
 

 

A Micromechanical Study of Undrained                                                                                                                                                                                                                                                           

Granular Media Using Fluid-coupled Discrete Numerical 

Simulations 

 

By 

 

 

Wei Zhang 

 

 

A thesis  

presented to the University of Waterloo  

in fulfilment of the  

thesis requirement for the degree of  

Doctor of Philosophy 

 in 

Civil Engineering 

 

 

Waterloo, Ontario, Canada 

© Wei Zhang, 2018 



ii 

 

Examining Committee Membership 

The following served on the Examining Committee for this thesis. The decision of the 

Examining Committee is by majority vote. 

 

External Examiner    DR. PEIJUN GUO   

      Professor  

 

Supervisor                DR. LEO ROTHENBURG 

      Professor 

 

Internal Member    DR. GIOVANNI CASCANTE 

      Professor 

 

Internal Member                DR. DIPANJAN BASU 

       Associate Professor 

 

Internal-external Member    DR. CAROLYN REN 

       Professor 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Author’s declaration 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 

 

Abstract 
Engineering behavior of saturated granular materials under rapid loading as during earthquakes is 

reasonably well explored empirically. Presently, theoretical models developed within concepts of classical 

soil mechanics are generally adequate for engineering design. Nevertheless, even such basic soil mechanics 

questions, for example, as the influence of soil gradation on the stability of hydraulically placed fills can be 

hotly debated in engineering offices. This is due to lack of a well-developed physical framework for 

understanding soil behavior at a particle level, specifically in undrained conditions.      

The main objective of the present study is to explore micromechanics of undrained behavior of granular 

media using numerical simulations in which motions of discrete particles are coupled with pore fluid 

movements caused by deformations of individual pores. The latter are modeled as forming an 

interconnected network. The rate of fluid transfer between pores is considered proportional to pressure 

differential between pores so that macroscopically the system follows the Darcy’s Law. The fluid is 

considered elastic in response to pore volume change. It is demonstrated that this type particle-fluid 

coupling results in macroscopic Biot-Terzaghi poroelastic behavior when the system of intergranular 

contacts is fixed and the contact force vs interparticle displacement relationship is linear. In the case of 

unbound granular assemblies, when the mechanical behavior under shear deformations involves creation 

and disintegration of intergranular contacts, the key modeling challenge addressed in this thesis is 

development of a robust algorithm that tracks modifications of the pore space preserving fluid mass balance. 

This substantially extends the range of applications for the simulation methodology developed by Dr. R. 

Olivera at the University of Waterloo in 2004.     

The developed algorithm is based on identification of sub-volumes in the assembly containing pore groups 

with one-to-one mapping into uniquely identified sub-volumes in the configuration that existed at the 

previous computational step. These related sub-volumes contain pores that coalesced due to contact 

disintegration or where larger pores became subdivided into smaller pores due to creation of contacts. The 

subdivision of space into related sub-volumes makes it possible to accurately maintain fluid mass balance 

to practically any strain level as the assembly undergoes through dramatic microstructural changes. 

Numerical simulations of granular samples under axial loading and constant lateral stress carried out at 

different void ratio and consolidation stress qualitatively resemble the mechanical response of granular soils 

in conventional laboratory testing, including static liquefaction of loose samples. This comparison 

demonstrates that the developed simulation methodology reasonably reflects physical processes in 

undrained granular media.   

As an application of the developed simulation methodology the thesis presents a study of the effects of 

granular soil permeability on undrained behavior. In this particular study the base material is taken as a 
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loose granular assembly of medium to fine particles where permeability was varied by changing the rate of 

fluid transfer from pore to pore. This physically reflects addition of fine particles into pores to impede flow 

(without taking into account the effect of fines on interparticle interactions).  Simulations demonstrate that 

restricting fluid transfer from pore to pore results in increased undrained strength. Similar results were 

obtained in a published laboratory study that concluded that addition of fines to a granular material can 

prevent static liquefaction. The present study confirms this conclusion.  The mechanism of this phenomenon 

is discussed in the thesis based on examination of the way permeability indirectly influences distributions 

of intergranular forces. 

In addition to conventional stress-strain characterization of mechanical behavior, results of all simulations 

are examined in terms of micromechanical descriptors that characterize changes in the number of 

intergranular contacts with strain, their spatial anisotropy and average contact forces. Although all 

micromechanical descriptors in drained and undrained conditions evolve to some asymptotic values at large 

shear strain, only in the case of drained deformations the same asymptotic state is reached at the same mean 

stress level irrespective of the initial state of packing. This mean stress-dependent “critical state” 

corresponds to specific values of void ratio and average coordination number induced in the course of shear 

deformations. Evolution of simulated granular assemblies towards the same state is not observed in 

undrained conditions although steady state is always reached. Envelopes of asymptotic states as function 

of mean stress identified for simulated samples with different initial void ratio, the so-called critical and 

steady state lines, are somewhat different in cases of drained and undrained deformations, as far as void 

ratio and coordination numbers are concerned. There appears to be no distinction in values of induced 

asymptotic anisotropy in drained and undrained conditions. This topic requires further studies and various 

avenues for further research in this area are identified in the concluding chapter of the thesis.  
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Chapter 1 Introduction 

1.1 General background 

The micromechanical study of undrained behavior of granular media in this thesis is motivated by a 

persistent need to understand mechanisms and conditions when mechanical behavior of sand is drastically 

altered under cyclic loading as during earthquakes. 

Cyclic and static liquefaction failure 

Large scale deformation and liquefaction of saturated sand in an undrained condition under monotonic or 

cyclic loading (i.e. during earthquakes) has led to many failures throughout the history of civil construction. 

The striking case of collapsed and settled buildings (Fig. 1.1) in Kawagishi-cho of Niigata, Japan, due to 

an earthquake in 1964 is probably one of the most representative and striking liquefaction failures induced 

by cyclic loading. It drew attention and resulted in extensive research on the mechanism of liquefaction, 

although at that time the name “liquefaction” had not been introduced yet. In 1971, an earthquake induced 

liquefaction destroyed the upstream slope of the lower San Fernando Dam (see Figure 1.2) in California, 

USA. Unlike the Niigata liquefaction failure that happened during the cyclic shaking of an earthquake, the 

lower San Fernando Dam liquefaction failure occurred soon after an earthquake ceased. So some 

researchers consider the mechanism of the lower San Fernando Dam liquefaction to be static although the 

induced pore pressure rise was triggered by an earthquake (Seed, Lee, Idriss, & Makdisi, 1975). Indeed, an 

earthquake can cause liquefaction either statically or dynamically. The static liquefaction failures during 

construction, which were related to hydraulic fill placement in the Fort Peck Dam, USA, in 1938 and in 

Nerlerk in the Beaufort Sea, Canada, in 1983 are two typical cases of the static type of liquefaction.    

 

Figure 1.1 Liquefaction caused by the earthquake on buildings in Niigata, 1964 

(http://en.wikipedia.org/wiki/Soil_liquefaction#/media/File:Liquefaction_at_Niigata.JPG) 

https://en.wikipedia.org/wiki/Soil_liquefaction
https://en.wikipedia.org/wiki/Apartment
http://en.wikipedia.org/wiki/Soil_liquefaction#/media/File:Liquefaction_at_Niigata.JPG
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Figure 1.2 The upstream slide after liquefaction failure of Lower San Fernando dam   

(http://research.engineering.ucdavis.edu/gpa/wp-content/uploads/sites/43/2015/02/Slide-after-

drawdown.jpg)  

What is liquefaction? 

