow versus calibration to stream flow 

 

 

Figure 4.16 – Comparison of mean similarity score for flood damage reduction benefit based on 

calibration to inflow versus calibration to stream flow 
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Results from DCT can be utilized to understand the limitations of the initial case study of the 

Lake of the Woods watershed. The model was calibrated to a flow NSE of 0.70. Results from 

DCT would indicate that the probability of calibrated model correctly ranking rule curves for 

economic benefit is approximately 70%. This probability would likely be lower in reality, as 

prediction in reality is more difficult than prediction in synthetic reality. However, once the 

model has been calibrated to inflow, the probability increases, as the running average NSE of 

inflow for base mode is 0.89. The probability of the inflow calibrated model correctly ranking 

rule curves for economic benefits is nearly 90%, suggesting that inflow calibration strategy is 

preferable for this decision making application.  

4.4.2 DCT Applied on Different Calibration Objectives  

In order to determine optimal calibration objective for model application to inform decision 

making, DCT was performed on calibration to inflow to different objective function 

formulations. The objective functions are: 

1. Calibration to inflow NSE 

2. Calibration to inflow KGE 

3. Calibration to inflow NSE penalized by Percent Bias, as shown in equation 13 

4. Calibration to spring inflow NSE (March to June) where flow is highest 

Mean similarity score of each objective function is shown in Figure 4.17 to 4.19.  

PBIAS penalized NSE = NSE - 
max(0,|PBIAS|-10)

100
                                        (13) 

Results showed little difference between mean similarity score values across NSE, KGE, and 

Spring NSE. However, inclusion of percent bias into the objective function increased the mean 
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similarity score by nearly 10% across all evaluation criteria until all objective functions 

converged near 0.75.  

 

Figure 4.17 – Comparison of mean similarity score for economic benefit based on calibration to 

different calibration objective functions 
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Figure 4.18 – Comparison of mean similarity score for ecological benefit based on calibration to 

different calibration objective functions 

 

Figure 4.19 – Comparison of mean similarity score for flood damage reduction benefit based on 

calibration to different calibration objective functions 
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4.4.3 DCT to Assess Error in Evaluation Criteria 

Results from Sections 4.4.2 and 4.4.3 showed that all calibration strategies converged 

to a near perfect fit with sufficient calibration budget, due to the chosen parameter sampling 

strategy. Such near perfect fit is extremely difficult to achieve in non-synthetic calibration, due 

to error in model structure, hydrologic data utilized in model, and observation data. To 

compensate for these errors, NSE and decision for each evaluation criteria was recorded at 

every model run to assess decision making capabilities across a wide range of NSE, as end 

results alone would not be beneficial. Another method to compensate is to restrict the 

calibration budget. Based on previous experiments, a calibration budget of 50 model runs 

resulted in a NSE of approximately 0.80 across the flow weighted average of 11 flow gauge 

NSEs and the flow weighted average of four inflow NSEs, similar to the LOWRL model used 

in the case study in Chapter 3. DCT was performed with 50 model runs as calibration budget, 

with combination of different gauges used in calibration objective. At the end of each 

calibration run, the model was evaluated on whether it made the correct rule curve choice 

across each evaluation criteria. Additionally the model was evaluated on whether it made the 

correct rule curve choices across all evaluation criteria. Next, the error of the model in each 

evaluation criteria was calculated. For each rule curve operation, the model error in ecological 

benefit was calculated by taking the difference in average probability of survivability between 

the calibrated model run and the synthetic parameter set driven model run. The model error in 

economic benefit was calculated by taking the difference in total volume of water released 

over the spillway (in %) between the calibrated model run and the synthetic parameter set 

driven model run.  The model error in flood damage reduction was calculated by taking the 

difference between peak stage during a storm even in the calibrated model run and the 
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synthetic parameter set driven model run. In these experiments, emphasis was given in DCT to 

evaluate selection of different gauges for calibration objective. DCT was performed with flow 

weighted average NSE across four different combination of flow gauges and inflows. The four 

gauge selections for calibration were: 

1. All gauges and inflows in the LOWRL basin 

2. All gauges and inflows upstream and including Rainy Lake 

3. Rainy Lake inflow 

4. Big Fork River flow gauge – a downstream flow gauge with shared parameters 

Similarity score at the end of the DCT experiment for each evaluation criteria was calculated 

using equation 13.  

