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Abstract

As micro aerial vehicles (MAVs) become increasingly common as platforms for aerial
inspection, monitoring and tracking, the need for robust automated landing methods in-
creases, for both static and dynamic landing targets. Precision MAV landings are difficult,
even for experienced human pilots. While semi-autonomous MAV landings have proven
effective, they add additional requirements for multiple skilled operators, which in turn
increase the operational costs. This is not always practical and the human in the loop
prevents the possibility of more efficient robotic teams that do not require human opera-
tors. As such, an automated landing system has been a growing topic of interest to both
industry and academia.

In this thesis the aim is to address three different issues. First, in order for a MAV
to land autonomously onto a moving target, a complete tracking and landing system for
MAVs is needed. An end-to-end system termed ATL is introduced. Results show that
ATL is able to track and execute a planned trajectory onto a moving landing target at
speeds of 10m/s in simulation.

Secondly, to enable autonomous MAV landings in GPS-denied environments, multiple
cameras are needed for simultaneously tracking the landing target and performing state
estimation. With the prevalence of gimbal cameras on commercially available MAVs for
applications such as cinematography, it is advantageous to use the gimbal camera along
with other cameras on-board for state estimation. An encoder-less gimbal calibration
method is introduced to enable gimbal cameras to be used with state estimation algorithms.
The method was validated by modifying OKVIS to jointly optimize for the gimbal joint
angle.

Finally, to achieve full MAV autonomy, all software components on-board must run in
real-time on a computer with limited resources. To address this issue and to take advan-
tage of a gimbal camera the Multi-State Constraint Kalman Filter (MSCKF) algorithm is
extended by incorporating a gimbal camera. The method was validated in simulation and
on a KITTI raw dataset both show promising results.
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Chapter 1

Introduction

As micro aerial vehicles (MAVs) become increasingly common as platforms for aerial inspec-
tion, monitoring and tracking, the need for robust automated landing methods increases,
for both static and dynamic landing targets. Numerous scenarios have been proposed
in which MAVs would partner with manned and autonomous ground vehicles and pro-
vide real-time aerial information to resolve motion planning or visibility challenges from a
second perspective. Monitoring icebergs from surface vessels, finding routes through chal-
lenging terrain for ground rovers, aiding police in high speed pursuits, or package delivery
where a fleet of drones might be deployed from a truck, are all examples of scenarios where
the ability to dock with a moving platform could significantly extend the capabilities and
use cases of today’s MAVs.

Precision MAV landings are difficult, even for experienced human pilots. As an example,
in 2012, a group of researchers from the University of Waterloo dropped a GPS beacon
onto an iceberg with a hexacopter. While the conditions were ideal for the ship, where the
waves were 1− 2m in height and winds were around 10− 12 knots. The same conditions
proved to be difficult for the experienced human pilot who was controlling the hexacopter.
Due to a number of sub-optimal flight conditions such as wind, waves and ship travelling at
a significant speed, the hexacopter crashed onto the ship deck and fell into the sea during
landing.

While semi-autonomous MAV landings have proven effective, they add additional re-
quirements for multiple skilled operators, which in turn increases the operational costs.
This is not always practical and the human in the loop prevents the possibility of more ef-
ficient robotic teams that do not require human operators. As such, an automated landing
system has been a growing topic of interest to both industry and academia recently, some of
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which has been spurred by competitions such as the DJI 2016 SDK Developer Challenge 1

and the Mohamed Bin Zayed International Robotics Challenge (MBZIRC 2017) 2. Both
of these challenges feature a significant scoring portion of the overall challenge allocated to
the task of landing on a moving target that is travelling at speeds greater than 10 km/hr.
In the DJI 2017 challenge only 1 out of 10 finalists were able to land autonomously onto a
moving ground target, similarly in the MBZIRC 2017 challenge out of 25 finalists only 2
teams successfully completed the landing challenge [3].

The examples discussed highlight the difficulty in precision MAV landings. In this
thesis we aim to address three different issues in the problem of autonomous MAV landing
onto a moving target:

• End-to-end autonomous landing system: In order for a MAV to land au-
tonomously onto a moving target, a complete tracking and landing system for MAVs
is needed. In Chapter 3, we introduce, and we present our end-to-end system we
term ATL as well as including contributions towards robust target detection.

• Gimbal camera calibration for state estimation: Most existing autonomous
MAV landing solutions rely on GPS for MAV state estimation. To enable autonomous
MAV landings in GPS-denied environments, multiple cameras are needed for simul-
taneously tracking the landing target and performing state estimation. With the
prevalence of gimbal cameras on commercially available MAVs for applications such
as cinematography, it is advantageous to use the gimbal camera along with other
cameras on-board for state estimation. We extend the work of [13] and [59] by intro-
ducing an encoderless gimbal calibration approach that eliminates the requirement
of joint angle measurements from the gimbal. This method is published in ICRA
2018 [11] and is described further in Chapter 4.

• Filter-based visual inertial odometry: To achieve full MAV autonomy, all soft-
ware components on-board must run in real-time on a computer with similar compu-
tational power to a laptop. Existing state of the art VIO algorithms are optimization
based. In contrast, filter based approaches are more efficient while achieving similar
accuracy to the optimization-based approaches. In Chapter 5, we extend the Multi-
State Constraint Kalman Filter (MSCKF) algorithm [55] by incorporating a gimbal
camera.

1DJI 2016 SDK Challenge: https://developer.dji.com/challenge2016/
2MBZIRC 2017: http://www.mbzirc.com/challenge
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Chapter 2

Background

This chapter briefly covers background theory required for the different contributions pre-
sented in this thesis. The camera and distortion models is first described, followed by
how features are tracked, matched and estimated. Lastly, the Error State Kalman Filter
(ESKF) is covered as a precursor to the G-MSCKF in Chapter 5.

2.1 Notations

We employ the following notation throughout this work: A vector in the global frame,
FG, can be expressed as pG, or more precisely if the vector describes the position of the
IMU frame, FI, expressed in FG, the vector can be written as pIG

G with G and I as start
and end points, or for brevity as pI

G. Similarly a transformation between FG to FI can be
represented by a homogeneous transform matrix, TIG, where its rotation matrix component
can be written as CIG. A rotation matrix that is parametrized by quaternion qIG can be
represented as C{qIG}.

2.2 Camera Model and Image Distortion Model

As cameras improve in quality, size and cost, the choice of using a camera as an odometry
sensor is becoming a widely researched topic. In this section we describe the camera model
and distortion model used, specifically, the pinhole camera model and the radial-tangential
distortion model. We will also detail how they are used to describe the projection of 3D
scene points onto the image plane.
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2.2.1 Pinhole Camera Model

Figure 2.1: Pinhole Camera Model

The pinhole camera model describes how 3D scene points are projected onto the 2D
image plane of an ideal pinhole camera. The model makes the assumption that light rays
emitted from an object in the scene pass through the pinhole of the camera, and projected
onto the image plane. Let us consider Fig. 2.1 where it shows a 3D point XC = (X, Y, Z)
expressed in the camera frame, FC , being projected on to the camera’s 2D image plane in
homogeneous coordinates xC = (u, v, 1). The projection can be written as

u =
Xfx
Z

v =
Y fy
Z

(2.1)

where fx and fy denote the focal length in the x and y-axis. Or, in matrix form

xC = KXC (2.2)uv
1

 =

fx 0 cx
0 fx cy
0 0 1

X/ZY/Z
1

 (2.3)

where K represents the intrinsic matrix, cx and cy represents the principal point offset in
the x and y direction.

In practice, the pinhole camera model only serves as an approximation to modern
cameras. The assumptions made in the model are often violated with factors such as large
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camera apertures (pinhole size), distortion effects in camera lenses, and other factors. That
is why the pinhole camera model is often used in combination with a distortion model in
the hope of minimizing projection errors from 3D to 2D.

2.2.2 Projection Matrix

In Section. 2.2.1, we have described the projection of a scene point, XC , to the camera’s
image plane with coordinates, xC . The scene point, XC , was assumed to be expressed in
the camera’s frame of reference, this, however, is often not the case. The scene point can
also be expressed in the global frame, FG. Therefore, a projection matrix P ∈ R3×4 is used
to project a scene point expressed in the global frame to the camera’s image plane. The
projection matrix is made up of an intrinsic and extrinsic matrix.

P = K [CCG | tG] (2.4)

The extrinsic matrix contains the camera’s orientation as a rotation matrix, CCG ∈ R3×3,
and position, tG ∈ R3, expressed in the global frame.

2.2.3 Radial Tangential Distortion

Lens distortion generally exist in all camera lenses, therefore it is vital we model the
distortions observed. The most common distortion model is the radial-tangential (or simply
as radtan) distortion model. The two main distortion components, as the name suggests,
are the radial and tangential distortion.

The radial distortion occurs due to the shape of the lens. Light passing through the
center undergoes no refraction. Light passing through the edges of the lens, on the other
hand, undergoes through severe bending causing the radial distortion. The effects of a
positive and negative radial distortion can be seen in Fig 2.2.
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Figure 2.2: Radial Distortion1

The tangential distortion is due to camera sensor misalignment during the manufactur-
ing process. It occurs when the camera sensor is not in parallel with the lens. The cause
of a tangential distortion can be seen in Fig 2.3.

Figure 2.3: Tangential Distortion1

The combined radial-tangential distortion is modelled using a polynomial approxima-
tion with parameters k1, k2 and p1, p2 respectively. To apply the distortion the observed
3D point (X, Y, Z) is first projected, distorted, and finally scaled and offset in the im-
age plane (u, v). The radial-tangential distortion model in combination with the pinhole

1MATLAB - Computer Vision Toolbox: https://www.mathworks.com/help/vision/ref/cameraintrinsics-
class.html
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camera model is given in Eq. (2.5) as

x′ = X/Z

y′ = Y/Z

r2 = x′2 + y′2

x′′ = x′(1 + k1r
2 + k2r

4) + 2p1x
′y′ + p2(r2 + 2x′2)

y′′ = y′(1 + k1r
2 + k2r

4) + p1(r2 + 2y′2) + 2p2x
′y′

u = fx ∗ x′′ + cx

v = fy ∗ y′′ + cy

(2.5)

2.3 Feature Detection and Matching

In this section we explain how feature points are detected and matched between different
camera frames. The common feature detection and matching pipeline for localization and
mapping algorithms is:

1. Detect regions of interests (image feature) in the image
2. Extract image feature information using descriptors
3. Match extracted descriptors

2.3.1 FAST Feature Detection

Feature detection in computer vision is a process of gathering scene information and de-
ciding locally whether an image feature exists. The resulting subset of image features in
the image domain can in turn be used for localization and mapping algorithms to estimate
the camera pose.

For our requirements corners was the chosen image feature. The most widely used
corner detector is the FAST feature detector [61]. The advantage of using FAST includes
its speed and high detection rate. It operates by inspecting a gray-scale image and applying
a Bresenham circle or patch of configurable radius (radius of 3 for a 16 pixel circle in
Fig 2.4), where each pixel value on the circle is labeled clockwise. If a set of N contiguous
pixels in the circle are all brighter than the intensity of the center candidate pixel p plus
a threshold value t, or are all darker compared to p minus a threshold value t, then p is
considered a corner.
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Figure 2.4: FAST Corner Detection [61]

A uniform feature distribution over the image domain is known to avoid degenerate
configurations for SLAM, and reduce redundant information. Further, a uniform and
un-clustered corner distribution has the potential of increasing computer vision pipeline
efficiency, as a lower number of features are required for the whole image. To encourage
a uniform feature distribution a custom naive implementation of Grid-FAST was imple-
mented 1. The naive Grid-FAST was implemented as follows, given an image we divide
the image into r rows and c columns with the goal of detecting a total max number of N
corners. The max number of corners per grid cell n is then given as

n =
N

r × c
. (2.6)

Using n we limit the corners detected in each image grid cell to naively encourage a uniform
distribution.

1At the time of writing OpenCV has removed the interface to the GridAdaptedFeatureDetector

implementation from their code base.
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(a) FAST Detection (1000 Corners) (b) Grid-FAST Detection (714 Corners)

(c) 2D Histogram of FAST Detection (d) 2D Histogram of Grid-FAST Detection

Figure 2.5: Comparison between FAST and Grid-FAST

In Fig. 2.5 both FAST and Grid-FAST observe the same image scene with the same de-
tection parameters. Grid-FAST divided the image into 10 rows and columns to encourage
a uniform corner detection. While Grid-FAST detected a lower number of corners com-
pared to FAST (714, 1000 respectively), we can observe the benefit of using Grid-FAST
in Fig. 2.5c and Fig. 2.5d, where it clearly shows that FAST detection has an undesirably
high detection concentration around the chessboard in this particular scene, Grid-FAST
on the other hand does not exhibit the same problem. Although, Grid-FAST obtains fea-
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tures of lower quality in terms of repeatable detection, the threshold of corner-ness can be
increased if this is an issue.

2.3.2 ORB Feature Descriptor and Matching

To correspond image features detected in two different image frames a feature descriptor
is used. Feature descriptors are a way to describe the image feature observed for match-
ing. There are a number of feature descriptors that extract patch information in order to
create a robust and repeatable match. Feature descriptors such as SIFT [48], SURF [1],
are histogram of gradients (HOG) based patch descriptors. These HOG descriptors are
invariant to small rotations and lighting variations, they are however, relatively expensive
to compute. The computationally expensive components are its calculation of the image
gradient and large descriptor dimension. While both descriptors provide quality infor-
mation of image features, the aforementioned computational factors impact the matching
speed significantly.

Binary descriptors such as BRIEF [10], ORB [64] and BRISK [43] have been proposed
to speed up the feature descriptor and matching process. The performance boost in binary
descriptors comes in the form of using a binary sampling pattern around each image feature
previously detected (see Fig 2.6), and outputting a binary vector, instead of computing
image gradients and outputting a floating point vector. Each binary descriptor uses its
own unique sampling pattern, and outputs a binary string to be used for matching. The
matching process is cheaper compared to the HOG based descriptors, because instead
of comparing two floating point vectors, comparing binary descriptors is performed by
computing the Hamming distance using a XOR or bit count operation, which can be
performed extremely quickly on modern CPUs [9].