These aforementioned construction failures were all induced by sand liquefaction, which is “a phenomenon 

wherein a mass of soil loses a large percentage of its shear resistance, when subjected to undrained 

monotonic, cyclic or shock loading, and flows in a manner resembling a liquid until the shear stresses acting 

on the mass are as low as the reduced shear resistance” (Castro and Poulos, 1977). This is the definition of 

liquefaction given by Castro and Poulos in 1977, which was proposed 57 years after Hazen’s description 

of the liquefaction mechanism from the Calaveras Dam failure in California in 1920 (Hazen, 1920). A 

similar concept that is usually compared to liquefaction but is fundamentally different is cyclic mobility, 

which refers to “the progressive softening of saturated soil when subjected to cyclic loading at a constant 

void ratio. The softening is accompanied by a high pore pressure, increasing cyclic deformation, and in 

some cases, permanent deformation, but it does not lead to a loss in shear strength nor continuous 

deformation, both of which are essential aspects of liquefaction” (Castro et al., 1982). According to Castro 

(1975), liquefaction only exists in a loose sand state, however, cyclic mobility can happen in both loose and 

dense states of sand. Figs. 1.3 and 1.4 shows conceptual plots of liquefaction and cyclic mobility, 

respectively. Figure 1.3 illustrates the conceptual stress-strain responses of the soil in an undrained 

condition that triggers traditional liquefaction, where (a) is from a monotonic load test and (b) is from a 

cyclic load test. It is noted in this figure that both monotonic and cyclic loading can lead to a suddenly rapid 
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decrease of the deviator stress associated with large deformations. Fig. 1.4 conceptually depicts the axial 

load and axial strain variations of cyclic mobility. It is shown in the figure that no reduction of shear 

resistance is revealed, although the axial strain increases. This research will only deal the former 

phenomenon, traditional liquefaction.  

 

(a)  

 

(b)  

Figure 1.3 Conceptual stress-strain relationships for samples triggered liquefaction under (a) monotonic 

load (b) cyclic load 
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(a) 

  

(b) 

Figure 1.4 Conceptual representation of cyclic mobility with time (a) axial load variations (b) axial strain 

responses 

Liquefaction potential evaluation 

With respect to the evaluation of the liquefaction potential, Ishihara in 1993 suggested two main features 

of an analysis of a seismically-induced liquefaction, which are the onset condition that is governed by cyclic 

strength and the post-seismic stability analysis that is controlled by residual strength. With respect to the 

residual strength study alone, evidence from many laboratory monotonic and cyclic shear tests indicates 

that cyclic loading and monotonic loading can both result in a consistent residual strength (Castro, 1969). 

Hence, the residual strength controls liquefaction susceptibility. The fundamental idea of the well-known 

liquefaction potential evaluation proposed by Poulos and Castro in 1985 was that liquefaction susceptibility 
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depends on the soil’s initial state relative to the steady state line in a state diagram. They believe the 

undrained steady state strength is only a function of void ratio and the soil itself. Therefore, the major task 

of liquefaction potential evaluating the of a soil structure such as a foundation, dam, embankment or 

hydraulic sand fills is to select an appropriate and representative undrained residual strength, which can be 

obtained by careful laboratory monotonic undrained triaxial testing.  

Why a micromechanical study? 

Since the well-recognized dominant reason for liquefaction is the loss of contact between soil particles due 

to the generation of excess pore pressure, an understanding of sand behavior from a particle perspective in 

an undrained condition is necessary. In addition, among the factors that influence the laboratory testing to 

determine the undrained residual strength and the undrained response of a soil (i.e. void ratio, confining 

stress, and initial fabric etc.), the initial fabric is a critical one. This is evident from the experience that 

different sample preparation methods (i.e. moist tamping and air pluviation) can lead to different results 

even though the void ratio and confining stress are the same (Benahmed et al., 2015; Ishihara, 1993; Mulilis 

et al., 1977; Tatsuoka et al., 1986). Hence, it is essential to perform a study on the particulate 

micromechanics of sand media to reveal the intrinsic fabric and contact force properties of sand during 

liquefaction. However, laboratory testing of soil mechanical properties at the particulate level is very 

complex and in most case not attainable. Therefore, a numerical modelling technique has been adopted 

instead by most researchers conducting micromechanical studies on soil. This research will conduct 

micromechanical studies using a numerical modelling technique.  

1.2 Statement of the problem 

Micromechanical study of undrained granular behaviors and liquefaction     

A study of the undrained behavior of granular media as an important component of a liquefaction evaluation 

has been conducted by many researchers (Castro, 1969; Castro, 1975; Poulos et al., 1985). Among them, 

micromechanical studies of the undrained behavior of granular media are unusual because of its complexity, 

however, it is necessary since the notion that liquefaction is induced by the loss of contact resulting from a 

rapid pore pressure generation is well recognized. Due to the lack of a method to perform microscopic 

undrained testing, numerical simulation has been employed for most micromechanics research on granular 

material. To simulate undrained response and liquefaction microscopically, an essential component is the 

analysis of soil particle and fluid flow interactions. The simplified constant volume method cannot achieve 

this objective since it only simulates the behavior of a soil in an undrained condition by preserving the 

volume of the sample without any real computation of pore pressure and soil particle interactions. Hence, 

a comprehensive fluid-coupled DEM should be employed instead for the micromechanical simulation of 
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soil undrained response and liquefaction. Research that treated the fluid as a continuum coupled with the 

particles neglected the non-uniform pore pressure distribution in the micro-pores in the assembly, and 

hence, is not a comprehensive fluid-coupled DEM. As indicated by Iwashita and Oda (1999), to 

successfully conduct a fluid-coupled DEM simulation, at least four problems regarding pore pressure 

computation should be solved, which are the pore volume change due to particle movements, the excess 

pore pressure resulted from the pore volume change, the excess pore pressure forces exerted on particles, 

and the dissipation of excess pore pressure. The idea of computing each pore’s individual pressure was 

initially proposed by Hakuno and Tarumi (1988) and extended later by Nakase et al. (1999), and Olivera 

(2004). Although the fluid-coupled DEM model proposed by Olivera (2004) successfully depicts the 

undrained behavior of relative loose to dense granular assemblies for small to medium strain ranges, it fails 

to capture the phenomenon of liquefaction, because it does not allow the computation of pore pressures 

when rapid changes in pore structure due to creation and disintegration of inter-granular contacts occurs. 

Following his fluid-coupled DEM idea, this research will further develop a pore identification scheme, 

which keeps track of “pore groups” where some voids may coalesce due to contact disintegration and other 

voids may be subdivided into parts due to contact creation. It will help with handling the extremely complex 

modifications of pore space when both coalescence and subdivision of voids affecting a group of voids take 

place simultaneously. Using this “pore groups” idea, a comprehensive fluid-coupled DEM analysis of 

undrained soil behavior will be carried out and the micromechanical mechanism of liquefaction will be 

studied with the aim of extracting information on the particle scale and applying it to understanding the 

associated mechanical behaviors. 

