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Abstract 
 

Sedimentary sequences are common in granite-greenstone belts of Archean terranes. In 

the Yilgarn Craton of Western Australia, the Mougooderra Formation is an extensive 

sedimentary sequence that preserves low-variance metamorphic mineral assemblages and 

unconformably overlies older greenstone material within the Murchison Domain. Geochemical, 

mineral composition, and geochronological data is presented in combination with pressure-

temperature estimates of the Mougooderra Formation to give insights into the geodynamic 

conditions of this region at the time of metamorphism.  

Metamorphic rocks from the Mougooderra Formation display a range of metamorphic 

mineral assemblages that relate to different bulk compositions. Variations in the bulk 

compositions of these rocks can be largely attributed to variations in the amount of Fe, Mg, Ti, 

Al, and K. Taking into account the variation between these elements, the metamorphic rocks of 

the Mougooderra Formation can be separated into a high Fe-Mg group, a high Al group and an 

average pelitic group, each of which displays different metamorphic mineral assemblages. 

Results of thermobarometry and phase equilibrium modelling agree in terms of P–T estimates 

and indicate that the Mougooderra Formation experienced temperatures of 550–570°C and 

pressures of 2.2 to 3.3 kbar, while select samples of greenstone material near Mt Mulgine 

experienced P–T conditions of 610–650°C and 4 to 7.2 kbar. Garnet Lu-Hf and Sm-Nd 

geochronology returned respective ages of 2686±18 Ma (MSWD of 0.87) and 2611±35 Ma 

(MSWD of 0.51) for the Mougooderra Formation and ages of 2685±15 Ma (MSWD of 1.5) and 

2590±21 Ma (MSWD of 0.24) for the greenstone material near Mt Mulgine, indicating 

simultaneous metamorphism. The difference in ages between the two garnet chronometers is 

consistent with slow cooling from the peak of metamorphism across this region. The 

metamorphic ages obtained in this study are considerably different than those of the granitic 

rocks within the surrounding area, including the cross-cutting Seeligson monzogranite, and 

suggests metamorphism was not triggered by the emplacement of post-tectonic granitic 

intrusions. 

Calculated apparent thermal gradients of the rocks from the Mougooderra Formation and 

greenstone material near Mt Mulgine range between 1700 and 2300 °C/GPa and 900 to 

1600°C/GPa, respectively, and are consistent with other apparent thermal gradients from the 

western Yilgarn Craton. These ages, P–T conditions, and high apparent thermal gradients can be 

used to infer a thin continental lithosphere and the presence of a large, long-lived heat source at 

the time of metamorphism. This is compatible with a plume-dominated tectonic regime in the 

Yilgarn Craton during the Neoarchean. 
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Chapter 1: Introduction 

1.1 Introduction  

Remnants of the Archean Eon are reported from across the globe and include well-known 

cratons such as the Superior Province of Canada, the Pilbara and Yilgarn cratons of Australia, 

the Kaapvaal craton of south Africa, and several others (Abbott et al., 2013). These terranes 

generally consist of several dominant rock types including alternating felsic and mafic 

greenstone sequences, granitic intrusions, and sedimentary sequences that unconformably overlie 

greenstone material (Anhaeusser, 2014). Greenstone belts within these Archean terranes are 

often heavily mineralized areas that can host world-class mineral (e.g. gold, base metal) deposits, 

however, despite the attention that these regions receive, a consensus on the mechanisms behind 

the formation and tectonic evolution of many of these terranes has not yet been reached (e.g. 

Bedard, 2018; Wyman, 2018). The Yilgarn Craton, like many Archean cratons, has two 

endmember tectonic models which attempt to explain the formation and evolution of the craton. 

The first model invokes uniformitarian tectonic processes and involves subduction and the 

accretion of terranes onto an older portion of continental crust (i.e. Youanmi Terrane; Fig. 1.1) 

where the large intrusions observed throughout the craton relate to melting of subducting oceanic 

crust (Myers, 1993; 1995; Wilde, 1996; Krapez and Barley et al., 2008; Standing, 2008). The 

second model involves thinning of the continental lithosphere, heating of the deep to middle 

crust, and diapiric and sagduction processes due to the presence of a large mantle plume at the 

base of the crust (Van Kranendonk et al., 2013). This model does not include subduction, which 

suggests a different plate tectonic regime compared with the modern day (e.g. Bedard, 2018).  
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In the Yilgarn Carton, the debate surrounding the topic stems largely from the age, poor 

exposure and preservation of outcrops, and lack of research in less mineralized regions of the 

craton (Van Kranendonk, et al., 2013). 

The Yilgarn Craton consists of six terranes, three of which are heavily mineralized north-

south-trending terranes known collectively as the Eastern Goldfields Superterrane (Cassidy et al., 

2006). The majority of research within the Yilgarn Craton has been focused on these Au-rich 

regions, and previous studies in all terranes of the Yilgarn Craton have largely been focused on 

the timing and lithostratigraphy of the volcanic sequences and granitic suites. In contrast to this, 

metasedimentary sequences have received little attention. In addition to the sandstone and 

conglomerate units that dominate these sedimentary sequences, fine-grained material with P–T 

sensitive metamorphic mineral assemblages can also be found. These sequences provide key 

information on the thermal and burial history of the sedimentary packages. However, analysis of 

these metamorphic rocks is rarely undertaken. The aim of this study is to characterize the 

metamorphic history of an epiclastic sedimentary sequence known as the Mougooderra 

Formation in the Murchison Domain of the Yilgarn Craton. The characterization of these rocks 

will give the first P–T estimates for this region of the Murchison Domain and will help determine 

if these types of metamorphic rocks are useful recorders of tectonic events within the region. 

Characterization of the Mougooderra Formation was achieved using a variety of methods, 

including: petrography, whole-rock geochemical analysis using X-ray fluorescence (XRF), 

analysis of major element compositions using an electron probe microanalyzer (EPMA), and 

false coloured images using a scanning electron microscope (SEM) and Mineral Liberation 

Analysis (MLA) software. The data gathered from these methods was then used with phase 

equilibrium modelling and classic thermobarometry calculations to determine the pressure and 
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temperature conditions of the Mougooderra Formation. Coupled garnet Lu-Hf and Sm-Nd 

geochronology was used to constrain the timing of metamorphism within the region. The results 

of these analyses are tested against various tectonothermal models of the evolution of the Yilgarn 

Craton. 

This thesis consists of six chapters. The remaining sections of Chapter 1 will briefly outline 

the geology of the Yilgarn Craton, the Murchison Domain, and the study area, followed by the 

major objectives of the project. Chapters 2 and 3 provide the methodology and results of the 

techniques mentioned. Chapter 4 presents the P–T estimates obtained from phase equilibrium 

modelling and thermobarometry. Chapter 5 discusses the geological significance of the P–T 

estimates and geochronology with respect to the Murchison Domain. Chapter 6 outlines and 

discusses potential future studies.  

 

1.2 Background Geology 

1.2.1 The Yilgarn Craton 

The Yilgarn Craton (Fig. 1.1 inset) of western Australia is one of three Archean cratons 

located within the Australian continent and is also one of the largest Archean cratons in the 

world. The craton consists of six terranes that have previously been interpreted to have formed as 

the result of Archean orogenesis and amalgamation (Myers, 1993; 1995; Wilde, 1996; Krapez 

and Barley et al., 2008; Standing, 2008). Two of the terranes are made up dominantly of older 

gneissic material, while the remaining four contain low-grade granite-greenstone belts typical of 

Archean terranes (Cassidy et al., 2006).  
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The two dominantly gneissic terranes are known as the Narryer Terrane and the Southwest 

Terrane and are found in the northwestern and southwestern areas of the Yilgarn Craton (Fig. 

1.1; Cassidy et al., 2006). Both are made up of high-grade granitic gneiss with ages between 3.2 

and 2.6 Ga, and contain minor granodiorite, tonalite, layered intrusions, and overlying 

metasedimentary rocks (Myers, 1993; Cassidy et al., 2006). These terranes contain some of the 

oldest geological components on Earth. In addition to the well-known Jack Hills conglomerate, 

which contains Hadean detrital zircon (Compston and Pidgeon, 1986), the Narryer terrane also 

hosts the oldest known rocks in Australia, the 3.73 Ga Meeberrie Gneiss and the 3.73 Ga 

Manfred Igneous Complex (Cassidy et al., 2006). The three eastern most terranes are collectively 

known as the Eastern Goldfields Superterrane (Fig. 1.1) and each contains granite-greenstone 

belts that range in age from 2.81–2.66 Ga, as well as tholeiitic and komatiitic mafic–ultramafic 

rocks, felsic volcaniclastics, epiclastic sedimentary sequences, and large granitic intrusions 

(Cassidy et al., 2006).  

The final terrane, known as the Youanmi Terrane, is the largest terrane within the craton and 

is comprised of two smaller domains that include the Murchison Domain to the west and the 

Southern Cross Domain to the east (Fig. 1.1; Cassidy et al., 2006). The two domains are 

separated by the Youanmi Fault system; however, they display similar ages and lithostratigraphic 

units that suggest a shared tectonic history between the two (Myers 1993; Chen et al., 2003; 

Cassidy et al., 2006). Both domains comprise north-trending greenstone belts made up of several 

cycles of ultramafic to felsic volcanic rocks (~3.05–2.70 Ga), and numerous granitic and mafic-

ultramafic intrusions (Cassidy et al., 2006; Ivanic et al., 2010; Ivanic et al., 2012; Van 

Kranendonk et al., 2013). The presence of inherited >4.0 Ga zircons in both the Murchison and 

Southern Cross Domains, and Nd model ages from granitic rocks greater than 3.0 Ga suggests 
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that the Youanmi Terrane may have been built on an older crustal component with the Narryer 

and Southwestern Terranes (Nelson et al., 2000; Champion and Cassidy, 2007; Van Kranendonk 

et al., 2013). 

1.2.2 The Murchison Domain 

Despite the important geological features within the terranes of the western Yilgarn Craton, 

research within domains such as the Murchison has been neglected for the more mineral-rich 

terranes of the Eastern Goldfields Superterrane. In addition to the debate about the overall 

tectonic setting of the Yilgarn Craton, smaller terrane scale questions still remain, such as the 

relationship between the older gneissic terranes and the Murchison Domain, the origin of the 

greenstone belts and granitoid intrusions, the relationship between epiclastic sedimentary 

sequences and granitic intrusions, and the general metamorphic histories of these domains. 

Previous work in the Murchison Domain began in the early 1990s, the majority of which 

focused on general mapping of the area or understanding the timing relationships between the 

greenstone belts and granitic intrusions (Myers, 1993, 1995; Wang, 1998; Watkins and Hickman, 

1990; Wilde et al., 1996; Yeats et al., 1996). In addition to these studies, in 2005 the Geological 

Survey of Western Australia (GSWA) began a 1:100 000 scale mapping project within the 

Murchison Domain with the aim of better understanding the tectonic history of the region. The 

project is still ongoing but has so far resulted in a better understanding of the timing of granitic 

and mafic intrusions, better constraints on the lithostratigraphic scheme of the greenstone 

material, and a better idea of the overall evolution of the domain (e.g. Van Kranendonk and 

Ivanic, 2009; Ivanic et al., 2010; Ivanic 2012; Van Kranendonk et al., 2013). 

A lithostratigraphic scheme that incorporates the new data acquired during the mapping 

project with previous work was put forward in 2009 (Van Kranendonk and Ivanic, 2009).  This 
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work has been built upon and thus-far has identified four volcano-sedimentary sequences 

displaying typical dome and keel structures within the region. These include the 2950 Ma Mount 

Gibson Group, the 2814–2800 Ma Norie Group, the 2785–2734 Ma Polelle Group, and the 

2724–2700 Ma Glen Group (Van Kranendonk and Ivanic, 2009). The later three greenstone 

sequences have been interpreted to represent nearly 225 Ma of continuous plume-related 

magmatism that transitions from mafic to felsic compositions over time (Van Kranendonk et al., 

2013). 

In addition to the volcano-sedimentary sequences, large ultramafic-mafic and granitic 

intrusions are found throughout the Murchison Domain (Van Kranendonk and Ivanic, 2009; 

Ivanic et al., 2010; Ivanic et al., 2012). The mafic-ultramafic intrusions make up a large volume 

of the rocks found in the northern portion of the Murchison Domain, are host to V, Cr, Ni, Cu, 

and PGE mineralization, and are considered to be coeval with the early stages of greenstone 

formation (Ivanic et al., 2010). The ultramafic–mafic intrusions and the ultramafic–mafic rocks 

within greenstone belts are interpreted to be partial melts of mantle material at varying depths 

and sources based on trace element compositions (Van Kranendonk et al., 2013). Older 

ultramafic–mafic rocks have been interpreted to represent partial melting of deep, primitive 

mantle sources, while the younger ultramafic–mafic rocks have been interpreted to represent 

shallower mantle melts affected by greater amounts of crustal contamination over time (Van 

Kranendonk et al., 2013). 

While ultramafic-mafic intrusions are associated with the start of the greenstone cycles, 

granitic intrusions have been interpreted to be coeval with the latter stages of greenstone cycles 

(Ivanic et al., 2012). In general, the older granitic intrusions of the Murchison Domain have 

relatively low concentrations of SiO2, and high concentrations of MgO and Ni, whereas younger 
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granites have compositions consistent with a more fractionated magma, including increased 

concentrations of SiO2 and K2O as well as larger Eu anomalies (Ivanic et al., 2012). The 

variation seen within the granitic suites has been interpreted to be the result of continuous re-

melting of lower crustal components at progressively shallower crustal levels that resulted in the 

production of increasingly more fractionated granitic melts over time (Ivanic et al., 2012). 

 

1.3 Study Area 

The study area for this thesis is located within the Murchison Domain, near the town of 

Yalgoo, Western Australia (Fig. 1.1). This thesis focuses on the Mougooderra Formation within 

the Ninghan area (Fig. 1.2). The formation is a 2–3 km thick metasedimentary unit that 

unconformably overlies greenstone material of the Polelle and Norie groups (Zibra et al., 2018). 

Samples for this thesis have been taken primarily from the sedimentary layers within the 

Mougooderra Formation, however, select samples of the greenstone material from the Polelle 

Group near Mt Mulgine were also analysed (Fig. 1.1-1.2; Table 1.1). Sample locations and 

further information can be found in Appendix A. 

The Mougooderra Formation is part of the Glen Group and is composed of a range of 

lithologies including interbedded conglomerate, sandstone, and siltstone, with minor banded iron 

formation, chert, and basalt (Fig. 1.3a; Watkins and Hickman, 1990). These rocks display a 

normal, upward fining sequence that has previously been interpreted as the transition from a 

shallow shelf environment to a distal, deeper marine environment (Watkins and Hickman, 1990). 

Detrital zircon and Th/U analyses from the Mougooderra Formation near the Yalgoo Dome 

indicate similar ages and Th/U ratios to those of the nearby Kynea Tonalite and granitic rocks of 

the Rothsay Suite (Zibra et al., 2018). In addition, structural studies of the Yalgoo Dome, and 
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associated granitoids such as Mt Mulgine, have documented doming fabrics and indicate that 

sediments of the Mougooderra Formation may have been sourced from these granitic rocks and 

overlying greenstone material (Zibra et al., 2018). 

This thesis examines the metapelitic material within the Mougooderra Formation (Fig. 1.3b, 

c), which display a range of mineralogical assemblages with respect to bulk composition. In 

order to reach a better understanding of the tectonic evolution of the Yilgarn terrane and Archean 

terranes in general, robust pressure-temperature (P–T) constraints from metamorphic rocks with 

useful mineral assemblages are required to assess the timing of burial and heating. The 

metamorphic assemblages found within the metapelitic rocks of the Mougooderra Formation 

allow for the first detailed P–T constraints of the Ninghan area to be determined, which is critical 

for characterizing the tectonometamorphic history of the region. 

 

1.4 Research Objectives 

Original work within the Murchison domain suggested that horizontal tectonics was the 

major geodynamic process (Myers, 1993; 1995; Wilde, 1996; Krapez and Barley et al., 2008; 

Standing, 2008), and therefore the driving force behind the deposition and metamorphism of this 

material. However, more recent work within the domain suggests that an alternative tectonic 

regime may have been responsible for the development of the granites and greenstones found 

within the Murchison Domain (Van Kranendonk et al., 2013). In addition to the well-studied 

granitic and greenstone material in the region, metasedimentary sequences stratigraphically 

overlie the greenstone belts. The Mougooderra Formation is one of the largest metasedimentary 

sequences within the region, and besides mapping in the 1990s by Watkins and Hickman (1990) 

that noted characteristics such as the sedimentary sequence and clast types, very little work on 
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this metasedimentary sequence has been done until recently. Much of the history of the 

Mougooderra Formation still remains unknown including the provenance of much of the 

sedimentary material within the Ninghan area, the metamorphic conditions, and the overall 

geodynamic environment at the time of metamorphism. The purpose of this thesis is to constrain 

the metamorphic history of the Mougooderra Formation through petrography, mineral analysis, 

phase equilibrium modelling and garnet geochronology, and use this information to test the 

current tectonic models of the Murchison Domain. Understanding the metamorphic histories of 

these metasedimentary sequences is an important step towards fully understanding the tectonic 

setting of the Murchison Domain and the tectonic evolution of Archean cratons in general.   

This study aims to better understand the metamorphic history of the Mougooderra Formation 

through three major objectives, these include (1) to characterize the metamorphic rocks and 

mineral assemblages within the Ninghan area, (2) to determine the pressure and temperature 

conditions under which those mineral assemblages formed, and (3) to determine the timing of 

metamorphism by dating specific metamorphic minerals (i.e. garnet) within these rocks. 

 



10 
 

 
Figure 1.1. Bedrock map of the Yalgoo and Ninghan areas downloaded and modified from the GSWA’s online interactive geological map 

(GeoVIEW) with dates from Clos et al. (2018). Inset shows the domains and terranes of the Yilgarn Craton modified after Cassidy et al. (2006). 

The black outline indicates the location of Figure 1.2, while letters A and B represent sample locations that are outside the limits of Figure 1.2. 

Letters A and B represent relative sample localities, see Table 1.1 for exact sample locations. 
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Figure 1.2. Interpreted bedrock map of the Ninghan area modified with sample localities after Ivanic (2018).  Letters C-G represent relative 

sample localities, see Table 1.1 for exact sample locations.
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Table 1.1. Sample locations and major metamorphic minerals. 

 

 

 

 

 

 

Sample Locality Sample Easting Northing Major Metamorphic Minerals 

A 207691 500197 6801963 Andalusite 

 207697 500197 6801963 Andalusite 

 229105 500197 6801963 Andalusite 

B 207690 500499 6772698 Garnet, amphibole 

 229151 500499 6772698 Garnet, amphibole 

 229146 501062 6772484 Cordierite 

 229148 497923 6771884 Amphibole, biotite 

 229149 497923 6771884 Amphibole  

C 207602 507755 6780386 Andalusite 

 229106 509123 6780266 Andalusite 

 229107 509123 6780266 Andalusite 

 229109 509658 6779783 Andalusite 

 229137 509616 6779803 Cordierite 

 229152 503577 6781411 Cordierite 

D 207695 517089 6757120 Andalusite, cordierite 

 207692 516595 6756846 Garnet, cordierite, amphibole 

 207694 516888 6756813 Cordierite 

 207693 516664 6756852 Garnet, amphibole 

 229101 516597 6756844 Garnet, cordierite 

 229111 516588 6756937 Garnet, Cordierite 

 229112 516588 6756937 Garnet, Cordierite 

 229113 516648 6756904 Andalusite, biotite, cordierite 

 229114 516834 6756895 Andalusite, cordierite 

 229115 516916 6756901 Garnet, chlorite 

 229116 516953 6756901 Cordierite  

 229117 517089 6756978 Cordierite, andalusite 

 229119 516597 6756844 Garnet, cordierite 

 229120 516597 6756844 Garnet, cordierite, amphibole 

 229124 516959 6756401 Garnet, amphibole 

 229125 517116 6756110 Andalusite 

 229126 517268 6755655 Andalusite 

 229155 516996 6755779 Cordierite, andalusite 

 229157 517216 6755692 Andalusite 

 229158 517216 6755692 Andalusite 
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Table 1.1. (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  Field photos of the Mougooderra Formation: (a) A large conglomerate and sandstone 

package, (b) metapelitic material (sample 229111) from the Mougooderra Formation are commonly more 

heavily eroded and weathered, however, still preserve relatively unaltered rock (c).

Sample Locality Sample Easting Northing Major Metamorphic Minerals 

E 229130 518043 6752074 Andalusite, chlorite 

 229132 518076 6751728 Andalusite 

 229127 518293 6751231 Andalusite 

F 229110 518345 6745826 Andalusite 

G 211117 512517 6744201 Cordierite  

 211116 512517 6744201 Andalusite, cordierite 

 229133 512564 6744224 Andalusite 

 229134 512564 6744224 Andalusite 

 229135 512295 6744251 Andalusite 

 229136 512382 6744132 andalusite, cordierite 
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Chapter 2: Methods 
 

2.1 Geochemistry 

Whole-rock geochemical analysis for thirty-three samples was completed by Bureau 

Veritas Minerals (Perth, Australia). Major element analyses were completed through the use of 

X-ray fluorescence (XRF) on a glass disc fused with 12:22 Lithium-borate flux for each sample 

(BV Minerals analysis type: XF202) with an elemental precision better than ±1% of reported 

values. Trace elements were determined through fused bead LA-ICP-MS (BV Minerals analysis 

type: LA101), and FeO concentrations were determined through acid digestion and volumetric 

titration (BV Minerals analysis type: GC101). Bureau Veritas Minerals quality assurance is 

achieved through the use of blanks, duplications, and the analysis of certified international 

standards. To assure quality data within each batch, the GSWA also includes 10% standards and 

10% blanks in addition to the standards and blanks used by the lab. Both whole rock 

geochemistry and ferrous iron concentrations were required for the calculation of pseudosections 

and to constrain pressure and temperature conditions. 

 

2.2 Scanning Electron Microscope (SEM) and Mineral Liberation Analysis (MLA) 

An FEI Quanta 400 scanning electron microscope (SEM) was used with Mineral 

Liberation Analysis (MLA) software at Memorial University of Newfoundland to collect false 

coloured images and backscatter images for a select number of samples. Samples were analysed 

using an accelerating voltage of 25kV, and a beam current of 10nA. The false coloured images 

produced by MLA software allows for a better understanding of the textural and mineralogical 

distributions of a sample than traditional petrography can achieve on its own. This is because the 
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MLA software is capable of mapping very fine-grained mineral relationships and because of its 

ability to differentiate between minerals with similar optic properties. The SEM-MLA was used 

in combination with optical petrography to understand the mineralogy and textures of samples 

from the Mougooderra Formation.   

 

2.3 Electron Probe Microanalyzer (EPMA) 

Major element compositions of the main phases within garnet-bearing samples were 

determined using the JEOL JXA-8230 electron probe microanalyzer (EPMA) at the Department 

of Earth Sciences, Memorial University of Newfoundland. Synthetic and natural standards were 

used for calibration and data reduced using ZAF correction online by the JEOL software. The 

main minerals of interest include garnet, amphibole, biotite, chlorite, cordierite, and feldspar. 

Minerals were analysed with an accelerating voltage of 15kV, a beam current of 20nA, a beam 

diameter of 1μm for non-hydrous minerals, and a beam diameter ranging between 3-15μm for 

hydrous minerals. X-ray compositional maps of garnet porphyroblasts were collected to 

determine any zoning patterns within the grains with respect to Ca, Fe, Mn, and Mg. Mapping 

conditions of 15kV and 200nA were used with a dwell time of 150ms and step sizes that ranged 

between 3.5 to 6.5μm depending on the size of the garnet porphyroblast. Because mineral 

compositions are sensitive to changes in pressure and temperature, the EPMA results were used 

in conjunction with pseudosections and garnet-biotite thermometry to constrain the P–T 

conditions. 
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2.4 Thermobarometry 

Temperature estimates for the Mougooderra Formation were determined using measured 

mineral compositions (EPMA data) combined with seven garnet-biotite thermometer calibrations 

(Thompson, 1975; Holdaway and Lee, 1977; Ferry and Spear 1978; Perchuk and Lavrent’eva. 

1983; Dasgupta et al., 1991; Bhattacharya et al., 1992; Holdaway, 2000), while pressures were 

determined through the garnet-biotite-Al2SiO5-quartz barometer calibration of Wu (2017).  

 

2.5 Phase Equilibrium Modelling  

Phase equilibrium diagrams were calculated using bulk compositions obtained through 

XRF. The rocks from the Mougooderra Formation were used to model mineralogical 

relationships and in conjunction with EPMA data were used to determine peak metamorphic 

conditions. Phase equilibrium diagrams were calculated using Thermocalc 3.33 (Powell and 

Holland, 1988) and internally consistent data set tcds55 (Holland and Powell, 1988; updated 

2003). Diagrams were constructed in the MnO-Na2O– CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–

TiO2–Fe2O3 (MnNCKFMASHTO) system with clino-and orthoamphibole a-x models of Diener 

et al. (2007), garnet, biotite, and ilmenite-hematite a-x models of White et al. (2005), cordierite, 

epidote, and staurolite a-x models of Holland and Powell (1998), plagioclase and K-feldspar a-x 

models of Holland and Powell (2003), muscovite a-x model of Coggon and Holland (2002), melt 

model of White et al. (2007), and magnetite a-x model of White et al., (2000). The use of this 

system allows both H2O content and ferric iron to be considered during calculations. For this 

study, since the rocks being considered are subsolidus H2O was considered to be in excess (e.g. 

Webb et al., 2015). A ferric iron value was assigned based on iron values obtained through 
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titration methods and ranged between 0.35 and 4.0 mol% Fe2O3 depending on the sample being 

considered. 

2.6 Garnet trace element zoning 

Trace element zoning in garnet was measured using 4–14 points across garnet grains 

from samples chosen for garnet geochronology. Transects across three garnets were measured 

from sample 207692, three grains from sample 229151, and two grains from sample 207690 

(same locality as sample 229151). Garnet in thin section was analyzed using an Analyte G2 

193nm laser ablation system coupled to an Agilent 8800 QQQ-ICP-MS operating in single-

quadrupole mode in the Metal Isotope Geochemistry Laboratory at the University of Waterloo. 

Garnet was ablated using a 50 μm spot, a 5 Hz repetition rate and a fluence of 5 J/cm2 (measured 

at the surface of the sample). Ablation occurred in a He atmosphere in a Helex2 chamber. The 

aerosol was transported to the torch using 0.5 L/min He and 1.5 L/min Ar makeup gas that was 

added in a T-junction between the chamber and the torch. NIST612 was used as the external 

standard (measured every ~5 unknown analyses) and 29Si was used as the internal standard using 

an assumed concentration of 16.9 wt.% Si in garnet. The following masses were measured all 

with 10s dwell times: 29Si, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 

166Er, 169Tm, 172Yb, 175Lu, 178Hf. A 20s gas background was measured prior to a 30s ablation of 

the garnet. Data were reduced using Iolite (v3.1) and the “Trace_element_IS” data reduction 

scheme (Paton et al., 2011). BHVO-2G was monitored as a secondary standard and REE were 

within 10% of the preferred values from the GeoRem database (Jochum et al., 2016).  
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2.7 Garnet Lu-Hf and Sm-Nd Geochronology 

Rock samples were crushed to ~1mm and garnet grains were then hand picked under a 

binocular microscope. Whole-rock powders were prepared by milling ~15 ml of crushed sample 

in an agate jar using a Retsch PM200 planetary ball mill.  