Following [65], the ORB descriptor was chosen for experimentation. The ORB descrip-
tor is considered as an improvement over BRIEF with the addition of being orientation
invariant. However, it can be observed in Fig. 2.7 that the ORB detector from OpenCV
strongly favours strong corners over keeping the detected points uniform over the image
space. As a result the key-points are mostly clustered around the chessboard observed in
the scene. This is in contrast to Grid-FAST discussed in Section. 2.3.1, where the features
detected are uniformly distributed over the entire image space. Because of ORB features
not being uniformly distributed, the KLT feature tracker is considered and is discussed in
the following section.
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(a) BRIEF Descriptor [10] (b) ORB Descriptor [64] (c) BRISK Descriptor [43]

Figure 2.6: Binary Descriptors

Figure 2.7: ORB descriptors detecting features in the EuRoC MAV dataset [8]
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2.3.3 Kanade-Lucas-Tomasi (KLT) Feature Tracker

In the previous section, we showed how ORB descriptors and matching methods are used
to correspond and match features across multiple camera frames. This process of corre-
sponding the the same features across multiple camera frames is called feature tracking.
There are many different feature tracking pipelines. Matching feature descriptors such
as ORB has shown to have better temporal tracking accuracy compared to KLT-based
methods [58]. However, in the work of [69], descriptor-based feature trackers were found
to require more computational resources with limited gains in tracking accuracy. Making
it less attractive for real-time operation. In the following we will briefly describe the KLT
feature tracker, but first an understanding of optical flow is required.

Optical Flow

Optical flow estimates the velocity of each image feature in successive images of a scene.
It makes the following explicit assumptions:

• Pixel intensity does not change between consecutive frames

• Displacement of features is small

• Features are within the same local neighbourhood

Let us consider a pixel, p, in the first frame which has an intensity, I(x, y, t), where it
is a function of the pixel location, x and y, and time, t. If we apply the aforementioned
assumptions, we can say that the intensity of said pixel in the first frame to the second
does not change. Additionally, if there was a small displacement, dx and dy, and small
time difference, dt, between images this can be written in mathematical form as,

I(x, y, t) = I(x+ dx, y + dy, t+ dt). (2.7)

This is known as the brightness constancy equation. To obtain the image gradient and
velocity of the pixel, we can use Taylor series approximation of right-hand side of Eq. (2.7)
to get,

I(x+ dx, y + dy, t+ dt) = I(x, y, t) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt+ H.O.T, (2.8)

removing common terms and dividing by dt we get,

Ixvx + Iyvy + It = 0 (2.9)

12



or,
Ixvx + Iyvy = −It (2.10)

where:

Ix =
∂I

∂x
; Iy =

∂I

∂y

vx =
dx

dt
; vy =

dy

dt
.

The image gradients along the x and y directions are Ix and Iy, where It is the image
gradient along time, finally, vx and vy are the pixel velocity in x and y directions, which
is unknown. The problem with Eq. 2.10 is that it provides a single constraint with two
degrees of freedom, and as such requires at least one additional constraint to identify a
solution.

The Lucas-Kanade method solves the aperture problem by introducing additional con-
ditions. This method assumes all pixels within a window centered around a pixel p will
have similar motion, and that the window size is configurable. For example, a window size
of 3× 3 around the pixel p, the 9 points within the window should have a similar motion.
Using Eq. 2.10, the intensity inside the window must therefore satisfy,

Ix(p1)vx(p1) + Iy(p1)vy = −It(p1)

Ix(p1)vx(p2) + Iy(p2)vy = −It(p2)

...

Ix(p1)vx(pn) + Iy(pn)vy = −It(pn)

where p1, p2, . . . , pn are the pixels in the window. This can be re-written in matrix form
Ax = b as,

A =


Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)

 x =

[
vx
vy

]
b =


−It(p1)
−It(p2)

...
−It(pn)

 . (2.11)

The linear system of equations of Eq. 2.11 is over-determined, therefore there is no exact
solution. To address this issue, a least squares method can be used to approximate the
solution by applying the ordinary least squares. For the system Ax = b, the least squares
formula is obtained by minimizing the following,

argmin
x
||Ax− b||, (2.12)
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the solution of which can be obtained by using normal equations,

ATAx = ATb (2.13)

x = (ATA)−1ATb. (2.14)

Rewriting Eq 2.11 in the form of Eq. 2.14 we get,[
vx
vy

]
=

[ ∑
i Ix(pi)

2 ∑
i Ix(pi)Iy(pi)∑

i Ix(pi)Iy(pi)
∑

i Iy(pi)
2

]−1 [−∑i Ix(pi)It(pi)
−
∑

i Iy(pi)It(pi)

]
(2.15)

which is finally used to obtain the optical flow of pixel p.

Figure 2.8: KLT Feature Tracker in Action

KLT Feature Tracker

The Lucas-Kanade method recovers feature pixel velocities from consecutive camera frames.
The issue with the Lucas-Kanade method is that it assumes the features detected have small
displacements between consecutive camera frames. Therefore to track features that have
a large motion the Kanade-Lucas-Tomasi (KLT) feature tracker [49] uses reduced-scale
versions of the input images in order to track features over multiple camera frames. The
general steps of the KLT feature tracker is as follows,

1. Detect corners in the first camera frame

2. For each corners, compute the motion between consecutive camera frames using a
pyramidal implementation of the Lucas-Kanade method
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3. Match motion vectors between consecutive camera frames to track corners

4. Detect new corners if number of tracks currently tracking is too low

5. Repeat steps 2 to 4

2.4 Feature Estimation

In the previous section we have discussed methods to detect and match between different
camera frames. In this section we introduce a method to estimate feature positions in 3D
using 2D pixels measurements of the same feature in different camera frames.

2.4.1 Feature Initialization

There are various methods for initializing the feature position. The linear triangulation
method [31] is frequently used. This method assumes a pair of homogeneous pixel mea-
surements z and z′ ∈ R3 that observes the same feature, X, in homogeneous coordinates
from two different camera frames. The homogeneous projection from 3D to 2D with a
known camera matrix P ∈ R3×4 for each measurement is given as,

z = PX

z′ = P′X.
(2.16)

These equations can be combined to form a system of equations of the form Ax = 0. To
eliminate the homogeneous scale factor we apply a cross product to give three equations
for each image point, for example z× (PX) = 0 writing this out gives

x(p3TX)− (p1TX) = 0

y(p3TX)− (p2TX) = 0

x(p2TX)− y(p1TX) = 0

(2.17)

where piT is the ith row of P.

From Eq. (2.17), an equation of the form Ax = 0 for each image point can be formed,
where x represents the unknown homogeneous feature location to be estimated, and A is
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given as

A =


x(p3T )− (p1T )
y(p3T )− (p2T )

x′(p′3T )− (p′1T )

y′(p′3T )− (p′2T )

 (2.18)

giving a total of four equations in four homogeneous unknowns. Solving for A using SVD
allows us to estimate the initial feature location.

2.4.2 Feature Refinement

The linear triangulation provides an initial feature position. In an ideal world, feature
positions can be solved as a system of equations. In reality, however, errors are present in
the camera poses and pixel measurements. The pixel measurements observing the same
3D point are generally noisy. In addition, the pinhole camera model and radial-tangential
distortion model do not perfectly model the camera projection or distortion observed.
Therefore an iterative method can be used to further refine the feature position. This
problem is generally formulated as a non-linear least square problem and can be solved by
numerical methods, such as the Gauss-Newton algorithm.

Let us consider the case where two different cameras at known locations observe the
same feature in the scene. Our goal is to optimize for the feature position. With an ith

feature measurement, and corresponding ith camera orientation as a quaternion, qCiG and
ith camera position, pCiG

Ci
, we can formulate the re-projection error as,

ei(θ,qCiG,p
CiG
Ci

) = zi − h(θ,qCiG,p
CiG
Ci

). (2.19)

where the parameter, θ ∈ R3, represents the feature location to be optimized, zi ∈ R2 is
the i-th pixel measurement, and h : R10 7→ R2 is the projection function that projects θ
into the measurement space using known camera extrinsics. The re-projection error is a
geometric error corresponding to the Euclidean distance between measured and projected
features onto the image plane, it is used for quantifying the error of the estimated feature
location. With the error function, ei, for one measurement, a cost function, f , for m
number of pixel measurements in the form of sum of squares can be defined as,

f(θ) =
m∑
i=1

ei(θ,qCiG,p
CiG
Ci

)Tei(θ,qCiG,p
CiG
Ci

). (2.20)
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Now that the cost function, f(θ), is defined an unconstrained optimization can be per-
formed using the cost function Eq. 2.20 to estimate the optimal feature position, θ∗, which
minimizes the re-projection error over the set of collected measurements.

θ∗ = argmin
θ

f(θ). (2.21)

2.5 Error State Kalman Filter

The Error State Kalman Filter (ESKF) is an Extended Kalman Filter (EKF) formulation
that is commonly used in the presence of an IMU. Compared to the conventional Kalman
filter formulation, the ESKF differs in two major ways. First, ESKF does not use a motion
model of the system it is estimating the state of. Instead it uses an IMU model as a
surrogate, and errors in the IMU integrated attitude, position and velocity are among the
estimated variables of the ESKF. This formulation is called the error state space (indirect)
formulation [53]. The rationale for using an IMU model as the process model of the filter
stems from the benefit of circumventing the need to model the dynamics of the system at
hand [63].

Secondly, the absence of a globally non-singular three parameter representation of rota-
tions means a Kalman filter either has to estimate a singular (Euler angles), or a redundant
attitude representation (quaternion or rotation matrix). The work of [52] was the first
to explicitly introduce the idea of using a non-singular representation of attitude with a
quaternion as a reference, and a three-component representation for the deviations from
this reference attitude. This three-component representation is estimated in the ESKF
formulation, instead of the the quaternion reference attitude. In order to avoid any singu-
larity or discontinuity for the three dimensional parametrization, small deviations or errors
away from the quaternion reference attitude are assumed.

The ESKF has the notion of true, nominal and error state values, where the true state
values can be expressed as a suitable composition (be it linear sum, quaternion product
or matrix product) of the nominal and error-states [68]. The nominal state does not have
any noise terms or other model imperfections, the noise and errors are represented by the
error state δx and estimated with the ESKF.

In the context of using an IMU as the process model for the ESKF, the high frequency
IMU measurements are integrated into a nominal state x and the noise and errors of the
IMU are estimated, which occur in parallel. The errors of the filter are corrected at the
arrival of external sensor information other than the IMU (since the IMU model is the
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process model of the filter), such as GPS, vision, etc. In the following we will derive the
true, nominal, and error kinematics and demonstrate the general form of an ESKF.

2.5.1 Inertial Measurement Unit (IMU)

The Inertial Measurement Unit (IMU) is an electronic device that measures the force, angu-
lar rate, and in some cases the magnetic field from the device’s perspective. These devices
usually comprises of an accelerometer and gyroscope, and in some devices a magnetometer
is included as well. Modern IMUs are small, lightweight and cheap to manufacture, they
are prevalent in, among other things, smartphones and aerial vehicles. In this section,
only the accelerometer and gyroscope are considered. Magnetometers are not considered
because they are easily influenced by nearby magnetic fields that are difficult to model.

Accelerometer

Figure 2.9: Accelerometer Mass Spring System
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An accelerometer measures the force exerted on the IMU. At rest on the surface
of the earth, an accelerometer measures one gravitational unit (1g), or approximately
9.81m/s2, directly upwards. Internally, a Microelectromechanical Systems (MEMS) MEMS
accelerometer operates similar to a spring-mass system where measurements are made in
the direction that the mass is being pulled to (see Fig. 2.9). A 3-axis accelerometer model
that contains noise and bias is given as,

am = CIG(aIG
G − g) + na + ba, (2.22)

where am is the measured acceleration, CIG is the rotation from global to IMU frame, aIG
G

is the true acceleration of the IMU in the global frame, g is the true acceleration of gravity
(usually ≈ 9.81m/s2). The accelerometer noise, na ∼ N (0,Na), is a zero mean normally
distributed random variable. The accelerometer bias, ba, changes over time and is modeled
as a random walk process driven by an independent noise vector, nwa ∼ N (0,Nwa).

Gyroscope

Figure 2.10: Internal Operational View of a MEMS Gyroscope Sensor

A gyroscope measures angular velocity of the IMU. It is used to sense rate of rotations
around a particular axis and can be used to obtain the orientation of the IMU. Internally,
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a MEMS gyroscope contains a small resonating mass that is shifted as the angular ve-
locity changes, and this movement is then converted a angular velocity measurement (see
Fig. 2.10). A 3-axis gyroscope with noise and bias is given as,

ωm = ωIG
G + ng + bg (2.23)

where ωm is the measured angular velocity, ωIG
G is the IMU angular velocity expressed in

the global frame. The gyroscope noise, ng ∼ N (0,Ng) is a zero mean normally distributed
random variable. The gyroscope bias, bg, changes over time and is modeled as a random
walk process driven by an independent noise vector, nwg ∼ N (0,Nwg). It is worth noting
for a MEMS gyroscope the bias and white noise is greater than the effect of the Earth’s
rotation, and so for this work, it is neglected.

2.5.2 The True State Kinematics

The true kinematic equations for an IMU are given by [68]. They describe the time
evolution of an IMU’s orientation, velocity, position as well as the gyroscope bias and
accelerometer bias with equations,

q̇IG =
1

2
qIG ⊗ ωIG

G

ḃg = ng

v̇IG
G = aIG

G

ḃa = na

ṗIG
G = vIG

G

(2.24)

where qIG represents the true quaternion, ωIG
G and bg are the true angular velocity and true

angular velocity bias, vIG
G is the true velocity, aIG

G , ba and na are the true acceleration, true
acceleration bias and acceleration noise. The symbol ⊗ in Eq. 2.24 denotes a quaternion
multiplication.