Permeability effect on liquefaction susceptibility  

Permeability as an important indicator of the pores media’s potential for fluid flow is frequently accessed 

in the geotechnical engineering related design process such as slope stability analysis, foundation design, 

and dam or embankment design. This is due to the closely relationship between permeability and pore 

pressure build up and dissipation rate, which has a strong impact on the safety and stability of geotechnical 

engineering constructions. Hence, it is necessary to examine the permeability effect when studying the 

undrained behavior of granular media. With regards to its effect on liquefaction, studies from both 

laboratory testing and numerical simulations of soil subjected to cyclic loading were conducted in the past 

two decades by many researchers, most of which indicate that soil with a higher permeability tends to be 

less susceptible to liquefaction (Dewoolkar et al., 1999; Yang and Elgamal, 2002). Much less attention has 

been paid to the effect of permeability on the static liquefaction of a sample subjected to monotonic loading. 

Some representative studies are for example, the study of undrained behaviors of liquefiable soil with 

different percentages of fine components performed by many researchers (Evans and Zhou, 1995; Lade and 
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Yamamuro, 1997; Law and Ling, 1992; Pitman et al., 1994; Yamamuro and Lade, 1997), which indirectly 

indicated the permeability influence on the liquefaction potential of sand. Another representative simulation 

study conducted by Yang and Elgamal in 2002 showed that with identical mechanical soil properties in a 

model, a sample with a low permeability displayed a much larger shear resistance compared to the one with 

a higher permeability due to the negative pore pressure generation. However, their study of permeability 

effect is under drained simple shear condition which is not sufficient to depict permeability effect in an 

undrained condition. Since the effect of permeability on a soil subjected to cyclic loading has been shown 

to be very significant in tests and simulations, its influence should be equally extended to monotonic loading 

due to similar mechanisms of pore pressure generation and dissipation. Thus, a comprehensive study of the 

permeability effect on the undrained behavior of granular media under monotonic loading, especially on its 

liquefaction susceptibility is essential to understanding the phenomenon of liquefaction. In this research, a 

numerical study of the permeability effect on granular media is conducted by directly assigning different 

representations of permeability of a liquefiable granular assembly and exploring their effect on the 

liquefaction susceptibility. Meanwhile, to develop a comprehensive permeability study, a micromechanical 

analysis will be conducted, which aims at demonstrating the mechanisms by which permeability affects the 

undrained behavior of liquefiable granular media. 

Consistency of the critical state line and the steady state line 

From the literature, we see that much of the research on the residual shear strength during liquefaction is 

based on the hypothesis that the limiting state of sand reached during undrained liquefaction is the same 

critical state whose characteristics are well-established in soil mechanics from studies of drained 

deformation (Been et al., 1991; Sladen et al., 1985; Verdugo and Ishihara, 1996). The view of liquefaction 

as a critical state phenomenon has an important practical benefit in that we can use the extensively-studied 

drained characteristics of sands to predict behavior in undrained conditions and, consequently, liquefaction. 

In particular, the unified view makes it possible to establish the in-situ liquefaction potential of a sand 

deposit from common drained penetration testing. With the critical void ratio as a function of mean effective 

stress having the same characteristics for both drained and undrained behavior, liquefaction is viewed as 

the reaching of a critical state due to pore pressure generation that causes a related reduction in the mean 

effective stress until it reaches the critical value.  

The relationship between the critical void ratio and the mean effective stress is considered to be an intrinsic 

property of a granular material characterizing the state reached in the course of large shear deformations. 

Referred to as “critical state line” because of its linear shape in void ratio – log of mean effective stress 

coordinates, most studies of liquefaction consider it to also be an envelope of states reached in the course 

of large strain deformations when sand liquefies and essentially flows at a steady rate as a fluid (Been et 
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al., 1991; Sladen et al., 1985; Verdugo and Ishihara, 1996). Other studies suggest that the states reached 

during steady liquefaction flow are distinct and although characterized by a similar envelope of limiting 

states, refer to it as a “steady state line” (Castro, 1969; Alarcon-Guzman and Leonards, 1988; Alarcon-

Guzman et al., 1988). This is to emphasize the physical distinctions between the limiting states of drained 

and undrained processes. Therefore, it is necessary to examine the physical legitimacy of treating 

liquefaction as a critical state phenomenon so that the critical state line and steady state line are the same. 

Or on the other hand whether the physical processes during drained and undrained deformation are 

distinctly different and the critical state line and the steady state line require different representations. To 

conduct an in-depth investigation of the intrinsic properties of a limiting state for sand in both drained and 

undrained conditions, a detailed micromechanics study of granular material to reveal the microstructural 

differences between the drained transition to a critical state and the undrained transition to steady state flow 

is essential. Therefore, this study is aimed at examining the fabric, anisotropy and contact force 

characteristics for sand under critical and steady state flow conditions, and describing the macroscopic 

behavior of sand in these cases. Both drained and undrained simulation tests will be conducted to large 

strains. A comparison will be made between the steady state line and the critical state line to see whether 

they are microscopically identical or not.  

1.3 Objectives and approach of study 

The primary objective of this research was to numerically study the undrained behaviors of granular media 

from a micromechanical framework and explain their associated macroscopic behaviors in an undrained 

condition. Liquefaction as a particular undrained behavior, its mechanisms and characteristics will be 

studied for granular material in an undrained condition. Both microscopic and macroscopic studies will be 

performed to depict the underlying causes of the phenomenon of liquefaction. Some factors such as the 

void ratio, confining stresses, and permeability that affect the undrained behavior of liquefiable granular 

media will also be studied from a micromechanics point of view to reveal the reason for their effects. 

Besides, the consistency of the critical state line and the steady state line in liquefaction evaluation related 

researches, will be studied using both macroscopic and microscopic concepts. The specific approach of the 

study is as follows: 

1. Further develop the fluid-coupled DEM scheme that was first proposed by Olivera in 2004 by extending 

its capability to handle rapid changes in pore structure due to the creation and disintegration of inter-

granular contacts. This will also improve the method’s effectiveness in computing the pore pressure 

variations when extremely complex modifications of pore space involving both coalescence and 
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subdivision of voids is taking place. This usually affects a group of voids simultaneously and frequently 

appears during the initiation of liquefaction at large strains.  

2. Compare the behavior of improved fluid-coupled DEM model with the behavior of a poro-elastic 

configuration by conducting pore pressure equalization test and pore pressure dissipation test. Compare the 

pore pressure dissipation test results with those obtained from Terzaghi’s classical one-dimensional 

consolidation theory.  

3. Perform two-dimensional undrained biaxial compression simulations on granular assemblies with 

different initial void ratios and confining stresses. Extract data from the simulations and conduct mechanics 

and micromechanics analyses. Focus on fabric, anisotropy, and contact forces variations when studying the 

micromechanical properties of the assemblies and interpreting the associated macroscopic behavior 

exhibited during deformations. 

4. Compare the above simulated results with those from the laboratory tests to evaluate the effectiveness of 

the simulation. Also, a comparison of the undrained behavior obtained using the fluid-coupled DEM 

approach with that from the behavior indicated by the frequently applied constant volume method will be 

made, aiming at illustrating the deficiency of the constant volume method due to its failure to compute the 

pore pressure effect on the particles.   