Chemical processing and column chemistry were carried out at the GEOMETRIC Lab at 

the University of Western Ontario. All teflonware was Savillex® PFA beakers and PTFE Teflon 

vessels for the Parr® vessel dissolution. At the GEOMETRIC Lab, chemicals used for 

processing were BDH® Aristar Ultra for HF, HClO4, and H2O2, while HCl and HNO3 were 

house distilled from BDH® Aristar Plus in Savillex DST-1000 stills. Water was purified to a 

resistivity of 18.2 MΩ using a Millipore Advantage 10 system and QPOD Element dispenser. 

Chemistry was carried out in a Class 10 vertical laminar flow polypropylene fume hood. Total 

analytical blanks were <10pg for Hf and <5pg for Nd, Sm and Lu, which are negligible. 

For samples 207692 and 229151, garnet splits were processed along with each 

corresponding whole-rock powder for each sample in two batches. For whole-rocks, two acid 

dissolution methods on hot plate and Parr® bomb vessels were used to obtain partial or total 

dissolution of refractory minerals respectively. A first split was dissolved using Parr® vessel 

dissolution at 180 ⁰C (at the University of Waterloo) with a 3:1 HF:HNO3 mix to ensure that all 

refractory minerals including zircons were fully dissolved. A second split was dissolved in 

beakers at 120 ⁰C on table top hot plate at atmospheric pressure to avoid the dissolution of 

refractory minerals which may be at isotopic disequilibrium. 

For each garnet sample, five fractions were prepared for trace element analysis and Sm-

Nd and Lu-Hf geochronology according to the methods described in Zirakparvar et al. (2010). 
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About 0.09 to 0.20 g of hand-picked crystals were first acid washed at room temperature in 1M 

hydrochloric acid (HCl), sonicated for 5 minutes, rinsed in H2O, sonicated for 5 minutes, and 

water was pipetted off. Concentrated 15M nitric acid (HNO3), ultrapure 29M hydrofluoric acid 

(HF) (1:10 of HNO3:HF), were added to the beakers for digestion for 24-48 hours at 120 ⁰C on 

hot plate, repeated one more time for the first batch of garnets for 207692. For 229151, garnet 

grains were slightly crushed within an agate mortar before leaching to facilitate the dissolution 

process.  

All samples (garnet and whole-rock) were dried, covered with perchloric acid and 

evaporated at 150-180 ⁰C. For whole-rock and garnet samples, the final dissolution step consists 

of uptaking samples in 6M HCl and H2O2. After that, solutions were dried and then dissolved 

again in 6M HCl. A fraction of the whole-rock and garnet solutions were used for quadrupole 

ICPMS trace element analysis (Thermo iCAP Q at the Western GEOMETRIC Lab) to optimize 

spike addition. Mixed enriched 149Sm-150Nd and 176Lu-180Hf spikes for whole-rocks and garnets 

were added to each sample solution in ideal proportions (to reach 150Nd/144Nd=0.35, and 

180Hf/177Hf=2.3), fluxed together, and once again dried down to ensure sample-spike 

equilibration. 

The column chromatography protocols used for Hf-REE separation from the sample 

matrices and elemental purification are described in Bouvier et al. (2008, 2015). In summary, 

~8.7 ml of Biorad AG50W-X8 200-400 mesh cation exchange resin was loaded in Savillex® 

PFA Teflon columns to separate Hf and other high field strength elements (in 0.1M HF-1M HCl) 

from the sample matrix (in 2.5M HCl) and from the REE (in 6M HCl) sequentially. Hafnium 

was further purified using a 0.6 ml Eichrom Ln-spec resin chemistry protocol in house-made 

shrinkable Teflon columns following the protocol described in Bouvier at al. (2008). The 
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fractions containing REE were further processed to extract sequentially Nd (in 0.2M HCl), Sm 

(in 0.4M HCl) and Lu (in 6M HCl) with 25-50% of Yb (to correct internally the instrumental 

mass bias) from the rest of the REE on a 1ml Eichrom Ln-spec resin bed in quartz columns. 

Purified fractions of Sm, Nd, Hf and Lu with Yb were analyzed using a Thermo Neptune 

Plus MC-ICPMS coupled with an Aridus II desolvating system at Laboratoire Magmas et 

Volcans in Clermont-Ferrand (France). The average 143Nd/144Nd ratios and 2 standard deviation 

(2SD) for the JNdi Nd isotopic standards measured in static mode (60 ratios) during two 

analytical sessions were respectively 0.512042 ± 0.000004 (2SD, at 50 ppb Nd), 0.512056 ± 

0.000006 (2SD, at 40 ppb Nd). The Nd isotopic compositions of the samples were normalized 

for each session to the accepted JNdi-1 Nd standard value of 0.512115. The average 176Hf/177Hf 

ratios and 2SD for the JMC 475 Hf isotopic standards measured in static mode (60 ratios) during 

two analytical sessions were respectively 0.282160 ± 0.000009 (2SD, at 10 ppb Hf), 0.282205 ± 

0.000012 (2SD, at 20 ppb Hf). The Hf isotopic compositions of the samples were normalized for 

each session to the accepted JMC 475 Hf standard value of 0.282160. To verify the accuracy of 

cup bias corrections, a BCR-2 was also measured with a corrected composition at 176Hf/177Hf= 

0.282874 ± 0.000002 which is in agreement with the reported average value of 0.282870± 

0.000008 for BCR-2 by Weis et al. (2007). A block of 30 ratios was measured for the Sm 

samples, along with the SRM 3147 Sm standard at 10ppb to control stability and accuracy. The 

Lu fractions were analyzed with ~25-50% of the Yb to correct for instrumental mass bias on 

175Lu/176Lu using the method described in Vervoort et al. (2004). For age calculations, we used 

the external reproducibility of ±0.000010 for 143Nd/144Nd isotopic ratios and ±0.000010 for 

176Hf/177Hf isotopic ratios (or the internal precision if higher) and of ±0.5% for 147Sm/144Nd and 

176Lu/177Hf based on repeated measurements of BCR-2 standards using the same isotopic dilution 
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method. Isochron ages were calculated using the Isoplot macro 4.14.11 for Excel by Ludwig 

(2011).  
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Chapter 3: Results 

3.1 Geochemistry 

Whole-rock geochemical analyses of various sedimentary rocks from the Mougooderra 

Formation and select samples from the Polelle Group near Mt Mulgine are presented in Table 

3.1. Whole-rock data for pelitic to semi-pelitic rocks are presented in terms of Fe + Mg + Ti 

mol%, Al mol% and K mol% in Figure 3.1. Whole-rock trace element data can be found in 

Appendix B. Measured whole-rock compositions define three general groups, including a high 

Fe + Mg group, a high Al group, and an average pelitic group. 

 Rocks of the high Fe-Mg group have concentrations of SiO2 that range between 44.18 

and 59.83 wt%, and concentrations of Al2O3 ranging from 7.42 to 19.20 wt%. Concentrations of 

Fe and Mg between these samples vary, with FeO values ranging between 5.00 and 31.80 wt%, 

and MgO concentrations of 3.56 to 18.20 wt%. The majority of these samples have consistent 

FeO and MgO values that fall within the 11–17 wt% and 3–6 wt% ranges, respectively. 

However, samples 229124 and 207693 are considerably more FeO enriched with respective 

values of 31.80 and 24.16 wt%. Samples 229148 and 229149 are relatively FeO depleted and 

have MgO values of 17.37 wt% and 18.20 wt%. The concentrations of the other major elements 

for the rocks of the high Fe-Mg group are generally consistent with Fe2O3 values <5.00%, TiO2 

concentrations <0.83wt%, MnO values <0.22 wt%, CaO+Na2O values <2.59 wt%, and K2O 

values between 0.05 and 2.73 wt%. Exceptions to this are sample 229148 which has a 

CaO+Na2O value of 9.16 wt%, and sample 229149 which has a K2O value of 6.54 wt%.  

While samples from the high Fe-Mg group have SiO2 values consistently < 60 wt%, and 

Al2O3 values consistently < 20 wt%, samples from the high Al group are considerably more 

enriched in SiO2 and Al2O3 concentrations. Samples within this group have SiO2 values that 
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range from 61.32 to 77.99 wt%, and Al2O3 concentrations between 13.53 and 31.23 wt%, with 

the majority of samples having concentrations of Al2O3 greater than 20.00 wt%. The rocks of the 

high Al group are relatively depleted in almost all other major element concentrations and have 

FeO, MgO, MnO, CaO, and Na2O values all less than 1.00 wt%. TiO2 and K2O concentrations 

are slightly higher with values that range from 0.61 to 2.05 wt% and 0.04 to 4.38 wt%, 

respectively. 

Samples from the average pelitic group have major element compositions broadly similar 

to the pelitic samples of Shaw (1956) and have major element compositions that fall between the 

major element ranges observed within the high Fe-Mg and high Al groups. Rocks from this 

group have SiO2 values that range from 53.05 to 79.12 wt%, and Al2O3 concentrations between 

13.44 and 25.39 wt%. The rocks of this group also show slight variation with respect to iron 

concentrations and have FeO values ranging from 0.37 to 7.77 wt% and Fe2O3 values between 

0.46 and 10.26 wt%. Concentrations of other major element are generally consistent with TiO2 

values <1.35 wt%, MgO values <2.78 wt%, MnO values <0.17 wt%, CaO+Na2O values 

<0.6wt%, and K2O values <5.00 wt%. Exceptions to this are samples 229152 and 229131, which 

have CaO+Na2O values of 1.58 and 6.76 wt% respectively. 

 

3.2 Petrography  

Metamorphic mineral assemblages within the rocks of the Mougooderra Formation and 

associated greenstone units vary with respect to surrounding rock types and the geochemical 

groups they fall within. The most common mineral assemblage in the rocks of the high Fe-Mg 

group include garnet + biotite + cordierite + quartz ± grunerite ± chlorite ± plagioclase. In these 

rocks garnet and cordierite porphyroblasts are randomly distributed throughout a fine-grained 
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groundmass of quartz and biotite (Fig. 3.2a). In some samples, minor foliation is defined by the 

slight elongation of cordierite porphyroblasts. Cordierite porphyroblasts are prevalent throughout 

the samples, are up to 1mm in size, and are often altered to very fine-grained pinite (i.e. fine-

grained aggregates of white mica) assemblages. A large proportion of fine-grained opaque 

minerals can be found concentrated at the cores of these cordierite grains, and in some samples 

aluminosilicate material is also found in the core of cordierite grains (Fig 3.2b). In areas where 

cordierite grains are present in large proportions, garnet porphyroblasts are hypidioblastic -to- 

idioblastic, range in size from 0.5 to 2mm, are often surrounded by a small rim of quartz, and 

have inclusion-rich cores. Where garnet is associated with more quartz-rich areas, grains are 

smaller (0.2–0.5mm) and do not have well-formed boundaries. Inclusions within garnet 

porphyroblasts are made up largely of quartz, but also include minor chlorite, ilmenite, and 

accessory apatite grains throughout. In addition to the cordierite and garnet porphyroblasts, 

hypidioblastic -to- idioblastic grains of grunerite and chlorite are distributed randomly 

throughout the groundmass. Grunerite grains are well-formed and display platy to needle-like 

textures (Fig. 3.2c), while chlorite grains form in aggregates displaying radial textures (Fig. 

3.2d), a pattern often observed at the cores of garnet porphyroblasts (Fig 3.2e) and are often 

associated with cordierite grains. Plagioclase is a rare matrix component of the rocks of the high 

Fe-Mg group and is commonly absent from samples all together.  

 Other mineral assemblages within the high Fe-Mg group include chlorite + muscovite + 

garnet + quartz, grunerite + garnet + quartz + magnetite ± feldspar, and biotite + quartz + 

amphibole. Samples that contain the grunerite + garnet + quartz ± feldspar assemblage have very 

high concentrations of iron and are generally made up of a matrix of randomly oriented quartz 

and grunerite, with sericite altered plagioclase, and randomly distributed garnet porphyroblasts 
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(Fig 3.2f). Samples that contain the biotite + quartz + amphibole assemblage are found 

exclusively at the contact between the Mt Mulgine granitic intrusion and the surrounding 

greenstone units. These samples are Mg-rich and are made up dominantly of medium-grained 

biotite, lesser amounts of quartz, randomly distributed and oriented amphibole grains, and large 

accretions of iron oxide material.  

 Samples from the high Al group can be found throughout the Mougooderra Formation. 

Within the region of the Seeligson monzogranite, rocks from the high Al group are found 

between 1 and 5 km from the interpreted boundaries of the Seeligson monzogranite. However, 

samples from this group can also be found further north, up to 7.5km from any granitic intrusion. 

The rocks from this group display only one major mineral assemblage that includes andalusite + 

quartz + opaque minerals ± biotite ± muscovite (Fig 3.3). These rocks include a matrix that is 

made up of fine-grained quartz, a large proportion of opaque minerals, and in some samples, 

randomly distributed biotite. Randomly distributed throughout the groundmass are well-formed 

andalusite porphyroblasts that range in size from 0.5mm to 1cm in length. Textures and 

alteration of andalusite grains vary but include well-formed chiastolite grains to less well-formed 

poikiloblastic grains with a large proportion of quartz inclusions. In some samples there is no 

observed foliation and quartz grains have polygonal texture, while in others the foliation is 

defined by the alignment of opaque minerals and elongate quartz (Fig. 3.3). In samples with 

poikiloblastic andalusite grains, the internal inclusion pattern is aligned with the matrix foliation.  

 Samples from the average pelitic group display two common mineral assemblages. These 

assemblages include biotite + cordierite + quartz + opaque minerals, and biotite + cordierite + 

quartz + opaque minerals + andalusite. Cordierite and andalusite porphyroblasts occur within a 

matrix of fine-grained quartz, biotite, and minor opaque minerals (Fig 3.4). Cordierite grains are 
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often replaced by very fine-grained pinite assemblages, are 0.5–2mm in size, and contain 

numerous inclusions of biotite and quartz. Andalusite grains display similar characteristics, 

including replacement by fine-grained muscovite aggregates, inclusions of quartz and opaque 

minerals, and range in size from 0.5mm to 1cm in size. The alignment of biotite within the 

samples often defines a weak foliation that can be observed wrapping around cordierite 

porphyroblasts. 

 

3.3 SEM and MLA Results  

After initial examination of samples using a petrographic microscope, false coloured 

images, backscatter images, and modal proportions were obtained for four samples with low 

variance metamorphic assemblages (samples 207692, 229115, 229120, and 229151) using a 

scanning electron microscope and mineral liberation analysis (SEM-MLA) to better constrain the 

mineralogy and textures.  

Sample 207692 is a representative sample of the garnet-bearing rocks near the Seeligson 

monzogranite and belongs to the high Fe-Mg group. The false coloured image (Figure 3.5) 

shows that the matrix of the sample is made up dominantly of fine-grained quartz, cordierite, and 

biotite with no observed foliation. Cordierite grains within the sample have been altered to very 

fine-grained muscovite and chlorite. Xenoblastic-to-hypidioblastic garnet porphyroblasts are 

distributed randomly throughout the sample and are relatively small (~1mm) with a consistent 

diameter. Garnet grains are surrounded by a small rim of quartz and contain a large proportion of 

quartz inclusions with minor amounts of apatite and ilmenite.  

Sample 229120 (Fig. 3.6) is located roughly the same distance away from the Seeligson 

monzogranite and also belongs to the high Fe-Mg group. Similar to the previous sample, sample 
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229120 is made of a matrix of quartz, cordierite, grunerite, and biotite, and shows no evidence of 

preferred mineral alignment. Unlike the previous sample, sample 229120 displays compositional 

layering. The first layer has a matrix that contains cordierite, biotite, and chlorite grains 

throughout, with minor amounts of an aluminosilicate mineral (likely andalusite). Garnet 

porphyroblasts are randomly distributed throughout the matrix in this layer, are generally 

idioblastic, 2–3mm in diameter, and contain numerous ilmenite and quartz inclusions. The 

second layer contains a larger proportion of quartz, less cordierite, has no chlorite or 

aluminosilicate minerals, and unlike the first layer, contains a small proportion of feldspar and 

grunerite. Grunerite grains are bladed, up to 1.5mm in length and are randomly distributed and 

oriented throughout the quartz-rich matrix. A few small (<0.5mm in diameter) xenoblastic garnet 

porphyroblasts are present in this layer. Accessory minerals throughout both layers include 

pyrrhotite, ilmenite, and apatite.  

Sample 229115, from the high Fe-Mg Group, has a matrix made up dominantly of 

chlorite, quartz, and muscovite, with lesser amounts of biotite and minor amounts of plagioclase 

(Fig. 3.7). A weak foliation is defined by the alignment of chlorite and muscovite grains. Garnet 

porphyroblasts are randomly distributed throughout the sample, are up to 1mm in diameter, and 

are surrounded by a rim of quartz. Garnet grains are generally xenoblastic and include numerous 

quartz and chlorite inclusions. No cordierite or aluminosilicate were found in this sample. 

Magnetite lenses up to 1mm in size and minor amounts of ilmenite are also randomly distributed 

throughout the sample. 

 Sample 229151 was taken from a garnet-bearing layer from the greenstone material near 

Mt Mulgine and is from the high Fe-Mg group. The false colour map shows that the sample is 

made up largely of four minerals and includes quartz, amphibole, feldspar, and garnet (Fig. 3.8). 
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Matrix minerals are made up largely of quartz, feldspar, and amphibole, and display no foliation 

throughout the thin section. Feldspar grains throughout the matrix have been heavily altered to 

sericite. The high proportion of amphibole (~29.01 area%) in the matrix of sample 229151 

makes it different than sample 229120 (~2.38 area% amphibole). Xenoblastic garnet 

porphyroblasts are randomly distributed throughout the sample. Garnet grains are surrounded by 

a small rim of quartz, and host numerous quartz, apatite, ilmenite, and pyrrhotite inclusions. No 

cordierite or aluminosilicate were found in this sample. 

 

3.4 EPMA: Mineral Compositions  

Compositional ranges of garnet and biotite analyses are presented in Tables 3.2-3.3, 

while representative analyses for cordierite, amphibole, feldspar, chlorite, and muscovite can be 

found in Table 3.4. The full dataset is in Appendix C. 

Garnet porphyroblasts within all samples are dominantly Fe-rich (e.g. almandine-rich) 

but vary with respect to endmember proportions and major element zoning. Garnet 

porphyroblasts within sample 207692 have Ca-rich cores (Fig 3.9a) with X(Grs) (molar 

Ca/[Ca+Mg+Mn+Fe]) decreasing from ~0.059 in the cores to ~0.030 in the rims. Zoning of other 

major elements within garnet porphyroblasts from sample 207692 is less obvious with slight 

concentrations of Fe and Mg in the rims, and very little Mn variation throughout. Similar to 

sample 207692, sample 229111 has garnet grains with cores that are Ca-rich. Garnet grains 

within this sample also have cores that are enriched in Mn, while rims are Fe and Mg -rich (Fig. 

3.9b). Garnet grains from sample 229111 show concentric zoning with multiple Ca-rich zones 

and X(Grs) values of 0.059 that decrease to 0.035 in the rim of the grains. Unlike the Ca-zoning, 

Mn is concentrated only near the core and does not show more than one Mn-rich zone. X(Sps) 
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(molar Mn/[Fe+Mg+Mn+Ca]) proportions decrease from 0.022 in the core to 0.009 in the rim of 

the grains. X(Alm) (molar Fe/[Fe+Mg+Mn+Ca]) and X(Pyp) (molar Mg/[Fe+Mg+Mn+Ca]) increase 

from core to rim with respective values of 0.799–0.83 and 0.12–0.14. Garnet grains within 

sample 229119 show major element zoning similar to that of the previous sample, with Mn-rich 

cores and multiple Ca-rich zones (Fig. 3.9c). However, Fe concentrations within garnet grains of 

sample 229119 show little variation between the core and the rim. Endmember proportions are 

comparable to that of samples 207692 and 229111 with X(Alm) values ranging between 0.79 and 

0.82, X(Pyp) values ranging from 0.10 to 0.15, X(Sps) values of 0.008–0.025, and X(Grs) values 

between 0.048 and 0.066. Sample 229120 has similar garnet endmember proportions as the 

previous samples, however, major element zoning within garnet grains of this sample are slightly 

different. In addition to the Mn and Ca-rich cores, the core of the garnet grains are also Mg-rich 

(Fig. 3.9d).  

Sample 229115 has garnet porphyroblasts that show slightly different major element 

zoning and endmember proportions. Cores of the garnet grains are enriched in Mn, Mg, and Ca, 

with X(Pyp) values of 0.085, X(Sps) values of 0.079, and X(Grs) values of 0.0433 that decrease to 

X(Pyp) = 0.074, X(Sps) = 0.049, and X(Grs) = 0.027 in the rim (Fig. 3.9e; Table 3.2). Rims of the 

garnets are enriched in Fe with X(Alm) values increasing from 0.794 in the core to 0.843 in the 

rims. Garnet porphyroblasts within this sample have spessartine endmember proportions 

considerably higher than other samples from the other analysed samples. X(Sps) values within this 

sample range between 0.049 to 0.079, whereas all other samples have X(Sps) values less than 0.02. 

Garnet porphyroblasts from more iron-rich samples (207693 and 229151) display similar 

zoning to that of the more aluminous samples (Fig. 3.10). Garnet porphyroblasts within samples 

207693 and 229151 have Ca-rich cores but show little variation with respect to Fe and Mn 
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concentrations throughout and display Mg enrichment only in the outer margin of the grains. 

Sample 229151 has similar zoning. The cores of these grains are Ca and Mg-rich, while Mn and 

Fe show little variation throughout. Unlike the more pelitic rocks, garnet porphyroblasts within 

samples 207693 and 229151 have larger proportions of X(Alm) and the lower X(Pyp) proportions 

with values that range from 0.81–0.901 and 0.06–0.106, respectively. 

The matrix mineral assemblages between garnet-bearing samples vary, but are generally 

dominated by biotite, cordierite, amphibole, and chlorite. Biotite is found mainly within the 

matrix, but also within garnet porphyroblasts (Table 3.3). Al(VI) values of biotite grains are 

similar for grains in the matrix and within garnet porphyroblasts, with ranges between 0.39–0.46 

and 0.29–0.52 a.p.f.u. (atoms per formula unit), respectively. In general, biotite inclusions in 

garnet porphyroblasts display lower X(Fe) ratios and concentrations of Ti than those found within 

the matrix. Amphibole grains within these samples are monoclinic, rich in Fe and Mg and 

display little compositional variation (Fig. 3.11). Cordierite grains also show very little variation 

throughout samples, with X(Mg) (molar Mg/[Mg+Fe]) values ranging from 0.57–0.62. Similarly, 

chlorite grains also display little variation with samples having an X(Mg) range between 0.39–

0.53.  

In addition to the major matrix minerals mentioned above, samples 229120 and 229151 

also contain minor amounts of feldspar, while sample 229115 contains muscovite within the 

matrix. Feldspar grains within sample 229120 have dominantly plagioclase endmembers with 

X(An) (molar Ca/[Na+Ca+K]) values that range from 0.63-0.90, X(Ab) (molar Na/[Na+Ca+K]) 

values that range from 0.10–0.37, and X(Ksp) (molar K/[Na+Ca+K]) values less than 0.005. 

Feldspar grains within sample 229151 have endmembers values that are less dominated by 
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plagioclase endmembers with XAn values that range from 0.034–0.056, X(Ab) values of 0.43 to 

0.51, and X(Ksp) values between 0.44 and 0.54. 

 

3.5 Garnet trace elements and Lu-Hf and Sm-Nd geochronology  

Coupled garnet Lu-Hf and Sm-Nd geochronology was completed for one sample of the 

Mougooderra Formation (sample 207692) and for one sample from a garnet-bearing layer within 

the associated greenstone of the Polelle Group near Mt Mulgine (sample 229151). Isotope data 

can be found in Appendix D. Laser ablation analysis for sample 207692 was completed on 

randomly selected euhedral garnet grains from the garnet separate. For this sample, it was 

attempted to expose the centre of the garnet grains during polishing. Laser ablations analysis for 

sample 229151 was completed on a polished thin section. Garnet trace element data can be found 

in Appendix E. 

 Garnet grains from sample 207692 display relatively flat garnet profiles with respect to 

Lu and Hf and have only a slight enrichment of Lu in the core for two garnet grains relative to 

the outermost rims (Fig. 3.12). All analysed grains have Lu values less than 5ppm and Hf values 

that range between 0.27 and 4.8ppm. The Sm and Nd profiles of these garnet grains display 

minor zoning, with the exception of two analyses (point 5 from garnet A and point 3 from garnet 

B) that show a spike in the concentrations of Sm and Nd. Point 5 from garnet A has a Nd 

concentration of 240±120 ppm and a Sm concentration of 52±25 ppm, while point 3 of garnet B 

has a Nd concentration of 69±76 ppm and a Sm concentration of 14±13 ppm. These points were 

removed from the diagram so that the zoning from the other points may be observed. The high 

Sm and Nd concentrations from these points may be related to an analysis that drilled through a 

mineral inclusion in garnet with elevated light rare earth element (LREE) such as monazite. 
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Therefore, these analyses are excluded from the discussion of garnet zoning patterns. Sm 

concentrations range from 1.1 to 10.6 ppm for garnet A, from 0.7 to 3.6 ppm for garnet B, and 

from 1.3 to 2.2 ppm for garnet C. 

 The Lu-Hf isochron of sample 207692 returned an age of 2686±18 Ma with an MSWD 

of 0.87 and initial 176Hf/177Hf of 0.280990±0.000015 (Fig. 3.13a). The Sm-Nd age of the garnet 

grains form this sample are considerably younger with an age of 2611±35 Ma, an MSWD of 

0.51, and an initial 143Nd/144Nd of 0.509130±0.000040 (Fig. 3.13b). For this sample, the whole-

rock bomb sample was excluded from the regression as it was in disequilibrium with the system. 

The reasons for this are unclear, but it may be the result from the dissolution of refractory 

minerals (e.g. zircon?) that were not in isotopic equilibrium with garnet.   

 Garnet grains from sample 229151 show slight zonation with respect to Lu and Hf. 

Garnet A has Lu concentrations that increase from rim to core and has a range of 0.13 to 1.3 ppm 

(Fig. 3.14). The Sm concentrations of garnet A have values of 0.52–4.19 ppm. Points with the 

highest Sm concentrations are found between the rim and the core. Garnet B has Lu 

concentrations of 0.3–1.1 ppm with the higher concentrations near the core of the grain, and with 

Sm concentrations of 2.5 to 4.8 ppm with the points of highest Sm and Lu concentration being 

located in the same location. Garnet C has Lu concentrations that range from 0.02 to 2.3 ppm 

with the highest concentrations located at the rim of the grain, and Sm concentrations ranging 

between 2.3 to 6.3 ppm with the highest concentrations located at the core of the grain. The 

variable zoning patterns may relate to sectioning of the garnet; some profiles may not represent 

cross sections through the cores of the garnets. Sample 207690 was taken from the same location 

as 229151 during the 2016 field season. Concentrations of Lu within garnet A from this sample 

range from 0.2 to 1.9 ppm, while Sm concentrations range from 1.5 to 4.3 ppm (Fig. 3.15). Lu is 
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strongly concentrated within the core of the grain, while Sm is concentrated between the rim and 

the core. For garnet B, Lu ranges between 0.2 and 1.89 ppm and is strongly concentrated within 

the core of the grain, while Sm is concentrated near the rim of the grain and ranges between 3.2 

to 6.1 ppm. 