By rearranging Eq. (2.22) and Eq. (2.23) the true acceleration and angular velocity
expressions can be obtained,

aIG
G = C{qIG}T (am − ba − na) + g (2.25)

ωIG
G = ωm − bg − ng (2.26)
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Substituting Eq. (2.25) and Eq. (2.26) gives the final kinematic system as,

q̇IG =
1

2
qIG ⊗ (ωm − bg − ng)

ḃg = ng

v̇IG
G = C{qIG}(am − ba − na) + g

ḃa = na

ṗIG
G = vIG

G .

(2.27)

2.5.3 The Nominal State Kinematics

The nominal state kinematics is the modelled system without any noise terms or model
imperfections. By removing all noise terms in Eq. (2.27) we obtain

˙̂qIG =
1

2
q̂IG ⊗ (ωm − b̂g)

˙̂
bg = 0

˙̂vIG
G = C{q̂IG}(am − b̂a) + g

˙̂
ba = 0

˙̂pIG
G = v̂IG

G

(2.28)

Note, variables with the hat, such as q̂IG, denotes a nominal state variable. The above
nominal-state kinematics are used to integrate the IMU measurements as the process model
in the Kalman filter.

2.5.4 The Error State Kinematics

In the previous subsection, we removed the noise terms in Eq (2.27) to obtain the nominal
state kinematics Eq. (5.9) and form the process model of the Kalman filter. Here we will
write the full error-state dynamic system given as

˙δθI = −bωIG
G ×cδθI − δbg − ng (2.29)
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˙δbg = ng (2.30)

˙δv
IG

G = −C{qIG}bam − δba ×cδθI −C{qIG}δba + δg −C{qIG}na (2.31)

˙δba = na (2.32)

˙δp
IG

G = δvIG
G . (2.33)

To reiterate, the nominal-state kinematics in the error-state space formulation is the
process model of the filter and has no errors or noise modelled. Our goal is to estimate the
errors in the nominal-state kinematics (or errors in the IMU model) as part of the Kalman
filter state vector, the error-state kinematics above will be used to form the Kalman filter
transition matrix F.

In the error-state kinematics, Eq. (2.30), Eq. (2.32) and Eq. (2.33) are the error dynam-
ics of gyroscope bias, accelerometer bias and position respectively, they are trivial linear
equations of the form xt = x + δx. Eq (2.29) and Eq (2.31), the error dynamics of orienta-
tion and velocity, however, are non-trivial due to their non-linearity. The derivations are
presented as follows.

Derivation of Orientation Error ˙δθI

In the following we wish to derive the kinematics of the angular errors ˙δθI. We will start
with the definition of the true quaternion as a quaternion multiplication of the error and
nominal quaternion, and its derivative as follows

qIG = δqIG ⊗ q̂IG (2.34)

q̇IG = ˙δqIG ⊗ q̂IG + δqIG ⊗ ˙̂qIG. (2.35)

Substituting q̇IG and ˙̂qIG in Eq. 2.35 with the following alternative form of quaternion
derivative

q̇IG =
1

2

[
ωIG

G

0

]
⊗ qIG (2.36)

˙̂qIG =
1

2

[
ω̂IG

I

0

]
⊗ q̂IG (2.37)

leads to
1

2

[
ωIG

G

0

]
⊗ qIG = ˙δqIG ⊗ q̂IG + δqIG ⊗

1

2

[
ω̂IG

I

0

]
⊗ q̂IG. (2.38)
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Collecting
1

2
terms by applying −1

2
(δqIG ⊗

[
ω̂IG

I

0

]
⊗ q̂IG) to both sides yields,

˙δqIG ⊗ q̂IG =
1

2

([
ωIG

G

0

]
⊗ qIG − δqIG ⊗

[
ω̂IG

I

0

]
⊗ q̂IG

)
. (2.39)

Finally, removing q̂IG on both sides by ⊗q̂−1
IG gives us

˙δqIG =
1

2

([
ωIG

G

0

]
⊗ δqIG − δqIG ⊗

[
ω̂IG

I

0

])
(2.40)

To recap, the definition of the derivative of the true quaternion defined in Eq. (2.35) is used
to remove dependence on the nominal quaternion terms qIG and q̂IG. Then an expression
for the derivative of the error quaternion dynamics q̇IG was found, with only quaternion
error δqIG and true angular velocity ωIG

G terms in the expression. This expression, however,
still poses a problem, as the true angular velocity ωIG

G is unknown. To resolve this issue,
the gyroscope model can be used to remove the dependence on the true angular velocity,

ωm = ωIG
G + bg + ng (2.41)

and the definition for the nominal angular velocity ω̂IG
I ,

ω̂IG
I = ωm − bg (2.42)

Combined to form
ωIG

G = ω̂IG
I − bg − ng, (2.43)

which is substituted Eq. (2.43) into Eq. (2.40) to get

˙δqIG =
1

2

([
ω̂IG

I − bg − ng
0

]
⊗ δqIG − δqIG ⊗

[
ω̂IG

I

0

])
. (2.44)

Collecting the ω̂IG
I terms together, while factoring out the gyroscope bias, bg, and gyro-

scope noise, ng, to get,

˙δqIG =
1

2

([
ω̂IG

I

0

]
⊗ δqIG −

[
bg + ng

0

]
⊗ δqIG − δqIG ⊗

[
ω̂IG

I

0

])
(2.45)

˙δqIG =
1

2

([
ω̂IG

I

0

]
⊗ δqIG − δqIG ⊗

[
ω̂IG

I

0

])
− 1

2

[
bg + ng

0

]
⊗ δqIG (2.46)
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Using the left and right quaternion composite identities, Eq. 2.46 becomes,

˙δqIG =
1

2

([
−bω̂IG

I ×c ω̂IG
I

−ω̂IG
I
T 0

]
· δqIG −

[
+bω̂IG

I ×c ω̂IG
I

−ω̂IG
I
T 0

]
· δqIG

)
− 1

2

[
bg + ng

0

]
⊗ δqIG,

(2.47)

where bω ×c is the skew symmetric operator and defined as,

bω ×c =

 0 −ωz ωy
ωz 0 ωx
−ωy ωx 0

 . (2.48)

Simplifying Eq. (2.47),

˙δqIG =
1

2

[
−2bω̂IG

I ×c 03×1

0T3×1 0

]
− 1

2

[
bg + ng

0

]
⊗ δqIG (2.49)

˙δqIG =
1

2

[
−2bω̂IG

I ×c 03×1

0T3×1 0

]
− 1

2

[
−b(bg + ng) ×c (bg + ng)
−(bg + ng)

T 0

] [
δqIG

1

]
(2.50)

˙δqIG =
1

2

[
−2bω̂IG

I ×c 03×1

0T3×1 0

]
− 1

2

[
bg + ng

0

]
+ H.O.T (2.51)

Ignoring second order terms, we can write

˙δqIG ≈
[

˙δqIGr

δ̇qw

]
=

[
1
2
δθI
1̇

]
=

[
−bω̂IG

I ×cδqIGr − 1
2
(bg + ng)

0

]
, (2.52)

or finally,
˙δθI ≈ −bωIG

G ×cδθI − bg + ng. (2.53)

Derivation of Linear Velocity Error ˙δv
IG

G

To derive the linear velocity error ˙δv
IG

G we begin with the nominal velocity v̂IG
G

˙̂vIG
G = C{qIG}(am − ba) + g (2.54)

and introduce the nominal and error body accelerations, âB and δaB respectively defined
as

âB , am − ba (2.55)
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δaB , −δba − na (2.56)

into Eq. (2.54) to give
˙̂vIG
G = C{qIG}âB + g. (2.57)

The expression for the true acceleration aIG
G in the inertial frame can be written as a

composition of the true rotation CIG, nominal and error body accelerations âB and δaB,
and nominal and error gravitational acceleration terms ĝ and δg as,

aIG
G = CIG(âB + δaB) + ĝ + δg. (2.58)

We continue by writing an expression for ˙̂vIG
G into two different forms (left and right

developments)

˙̂vIG
G + ˙δv

IG

G = CIG(âB + δaB) + ĝ + δg (2.59)

Using the small angle approximation, the true rotation CIG ≈ CIG(I3×3 + bδθI ×c),
Eq. (2.59) becomes,

˙̂vIG
G + ˙δv

IG

G = CIG(I3×3 + bδθI ×c)(âB + δaB) + ĝ + δg (2.60)

˙̂vIG
G + ˙δv

IG

G = (CIG + CIGbδθI ×c) (âB + δaB) + ĝ + δg (2.61)

CIGâB + ĝ + ˙δv
IG

G = CIGâB + CIGδâB + CIGbδθI ×câB + CIGbδθI ×cδaB + ĝ + δg.
(2.62)

After removing CIGâB + ĝ from both sides we are left with

˙δv
IG

G = CIGδaB + CIGbδθI ×câB + CIGbδθI ×cδaB + δg (2.63)

˙δv
IG

G = CIG(δaB + bδθI ×câB) + CIGbδθI ×cδaB + δg. (2.64)

Eliminating CIGbδθI ×cδaB in Eq (2.64) and reorganizing the cross products (with ba ×cb =
−bb ×ca) gives

˙δv
IG

G = CIG(δaB − bâB ×cδθI) + δg, (2.65)

then we substitute Eq. (2.55) and Eq. (2.56) into Eq. (2.65),

˙δv
IG

G = CIG(−δba − na − bam − ba ×cδθI) + δg, (2.66)

or equivalently,

˙δv
IG

G = −CIGbam − ba ×cδθI −CIGδba + δg −CIGna. (2.67)
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We can further simplify the acceleration noise term CIGna in Eq. (2.67), if we assume the
acceleration noise is white, uncorrelated and isotropic, then we can redefine the noise with
no consequence according to,

na = CIGna, (2.68)

and end up with,

˙δv
IG

G = −CIGbam − ba ×cδθI −CIGδba + δg − na. (2.69)

2.5.5 ESKF Prediction Equations

In the previous sub-sections, the nominal and error states were introduced. In following
we derive the error state Jacobian matrices to perform EKF prediction. Let the nominal
state vector x̂, error state vector δx, input vector u, and the noise vector nI be

x̂ =


q̂IG

b̂g
v̂IG
G

b̂a
p̂IG
G

 , δx =


δqIG

δbg
δvIG

G

δba
δpIG

G

 , u =

[
am
ωm

]
, nI =


ng
nwg
na
nwa

 . (2.70)

Using Eq. (5.8) we can define the linearized continuous-time model for the IMU error-state
as

δx = Fδx + GnI (2.71)

By simple inspection of Eq. (2.29) to Eq. (2.33) the transition matrix F is,

F =


−bω̂IG

I ×c −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C{q̂IG}T bâ ×c 03×3 03×3 −C{q̂IG}T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3


15×15

(2.72)

the Jacobian of the nominal-state kinematics with respect to the noise vector is,

G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C{q̂IG}T 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3


15×12

26



The IMU measurements ωm and am are sampled with a time period, ∆T , and these
measurements are used for state propagation in the EKF. A number of numerical techniques
can be used to discretize the continuous-time transition matrix, F. From the simplest
integration method such as the Euler method, to the Runge-Kutta method of the 4th or
5th order. For our requirements, we found the 4th order Runge-Kutta numerical integration
of the nominal-state kinematics of Eq. (5.9) to be adequate for our applications.

To propagate the uncertainty of the state, the discrete time state transition matrix and
discrete time noise covariance matrix needs to be computed first,

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

F(τ)dτ

)
(2.73)

Qk =

∫ tk+1

tk

Φ(tk+1, τ)GQGΦ(tk+1, τ)Tdτ (2.74)

where Q = E[nIn
T
I ] is the noise covariance matrix of the system in continuous time. The

propagated covariance of the IMU state is then,

Pk+1|k =ΦkPk|kΦ
T
k + Qk. (2.75)

2.5.6 ESKF Measurement Update

As mentioned at the start of this section, the ESKF circumvents the need for a dynamic
motion model of the system by using an IMU model as a surrogate. Since the IMU model
is used as the process model of the EKF filter, a measurement from a different sensor
(secondary sensor), such as GPS or vision is required to perform the measurement update
step of the EKF.

The secondary sensor measurements are assume to depend on the state, such as,

y = h(x) + nr (2.76)

where h(·) is a non-linear function of the system true-state, and nr is assumed to be a
zero-mean white Gaussian noise with covariance R,

nr ∼ N (0,R). (2.77)

Finally, in order to apply the usual EKF filter correction equations,

K = PHT (HPHT + C)−1 (2.78)
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δx = K(y − h(x̂)) (2.79)

Pk+1|k+1 = (I−KH)Pk+1|k. (2.80)

We need to define the measurement Jacobian matrix, H, with respect to the error state
δx, evaluated using the best true-state estimate x = x̂ + δx.

H =
∂h

∂δx

∣∣∣∣
x

(2.81)
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Chapter 3

Autonomous Landing of a MAV onto
a Moving Ground Target

One of the first autonomous landings of a helicopter onto a moving platform is Boeing’s
Unmanned Little Bird [29], a full sized helicopter that demonstrated consistent landing on
a trailer towed behind a truck and landing on a ship at sea. Their system relies heavily
on accurate RTK GPS system with integrated IMU attached to both the landing pad and
the helicopter to provide accurate relative and absolute state estimation.

The heavy reliance on high-cost GPS for autonomous landing has led to a search for
alternate approaches. Visual fiducial systems such as AprilTags [57] or ArUco [60], [79]
have been employed, which allow a camera to extract pose information from a known target
for relative positioning[47], [38], [41], [25]. Other work proposes the use of a laser array
mounted on the bottom of a MAV [16] to determine the pose of a landing platform. A
pair of IR cameras configured in a stereo configuration [39] have also been used, which
allow for low light, night time landings. There has also been a more recent effort to use
a SLAM based solution to allow a MAV to automatically select a safe landing zone [19].
While applicable to static landing methods outlined in [39], [19] and [16] have yet to be
applied to landing on a moving platform, and in the case of [39], the instrumentation used
to assist in the landing would need to move with the landing platform.

When landing on a moving platform, not only is the relative pose information required,
but for accurate control and planning the landing target’s inertial pose estimation is also
required. Kalman filters have been used to fuse both GPS and visual measurements to
obtain the landing target’s inertial pose estimate, such as Kim et al (2014) [38] where an
Unscented Kalman Filter was used, Square Root Unscented Kalman Filter(SRUKF) [79],
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or a standard Extended Kalman Filter (EKF) [25]. In some cases, measurements are used
directly as inputs to a PID controller minimize the horizontal separation distance between
the MAV and landing platform to zero before landing onto the platform [47, 41].