5. Conduct a study of the effect of permeability on the liquefaction susceptibility of a liquefiable assembly. 

Perform undrained biaxial compression simulations on the given assembly with different descriptions of 

permeability. And study the permeability effect on undrained behavior of the liquefiable assemblies from 

both macroscopic and microscopic perspectives.  

6. Perform both drained and undrained biaxial compression simulations on a series of granular assemblies 

with different initial void ratios and confining stresses subjected to a large strain. Extract the data for the 

void ratio, the average coordination number, and the mean effective stresses at chosen ultimate state points. 

Develop relationships of void ratio versus mean effective stress and average coordination number versus 

mean effective stress using the data at the ultimate states for both drained and undrained simulations. 

Compare and study the consistency of the two groups of relationships.  

1.4 Organization of the thesis 

This thesis is organized as follows: 

Chapter 1 introduces some well-known liquefaction failures in civil construction history and then proposes 

a definition of liquefaction and stresses the importance of a micromechanical study. Following a statement 

of the problem that exists so far, a micromechanical study on undrained behavior of granular media is 
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proposed. It then, presents the objectives and approaches of a numerical micromechanical study proposed 

for this thesis. Finally, it lists an outline and organization of this thesis and explains the significance of its 

findings.   

Chapter 2 summaries a literature review of both continuum mechanics based and micromechanics based 

concepts and properties of sand. Particularly, the undrained behavior and properties of sand obtained from 

the traditional soil mechanics and a brief explanation of some micromechanics concepts and theories are 

introduced to provide a better understanding of the results in later chapters. A history of the development 

of DEM and fluid-coupled DEM is introduced. Different understandings of the consistency and differences 

between critical and steady state lines and studies of permeability impacts on liquefaction are reviewed and 

discussed. 

Chapter 3 illustrates in detail the methodology of the adopted Distinct Element Method (DEM), and the 

proposed further developed fluid-coupled DEM scheme. As main components of the DEM, the force 

displacement law, the equation of motion, damping effects, and a critical time step are introduced with an 

application to elliptical particles. For fluid flow effect, a systematic process from pore identification to 

individual microscopic pore pressure calculations and their coupling with DEM are presented. In addition, 

an explanation of the servo control boundary conditions implemented in the simulation, and the adopted 

representations of the macroscopic average stress, strain and pore pressure are also shown in this chapter. 

Finally, the “pore groups” idea and some of the fluid-coupled DEM implementation details are enumerated, 

and a comparison of improved model’s behavior with the behavior of a poro-elastic configuration is 

presented. 

Chapter 4 presents results of the undrained biaxial compression simulations using the proposed further 

developed fluid-coupled DEM for granular assemblies with different initial conditions (void ratio and 

confining stress). A particular floating particle removal technique is presented that creates samples with 

different initial void ratios for simulations. With the data extracted from the simulations, analyses based on 

both classical soil mechanics and micromechanics are conducted, which interpret the macroscopic 

undrained behaviors of the granular assemblies through micromechanical concepts and descriptors. A 

comparison of the simulated results with physical data taken from laboratory tests found in the literature is 

made to show the practicality of the simulation. At the end of the chapter, a comparison of the undrained 

behaviors obtained by using the proposed further developed fluid-coupled DEM with that from the constant 

volume method is performed and studied to examine the differences between the two methods. 

Chapter 5 shows a study of the effect of permeability on liquefaction susceptibility by using improved fluid-

coupled DEM with various permeability representations. Five simulations are conducted on exactly the 
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same liquefiable assembly but with different permeability representations. Both soil mechanics and 

micromechanical analysis are performed to study the impact of permeability on the liquefaction 

susceptibility. The simulated results are then compared with those of laboratory undrained tests of sand 

with different percentages of fine components taken from the literature to show the consistency. 

Chapter 6 presents a study of the consistency between the critical state line and the steady state line from 

the perspective of both classical soil mechanics and micromechanics. A series of drained simulations and 

some undrained simulations in addition to those already presented in Chapter 4 are conducted in this chapter 

to construct the critical state line and steady state line. The consistency of the two lines is studied in terms 

of both void ratio and average coordination number versus the mean effective stress, the former of which 

is also compared with that from the physical data found in the literature. 

Chapter 7 highlights the conclusions of this thesis and proposes some work and some recommendations for 

the future. 

1.5 Significance of the research 

In this research, a further developed version of the fluid-coupled DEM model that was first developed by 

Olivera in 2004 is proposed by introducing the idea of “pore groups”. Using this idea, the difficulty of 

effectively computing the pore pressure effect on particles during the rapid changes in pore structure due 

to creation and disintegration of inter-granular contacts is overcome. This occurs, during the formation of 

liquefaction, when extremely complex modification of pore space occurs when both coalescence and 

subdivision of voids is taking place affecting a group of voids simultaneously. Using this method, the “pore 

groups” are kept track of when some voids coalesce due to contact disintegration and other voids are 

subdivided into parts due to contact creation, hence, allowing the micromechanical undrained behavior of 

a granular media to be simulated. Due to the effectiveness in capturing the microscopic pore pressure effects 

on the particles in the assembly, the formation mechanism of the liquefaction phenomenon is interpreted 

through the micromechanical descriptors. This contributes to a comprehensive understanding of 

liquefaction. In addition, through a comparison between the further developed fluid-coupled DEM in this 

research and the frequently used constant volume method, the deficiencies of the latter are explained. 

A micromechanical study of the effect of permeability on the liquefaction susceptibility of a granular media 

subjected to a monotonic loading conducted in this research, describes the micromechanical mechanisms 

controlling the influence of permeability on liquefiable assemblies. The permeability effect depicted in the 

simulation provides insights into the practical evaluation of liquefaction potential. 

A micromechanical study of the ultimate states of granular media in drained and undrained conditions, the 

critical state and the steady state was conducted. The different opinions regarding the consistency of the 
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critical state line and steady state line in past research were clarified using micromechanical descriptors. 

The comparison of the two ultimate state lines contributes to the fundamental justification for treating 

liquefaction as a critical state phenomenon and using the much better-studied drained characteristics of 

sands to predict behavior in the undrained and liquefaction conditions. It also contributes to the 

characterization of the parameters controlling liquefaction. 
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Chapter 2 Literature Review 

2.1 General 

This chapter presents a literature review of both continuum mechanics based and micromechanics based 

concepts in studies of granular material, and reviews the engineering properties of sand in both drained and 

undrained conditions. Particularly, the undrained behavior and properties of sand obtained from the 

traditional soil mechanics and a brief explanation of some micromechanics concepts and theories are 

introduced for a better understanding of the results in later chapters. Section 2.2 introduces a history of the 

development of DEM and fluid-coupled DEM. Section 2.3 gives an introduction to some typical undrained 

behaviors and studies of granular soil based on classical soil mechanics. A description of micromechanics 

based concepts and theories related to this research is presented in section 2.4. 

2.2 Evolution of micromechanical studies on granular media 

The micromechanical study of granular media started since the middle of the twentieth century, and 

experienced four phases, which are a qualitative study, a quantitative study, a numerical DEM study, and a 

fluid-coupled DEM study. The first three phases are only related to behavior of dry granular media at a 

particle level and do not involve fluid flow. In the following, the evolution of micromechanical studies on 

granular media will be introduced in terms of these four phases. 