The Lu-Hf isochron from sample 229151 returned an age of 2685±15Ma with an MSWD 

of 1.5 and initial 176Hf/177Hf of 0.280883±0.000010 (Fig. 3.16a). The Sm-Nd age of the garnet 

grains from this sample are also considerably younger with an age of 2590±21Ma, an MSWD of 

0.24, and an initial 143Nd/144Nd of 0.509041±0.000026 (Fig. 3.16b). 
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Table 3.1. Major element compositions for rocks of the Mougooderra Formation and select underlying greenstone material in wt%. 

 

Sample SiO2 TiO2 Al2O3 FeO Fe2O3 MgO MnO CaO Na2O K2O P2O5 SO3 LOI Total 

229101 59.83 0.73 12.12 12.30 1.58 6.14 0.22 0.25 0.16 0.54 0.16 0.02 4.31 98.35 

229111 48.01 0.77 19.20 17.40 1.23 5.79 0.10 0.50 0.29 2.39 0.11 0.03 2.24 98.06 

229115 53.82 0.83 16.84 12.20 1.91 6.13 0.23 0.11 0.12 1.79 0.04 0.02 4.68 98.72 

229119 56.81 0.63 16.70 12.10 1.40 4.70 0.08 0.44 0.28 2.54 0.10 0.16 2.77 98.71 

229120 51.68 0.74 18.53 14.40 1.33 5.61 0.10 0.51 0.25 2.78 0.10 0.02 2.33 98.38 

229124 44.18 0.61 10.11 31.80 1.85 6.93 0.20 1.62 0.10 0.06 0.06 0.04 0.00 97.55 

229151 56.44 0.78 12.29 16.00 3.47 3.72 0.14 1.76 0.83 1.55 0.07 – 1.57 98.62 

207693 58.58 0.40 7.42 24.16 1.98 5.29 0.15 0.56 0.03 0.05 0.02 0.07 – 98.72 

207692 55.36 0.67 17.17 11.46 2.48 5.14 0.08 0.49 0.37 2.73 0.11 0.10 2.22 98.38 

207690 57.05 0.74 11.72 17.14 2.75 3.56 0.14 1.72 0.82 1.66 0.09 0.63 0.74 98.76 

229148  44.70 0.61 11.96 5.00 5.02 17.37 0.10 1.50 0.11 6.54 0.04 – 5.18 98.13 

229149 49.75 0.46 8.04 5.89 3.00 18.20 0.20 8.74 0.42 1.42 0.03 0.03 2.37 98.55 

229105 63.77 2.05 31.23 0.19 0.10 0.04 – 0.02 0.17 0.08 0.075 0.02 2.27 100.01 

229109 68.38 0.98 19.53 0.35 1.75 0.12 0.01 0.03 0.39 4.38 0.021 0.02 3.64 99.60 

229127 61.32 1.26 29.39 0.26 0.00 0.14 0.00 0.42 0.45 1.67 0.052 0.47 4.44 99.87 

229135 77.99 0.61 13.53 0.29 1.78 0.12 0.01 0.16 0.10 1.21 0.023 0.17 3.78 99.77 

229138 64.59 1.04 30.01 0.20 0.48 0.09 0.01 0.04 0.08 1.57 0.03 0.07 1.55 99.76 

207602 67.11 0.76 20.84 0.30 0.89 0.21 – 0.04 0.86 4.18 0.032 0.12 3.80 99.13 

207691 71.45 1.69 23.88 0.08 – – – 0.01 0.10 0.04 0.142 0.01 2.02 99.38 

229131 68.81 0.69 15.06 3.02 0.92 2.05 0.04 1.3 0.28 4.24 0.05 0.04 2.75 99.25 

229130 53.05 1.13 21.14 7.77 1.77 2.78 0.17 1.79 1.24 2.58 0.018 0.07 5.41 98.92 

229146 64.67 0.92 16.13 0.39 8.57 1.00 0.03 0.25 0.15 1.04 0.021 0.04 6.43 99.64 

229147 64.25 0.98 15.57 – 10.26 0.25 0.01 0.30 0.07 0.16 0.06 0.04 7.75 99.69 

229152 54.11 0.61 15.35 – 10.18 0.82 – 6.35 0.41 2.35 0.041 0.10 9.41 99.73 

211117 74.43 0.24 15.09 0.85 0.86 1.18 0.02 0.16 0.16 4.75 0.033 0.02 1.93 99.72 

207694 58.24 1.05 19.49 0.37 9.31 1.05 0.02 0.08 0.24 4.93 0.028 0.09 4.69 99.58 
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Table 3.1 (continued) 

– Indicating below detection limit; LOI – Loss on ignition  

Sample SiO2 TiO2 Al2O3 FeO Fe2O3 MgO MnO CaO Na2O K2O P2O5 SO3 LOI Total 

229113 54.07 1.35 25.39 6.45 3.11 2.37 0.06 0.06 0.10 3.99 0.034 0.03 2.20 99.21 

229117 61.60 1.25 24.10 7.16 0.46 1.69 0.10 0.26 0.28 0.471 0.142 0.02 1.56 99.09 

229136 74.15 0.50 13.44 0.79 2.26 0.69 0.02 0.15 0.16 3.81 0.029 0.09 3.39 99.48 

229157 62.62 0.99 22.35 2.91 3.59 0.94 0.07 0.08 0.24 2.28 0.029 0.10 3.14 99.34 

229158 61.77 0.93 21.22 5.80 6.63 1.30 0.07 0.04 0.07 2.71 0.087 0.02 1.65 102.30 

211116 79.12 0.50 11.62 0.57 1.75 0.65 – 0.13 0.15 2.78 0.03 0.022 2.39 99.71 

207695 60.68 0.93 22.07 7.45 0.83 2.17 0.12 0.27 0.32 2.20 0.128 0.561 1.56 99.29 
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Figure 3.1. Ternary diagram showing whole-rock compositions expressed in terms of Fe + Mg + Ti 

mol%, Al mol%, and K mol%.  
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Figure 3.2. Mineral assemblages from the high Fe-Mg group including: (a) sample 229111 showing garnet and cordierite porphyroblasts 

distributed throughout a matrix of biotite and quartz with minor fine-grained chlorite (b) an electron probe micro-analyzer image of sample 

229119 showing a cordierite porphyroblast within a matrix of biotite and quartz, with micaceous and aluminosilicate inclusions, (c) sample 

207692 showing grunerite and garnet grains randomly distributed throughout a quartz and biotite-rich matrix, (d) sample 229111 showing chlorite 

and cordierite grains within a matrix of quartz and biotite, (e) sample 229112 showing the radial pattern observed within the cores of garnet, (f) 

sample 229151 showing garnet porphyroblasts and grunerite grains throughout a matrix of quartz.
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Figure 3.3. Samples (a) 229133, (b) 229132, and (c) 229135 from the high Al group showing the textures of andalusite and a foliation defined by 

the alignment of quartz and opaque minerals of the matrix. 
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Figure 3.4. (a) Sample 229117 showing andalusite and cordierite porphyroblasts within a matrix of quartz and opaque minerals, and (b) sample 

229155 showing the texture of cordierite porphyroblasts within a biotite and quartz matrix from a cordierite only sample from the average pelitic 

group.
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Figure 3.5. SEM-MLA false coloured map of sample 207692 showing pink garnet porphyroblasts within a fine-grained matrix of yellow 

cordierite and brown biotite. The false coloured map was made of a thin section that is 4cm x 2cm in size. 
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Figure 3.6. SEM-MLA false coloured map of sample 229120 showing compositional layering, with the 

first layer displaying blue grunerite porphyroblasts within a matrix of quartz and minor cordierite, and the 

second layer showing large garnet porphyroblasts within a matrix of cordierite and muscovite alteration. 

The false coloured map was made of a thin section that is 2.5cm x 2cm in size.

 



42 
 

 

Figure 3.7. SEM-MLA false coloured map of sample 229115 showing pink garnet porphyroblasts and magnetite lenses within a matrix of green 

chlorite. The false coloured map was made of a thin section that is 4cm x 2cm in size. 
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Figure 3.8. SEM-MLA false coloured map of sample 229151 showing garnet porphyroblasts within a matrix of grunerite and plagioclase altered 

to sericite. The false coloured map was made of a thin section that is 3cm x 2cm in size. 
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Table 3.2. Compositional ranges of garnet in endmember molar proportions. 

     Alm – Almandine; Prp – Pyrope; Sps – Spessartine; Grs – Grossular; X(Fe) – Fe/(Fe+Mg) 

 

 

 

Table 3.3. Compositional ranges of biotite in apfu. 

 

 

 

 

 

 

 

 

X(Fe) – Fe/(Fe+Mg); apfu – atom per formula unit 

Sample X(Alm) X(Prp) X(Sps) X(Grs) X(Fe) 

207692 grt 1 0.823-0.847 0.105-0.123 0.009-0.011 0.036-0.053 0.87 

207692 grt 2 0.815-0.846 0.110-0.125 0.009-0.011 0.034-0.059 0.87 

207692 grt 3 0.824-0.853 0.106-0.119 0.009-0.010 0.031-0.049 0.88 

207692 grt 4 0.809-0.846 0.113-0.134 0.009-0.012 0.030-0.046 0.87 

229115 grt 1 0.794-0.843 0.075-0.085 0.052-0.079 0.027-0.047 0.91 

229115 grt 2 0.817-0.852 0.073-0.084 0.049-0.055 0.025-0.048 0.91 

229119 grt 1 0.795-0.814 0.111-0.144 0.008-0.018 0.048-0.062 0.87 

229119 grt 2 0.793-0.818 0.101-0.148 0.010-0.025 0.049-0.066 0.87 

229111 grt 1 0.799-0.825 0.120-0.139 0.009-0.022 0.035-0.059 0.87 

229120 grt 1 0.793-0.823 0.101-0.147 0.011-0.026 0.049-0.063 0.87 

229151 grt 1 0.812-0.838 0.083-0.093 0.016-0.018 0.069-0.088 0.91 

207693 grt 1 0.858-0.888 0.069-0.096 0.011-0.014 0.021-0.041 0.91 

             grt 2 0.877-0.901 0.063-0.106 0.010-0.016 0.015-0.033 0.92 

Sample Location Al(VI) X(Fe) Ti(apfu) 

207692 Within grt 0.52 0.43 0.04 

  In contact 0.42-0.50 0.53-0.57 0.08-0.09 

  Matrix 0.39-0.43 0.54-0.57 0.09-0.10 

229111 Within grt 0.30 0.44 0.06 
 

Matrix 0.38-0.46 0.52-0.54 0.08-0.09 

229119 Within grt 0.30 0.44 0.06 

  Matrix 0.38-0.46 0.52-0.54 0.08-0.09 

229120 Within grt 0.45 0.54 0.07 
 

Matrix 0.34-0.46 0.52-0.58 0.08-0.10 
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Table 3.4.  Representative EPMA analyses of cordierite, amphibole, chlorite, feldspar, and muscovite. 

Mineral: 
 

Cordierite  
   

Amphibole  
  

Chlorite 
  

Feldspar 
 

Muscovite 

Sample: 207692 229111 229119 229120 207692 207693 229111 229120 229151 229111 229115 229119 229120 229120 229151 229115 

Wt% 
                

SiO2 47.64 47.48 47.43 48.56 52.61 52.03 52.65 51.42 52.28 23.66 22.90 24.03 25.24 47.12 55.20 48.49 

TiO2 0.02 0.00 0.01 0.00 0.08 0.04 0.02 0.11 0.03 0.12 0.12 0.32 0.07 0.00 0.00 0.11 

Al2O3 32.90 32.84 32.50 33.48 2.11 2.04 1.53 2.74 0.96 22.46 22.59 22.28 22.95 34.29 29.27 39.12 

FeO 9.03 8.69 8.60 8.69 29.79 29.38 27.37 31.36 32.76 25.31 28.88 25.09 24.61 0.00 0.00 0.88 

MnO 0.05 0.01 0.03 0.02 0.07 0.04 0.12 0.11 0.18 0.02 0.17 0.02 0.01 0.00 0.00 0.00 

MgO 7.95 8.00 8.10 7.80 13.00 13.31 14.96 11.68 10.82 14.49 11.04 14.25 13.75 0.00 0.00 0.37 

CaO 0.01 0.01 0.01 0.01 0.22 0.19 0.39 0.29 0.54 0.01 0.02 0.02 0.02 16.25 0.93 0.00 

Na2O 0.00 0.00 0.00 0.00 0.13 0.07 0.06 0.17 0.08 0.00 0.00 0.00 0.04 1.86 4.67 0.89 

K2O 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.39 0.05 6.11 9.87 

Total 97.60 97.03 96.70 98.57 98.03 97.08 97.10 97.88 97.65 86.08 85.73 86.01 87.08 99.57 96.17 99.73 

cations 
                

Si 4.96 4.96 4.97 4.99 7.87 7.85 7.87 7.78 7.98 5.10 5.07 5.17 5.33 2.16 2.57 6.10 

Ti 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.02 0.05 0.01 0.00 0.00 0.01 

Al 4.04 4.05 4.02 4.05 0.37 0.36 0.27 0.49 0.17 5.70 5.89 5.65 5.72 1.86 1.61 5.81 

Fe 0.79 0.76 0.75 0.75 3.73 3.71 3.42 3.97 4.18 4.56 5.34 4.52 4.35 0.00 0.00 0.09 

Mn 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.04 0.00 0.00 0.00 0.00 0.00 

Mg 1.23 1.25 1.27 1.19 2.90 2.99 3.33 2.63 2.46 4.65 3.64 4.57 4.33 0.00 0.00 0.07 

Ca 0.00 0.00 0.00 0.00 0.04 0.03 0.06 0.05 0.09 0.00 0.00 0.01 0.00 0.80 0.05 0.00 

Na 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.05 0.02 0.00 0.00 0.00 0.02 0.17 0.42 0.22 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.36 1.58 

Total 11.02 11.02 11.01 10.99 14.96 14.97 15.00 14.99 14.94 20.04 20.00 19.97 19.88 4.99 5.01 13.88 

X(Mg) 0.61 0.62 0.63 0.63 
     

0.51 0.41 0.50 0.50 
   

O value  18 18 18 18 23 23 23 23 23 28 28 28 28 8 8 22 
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Figure 3.9.  X-ray maps showing major element compositional zoning of garnet porphyroblasts from 

samples (a) 207692, (b) 229111, (c) 229119, (d) 229120, and (e) 229115. 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10.  X-ray maps showing major element compositional zoning of garnet porphyroblasts from 

samples (a) 207693, (b) 229151. 
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Figure 3.11. Compositional ranges of amphibole based on Al distribution (a) and X(Mg) and Si apfu (b); 

X(Mg) – Mg/(Mg+Fe).  
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Figure 3.12.  Lu-Hf and Sm-Nd profiles for garnet grains from sample 207692.
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Figure 3.13. Garnet Lu-Hf (a) and Sm-Nd (b) isochron diagrams for sample 207692. Dark grey point is 

the whole-rock bomb sample which is not in equilibrium with the system and was not included in the age 

calculation, but is shown here for reference. Uncertainties are 2σ. (WR-TT: whole-rock table top; WR-B: 

whole-rock bomb).
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Figure 3.14. Lu-Hf and Sm-Nd profiles for garnet grains from sample 229151.
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Figure 3.15. Lu-Hf and Sm-Nd profiles for garnet grains of sample 207690. 
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Figure 3.16. Garnet Lu-Hf (a) and Sm-Nd (b) isochron diagrams for sample 229151. Uncertainties are 

2σ.  (WR-TT: whole-rock table top; WR-B: whole-rock bomb).
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Chapter 4: Pressure-Temperature Estimates  

Metamorphic pressure (P) and temperature (T) estimates for rocks of the Mougooderra 

Formation were obtained through conventional thermobarometry and isochemical 

pseudosections. Cummingtonite (Cu) is used during the calculation of the phase equilibrium 

diagrams to represent the cummingtonite-grunerite solid solution. Diagrams were completed 

over a range of 450–725°C and <2–6 kbar for rocks of the Mougooderra Formation. Modelled 

bulk compositions are shown in Table 4.1.  

 

4.1 Garnet-biotite geothermometer and garnet-biotite-Al2SiO5-quartz geobarometer 

Estimated temperature ranges from the seven calibrations of the garnet-biotite 

thermometer are listed in Table 4.2. Garnet compositions used during the thermometry 

calculations were determined by averaging several points from the rim of each individual garnet, 

which is interpreted to represent the closest approximation to garnet that grew near the peak of 

metamorphism. If garnet rims show compositional evidence for resorption (e.g. enrichment of 

Mn at the rim), then points were taken just inside this zone towards the core to avoid possible 

diffusional re-equilibration during cooling. Biotite compositions were determined by averaging 

the compositions of biotite grains within matrix. In general, the estimates below are usually 

assigned an uncertainty of 50°C and 1 kbar based on the propagation of uncertainties in the 

calibrations and raw experimental data (e.g. Powell and Holland, 2008).   

The temperature estimates for sample 207692 between the different calibrations are 

generally in agreement, the results of which range between 489°C and 591°C. However, the 

calibration of Dasgupta et al. (1991) consistently estimate much lower temperatures than the 

other calibrations, while that of Bhattacharya et al. (1992) consistently estimate higher 
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temperatures. The other five calibrations give a smaller and more consistent temperature range of 

555°C to 570°C.  

 Samples 229111 and 229120 gave similar results to that of sample 207692. Sample 

229111 has an overall temperature range of 511–597°C and a range of 551–583°C for the five 

most consistent calibrations. Overall temperature estimates for sample 229120 range between 

508°C and 596°C and range from 566°C to 573°C for the five most consistent calibrations. 

Sample 229120 also contains minor amounts of aluminosilicate material (inferred to be 

andalusite) within the garnet and cordierite-rich layer. The garnet-biotite-Al2SiO5-quartz 

barometer calibration of Wu (2017) returned a pressure estimate of 3.3 kbar for this sample. 

 

4.2 Phase equilibrium modelling 

207692 

In addition to the calculation of the pressure-temperature diagram discussed below, a 

temperature-Fe2O3 diagram was initially calculated over a range of 530°C to 580°C and at a 

pressure of 2.9 kbar in order to evaluate if the measured ratio of ferric to ferrous iron can 

reproduce the observed mineral assemblage (c.f. Boger et al., 2012). A pressure of 2.9 kbar was 

used during this calculation as the model predicts that staurolite will be stable throughout the 

diagram at higher pressures, however, no staurolite was observed within the sample.  

The T–Fe2O3 pseudosection for sample 207692 is presented in Figure 4.1. The Fe2O3 

concentrations ranges from 0.0 to 1.047mol% (the Fe2O3 value determined for this sample 

through titration). The major effect of ferric iron on the calculated mineral assemblage of this 

sample is on the stability of minerals such as magnetite and ilmenite. Below a value of 0.075-0.1 

mol% magnetite is unstable within the mineral assemblage. Similarly, at temperatures above 
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550°C and between Fe2O3 values of 0.7 and 1, ilmenite is no longer stable within the mineral 

assemblage. Another effect that ferric iron has on the mineral assemblages of sample 207692 is 

on the stability fields of cummingtonite. Cummingtonite becomes stable at temperatures above 

564°C at a value of 0.0 mol% Fe2O3. As the Fe2O3 value increases, the temperature for the 

cummingtonite-in line becomes increasingly higher. At Fe2O3 values of 0.92, cummingtonite is 

no longer stable within the mineral assemblage, indicating that the stability of a cummingtonite-

grunerite phase is limited by the amount of ferric iron within the system.  

Grunerite, ilmenite, and magnetite have all been observed within sample 207692. 

However, at the measured titration Fe2O3 value of 1.047 mol%, both ilmenite and grunerite 

would not be stable within the mineral assemblage of this sample. Due to this, the Fe2O3 value 

has been reduced to 0.5 mol.% during the calculation of the pressure-temperature diagram to 

ensure that the predicted mineral assemblages of the model are consistent with the observed 

mineral assemblage of sample 207692. The higher measured concentration of Fe2O3 may be due 

to oxidative weathering at the Earth’s surface or during sample processing (e.g. Diener and 

Powell, 2010). 

The mineral assemblage observed within sample 207692 (representative of the high Fe-

Mg group, Fig. 3.2) includes garnet + cordierite + biotite + grunerite + ilmenite + magnetite + 

quartz + minor chlorite, and while no plagioclase was observed within the sample using a 

petrographic microscope, the results of the SEM-MLA (section 3.3) analysis indicates that 

plagioclase makes up about 1% of the area for this thin section. The phase equilibrium diagram 

for sample 207692 (Fig. 4.2) is generally defined by a low-T region that is defined by the 

presence of greenschist-facies minerals such as epidote, muscovite, chlorite, and andalusite, and 

a higher temperature region that is defined by the presence of minerals such as garnet, cordierite, 
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and cummingtonite. Modal proportions of the minerals within this sample at 2.9 kbar and across 

a temperature range of 540°C to 600°C are presented in Figure 4.3. The modal proportions were 

determined across a constant pressure to illustrate the reaction sequence along a simplified 

isobaric heating path. The textures of chlorite grains observed in thin section, and the numerous 

chlorite inclusions found within other peak minerals indicate that many of those peak minerals 

grew in the presence of chlorite. If substantial decompression had occurred in these rocks 

cummingtonite and cordierite would have grown independently of chlorite (Fig. 4.2). On the 

phase diagram, the breakdown of chlorite from 550–570°C is closely associated with the growth 

of cummingtonite, garnet, and cordierite, and the formation of cordierite is also associated with 

the breakdown of andalusite (Fig. 4.3). Cordierite grains with inclusions of aluminosilicate 

material (Fig. 3.2b), and garnet grains with minor chlorite inclusions and with inclusion patterns 

similar to that of chlorite grains within the matrix (Fig 3.2e) are observed within samples from 

the high Fe-Mg group, indicating that the predicated results of the model are generally consistent 

with the petrographic observations from samples of the high Fe-Mg group.  

The model also predicts that cummingtonite becomes a stable mineral within the 

assemblage of sample 207692 at roughly 545°C (Fig. 4.2). Cummingtonite is predicted to be 

stable up to the solidus at 723°C and is stable over a pressure range of <2 to 3.35kbar. The 

mineral assemblage observed within the sample corresponds to a stability field that exists over a 

temperature range of 545–570°C and pressures of 2.2 to 3.4 kbar. These temperatures are similar 

to those obtained from garnet-biotite thermometry (section 4.1). The predicted mineral modes 

calculated by the model for sample 207692 (Fig. 4.3) are generally in agreement with the results 

of the SEM-MLA for minerals such as biotite, chlorite, ilmenite, magnetite, and grunerite. The 

mineral modal proportions from the SEM-MLA are given as area %, however, they can be 
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approximated as volume % so that the modal proportions of the SEM-MLA results are 

comparable to those of the model. The model predicts garnet modes of 4% and cordierite modes 

of 24–28% over a temperature range of 550-570°C, while the SEM-MLA indicates 11 % garnet 

and 18 % cordierite for the analysed thin section. In addition, the model predicts modes of 34% 

for quartz and 5% for plagioclase, while the SEM-MLA indicates 41% and <1%, respectively. 

The differences in the predicted mineral modes of the model and those of the SEM-MLA results 

may be to due to the slightly biased results of the MLA towards the thin section being analysed, 

which does not take into account variation throughout the rock, while the predicted mineral 

modes of the model are based on the measured whole-rock bulk composition. 

 

229111 

The mineral assemblage in sample 229111 is similar to that of the previous sample and 

includes garnet + cordierite + biotite + ilmenite + quartz + minor chlorite and grunerite. The 

modal compositions of this sample as predicted by model are presented in Figure 4.4. The 

predicted mineral assemblages and proportions are similar to those of sample 207692 for 

cordierite, biotite, plagioclase, and ilmenite. However, the proportions of cummingtonite, 

chlorite, and garnet are estimated at higher proportions, while staurolite is the aluminous phase 

present at lower temperatures. The model appears to underestimate the proportions of garnet and 

cordierite, while overestimating the amount of amphibole within the sample.  

The phase equilibrium diagram for this sample (Fig. 4.5) is defined by the same low-T 

and high-T regions predicted by the model for sample 207692, with similar stability fields. The 

model predicts that the formation of cummingtonite is closely associated with the disappearance 

of chlorite and becomes a stable part of the mineral assemblage at 542°C and 2 kbar. 
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Cummingtonite continues to be a stable part of the mineral assemblage over several stability 

fields leading up to the solidus at 698°C. The mineral assemblage observed within sample 

229111 corresponds to a stability field with a temperature range of 542°C to 595°C, generally 

consistent with temperature estimates from the previous sample and with temperature estimates 

obtained through garnet-biotite thermometry that predicted temperatures between 551°C and 

583°C. For this sample, the model predicts a larger pressure range for the stability fields that 

include cummingtonite, which exist over pressures from 2 kbar to 4.05 kbar. This larger stability 

field may be the result of a higher FeO concentrations (13mol% for sample 207692 vs. 19mol% 

in this sample). 

 

229151 

Sample 229151 was collected from the greenstone material of the Polelle Group near the 

smaller Mt Mulgine granitic intrusion. The mineral assemblage observed within the sample 

includes garnet + grunerite + K-feldspar + ilmenite + quartz.  SEM-MLA results of sample 

229151 also indicate the presence of chlorite, however, this chlorite is concentrated along a crack 

and is interpreted to represent retrograde alteration and is not considered part of the peak 

assemblage. The P–T diagram for this sample was calculated over a temperature range of 500°C 

to 690°C, and over a pressure range of 2 to 8 kbar, with the O value adjusted to 0.5 mol% to 

allow for the stabilization of ilmenite within the model (similar to sample 207692). 

 The phase equilibrium diagram for this sample is presented in Figure 4.6 and shows a 

lower temperature region defined by stability fields that contain chlorite, epidote, garnet, K-

feldspar, and hornblende. Moderate to high temperature regions of the diagram are predicted to 
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contain cummingtonite, garnet, K-feldspar, and cordierite, with chlorite and hornblende unstable 

at higher temperatures. The observed mineral assemblage corresponds to a stability field with 

temperature range from 612°C to 649°C, and over a large pressure range from 4–7.2 kbar.  