Further, if the landing target is moving at speeds beyond near-hover velocity (i.e. where
tilt angle > 10◦), or if the landing platform is inclined or rotated, a landing trajectory must
be calculated to ensure an accurate and smooth final touchdown. One example of such an
approach [16] presents a landing trajectory planner that performs a perching manoeuvre
onto stationary platforms inclined at up to 30 deg.

In this chapter we describe a complete end-to-end Autonomous Tracking and Landing
system which we call ATL. This system makes use of the AprilTag fiducial system [57]
to estimate the relative pose of the landing target with respect to the pursuing MAV.
We also extend previous results of this approach [29, 78, 41], by incorporating a gimbal
camera, illumination invariant target detection and trajectory planner that aims to address
the aforementioned issues. Stanley J. Brown and I contributed equally in this work, and
we made contributions towards a faster and more robust AprilTag detection by using
an illumination invariant technique [50]. The system is validated through a high fidelity
simulation of a MAV and moving ground target using ROS and Gazebo.

3.1 System Overview

In this section we describe the elements of our problem: landing target, MAV, and ATL
system. This work assumes the MAV is hovering at a high altitude on top of the land-
ing target at the start of the autonomous landing procedure. The landing target which
measures 1m on the width and length is represented by the AprilTag in Fig. 3.1, and is
assumed to have dynamics of a two-wheel ground robot. The pursing MAV has an array of
sensors in order to perform autonomous landing, namely a flight control unit (FCU) with
GPU and IMU to estimate the MAV pose, and a 2-axis roll-pitch gimbal camera to detect
and measure the relative pose of the landing target.

Four main coordinate frames are defined and illustrated in Fig. 3.1. The global frame,
FG. The MAV body frame, FB, is at the center of the MAV body. The camera frame, FC ,
attached to the gimbal camera is downward facing. The coordinate frame for the gimbal
mechanism is not depicted in Fig. 3.1, because it is assumed to be small or has near zero
linkage length. This means that the camera center is at the pivot of the gimbal mechanism,
and the orientation of the camera is equal to the gimbal configuration. Finally, the landing
target frame, FL, is assumed to be always on the ground, with its x-axis pointing forwards.
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Figure 3.1: Coordinate frames used for autonomous MAV landing
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Figure 3.2: ATL Simulation and System Diagram

The system diagram in Fig. 3.2 shows our Gazebo simulation of a MAV consisting
of an FCU and gimbal, as well as an AprilTag as the landing target modelled as a two
wheel robot. The simulation provides inputs to the ATL system, such as the gimbal camera
image, gimbal configuration and MAV state. The camera image and gimbal orientation are
processed by the AprilTag detector to obtain the relative pose estimation of the landing
target relative to the camera, the measurement is then transformed to the MAV body
frame and filtered with a Kalman filter as inputs to the MAV state machine. At the
same time the gimbal controller is used to keep the AprilTag in the camera’s field of view
constantly. The MAV state machine uses the tracking controller to track the landing
target for a specific amount of time, once the tracking condition has been met the MAV
state machine switches to landing mode by using the landing controller, and performs
autonomous landing by following a pre-computed trajectory from the trajectory planner.
Both the MAV tracking and landing controller outputs low-level attitude commands to the
on-board flight controller unit (FCU).
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In the following sections the perception system of ATL is first described, this includes
the landing target detection, how the relative pose is filtered with a Kalman Filter and
simultaneously tracked with the gimbal controller. Secondly, we describe the offline tra-
jectory planner used to pre-compute MAV landing trajectories. Finally, the tracking and
landing controllers used to control the MAV for autonomous landing are discussed.

3.2 Landing Target Detection

In order to land on a moving platform, the platform must be uniquely identified, iso-
lated from the surrounding area, and its relative pose to the MAV must be estimated.
To achieve this goal the AprilTag visual fiducial system [57] was used, which provides a
pose measurement of the landing platforms relative to the camera. However, as noted by
Ling (2014) [47], running the AprilTags library on an embedded computer system requires
significant computational resources. For this reason several modifications to the AprilTag
detection system was introduced:

1. Adaptive Windowing: expanding on the concept first introduced by Ling (2014) [47],
the input image is was masked to areas where the AprilTag was last seen, we call this
method adaptive windowing. This has the effect of reducing the AprilTag detector’s
search space.

(a) Original Image (b) Adaptive Windowing

Figure 3.3: Adaptive Windowing in Action

2. Adaptive Image Re-sizing: the image dimensions is varied when the tag is located
various distances, for example if the tag distance is greater than 5 meters, an image
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size of 640 by 480 pixels is used, however if target is below 4.5 meters a 320 by
240 image size is used. Adaptive image re-sizing has no impact on the relative pose
extracted, but this approach sacrifices detection rate for the ability to detect small
AprilTags in the image space thus a balance needs to be achieved. This method
combined with active windowing allows the AprilTag detection process to achieve
consistently higher detection rates throughout the detection range, a requirement for
good target tracking and estimation.

3. AprilTag Inception: as the MAV approaches the landing target, the detection fails
when portions of the AprilTag falls out of the camera’s field of view. To resolve this
issue a smaller AprilTag is nested inside of a larger AprilTag (see Fig. 3.4). Such that
during MAV landing the detection would switch to the smaller one when detection
of the larger AprilTag is lost. It is important to note that the corners of the smaller
AprilTag does not cover or overlap the corners of the larger one. The large AprilTag
pattern was specifically chosen to allow for a smaller AprilTag to be placed in the
middle without disrupting the detection.

4. Illumination Invariant: our most impactful contribution towards robust fast April-
Tag detection emerged from experience with the standard black and white AprilTag
during outdoor experiments, where the detection becomes unreliable in certain light-
ing conditions. In particular, detection fails when strong shadows cover tag features
fully or partially. The cause of failure is due to how the detection process relies
on image gradients to detect the edges and lines of the tag in order to extract the
relative tag pose. Depending on the time of day or weather conditions, this can
have a significant impact on reliable AprilTag detection. This sensitivity to illumi-
nation was addressed by using the illumination invariant transform by Maddern et
al. (2014) [50].

The illumination invariant transform takes three input channels from the image,
and returns a single illumination adjusted channel, I, as follows,

I = log(R2)− α log(R1)− (1− α) log(R3) (3.1)

where R1, R2, R3 are sensor responses (or image channels) corresponding to peak
sensitivities at ordered wavelengths λ1 < λ2 < λ3, and α is determined by Eq. (3.2).

1

λ2

=
α

λ1

+
(1− α)

λ3

α =
λ1(λ2 − λ3)

λ2(λ1 − λ3)

(3.2)
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This transform, however, has a non-intuitive effect on black and white targets, as
the three channels tend to be equally over and under exposed in RGB images. As a
result, the transform leads to similar values for white and black pixels, eliminating
the ability for the AprilTag library to detect edges. To resolve this issue, we designed
a new AprilTag so that the single channel image produced by using Eq. (3.1) pro-
duces a grey scale like image that is robust to shadows and changes in illumination.
Examining Eq. (3.1), it can be observed the resulting pixel intensities are maximized
when the camera observes green (R2) and minimized when viewing a mixture of red
and blue, (R1 and R3 respectively). The proposed illumination invariant AprilTag
shown in Fig. 3.4 is created by replacing the white and black portions of a typical
AprilTag with green and magenta. This modification was tested under various light-
ing conditions. Fig. 3.5 shows the tag’s appearance after performing the illumination
invariant transform, creating a single channel image that replaces the typical single
channel, grey scale image that is typically used by the AprilTag library. The images
shown in Fig. 3.5 are taken using a PointGrey Chameleon3 (CM3-U3-28S4C-CS)
with a Sony ICX818 image sensor. The corresponding values of λ1, λ2, λ3 and α are
480 nm, 510 nm, 640 nm and 0.56 respectively as noted in the sensor data sheets.

Figure 3.4: Proposed Illumination Invariant AprilTag with tag id 0 from the 16h5 family
embedded into the center of tag id 5 from the 16h5 family. The green color appear white
after applying Eq. (3.1) while the magenta color appears black.

35



(a) Original Image (b) Illumination Invariant Transform

Figure 3.5: Illumination Invariant AprilTag in Action

3.3 Landing Target Estimation

The relative target position, linear velocity, angular velocity and heading are estimated
with an Extended Kalman Filter which is then used by the gimbal controller for continuous
landing target tracking, and the tracking and landing controllers for tracking and landing
onto the moving ground target (see Fig. 3.2).

Process Model: A two-wheel robot motion model is used to approximate the forward
kinematics of the ground target. Let the relative target state in the body frame, x, be
defined as

x =
[
x y z θ v vz ω a az

]T (3.3)

where x, y and z is the landing target position relative to the pursuing MAV, heading θ,
wheel velocity v, steering angular velocity ω and linear velocity vz in the z direction. And
let the target inputs be

u(t) = [nω na naz ]
T (3.4)

here, nω, na and naz are all driven by Gaussian process noise of known mean and covariance.

36



The target model dynamics are then given by,

ẋ = v cos(θ)

ẏ = v sin(θ)

ż = vz

θ̇ = ω

v̇ = a

v̇z = az

ω̇ = nω

ȧ = na

ȧz = naz

(3.5)

Measurement Model: The measurement model is the landing target position, (x, y, z),
and heading, θ, in the body frame, FB. But because the measurement of the AprilTag,
zC , is in the camera frame, FC , a transformation is required as follows,

xB = TB:CzC . (3.6)

An EKF is employed to propagate forward the dynamic model of the target between
measurements, while the measurement update is performed upon when the AprilTag is
detected and transformed.

3.4 Gimbal Controller

To continuously track the ground target, a 2-axis gimbal is used. The gimbal can be
actuated in roll and pitch to change the camera view. The following assumptions are
made. First, the gimbal joint angles are independent. Secondly, the gimbal is small or has
near zero linkage length, and that the camera center is at the pivot point of the gimbal
mechanism. Third, the camera orientation is equal to the gimbal configuration. Lastly, the
landing target position, xB, relative to the body frame is known. With the assumptions,
the gimbal joint angle in roll, φd, and pitch, θd, can be calculated via:

d = ||xB|| (3.7)

φd = sin−1(y/d) (3.8)

θd = sin−1(x/d). (3.9)
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Using the calculated desired roll, φd, and pitch, θd, the gimbal can be controlled with two
independent PID controllers as follows,

eφ = φd − φ (3.10)

eθ = θd − θ (3.11)

uφ = kφp eφ + kφi

∫ t

0

eφdt+ kφd ėφ (3.12)

uθ = kθpeθ + kθi

∫ t

0

eθdt+ kθdėθ (3.13)

where, eφ and eθ are the errors of roll and pitch calculated from the difference between
desired and actual roll φ and pitch θ, and kp, ki, kd are the gains of the PID controller. The
control inputs uφ and uθ for roll and pitch respectively can be used directly for controlling
the gimbal.

3.5 Trajectory Planning

In addition to the relative state estimation problem, when attempting to land on a target
moving at high speeds there is a possibility that the MAV’s blades may impact the landing
pad’s surface if large pitch or roll motions are produced by the landing controller. At
speed, MAV aerodynamics dictate that significant pitch angles be maintained to match
target speed, and yet landing is most reliably achieved by matching the landing deck’s
attitude. As such, there exists a clear need for motion planning in order to provide a
smooth, safe and repeatable landing that balances end state constraints with tracking
performance.

In the following section we develop a versatile, light weight trajectory planner that
defines an optimal trajectory to execute a safe landing on the target. This is achieved by
incorporating important dynamic model components such as ground effect and non-linear
drag force models. The trajectory is defined with 2 degrees of freedom, while relative
heading tracking is used to mimic target trajectories that vary the direction of forward
velocity. The plan is then executed using a combined feed forward and feedback control.

3.5.1 2D Quadrotor Model

To simplify the trajectory planning, a three degree of freedom (DOF) MAV model in
the vertical x-z plane is used. As aerodynamic drag forces occur mainly in opposition
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to the direction of travel, it is possible to neglect the lateral tracking of the target in the
planning phase of the problem. Instead, we align the vehicle motion with the target motion
and heading through lateral roll and yaw control, and compute an independent descent
and landing plan for longitudinal control, as defined in Section 3.5.2. This assumption
allows the planning process to avoid full 6 DOF rigid body dynamics, and is notably less
computationally expensive as a result.

The 2D MAV state x includes both position and velocity in the x and z direction.

x =
[
x ẋ z ż

]T ∈ R4 (3.14)

The inputs to the MAV model are the acceleration, az, in the z direction in the body frame,
which can be directly related to total thrust, and the pitch angle, θ, in the inertial frame.

u(t) =

[
az
θ

]
∈ R2 (3.15)

The dynamics in this reduced coordinate system include both ground effect and non-
linear drag terms. The ground effect, Sge, scales the requested vertical acceleration, az,
when operating within a height, hge, of the ground and target, as follows.

Sge =

(
kge

hge −min(hge, z)

hge

)2

(3.16)

The coefficient, kge, is MAV dependent, and can be identified in hover flight near the
ground. A linear drag model is employed, as it has been demonstrated to be sufficiently
accurate over a moderate forward speed range [42], but could easily be extended to a
quadratic model. The drag is defined as resisting the velocity of the MAV through the free
stream in the x-z MAV plane. The complete 2D MAV model is then,

ẋ = f(x,u) =


x2

az sin(θ)− kdxẋ
x4

az cos(θ)(1 + Sge)− kdz ż − g

 (3.17)

where g is the gravitational constant, kdx and kdz are the linear drag coefficients. The
trajectory optimization problem can proceed in both continuous or discrete time, and we
restrict our focus to discrete time. In this work, the dynamics defined in Eq. (3.17) are
converted to discrete time through zero-order hold.

x(t+ 1) = x(t) + f(x(t),u(t))dt (3.18)
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3.5.2 Trajectory Problem Formulation

The objective of the trajectory is to achieve landing of the MAV onto a non-stationary
target by following a pre-defined desired descent trajectory. Further, the optimal trajec-
tory aims to balance a number of conflicting costs, which include minimal deviation from
the desired trajectory, minimal total input and minimal input control difference, which
penalizes rapid changes in the control input.