2.2.1 Qualitative micromechanical study of granular media 

Initial studies of the micromechanics of discrete assemblies started with using the metal rods by Schneebeli 

(1956) and later the optically sensitive material by Dantu (1957) to simulate a two-dimensional discrete 

system. The forces were transmitted through the chains of particles in a preferred direction was discovered 

from using the optically sensitive material, which announced the importance of the study of microstructure, 

fabric anisotropy and the internal force interaction mechanism of granular media.  

Among the earliest studies of fabric anisotropy, the studies of the contact frequency distribution in the form 

of a rosette by Biarez and Wiendieck (1963) showed that contact anisotropy and the applied load direction 

are almost coincident. In 1969, De Josselin De Jong and Verruijt conducted a biaxial compression test using 

photo-elastic discs to extract microscopic information from discrete granular models (De Josselin De Jong 

and Verruijt, 1969). Figure 2.1(a) explains the test settings (𝐹2 > 𝐹1), and the induced contacts in the 

vertical and horizontal directions are shown in Figure 2.1(b) and (c), respectively. Conspicuously, more 

contacts are exhibited in the vertical direction than in the horizontal direction, which is in accordance with 

a higher load 𝐹2 being applied vertically than the load 𝐹1 in the horizontal direction. The difference between 

the number of contacts in the two directions indicates the production of an anisotropy. Inspired by the above 

work, Oda and Konishi (1974a), (1974b) performed biaxial compression tests and simple shear tests using 
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photo-elastic cylinders to examine contact normal directions and contact force distribution characteristics. 

The contact normal directions and contact force distributions they extracted from the isochromatics 

confirmed Dantu’s conclusion that loads are transmitted through chains of particles and perpendicular to 

the contact planes (Oda and Konishi, 1974a, b). In addition to the above studies on the anisotropy and 

internal force transmission, the average coordination number as a crucial micromechanical descriptor was 

also studied and demonstrated that it is highly correlated with the void ratio (porosity) and the relative 

density of a material (Smith et al., 1929; Field, 1963; Athanasiou-Grivas and Harr, 1980). 

 

Figure 2.1 Biaxial compression test on a photo-elastic disc assembly (a) contact force distribution; (b) 

contacts in vertical direction; (c) contacts in horizontal direction (after De Josselin De Jong and Verruijt, 

1969) 

2.2.2 Quantitative micromechanical study and numerical simulation of granular media 

The quantitative study of the micromechanical properties of granular materials started with the study of the 

average stress tensor (Hill, 1963; Weber, 1966; Drescher et al., 1972;Landau and Lifshitz, 1980) and the 

distribution of particle contact orientations (Biarez and Wiendieck 1963; Horne, 1965; Konishi, 1978) for 

a large homogeneous discrete assembly. Both two and three dimensional models using photo elastic 

materials were adopted for extracting microscopic information. In 1980, a stress-force-fabric relationship 
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was proposed by Rothenburg (1980) (see equation (2.26)), which incorporated the macroscopic stress, the 

contact forces and the associated anisotropic descriptors. A detailed description of the quantitative study of 

micromechanics on granular materials has been included in section 2.3. 

The micromechanical study of granular media developed rapidly in the late of 1970’s due to the availability 

of the computer facilities. Numerical methods were developed to simulate particle movement and load 

transmission, which were favored than the other methods for the easiness of extracting the micromechanical 

details at each step during a test. In 1978, the Distinct Element Method (DEM) was developed (Strack and 

Cundall, 1978) to simulate a two-dimensional granular system under a simple shear mode. This method is 

a modified version of the Distinct Block Method (DBM) proposed by Cundall (1971), which was applied 

to simulate forces between discrete blocks of rock mass. The FORTRAN program BALL was constructed 

to apply the DEM model to a granular media in order to produce a numerical analogue of the published 

laboratory tests done by De Josselin De Jong and Verruijt (1969), and Oda and Konishi (1974a). Following 

the above pioneering work, Bathurst in 1985 implemented a highly modified version of BALL, named 

DISC, to simulate a two-dimensional biaxial compression test (Bathurst, 1985; Rothenburg and Bathurst, 

1989; Rothenburg and Bathurst, 1991; Bathurst and Rothenburg, 1988; Bathurst and Rothenburg, 1990), 

the stress-force-fabric relationship (2.26) was verified by these numerical simulations. 

2.2.3 Numerical simulation of undrained granular media 

The undrained simulation applying the Discrete Element Method was first mentioned by Cundall and Strack 

in 1979 (Cundall and Strack, 1979), but the pore pressure effect during an undrained test was not proposed 

until Hakuno and Tarumi (1988). In their work, the fluid was regarded as an elastic material, and the excess 

pore pressure was induced by the volume change of the system. Extending this idea, Nakase et al. (1999) 

used square elements instead of pores to calculate pore pressure changes in terms of the total volume change 

based on the displacement of neighbouring cells. Since there is a pressure discrepancy across cells, fluid 

will flow from a high pressure to a low pressure region, which in turn induces forces that are transmitted to 

the particles. Also extending the idea of Hakuno and Tarumi (1988), Thallak (1991) proposed a 2-D flow-

coupled discrete model of a disc assembly to simulate hydraulic fracturing in a granular media with a single 

phase fluid flow in 1991. The flow channels were assigned by connecting the nodes inside the pores, and 

the volumetric flow rates were computed using the Hagen-Poiseuille equation. A modified version of 

Thallak’s model was proposed by Olivera in 2004 to simulate undrained behaviors of granular material of 

elliptical particles. The main idea of Olivera’s model is adopted in this research to simulate undrained 

behaviors of the granular material. 
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2.2.4 Fluid-coupled DEM versus constant volume method 

Research on the numerical simulation of soil liquefaction or undrained responses mainly follows two 

methods, which are constant volume DEM modelling and fluid-coupled DEM modelling. The former 

imposes the constraint of constant volume for the target undrained simulation domain under the assumption 

that both soil particles and water have a low compressibility (Olivera, 2004; El Shamy and Zeghal, 2005; 

Hakuno and Tarumi, 1988; Nakase et al., 1999; Okada and Ochiai, 2007; Shafipour and Soroush, 2008; 

Thallak, 1991; Zeghal and El Shamy, 2004). The constant volume constraint is implemented by applying a 

compress strain rate in vertical direction and an equal tensile strain rate in the horizontal direction for two-

dimensional biaxial modelling. This method avoids complicated calculations for the soil and fluid 

interaction, but cannot depict the real characteristics of microscopic pore pressure variations and the 

micromechanical mechanisms of liquefaction. By contrast, the latter one, the fluid-coupled DEM can 

achieve this goal, although the computation is much more complicated than constant volume DEM 

modelling (Olivera, 2004; El Shamy and Zeghal, 2005; Hakuno and Tarumi, 1988;  Nakase et al., 1999; 

Okada and Ochiai, 2007; Shafipour and Soroush, 2008; Thallak, 1991; Zeghal and El Shamy, 2004). The 

fluid-coupled DEM method can be used to model the fluid phase and solid particle phase separately and 

simultaneously, so that the effects of the fluid phase are incorporated into modelling of the solid particle 

phase to implement the overall action into a motion calculation for the next cycle. Because the force from 

fluid flow through the porous media system is simulated and applied to the particles, this method can 

demonstrate the interactions between the fluid and soil particles and reveal the underlying characteristics 

of soil undrained response and the fundamental cause of liquefaction. The widely adopted fluid simulation 

components for fluid-coupled DEM are continuum based modelling by applying finite element or finite 

difference methods (Shafipour and Soroush, 2008; Zeghal and El Shamy, 2004) and microscopic based 

modelling achieved by computing of each one of the pore pressure’s variations (Olivera, 2004; Hakuno and 

Tarumi, 1988). To conduct a comprehensive micromechanical study, this research will adopt the latter one, 

to study the effects of each individual pore pressure and model the dynamic interactions between the fluid 

flow and soil particles. 