 

Summary of P–T conditions  

 A summary of the P–T conditions for the Mougooderra Formation and Polelle greenstone 

sample from both garnet-biotite geothermometry and through forward modelling using phase 

equilibrium modelling is presented in Figure 4.7a, b. Garnet-biotite geothermometry results have 

temperature ranges for sample 207692 of 555–567°C for garnet 1, 559– 567°C for garnet 2, 559– 

570°C for garnet 4, and an overlapping temperature range from the three garnets for this sample 

giving a range of 559 to 567°C (Fig. 4.7b). The estimated temperatures are consistent with those 

determined from the isochemical phase diagram (Fig. 4.2), which predict a stability field with a 

temperature range of 545–579°C. Garnet and biotite compositions obtained from sample 229111 

gave an overall range of 511–597°C, with the majority of the garnet-biotite calibrations giving a 

range of 551–567°C, again consistent with the previous sample and the temperature range 

determined through modelling which estimated a stability field with temperatures of 542°C to 

595°C (Fig. 4.5). Pressures at peak temperatures of the Mougooderra Formation are restricted 

from 2.2 to 3.4 kbar for sample 207692, and from <2 to 4 kbar for sample 229111, with the 

stability fields of both samples overlapping at 2.5-3.1 kbar (Fig. 4.7a). While samples from the 

high Al group do not have assemblages with useful metamorphic minerals to constrain the P–T 

conditions of these rocks using ferromagnesian minerals, the presence of andalusite throughout 

the samples of this group is consistent with pressures <4.2 kbar and pressures within the stability 

fields of samples 207692 and 229111 (Fig. 4.7a). 
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 In summary, the P–T conditions of the Mougooderra Formation are estimated to be 550-

570°C and between 2.5 and 3.3 kbar as determined using samples 207692 and 229111 from the 

high Fe-Mg group. Samples from the greenstone material give higher temperature conditions 

with a range between 610°C and 650°C and pressures estimated from one sample ranging from 4 

to 7.2 kbar, which are higher than estimates from the Mougooderra Formation. 

 

Relationship between the high Fe-Mg, average pelitic, and high Al groups 

 The different compositional groups have different mineral assemblages, but generally 

have similar estimated P–T conditions of peak metamorphism. The main changes in bulk 

composition include the depletion of MgO, FeO, K2O, and the enrichment of SiO2 as the bulk 

composition transitions from that of the high Fe-Mg group towards that of the high Al group 

(Fig. 3.1). To investigate the changes in mineral assemblage as a function of composition and 

temperature, a T-X phase diagram (Fig. 4.8) was calculated across a temperature range of 530°C 

to 580°C and at a pressure of 2.75 kbar (this pressure was chosen to ensure that the predicted 

mineral assemblages were consistent with the observed mineral assemblages of all three 

geochemical groups). X = 0 represents the bulk composition of sample 207692 from the high Fe-

Mg group (Fig. 4.2, 4.3), and X = 1 represents the bulk composition of sample 229135 from the 

high Al group.  

Over a range of temperatures from 552°C to 580°C and a range of X values from 0.0 to 

0.26 the model predicts that several different mineral assemblages will be stable that include 

garnet + biotite + ilmenite + magnetite ± chlorite ± cordierite ± cummingtonite, all of which are 

consistent with the main mineral assemblages observed within the rocks of the high Fe-Mg 
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group. At elevated temperatures, the depletion of FeO and MgO affect the predicted mineral 

assemblages by destabilizing cummingtonite and garnet, while the enrichment of SiO2 stabilizes 

andalusite. This leads to the predicted mineral assemblages of cordierite + biotite + plagioclase + 

ilmenite + magnetite ± andalusite. These predicted assemblages are consistent with the observed 

assemblages from the average pelitic group (section 3.2). As the modelled bulk composition 

continues to transition from intermediate (i.e. average pelitic) compositions, the continued 

depletion of FeO and MgO causes the destabilization of cordierite. The resulting mineral 

assemblages include biotite + plagioclase + ilmenite + magnetite + andalusite ± muscovite, 

consistent with petrographic observations of the rocks from the high Al group. In summary, the 

various metamorphic mineral assemblages observed in the Mougooderra Formation are 

compatible with variations in bulk compositions at similar pressure and temperature conditions. 
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Table 4.1. Bulk compositions used in the calculation of phase equilibrium diagrams (mol%). 

 

 

 

 

Table 4.2. Temperature estimates in °C based on garnet-biotite thermometry calibrations. 

Sample SiO2 Al2O3 CaO MgO FeO  K2O Na2O TiO2 MnO O 

207692 

(X=0) 62.82 11.48 0.6 8.7 13.38 1.98 0.41 0.57 0.08 0.0 

207692 

(X=1) 62.16 11.36 0.59 8.6 13.24 1.96 0.40 0.57 0.08 1.04 

229111 54.24 12.78 0.605 9.75 19.31 1.72 0.318 0.654 0.096 0.53 

229135 86.75 8.87 0.191 0.199 1.758 0.86 0.108 0.510 0.009 0.74 

229151 62.68 8.04 2.09 6.16 17.76 1.09 0.89 0.65 0.13 0.5 

Sample Thompson 

1975 

Holdaway 

and Lee, 

1977 

Ferry and 

Spear, 1978 

Perchuk 

1983 

Dasgupta et 

al., 1991 

Bhattachary 

et al., 1992  
Holdaway 

2000 

207692 grt 1 557 559 555 567 489 588 565 

207692 grt 2 559 561 557 567 493 590 567 

207692 grt 4 560 562 559 570 492 591 567 

229111  567 559 551 567 511 597 583 

229120 566 567 566 573 508 596 578 
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1. cd st chl bi pl ilm g                                  7. cd chl bi pl mt and 

2. cd st chl bi pl mt ilm g                             8. st chl bi mu pl ilm and 

3. cd st chl bi pl ilm                                     9. st chl bi mu pl mt ilm and 

4. cd st chl bi pl ilm and                              10. st chl bi mu pl ilm 

5. cd st chl bi pl mt ilm and                         11. st chl bi mu pl mt ilm 

6. cd chl bi pl mt ilm and 

Figure 4.1. Temperature-Fe2O3 diagram for sample 207692 at a pressure of 2.9 kbar. Bold lines represent 

the magnetite and ilmenite-out lines, while the blue line represents the cummingtonite-in line. 

2.9kbar + q H2O 
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1. chl mu pl ilm ep ru                     9. pl ilm bi g st sill                       17. chl ilm bi pl cd mt              

2. chl mu ilm ep ru                       10. pl ilm bi g st cd                        18. chl ilm bi pl cd mt cu             

3. chl mu pl ilm ep                       11. chl mu ilm bi pl st and             19. chl ilm bi pl cd mt g             

4. chl mu pl ilm ep bi g                12. chl ilm bi pl st                          20. chl ilm bi pl cd st            

5. chl mu ilm bi g                         13. chl ilm bi pl st and                   21. chl ilm bi pl cd g             

6. chl mu ilm bi g st                     14. chl ilm bi pl and                       22. chl ilm bi pl cd g st            

7. pl ilm bi g st sill                       15. chl ilm bi pl and cd                  23. chl ilm bi pl cd g cu            

8. pl ilm bi g st sill cd                  16. chl ilm bi pl cd                

 

Figure 4.2. Temperature-Pressure diagram of sample 207692. The dashed line represents the solidus, 

while the field labeled in bold text represents the observed mineral assemblage for this sample. 
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Figure 4.3. Modal proportions of minerals within sample 207692 at 2.9 kbar over a range of 540 to 

600°C.  

 

Figure 4.4. Modal proportions of minerals within sample 207111 at 2.9 kbar over a range of 540 to 

600°C. 
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1. mu ilm g chl                     7. bi pl ilm g st sill                    13. ilm chl bi pl st and 

2. mu ilm g chl pl                 8. bi pl ilm g sill                       14. ilm chl bi pl and 

3. mu bi ilm g chl pl             9. cd bi pl ilm g st sill               15. cd ilm chl bi pl and 

4. mu bi ilm g chl ep          10. mu ilm chl bi pl st                 16. cd ilm chl bi pl 

5. mu bi ilm g chl st           11. mu ilm chl bi pl st and          17. cd ilm chl bi pl st 

6. bi pl ilm g st                   12. mu ilm chl bi pl and              18. cu chl cd bi pl ilm 

 

Figure 4.5. Temperature-Pressure diagram of sample 229111. The dashed line represents the solidus, 

while the field labeled in bold text represents the observed mineral assemblage for this sample.

+ q H2O MnNCKFMASHTO 
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Figure 4.6. Temperature-Pressure diagram of sample 229151. The dashed line represents the solidus, 

while the field labeled in bold text represents the observed mineral assemblage for this sample. 

MnNCKFMASHTO + q H2O 
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Figure 4.7. (a) Summary of P–T conditions for rocks of the Mougooderra Formation (207692 and 229111) and greenstone samples (229151), (b) 

Comparison of temperatures determined through forward modelling and garnet-biotite geothermometry for samples 207692, 229111, and 229120. 

a 

b 
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Figure 4.8.  T-X diagram calculated for bulk compositions between sample 207692 of the high Fe-Mg 

group and sample 229135 of the high Al group at 2.75 kbar.  

 

 

 

 

+ q H2O MnNCKFMASHTO 
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Chapter 5: Discussion   
 

5.1 Conditions of Metamorphism 

Within the Ninghan area, rocks of the Mougooderra Formation preserve rare P–T-

sensitive metamorphic mineral assemblages (e.g. garnet, cordierite, and grunerite) that can be 

used to infer the P–T conditions and timing of metamorphism as well as the associated 

geodynamic environment. These rocks, as well as samples from greenstone material of the 

Polelle Group, were used to determine peak metamorphic conditions. Phase equilibria modelling 

and thermobarometry suggest that the Mougooderra Formation experienced relatively low 

pressures (2.5–3.3 kbar) and high temperatures (550–570°C) at peak metamorphism, while 

pressures and temperatures experienced by the greenstone at this time were higher (4.0–7.2 kbar 

and 610–650°C).  

5.2 Timing of Metamorphism 
 

The timing of metamorphism is similar for both samples with a sample from the 

Mougooderra Formation returning a Lu-Hf age of 2686±18 Ma and a Sm-Nd age of 2611±35 

Ma, while a sample from the Polelle Group returned a Lu-Hf age of 2685±15 Ma and a Sm-Nd 

age of 2590±21 Ma. The significant age differences between the garnet Lu-Hf and Sm-Nd 

systems may be the result of resetting of the Sm-Nd system during contact metamorphism, 

however, it may also represent either a prolonged period of prograde metamorphism or a slowly 

cooling terrane depending on the zoning of the parent isotopes within the garnet grains and the 

factors taken into consideration for the closure temperature of the Sm-Nd system. In the contact 

metamorphic model, the garnet Lu-Hf system would be recording an older metamorphic event, 

while the Sm-Nd system is recording a resetting of the system due to a rejuvenated heat source 
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such as the ascent and crystallization of post-tectonic magma from the middle crust and a contact 

metamorphic overprint. For example, the Sm–Nd garnet age from sample 207692 is within 

uncertainty of the age of the nearby Seeligson monzogranite (Fig. 5.1). However, the Sm-Nd 

garnet age of sample 229151 is not within uncertainty of the Seeligson monzogranite and the Lu-

Hf garnet ages still require an earlier, regional metamorphic event that resulted in initial growth 

of the garnet grains. Therefore, other explanations for the large age differences must be 

considered. 

 The growth of garnet grains within a metamorphic rock is a protracted process that 

commonly results in the zoning of major and trace elements. As a result, Lu-Hf and Sm-Nd ages 

may be biased towards the zones of the grain that contain elevated amounts of the parent isotope 

(Baxter et al., 2017). In low-temperature garnets with well-preserved prograde zoning, Lu will 

typically be concentrated within the core of the grain as it partitions strongly into garnet (Baxter 

and Scherer, 2013). In this case the age will be biased towards the core of the garnet and the first 

increment of garnet growth along the prograde path. In some studies, the significant age 

differences observed between the Sm-Nd and Lu-Hf chronometers is related to parent isotope 

zonation within the garnet grains (Skora et al., 2009). For example, if Lu was strongly 

concentrated within the core of a grain whereas Sm was distributed equally throughout, then the 

Lu-Hf age would be biased towards the early part of the garnet growth and the Sm-Nd age would 

represent an integrated, likely younger age (i.e. recording later parts of the prograde path). Taken 

into consideration the slight zoning of the parent isotopes of sample 207690 (Fig. 3.16), the 

difference in the Lu-Hf and Sm-Nd ages may be interpreted to represent different parts of the 

prograde path. However, it is unlikely that zoning of Sm within the garnet grains can alone 

explain the large age discrepancy between the two systems given the lack of substantial Lu and 
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Sm zoning observed within the garnet grains of samples 207692 and 229151 (Fig 3.14; 3.15). 

The difference in age is not likely related solely to different zoning patterns in the two parent 

isotopes.  

The closure temperature of an isotopic system within a given mineral depends on a 

number of factors including the duration of the thermal event, the size, shape, and composition of 

the mineral, and the diffusivity of the element (Scherer et al., 2000). Estimates of the closure 

temperature for the Sm-Nd system within garnet have resulted in a wide range of temperatures 

and varies from <500°C to over 800°C, with many studies suggesting roughly 700°C as a general 

estimate (Humphries and Cliff, 1982; Cohen et al., 1988; Jagoutz, 1988; Mezger et al., 1992; 

Hensen and Zhou, 1995; Burton et al., 1995; Ganguly et al., 1998; Scherer et al., 2000; Dutch 

and Hand, 2009; Pollington and Baxter, 2011). A plot of closure temperature for Nd and Hf as a 

function of cooling rate, temperature, and garnet radius along with information relevant to the 

two samples investigated here is shown in Figure 5.2 (Smit et al., 2013). Considering the 

metamorphic temperatures of ~570°C for the Mougooderra Formation, either very slow cooling 

or very small garnet radii are required to result in significant difference in the closure 

temperatures of Nd and Hf in garnet. Considering that garnet grains of the sample from the 

Mougooderra Formation have radii of ≤0.5mm, cooling rates of <2°C/Ma are required to explain 

the difference in ages from the Lu-Hf and Sm-Nd isochrons. For example, given an activation 

energy of 250 kJ/mol, a cooling rate of 2°C/Ma, and an assumed garnet radius of 0.5mm, closure 

temperature for the Lu-Hf system would roughly be 800°C, while that of the Sm-Nd system 

would be roughly 650°C (Fig. 5.2). Given that some garnet grains within the analysed sample 

have radii less than 0.5mm, plus the uncertainties associated with P–T estimates (e.g. Palin et al., 

2016) and isotopic closure temperatures of garnet (e.g. Smit et al., 2013), peak metamorphic 
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temperatures overlap closely with the closure temperature of the Sm-Nd system. In this case the 

peak metamorphic temperature would be below the closure temperatures of both the Lu-Hf and 

Sm-Nd systems, and the ages would both represent similar prograde garnet ages, which is not the 

case for these samples. However, reported Sm-Nd closure temperatures for garnet grains of 

smaller radii from other studies (e.g. Tc = 485°C and 500°C for respective garnet radii of 0.16 

and 0.24mm of Scherer et al. (2000); Fig. 5.2) are inconsistent with those of Smit et al. (2013), 

which estimate a much higher closure temperature of >600°C. This indicates that a lower Nd 

closure temperature is possible, and also demonstrates that obtaining a closure temperature for 

the Sm-Nd system depends on numerous factors and is often difficult to constrain and as a result 

the Sm-Nd dates of this study remain somewhat ambiguous. 

In summary, the Sm–Nd dates of this study are ambiguous, they may represent slow 

cooling, a prolonged period of prograde metamorphism, or resetting during a contact 

metamorphic event. However, taking into consideration the similar ages from both isotope 

systems between the two samples and the higher temperatures recorded by the samples of the Mt 

Mulgine area, which are further away from the Seeligson monzogranite than those of the 

Mougooderra Formation, it is suggested that these dates represent a slowly cooling (<2°C/Ma) 

terrane, as the P–T conditions are inconsistent with the architecture and rapid cooling rates 

(>1000°C/Ma) expected in contact aureoles around granite plutons (Nabelek et al., 2012), and 

such a significant age difference is unlikely to be attributed solely to zoning of the parent 

isotopes. 
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5.3 Processes Driving Metamorphism  

The relatively low P and high T metamorphic conditions recorded by the Mougooderra 

Formation are compatible with two contrasting tectonic settings: (1) contact metamorphism as a 

result of the emplacement of a large syn to post-tectonic granitic body into supracrustal rocks, 

and (2) regional metamorphism resulting from a large-scale mantle plume event and associated 

crustal instabilities (Van Kranendonk et al., 2013), or through an orogenic event in the 

Neoarchean (Zibra et al., 2017a). 

 In the case of the contact metamorphic model, metamorphism of the Mougooderra 

Formation would most likely be driven by the emplacement of the nearby Seeligson 

monzogranite. The Seeligson monzogranite crosscuts the main body of the Mougooderra 

Formation within the Ninghan area (Fig. 1.2). Contact metamorphism of the Mougooderra 

Formation adjacent to the Seeligson monzogranite would result in the high temperatures, while 

the relatively low pressures would be the result of the stratigraphic placement of the 

Mougooderra Formation at the time of granite emplacement. In this scenario, the higher 

pressures and temperatures observed in the samples from the greenstones are the result of being 

at a stratigraphically lower position within the region. For example, assuming a crustal density of 

2,700 kg/m3, given the pressure ranges determined for the Mougooderra Formation and 

underlying greenstones, the difference of 1.3 to 5 kbar in pressure would result in a structural 

separation between 5 and 18 km.  

However, several problems exist with the contact metamorphism model. First, the garnet 

Lu-Hf ages from the Mougooderra Formation do not overlap in time with any nearby granitoids 

and suggest that garnet growth began at a minimum of 36 Ma (considering the maximum 

uncertainty) prior to the crystallization of the Seeligson monzogranite at 2626±6 Ma (Wingate et 
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al., 2014), and is significantly younger than the granitoids of Mt Mulgine which have been dated 

at 2756±20 Ma (Fletcher and McNaughton, 2002) and 2752±8 Ma (Wingate et al., 2018). 

Second, studies of contact aureoles around other large granitoid intrusions have shown that the 

thermal effect on the surrounding bedrock generally ranges from 0.5 to 3 km from the intrusive 

body with temperatures decreasing away from the intrusion (Symmes and Ferry, 1995; Pattison 

and Vogl, 2005; Jamieson et al., 2012). The Lu-Hf ages of the greenstone indicates nearly 

contemporaneous metamorphism >3 km northwest of the Seeligson monzogranite. In addition, 

the estimated peak temperatures near Mt Mulgine are higher than those of the Mougooderra 

Formation, which is inconsistent with the architecture of a local contact aureole. Finally, samples 

collected outside the Ninghan area, located 5–10 km away from any granitic intrusion, still 

contain metamorphic minerals such as andalusite, indicating that there was low-P metamorphism 

at a regional scale.  

 Considering that a contact metamorphic scenario is incompatible with the garnet 

geochronology and metamorphic temperatures away from nearby plutons, a regional 

metamorphic model that predates the emplacement of the granitoids is needed. Two general 

scenarios have been proposed for the thermotectonic history of the Yilgarn craton that could 

generate regional metamorphism, including (1) an accretion–orogenesis model dominated by 

modern-style plate-tectonic processes (e.g. Myers, 1993; 1995; Wilde, 1996; Krapez and Barley 

et al., 2008; Standing, 2008), and (2) a vertical-tectonic model involving the ascent of granitic 

diapirs and sinking of greenstone material (e.g. Van Kranendonk, 2013).  

Orogenesis due to the accretion of exotic terranes has been proposed for the tectonic 

evolution of the Yilgarn Craton (Myers, 1993; Cassidy et al., 2006; Champion and Cassidy, 

2007). Recent structural work within the Murchison Domain has indicated the presence of a 
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north-trending foliation within syntectonic plutons (2700-2660 Ma) that overprints older doming 

fabrics (Zibra et al., 2017a; 2018). These structures are subparallel-to-parallel to other shear 

zones throughout the Yilgarn Craton, including the large-scale east dipping shear zones that 

separate the terranes of the Yilgarn craton (Zibra et al., 2017a; 2018). Zibra et al. (2017a) suggest 

that this structural data in conjunction with the quick change in depositional environments from a 

low energy, deep marine environment to a high energy, shallow marine environment marks a 

geodynamic transition within the Yilgarn Craton from granitic doming to crustal shortening as a 

result of orogenesis. Sub-horizonal fabrics in the middle to deep crust of the Youanmi Terrane 

inferred from seismic imaging are also consistent with a terrane-accretion model (Calvert and 

Doublier, 2018). The metamorphic signature of a terrane–accretion model should include syn-

tectonic metamorphic mineral assemblages and apparent thermal gradients indicative of 

intermediate dT/dP metamorphism (e.g. Brown and Johnson, 2018). These two features are 

observed in the Southern Cross Domain to the east of the Murchison Domain (Zibra et al., 

2017b). However, in the Mougooderra Formation, post-kinematic garnet (section 3.2) and 

apparent thermal gradients of >1500°C/GPa (section 5.3) are both incompatible with 

metamorphism accompanying terrane accretion.  

An alternative tectonic model that could have generated regional metamorphism is 

upwelling asthenosphere and melting of the mantle and crust as the result of mantle-crust 

interactions either in the form of mantle plumes (e.g. Van Kranendonk et al., 2013), or through 

mantle overturn as suggested by Bédard (2018). The different terranes of the Yilgarn Craton 

share a similar tectonic history between 2820 and 2600 Ma and include events such as 

widespread ultramafic-to-mafic volcanism near 2720 Ma, the emplacement of granitic rocks with 

similar compositions from 2690 to 2640 Ma, shearing and gold emplacement from 2660 to 2630 
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Ma, followed by the emplacement of post-tectonic intrusions from 2630-2600 Ma (Van 

Kranendonk et al., 2013). The cause of widespread magmatism is inferred by Van Kranendonk et 

al. (2013) to be mantle plume overturn events, which caused partial melting in the mid-crust and 

partial convective overturn of greenstone material. Lithospheric extension and the onset of a new 

mantle plume event across the Yilgarn Craton at ~2735–2711 Ma is consistent with the 

crystallization of komatiitic basalt of the Glen Group and the emplacement of gabbroic sills with 

a pyroxenite to peridotite cumulate base of the Yalgowra Suite, as well as the similar ages of 

ultramafic intrusions within the Eastern Goldfields Superterrane (Van Kranendonk et al., 2013). 

Subsequent thermal blanketing and crustal overturn, followed by partial melting of the mid-crust, 

and the formation of an eclogitic-granulitic crustal residue that delaminated may have caused the 

formation and emplacement of the post-tectonic granites at 2640-2630 Ma in the craton (Van 

Kranendonk et al., 2013).  

This plume-driven model is supported by structural data that indicates that the Yalgoo 

Dome (a large granitoid body just north of the Ninghan map sheet) and smaller associated 

granitic bodies (such as Mt. Mulgine; Fig. 1.1) were likely emplaced during a period of 

magmatic doming (Zibra et al., 2018). In addition to this, detrital zircon analyses have shown 

that the main detrital zircon population from the Mougooderra Formation near the Yalgoo Dome 

have similar Th/U ratios and ages to that of the main zircon populations from the nearby Kynea 

Tonalite (2950 Ma) and the granitic rocks of the Rothsay Suite (2760-2750 Ma; Zibra et al., 

2018). This combined with the similarity of clasts within conglomerate beds of the Mougooderra 

Formation to that of the underlying greenstone material (Watkins and Hickman, 1990) suggests 

that the sediment which formed the Mougooderra Formation may have been deposited as a result 

of rising granitic domes that caused the uplift and erosion of greenstone and granitic material 
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(Zibra et al., 2018). A similar model has been proposed for the Superior Province where 

diapirism and sagduction resulted in the erosion of the greenstone material followed by erosion 

of rising granitic domes (e.g. Lin et al., 2013). In these models, the upwelling mantle and rising 

granitic domes during crustal overturn would be an important source of the heat responsible for 

metamorphism of the Mougooderra Formation.  

 The metamorphic signature of a model driven by heat from the mantle would include 

mafic to ultramafic magmatism followed by high temperature metamorphism as the overlying 

crust experiences high heat flow (Owada et al., 2016; Bédard, 2018) and high apparent thermal 

gradients (Brown and Johnson, 2018). Within the Murchison Domain ultramafic rocks of the 

Yalgowra Suite and Glen group are at a minimum of 7 Ma older than the timing of 

metamorphism indicated by the Lu-Hf garnet geochronology, which is consistent with a mantle-

driven model. In addition, rocks with apparent thermal gradients greater than 1000°C/GPa have 

been observed for the Mougooderra Formation and from several other localities throughout the 

western Yilgarn Craton (Section 5.3; Barnicoat et al., 1991; Nemchin et al., 1994; Mueller et al., 

2004; Brown and Johnson, 2018), indicating high heat flow at this time. Therefore, the garnet 

geochronology and P–T estimates are generally compatible with metamorphism generated 

through a plume-driven tectonic model.  

 

5.4 Apparent Thermal Gradient and Tectonic Implications  

 Apparent thermal gradients derived from metamorphic rocks provide important 

constraints on the geodynamic processes in the modern and early Earth (Brown and Johnson, 

2018). For example, high pressures and low temperatures together are a signature of subduction 

on modern earth whereas low temperatures or high pressures alone can occur in many 
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geodynamic environments. Brown and Johnson (2018) categorize metamorphism into three 

groups including low dT/dP metamorphism, intermediate dT/dP metamorphism, and high dT/dP 

– these regimes are inferred to represent different geodynamic processes. The compilation of 

Brown and Johnson (2018) along with P–T data from this thesis are plotted in Figure 5.3. Note 

that Brown and Johnson (2018) summarized the P/T values from individual locations around the 

world as single points calculated from the temperature of peak metamorphism and the pressure at 

this temperature.  In reality, uncertainties exist when estimating peak metamorphic conditions 

which are typically presented as a range (e.g. 2–4 kbar) and will therefore also give a range of 

calculated apparent thermal gradients (Fig. 5.3).  

 The apparent thermal gradient of the Mougooderra Formation was calculated at a 

temperature of 570°C over a range of pressures from 2.5 to 3.3 kbar and has an apparent thermal 

gradient ranging between 1727 and 2280 °C/GPa. The apparent thermal gradient of the 

underlying greenstone material was calculated at a temperature of 650°C over a pressure range of 

4 to 7 kbar and has an apparent thermal gradient ranging from 928 to 1625°C/GPa. These values 

are among the highest recorded at this time in the Neoarchean. A similar gradient was inferred 

from rocks in the Southern Cross Domain to the east of the study area (Fig. 1.1), which has 

similar peak P–T conditions to that of the Mougooderra Formation (Mueller et al., 2004). 