Similarity score = 
# of Correct calibrated model runs

Total # of model runs
                       (13) 

Table 4.2 shows the similarity scores for each evaluation criteria across four different 

calibration objective formulations.  

Table 4.2 – Similarity score across each evaluation criteria across four different calibration 

objective gauge formulations 

  Environmental Economic Flood Damage Reduction All 

All Gauges 89 87 99 77 

Upstream 91 94 100 87 

Rainy 95 98 98 91 

Big Fork 76 21 54 8 
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Results showed that not utilizing hydrologic data of Rainy Lake resulted in poor similarity 

score. Calibrating to Big Fork alone resulted in a similarity score of 21 for economic benefit, 

indicating model calibrated to Big Fork alone has a 21% probability of informing the correct 

decision based on economic benefits. However, similarity score for environmental benefits is 

relatively high. This is consistent with the findings in previous section where model 

performance has relatively low impact on decision making when it comes to criteria dictated 

by rule curve operations. Amongst the three calibration formulations that include Rainy Lake, 

calibrating to Rainy Lake alone resulted in highest similarity score across all evaluation 

criteria. The similarity score for making the correct decision in all evaluation criteria improved 

by 14 when calibrated to Rainy Lake alone, compared to calibrating to all gauges available. 

Figures 4.20 - 4.22 show error in calibrated model runs across each evaluation criteria. Figure 

4.21 showed that the error in volume of water over spillway varies more significantly across 

the three gauge selections compared to the error in probability of survivability. Calibrating to 

Rainy Lake alone resulted in a mean error of -25% for when using rule curve A, while 

calibrating to all gauges resulted in a mean error of -40.5% when using rule curve A. Figure 

4.21 showed that the error in volume of water over spillway varies more significantly across 

the three gauge selections compared to the error in probability of survivability. Calibrating to 

Rainy Lake alone resulted in a mean error of -25% for when using rule curve A, while 

calibrating to all gauges resulted in a mean error of -40.5% when using rule curve A. Figure 

4.22 showed that the error in flood damage reduction varies more significantly across the three 

gauge selections as well. Calibrating to Rainy Lake alone resulted in a mean error of -0.7 m 

when using rule curve A, while calibrating to all gauges resulted in a mean error of -0.9 m 

when using rule curve A.  



83 
 

 

Figure 4.20 – Box whisker plot of calibrated model error in environmental benefit. X-axis 

shows gauges used in calibration and rule curve utilized. 
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Figure 4.21 – Box whisker plot of calibrated model error in economic benefit. X-axis shows 

gauges used in calibration and rule curve utilized. 
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Figure 4.22 – Box whisker plot of calibrated model error in flood damage reduction benefit. 

X-axis shows gauges used in calibration and rule curve utilized. 

When calibrating to all gauges, performance at Rainy Lake inflow would have been deterred 

to increase performance at other gauges. Worse similarity score in all-gauge calibration 

scenario may be due to lower performance in Rainy Lake inflows. In real life scenarios, there 

may be cases where similar performance at one gauge while achieving better performance at 

other gauges. This would require additional calibration budget, as more objective functions 

need to be optimized. However, if similar performance in Rainy Lake inflow can be achieved 

with better performance at other gauges, it may indicate that the right numbers are achieved at 

Rainy Lake for the right reasons. To test such scenario, DCT was performed across the three 
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gauge combinations that include Rainy Lake inflow (all gauge, upstream, and Rainy Lake 

alone) with a calibration budget of 10,000. However, the calibration was set to terminate when 

Rainy Lake inflow NSE was equal or greater to 0.7. All calibrations in the DCT would have a 

Rainy Lake inflow NSE of approximately 0.7, but varying NSE across different gauges, 

depending on the calibration objective.  