2.3 Undrained behaviors and studies of granular soil based on classical soil 

mechanics 

2.3.1 Undrained behavior of granular soil under monotonic shearing 

The undrained behavior of soil under monotonic shearing may be understood by examining the stress-strain 

response on the 𝑞-𝜀𝑡 plane, the pore pressure variation on 𝑢-𝜀𝑡 plane, the stress path on  𝑞-𝑝′ plane, and the 

state diagram on 𝑒-𝑝′ plane as shown conceptually as Figure 2.2. From Castro (1969), there are typically 

three types of stress-strain responses (Fig. 2.2a) with their associated pore pressure generation (Figure 2.2b) 
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and stress paths (Figure 2.2c) that can be predicted for a typical undrained monotonic loading test depend 

on the location of the soil’s initial state (e and 𝑝′) on the state diagram (Fig.2.2 d). 

 
                                         (I)                                                                                  (II) 

 

                                              (III)                                                                            (IV)  

Figure 2.2 Conceptual undrained behavior of sand from monotonic shearing tests 

Test (a) depicts a traditional strain softening response, which happens when the initial state of a soil sample 

is above the critical state line on state diagram (Figure 2.2d). This type of response usually occurs when the 

samples are very loose. It can be seen in Figure 2.2a that at the beginning of the test, the deviator stress 

increases rapidly and attains its peak value at a low axial strain. Meanwhile, the associated pore pressure 

(Figure 2.2b) also increases rapidly and reaches large value at the strain where the deviator stress hits its 

peak value. After that, the deviator stress starts to drop until a low value and stays at the low value (the 

residual strength) with increasing axial strain. In this phase, the pore pressure still increases a bit but quite 

slowly until it finally attains and maintains an almost constant peak value, which indicates the occurrence 
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of a steady state. The stress path of test (a) displayed in Fig. 2.2c also indicates a strain softening response, 

which tends to converge with a single point on the critical stress ratio line indicating the arrival of steady 

state deformation. Sladen et al. (1985) denotes a line connecting the convergence point and the peak 

deviator stress as a collapse surface, which distinguishes stable undrained behavior from unstable undrained 

behaviors. A similar idea called “flow liquefaction line” proposed by Lade and Pradel (1990) also presents 

the boundary between stable and unstable responses but connected the peak deviator stress point with the 

origin point on a 𝑞-𝑝′ plane, indicating no residual strength at the end of liquefaction. 

Test (b) in the figure displays a classical strain softening-hardening type of response. From Castro (1969), 

this type of response usually occurs when the initial state of the soil sample falls between the CSL (critical 

state line) and SSL (steady state line) indicated in Figure 2.2d. A characteristic of this strain softening-

hardening type of response is, that after reaching the maximum deviator stress at a relatively low strain, the 

shear resistance first declines to the minimum strength then remains at an almost constant value with 

continued shearing for a while and afterwards rises mildly. During the shear resistance variations, the pore 

pressure initially increases rapidly but at a lower rate than in test (a). When the deviator stress reaches its 

maximum value, the corresponding pore water pressure usually has attained over 80% of its ultimate value. 

Continued shearing raises the pore pressure to its maximum value. Afterwards, when the deviator stress 

increases again, the pore pressure reduces accordingly indicating the tendency to dilation. Distinctively, the 

particular stress-strain and the pore pressure response of test (b) corresponds to the tendency to change from 

volume contraction to volume dilation. The stage in which an intermediate minimum shear strength 

combines with a maximum pore water pressure was named quasi-steady state, by Alarcon-Guzman et al. 

(1988). This phenomenon has been described by numerous researchers (Ishihara, 1993; Ishihara et al., 1975; 

Konrad, 1990a,b; Mohamad and Dobry, 1986; Vaid et al., 1990). The minimum strength is important in a 

practical sense because it may be less than the residual strength. Sometimes “quasi-steady state” is also 

named as “limited liquefaction” alternatively that proposed by Alarcon-Guzman et al. (1988), Been et al. 

(1991), Castro (1969), and Ishihara et al. (1975). A concept very similar to quasi-steady state is the phase 

transformation proposed by Ishihara et al. (1975), and Ishihara (1993), which was also used to describe the 

tendency to temporary transition from contraction to dilation. For most cases, the above two terms may be 

used interchangeable, however, phase transformation is a more extensive concept, which is not necessarily 

associated with a temporary drop in shear stress. Some research indicates that the quasi-steady state depends 

on a soil’s condition during consolidation and initial shear (Ishihara, 1993; Verdugo and Ishihara, 1996). 

Kramer and Seed (1988) indicated limited liquefaction should also be considered as a type of liquefaction 

because of the danger induced by the large deformations. Although the quasi-steady state makes the 

undrained response very special, some research suggests that the quasi-steady state is the same as the steady 

state. Castro (1969) indicates that a steady state line and a quasi-steady state line merge in a state diagram. 
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Ishihara (1993) postulates that the phase transformation merges with the steady state for very loose samples, 

because of the never become apparent dilative tendency. He also pointed out that the internal friction angle 

at the quasi-steady state and at the steady state are the same. The stress path of test (b) shown in Fig.2.2c 

visually displays the phenomenon of phase transformation in terms of an “elbow” when it crosses the steady 

state line. Further increases follow the CSR line by continue shearing. 

Test (c) reveals a general strain hardening type of behavior, which usually happens when the initial state of 

the sample is below the steady state line (i.e. a dilative sample). It is shown in Figure 2.2a and b, both stress 

and pore pressure increase rapidly at the beginning of the test, and subsequently, pore water pressure reaches 

a maximum and then gradually reduces until the test terminates. On the contrary, in this process, the deviator 

stress continuously increases until the end of test. For load controlled testing, the test would terminate 

abruptly. However, for strain rate control, pore pressure might continue reducing until a constantly negative 

value is achieved, and the tendency to dilation would continue until the steady state deformation is reached. 

Reflected from the stress path, an “elbow” also exhibits in this strain hardening type of response when it 

crosses the CSR line, and will continue rising along the CSR line upon further shearing (see Figure 2.2 (c)).  