The desired trajectory, xdes ∈ R4×tf+1, is a nominally defined as a constant velocity
descent trajectory from initial position and velocity, x0, to final position and velocity, xf .
Both boundaries are fixed for the optimization, in that the MAV initial condition is known,
and the final condition must match the position and velocity of the target at the final time
tf .

x0 =
[
x0 ẋ0 z0 ż0

]T
xf =

[
xf ẋf zf żf

]T (3.19)

In addition, the final inputs for thrust and pitch are also fixed, in that the pitch must
match the landing platform orientation, and the thrust must be significantly below hover
thrust.

The deviation from the desired path, pdiff, is defined as, pdiff = ||x − xdes||2 the total
input cost, utot, is, utot = ||u||2 and the input difference cost, udiff, is defined as,

udiff =

tf−1∑
i=0

‖u(i+ 1)− u(i)‖2 . (3.20)

The complete cost function J : R6×tf+1 → R is then a weighted summation of the deviation
and input costs,

J(x,u) = w1 · pdiff + w2 · utotal + w3 · udiff (3.21)

the optimal control problem can now be written as,

min
x(t)∈X, u(t)∈U

J(x,u)

s.t. x(t+ 1) = f(x(t),u(t))dt ∀t ∈ [0, tf ]

x(t = 0) = x0

x(t = tf ) = xd

The result of the optimization is then used by the landing controller described in Sec-
tion. 3.7 to execute the landing trajectory.
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3.6 Tracking Controller

Using the landing target position xB in body frame estimated from the Kalman filter
described in Section. 3.3, a tracking controller can be developed to minimize the target
position error in the x − y (horizontal) plane, this was achieved by implementing a PD
controller

e = xB (3.22)

uφ = −1
(
kφp ey + kφd ėy

)
(3.23)

uθ = kθpex + kθdėx (3.24)

where e is the landing target position error in body frame, kp, kd are proportional and
derivative gains of the PD controller. The attitude commands uφ and uθ for roll and pitch
respectively is used directly by the MAV’s FCU for control.

3.7 Landing Controller

For the final landing phase a planned trajectory path from Section. 3.5 is executed, to track
the planned trajectory path a PID feedback-feed-forward control was developed where the
feed-forward reference signals are the planned pitch uθff and thrust uTff , and the feedback
reference signal is the planned velocity vp,

ev = vp − ufb (3.25)

uφ = −1

(
kφp ey + kφi

∫ t

0

eydt+ kφd ėy

)
(3.26)

uθ = kθpex + kθi

∫ t

0

exdt+ kθdėx + uθff (3.27)

uT = kTp ez + kTi

∫ t

0

ezdt+ kTd ėz + uTff (3.28)

where ev is the velocity error between planned velocity vp and feedback velocity ufb, and
kp, ki, kd are the gains of the PID controller. Similar to the tracking controller, the attitude
commands uφ, uθ, and uT for roll, pitch and thrust respectively are used directly by the
MAV’s FCU for control.
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3.8 Experiments and Results

We demonstrate the performance of our autonomous MAV landing system, ATL, in sim-
ulation using Gazebo, a high fidelity simulation environment. The simulation includes
complete models of the landing target and a MAV containing a gimbal camera. The ATL
system is demonstrated on both constant and variable target heading trajectories, and
relative pose estimation accuracy is demonstrated throughout the landing mission, con-
firming the feasibility of employing our method for fully automated landings in a range of
conditions.

The proposed gimbal tracking algorithm, along with the target estimation and land-
ing trajectory planner are all validated in the Gazebo simulation environment using an
expanded 3D version of the MAV dynamics outlined in Section. 3.5, and following similar
models defined in the literature [35]. The camera is mounted at the end of a two axis
gimbal camera connected to the bottom of the MAV body, and images are acquired at
60Hz. The estimation, planning and control systems are all implemented in ROS, and
hence realistic processing and communication delays affect the results of the simulation.
The final landing position is offset by 0.2 meters in the z direction to represent the landing
gear of the simulated MAV.

Fig. 3.6 shows the landing target travelling in a straight line from (0, 0, 0) towards
(200, 0, 0) at approximately 10 m/s. The pursuing MAV is positioned at (0, 0, 5) at the
start of the simulation, and is assumed to be detecting and hovering above the landing
target at the start of the simulation. As the landing target moves, the MAV estimates the
relative position of the landing target, and uses the gimbal controller to track the landing
target in order to keep it within the camera’s field of view. The tracking controller using
the relative position estimates and attempts to minimize the horizontal distance between
the MAV and landing target. Once the tracking controller has tracked the landing target
for a preset number of seconds, the MAV executes a pre-computed landing trajectory on
to the landing target.

The estimated relative position of the landing target during simulation is shown in
Fig. 3.7. The RMSE between the estimation and ground truth in the body x, y and z are
0.0131m, 0.0792m and 0.1085m respectively. The combination of under estimating the rel-
ative position of the landing target, and under-reactive controls due sub-optimal controller
gains led to oscillatory controls, which in turn led to an oscillatory relative estimation.
The noise in ground truth is due to transformation errors from MAV and landing target
position. The direct measurements contain noise generated by pixel discretization and
detection misalignment, whose effect on control performance is mitigated by the EKF.
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Once the landing target has been tracked for a preset number of seconds, the MAV
switches to landing mode. In landing mode the MAV executes a pre-computed trajectory.
The actual and planned MAV position, velocity, attitude and thrust are compared. Fig. 3.8
shows the MAV’s ability in executing the planned optimal descent trajectory for landing.
The trajectory planned includes a rapid initial pitch and decreased thrust excursion to
match the target velocity and initiate a descent, and a final feathering manoeuvre to
match the platform orientation and limit landing velocity. The landing controller performs
the manoeuvre with limited error, and is sufficiently accurate to land on the platform
reliably. The whole simulation is presented in Fig. 3.6 for a straight line motion of the
ground target.

The same system was tested against a curved landing target motion travelling at 1
m/s, and Fig. 3.9 shows that the MAV was still able to track and land on a moving target
with some significant lateral motion. Both simulation trials demonstrate the validity of
the decoupling the assumption for tracking longitudinal and lateral errors independently.

3.9 Conclusions

In this chapter we have presented a set of novel methods to make the detection of AprilTags
more robust on strong shadows and in various lighting conditions. Further, we lowered the
computational cost of extracting the AprilTag from an image. We also present a complete
end-to-end solution for autonomous landing of a MAV onto a moving platform, complete
with a tracking controller using a gimballed camera and a trajectory planner that takes
into account the attitude constraints of the MAV. The landing planner is validated in a
Gazebo simulation which demonstrates the proposed planner landing at speeds of 10m/s.
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Figure 3.6: 3D plot of a straight line tracking and landing at 10m/s
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Figure 3.7: EKF estimation while tracking and landing on the target travelling in a straight
line at 10m/s
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Figure 3.8: Landing Trajectory
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Figure 3.9: 3D plot of a curved line tracking and landing at 1m/s
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Chapter 4

Encoderless Gimbal Calibration of a
Dynamic Camera Cluster

In GPS-denied environments, the state information of the MAV will need to be acquired
from alternative sensors. Lidar is bulky, heavy, and expensive therefore it is not well
suited for light weight MAVs. Cameras on the other hand are cheap, small and light
weight, therefore they are an attractive sensor for state estimation for a MAV.

Vision based localization and mapping algorithms have mostly considered either a
monocular or a stereo camera configuration [21, 17, 76]. Multi-camera clusters (MCCs)
on the other hand are becoming an effective camera configuration for robotic platforms,
such as self-driving cars and drones [33, 71]. The advantage of MCCs comes in the form of
increased field of view compared to a monocular or stereo camera configuration, thereby
enabling features to be tracked over a longer period of time. MCCs have two possible
configurations: static camera clusters (SCCs) or dynamic camera clusters (DCCs). SCCs
have rigidly mounted camera configurations with static extrinsic parameters, while DCCs
incorporate one or more cameras that are mounted on an actuated mechanism, such as
a gimbal, allowing the camera to change viewpoint independent of robot motion. The
ability to dynamically change viewpoint enhances the tracking ability of interesting and
informative features, which could in turn be used to improve localization estimates. The
drawback of active DCC viewpoint selection, however, is that the time-varying camera
extrinsics must be resolved with sufficient accuracy to perform visual odometry or SLAM
without negatively impacting the estimation performance.

There is extensive literature on camera-to-camera calibration approaches that use fidu-
cial markers to generate overlapping observations between cameras [71, 40, 45]. But the
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work of [13] was the first to introduce the calibration of time-varying extrinsic parameters
for various DCC configurations, such as one static and one actuated camera as well as
two actuated cameras. This work was extended to determine optimal gimbal configura-
tions which locally minimize parameter uncertainty using next-best-view [59]. Although
the proposed approaches are effective in performing DCC calibration, both methods rely
on having encoder feedback to extract the position of the gimbal motor, and also require
knowledge of the joint angles to determine the kinematic chain between the static and
actuated cameras.

In practice, commercially available gimbals do not always have the joint angle infor-
mation from encoder motors, and in some cases, the integration of an encoder may not be
desirable due to weight or cost limitations. Therefore the lack of joint angle feedback also
introduces difficulties while performing VIO or SLAM algorithms, as accurate joint angle
information is beneficial to resolving the time-varying extrinsics during robot motion.

In this work, we present two main contributions. First, we develop an encoderless
DCC calibration approach which eliminates the requirement of joint angle measurements
from the actuated mechanism. Our approach estimates the DCC calibration parameters
in conjunction with the joint angles of the actuated mechanism for each configuration of
the collected measurement set. By eliminating the need for joint angle information, this
calibration can be performed on any actuated mechanism, allowing for visual SLAM algo-
rithms to be run on any off-the shelf DCC. Second, we extend the Visual Inertial Odometry
(VIO) algorithm developed in [44] and incorporate the calibrated DCC in order to simul-
taneously estimate the gimbal joint angles and the VIO localization state. We obtain
experimental results using a gimbal based DCC mounted on a custom MAV platform, and
evaluate the relative performance of SCCs and DCCs in a large outdoor environment with
a variety of static and gimballed camera configurations. We show that our overall pose
estimate using a DCC is comparable to those obtained using an SCC configuration without
significant degradation in performance. This was a collaborative effort with Jason Rebello,
Leonid Koppel, Pranav Ganti and Arun Das. The encoderless dynamic camera cluster
calibration method was formulated by Arun Das. Simulation and results verification was
Jason Rebello and Pranav Ganti’s contribution. Leonid Koppel with the help of Arun Das
was responsible for modifying OKVIS to incorporate a dynamic camera cluster for online
camera extrinsics estimation. My contribution includes generating all experimental results,
and construction of a custom MAV research platform to achieve aerial demonstrations of
encoderless gimbal SLAM. This chapter presents the complete work of the team so as to
enable proper understanding of the results generated through my efforts.
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4.1 Notation

General Rigid Body Transformation: Let a 3D point in coordinate frame Fx be
denoted as px ∈ R3. The rigid body transformation from frame Fa to Fb is expressed
as Tτ

b:a ∈ SE(3), where Tτ
b:a : R3 7→ R3, and τ = [rx, ry, rz, tx, ty, tz] is the parameter

vector used to construct the transformation. The rotation is represented using 3-2-1 Euler
angles rx, ry, rz ∈ [0, 2π) , while the translation values along the respective axes are
tx, ty, tz ∈ R3. Although this work uses Euler angles, the rotations can be represented
using other conventions, such as quaternions or SO(3) rotation matrices.

Image Projections of 3D Points: A point pci in camera frame Fc can be projected
into a pixel location on the 2D image plane with projection function ψ(pci) : R3 7→ P2,
defined as ψ(pci) = [uci vci ]

T . Here ui and vi are the pixel coordinates of the projected
point along the u and v dimensions respectively.

Denavit-Hartenberg Parameterization: The actuated mechanism of the gimbal
is modeled as a serial manipulator with rotational joints, represented by the Denavit-
Hartenberg (DH) convention. The DH parameters [θl, dl, al, αl]

T , where θl, αl ∈ [0, 2π)
and dl, al ∈ R is used to describe the homogeneous rigid body transformation from one
frame to another, Fl−1 to Fl. We distinguish between θl and the rest of the DH parameters
by defining ωl = [ dl, al, αl]

T . For a detailed summary of the DH convention, the reader is
referred to [30].

4.2 Problem Formulation

In the following section we will summarize a novel DCC calibration approach, which per-
forms the calibration of the DCC without the use of encoder feedback.

The camera extrinsics between the static and dynamic camera in a DCC has the form

TΘ,β
d:s = Tτd

d:eT
ω,β
e:b Tτs

b:s (4.1)

where Tτs
b:s defines the transformation from the static camera to the mechanism base frame,

Tω,λ
e:b defines the transformation from the base frame of the mechanism to the end effector

frame, and Tτd
d:e defines the transformation from the end-effector frame to the dynamic

camera frame. Note that Tω,β
e:b is a chain of transforms through the mechanism’s links

computed using its forward kinematics, and it is a function of its DH parameters and
control inputs.

50



Figure 4.1: Frame diagram of a 2-DOF gimbal based DCC. Frames Fs, Fd, Fb, Fe represent
the static camera, dynamic camera, mechanism base, and mechanism end-effector frames
respectively. An IMU is mounted to the back of the dynamic camera which is used for
image stabilization of the gimbal and for estimating approximate joint angles to initialize
the encoder-less calibration.

The goal of the calibration process is to obtain the rigid body transformation TΘ,β
d:s from

the static camera frame Fs, to the dynamic camera frame Fd, for an L joint mechanism,
where Θ is the set of estimated kinematic parameters used to build the rigid body transform
and β ∈ RL, defined as βi = [θi0 · · · θiL], is the estimated joint angles for the ith measurement
set. In order to calibrate the DCC without the use of encoder feedback, both the kinematic
parameters, Θ, the joint angles β for each measurement set are simultaneously estimated.