Estimated temperatures for rocks in the Southern Cross Domain range between ~520 and 590°C 

with pressures ranging between 2.9 and 4.2 kbar and an apparent thermal gradient of 

1685°C/GPa at 590°C and 3.5kbar (Mueller et al., 2004). These calculated apparent thermal 

gradients are also within range of two other locations within the southwestern Yilgarn Craton 

(Barnicoat et al., 1991; Nemchin et al., 1994), both of which have apparent thermal gradients 

near 1250°C/GPa. 
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 The P–T conditions and apparent thermal gradient obtained for the Mougooderra 

Formation and underlying rocks coupled with the slow cooling rate inferred from the garnet 

geochronology indicate the presence of a large and long-lived heat source within this region of 

the Murchison Domain. Heating due to thickening of the crust is ruled out as the pressure 

conditions recorded by these rocks was not high enough to allow for heating associated with 

overthickened crust to occur (e.g. England and Thompson, 1984). Extrapolating along the 

apparent thermal gradients recorded by the Mougooderra samples, temperatures of 1000°C and 

greater would be reached at pressures of <10kbar. At these P–T conditions these rocks would be 

near the liquidus for most crustal rocks (e.g. Gerya et al., 2008) and unable to support a stable 

continental crust. Possible heat sources within the Yilgarn Craton at this time include the 

presence of a large mid-crustal intrusive body or from the heat associated with the mantle in an 

environment with thin continental lithosphere. As mentioned above, coupled garnet Lu-Hf 

geochronology indicates that metamorphism of the Mougooderra Formation and underlying 

greenstone material began prior to the emplacement of any nearby granitoids, suggesting that 

metamorphism of these rocks was not the result of contact metamorphism with the known 

granitic rocks from the area. The P–T conditions and apparent thermal gradient, therefore, likely 

indicate a metamorphic event in a tectonic environment with a thin continental lithosphere and 

high heat flow, while the large age difference between Lu-Hf and Sm-Nd systems is due to very 

slow cooling rates. An environment with a thin continental lithosphere is supported by the 

presence of komatiitic basalt of the Glen Group and ultramafic-mafic intrusions of the Yalgowra 

Suite that were emplaced from 2735 to 2711 Ma (Ivanic et al., 2012).  

In summary, the P–T conditions and apparent thermal gradient of the Mougooderra 

Formation and underlying greenstone material suggests metamorphism occurred in an 
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environment with a thin continental lithosphere and high heat flow from the mantle. This may 

have been the result of mantle plume interaction, residue delamination (Van Kranendonk et al., 

2013), or mantle overturn cycles (Bédard, 2018). It remains unclear if this event is the result of 

mechanisms often associated with horizontal plate tectonics or if it is the result of vertical 

tectonics and crustal instabilities. However, as Bédard (2018) suggests, vertical and horizontal 

movements of the crust within the Archean were likely accommodated by the same process. 
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Figure 5.1. Timing of greenstone formation and emplacement of granitic intrusions compared to timing 

of metamorphism (modified from Clos et al. 2018). 
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Figure 5.2. Closure temperatures for the Lu-Hf (a) and Sm-Nd (b) systems dependent on 

activation energy, cooling rate, and radii of a garnet (modified from Smit et al. 2013). The 

estimated closure temperatures for the garnet grains of Scherer et al. (2000) are also considered 

in (b).
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Figure 5.3. Apparent thermal gradients calculated for this study compared to apparent thermal gradients from various geological 

environments around the world (modified from Brown and Johnson, 2018). The abbreviations at the top of the page represent different 

eras and periods throughout time.



86 
 

Chapter 6: Conclusions  

6.1 Summary and Conclusions 

 The Mougooderra Formation is one of several large sedimentary sequences within the 

Youanmi Terrane, and until recently has received very little attention since the 1990s (Watkins 

and Hickman, 1990; Zibra et al., 2018). The purpose of this thesis was to investigate the 

metamorphic history of the Mougooderra Formation through the characterization of the 

metamorphic mineral assemblages, determination of P–T conditions, determination of the timing 

of metamorphism, and to use those objectives to give insights about the geological environment 

of this region during the time of metamorphism.   

 The characterization of the metamorphic mineral assemblages of the rocks from the 

Mougooderra Formation and underlying greenstone material of the Polelle Group was completed 

using whole rock geochemistry, identification of mineral assemblages using both petrographic 

and SEM work, and the determination of mineral compositions for major metamorphic minerals 

using EPMA (Sections 3.1-3.4). The Mougooderra Formation was found to have a variety of 

metamorphic mineral assemblages depending on the bulk composition of the sample. Rocks 

from this Formation were separated into several groups based on variations in major element 

geochemistry and includes the high Fe-Mg group, the high Al group, and the average pelitic 

group. Despite the variation in bulk composition and metamorphic mineral assemblages, it was 

shown that each group likely formed under similar pressure and temperature conditions (Fig 4.8). 

In addition to the results obtained from this work, garnet-biotite thermobarometry and phase 

equilibrium modelling (Section 4.1-4.2) allowed the conditions of metamorphism within the 

Mougooderra and Polelle Group to be constrained. The presence of metamorphic minerals such 

as garnet, cordierite, and grunerite indicate that the Mougooderra Formation experienced 
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relatively high-T low-P metamorphism. Peak metamorphic temperatures of the Mougooderra 

Formation were estimated to range between 550 and 570°C and a pressure range of 2.5 to 3.3 

kbar. Select samples from underlying greenstone units were also considered in this study. These 

samples fall within the high Fe-Mg group and gave pressure estimates of 4 to 7.2 kbar and 

temperature conditions of 610°C and 650°C. Phase equilibrium modelling was also used to 

demonstrate that Fe2O3 values obtained through titration methods are slightly overestimated for 

some rocks within the region (Fig. 4.1). This overestimation of ferric iron is likely the result of 

the long exposure of these rocks at the Earth’s surface in an oxidizing environment.  

The timing of metamorphism was constrained using coupled garnet Lu-Hf and Sm-Nd for 

one sample from the Mougooderra Formation and one sample from the underlying greenstone 

unit. Both samples returned similar results with Lu-Hf ages of 2686±18 Ma and 2685±15 Ma, 

whereas the Sm-Nd system returned ages of 2611±35 Ma and 2590±21 Ma. These dates have 

been found to be considerably different than the ages of nearby granitoids and have been 

interpreted to represent the timing of regional metamorphism in a slowly cooling terrane. 

 These results were used in combination with apparent thermal gradients (Section 5.3) to 

show that the Mougooderra Formation and underlying greenstone unit has similar P–T 

conditions and apparent thermal gradients as other locations within the Yilgarn Craton (Fig 5.3). 

The work from this thesis suggests that at the time of metamorphism this region of the 

Murchison Domain experienced high heat flow as a result of a thin continental lithosphere and 

crust-mantle interactions. This geological environment may have been the result of extension and 

mantle upwelling, delamination of underplated basaltic crust (van Kranendonk et al., 2013), or a 

mantle overturn event (Bédard, 2018).  
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6.2 Future Studies  

 Until recently many studies within the Murchison Domain have focused on the 

understanding of geochemical evolution of the granitic intrusions and the structures and 

stratigraphy of greenstone sequences. Recommendations for future studies include: 

(1) Further constraints on the timing of metamorphic events using other isotope systems. 

Given that the interpretation of a regional metamorphic event in this study is based on 

coupled garnet Lu-Hf and Sm-Nd ages that do not overlap with any significant geological 

event observed in the Murchison Domain, it is recommended that these dates be 

confirmed in future studies, possibly through U–Pb geochronology of accessory minerals. 

(2) It is also recommended that detrital zircon work be completed on the Mougooderra 

Formation in the Ninghan area to compliment the detrital zircon work completed for this 

formation in the Yalgoo Dome area to assess lateral variations in sediment provenance. 

(3) Constraints on P–T conditions within the Murchison Domain are limited, it is 

recommended that future studies should continue to focus on the characterization of 

metamorphic mineral assemblages and constraining P–T conditions when appropriate 

low variance mineral assemblages are available. This work may focus on overlying cover 

sequences such as the Mougooderra Formation, but it is also recommended that future 

studies continue to investigate the metamorphic conditions of underlying greenstone 

material. The conclusions of this study are based on only a few P–T constraints, a larger 

dataset of P–T conditions may be incorporated with other structural, geochemical, 

isotope, and sedimentary studies to give a better understanding of the geological history 

of the Murchison Domain.  
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Appendix A: Sample Information 
Table A1.1. Sample information (GDA94, MDA zone 50). 

Sample Easting Northing Thin Section  Whole rock geochemistry 

207602 507755 6780386 Y Y 

207691 500197 6801963 Y Y 

207697 500197 6801963 Y N 

207692 516595 6756846 Y Y 

207694 516888 6756813 Y Y 

207695 517089 6757120 Y Y 

211117 512517 6744201 Y Y 

211116 512517 6744201 Y Y 

207689 497923 6771884 Y N 

207690 500499 6772698 Y Y 

207693 516664 6756852 Y Y 

207688 478026 6770990 Y Y 

207672 449809 6839648 Y N 

207676 446237 6839490 Y N 

229101 516597 6756844 Y Y 

229102 480180 6868911 Y N 

229103 480282 6868885 Y N 

229104 500315 6801970 N N 

229105 500197 6801963 Y Y 

229106 509123 6780266 Y N 

229107 509123 6780266 Y N 

229109 509658 6779783 Y Y 

229110 518345 6745826 Y N 

229111 516588 6756937 Y  Y 

229112 516588 6756937 Y  N 

229113 516648 6756904 Y Y 

229114 516834 6756895 Y N 

229115 516916 6756901 Y Y 

229116 516953 6756901 Y N 

229117 517089 6756978 Y Y 

229118 517049 6757076 N N 

229119 516597 6756844 Y Y 

229120 516597 6756844 Y  Y 

229121 516957 6756784 N N 

229122 517268 6755655 N N 

229123 516969 6756597 N N 
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Table A1.1. (continued) 

Sample Easting Northing Thin Section  Whole rock geochemistry 

229124 516959 6756401 Y Y 

229125 517116 6756110 Y N 

229126 517268 6755655 Y N 

229127 518293 6751231 Y Y 

229128 518108 6751557 N N 

229129 518027 6751737 Y N 

229130 518043 6752074 Y Y 

229131 518149 6752002 Y Y 

229132 518076 6751728 Y N 

229133 512564 6744224 Y N 

229134 512564 6744224 Y N 

229135 512295 6744251 Y Y 

229136 512382 6744132 Y Y 

229137 509616 6779803 Y N 

229139 507755 6780386 Y N 

229140 518334 6745748 N N 

229141 518334 6745748 N N 

229142 518334 6745748 N N 

229143 518334 6745748 N N 

229144 518334 6745748 N N 

229145 525078 6782488 Y Y 

229146 501062 6772484 Y Y 

229147 501357 6772462 Y Y 

229148 497923 6771884 Y  Y 

229149 497923 6771884 Y Y 

229150 497940 6771912 Y N 

229151 500499 6772698 Y  Y 

229152 503577 6781411 Y Y 

229153 516946 6756330 Y Y 

229154 516888 6755993 N N 

229155 516996 6755779 Y N 

229157 517216 6755692 Y Y 

229157B 517216 6755692 Y Y 
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Appendix B: Whole-rock trace element geochemistry 
Table B1.1. Trace element compositions for rocks of the Mougooderra Formation and select underlying greenstone material. 

 Au Pt Pd Ag As Ba Be Bi Cd Ce Co Cr Cs Cu 

UNITS ppb ppb ppb ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

DETECTION 1 1 1 0.1 0.2 0.5 0.2 0.02 0.1 0.02 0.1 1 0.01 2 

METHOD FA003 FA003 FA003 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 

229101 1 2 2 <0.1 14 86.5 1.6 0.8 <0.1 39.5 17.7 210 0.95 6 

229105 <1 <1 <1 0.2 4.4 82.5 4.8 0.46 0.3 139 0.6 8 0.28 6 

229109 <1 7 5 <0.1 42 436 1.4 0.2 <0.1 10.2 8.5 511 3.22 30 

229111 2 4 6 <0.1 37.8 468 3.2 0.34 0.2 43.6 50.3 505 6.76 <2 

229113 5 9 28 <0.1 33.8 454 1.4 0.34 <0.1 26.8 78.2 849 5.47 44 

229115 1 2 1 <0.1 18 305 1 0.24 0.1 28.9 18.4 247 3.1 <2 

229117 7 3 4 <0.1 96.8 397 1.8 0.08 <0.1 75.6 33.3 355 1.62 <2 

229119 2 5 6 0.2 35.6 343 2.2 0.24 0.1 33.9 39.7 448 4.98 22 

229120 6 8 10 <0.1 38.4 438 3.4 0.2 0.4 36.2 43.8 537 6.07 <2 

229124 3 5 11 <0.1 3.8 38.5 0.4 0.04 <0.1 8.52 35.6 528 0.25 <2 

229127 3 6 8 <0.1 7.4 775 0.4 0.28 0.1 68.7 0.4 386 5.42 8 

229130 1 7 11 <0.1 2 291 0.4 0.02 <0.1 24.1 20.4 498 3.86 36 

229131 2 2 4 <0.1 10.8 362 0.6 <0.02 <0.1 31.1 11.9 214 64.5 <2 

229135 2 8 4 0.1 7 1930 1.2 0.86 0.2 25.2 1.7 187 0.53 52 

229136 2 1 2 <0.1 29.8 753 1 2.02 <0.1 34.5 4.5 243 5.74 56 

229138 1 6 4 0.3 62.6 957 1.2 0.18 1.1 98.8 8.7 359 1.16 18 

229146 2 4 5 <0.1 19.4 217 1.8 0.28 <0.1 47.8 12.6 230 5.62 188 

229147 1 6 3 <0.1 36.8 359 1 0.1 <0.1 3.9 3.9 795 0.42 108 

229149 1 6 4 <0.1 3.2 165 14.6 1.28 0.1 6.06 38 2160 74.4 60 

229152 1 6 5 <0.1 100 363 1.6 0.74 <0.1 50 4.2 244 6.91 86 

229157 3 5 10 0.2 9.8 216 0.8 0.24 0.2 43.1 15.5 335 7.51 46 

229158 5 1 1 <0.1 2.2 220 1.2 0.12 <0.1 56 20 180 6.5 58 
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Table B1.1.  (continued)

 Au Pt Pd Ag As Ba Be Bi Cd Ce Co Cr Cs Cu 

211117 <1 <1 <1 0.03 7.1 771.6 2.85 0.42 0.03 81.5 3.8 69 3.3 14.2 

211116 <1 <1 <1 0.03 33.7 768.2 2.47 1.03 0.08 34.8 3.4 234 2.4 39.3 

207695 <1 <1 <1 0.03 30.9 405.2 2.45 0.13 0.22 45.2 59.4 220 2.5 34.1 

207694 <1 <1 <1 0.03 12 1386.3 1.07 0.13 0.04 10.8 20.4 292 2.3 47.7 

207693 <1 <1 <1 0.03 1.2 173.7 0.21 0.15 0.07 8.3 64.5 278 0.6 23.7 

207692 <1 <1 <1 0.02 98.3 379.1 2.24 0.43 0.29 40.7 59.8 536 6.3 7.5 

207691 <1 <1 <1 0.02 4.1 35 0.52 0.11 -0.02 197.5 29.2 47 0.4 2.3 

207690 <1 <1 <1 0.1 16.1 292.3 1.19 0.33 0.53 29.1 53.7 357 23.8 59.7 

207602 <1 <1 <1 0.02 3.5 2719 0.98 0.43 0.05 33.5 8.1 156 2.7 4.7 
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Table B1.1.  (continued)

 Dy Er Eu Ga Gd Ge Hf Ho In La Lu Mn Mo Nb 

UNITS ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

DETECTION 0.01 0.01 0.01 0.1 0.01 0.05 0.01 0.01 0.05 0.01 0.01 1 0.2 0.01 

METHOD LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 

229101 2.96 2.12 1.19 14.6 3.26 0.5 4.55 0.61 <0.05 20.2 0.3 1650 <0.2 6.6 

229105 16.6 13.3 5.77 34.9 20.7 2.6 8.65 4.02 0.1 60.6 2.06 12 1 12.6 

229109 1.67 1.21 0.58 20.6 1.15 9.4 3.09 0.36 0.15 19.2 0.18 98 2 5.2 

229111 3.52 2.28 0.96 21.7 3.22 4.6 4.25 0.68 0.1 23.5 0.32 811 1.6 6.25 

229113 4.88 3.04 1.05 25.1 3.74 7.6 3.18 1.14 0.1 14.3 0.48 470 0.6 4.37 

229115 3.87 2.34 1.11 19.7 3.24 1.35 4.36 0.92 0.1 16.2 0.34 1860 0.4 6.96 

229117 5.12 3.3 1.45 28.4 5.29 1.6 6.1 1.06 <0.05 40.2 0.46 870 1.6 11 

229119 2.46 1.49 0.69 18.4 2.39 3.7 3.32 0.62 <0.05 19.3 0.24 641 1 4.74 

229120 2.86 2.06 0.88 19.7 2.62 4.6 3.39 0.66 <0.05 20.7 0.27 764 1.2 5.38 

229124 1.98 1.34 0.49 11.8 1.48 14.4 1.44 0.37 <0.05 2.97 0.19 1500 <0.2 2.06 

229127 5.28 3.53 1.01 32.4 3.32 2.15 6.62 1.19 0.2 49.5 0.48 35 0.6 10.1 

229130 3.07 2.4 1 23 3.09 2.55 2.52 0.7 0.1 11.9 0.32 1280 <0.2 4.57 

229131 2.09 1.85 0.51 17.9 1.84 0.85 3.37 0.56 <0.05 15.6 0.23 342 <0.2 5.5 

229135 1.86 1.05 0.51 18.4 1.5 1.95 3.44 0.35 0.45 28.3 0.16 43 3.4 5.94 

229136 1.63 1.11 0.45 22.5 1.56 2.5 3.29 0.39 4.9 21 0.19 142 2.8 5.37 

229138 6.13 3.7 1.91 31.1 6.22 1.75 6.59 1.28 0.1 54.5 0.48 56 1.6 12.6 

229146 3.56 2.2 1.21 19.2 3.67 2.75 4.43 0.69 <0.05 28.3 0.31 225 3.8 9.7 

229147 0.53 0.42 0.1 17.2 0.2 1.8 3.44 0.09 <0.05 1.98 0.07 57 39.6 7.8 

229149 1.98 1.09 0.49 10.3 1.55 3.55 1 0.45 <0.05 4.29 0.17 1620 5.6 2.87 

229152 2.22 1.24 0.61 21.5 1.95 2.65 3.3 0.4 0.15 34.6 0.19 25 6 7.08 

229157 3.69 2.87 1.18 23.9 4.1 2.1 4.31 0.86 0.2 22 0.36 576 1.2 6.89 

229158 4.44 2.9 1.04 25 4.61 2.4 4.87 0.89 0.1 29.4 0.38 614 0.8 8.25 
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Table B1.1.  (continued)

 Dy Er Eu Ga Gd Ge Hf Ho In La Lu Mn Mo Nb 

211117 2.9 1.5 0.7 19 2.3 1.22 3.4 0.5 0.24 50 0.3 <1 2.3 13.1 

211116 2.3 1.4 0.5 18.3 1.7 1.52 3.2 0.5 0.91 22.2 0.2 <1 2.5 6 

207695 3 1.8 1 22.3 3.6 1.39 4.7 0.6 0.15 21.8 0.3 <1 1 7 

207694 1.6 1 0.4 22.6 1.7 0.84 5.3 0.4 0.12 7.8 0.3 <1 0.7 9.4 

207693 1.8 1 0.4 8.1 1.5 7.67 1 0.3 0.06 3.9 0.1 <1 0.2 1.5 

207692 3.1 1.9 0.8 20.4 3.4 3.22 3.5 0.7 0.04 21.4 0.4 <1 1.7 5.3 

207691 9.2 4.5 3.5 26.2 14.6 1.21 9.1 1.7 0.03 98.9 0.6 <1 0.5 10.8 

207690 2.8 1.7 0.9 14.1 3 2.54 3.1 0.6 0.07 13.9 0.3 <1 12 6.1 

207602 2.6 1.8 0.6 24.9 2.3 1.02 6.1 0.6 0.1 20.8 0.3 <1 1.2 10.1 
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Table B1.1.  (continued)

 Nd Ni Pb Pr Rb Re Sb Sc Se Sm Sn Sr Ta Tb 

UNITS ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

DETECTION 0.01 2 1 0.01 0.05 0.01 0.1 0.1 5 0.01 0.2 0.1 0.01 0.01 

METHOD LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 

229101 18.2 104 7 4.86 15.8 <0.01 0.3 12.7 <5 3.99 2.4 5.8 0.45 0.57 

229105 88.8 4 15 20.4 2.95 0.02 14.6 29.7 <5 24.4 1.8 107 1.04 2.95 

229109 7.94 10 30 2.43 154 <0.01 5 35.3 <5 1.34 2 61.2 0.4 0.26 

229111 18.4 320 10 5.23 108 <0.01 7.7 26.5 <5 3.52 2 10.7 0.5 0.52 

229113 15.3 334 3 3.46 254 <0.01 3.5 64 <5 3.25 1.6 66.5 0.3 0.65 

229115 15.1 96 79 4 33 <0.01 0.2 19.3 <5 3.16 3 22.8 0.53 0.64 

229117 33.9 112 8 9.53 19.6 <0.01 6.4 27.6 <5 6.06 1.4 11.7 0.85 0.82 

229119 13 248 10 3.91 102 <0.01 6.8 23.5 <5 2.67 1.6 5.9 0.41 0.34 

229120 15.5 284 11 4.15 129 <0.01 7.2 27.6 <5 2.9 1.8 7 0.43 0.49 

229124 4.53 170 2 1.17 5.1 <0.01 1.7 27.6 <5 1.39 0.6 22.2 0.11 0.31 

229127 19.7 4 35 6.83 61.3 <0.01 3.7 46 <5 3.51 4.6 177 0.91 0.76 

229130 12.6 182 12 3.15 65.7 <0.01 1.3 45.5 <5 2.6 1.8 60.9 0.33 0.47 

229131 12.3 78 10 3.65 139 0.02 0.5 25.7 <5 2.63 2 43.2 0.45 0.33 

229135 8.4 4 58 2.81 35.5 <0.01 0.9 17.6 <5 1.41 5.2 52.4 0.55 0.26 

229136 12.5 20 79 3.97 117 <0.01 3.4 16.8 <5 2.3 14.2 50.4 0.52 0.18 

229138 38.2 16 93 11.2 57.9 <0.01 4.1 20.9 <5 6.36 1.8 58.9 0.94 1.18 

229146 26.1 128 34 7.25 51.5 <0.01 <0.1 21 <5 4.85 2.2 40.3 0.84 0.62 

229147 1.68 56 10 0.37 5.05 <0.01 <0.1 27.8 <5 0.36 1.6 36.7 0.63 0.07 

229149 4.64 674 17 1.09 231 <0.01 4.1 25.7 <5 1.58 2.4 54.4 0.13 0.31 

229152 15.5 38 57 5.31 94.1 <0.01 7 20.2 <5 2.65 4.6 93.1 0.51 0.45 

229157 20.4 34 13 5.43 86.9 0.02 1 34.6 <5 4.96 2 44.2 0.59 0.62 

229158 23.9 64 15 6.61 76.2 0.02 0.5 20.6 <5 4.6 2.2 6.3 0.62 0.8 
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Table B1.1.  (continued) 

 

 Nd Ni Pb Pr Rb Re Sb Sc Se Sm Sn Sr Ta Tb 

211117 25.2 15.3 148.8 7.7 161.6 <0.01 1.54 -10 -0.5 4.2 3 63.3 1.3 0.5 

211116 13.4 17 31.5 3.9 96.3 <0.01 1.83 13 0.9 2.6 5 43.1 0.6 0.4 

207695 18.4 122.5 20.1 5 58.9 <0.01 1.49 18 -0.5 3.5 2 60 0.7 0.6 

207694 7.8 59.2 13.7 1.9 133.2 <0.01 0.5 24 0.5 1.6 2 35.4 0.8 0.2 

207693 4.6 73.4 1.3 1.1 3.2 <0.01 1.45 19 -0.5 1.2 -1 24 0.2 0.3 

207692 16.1 316.4 11 4.5 117.3 <0.01 15.23 28 -0.5 3.3 1 13.4 0.6 0.5 

207691 85.6 5.1 11 22.3 1.9 <0.01 12.43 23 0.5 16.6 3 65.4 1 1.7 

207690 13.3 117.3 15 3.4 86.1 <0.01 0.1 18 -0.5 2.9 1 82 0.6 0.4 

207602 10.6 10.7 34.1 3.3 115.5 <0.01 0.31 21 0.9 2 2 98.9 0.9 0.4 
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Table B1.1.  (continued) 

 

 Te Th Ti Tl Tm U V W Y Yb Zn Zr 

UNITS ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

DETECTION 0.2 0.01 1 0.2 0.01 0.01 0.1 0.5 0.02 0.01 5 0.5 

METHOD LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 LA101 

229101 <0.2 6.85 4320 <0.2 0.34 1.74 114 <0.5 20.8 2.37 85 160 

229105 <0.2 14.5 12400 <0.2 1.98 2.4 177 1.5 128 13.4 <5 367 

229109 <0.2 2.47 6240 0.6 0.17 0.73 259 2 10.4 1.6 35 104 

229111 <0.2 8.07 4610 1 0.31 2.04 201 0.5 21.6 2.18 130 147 

229113 <0.2 2.57 7980 0.8 0.49 0.69 430 <0.5 29.7 3.5 80 107 

229115 <0.2 7.1 4940 <0.2 0.38 2.05 147 <0.5 27.3 2.44 110 143 

229117 <0.2 10.6 7990 0.4 0.54 2.87 228 <0.5 34.1 3.74 90 236 

229119 <0.2 5.87 3760 1 0.2 1.59 169 <0.5 16.5 1.85 80 111 

229120 <0.2 6.44 4410 1 0.26 1.78 188 <0.5 19.9 2.02 75 125 

229124 <0.2 0.98 3600 <0.2 0.17 0.18 177 <0.5 11.9 1.3 25 49 

229127 <0.2 12.4 7650 5.2 0.47 2.03 297 2.5 30.8 3.38 10 225 

229130 <0.2 3.49 6690 <0.2 0.32 0.51 328 1 20.1 2.5 95 82.5 

229131 <0.2 5.85 4310 1.2 0.21 1.32 163 0.5 15.6 1.84 65 116 

229135 1.8 7.92 3750 0.6 0.15 1.96 82 1 9.1 1.06 30 120 

229136 1.8 8.54 3170 1.8 0.16 1.97 83.4 2 9.42 1.41 485 108 

229138 0.4 12.4 6420 0.6 0.49 2.82 192 4.5 35.5 3.57 105 216 

229146 <0.2 8.55 5640 0.4 0.34 2.68 164 <0.5 17 2.86 170 153 

229147 <0.2 5.2 6030 <0.2 0.07 3.19 195 <0.5 2.72 0.54 35 121 

229149 0.4 0.24 2680 1.8 0.19 0.47 151 59 14.3 1.24 165 27 

229152 0.6 11.5 3650 3.4 0.22 2.21 162 1 11.2 1.33 145 113 

229157 0.4 7.12 5780 1 0.41 2.1 204 <0.5 25.1 2.72 90 153 

229158 0.4 9.43 5530 1 0.3 2.22 149 0.5 27.7 2.69 85 173 
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Table B1.1.  (continued) 

 

 

 

 

 

 

 Te Th Ti Tl Tm U V W Y Yb Zn Zr 

211117 0.2 22.8 <1 1 0.2 4.1 28 3 14.9 1.7 71 91 

211116 1.2 8.3 <1 0.78 0.3 2.2 95 3 12.6 1.4 175 101 

207695 -0.1 6.5 <1 0.89 0.3 2 136 <0.5 16.3 1.6 197 162 

207694 -0.1 8.1 <1 1.01 0.2 2.1 181 <0.5 8.3 1.3 123 174 

207693 0.1 0.8 <1 -0.02 0.2 0.2 106 <0.5 8.5 1 27 32 

207692 -0.1 6.5 <1 1.01 0.3 1.6 178 <0.5 16.2 1.8 92 118 

207691 -0.1 9.6 <1 0.04 0.7 3.6 159 <0.5 43.8 4.1 2 339 

207690 0.1 4.6 <1 0.57 0.3 1.4 130 <0.5 14.1 1.7 93 95 

207602 0.1 10.7 <1 0.84 0.3 1.4 129 <0.5 15.6 1.8 9 223 
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Appendix C: EPMA Data 
 

Table C1.1.  EPMA analyses of cordierite.