2.3.2 Critical state and steady state 

Critical state and steady state are similar concepts in soil mechanics, both of which are applied to define 

the ultimate state of a soil under shearing. Their difference lies in that the former occurs in a drained 

condition while the latter is usually associated with an undrained condition. From the definition, a critical 

state describes the ultimate state of a soil under drained shearing, in which it exhibits a constant stress, shear 

resistance, and void ratio (Roscoe et al., 1958). The prototype of the critical state is the “critical void ratio” 

or the “critical density” that was proposed by Casagrande (1940). This idea is quite similar to that of a 

critical state but with the focus on an unique void ratio or relative density that remains unaltered at the 

ultimate state instead of an overall condition the sand experiences. Figure 2.3 shows the critical void ratio 

obtained in a drained direct shear test that was conducted by Casagrande and Watson in 1938.  The figure 

indicates that both loose and dense samples merge to a unique critical void ratio at the end of the tests. 

Based on the critical void ratio, Roscoe et al. (1958) postulated during drained shearing, a loose sand sample 

will contract, while if it is dense it will dilate. Both loose and dense samples of the sand will attain and 

maintain the same ultimate state the “critical state”. Continuing with Roscoe’s idea, critical state soil 

mechanics is developed as a sub-branch of soil mechanics started in Cambridge, UK. Both the Granta-

gravel model and the Cam Clay model were proposed based on the theory of plasticity and the idea of 

critical state (Schofield and Wroth, 1968). 
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Figure 2.3 Concept of the critical void ratio (after Casagrande and Watson, 1938; Casagrande, 1976) 

Corresponding to the critical state, the steady state is the ultimate state for undrained shearing when 

“constant volume, normal and shear stresses, and velocity” are achieved (Poulos, 1981). For the liquefiable 

soils, the steady state only appears after flow liquefaction is initiated (Poulos, 1981). Some researchers 

believe that a “flow structure” exists when steady state deformation occurs (Poulos, 1981; Poulos et al., 

1985), however, only limited hypothesis descriptions of the imagined “flow structure” have been proposed, 

no quantitative demonstrations have been reported within the scope of the author’s knowledge. Figure 2.4 

and Figure 2.5 depict the steady state deformation in both monotonically and cyclically loaded 

anisotropically consolidated undrained triaxial tests that were conducted by Castro (1969). The figures 

indicate that both monotonic and cyclic loads can trigger liquefaction in undrained condition. The deviator 

stress dropped rapidly after the initiation of liquefaction and thereafter remained at a very low value with 

increasing axial strain which announced the formation of steady state. 

 

Figure 2.4 Steady state formation from three monotonically loaded, anisotropically consolidated triaxial 

tests (replot from Castro, 1969) 
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Figure 2.5 Steady state formation from a cyclically loaded, anisotropically consolidated triaxial test 

(replot from Castro, 1978) 

2.3.3 Dispute regarding the consistency of the critical state line and the steady state line 

As already introduced in Fig. 2.2, from Castro (1969), a granular soil’s behavior can be predicted based on 

its initial state referenced to the CSL and SSL on the state diagram. Hence, Castro (1969) believes the two 

lines are different, which prompted comparisons between the critical state line and the steady state line. In 

his thesis, a series of drained and undrained triaxial tests were conducted under load control, the critical 

state line constructed from drained tests and the steady state line constructed from undrained tests were 

obtained and compared. The result of the comparison is shown as Fig. 2.6, it can be seen from the figure 

that the critical state line 𝑒𝑆 and the steady state line 𝑒𝐹 varied greatly, 𝑒𝐹 lies to the left and below 𝑒𝑆. These 

two lines are both referenced to the initial condition of a given type of soil, consist of the locus of points 

that represents the condition of ultimate deformation under shearing. Each type of soil has unique critical 

and steady state lines, even though the initial anisotropy of the soil sample being tested may be different 

(Jafarian et al., 2013). It is indicated by Been and Jefferies (1985), and Jefferies and Been (2006) that as a 

reference criterion, the two lines encompass all the soil property information such as compressibility, grain 

character, and steady state friction angle (Been and Jefferies, 1985; Jefferies and Been, 2006). 

The dispute regarding the consistency of the critical state line and the steady state line has continued ever 

since Castro reported a discrepancy between the two lines. In 1981, Poulos (1981) presented a definition of 

steady state deformation, and postulated that a “flow structure” arises at the steady state. He pointed out 

that a steady state can exist in any drained condition as long as the “flow structure” appears, but did not 

mention the steady state line is unique under different drainage conditions. However, Poulos et al. (1988) 

indicated that a unique steady state line exists for a “narrowly graded, fine and angular quartz sand that is 

the tailing from tar-sand operations.” Consistent with Poulos et al., other researchers Been et al. (1991), 

Sladen et al. (1985), and Verdugo and Ishihara (1996) all believe in the coincidence of the critical state line 
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and the steady state line. Contrary opinions voiced by Alarcon and Leonards (1988),  Alarcon-Guzman et 

al. (1988), and Castro (1969) state that the drained and undrained steady state lines are different, it is the 

pore water pressure induced by the sudden soil structure collapse that results in the discrepancy between 

the two lines (Alarcon-Guzman et al., 1988). Also, Konrad (1990a),  (1990b) reported a non-uniqueness of 

the steady state line, both upper and lower limits of the steady state line were proposed based on laboratory 

tests. A coincidence of the steady state line and the critical state line was not supported by the research 

conducted by Konrad, because even the steady state line itself was not unique in his results.  

 

Figure 2.6 Comparison of the critical state line 𝑒𝑆 and the steady state line 𝑒𝐹 (Castro, 1969) 

2.3.4 State parameter and state index 

It is recognized that the stress-strain response of a soil under shearing depends on its initial void ratio and 

confining stress, which can be altered by an applied action. With different confining stresses, a soil can 
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behave quite differently even though having the same initial void ratio. Studies have shown that it is the 

combination of void ratio and confining stress that controls the deformation of a soil (Bolton, 1986; Rowe, 

1962; Roscoe and Poorooshasb, 1963). These authors postulate that the distance between the void ratio at 

initial state and the void ratio at steady state controls soil behavior, which is the prototype of the concept of 

a “state parameter”. However, it was not until in 1985 that this distance was named as “state parameter” by 

Been and Jefferies (1985). Since then, the void ratio and the confining stress have been unified as a one 

parameter to predict a soil’s behavior under shearing. 

The meaning of the state parameter 𝜓 can be explained with the help of Figure 2.7, it is the vertical distance 

from the current void ratio of the soil to the void ratio of the critical state at the same mean effective stress. 

From the studies of Been and Jefferies (1985), and Jefferies and Been (2006), soils with the same state 

parameter behave similarly in both drained and undrained conditions. The peak undrained shear stress, the 

pore pressure parameter, the angle of the shearing resistance, the cone penetration resistance, and the 

dilation rate are all highly related to the state parameter (Been and Jefferies, 1985; Jefferies and Been, 

2006). 

 

Figure 2.7 Concept of the state parameter (Jefferies and Been, 2006). 

Following the idea of the state parameter from Been and Jefferies (1985), Konrad (1990a), (1990b) 

proposed a modified state parameter, which has the form of equation (2.1): 

Ψ𝑖 = 𝑒𝑐 − 𝑒𝑈𝐹                                                                                     (2.1)                                                                        

Where 𝑒𝑐 is the void ratio after consolidation and 𝑒𝑈𝐹 denotes the void ratio at the upper limit of the steady 

state line. Konrad’s idea came from the fact that the steady state points scattered significantly in the 

laboratory testing he conducted. He concluded based on the test results he obtained that the steady state line 

is not unique, but that upper and lower limits of the steady state line exist. The modified state parameter 
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that proposed by Konrad applies the void ratio at the upper limit of the steady state line instead of at the 

unique steady state line proposed in prior research.  