To calibrate the DCC, we first obtain a set of measurements from both the static and
dynamic camera observing the same known fiducial target. Each i-th measurement set
is defined as Zi = {P s

i , P
d
i , Q

s
i , Q

d
i , βi}, where P s

i , P d
i ∈ R3 are the set of corresponding

marker point positions defined in the static and dynamic camera frames respectively, which
are easily computed by passing the known target points through the target to camera
transformation Tc:t. The pose of each camera with respect to the marker frame, Tc:t,
c ∈ {s, d} is obtained by solving the Perspective-n-Point (PnP) problem [20]. Qs

i and Qd
i

∈ R2 represent the set of pixel measurements for the target points, as observed by the static
and dynamic cameras, respectively, and βi is the set of joint angles for the mechanism at
the i-th measurement set.
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The re-projection error between the measured marker point j in the static camera
frame and the corresponding measured point in the dynamic camera frame, using the i-th
measurement set and the transformation between camera frames, is defined as:

edj (Θ, βi) = zdj −Ψd(TΘ,β
d:s psj) (4.2)

where zdj ∈ Qd
i is the measurement of point j, observed in the dynamic camera, and psj ∈ P s

i

is the 3D position of point j as observed from the static camera. Since both the actuated
and static camera observe the same marker at each measurement set, we can similarly
compute the error for points observed in the actuated frame and projected into the static
frame as

esj(Θ, βi) = zsj −Ψs((TΘ,β
d:s )−1pdj ) (4.3)

where zsj ∈ Qs
i is the measurement of point j observed in the static camera, and pdj ∈ P d

i

is the 3D position of point j as observed from the dynamic camera.

Given a total of K measurement sets, let us define a the complete set of estimated
joint angles as ζ = [β1 · · · βK ]. The total squared re-projection error as a function of
the estimation parameters, Λ(Θ, ζ) : Rn 7→ R over all of the collected measurement sets,
Γ = {Z1, Z2, . . . , Zk} , is defined as

Λ(Θ, ζ) =
∑
Zi∈Γ

|P s
i |∑

j=1

edj (Θ, βi)
T edj (Θ, βi)

+ esj(Θ, βi)
T esj(Θ, βi).

(4.4)

Finally, an unconstrained non-linear optimization of Eq. (4.4) is performed in order to find
the optimal calibration parameters, Θ∗, and optimal joint angle values, ζ∗, which minimizes
the total re-projection error over the set of collected measurements,

Θ∗, ζ∗ = argmin
Θ,ζ

Λ(Θ, ζ) (4.5)

In practice, we have found that the kinematic parameters Θ can be sufficiently initial-
ized using approximate, hand-measured values, and the joint angles ζ can be sufficiently
initialized using approximate angles obtained from an IMU.

4.3 Visual Inertial Odometry using a DCC

To validate our claim that a DCC can be used for localization and mapping algorithms, we
extended OKVIS [44], a VIO algorithm, to accommodate a DCC. OKVIS is an indirect,
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non-linear optimization-based algorithm which is capable of online estimation of time-
varying camera extrinsics by minimizing re-projection error. The original implementation,
however, models the camera extrinsics as a general transformation, and considers only
small changes modeled by a Gaussian process, such as thermal expansion. We extended
OKVIS by incorporating the gimballed extrinsics model of Eq. (4.1), and is capable of
estimating joint angles with quick and un-modeled mechanism motion.

In the following, we briefly explain the approach presented in [44]. Let us define the
IMU and global frames as FI and FG, respectively. The VIO state vector for the robot, x,
is estimated at every time-step k of the algorithm, and is given by

xk = [pIGI qIG vIGI bg ba]
T (4.6)

where pIGI denotes the position vector of the IMU frame of the cluster with respect to
the global frame, qIG is the quaternion which defines the rotation between the IMU and
global frame, vIGI is the velocity of the IMU expressed in the IMU frame, and bg and
ba are the bias states of the IMU’s gyroscope and accelerometer, respectively. OKVIS
formulates the visual-inertial localization and mapping problem as a joint optimization of
a cost function containing both the weighed re-projection error and temporal error term
from the IMU. Here, for brevity we will only summarize the re-projection error, since it
will be modified to include our DCC. Let TI:G ∈ SE(3) be the rigid body transformation

matrix composed using pIGI and qIG, and p
fjG
fj

be a 3D landmark point, estimated through

key-frame triangulation. Then, the point re-projection error term for the ith cluster camera
is defined as

eij(TI:G) = zij −Ψi(TCi:I
TI:Gp

fjG
fj

) (4.7)

where zij is the pixel measurement in camera i of landmark p
fjG
fj

, and TCi:I is the extrinsic
calibration between the IMU sensor and camera Ci. The re-projection error term from
Eq. (4.7) is combined with additional IMU and key-frame error terms, in order to optimize
both the robot and landmark states.

In order to perform estimation of the mechanism joint angles, the joint angles to be
estimated at time k is augmented to the localization state vector

xβkk = [xk βk]
T (4.8)

where βk = [θk1 · · · θkL] are the L joint angles of the mechanism to be optimized. When using
a DCC, the extrinsics between the dynamic camera and IMU, Td:I , can be decomposed as

Tβk
d:I = Tτd

d:eT
ω,βk
e:b Tτs

b:sTs:I (4.9)
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where Ts:I is the transformation from IMU to static camera, which can be computed
offline [26]. Using Eq. (4.9), the re-projection error Eq. (4.7) is modified to include the
dynamic camera as

eij(TI:G, βk) = zij −Ψi(Tβk
d:ITI:Gp

fjG
fj

) (4.10)

Our extended OKVIS uses the modified re-projection error term from Eq. (4.10), along
with the original IMU and key-frame error terms from the original implementation to
estimate the augmented robot state vector xkβk , which includes the mechanism joint angles.
To perform the optimization, we analytically compute the Jacobian

∂eij(TI:G, βk)

∂βk
(4.11)

which describes how the modified re-projection error from (4.10) is affected by small
changes in the joint angles, βk.

4.4 Experimental Validation

To validate our proposed approach, two sets of experiments were performed. First, we
demonstrate the successful encoder-less calibration of a 2-DOF gimbal on physical hard-
ware. Secondly, we perform visual inertial odometry using the calibrated gimbal, and
show that our gimballed DCC VIO configuration performs comparably to a monocular or
standard SCC setup.

4.4.1 Encoder-less Gimbal DCC Calibration

The method discussed in Sec. 4.2 was used to calibrate a DCC consisting of a 2-DOF
gimbal and two PointGrey Firefly MV cameras, which were software triggered at 15 fps
and have a resolution of 640x480. The gimbal is controlled by an Alexmos SimpleBGC
32-bit gimbal motor controller, and the DCC is mounted onto a custom built MAV. The
SCC and DCC configurations both have a baseline of approximately 10 cm. The 2-DOF
gimbal, along with the labelled frames, is depicted in Fig. 4.1, and the MAV is depicted in
Fig. 4.2.
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Figure 4.2: Custom MAV hardware with 2-DOF gimbal based DCC mounted on bottom.
Frames Fs, FI , FG denote the static camera, IMU, and GPS frames, respectively.

The calibration was performed by collecting a set of 83 independent image pairs with
different gimbal configurations. The gimbal configurations were sampled uniformly over the
2-DOF joint angle space. An AprilGrid was used as the fiducial target for calibration, in
contrast to a chessboard target, the AprilGrid detection is more robust to large viewpoint
changes and partial target observations [26]. For validation of the gimbal calibration, an
independent verification set of 70 image pairs was collected, also using the same AprilGrid
fiducial target. In both calibration and validation set, we ensured sufficient observation
overlap of the fiducial target between the static and gimbal camera. The initial joint
angle values for estimation were obtained from the gimbal IMU, often used for camera
stablization.
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Table 4.1: Re-projection error statistics of the physical gimbal

Dataset Calibration Validation
Number of images 83 70
Average re-projection error (pixels) 1.5234 1.7933
Standard deviation (pixels) 0.8487 1.1934

The results for the calibration and verification sets are summarized in Table. 4.1. We
see that the average re-projection error for the calibration set is approximately 1.5 pixels,
which indicates a good quality calibration was achieved. The average error of the valida-
tion set is comparable to the result from the calibration set, at approximately 1.8 pixels,
which corroborates the accuracy of the calibrated kinematic parameters. Note that this
re-projection error is highly dependent on the quality of the intrinsic calibration, which
can be improved through the use of higher quality lenses.

4.4.2 VIO using Gimbal DCC

To demonstrate the calibration result, we collected two independent sets of MAV flight
data, traversing in the same rectangular trajectory loop depicted in Fig. 4.4, which is
approximately 180m in distance and ran it offline against our modified OKVIS. The first
flight data used a standard SCC configuration (see Fig. 4.3a), the static transformation
between the static camera frame, Fs, and MAV IMU frame, FI , were obtained using
Kalibr [26]. The second flight data, on the other hand, used a DCC configuration (see
Fig. 4.3b). During the second flight, the gimbal DCC was pre-programmed to point towards
features in the environment we deemed would increase the accuracy of the VIO estimation.
The effectiveness of the gimbal viewpoint selection, however, was not evaluated and is left
as future work.

Using two independent flight data, three camera configurations over the same flight
path, and sensor suite were compared: monocular, SCC and DCC. Sample images from
the two datasets are presented in Fig. 4.5. The ground truth of the trajectory is collected
using the DJI N3 Autopilot GPS, which has an accuracy of approximately 2m standard
deviation.

Trajectory drift was observed in all three tested camera configurations when compared
to GPS ground truth. The cause of observed drift could be due to experimental factors,
such as the high altitude of the flown trajectory and the lack of IMU excitation. The MAV’s
flight altitude of 10m in conjunction with the small camera baseline results in inaccurate
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(a) Static Camera Cluster (SCC) Configuration

(b) Dynamic Camera Cluster (DCC) Configuration

Figure 4.3: Camera configurations used for experiments
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Figure 4.4: Estimated trajectories with (a) Dynamic Camera Cluster, (b) Monocular, and
(c) Static Camera Cluster configurations. For all flight scenarios, the MAV starts at (0,0)
and then flies two rectangular loops.
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(a) (b)

Figure 4.5: Example frames from the two datasets. a The static configuration, with one
camera above the other. b The dynamic configuration, with the gimbal pointed down.
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feature depth initialization and a high average feature distance, which in turn causes poor
scale observability. In addition to this, the constant-velocity trajectory executed by the
MAV inhibits IMU excitation, which could be another factor contributing to the poor
scale recovery. Table. 4.2, which reports the RMSE of the trajectory normalized by the
total distance flow, shows that the relative performance of each camera configuration is
consistent.

Table 4.2: Translation and rotation error of the three camera configurations, normalized
by total distance travelled

DCC Mono SCC

Normalized translation RMSE (%) 1.58× 10−2 1.24× 10−2 1.12× 10−2

Normalized rotation RMSE (rad/m) 4.3× 10−4 2× 10−4 9.4× 10−4

From the results, we observe DCC exhibits slightly larger normalized translation error
compared the mono and SCC results. This can be attributed to OKVIS’s 3D-2D RANSAC
step, which selects landmark measurements based on the predicted motion, this step relies
on the camera extrinsics. In the case of the DCC, however, we disabled the 3D-2D RANSAC
step, because the measurements filtered out by RANSAC are precisely those required to
estimate the joint angles for the time-varying extrinsics, thereby potentially introducing
outliers to the VIO algorithm for motion estimation. A possible future refinement would
be a two-stage approach: first optimize without outlier rejection to obtain the dynamic
camera extrinsics, then re-optimize with the updated extrinsics for an improved motion
estimate. Despite larger error for the DCC experiment, it is evident that all configurations
performed comparably, which verifies that the integration of the DCC did not significantly
change the localization performance of the algorithm.

The estimated gimbal joint angles, when compared to the values obtained using en-
coders mounted on the gimbal for ground truth, shown in Fig. 4.6, shows that our extended
OKVIS was able to accurately estimate the joint angles. It is important to state that no
motion model or input from the gimbal IMU was used for the estimation, and only visual
data from the camera images were used. Table. 4.3 shows the RMSE of the roll and pitch
joint angles. A component for the joint angle errors stems from a noticeable time lag in
the joint angle estimation, which can be improved through hardware synchronization in
the DCC.

60



Table 4.3: Roll and Pitch RMSE for the DCC configuration.

RMSE (rad)
Roll angle 4.5× 10−2

Pitch angle 9.2× 10−2

Figure 4.6: Estimated gimbal joint angles compared to ground truth provided by the gimbal
encoders.

4.5 Conclusion

This chapter presented a method to perform encoderless calibration of a DCC. We achieved
this by jointly estimating the kinematic parameters of the DCC and gimbal joint angles
of the mechanism for each measurement of the fiducial target. The calibration result
was then validated by modifying OKVIS to perform online estimation of the gimbal joint
angles in a DCC configuration. We then demonstrated that the extended VIO was able to
successfully estimate the joint angles, and that it performs comparably to a VIO solution
using a monocular or SCC camera configuration.
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Chapter 5

Gimbal Multi State Constraint
Kalman Filter (G-MSCKF)

In Chapter 3, an end-to-end autonomous tracking and landing system (ATL) was intro-
duced. It was demonstrated that a MAV with robust and accurate state estimates could
track and execute a planned trajectory to land on top of a moving ground target at speeds
of 10 m/s in simulation. In practice, however, the heavy reliance on GPS for precise MAV
pose estimation is problematic. First precise GPS sensors for MAV state estimation are
expensive. Second, the environment where the MAV performs the landing can affect the
GPS signal quality.

To remove the requirement for precise GPS sensors on MAVs, a camera sensor for
state estimation was chosen due to its weight, size, and cost. Rigidly mounted cameras on
MAVs, however, frequently observe motion blur cause by sudden attitude changes due to
wind or aggressive controls. Which is why an encoder-less gimbal calibration method was
introduced in Chapter 4. The method enabled state estimation algorithms such as OKVIS
to take advantage of the gimbal camera for state estimation. However, an important aspect
of full MAV autonomy is the ability for all software components, from low-level sensor
drivers to high-level algorithms to run real-time all on-board a MAV. The computational
power on-board a MAV is often limited due to the available payload. This adds additional
pressure on the optimization based VIO algorithm such as OKVIS to be as efficient as
possible while maintaining an accurate pose estimate of the MAV.