Sample     207692      229111   

wt%              

SiO2 47.64 47.91 49.62 47.59 47.71 47.78 46.99 47.70 47.93 47.20 46.78 47.48 47.54 

TiO2 0.02 0.00 -0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.02 0.00 0.01 

Al2O3 32.90 33.01 31.71 33.09 33.14 32.92 32.84 32.74 33.18 32.22 31.81 32.84 32.56 

FeO 9.03 8.73 8.91 9.16 9.21 9.02 8.95 9.05 8.84 8.38 8.03 8.69 8.63 

MnO 0.05 0.00 0.04 0.02 0.02 0.03 0.03 0.02 0.02 0.04 0.01 0.01 0.01 

MgO 7.95 8.04 7.65 7.86 7.99 7.99 7.66 7.96 7.90 7.90 7.57 8.00 7.94 

CaO 0.01 0.00 0.01 0.01 0.00 0.01 0.06 0.02 0.02 0.01 0.01 0.01 0.02 

K2O 0.00 0.01 0.00 -0.01 0.00 -0.01 0.02 0.01 0.01 0.10 0.07 0.01 0.02 

Total 97.60 97.71 97.93 97.71 98.06 97.74 96.57 97.51 97.91 95.88 94.30 97.03 96.72 

cations                
Si 4.96 4.97 5.13 4.95 4.95 4.96 4.94 4.97 4.96 4.99 5.02 4.96 4.98 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 4.04 4.04 3.86 4.06 4.05 4.03 4.07 4.02 4.05 4.01 4.02 4.05 4.02 

Fe 0.79 0.76 0.77 0.80 0.80 0.78 0.79 0.79 0.77 0.74 0.72 0.76 0.76 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 1.23 1.24 1.18 1.22 1.23 1.24 1.20 1.24 1.22 1.24 1.21 1.25 1.24 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 

Total 11.02 11.01 10.94 11.02 11.03 11.02 11.02 11.02 11.01 11.01 10.98 11.03 11.01 

X(Mg) 0.61 0.62 0.60 0.60 0.61 0.61 0.60 0.61 0.61 0.63 0.63 0.62 0.62 

O value  18 18 18 18 18 18 18 18 18 18 18 18 18 
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Table C1.1.  (continued) 

 

Sample   229119       229120      

wt%                

SiO2 47.35 47.46 47.38 47.43 47.12 48.56 45.96 46.30 47.70 47.53 47.93 47.35 47.15 47.40 47.53 

TiO2 0.01 0.00 0.00 0.01 0.00 0.00 0.01 -0.01 0.01 -0.01 0.01 0.00 0.00 0.00 -0.01 

Al2O3 32.51 32.59 32.40 32.50 32.61 33.48 31.86 31.36 32.88 32.85 33.01 32.71 32.51 32.69 32.81 

FeO 8.06 8.25 7.59 8.60 8.62 8.69 8.38 7.97 8.66 9.17 8.91 9.68 9.48 9.40 9.38 

MnO 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.01 0.02 0.02 0.06 0.04 0.06 0.05 

MgO 7.72 7.67 7.68 8.10 7.89 7.80 7.85 7.60 8.04 7.95 8.00 7.35 7.30 7.29 7.33 

CaO 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.00 0.01 0.02 0.01 0.01 

K2O 0.01 0.01 0.17 0.02 0.02 0.01 0.01 1.64 0.00 0.01 0.01 0.01 0.01 0.02 0.00 

Total 95.69 96.02 95.28 96.70 96.29 98.57 94.12 94.91 97.31 97.53 97.90 97.17 96.51 96.86 97.10 

cations                
Si 5.00 5.00 5.02 4.97 4.96 4.99 4.95 4.99 4.97 4.95 4.97 4.97 4.97 4.98 4.98 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 4.05 4.05 4.04 4.02 4.05 4.05 4.05 3.98 4.04 4.04 4.03 4.04 4.04 4.05 4.05 

Fe 0.71 0.73 0.67 0.75 0.76 0.75 0.76 0.72 0.75 0.80 0.77 0.85 0.84 0.83 0.82 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 

Mg 1.21 1.20 1.21 1.27 1.24 1.19 1.26 1.22 1.25 1.23 1.24 1.15 1.15 1.14 1.14 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

K 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 10.98 10.98 10.97 11.02 11.01 10.99 11.02 11.14 11.01 11.03 11.02 11.01 11.01 11.00 11.00 

X(Mg) 0.63 0.62 0.64 0.63 0.62 0.62 0.63 0.63 0.62 0.61 0.62 0.58 0.58 0.58 0.58 

O value  18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 
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Table C1.2. EPMA analyses of grunerite.  

Sample 
       207692        

Wt%                

SiO2 52.57 52.46 52.59 52.60 52.31 52.51 49.80 51.96 52.15 52.30 52.12 52.61 52.45 53.50 54.96 

TiO2 0.06 0.11 0.06 0.08 0.10 0.07 0.09 0.05 0.08 0.06 0.08 0.08 0.06 0.08 0.12 

Al2O3 1.83 1.98 1.71 1.65 2.00 2.13 3.18 2.14 2.08 1.88 2.23 2.11 1.82 1.52 1.50 

FeO 29.25 29.13 29.00 29.15 29.57 29.56 29.12 29.94 29.31 30.27 29.62 29.79 29.74 25.57 25.33 

MnO 0.06 0.10 0.07 0.07 0.10 0.06 0.09 0.07 0.09 0.07 0.08 0.07 0.06 0.06 0.07 

MgO 13.41 13.37 13.85 13.32 13.21 13.19 12.10 12.81 13.04 12.93 13.02 13.00 13.05 16.37 17.21 

CaO 0.20 0.20 0.16 0.18 0.20 0.20 0.22 0.21 0.20 0.21 0.21 0.22 0.20 0.19 0.19 

Na2O 0.05 0.09 0.12 0.09 0.06 0.11 0.08 0.09 0.15 0.10 0.13 0.13 0.10 0.09 0.07 

K2O 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 96.45 96.47 96.55 96.16 96.61 96.90 93.80 96.52 96.09 96.94 96.58 97.09 96.57 96.35 98.40 

cations                
Si 7.89 7.87 7.88 7.92 7.86 7.86 7.73 7.85 7.87 7.86 7.84 7.87 7.89 7.89 7.90 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.32 0.35 0.30 0.29 0.35 0.38 0.58 0.38 0.37 0.33 0.40 0.37 0.32 0.26 0.25 

Fe 3.67 3.66 3.63 3.67 3.71 3.70 3.78 3.78 3.70 3.81 3.73 3.73 3.74 3.15 3.05 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Mg 3.00 2.99 3.09 2.99 2.96 2.94 2.80 2.88 2.93 2.90 2.92 2.90 2.93 3.60 3.69 

Ca 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 

Na 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.03 0.02 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 14.95 14.95 14.98 14.94 14.96 14.96 14.98 14.97 14.96 14.98 14.97 14.96 14.96 14.98 14.96 

X(Mg) 0.45 0.45 0.46 0.45 0.44 0.44 0.43 0.43 0.44 0.43 0.44 0.44 0.44 0.53 0.55 

O value  23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 
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Table C1.2. (continued)  

Sample 229111        207693      

Wt%               

SiO2 49.6093 52.6501 51.9107 52.0472 51.9568 51.9614 52.0259 52.7289 52.4048 52.1587 52.587 52.6581 52.4844 

TiO2 0.0383 0.0181 0.0938 0.0461 0.085 0.0797 0.0392 0.0142 0.0337 0.0815 0.048 0.0496 0.0213 

Al2O3 4.1218 1.5326 1.1459 0.903 1.3087 1.1057 2.0357 0.6448 1.0887 2.0965 1.232 1.0471 1.1521 

FeO 27.8725 27.3681 32.2018 31.8927 32.286 32.4818 29.3772 30.0515 31.8421 32.464 29.7063 31.8265 31.9054 

MnO 0.1975 0.124 0.1069 0.0595 0.1365 0.0435 0.0403 0.0807 0.0902 0.0298 0.1212 0.0684 0.0398 

MgO 13.9622 14.9574 10.8324 10.6879 10.6216 10.7741 13.3086 12.6253 10.7915 10.7814 12.989 11.0161 10.9107 

CaO 0.3595 0.3918 0.1781 0.1566 0.177 0.1901 0.186 0.2348 0.1657 0.1733 0.1572 0.1693 0.1723 

Na2O 0.053 0.0557 0.0952 0.0298 0.0715 0.0597 0.0674 0.0585 0.042 0.0534 0.0183 0.0474 0.056 

K2O 0.0017 0.0012 -0.001 0.0018 -0.0004 0.0034 0 -0.0032 -0.0087 0.0023 -0.0021 0.0008 0.0033 

Total 95.2169 96.0856 96.5638 95.8246 96.6427 96.6994 97.08029 96.4355 96.45 97.8409 96.85691 96.88329 96.74531 

cations               
Si 7.5418 7.8734 11.1157 11.207 11.1164 11.1204 10.9229 11.1783 11.1953 11.0073 11.0769 11.1914 11.1773 

Ti 0.0044 0.002 0.0151 0.0075 0.0137 0.0128 0.0062 0.0023 0.0054 0.0129 0.0076 0.0079 0.0034 

Al 0.7386 0.2701 0.2892 0.2292 0.33 0.2789 0.5038 0.1611 0.2741 0.5215 0.3059 0.2623 0.2892 

Fe 3.5437 3.4228 5.7668 5.7433 5.7771 5.8137 5.1583 5.328 5.6891 5.7297 5.2331 5.657 5.6826 

Mn 0.0254 0.0157 0.0194 0.0109 0.0247 0.0079 0.0072 0.0145 0.0163 0.0053 0.0216 0.0123 0.0072 

Mg 3.1641 3.3343 3.4578 3.4306 3.3877 3.4372 4.1652 3.9898 3.4366 3.3917 4.0785 3.4901 3.4637 

Ca 0.0586 0.0628 0.0409 0.0361 0.0406 0.0436 0.0418 0.0533 0.0379 0.0392 0.0355 0.0385 0.0393 

Na 0.0156 0.0161 0.0395 0.0124 0.0297 0.0248 0.0274 0.024 0.0174 0.0218 0.0075 0.0195 0.0231 

K 0.0003 0.0002 -0.0003 0.0005 -1E-04 0.0009 0 -0.0009 -0.0024 0.0006 -0.0006 0.0002 0.0009 

Total 15.0925 14.9974 20.7441 20.6775 20.7198 20.7402 20.8328 20.7504 20.6697 20.73 20.766 20.6792 20.6867 

X(Mg) 0.471705 0.493451 0.374846 0.373952 0.369643 0.371553 0.446742 0.428191 0.376585 0.37184 0.438002 0.381553 0.3787 

O value  23 23 32 32 32 32 32 32 32 32 32 32 32 
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Table C1.2. (continued)  

Sample 
   229120     

Wt%         

SiO2 51.74 51.67 51.95 51.42 51.47 51.12 51.66 51.30 

TiO2 0.05 0.08 0.08 0.11 0.09 0.09 0.08 0.10 

Al2O3 2.38 2.22 2.31 2.74 2.19 2.63 2.66 2.70 

FeO 28.87 28.74 30.83 31.36 30.88 31.03 31.09 31.06 

MnO 0.11 0.09 0.11 0.11 0.14 0.13 0.15 0.13 

MgO 12.11 12.11 11.98 11.68 11.96 11.69 11.68 11.77 

CaO 0.27 0.20 0.25 0.29 0.26 0.28 0.31 0.31 

Na2O 0.11 0.07 0.11 0.17 0.09 0.13 0.17 0.15 

K2O 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 

Total 94.88 94.40 96.66 96.99 96.12 96.15 96.91 96.59 

cations          

Si 7.91 7.93 7.85 7.78 7.84 7.79 7.81 7.78 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.43 0.40 0.41 0.49 0.39 0.47 0.47 0.48 

Fe 3.69 3.69 3.90 3.97 3.93 3.95 3.93 3.94 

Mn 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 

Mg 2.76 2.77 2.70 2.63 2.71 2.66 2.63 2.66 

Ca 0.04 0.03 0.04 0.05 0.04 0.05 0.05 0.05 

Na 0.03 0.02 0.03 0.05 0.03 0.04 0.05 0.04 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 14.89 14.87 14.95 14.99 14.97 14.98 14.97 14.99 

X(Mg) 0.43 0.43 0.41 0.40 0.41 0.40 0.40 0.40 

O value  23 23 23 23 23 23 23 23 
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Table C1.2. (continued)  

Sample 
    229151     

Wt%          

SiO2 52.56 52.15 52.28 51.44 51.61 52.00 50.69 50.95 50.27 

TiO2 0.03 0.05 0.03 0.02 0.05 0.00 0.11 0.14 0.11 

Al2O3 0.79 1.66 0.96 1.44 1.56 1.07 2.46 2.24 2.78 

FeO 31.93 30.96 32.76 32.76 32.87 32.50 32.10 32.86 31.85 

MnO 0.15 0.14 0.18 0.16 0.16 0.15 0.13 0.14 0.12 

MgO 11.65 11.80 10.82 10.61 10.56 10.83 10.18 10.31 9.92 

CaO 0.38 0.48 0.54 0.37 0.56 0.45 0.90 0.44 0.92 

Na2O 0.06 0.22 0.08 0.26 0.15 0.15 0.34 0.28 0.35 

K2O -0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 

Total 96.66 96.50 96.74 96.22 96.66 96.26 96.07 96.44 95.44 

cations          
Si 7.99 7.91 7.98 7.92 7.90 7.97 7.81 7.82 7.79 

Ti 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.02 0.01 

Al 0.14 0.30 0.17 0.26 0.28 0.19 0.45 0.41 0.51 

Fe 4.06 3.93 4.18 4.22 4.21 4.17 4.14 4.22 4.13 

Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Mg 2.64 2.67 2.46 2.43 2.41 2.47 2.34 2.36 2.29 

Ca 0.06 0.08 0.09 0.06 0.09 0.07 0.15 0.07 0.15 

Na 0.02 0.06 0.02 0.08 0.04 0.04 0.10 0.08 0.11 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 14.94 14.97 14.94 14.99 14.97 14.95 15.01 15.00 15.00 

X(Mg) 0.39 0.40 0.37 0.37 0.36 0.37 0.36 0.36 0.36 

O value  23 23 23 23 23 23 23 23 23 
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Table C1.3. EPMA analyses of biotite.  

Sample 
  207692      229111   

Wt%            

SiO2 34.98 35.16 34.45 34.35 34.00 33.38 34.46 34.49 32.67 27.55 

TiO2 1.37 1.43 1.41 1.46 1.54 1.45 1.31 1.45 0.96 0.35 

Al2O3 19.52 18.87 18.76 18.76 18.62 18.77 18.82 18.55 18.31 19.15 

FeO 21.53 21.31 21.90 20.81 20.69 21.13 19.47 20.26 18.97 27.68 

MnO 0.02 0.03 0.01 0.01 0.03 0.02 0.00 0.02 0.00 0.26 

MgO 9.86 9.55 9.29 9.45 9.43 10.99 9.56 9.51 13.59 9.22 

CaO 0.54 0.04 0.09 0.20 0.30 0.09 0.00 0.15 0.16 0.50 

Na2O 0.29 0.20 0.17 0.24 0.21 0.13 0.13 0.21 0.12 0.03 

K2O 5.53 7.58 7.29 7.15 6.98 5.47 8.13 7.75 5.15 1.75 

Total 93.73 94.17 93.37 92.45 91.81 91.34 91.86 92.34 89.97 86.39 

cations            
Si 5.36 5.41 5.36 5.38 5.36 5.25 5.41 5.40 5.18 4.72 

Ti 0.16 0.17 0.17 0.17 0.18 0.17 0.15 0.17 0.11 0.05 

Al 3.52 3.42 3.44 3.46 3.46 3.48 3.49 3.43 3.42 3.87 

Fe 2.76 2.74 2.85 2.72 2.73 2.78 2.56 2.65 2.51 3.97 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 

Mg 2.25 2.19 2.16 2.20 2.21 2.58 2.24 2.22 3.21 2.36 

Ca 0.09 0.01 0.01 0.03 0.05 0.01 0.00 0.03 0.03 0.09 

Na 0.09 0.06 0.05 0.07 0.06 0.04 0.04 0.06 0.04 0.01 

K 1.08 1.49 1.45 1.43 1.40 1.10 1.63 1.55 1.04 0.38 

Total 15.31 15.49 15.50 15.47 15.46 15.41 15.52 15.52 15.54 15.49 

X(Mg) 0.45 0.44 0.43 0.45 0.45 0.48 0.47 0.46 0.56 0.37 

O value  22 22 22 22 22 22 22 22 22 22 
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Table C1.3. (continued)  

Sample 
    229119     

Wt%          

SiO2 34.95 34.72 34.40 34.58 35.32 35.02 32.55 34.77 35.33 

TiO2 2.07 1.39 1.50 1.48 1.39 1.91 0.82 0.87 1.47 

Al2O3 18.72 18.76 18.83 18.34 18.52 18.67 17.15 18.60 19.14 

FeO 20.44 19.93 20.10 19.06 17.96 19.33 16.93 17.94 20.03 

MnO 0.03 0.00 0.03 0.00 0.01 0.02 0.03 0.03 0.00 

MgO 9.25 9.75 9.68 9.51 11.38 11.70 12.74 14.39 9.98 

CaO 0.01 0.01 0.01 0.01 0.02 0.03 0.36 0.09 0.01 

Na2O 0.16 0.12 0.15 0.11 0.12 0.10 0.02 0.11 0.20 

K2O 8.08 7.80 7.02 7.56 8.10 7.49 7.10 6.07 8.45 

Total 93.67 92.46 91.64 90.59 92.84 94.30 87.87 92.96 94.64 

cations          
Si 5.40 5.42 5.40 5.48 5.44 5.33 5.31 5.30 5.40 

Ti 0.24 0.16 0.18 0.18 0.16 0.22 0.10 0.10 0.17 

Al 3.41 3.45 3.48 3.42 3.36 3.35 3.30 3.34 3.45 

Fe 2.64 2.60 2.64 2.53 2.31 2.46 2.31 2.29 2.56 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 2.13 2.27 2.26 2.24 2.61 2.66 3.10 3.27 2.27 

Ca 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.01 0.00 

Na 0.05 0.04 0.05 0.03 0.04 0.03 0.01 0.03 0.06 

K 1.59 1.55 1.40 1.53 1.59 1.46 1.48 1.18 1.65 

Total 15.47 15.49 15.41 15.41 15.53 15.51 15.68 15.53 15.56 

X(Mg) 0.45 0.47 0.46 0.47 0.53 0.52 0.57 0.59 0.47 

O value  22 22 22 22 22 22 22 22 22 
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Table C1.3. (continued)  

Sample 
      229120       

Wt%              

SiO2 55.59 35.39 27.06 34.18 35.21 34.33 35.04 34.30 35.25 35.23 33.79 31.01 33.37 

TiO2 0.71 1.19 0.51 1.31 1.39 1.33 1.33 1.50 1.67 1.36 1.31 1.31 1.42 

Al2O3 12.28 18.14 18.46 18.40 18.79 19.58 18.71 18.95 18.92 19.20 19.02 17.43 18.67 

FeO 17.50 21.31 24.22 20.33 19.77 19.79 20.13 20.00 19.90 19.75 22.32 23.70 22.87 

MnO 0.00 0.13 0.03 -0.01 0.00 0.00 0.02 0.00 0.02 0.00 0.03 0.02 0.03 

MgO 7.36 10.03 11.61 10.50 10.20 9.32 9.78 9.96 9.72 10.06 8.90 9.31 9.41 

CaO 0.06 0.17 0.03 0.01 0.00 0.18 0.06 0.06 0.00 0.00 0.03 0.04 0.02 

Na2O 0.07 0.01 0.03 0.09 0.21 0.20 0.17 0.19 0.29 0.17 0.13 0.09 0.14 

K2O 2.38 4.37 1.34 7.13 7.93 7.70 7.69 7.42 8.29 8.11 7.27 5.87 7.16 

Total 95.93 90.67 83.17 91.93 93.48 92.41 92.90 92.35 94.05 93.84 92.76 88.74 93.11 

cations              
Si 7.59 5.54 4.72 5.37 5.43 5.36 5.44 5.36 5.42 5.41 5.31 5.15 5.25 

Ti 0.07 0.14 0.07 0.15 0.16 0.16 0.16 0.18 0.19 0.16 0.15 0.16 0.17 

Al 1.98 3.35 3.80 3.40 3.41 3.60 3.42 3.49 3.43 3.47 3.53 3.41 3.46 

Fe 2.00 2.79 3.54 2.67 2.55 2.58 2.61 2.61 2.56 2.54 2.93 3.29 3.01 

Mn 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 1.50 2.34 3.02 2.46 2.34 2.17 2.26 2.32 2.23 2.30 2.09 2.31 2.21 

Ca 0.01 0.03 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.01 0.00 

Na 0.02 0.00 0.01 0.03 0.06 0.06 0.05 0.06 0.09 0.05 0.04 0.03 0.04 

K 0.41 0.87 0.30 1.43 1.56 1.53 1.52 1.48 1.63 1.59 1.46 1.24 1.44 

Total 13.57 15.08 15.46 15.51 15.52 15.48 15.48 15.49 15.53 15.52 15.52 15.61 15.59 

X(Mg) 0.43 0.46 0.46 0.48 0.48 0.46 0.46 0.47 0.47 0.48 0.42 0.41 0.42 

O value  22 22 22 22 22 22 22 22 22 22 22 22 22 
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Table C1.4. EPMA garnet traverses. 

Sample 
     

207692 

grt 1        

Wt% Rim            Rim 

SiO2 38.41 38.43 38.15 38.61 38.51 38.66 38.76 38.66 38.76 38.55 38.67 38.86 38.63 

Al2O3 21.68 21.56 21.46 21.58 21.54 21.58 21.55 21.57 21.56 21.66 21.38 21.57 21.72 

FeO 36.54 36.52 36.15 36.28 35.98 35.99 36.34 36.15 35.79 36.21 36.34 36.64 36.86 

MnO 0.44 0.39 0.42 0.43 0.44 0.41 0.45 0.44 0.39 0.39 0.41 0.39 0.41 

MgO 3.02 2.97 3.02 2.96 2.85 2.68 2.58 2.81 2.84 2.91 2.81 2.82 2.57 

CaO 1.43 1.22 1.27 1.39 1.60 1.78 1.51 1.81 1.74 1.48 1.33 1.34 1.29 

Total 101.51 101.09 100.47 101.25 100.92 101.10 101.19 101.44 101.07 101.20 100.94 101.61 101.48 

cations              
Si 3.03 3.04 3.04 3.05 3.05 3.06 3.06 3.05 3.06 3.04 3.06 3.06 3.05 

Al 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.00 2.01 2.02 2.00 2.00 2.02 

Fe 2.41 2.42 2.41 2.40 2.38 2.38 2.40 2.38 2.36 2.39 2.41 2.41 2.43 

Mn 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Mg 0.36 0.35 0.36 0.35 0.34 0.32 0.30 0.33 0.33 0.34 0.33 0.33 0.30 

Ca 0.12 0.10 0.11 0.12 0.14 0.15 0.13 0.15 0.15 0.13 0.11 0.11 0.11 

Total 7.96 7.95 7.95 7.95 7.94 7.94 7.93 7.95 7.94 7.95 7.94 7.94 7.94 

O value  12 12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
      

207692 

grt 2        

Wt% Rim             Rim 

SiO2 38.26 38.25 38.21 38.24 37.99 38.01 38.33 38.15 38.50 38.34 37.68 37.08 38.60 38.50 

Al2O3 21.71 21.62 21.64 21.77 21.60 21.48 21.62 21.48 21.67 21.85 21.22 21.05 21.69 21.62 

FeO 37.09 36.39 36.29 36.33 35.95 36.00 35.69 36.50 36.34 36.60 36.32 36.20 36.17 36.52 

MnO 0.46 0.42 0.46 0.44 0.40 0.41 0.42 0.43 0.42 0.44 0.42 0.42 0.40 0.42 

MgO 2.69 2.96 2.96 2.98 2.82 2.85 2.93 2.79 2.97 2.94 3.10 3.33 2.86 2.95 

CaO 1.16 1.30 1.72 1.22 1.88 2.03 1.90 1.63 1.58 1.25 1.42 1.82 1.78 1.34 

Total 101.38 100.95 101.27 100.97 100.65 100.77 100.89 100.99 101.49 101.42 100.17 99.91 101.49 101.35 

cations               
Si 3.03 3.03 3.02 3.03 3.02 3.02 3.04 3.03 3.04 3.03 3.02 2.99 3.04 3.04 

Al 2.03 2.02 2.02 2.03 2.03 2.01 2.02 2.01 2.01 2.03 2.00 2.00 2.01 2.01 

Fe 2.46 2.41 2.40 2.41 2.39 2.39 2.36 2.42 2.40 2.42 2.43 2.44 2.38 2.41 

Mn 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Mg 0.32 0.35 0.35 0.35 0.33 0.34 0.35 0.33 0.35 0.35 0.37 0.40 0.34 0.35 

Ca 0.10 0.11 0.15 0.10 0.16 0.17 0.16 0.14 0.13 0.11 0.12 0.16 0.15 0.11 

Total 7.96 7.96 7.97 7.95 7.96 7.97 7.95 7.96 7.96 7.96 7.98 8.01 7.95 7.95 

O value  12 12 12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
     

207692 

grt 4       

Wt% Rim           Rim 

SiO2 38.19 38.21 38.09 37.71 37.22 37.18 37.90 37.89 33.32 38.29 38.04 38.01 

Al2O3 21.25 21.32 21.24 21.25 20.93 20.59 21.27 21.06 23.66 21.33 21.09 21.16 

FeO 37.12 36.28 36.04 36.79 35.72 35.43 36.00 35.80 34.15 36.16 36.66 36.84 

MnO 0.42 0.38 0.41 0.49 0.38 0.46 0.51 0.41 0.44 0.44 0.45 0.42 

MgO 2.77 3.08 3.04 2.49 2.88 3.18 3.13 3.24 3.18 3.05 3.02 2.90 

CaO 1.07 1.54 1.54 1.32 1.69 1.37 1.25 1.20 1.53 1.41 1.06 1.03 

Total 100.83 100.81 100.36 100.06 98.82 98.21 100.06 99.60 96.29 100.68 100.34 100.37 

cations             
Si 3.04 3.04 3.04 3.03 3.02 3.04 3.03 3.04 2.78 3.04 3.04 3.04 