Table 4.3 shows the similarity scores for each evaluation criteria across the three different 

calibration objective formulations with calibration stopping when Rainy Lake inflow NSE ≥ 

0.7.  

Table 4.3 – Similarity score across each evaluation criteria across four different calibration 

objective gauge formulations 

  Environmental Economic Flood Damage Reduction All 

All Gauges 80 80 94 65 

Upstream 86 76 96 62 

Rainy 85 71 96 62 

 

Similarity score shows slight improvement overall when calibrated to all gauges, compared to 

calibrating to Rainy Lake alone. Figures 4.23 to 4.25 show that errors in evaluation criteria 

vary little across selection of gauges used for calibration.  
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Figure 4.23 – Box whisker plot of calibrated model error in environmental benefit and 

stopped when Rainy Lake NSE ≥ 0.7. X-axis shows gauges used in calibration and rule curve 

utilized. 
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Figure 4.25 – Box whisker plot of calibrated model error in economic benefit and stopped 

when Rainy Lake NSE ≥ 0.7. X-axis shows gauges used in calibration and rule curve utilized. 
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Figure 4.26 – Box whisker plot of calibrated model error in flood damage reduction benefit 

and stopped when Rainy Lake NSE ≥ 0.7. X-axis shows gauges used in calibration and rule 

curve utilized. 

Next, DCT with 50 calibration budget was performed using different calibration diagnostics to 

compare calibrated model error when calibration was performed to different diagnostics. 

Model was calibrated to the flow weighted average of all 11 gauges and flow weighted 

average of all four inflows. The diagnostics used for the experiments were NSE, KGE, percent 

bias penalized NSE, and percent bias. Similarity score across the diagnostics are summarized 

in Table 4.4. 
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Table 4.4 – Similarity score across each evaluation criteria across four different calibration 

objective diagnostics: NSE, KGE, percent bias penalized NSE (NSEP), and percent bias, when 

calibrated with a budget of 50 model runs 

  Environmental Economic Flood Damage Reduction All 

NSE 89 87 99 77 

KGE 96 87 96 81 

NSEP 90 83 94 75 

PBIAS 77 63 80 42 

 

Results remain consistent with findings in Section 4.4.2. Calibration to NSE, KGE, and NSEP 

resulted in similar similarity score when the objective function values were above 0.8. 

However, as shown in Figures 4.27 – 4.29, calibration to KGE showed significant reduction in 

errors in economic benefits and flood damage reduction benefits.  
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Figure 4.27 – Box whisker plot of calibrated model error in environmental benefit. X-axis 

shows diagnostic used in calibration and rule curve utilized. 
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Figure 4.28 – Box whisker plot of calibrated model error in economic benefit. X-axis shows 

diagnostic used in calibration and rule curve utilized. 



93 
 

 

Figure 4.29 – Box whisker plot of calibrated model error in flood damage reduction benefit. 

X-axis shows diagnostic used in calibration and rule curve utilized. 

Calibration to KGE resulted in noticeably lower error in economic benefit and flood damage 

reduction benefit. The mean error in volume of water over spillway (%) using rule curve A 

when calibrated to KGE was -21.5 %, where the mean error was -40.5 % when calibrated to 

NSE. The mean error in stage (m) during a flood event using rule curve A when calibrated to 

KGE was -0.66 m, where the mean error was -0.92 m when calibrated to NSE.  Gupta et al. 