In this chapter we propose a filter based VIO algorithm to address the aforementioned
issues, because they are computationally more efficient, and they can achieve comparable
accuracy compared to optimization based methods. The state of the art filter based VIO
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algorithm, MSCKF [55], was chosen for its accuracy and efficiency. As for the sensor
configuration, a dynamic camera cluster(DCC) is used in this work to take advantage
of the image stabilization offered by the gimbal camera. Our main contributions is to
incorporate a gimbal camera with MSCKF which we call G-MSCKF. The author is the
sole contributor of this work.

5.1 Related Work

Visual-inertial navigation systems have been deployed in a wide range of robotic applica-
tions [55, 67, 44, 6], and there exists a large number of estimation algorithms for the camera-
IMU sensor combination. These algorithms can be characterized as either loosely [77, 66]
or tightly [55, 44] coupled systems. In loosely coupled systems, image and IMU measure-
ments are processed independently before fusing into a single estimate, in contrast, tightly
coupled systems process both image and IMU measurements together. The advantage of
decoupling the sensor measurements in loosely coupled systems is to limit the computa-
tional complexity [44], but this comes at the cost of lower accuracy state estimation and
biases [46]. For this reason we are focused on tightly coupled systems for the remainder of
this chapter.

Existing tightly coupled VIO algorithms can generally be categorized into two groups:
optimization based or filter-based approaches. While optimization based approaches such
as [21, 44, 73] obtain optimal state estimation by jointly minimizing the residual using
measurements from sensors, they are also computationally more expensive compared to the
filter-based approaches. An alternative to optimization based approach is the filter-based
approach, such as Extended Kalman Filter (EKF) [55], or Unscented Kalman Filter [37],
which achieve higher computational efficiency with comparable accuracy.

The most computationally efficient filter-based approaches utilize feature measurements
to derive constraints between consecutive pairs of camera frames [6]. However, in order to
attain higher estimation accuracy, constraints between multiple camera poses must be made
where the same feature is observed in multiple camera frames. Methods such as [27] and [18]
implement a sliding window of robot or camera poses in the filter state. Both algorithms
form constraints between pairs of camera poses. The drawback of both approaches is
that information is lost when a feature is tracked in multiple images, since constraints
are not formed across multiple camera poses. To address this drawback, methods such
as the Variable State Dimension Filter (VSDF) [54] have been introduced, which uses a
delayed linearization to increase robustness against linearization inaccuracies. The VSDF
also exploits the sparsity of the information matrix that arises when no dynamic motion
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model is used. The disadvantage of VSDF is the computational complexity is at best
quadratic in the number of features when a dynamic motion model is available (such as in
visual-inertial navigation systems) [14].

An algorithm that addresses the issues discussed is the Multi-State Constraint Kalman
Filter (MSCKF) [55]. In contrast to the VSDF, the MSCKF exploits the benefit of delayed
linearization while maintaining a linear computational complexity. MSCKF uses an ESKF
formulation with extensions to incorporate vision information over a longer history. In
particular, the MSCKF maintains a window of camera poses and simultaneously update
them using batch-optimized estimates of features observed across all camera poses in the
window. This update step is typically performed when a feature goes out of view of
the camera, but it may also be triggered if a feature track length has exceeded a preset
threshold. As a result of these properties, the MSCKF was chosen for our tightly coupled
filter-based VIO algorithm.

To the best of my knowledge no VIO filter-based solution incorporate a gimbal camera
or DCC sensor configuration. Only a few VIO solutions are designed for stereo or multi-
camera system [71, 44, 73, 58], due perhaps to the cost associated with additional image
processing required.

5.2 State Vector

MSCKF uses an ESKF formulation with extensions to incorporate vision information over
a longer history. Instead of augmenting the state vector with feature positions, a window
of camera poses are kept. The following sections will focus on MSCKF’s extensions over
ESKF.

5.2.1 Estimate-state vector

The full estimate-state vector x̂k at time k consists of the current IMU state estimate x̂I,k,
and N camera poses x̂C , where N is the latest camera pose. This leads to a state vector
of the form

x̂k =
[
x̂TI,k x̂TC1

. . . x̂TCN

]T
. (5.1)

The IMU state xI ∈ R15 is defined as,

x̂I =
[
qTIG bTg vIG

G
T

bTa pIG
G
T
]T

(5.2)
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where the unit quaternion qIG represents the rotation from the global frame FG to the IMU
frame FI, bg ∈ R3 and ba ∈ R3 are gyroscope and accelerometer biases. Both IMU bias
terms are modeled as random walk processes, driven by the white Gaussian noise vectors
nwg and nwa. The vectors vIG

G ∈ R3 and pIG
G ∈ R3 represents the velocity and position of

the IMU from the origin of FG to FI expressed in FG. The i-th camera state vector xCi
is

defined as,

x̂Ci
=
[
qTCiG

pCiG
G

T
]T

(5.3)

which is comprised of a unit quaternion qCiG and position pCiG
G ∈ R3 that describes the

i-th camera pose in the global frame.

Note, the camera pose x̂Ci
denotes the static camera in a DCC camera configuration.

The pose of the dynamic, or gimbal camera, can be calculated from a transform, Td:s,
which can found using the encoder-less gimbal calibration described in Chapter 4.

5.2.2 Error-state vector

Using the true state vector defined in Eq. (5.1) the would cause singularities in the co-
variance matrices, due to the unit constraint on the quaternions in the true-state vector.
Instead the MSCKF estimates the errors of the IMU. The IMU error-state vector is defined
as,

δxI =
[
δθT δbTg δvIG

G
T

δbTa δpIG
G
T
]T

(5.4)

where the standard additive error definition is used for the position, velocity and bias error
terms (i.e., the error in the estimate x̂ of a quantity x is defined as x̃ = x − x̂). The
orientation error, on the other hand, is described by the error quaternion δq, which is
defined by the relation q = δq ⊗ q̂. The symbol ⊗ in the previous expression denotes a
quaternion multiplication. The error quaternion is related to the error state as,

δq '
[

1
2
δθT 1

]T
(5.5)

Here, the error quaternion δq is assumed to describe a small 3 DOF rotation that causes
the true and estimated attitude to coincide, thus following [55] the minimal representation
δθ was used to describe the attitude errors. Similarly, the i-th camera error-state is defined
as

δxCi
=
[
δqTCiG

δpCiG
G

T
]T
. (5.6)
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The complete error-state vector is thus,

δxk =
[
δxTI,k δxTC1

. . . δxTCN

]T
. (5.7)

To maintain a bounded computational complexity, the camera states are marginalized
when the number of camera states exceeds a preset limit.

5.3 Prediction Update

The MSCKF uses a similar ESKF prediction step derived in Section. 2.5, which is sum-
marized here for convenience. Let the nominal state vector x̂, error state vector δx, input
vector u, and the noise vector nI be

x̂I =


q̂IG

b̂g
v̂IG
G

b̂a
p̂IG
G

 , δxI =


δqIG

δbg
δvIG

G

δba
δpIG

G

 , uI =

[
am
ωm

]
, nI =


ng
nwg
na
nwa

 . (5.8)

where the process noise of the IMU, nI =
[
nTg nTwg nTa nTwa

]
, comprises of the Gaussian

noise of the gyroscope and accelerometer measurement with vectors ng and na, and nwg
and nwa represents the random walk rate of the gyroscope and accelerometer measurement
biases. The nominal state kinematics are,

˙̂qIG =
1

2
q̂IG ⊗ (ωm − b̂g)

˙̂
bg = 0

˙̂vIG
G = C{q̂IG}(am − b̂a) + g

˙̂
ba = 0

˙̂pIG
G = v̂IG

G

(5.9)

where q̂IG represents the nominal quaternion, ωm is the measured angular velocity, b̂g is
the nominal gyroscope bias, v̂IG

G is the nominal velocity, am is the measured acceleration,

b̂a and n̂a are nominal acceleration bias and acceleration noise. The linearized continuous
time model for the IMU error state is,

δẋI = FIδxI + GInI (5.10)
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The matrices FI and GI in Eq. (5.10) are,

FI =


−bω̂IG

I ×c −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(q̂IG)T bâ ×c 03×3 03×3 −C(q̂IG)T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3


15×15

GI =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(q̂IG)T 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3


15×12

Every time an IMU measurement is received with a time period, ∆T , the 4th order Runge-
Kutta numerical integration is used to propagate the IMU nominal state. Before propa-
gating the covariance matrix, it is important to stress that the MSCKF covariance matrix
is different from the ESKF’s. Specifically the MSCKF covariance matrix includes the
covariances of the camera poses from the state vector, partitioned as,

Pk+1|k =

[
PIIk|k PICk|k

PT
ICk|k

PCCk|k

]
(5.11)

where PIIk|k is the 15 × 15 covariance matrix of the IMU state, PCCk|k is the 6N × 6N
covariance matrix of the camera pose estimates, and finally PICk|k is the correlation between
the errors in the IMU-gimbal state and the camera pose estimates. With this notation,
the covariance matrix of the propagated state can be written as

Pk+1|k =

[
PIIk|k Φ(tk + ∆T, tk)PICk|k

PT
ICk|k

Φ(tk + ∆T, tk)
T PCCk|k

]
(5.12)

where the state transition matrix Φ(tk + ∆T, tk) and the propagated IMU state covariance
PIIk+1|k are computed with,

Φ(tk + ∆T, tk) = I15 + FI∆T (5.13)

PIIk+1|k = Φ(tk + ∆T, tk)PIIk|kΦT (tk + ∆T, tk)

+ GIQIG
T
I ∆T. (5.14)
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5.4 State Augmentation

Upon new captured images, the MSCKF state is augmented with the new camera state.
The pose of the new camera state N + 1 is computed from the latest IMU state at time k
as:

q̂CN+1G = q̂CI ⊗ q̂IG,k (5.15)

p̂
CN+1G
G = p̂IG

G + C(q̂IG,k)
T p̂CI

C (5.16)

where q̂CI and p̂CI
C are the camera-IMU extrinsics, both are known and can be obtained

through an offline extrinsics calibration, such as Kalibr [26]. This new camera pose estimate
is augmented to the full state vector, and the covariance matrix is augmented by:

Pk|k =

[
I15+6N

Jk

]
Pk|k

[
I15+6N

Jk

]T
(5.17)

where the Jacobian J is derived from Eq. (5.15) and (5.16) as:

Jk =

[
C(q̂CG,k) 03×9 03×3 I3 03×6N

bC(q̂IG,k)
T p̂CI

C ×c 03×9 I3 03×3 03×6N

]
6×15+6N

(5.18)

5.5 Measurement Model

In the following section, the measurement model used in MSCKF will be presented. The
MSCKF algorithm uses the EKF for state estimation, it formulates a measurement model
that produces a residual, r, that depends linearly on the error-state, δx, with the following
general form:

r = Hδx + noise (5.19)

where H is the measurement Jacobian matrix, and the noise is assumed to be a zero-
mean, white noise that is uncorrelated to the error state. The contribution of MSCKF
compared to other filter based VIO algorithm, lies in the formulation of the measurement
model. MSCKF groups camera observations per tracked feature, rather than per camera
pose. Measurements of tracked features are used to constrain camera poses at which the
feature was observed, without including the feature position in the filter state vector.

The measurement model considers the case of a single feature, fj, observed by the
DCC, but only the static camera pose, (qCiG pCiG

G ), will be part of the state vector. The
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measurement of the j-th feature observed by both cameras in the i-th camera pose, z
fj
i , is

represented as,

z
fj
i =

 u
Cs,i

fj

v
Cs,i

fj

 = 1/Z
Cs,i

j

 X
Cs,i

fj

Y
Cs,i

fj

 (5.20)

where (u
Cs,i

fj
, v

Cs,i

fj
) represents the feature point observed in the image plane by the static

camera, and (Xs,i
fj

Y s,i
fj

Zs,i
fj

)T , is the position of the feature in the static camera frame.
The feature position expressed in the static camera frame is given by,

p
fjCs,i

fj
=


X

Cs,i

fj

Y
Cs,i

fj

Z
Cs,i

fj

 = C(qCs,i,G)(p
fjG
fj
− p

Cs,iG
Cs,i

) (5.21)

where p
fjG
fj

is the 3D feature position in the global frame, and it is estimated using least-
squares minimization discussed in Section. 2.4 to obtain an estimate based on the current
estimated camera poses. The initial 3D feature position is initialized using the two views
of the same feature from the static and dynamic camera frames of the DCC, and this is the
author’s contribution towards incorporating a gimbal camera to MSCKF. The transform
between the static to dynamic camera transform, Td:s, is assumed to be known and it can
be found using the encoderless gimbal calibration method discussed in Chapter 4.

Once the estimate of the feature position in the global frame is found, the measurement
residual can be obtained with,

r
fj
i = z

fj
i − ẑ

fj
i , (5.22)

where ẑ
fj
i is the estimated measurement projected from the estimated feature position.

Linearizing about the estimates for the camera pose and for the feature position, the
residual r

fj
i in Eq. (5.22) can be approximated as,

r
fj
i ' Hfj

xi
δx + H

fj
fj ,Cs,i

δp
fjG
fj

+ n
fj
i (5.23)

where H
fj
xi and H

fj
fj ,Cs,i

represent the Jacobians of the measurement z
fj
i with respect to the

state xi and feature fj at the i-th static camera pose Cs,i, and δp
fjG
fj

is the error in the
feature estimate. To obtain residuals over all camera poses, the residuals are stacked over
all measurements (see Fig. 5.1), and so Eq. (5.23) can be rewritten as:

rfj ' Hfj
x δx + H

fj
fj ,Cs

δp
fjG
fj

+ nfj (5.24)
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where rfj , H
fj
x , H

fj
fj ,Cs

and nfj are block vectors or matrices.

Figure 5.1: Stacked Jacobian Hx for a single feature, f0, that was tracked from the third
to sixth camera pose. The nonzero entries are marked in blue in which the feature was
detected and tracked. Note that all features should have a non-zero entry in the second
to last camera pose in the sliding window, since they are tracked up until the most recent
image.