Al 2.00 2.00 2.00 2.01 2.00 1.98 2.01 1.99 2.33 2.00 1.99 2.00 

Fe 2.47 2.41 2.40 2.47 2.43 2.42 2.41 2.40 2.38 2.40 2.45 2.46 

Mn 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Mg 0.33 0.37 0.36 0.30 0.35 0.39 0.37 0.39 0.40 0.36 0.36 0.35 

Ca 0.09 0.13 0.13 0.11 0.15 0.12 0.11 0.10 0.14 0.12 0.09 0.09 

Total 7.96 7.97 7.96 7.96 7.98 7.97 7.96 7.96 8.06 7.96 7.96 7.96 

O value  12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
      

207693 

grt 1       

Wt% Rim         Core    

SiO2 38.70 37.03 36.51 38.50 38.36 37.86 39.99 40.86 38.35 44.05 38.43 39.16 38.66 

Al2O3 21.57 21.13 22.67 21.66 21.51 21.15 22.36 17.15 21.32 18.30 21.37 21.87 21.27 

FeO 37.94 37.69 36.92 37.97 38.27 38.32 38.24 36.46 37.65 34.68 37.57 38.00 38.20 

MnO 0.47 0.53 0.47 0.49 0.54 0.50 0.54 0.51 0.49 0.48 0.46 0.61 0.57 

MgO 2.12 2.34 2.17 2.17 2.16 1.84 1.66 4.42 2.09 2.10 2.10 2.02 1.78 

CaO 1.11 0.99 0.79 0.69 0.85 0.93 1.03 0.93 1.38 1.18 1.28 1.18 1.02 

Total 101.91 99.72 99.53 101.49 101.69 100.60 103.81 100.32 101.29 100.79 101.21 102.84 101.49 

cations              
Si 3.06 3.00 2.95 3.05 3.04 3.04 3.09 3.26 3.05 3.43 3.05 3.06 3.07 

Al 2.01 2.02 2.16 2.02 2.01 2.00 2.03 1.61 2.00 1.68 2.00 2.01 1.99 

Fe 2.50 2.56 2.50 2.52 2.54 2.58 2.47 2.43 2.50 2.26 2.50 2.48 2.54 

Mn 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.04 

Mg 0.25 0.28 0.26 0.26 0.26 0.22 0.19 0.52 0.25 0.24 0.25 0.24 0.21 

Ca 0.09 0.09 0.07 0.06 0.07 0.08 0.09 0.08 0.12 0.10 0.11 0.10 0.09 

Total 7.94 7.99 7.97 7.94 7.95 7.96 7.90 7.94 7.95 7.73 7.94 7.93 7.93 

O value  12 12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
   207693 grt 1 cont    207693 grt 2 207693 Grt 3 

Wt%        Rim Rim Core Rim Core 

SiO2 37.30 38.86 38.82 34.63 33.43 39.92 38.77 38.81 38.56 38.20 35.57 38.55 

Al2O3 20.89 21.37 21.40 24.88 29.89 22.55 21.37 21.60 21.39 21.40 26.57 21.36 

FeO 37.74 37.52 37.73 34.98 31.68 37.73 37.79 37.65 37.77 37.88 35.20 37.77 

MnO 0.54 0.56 0.50 0.48 0.42 0.48 0.48 0.51 0.49 0.51 0.49 0.51 

MgO 2.31 2.17 2.20 1.63 1.25 2.19 2.31 2.23 2.27 2.40 1.80 2.09 

CaO 0.98 1.08 1.01 0.88 0.74 0.91 1.01 1.09 1.17 1.14 1.05 1.38 

Total 99.75 101.55 101.65 97.49 97.42 103.77 101.73 101.89 101.65 101.52 100.68 101.66 

cations             
Si 3.02 3.07 3.07 2.84 2.69 3.07 3.06 3.06 3.05 3.03 2.81 3.05 

Al 2.00 1.99 1.99 2.41 2.83 2.05 1.99 2.01 2.00 2.00 2.48 1.99 

Fe 2.56 2.48 2.49 2.40 2.13 2.43 2.50 2.48 2.50 2.51 2.33 2.50 

Mn 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Mg 0.28 0.26 0.26 0.20 0.15 0.25 0.27 0.26 0.27 0.28 0.21 0.25 

Ca 0.09 0.09 0.09 0.08 0.06 0.07 0.09 0.09 0.10 0.10 0.09 0.12 

Total 7.98 7.93 7.93 7.96 7.89 7.90 7.94 7.94 7.95 7.97 7.95 7.95 

O value  12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
    229111      

Wt% Rim         Core 

SiO2 36.77 37.07 36.94 36.86 36.94 36.54 36.74 36.89 36.84 36.77 

TiO2 -0.01 0.05 0.04 0.10 0.11 0.15 0.10 0.11 0.10 0.08 

Al2O3 21.28 21.18 21.12 21.23 21.07 20.96 21.00 21.02 21.17 21.18 

FeO 36.41 36.01 36.34 36.00 35.73 35.70 35.53 35.82 35.74 35.58 

MnO 0.37 0.50 0.64 0.71 0.72 0.78 0.87 0.96 0.96 0.92 

MgO 3.19 3.47 3.31 3.38 3.23 3.19 3.08 3.09 3.00 3.04 

CaO 1.29 1.42 1.23 1.51 1.83 1.80 1.91 1.91 1.97 2.03 

Total 99.31 99.71 99.62 99.79 99.61 99.11 99.24 99.81 99.78 99.61 

cations           
Si 2.98 2.99 2.99 2.97 2.98 2.97 2.98 2.98 2.98 2.97 

Ti 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 2.03 2.01 2.01 2.02 2.01 2.01 2.01 2.00 2.02 2.02 

Fe 2.47 2.43 2.46 2.43 2.41 2.43 2.41 2.42 2.41 2.41 

Mn 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.07 0.07 0.06 

Mg 0.39 0.42 0.40 0.41 0.39 0.39 0.37 0.37 0.36 0.37 

Ca 0.11 0.12 0.11 0.13 0.16 0.16 0.17 0.17 0.17 0.18 

Total 8.00 8.00 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 

O value  12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
    

229111 

cont.      

Wt%          Rim 

SiO2 36.67 36.81 36.65 36.78 36.80 36.65 36.68 36.63 36.82 36.91 

TiO2 0.12 0.14 0.12 0.13 0.10 0.05 0.04 0.03 0.02 0.02 

Al2O3 21.05 21.03 21.08 21.05 21.06 21.03 21.18 21.14 21.15 21.03 

FeO 35.76 35.67 35.74 35.95 35.92 36.22 36.50 35.89 36.23 36.15 

MnO 0.94 0.86 0.95 0.86 0.83 0.77 0.79 0.62 0.47 0.40 

MgO 3.02 3.05 3.01 3.00 3.01 3.05 3.04 3.17 3.30 3.30 

CaO 1.94 1.90 1.96 1.83 1.79 1.45 1.21 1.68 1.38 1.41 

Total 99.50 99.45 99.52 99.60 99.51 99.22 99.44 99.16 99.37 99.24 

cations           
Si 2.97 2.98 2.97 2.98 2.98 2.98 2.98 2.97 2.98 2.99 

Ti 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

Al 2.01 2.01 2.01 2.01 2.01 2.02 2.03 2.02 2.02 2.01 

Fe 2.42 2.42 2.42 2.43 2.43 2.46 2.48 2.44 2.45 2.45 

Mn 0.06 0.06 0.07 0.06 0.06 0.05 0.05 0.04 0.03 0.03 

Mg 0.37 0.37 0.36 0.36 0.36 0.37 0.37 0.38 0.40 0.40 

Ca 0.17 0.17 0.17 0.16 0.16 0.13 0.11 0.15 0.12 0.12 

Total 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.00 

O value  12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
      

229115 

grt 1        

Wt% Rim         Core     

SiO2 37.25 37.20 31.87 40.02 37.17 37.56 37.64 37.47 37.82 37.52 37.43 37.74 37.44 37.67 

TiO2 0.01 0.04 0.04 0.01 0.00 -0.02 0.02 -0.01 0.02 0.01 -0.01 0.03 0.04 0.02 

Al2O3 20.75 20.61 32.27 19.07 20.56 20.89 20.62 20.71 20.74 20.52 20.58 20.80 20.58 20.56 

FeO 37.09 36.71 30.70 35.42 35.55 35.48 35.51 35.46 35.30 35.48 35.61 35.55 35.67 35.71 

MnO 2.28 2.24 1.94 2.68 3.09 3.24 3.42 3.48 3.41 3.49 3.38 3.37 3.16 2.98 

MgO 1.90 1.98 1.54 1.79 2.02 1.98 2.05 2.02 2.00 2.12 2.05 2.03 1.91 1.99 

CaO 0.94 1.18 1.17 1.19 1.25 1.47 1.54 1.49 1.42 1.46 1.48 1.50 1.41 1.62 

Total 100.23 99.96 99.53 100.19 99.64 100.61 100.79 100.62 100.72 100.61 100.52 101.02 100.21 100.55 

cations               
Si 3.02 3.02 2.52 3.21 3.03 3.03 3.03 3.02 3.04 3.03 3.02 3.03 3.03 3.04 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 1.98 1.97 3.01 1.80 1.97 1.98 1.96 1.97 1.97 1.95 1.96 1.97 1.96 1.95 

Fe 2.51 2.49 2.03 2.38 2.42 2.39 2.39 2.39 2.37 2.39 2.41 2.39 2.42 2.41 

Mn 0.16 0.15 0.13 0.18 0.21 0.22 0.23 0.24 0.23 0.24 0.23 0.23 0.22 0.20 

Mg 0.23 0.24 0.18 0.21 0.24 0.24 0.25 0.24 0.24 0.26 0.25 0.24 0.23 0.24 

Ca 0.08 0.10 0.10 0.10 0.11 0.13 0.13 0.13 0.12 0.13 0.13 0.13 0.12 0.14 

Total 7.99 7.99 7.97 7.89 7.99 7.98 7.99 7.99 7.97 8.00 8.00 7.99 7.98 7.98 

O value  12 12 12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 

 

229115 

grt 1 

cont.      

229115 

grt 2     

Wt%     Rim Rim        

SiO2 37.13 38.02 37.30 37.19 37.49 37.45 37.31 37.24 37.27 37.38 37.62 37.36 

TiO2 0.07 0.03 0.07 0.01 -0.01 0.04 0.04 0.05 0.06 0.05 0.04 0.04 

Al2O3 20.57 20.74 20.80 20.48 20.65 20.70 20.66 20.58 20.53 20.54 20.69 20.63 

FeO 36.09 36.21 36.65 37.22 37.34 37.02 36.91 36.82 36.74 36.85 36.66 36.82 

MnO 2.74 2.61 2.34 2.23 2.11 2.16 2.18 2.24 2.31 2.25 2.23 2.29 

MgO 2.01 2.02 1.97 1.87 1.89 2.03 2.01 2.05 2.08 2.05 2.02 1.98 

CaO 1.50 1.44 1.25 1.05 0.95 1.10 1.12 1.09 1.15 1.14 1.25 1.32 

Total 100.11 101.06 100.37 100.06 100.43 100.49 100.23 100.06 100.14 100.25 100.50 100.44 

cations              
Si 3.01 3.05 3.02 3.03 3.03 3.03 3.02 3.02 3.02 3.03 3.03 3.02 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 1.97 1.96 1.98 1.96 1.97 1.97 1.97 1.97 1.96 1.96 1.97 1.97 

Fe 2.45 2.43 2.48 2.53 2.53 2.50 2.50 2.50 2.49 2.50 2.47 2.49 

Mn 0.19 0.18 0.16 0.15 0.14 0.15 0.15 0.15 0.16 0.15 0.15 0.16 

Mg 0.24 0.24 0.24 0.23 0.23 0.24 0.24 0.25 0.25 0.25 0.24 0.24 

Ca 0.13 0.12 0.11 0.09 0.08 0.09 0.10 0.09 0.10 0.10 0.11 0.11 

Total 8.00 7.97 7.99 7.99 7.98 7.99 7.99 7.99 7.99 7.99 7.98 7.99 

O value  12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 

    

229115 

grt 2 

cont.      

Wt% Core         Rim 

SiO2 37.43 37.34 37.64 37.59 37.58 37.39 37.42 37.36 37.57 37.25 

TiO2 0.06 0.01 0.00 0.02 0.04 0.06 0.03 -0.02 0.04 0.01 

Al2O3 20.73 20.77 20.68 20.73 20.56 20.84 20.54 20.85 20.63 20.65 

FeO 36.20 36.20 36.31 36.22 36.54 36.29 36.52 37.13 37.06 37.43 

MnO 2.27 2.42 2.35 2.37 2.33 2.34 2.23 2.25 2.15 2.12 

MgO 1.99 1.99 2.00 2.00 1.99 2.01 2.06 2.04 2.04 1.81 

CaO 1.65 1.65 1.43 1.53 1.40 1.54 1.42 1.01 1.06 0.87 

Total 100.32 100.37 100.41 100.46 100.44 100.47 100.23 100.61 100.57 100.14 

cations           
Si 3.02 3.02 3.04 3.03 3.04 3.02 3.03 3.02 3.03 3.03 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 1.97 1.98 1.97 1.97 1.96 1.98 1.96 1.98 1.96 1.98 

Fe 2.45 2.45 2.45 2.44 2.47 2.45 2.47 2.51 2.50 2.54 

Mn 0.16 0.17 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 

Mg 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.22 

Ca 0.14 0.14 0.12 0.13 0.12 0.13 0.12 0.09 0.09 0.08 

Total 7.99 7.99 7.98 7.98 7.98 7.99 7.99 7.99 7.98 7.99 

O value  12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
      

229119 

grt 1        

Wt% Rim         Core     

SiO2 37.00 37.18 37.50 37.08 37.17 37.13 37.04 36.87 37.02 36.99 37.12 37.02 37.03 37.09 

TiO2 0.05 0.02 0.06 0.07 0.03 0.05 0.01 0.01 0.05 0.05 0.03 0.07 0.06 0.10 

Al2O3 21.40 21.34 21.74 21.40 21.27 21.53 21.52 21.37 21.48 21.43 21.59 21.36 21.42 21.43 

FeO 35.34 35.70 35.82 35.75 35.84 35.69 36.04 35.93 35.83 35.86 36.01 35.83 35.88 35.63 

MnO 0.37 0.42 0.50 0.59 0.61 0.65 0.78 0.80 0.77 0.73 0.73 0.72 0.73 0.71 

MgO 3.58 3.22 3.00 2.92 2.94 2.72 2.81 2.74 2.86 3.06 3.01 3.01 2.97 3.00 

CaO 1.83 2.04 2.04 2.04 2.14 2.07 2.05 2.00 2.02 1.92 1.67 1.88 1.93 2.00 

Total 99.58 99.92 100.67 99.85 100.00 99.85 100.26 99.73 100.02 100.04 100.16 99.88 100.03 99.96 

cations               
Si 2.98 2.99 2.99 2.99 2.99 2.99 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Al 2.03 2.02 2.04 2.03 2.02 2.04 2.04 2.04 2.04 2.03 2.04 2.03 2.03 2.03 

Fe 2.38 2.40 2.39 2.41 2.41 2.40 2.42 2.43 2.41 2.41 2.42 2.41 2.41 2.40 

Mn 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Mg 0.43 0.39 0.36 0.35 0.35 0.33 0.34 0.33 0.34 0.37 0.36 0.36 0.36 0.36 

Ca 0.16 0.18 0.17 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.14 0.16 0.17 0.17 

Total 8.00 8.00 7.99 7.99 8.00 7.99 8.00 8.00 8.00 8.01 8.00 8.00 8.00 8.00 

O value  12 12 12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 

 

229119 

grt 1 

cont.      

229119 

grt 2    

Wt%    Rim Rim       

SiO2 37.27 37.20 37.02 37.16 37.09 37.51 37.12 36.53 37.17 37.38 36.89 

TiO2 0.04 0.07 0.07 0.04 0.01 0.04 0.06 0.11 0.06 0.04 0.09 

Al2O3 21.40 21.22 21.22 21.30 21.22 21.55 21.39 21.09 21.41 21.43 21.29 

FeO 35.74 35.48 35.64 35.39 35.68 35.34 35.58 35.72 35.88 35.79 35.54 

MnO 0.74 0.72 0.62 0.48 0.44 0.47 0.57 0.86 0.86 0.90 0.92 

MgO 2.98 3.08 3.11 3.27 3.25 3.24 3.06 2.93 2.97 2.95 2.92 

CaO 1.97 1.97 1.97 2.08 1.83 2.05 1.99 1.93 1.90 1.83 2.15 

Total 100.14 99.74 99.65 99.73 99.53 100.20 99.77 99.16 100.24 100.32 99.80 

cations             
Si 2.99 3.00 2.99 2.99 2.99 3.00 2.99 2.97 2.98 3.00 2.98 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 

Al 2.02 2.01 2.02 2.02 2.02 2.03 2.03 2.02 2.03 2.02 2.03 

Fe 2.40 2.39 2.40 2.38 2.41 2.36 2.40 2.43 2.41 2.40 2.40 

Mn 0.05 0.05 0.04 0.03 0.03 0.03 0.04 0.06 0.06 0.06 0.06 

Mg 0.36 0.37 0.37 0.39 0.39 0.39 0.37 0.35 0.35 0.35 0.35 

Ca 0.17 0.17 0.17 0.18 0.16 0.18 0.17 0.17 0.16 0.16 0.19 

Total 7.99 7.99 8.00 8.00 8.00 7.99 7.99 8.01 8.00 7.99 8.01 

O value  12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 

     

229119 

grt 2 

cont.      

Wt% Core          Rim 

SiO2 37.28 36.93 37.00 36.89 37.00 37.12 36.58 37.11 36.85 37.39 36.98 

TiO2 0.12 0.07 0.05 0.11 0.10 0.08 0.09 0.04 0.07 0.06 0.04 

Al2O3 21.42 21.25 21.26 21.14 21.27 21.22 21.06 21.29 21.33 21.37 21.38 

FeO 35.28 35.63 36.09 35.53 35.16 35.41 35.26 35.31 35.46 35.51 35.45 

MnO 1.00 1.05 1.10 1.02 0.95 0.88 0.73 0.60 0.49 0.50 0.47 

MgO 2.91 2.94 2.49 2.87 2.99 3.07 3.24 3.24 3.38 3.32 3.32 

CaO 2.29 1.98 1.93 2.05 2.23 2.08 2.11 1.90 1.79 1.98 1.90 

Total 100.30 99.85 99.93 99.60 99.71 99.86 99.07 99.48 99.36 100.12 99.54 

cations            
Si 2.99 2.98 2.99 2.98 2.98 2.99 2.97 2.99 2.98 2.99 2.98 

Ti 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

Al 2.02 2.02 2.02 2.02 2.02 2.01 2.02 2.02 2.03 2.02 2.03 

Fe 2.36 2.40 2.44 2.40 2.37 2.38 2.40 2.38 2.40 2.38 2.39 

Mn 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.04 0.03 0.03 0.03 

Mg 0.35 0.35 0.30 0.35 0.36 0.37 0.39 0.39 0.41 0.40 0.40 

Ca 0.20 0.17 0.17 0.18 0.19 0.18 0.18 0.16 0.15 0.17 0.16 

Total 7.99 8.01 8.00 8.00 8.00 8.00 8.02 7.99 8.00 7.99 8.00 

O value  12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
     

229120 

grt 1      

229120 

grt 2  

229120 

grt 3  

Wt% Rim          Core Rim Core Rim Core 

SiO2 37.60 36.91 36.98 37.48 37.74 37.91 38.13 38.12 101.37 38.50 38.45 36.33 36.05 37.89 37.87 

TiO2 0.07 0.06 0.05 0.07 0.06 0.04 0.05 0.01 -0.01 0.00 0.00 0.02 0.04 0.02 0.01 

Al2O3 20.81 20.12 20.34 20.57 20.82 20.90 20.99 21.21 0.18 21.65 21.40 19.89 20.01 20.85 20.90 

FeO 35.91 36.03 36.27 36.24 36.41 36.20 36.19 36.09 1.05 35.72 36.40 36.99 36.71 36.78 36.46 

MnO 1.06 0.92 0.93 0.84 0.76 0.69 0.60 0.57 0.00 0.47 0.52 0.76 0.68 0.68 0.64 

MgO 2.86 2.80 2.77 2.83 2.88 2.90 3.09 3.18 -0.02 3.42 2.78 2.18 2.45 2.41 2.82 

CaO 1.92 2.03 1.96 1.84 1.84 1.95 1.90 1.85 0.02 1.74 1.85 1.65 1.63 1.62 1.60 

Total 100.23 98.86 99.30 99.87 100.50 100.58 100.96 101.03 102.59 101.50 101.41 97.81 97.57 100.26 100.30 

cations                
Si 3.02 3.02 3.01 3.03 3.02 3.03 3.03 3.03 5.97 3.03 3.04 3.02 3.00 3.04 3.04 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 1.97 1.94 1.95 1.96 1.97 1.97 1.97 1.98 0.01 2.01 1.99 1.95 1.96 1.97 1.98 

Fe 2.41 2.46 2.47 2.45 2.44 2.42 2.41 2.40 0.05 2.35 2.41 2.57 2.55 2.47 2.44 

Mn 0.07 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.00 0.03 0.04 0.05 0.05 0.05 0.04 

Mg 0.34 0.34 0.34 0.34 0.34 0.35 0.37 0.38 0.00 0.40 0.33 0.27 0.30 0.29 0.34 

Ca 0.17 0.18 0.17 0.16 0.16 0.17 0.16 0.16 0.00 0.15 0.16 0.15 0.14 0.14 0.14 

Total 7.99 8.01 8.01 7.99 7.99 7.98 7.98 7.98 6.03 7.97 7.96 8.01 8.02 7.97 7.98 

O value  12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 
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Table C1.4. (continued) 

Sample 
     

229151 

grt 1      

Wt% Rim          Rim 

SiO2 37.70 37.74 37.83 37.85 37.89 38.03 37.93 38.03 38.21 37.99 37.90 

TiO2 0.05 0.02 0.03 0.04 0.09 0.03 0.03 0.05 0.00 0.14 0.05 

Al2O3 20.78 20.65 20.59 20.81 20.46 20.77 20.84 20.86 21.03 20.78 20.85 

FeO 36.61 36.38 36.78 36.44 35.95 36.09 36.43 36.40 36.65 36.66 36.64 

MnO 0.77 0.71 0.76 0.73 0.72 0.73 0.74 0.77 0.77 0.74 0.72 

MgO 2.05 2.21 2.13 2.10 2.09 2.23 2.31 2.17 1.85 1.79 2.20 

CaO 2.53 2.43 2.38 2.52 3.04 2.48 2.29 2.47 2.53 2.47 2.43 

Total 100.48 100.15 100.49 100.49 100.24 100.35 100.56 100.75 101.03 100.58 100.81 

cations            
Si 3.03 3.04 3.04 3.04 3.05 3.05 3.04 3.04 3.05 3.05 3.03 

Ti 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 

Al 1.97 1.96 1.95 1.97 1.94 1.96 1.97 1.97 1.98 1.97 1.97 

Fe 2.46 2.45 2.47 2.45 2.42 2.42 2.44 2.44 2.45 2.46 2.45 

Mn 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Mg 0.25 0.26 0.25 0.25 0.25 0.27 0.28 0.26 0.22 0.21 0.26 

Ca 0.22 0.21 0.21 0.22 0.26 0.21 0.20 0.21 0.22 0.21 0.21 

Total 7.98 7.98 7.98 7.97 7.98 7.97 7.97 7.97 7.96 7.96 7.98 

O value  12 12 12 12 12 12 12 12 12 12 12 
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Table C1.5. EPMA analyses of chlorite.  

Sample 
 229111       229115     

Wt%              

SiO2 23.66 24.12 24.07 23.87 22.08 22.11 22.88 23.46 22.71 22.90 21.94 22.40 

TiO2 0.12 0.11 0.08 0.08 0.04 0.02 0.04 0.12 0.13 0.12 0.06 0.09 

Al2O3 22.46 22.06 21.81 22.20 21.02 20.83 22.74 22.35 22.48 22.59 22.86 22.12 

FeO 25.31 25.29 22.86 24.97 34.18 35.53 28.79 27.82 28.64 28.88 28.88 29.02 

MnO 0.02 0.00 0.02 0.04 1.65 1.62 0.15 0.27 0.15 0.17 0.22 0.16 

MgO 14.49 14.01 16.55 15.70 5.65 4.86 10.92 11.64 10.88 11.04 10.42 11.37 

CaO 0.01 0.00 0.03 0.05 0.04 0.03 0.02 0.04 0.01 0.02 0.04 0.01 

Na2O 0.00 -0.01 -0.01 0.01 -0.01 0.01 0.02 0.00 -0.02 0.00 0.02 0.02 

K2O 0.00 0.00 0.02 0.00 0.02 0.02 0.01 0.01 0.00 0.01 0.01 0.00 

Total 86.08 85.57 85.42 86.93 84.68 85.01 85.56 85.70 84.98 85.73 84.44 85.20 

cations               

Si 6.55 6.71 6.63 6.53 6.63 6.66 6.51 6.62 6.51 6.51 6.35 6.43 

Ti 0.03 0.02 0.02 0.02 0.01 0.00 0.01 0.02 0.03 0.03 0.01 0.02 

Al 7.33 7.23 7.08 7.16 7.44 7.40 7.63 7.44 7.59 7.57 7.80 7.48 

Fe 5.86 5.88 5.27 5.72 8.59 8.96 6.85 6.57 6.86 6.86 6.99 6.97 

Mn 0.01 0.00 0.00 0.01 0.42 0.41 0.04 0.06 0.04 0.04 0.05 0.04 

Mg 5.98 5.81 6.80 6.41 2.53 2.18 4.63 4.90 4.65 4.68 4.50 4.86 

Ca 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 

Na 0.00 -0.01 -0.01 0.01 0.00 0.00 0.01 0.00 -0.01 0.00 0.01 0.01 

K 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Total 25.76 25.65 25.81 25.87 25.64 25.64 25.68 25.63 25.67 25.69 25.74 25.82 

O value  36 36 36 36 36 36 36 36 36 36 36 36 
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Table C1.5. (continued). 