(2009) argue that calibrating to NSE results in a tendency of runoff peak to be systematically 

underestimated. The economic benefit and flood damage reduction benefit are closely related 

to variability of flow, which may benefit from improved performance in variability measures 



94 
 

when calibrating to KGE. However, since calibration to NSE underestimated the error in all 

rule curve operations, the ranking of rule curves has minimal impact, resulting in minimal 

change in similarity score.   

4.5 Case Study Conclusions 

 The result of Decision Crash Testing may provide valuable information to the 

limitations and usefulness of the models. Also, it provides a means of identifying the best 

formulation for calibration objective of the specific decision making scenario. 

 First, results of DCT show that the usefulness of model is heavily dependent on the 

evaluation criteria used to assess model quality. Usefulness of model in predicting hydrologic 

variables controlled by operation is limited. This is because stage related variables are largely 

controlled by implementation of reservoir operations, not model performance. Determination 

of what defines a good NSE requires careful assessment of intended use of the model, as a 

model with 0.1 NSE may be good enough in ranking rule curves for stage related evaluation 

criteria, while a model with a NSE of 0.8 may be insufficient for ranking rule curves for peak 

flows. 

 Second, calibration to observation data which is more closely related to the intended 

use of model may be beneficial for operational purposes. Calibration to 11 stream gauges was 

found to be a more difficult target to achieve compared to calibration to four inflow 

observations, as more spatially distributed gauges require the model to better represent reality 

(i.e., getting the right answers for the right reasons). When making decisions predicated on 

simulated reservoir stage values, utilizing models calibrated to reservoir inflow resulted in 

higher probability of making the correct decision. However, these calibration strategies do not 



95 
 

need to be mutually exclusive. Two base models calibrated using each strategy can be used to 

rank rule curves, and the user can have a better understanding in the uncertainty of the 

rankings made by each model, without having to run additional DCT experiments. Section 

4.4.3 demonstrated importance of prioritizing gauges to be optimized. Reservoir that directly 

impacts decision making should be prioritized. Improving performance at other gauges 

without sacrificing performance in high priority zone may result in slight increase in error 

reduction. 

 Third, inclusion of additional diagnostics, such as KGE and percent bias, into the 

calibration objective function can result in objectively better performance in decision making 

and error calculations in decision making. Various literatures emphasizes the importance of 

inclusion of multiple hydrologic diagnostics to calibration in order to assure model is getting 

the right answers for the right reasons (Gupta et al., 2012, Euser et al., 2013, Biondi et al., 

2012). The DCT experiments in this thesis indicate showed that requirement for hydrologic 

realism may also have practical benefits in increasing similarity scores and reduction in 

calibrated model error specific to certain decision making scenarios.  

 The DCT experiments took a simplified approach in synthetic scenario sampling. The 

results from the experiments may be overestimating model performance in informing decision 

making, as a perfect solution to the parameter set exists for the calibration problem. This may 

also weaken the variability across performance of different calibration objective formulations. 

It may be beneficial to introduce uncertainty in synthetic observation, through change in 

model structure and introduction of noise to data.  
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Chapter 5 

Conclusions 

 In this section, the thesis’ contribution to literature and future opportunities are 

discussed. 

5.1 Contribution to Literature 

The result of this thesis clearly addresses the basic concept introduced by Klemes 

(1986): models need to be tested for their intended use. The case study in the thesis required a 

model for operational rule curve section. In order to model rule curve operation, novel 

approaches were developed to model lakes and reservoir operation in the Canadian Shield. 

Then, the Decision Crash Testing (DCT) method was utilized to establish correlation between 

traditional model diagnostics and model utility. The correlation helps illustrate the limitations 

and usefulness of a model in a clear manner understandable by most stakeholders. 

Furthermore, the DCT can be used to assess the results of different calibration formulations in 

an objective manner. Researchers and model users continuously debate on the importance of 

getting the right answer for the right reason. Through a novel approach on defining what the 

right answer is (more than simply a “high” NSE), results showed an increase in similarity 

score when additional diagnostics other than NSE were incorporated to enhance hydrological 

adequacy.  