The issue with (5.24) is that the state estimate, x̂, is used to compute the feature

position estimate, therefore the feature position error, δp
fjG
fj

, correlates with the error

state, δx, and thus Eq. (5.24) cannot be used directly. To remedy this problem, following
[55], null space marginalization can be used to remove the correlation. This is achieved by
creating the left null space, AT , a unitary matrix whose columns form the basis of the left
null space of the matrix, H

fj
fj ,Cs,i

. Once the left null space, AT , is found it can be used to

project rfj on the left null space of H
fj
fj ,Cs,i

to form a new residual r
fj
o .

rfjo = AT (zfj − ẑfj)︸ ︷︷ ︸
rfj

' ATHfj
x δx + ATH

fj
fj ,Cs︸ ︷︷ ︸

=0

δp
fjG
fj

+ ATn(j) (5.25)

rfjo = Hfj
o δx + nfjo (5.26)

Using Eq. (5.26), the update step of the EKF can be performed.
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5.6 Measurement Update

In the previous section, the measurement model was presented, and it describes the geo-
metric constraints imposed by observing a static feature from multiple camera poses. This
section details how the EKF measurement update in the MSCKF is triggered. There are
two possible measurement update scenarios:

1. A tracked feature becomes lost: when a feature that has been tracked in a
number of camera frames is lost, the measurements of this feature (a.k.a feature
track) along with the camera poses are used to estimate the feature position in the
global frame. This, in turn is used to form measurement residuals (see Sec. 5.5) for
the measurement update phase of the EKF.

2. Max number of camera poses is reached: upon every new camera frame, the
filter state vector is augmented with a new camera pose (see Sec. 5.4). Once the
preset max number of camera poses is reached, the tracked features that correspond
to the camera states about to be removed are marginalized, similar to when features
are lost.

Continuing from the previous section with Eq. (5.26)

rfjo = Hfj
o δx + nfjo

an issue that arises with the residual vector, r
fj
o , is that it can be quite large in practice.

Therefore the QR-decomposition of H
fj
o is used to reduce the computational complexity of

the EKF update,

Hfj
o =

[
Q1 Q2

] [TH

0

]
, (5.27)

where Q1 and Q2 are unitary matrices and TH is an upper triangular matrix. Substituting
Eq. (5.27) into Eq. (5.26) yields,

rfjo = [Q1 Q2]

[
TH

0

]
δx + no (5.28)[

QT
1 r

fj
o

QT
2 r

fj
o

]
=

[
TH

0

]
δx +

[
QT

1 no
QT

2 no

]
. (5.29)
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The final steps of the measurement update is to compute the Kalman gain, compute
corrections to the state and finally update the state covariance matrix with the following
equations:

K = PTT
H(THPTT

H + Rn)−1 (5.30)

∆x = Krn (5.31)

Pk+1|k+1 = (I15+6N −KTH)Pk+1|k(I15+6N −KTH)T + KRnK
T (5.32)

After the measurement update, if the sliding window exceeds the preset maximum
length, the oldest camera pose along with the corresponding rows and columns in covariance
matrix are removed.

5.7 Experiments and Results

To validate the proposed G-MSCKF described, offline visual inertial odometry was per-
formed on three different datasets. The first dataset is in simulation, second dataset is
from the KITTI raw dataset, and finally a real-world dataset is collected using the Tri-
clops Sensor Module (TSM).

5.7.1 Simulation Results

A simulation experiment was carried out to verify the performance of the proposed al-
gorithm. We used a Bezier curve method to simulate a smooth camera trajectory by
interpolating between position setpoints in the simulation. The first and second derivative
can be calculated to obtain the velocity and acceleration of the camera. One Bezier curve
describes the position, velocity and acceleration while the second Bezier curve describes
the rotation and rotational velocity.

Features observed in the simulation were randomly generated at the start. In each
camera frame each feature was checked to see if they are within the camera’s field of view.
If they are within the camera’s field of view the feature is tracked, and if not, they are
used for measurement update in G-MSCKF.

Fig. 5.2 shows the estimated (blue) and ground truth (red) camera trajectory travelling
from (0, 0, 0) to (20, 10, 5) over 10 seconds. For this particular camera trajectory, 10, 000
visual features were randomly placed on the walls of a 60 m × 60 m × 30 m simulated room
centered at (0, 0, 0). The camera captured images at 10 Hz and traversed the trajectory
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Figure 5.2: Estimate and Ground Truth Trajectory

Figure 5.3: RMSE Errors in Simulation
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Table 5.1: RMSE translation and rotation error of the simulated camera trajectory

RMSE
Trans [m]

x 0.2123
y 0.6285
z 0.3211

RMSE
Rot [rad]

roll 0.0404
pitch 0.0358
yaw 0.0373

at a velocity of 7.11 m/sec. Each camera frame was accompanied with the gimbal joint
angles, which were varied between −0.03 and 0.03 radians over the whole trajectory. The
IMU measurements were calculated from the derivatives of the Bezier curves at a rate of
100Hz.

The resulting RMSE position error in x, y and z are 0.2123m, 0.6285 m and 0.3211 m
respectively. The RMSE orientation error in roll, pitch and yaw are 0.0404 rad, 0.0358 rad
and 0.0358 rad respectively. The final position error over a path length of approximately
71.22 m was 0.71 m, or approximately 1% of the total distance travelled. While there is a
large roll, position and velocity error in the y direction relative to other components, these
errors occurred early and is maintained to the end. The root cause could be due to the
rapid rotations and translations at the start of the simulation. Several similar experiments
were performed and show consistency across all trials, demonstrating the consistency of
the G-MSCKF formulation in simulation.

5.7.2 KITTI Data Results

To test the proposed G-MSCKF on real data, the algorithm was evaluated on a KITTI raw
dataset sequence [28], specifically sequence 0005. The dataset sequence, however, was not
captured using a dynamic camera cluster (DCC) or gimbal camera configuration, therefore
the gimbal camera joint angles were fixed throughout the whole trajectory, essentially
emulating a stereo camera configuration.

For visual inertial odometry, only data collected from two PointGrey Flea2 grayscale
cameras (FL2-14S3MC) capturing images at 10Hz with a resolution of 1392× 512, and an
OXTS RT3003 inertial and GPS navigation system running at 100Hz were used. The cam-
era images were synchronized with the 3D Velodyne Lidar onboard, where as the GPS/IMU
data was collected at 100Hz and aligned to the closest Lidar timestamps, resulting in
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a worst-case time difference of 5ms between the camera frame and IMU measurement.
Fig. 5.4 shows features tracked by the front-end of G-MSCKF.

(a) Time: 1.6s

(b) Time: 5.8s

(c) Time: 9.5s
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(d) Time: 13.3s

Figure 5.4: KITTI Raw Dataset - 2011 09 26 - Sequence 0005

Table 5.2: RMSE translation and rotation error of the camera trajectory over sequence
0005 of the KITTI raw dataset

RMSE
Trans [m]

x 2.7672
y 1.0893
z 2.2182

RMSE
Rot [rad]

roll 0.0427
pitch 0.0275
yaw 0.1985

Figure 5.6: RMSE Errors on KITTI Raw Dataset Sequence
76



Figure 5.5: Estimated and Ground Truth Position and Altitude
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Due to the moving objects in the scene (cyclist and van; see Fig. 5.4) throughout the
whole dataset sequence and rapid camera motions, the estimated position and attitude
had large RMSE errors. In particular the altitude and roll, leading to a final position
error of 5.27 m over a path length of ≈ 87 m, or 6% of the total distance travelled. The
cause for large errors began at around 5.8 seconds into the sequence, specifically when the
camera rotates horizontally to the right rapidly causing difficulty for the feature tracker.
This can be observed in Fig. 5.4b, where most of the detected features are above the
horizontal ground plane and not uniformly distributed, thus causing the estimated height
to start diverging. Inspecting the RMSE errors in Fig 5.6 supports the observation that
the errors started to take affect from that moment onwards. Additionally, similar to [12]
during experimentation G-MSCKF was found to be sensitive to tuning parameters. Varying
general parameters such as sliding-window size or minimum track length could cause the
estimation to diverge wildly.

5.7.3 Real World Data Results

Figure 5.7: Triclops Sensing Module (TSM)
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In addition to the KITTI raw datasets, the performance of G-MSCKF on data collected
by the Triclops Sensing Module (TSM) shown in Fig. 5.7 was compared. The Triclops
sensing unit consists of three IDS UI-1221LE monochrome camera capturing images at
20Hz with a resolution of 752 × 480, and a XSens XTi-300 IMU running at 100Hz. The
aim with the TSM is form a VIO benchmark platform where monocular, stereo and DCC
camera configurations can be compared within the same dataset. To the best of our
knowledge no VIO dataset contains a gimbal camera as part of the sensor suite.

In photogrammetry, it is a known fact camera frames should be timestamped at mid-
exposure [26]. The IDS UI-1221LE cameras, however, timestamps the camera frame at
end of the camera exposure. To resolve this problem the method by [56] was used to
negatively offset the trigger signal by half of the camera’s exposure time, and timestamped
the camera frame with the IMU’s timestamp instead. For our purpose, the XSens XTi-300
IMU was used as the camera trigger source. The camera intrinsics, extrinsics of the rigidly
mounted stereo pair, and extrinsics between the rigidly mounted stereo pair and IMU were
calibrated using Kalibr [26]. The extrinsics between the first static camera and dynamic
camera (gimbal camera) or DCC, on the other hand, were calibrated using the encoder-less
gimbal calibration method introduced in Chapter 4.

A problem occurred after the encoderless gimbal calibration, when validating the gimbal
extrinsics it was found that the optimized transform from the static to dynamic camera,
Td:s, does not model the TSM gimbal well. In constrast to the stereo camera configuration
on board the TSM (see Fig. 5.9) which has an RMSE reprojection error of 1.09 pixels, the
gimbal camera RMSE reprojection error is significantly higher when the joint angles vary
significantly (see Fig. 5.10, where the error varies from 1.5 to 2.38 pixels). The limitations
in the calibration approach meant that G-MSCKF performance was very poor, and more
effort is needed in future work to reduce those errors due to the extreme sensitivity of
G-MSCKF to calibration and noise parameters. As such it was not possible to validate the
G-MSCKF approach appropriately. In future, this could be addressed by jointly optimizing
the DCC transform, Td:s, as part of the VIO formulation, however, due to time constraints,
I was unable to incorporate them into the G-MSCKF formulation at this time.
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Figure 5.8: Difference between synchronizing the cameras using periodic triggering and
exposure compensated triggering. Assuming the camera frames are timestamped at the
end of exposure, periodic triggering introduces observable time-differences between IMU
measurements and camera frame. Exposure compensated triggering aims to mitigate this
problem.

(a) Left camera frame (b) Right camera frame

Figure 5.9: Stereo Extrinsics Validation: The green dots in the left camera frame, denotes
the detected chessboard corners on the right frame projected onto the left frame, and vice
versa with the red dots. A reprojection error of 1.09 pixels indicates a good calibration.
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(a) (b)

(c)

Figure 5.10: Gimbal Extrinsics Validation: The red dots are the detected chessboard
corners from the static camera projected onto the image of the gimbal camera. It can be
observed that the reprojection errors are larger in (a) and (b) when gimbal joint angles
are large, compared to the gimbal configuration near (0, 0) in (c). A reprojection error of
higher than 1.5 pixels is deemed a bad calibration.
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Chapter 6

Conclusion

In this thesis, three different issues related to autonomous MAV landings were investigated.
First, an end-to-end system to perform autonomous autonomous landing of a MAV onto
a moving ground target was demonstrated in Chapter 3. The result was an end-to-end
landing system called ATL. The system showed the possibility of using low-cost sensors for
autonomous MAV landings, and it was tested and demonstrated in simulation using ROS
and Gazebo. Noteworthy contributions were made on robust landing target detection at a
higher rate.

Secondly, an encoder-less gimbal calibration to enable active vision for vision based
localization and mapping algorithms was demonstrated in Chapter 4. Where contributions
were made towards an encoderless gimbal calibration to enable state estimation algorithms
to make use of a gimbal camera. The method was validated by modifying OKVIS to jointly
optimize for the weighed re-projection error, temporal error term from the IMU, and gimbal
joint angles.

Lastly, a gimbal camera was incorporated with a filter-based VIO for efficient and robust
MAV state estimation in Chapter 5. Although it was only demonstrated in simulation, it
is the author’s belief that jointly estimating the gimbal transform as part of the filter state
vector will help resolve issues met during real-world experiments.

6.1 Future Work

The work presented in this thesis has significant potential on improving autonomous MAV
landing. For future work validating the ATL system on a real physical MAV, and per-
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form landing in night time conditions would demonstrate the robustness of the proposed
illumination invariant AprilTag.

Secondly, gimbal cameras are increasingly being used for image stabilization on MAVs,
and with gimbal cameras on MAVs becoming as ubiquitous as MAVs itself today, it would
be advantageous to utilize the gimbal camera for state estimation. However, before it can
be used as part of a state estimation algorithm, it is important to obtain a good gimbal
calibration. An encoder-less gimbal calibration was introduced in Chapter 4, however, the
calibration method does not model the configurations of a custom gimbal well, leading to
large reprojection errors while varying the gimbal joint angles. Future work would include
a more thorough degeneracy analysis of the gimbal calibration method, and methods for a
more precise gimbal calibration for custom gimbals.

Lastly, the work on G-MSCKF showed both the promise of a light-weight filter for
state estimation and the extreme sensitivity of the MSCKF approach to outliers, tuning
parameters and measurement noise on a real world dataset. Due to its sensitivity to tuning
parameters, a simpler formulation of a filter-based VIO should be considered for robust
MAV flight, such as ROVIO [6]. In contrast to MSCKF, ROVIO does not form multi-
camera pose constraints with the environment for localization. Instead it forms constraints
between pairs of camera poses. The computational cost of ROVIO is slightly higher than
MSCKF, but results in a simpler implementation as the book-keeping to maintain camera
poses in the filter state, and feature tracks currently tracking can be a burden from an
implementation standpoint.
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