Sample    229119       229120   

Wt%              

SiO2 24.47 24.03 24.33 24.83 23.33 24.83 24.63 30.24 24.11 24.05 25.24 24.16 

TiO2 0.23 0.32 0.17 0.15 0.05 0.05 0.05 0.03 0.10 0.08 0.07 0.07 

Al2O3 21.90 22.28 22.22 21.77 21.44 23.94 22.48 20.74 22.22 22.56 22.95 22.23 

FeO 24.88 25.09 24.91 24.94 24.12 24.07 24.73 27.56 25.34 25.25 24.61 25.47 

MnO 0.02 0.02 0.01 0.00 0.07 0.06 0.06 0.04 -0.02 0.01 0.01 0.00 

MgO 13.96 14.25 14.22 13.69 13.76 13.66 15.21 9.77 14.26 14.37 13.75 13.87 

CaO 0.00 0.02 0.01 0.08 0.03 0.11 0.03 0.04 0.01 0.01 0.02 0.01 

Na2O 0.03 0.00 0.01 0.01 0.01 0.01 0.03 0.01 -0.01 0.01 0.04 0.02 

K2O 0.13 0.00 0.01 0.04 0.01 0.02 0.00 0.00 0.01 0.03 0.39 0.01 

Total 85.61 86.01 85.88 85.52 82.81 86.73 87.21 88.44 86.04 86.38 87.08 85.83 

cations              
Si 6.79 6.64 6.72 6.89 6.70 6.73 6.69 8.07 6.67 6.62 6.86 6.70 

Ti 0.05 0.07 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

Al 7.16 7.26 7.24 7.12 7.25 7.65 7.20 6.52 7.25 7.32 7.35 7.27 

Fe 5.77 5.80 5.76 5.79 5.79 5.46 5.62 6.15 5.86 5.82 5.59 5.91 

Mn 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

Mg 5.77 5.88 5.86 5.66 5.89 5.52 6.16 3.89 5.88 5.90 5.57 5.74 

Ca 0.00 0.01 0.00 0.02 0.01 0.03 0.01 0.01 0.00 0.00 0.00 0.00 

Na 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.01 

K 0.04 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.14 0.00 

Total 25.61 25.66 25.62 25.53 25.67 25.43 25.71 24.67 25.68 25.71 25.54 25.65 

O value  36 36 36 36 36 36 36 36 36 36 36 36 
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Table C1.6. EPMA analyses of apatite.  

 

 

 

 

 

Sample  229111   229115   229119     229120   

Wt%                  
P2O5 41.80 39.11 37.95 41.61 42.08 41.70 39.97 42.84 43.26 42.64 42.21 42.01 42.18 43.09 

FeO 1.14 1.07 3.01 0.00 0.00 0.01 1.92 0.46 0.67 0.93 1.14 0.93 0.99 0.70 

MnO 0.03 0.05 0.09 0.04 0.06 0.04 0.23 -0.01 -0.01 0.07 0.01 0.03 0.03 -0.02 

MgO 0.02 0.02 0.21 0.02 0.00 0.01 0.07 0.00 0.02 0.02 0.03 0.01 0.00 0.01 

CaO 55.43 53.97 51.77 55.23 55.18 55.18 53.00 55.36 55.86 55.15 54.71 54.94 55.74 56.43 

Cl 0.05 0.04 0.05 0.01 0.00 0.00 0.02 0.02 0.03 0.05 0.09 0.06 0.05 0.03 

F 2.77 3.12 1.92 3.26 3.20 3.20 2.69 3.19 3.09 2.44 2.05 3.07 3.11 3.29 

Total 100.06 96.07 94.18 98.79 99.17 98.79 96.77 100.52 101.60 100.26 99.36 99.74 100.78 102.14 

cations                  
P 2.97 2.92 2.90 2.99 3.00 2.99 2.95 3.02 3.01 3.00 3.00 2.99 2.98 3.00 

Fe 0.08 0.08 0.23 0.00 0.00 0.00 0.14 0.03 0.05 0.07 0.08 0.07 0.07 0.05 

Mn 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 4.99 5.11 5.00 5.02 4.99 5.01 4.95 4.93 4.92 4.92 4.92 4.95 4.98 4.96 

Cl 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 

F 0.69 0.81 0.52 0.82 0.80 0.80 0.70 0.79 0.76 0.61 0.52 0.77 0.77 0.80 

Total 8.74 8.93 8.69 8.83 8.79 8.81 8.78 8.77 8.74 8.61 8.53 8.79 8.81 8.81 

O value  12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 
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Appendix D: Lu-Hf and Sm-Nd isotope data 
 Table D1.1. Lu-Hf and Sm-Nd isotope data. 

 

 

Sample Lu(ppm) Hf (ppm) 176Lu/177Hf 176Hf/177Hf 2SE error  Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd 2SE error 

207692            

whole-rock B 0.211 2.814 0.0106 0.28162 0.000004  2.00 9.50 0.1249 0.511139 0.000009 

whole-rock TT 0.250 2.867 0.0124 0.28163 0.000006  2.60 13.3 0.1192 0.511183 0.000008 

garnet 1 1.007 2.938 0.0486 0.2835 0.000008  3.70 11.3 0.1981 0.512542 0.000014 

garnet 2 0.960 2.951 0.0461 0.28336 0.000011  3.90 12.8 0.1869 0.512353 0.000009 

garnet 3 1.017 2.989 0.0483 0.28347 0.000005  4.00 13.0 0.1871 0.512360 0.000012 

garnet 4 1.006 2.971 0.0481 0.28346 0.000005  4.00 12.6 0.1898 0.512387 0.000013 

garnet 5 1.025 2.834 0.0513 0.28363 0.000004  3.91 12.6 0.1879 0.512365 0.000005 

            

229151            

whole-rock B 0.259 3.035 0.0121 0.28151 0.000007  3.03 14.1 0.1300 0.511260 0.000003 

whole-rock TT 0.269 2.874 0.0133 0.28156 0.000011  2.99 13.9 0.1301 0.511266 0.000005 

garnet 1 0.868 2.598 0.0474 0.28331 0.000005  2.94 7.87 0.2262 0.512912 0.000004 

garnet 2 0.647 2.358 0.039 0.2829 0.000006  3.28 8.36 0.2374 0.513103 0.000003 

garnet 3 0.781 2.499 0.0443 0.28317 0.000006  3.09 8.07 0.2318 0.512999 0.000004 

garnet 4 0.845 2.508 0.0478 0.28333 0.000003  3.15 8.06 0.2365 0.513075 0.000003 

garnet 5 0.822 2.380 0.049 0.2834 0.000005  2.03 5.10 0.2401 0.513139 0.000003 
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Appendix E: Garnet trace element analysis 
Table E1.1. Garnet REE and Hf analyses in ppm. 

Sample 139La ± 140Ce ± 141Pr ± 146Nd ± 147Sm ± 

207692 grt a.1          1.2 

207692 grt a.2       0.27 0.39 2.8 1.3 

207692 grt a.3     0.015 0.026 0.59 0.49 2.81 0.97 

207692 grt a.4   0.035 0.058 0.009 0.025 0.71 0.47 2.2 1 

207692 grt a.5 330 150 630 340 69 34 240 120 52 25 

207692 grt a.6 55 13 149 48 12.2 3.7 49 18 10.6 2.6 

207692 grt a.7 19.9 5.4 40 11 3.39 0.97 15.4 3.7 5.6 1.4 

207692 grt a.8 10.9 4.1 38 13 2.63 0.77 10.5 3.3 3.97 0.79 

207692 grt a.9 6.7 1.1 19.9 6.4 2.33 0.79 8.4 2.9 3.6 1.1 

207692 grt a.10 3.3 2.1 12 4.9 1.24 0.71 3.4 2 3.2 1.8 

207692 grt a.11 2.1 2 7.7 4.4 1.8 1.5 1.9 1.3 3.1 1.1 

207692 grt b.1   0.1 0.24   0.19 0.37 0.67 0.47 

207692 grt b.2 2.2 1.1 5.2 4.3 0.7 0.54 1.1 1.6 0.9 0.44 

207692 grt b.3 76 86 160 180 18 20 69 76 14 13 

207692 grt b.4 6 2.6 25.7 8.6 1.79 0.8 6.8 3 3.4 1.2 

207692 grt b.5 3.5 2.4 20 10 1.55 0.77 7.9 3.8 3.6 1.9 

207692 grt b.6 3.8 1.6 13.3 5.8 1.56 0.67 4.3 1.4 3.6 1.4 

207692 grt b.7 3.21 0.96 6.5 1.4 0.83 0.28 2.7 1.2 2.8 1 

207692 grt b.8 2.6 1.6 6.5 2.7 0.66 0.35 2.5 1.1 2.8 1.8 

207692 grt b.9 2.4 1.5 5.6 2.4 0.38 0.2 2.3 1 2.22 0.82 

207692 grt b.10 0.72 0.33 2.08 0.84 0.37 0.2 1.45 0.66 1.8 0.7 

207692 grt b.11 0.8 0.5 2.9 2 0.2 0.15 1.42 0.64 2.69 0.94 

207692 grt b.12 0.48 0.27 1.4 0.66 0.16 0.11 0.79 0.72 2.6 1.1 

207692 grt b.13 0.61 0.46 2.4 2 0.18 0.12 1.39 0.88 2.54 0.85 

207692 grt b.14 1.08 0.91 0.99 0.59 0.14 0.14 1.08 0.73 1.71 0.79 

207692 grt c.1     0.016 0.057   1.81 0.8 

207692 grt c.2   0.06 0.079   0.36 0.35 1.31 0.63 

207692 grt c.3       0.49 0.39 1.47 0.9 

207692 grt c.4     0.007 0.024 0.54 0.44 2.12 0.87 

207692 grt c.5   0.131 0.069 0.034 0.062 1.24 0.53 2.07 0.8 

207692 grt c.6     0.009 0.027 0.68 0.45 2.19 0.97 

207692 grt c.7 0.004 0.027 0.14 0.11 0.007 0.025 0.3 0.33 1.8 1.1 

207692 grt c.8 0.003 0.023 0.018 0.034   0.19 0.16 1.92 0.88 

Blanks indicate below detection limit. 
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Table E1.1. (continued) 

 

 

 

 

 

Sample 153Eu ± 157Gd ± 159Tb ± 163Dy ± 165Ho ± 

207692 grt a.1 1.65 0.58 9.3 1.7 0.94 0.26 6.7 1.4 1.18 0.39 

207692 grt a.2 2.06 0.42 15.2 3.5 4.8 0.5 39.7 4 6.75 0.6 

207692 grt a.3 1.89 0.48 8 1.8 1.68 0.31 18.1 2 4.31 0.53 

207692 grt a.4 2.13 0.41 5.3 1 1.25 0.23 9.9 1.1 2.23 0.35 

207692 grt a.5 10.4 6 40 15 6.7 1.8 40.1 6.7 9.2 1 

207692 grt a.6 3.99 0.74 8.9 1.9 1.65 0.35 11.4 1.5 2.53 0.32 

207692 grt a.7 3.05 0.43 5.3 1.3 0.87 0.2 5.8 1.2 1.05 0.27 

207692 grt a.8 3.38 0.54 4.1 1.1 0.51 0.14 3.51 0.88 0.7 0.14 

207692 grt a.9 3 0.5 3.12 0.81 0.48 0.16 2.82 0.97 0.55 0.15 

207692 grt a.10 1.96 0.37 14.9 2 3.3 0.4 21.2 2 2.46 0.46 

207692 grt a.11 1.74 0.4 8.8 1.2 1.54 0.24 9.1 1.2 1.42 0.17 

207692 grt b.1 1.6 0.62 6.8 2.2 1.18 0.28 8.6 1.9 2.25 0.64 

207692 grt b.2 1.21 0.36 8 2.9 1.12 0.31 11.8 1.5 2.42 0.78 

207692 grt b.3 3.7 1.6 20.8 8.4 3.99 0.9 33.3 7.1 7.2 1.1 

207692 grt b.4 2.04 0.33 9.3 1.7 2.69 0.39 23.2 2.9 5.52 0.47 

207692 grt b.5 2.69 0.73 12.4 2.5 2.46 0.44 18.7 3.6 4.42 0.86 

207692 grt b.6 2.11 0.44 7.8 2.2 2.09 0.33 15.6 1.9 3.41 0.47 

207692 grt b.7 2.1 0.49 8.9 2.1 2.49 0.34 23.7 2.4 5.32 0.49 

207692 grt b.8 2.48 0.5 13.2 3 2.74 0.36 26.1 5.9 4.48 0.73 

207692 grt b.9 1.84 0.41 10.2 1 2.77 0.33 27.2 2.8 7.49 0.89 

207692 grt b.10 2.43 0.5 9.1 1.6 2.77 0.29 27.4 2.1 6.38 0.4 

207692 grt b.11 2.52 0.54 8.6 1.3 2.22 0.22 19.6 2.3 3.89 0.48 

207692 grt b.12 2.22 0.54 13.6 1.7 3.56 0.44 24.6 2.5 4.93 0.45 

207692 grt b.13 1.99 0.34 8.2 1.7 1.09 0.21 6.8 1.1 1.28 0.21 

207692 grt b.14 1.37 0.63 6.3 1.2 0.84 0.19 6.5 1.1 1.49 0.4 

207692 grt c.1 1.04 0.61 5.1 2.3 0.62 0.31 5.8 2.3 1.04 0.32 

207692 grt c.2 2.45 0.56 5.5 1.2 1.14 0.26 7.2 1.2 1.26 0.31 

207692 grt c.3 1.4 0.32 6.1 1.5 1.19 0.29 10.3 1.1 2.7 0.35 

207692 grt c.4 2.43 0.56 3.88 0.97 0.99 0.27 7.4 1.3 1.62 0.26 

207692 grt c.5 2.99 0.53 3.4 1.1 0.84 0.19 5.07 0.66 1.3 0.29 

207692 grt c.6 2.06 0.34 4.3 1.2 0.96 0.16 10.7 2.3 2.86 0.53 

207692 grt c.7 2.52 0.5 5.5 1.2 1.05 0.23 11.7 0.99 2.65 0.41 

207692 grt c.8 1.29 0.3 3.27 0.99 0.75 0.18 5.6 1.4 0.98 0.24 



136 
 

Table E1.1. (continued) 

 

 

 

 

 

Sample 166Er ± 169Tm ± 172Yb ± 175Lu ± 178Hf ± 

207692 grt a.1 3.48 0.66 0.51 0.23 4.3 1.5 0.61 0.22 4.8 5.5 

207692 grt a.2 16.4 1.9 2.6 0.57 14.3 2.7 2.09 0.31 2.6 2.7 

207692 grt a.3 16 1.7 2.4 0.3 18 2.3 2.73 0.27 1.61 0.8 

207692 grt a.4 5.87 0.83 0.83 0.18 5.2 1.1 0.83 0.24 0.97 0.35 

207692 grt a.5 25.1 2.8 2.77 0.35 20.8 2.5 2.87 0.25 1.72 0.83 

207692 grt a.6 7.6 1.5 1.13 0.19 6.1 0.76 0.93 0.2 1.85 0.53 

207692 grt a.7 2.55 0.38 0.4 0.1 2.87 0.97 0.36 0.14 2.11 0.94 

207692 grt a.8 1.72 0.48 0.18 0.12 1.26 0.68 0.24 0.12 1.18 0.42 

207692 grt a.9 1.5 0.45 0.32 0.12 1.27 0.53 0.31 0.1 1.08 0.42 

207692 grt a.10 5.9 1 0.51 0.16 2.36 0.61 0.324 0.098 1.85 0.74 

207692 grt a.11 2.67 0.43 0.294 0.084 1.71 0.66 0.37 0.12 1.03 0.55 

207692 grt b.1 8.4 1.4 0.98 0.24 8.9 2.5 1.42 0.55 0.39 0.47 

207692 grt b.2 7.4 2.2 1.38 0.36 10.8 2.4 1.28 0.19 0.27 0.28 

207692 grt b.3 26.9 2.3 4.06 0.49 32.4 2.9 4.97 0.61 3.1 1.1 

207692 grt b.4 18.8 1.6 2.69 0.35 20 1.9 2.54 0.41 3.9 1.2 

207692 grt b.5 11.8 1.7 1.52 0.33 12.7 1.3 1.5 0.37 1.72 0.76 

207692 grt b.6 11.1 1.1 1.6 0.38 9.8 1.8 1.6 0.3 3.2 1.2 

207692 grt b.7 16.1 2.1 2.4 0.41 16 2 2.27 0.28 1.83 0.56 

207692 grt b.8 16 1.8 2.38 0.46 16.9 3.4 2.13 0.74 3 1.6 

207692 grt b.9 24.5 2.4 3.47 0.52 25.2 3 3.61 0.33 1.55 0.58 

207692 grt b.10 22.2 2.2 3.16 0.39 21.4 3.2 3.15 0.45 1.58 0.55 

207692 grt b.11 12.8 1.5 1.82 0.36 14 1.9 1.97 0.25 1.39 0.72 

207692 grt b.12 14.1 2.1 2.09 0.28 12.7 2 1.98 0.25 0.92 0.47 

207692 grt b.13 3.09 0.63 0.33 0.11 2.66 0.87 0.36 0.14 1.66 0.74 

207692 grt b.14 3.52 0.55 0.64 0.18 5.2 1.1 0.59 0.11 0.94 0.66 

207692 grt c.1 1.59 0.73 0.17 0.1 2.62 0.83 0.19 0.14 1.9 1.4 

207692 grt c.2 2.94 0.59 0.28 0.12 2.74 0.64 0.53 0.24 0.4 0.27 

207692 grt c.3 7.78 0.84 1.22 0.24 8.9 1.6 1.45 0.24 0.55 0.43 

207692 grt c.4 5.67 0.73 0.57 0.19 5 1 0.65 0.17 0.93 0.52 

207692 grt c.5 2.82 0.47 0.41 0.15 3.26 0.74 0.31 0.11 1.92 0.7 

207692 grt c.6 9.1 1.4 1.61 0.26 9.4 1.2 1.2 0.16 0.83 0.52 

207692 grt c.7 9.2 1.6 1.31 0.19 9.3 1.3 1.31 0.33 0.66 0.35 

207692 grt c.8 3.45 0.99 0.39 0.17 2.94 0.78 0.31 0.12 0.77 0.41 
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Table E1.1. (continued) 

Sample 139La ± 140Ce ± 141Pr ± 146Nd ± 147Sm ± 

229151 grt a.1 0.042 0.045 0.22 0.11 0.012 0.017 0.36 0.2 0.52 0.28 

229151 grt a.2     0.024 0.019 1.16 0.3 4.19 0.74 

229151 grt a.3   0.01 0.019   1.04 0.37 4.12 0.84 

229151 grt a.4   0.003 0.017   0.85 0.36 2.21 0.74 

229151 grt a.5     0.014 0.014 0.99 0.27 2.66 0.52 

229151 grt b.1     0.025 0.03 1.1 0.37 2.89 0.6 

229151 grt b.2     0.005 0.011 0.81 0.32 2.7 0.73 

229151 grt b.3 0.198 0.072 0.57 0.14 0.128 0.047 1.87 0.47 4.83 0.72 

229151 grt b.4 0.067 0.061 0.145 0.095 0.047 0.047 0.75 0.43 2.53 0.92 

229151 grt c.1 0.272 0.083 0.95 0.22 0.124 0.053 1.28 0.35 2.4 0.56 

229151 grt c.2 0.045 0.029 0.203 0.066 0.009 0.014 0.94 0.31 2.32 0.52 

229151 grt c.3 0.019 0.036 0.063 0.068 0.051 0.055 1.53 0.67 4.2 1.1 

229151 grt c.4 0.39 0.18 0.65 0.24 0.05 0.048 1.59 0.6 3.72 0.91 

229151 grt c.5   0.019 0.036 0.016 0.03 1.26 0.98 3.4 1.2 

229151 grt c.6     0.031 0.021 1.29 0.39 4.95 0.9 

229151 grt c.7   0.006 0.016 0.032 0.028 0.62 0.21 3.91 0.66 

229151 grt c.8   0.022 0.027 0.018 0.022 0.76 0.24 6.3 1 

207690 grt a.1 0.065 0.061 0.46 0.21 0.115 0.068 0.27 0.19 1.48 0.66 

207690 grt a.2   0.25 0.14 0.034 0.024 1.41 0.38 4.13 0.78 

207690 grt a.3     0.061 0.063 1.34 0.66 4.3 1.5 

207690 grt a.4   0.021 0.025 0.016 0.024 0.95 0.32 3.31 0.89 

207690 grt a.5   0.041 0.046 0.019 0.023 0.84 0.31 3.4 0.76 

207690 grt a.6 0.021 0.053 0.11 0.12 0.034 0.051 0.76 0.53 3.5 1.5 

207690 grt b.1 0.027 0.031 0.031 0.062 0.03 0.036 0.79 0.41 4.1 1 

207690 grt b.2 0.13 0.12 0.64 0.42 0.082 0.048 2.02 0.55 5.66 0.86 

207690 grt b.3   0.057 0.041 0.043 0.027 1.72 0.44 6.12 0.88 

207690 grt b.4 0.025 0.034 0.066 0.042 0.022 0.021 1.14 0.33 3.22 0.69 

207690 grt b.5 1.42 0.33 3.94 0.87 0.57 0.17 4.5 1.4 4.15 0.94 
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Table E1.1. (continued) 

Sample 153Eu ± 157Gd ± 159Tb ± 163Dy ± 165Ho ± 

229151 grt a.1 0.18 0.082 1.08 0.47 0.136 0.061 1.14 0.43 0.212 0.06 

229151 grt a.2 0.79 0.13 6.18 0.83 0.76 0.11 4.09 0.49 1.03 0.13 

229151 grt a.3 0.9 0.22 4.8 1 0.79 0.13 4.77 0.72 1.02 0.16 

229151 grt a.4 0.65 0.17 4.2 1.1 0.62 0.13 3.98 0.8 1.12 0.15 

229151 grt a.5 0.6 0.13 3.3 0.55 0.634 0.09 4.35 0.54 1.4 0.17 

229151 grt b.1 1.07 0.18 4.11 0.84 0.72 0.15 4.28 0.57 0.75 0.15 

229151 grt b.2 1.1 0.16 5.32 0.78 1.23 0.15 7.74 0.81 1.5 0.18 

229151 grt b.3 1.6 0.22 7.2 0.92 1.29 0.14 9.3 0.76 1.97 0.17 

229151 grt b.4 0.83 0.2 5.5 1 0.81 0.19 5.44 0.86 1.23 0.17 

229151 grt c.1 0.63 0.16 4.41 0.82 0.84 0.13 6.32 0.69 1.53 0.17 

229151 grt c.2 0.66 0.15 4.82 0.85 1.3 0.16 12.1 1.3 3.19 0.27 

229151 grt c.3 1.41 0.35 8.9 1.5 2.1 0.33 18.8 1.9 4.71 0.53 

229151 grt c.4 1.84 0.49 9.4 1.4 1.99 0.29 19.5 2.1 4.38 0.39 

229151 grt c.5 1.39 0.41 1.65 0.67 0.24 0.12 0.58 0.29 0.053 0.04 

229151 grt c.6 1.56 0.19 11.9 0.98 2.17 0.24 16.1 1.3 3.15 0.29 

229151 grt c.7 1.61 0.27 3.78 0.79 0.502 0.086 2.3 0.48 0.43 0.089 

229151 grt c.8 1.68 0.23 15.8 2 3.23 0.31 20.7 2.1 4.28 0.51 

207690 grt a.1 0.35 0.18 2.19 0.92 0.318 0.093 1.45 0.53 0.19 0.066 

207690 grt a.2 2.23 0.23 5.44 0.76 0.85 0.12 3.85 0.45 0.465 0.081 

207690 grt a.3 2.56 0.5 7.2 1.6 1.16 0.18 6.3 1.1 1.03 0.15 

207690 grt a.4 2.18 0.3 5.49 0.85 1.01 0.15 6.5 0.76 1.21 0.2 

207690 grt a.5 2.8 0.39 12.4 1.8 2.42 0.26 18.6 2.1 3.54 0.42 

207690 grt a.6 3.08 0.61 14.8 4.5 2.9 0.5 16.8 2.2 3.73 0.81 

207690 grt b.1 1.37 0.3 2.98 0.76 0.38 0.12 1.77 0.5 0.434 0.085 

207690 grt b.2 2.02 0.22 5.04 0.91 0.51 0.11 2.51 0.44 0.458 0.091 

207690 grt b.3 2.21 0.26 4.5 0.75 0.524 0.098 2.21 0.34 0.384 0.069 

207690 grt b.4 2.68 0.28 5.3 0.83 0.8 0.14 4.29 0.59 0.8 0.13 

207690 grt b.5 3.62 0.53 11.1 1.6 2.24 0.25 16.2 1.6 4.18 0.35 
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Table E1.1. (continued) 

Sample 166Er ± 169Tm ± 172Yb ± 175Lu ± 178Hf ± 

229151 grt a.1 0.71 0.2 0.121 0.044 0.95 0.3 0.13 0.024 0.024 0.03 

229151 grt a.2 3.54 0.4 0.59 0.11   0.791 0.053 0.104 0.029 

229151 grt a.3 4.54 0.64 0.68 0.11 5.79 0.69 0.959 0.076 0.137 0.036 

229151 grt a.4 3.61 0.61 0.66 0.13 5.7 1.1 0.883 0.057 0.126 0.043 

229151 grt a.5 5.35 0.57 0.93 0.11 7.59 0.68 1.33 0.1 0.138 0.032 

229151 grt b.1 2.21 0.41 0.287 0.07 2.25 0.44 0.29 0.032 0.204 0.051 

229151 grt b.2 4.38 0.56 0.64 0.1 4.21 0.59 0.533 0.053 0.209 0.056 

229151 grt b.3 7.02 0.56 1.02 0.13 7.63 0.94 1.142 0.061 0.148 0.041 

229151 grt b.4 3.12 0.5 0.69 0.19 3.3 0.82 0.636 0.073 0.163 0.063 

229151 grt c.1 7.69 0.68 1.39 0.15 11.2 1 2.315 0.098 0.083 0.034 

229151 grt c.2 10.13 0.69 1.52 0.17 10.8 1.2 1.562 0.077 0.057 0.022 

229151 grt c.3 14.3 1.4 2.19 0.33 13 2 1.81 0.14 0.208 0.075 

229151 grt c.4 13.6 1.3 2.04 0.27 13 1.5 1.79 0.12 0.175 0.069 

229151 grt c.5 0.21 0.17   0.1 0.13 0.019 0.013 0.082 0.047 

229151 grt c.6 8.08 0.63 1.1 0.14 7.6 0.88 1.115 0.066 0.19 0.044 

229151 grt c.7 0.93 0.23 0.11 0.041 0.49 0.18 0.064 0.014 0.256 0.047 

229151 grt c.8 10.6 1.2 1.43 0.19 8.9 1.2 1.2 0.14 0.218 0.047 

207690 grt a.1 0.74 0.32 0.152 0.078 1 0.35 0.227 0.054 0.125 0.053 

207690 grt a.2 1.22 0.21 0.138 0.047 1.11 0.27 0.215 0.03 0.18 0.045 

207690 grt a.3 2.19 0.42 0.36 0.15 2.6 1.1 0.378 0.059 0.7 0.19 

207690 grt a.4 3.5 0.66 0.58 0.13 4.87 0.87 0.66 0.057 0.204 0.057 

207690 grt a.5 10.6 1.1 1.51 0.2 11.5 1.6 1.54 0.17 0.22 0.054 

207690 grt a.6 11.9 2.3 2 0.54 11.8 1.9 1.86 0.16 0.24 0.13 

207690 grt b.1 1.15 0.28 0.222 0.076 1.78 0.59 0.378 0.064 0.18 0.058 

207690 grt b.2 1.33 0.27 0.204 0.059 1.43 0.32 0.244 0.025 0.175 0.04 

207690 grt b.3 1.12 0.24 0.152 0.045 1.21 0.26 0.204 0.026 0.172 0.043 

207690 grt b.4 2.43 0.36 0.45 0.11 2.89 0.51 0.388 0.048 0.204 0.045 

207690 grt b.5 11.9 1.2 1.92 0.24 12 1.3 1.89 0.13 0.221 0.064 

 

 

 

 

 

 

 

 