5.2 Future Opportunities for DCT 

 This thesis demonstrates an evaluation method to test model on its intended use, 

specifically applied to examine the appropriateness and utility of different objective function 

choices. Furthermore, it allows objective comparison between different calibration 
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formulations. DCT should be implemented to test a wider variety of calibration objectives. 

The key requirements for DCT formulation in this thesis include: 

1. Clear formulation of evaluation criteria based upon model output 

2. Generation of synthetic reality using random sampling of parameters 

3. Calibration objective formulation 

4. Explicit decision making scenario (curve ranking) 

In reality, model output may not easily be transformed into a decision making scenario. Often, 

decision involves human intervention and judgement, difficult concepts to incorporate into a 

model. It may be suitable to incorporate uncertainty in transforming model output to decision. 

A big hurdle during the DCT experiment was the quick convergence during calibration, 

relatively independent of calibration objective formulation. Due to random sampling of 

parameters without change in model structure, a perfect solution parameter set always exists 

for calibration. As a result, all calibration formulation showed to perform extremely well when 

provided enough budget to converge. In reality, such high performance is rarely achieved. 

Methods such as uncertainty in forcing data, adding complexity to model structures, and 

statistical methods in parameter sampling may address the issue by creating synthetic 

observations where no solution parameter set exists. In this thesis, each evaluation criteria was 

observed independently from each other. However, in reality, decision making process in 

hydrology is often a multi objective problem. Incorporation of multi-objective calibration into 

DCT may enrich the benefits of DCT in assessment of objective formulation. 
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Appendix A – Raven Input File with Process Selection 
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Appendix B – Downstream hydrographs of Kaministiquia Watershed 
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Figure A.1 – Kaministiquia River calibration period flow results 

 

Figure A.2– Kaministiquia River validation period flow results 
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A.3– Kakabeka Falls River calibration period flow results 

 

Figure A.4– Kakabeka Falls River validation period flow results 

 



107 
 

 

Figure A.5– Corbett River calibration period flow results 

 

Figure A.6– Corbett River validation period flow results 
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Figure A.7– Whitefish River calibration period flow results 

 

Figure A.8 – Whitefish River validation period flow results 
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Figure A.9 – Slate River calibration period flow results 

 

 

Figure A.10– Slate River validation period flow results 
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Figure A.11– Kaministiquia River at Fort Williams calibration period flow results 

 

Figure A.12 – Kaministiquia River at Fort Williams validation period flow results 

 



111 
 

Appendix C – Hydrographs of Lake of the Woods Watershed 
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Figure B.1 – Hydrograph of stream flows for calibration period when calibrated to stream flow 
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Figure B.2 – Inflow hydrograph for calibration period when calibrated to stream flow 
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Figure B.3 – Hydrograph of stream flows for validation period when calibrated to stream flow 
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Figure B.4 – Inflow hydrograph for validation period when calibrated to stream flow 

 

 



125 
 

 

 

 



126 
 

Figure B.5 – Hydrograph of stream flows for calibration period when calibrated to inflow 
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Figure B.6 – Inflow hydrograph for calibration period when calibrated to inflow 
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Figure B.7 – Hydrograph of stream flows for validation period when calibrated to inflow 
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Figure B.8 – Reservoir inflow hydrograph for validation period when calibrated to inflow 
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Appendix D – Box Whisker Plots of Similarity Scores 
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Figure C.1 – Box whisker plot of similarity score calibrated to inflow NSE 
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Figure C.2 – Box whisker plot of similarity score calibrated to stream flow NSE 
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Figure C.3 – Box whisker plot of similarity score calibrated to spring inflow NSE 
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Figure C.4 – Box whisker plot of similarity score calibrated to inflow KGE 
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Figure C.4 – Box whisker plot of similarity score calibrated to inflow NSE penalized by PBIAS 
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