In 1993, Ishihara proposed a state index given the reason that a state parameter is less tenable for soils at a 

low confining stress and a high void ratio. He pointed out that sand behavior becomes very sensitive when 

the void ratio is large, therefore, instead of using the void ratio at the steady state, Ishihara proposed using 

the void ratio at the quasi-steady state as a reference. The advantage of this modification lies in that it 

considers the sand behavior in the medium strain range, and hence is well suited to determining the 

minimum strength in a practical problem. The definition of the state index 𝐼𝑠 is given by equation (2.2). 

𝐼𝑠 =
𝑒0 − 𝑒

𝑒0 − 𝑒𝑠
                                                                                 (2.2) 

where  𝑒0 is the threshold void ratio at which the residual strength becomes zero and 𝑒𝑠 is the void ratio at 

the quasi-steady state for a given confining stress. Since the state index 𝐼𝑠 takes care of the medium strain 

range, it has practical meaning. However, the limitation of the state index lies in the non-uniqueness of the 

QSS line, which usually depends on the initial fabric of the sand. Thus, the sample preparation method has 

to be indicated when using the state index in a practical problem. On the contrary, the state parameter 

applies the void ratio at the critical state, which is determined uniquely without relating to the initial fabric. 

2.3.5 Influence of sample preparation methods 

It is introduced above that the initial state of a soil, specifically the void ratio and confining stress, controls 

a soil’s behavior to a significant extent, i.e. the steady state line is constructed on the e-𝑝′ plane. However, 

some research (Mulilis et al., 1977; Tatsuoka et al., 1986; Ishihara, 1993) reveal that soil samples formed 

with the same relative density but using different methods may exhibit distinct differences in resistance to 

liquefaction even under the same confining stress. In laboratory testing, the two frequently used methods 

for sample preparation are the moist tamping and the air pluviation. The former may be assumed to 

reproduce loose windblown deposits with subsequent flooding, while the latter may represent the formation 

of end-tipping with subsequent flooding. Figure 2.8 depicts the influence of sample preparation on the 

cyclic stress ratio of sand reported by Mulilis et al. in 1977. Both moist tamping and air pluviation were 

adopted as the sample preparation methods. It is shown in the figure that the cyclic stress ratio varies 

significantly between the two sample preparation methods even though the relative density and confining 

stress are the same for both samples. The distinct responses may be induced by different fabric structures 

created during samples preparation. Figure 2.9 is reported by Benahmed et al. (2015), which demonstrates 

the influence of sample preparation on the stress-strain response and the effective stress paths of a typical 

soil. Again, both air pluviation and moist tamping methods are adopted to prepare soil samples with the 
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same relative density. However, it is indicated from the figure that in undrained loading, moist tamping 

leads to soil strain softening while air pluviation induces strain hardening. The corresponding effective 

stress path plots go completely opposite directions. Therefore, it may be concluded that void ratio or relative 

density is not enough to combine with the confining stress to determine the potential of a soil’s instability 

in an undrained condition. Some soil strcture characteristics should also be included in order to explain 

soil’s behavior under undrained shearing. 

 

Figure 2.8 Influence of different sample preparations on sand’s cyclic shear strength (Mulilis et al., 1977) 

 

Figure 2.9 Effects of sample preparation on stress-strain responses (left) and mean effective stress paths 

(right) (Benahmed et al., 2015) 

Explanations regarding why the two sample preparation methods can induce completely different responses 

were proposed by N. Benahmed et al. in 2015 using electron microscope observations. It is shown as Figure 

2.10 that microphotographs of Hostun sand from electron microscope observation reveal totally different 
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structures for the two methods. The moist tamping method produces an aggregates and macropores structure 

while dry pluviation generates a regular single-grained packing. It may be that the “metastable” macropores 

structure that the moist tamping method produces resulted in an instability leading to liquefaction, because 

of the tendency to a higher volume contraction would create a larger pore pressure and thereby a lower 

effective stress. However, this might only be the case for relatively loose samples since research from 

Ishihara (1993) indicates that the isotropic consolidation line for a sand in the densest state is unique from 

different preparation methods (Ishihara, 1993). 

 

Figure 2.10 Microphotographs showing aggregates and macropores structure, and regular single-grained 

packing structure (Benahmed et al., 2015) 

2.3.6 Permeability effect on liquefaction susceptibility 

Studies about the permeability effect on liquefaction susceptibility haven been conducted in the past two 

decades by many researchers from both laboratory testing and numerical simulations. Among them, most 

studies of permeability impacts on the excess pore pressure generation and dissipation properties are mainly 

focused on simulating the cyclic load occurring during an earthquake by using the centrifuge or shaking 

table methods. For example, the level ground seismic centrifuge test conducted by Dewoolkar et al. in 1999 

that used both water saturated soil and metolose (very viscous fluid) saturated soil to highlight the 

permeability effect, indicated that a lower permeability was achieved by dissolving powdered 

methylcellulose in water to induce a much higher excess pore pressure generation rate and a much lower 

dissipation rate than those obtained for water alone (Dewoolkar et al., 1999). The addition of metolose 

resulted in the occurrence of liquefaction, which did not happen in the comparable water saturated soil due 

to an associated higher permeability. Similar to the results from laboratory testing, numerical simulations 

of the permeability effect on liquefaction potential of sand subjected to cyclic loading conducted by other 
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researchers also demonstrated that soil with a higher permeability tends to be less susceptible to liquefaction 

(Yang and Elgamal, 2002). 

The effect of monotonic loading on static liquefaction was also examined in both laboratory and simulation 

studies although fewer studies were conducted than for cyclic loading. For example, studies on the 

liquefaction susceptibility of granular soil with different percentages of fine components are one of the 

representative studies that indirectly indicated permeability effect. Different permeabilities than that of a 

clean granular soil were examined by many researchers (Pitman et al., 1994; Lade and Yamamuro, 1997; 

Yamamuro and Lade, 1997; Law and Ling, 1992; Evans and Zhou, 1995), although these research did not 

concentrate on an analysis of the effect of permeability but rather on the influence of fine grained soils on 

liquefaction behavior and their contact mechanism on changing the undrained behavior. With respect to 

numerical study aspect, the numerical simulations of a drained monotonic simple shear test on a single 

element conducted by Yang and Elgamal (2002) showed that with identical mechanical soil properties in a 

model, a sample with a low permeability displayed a much larger shear resistance compared to the one with 

a higher permeability due to the negative pore pressure generation. However, the simulation is under 

drained condition, thus, the permeability effect on the liquefaction susceptibility is not really depicted. Due 

to the lack of attention to the effect of permeability on granular sand triggered liquefaction, this research 

will perform an extensive study of the effect of permeability from both macroscopic and microscopic 

perspectives, and explain the mechanism by which it affects the liquefaction susceptibility. 

2.4 Micromechanics based concepts and theories 

2.4.1 Descriptors of fabric and microstructure of granular media 

In order to apply a micromechanical analysis to a study of the undrained behavior of granular media, some 

terminology that is exclusively used in micromechanics on a particle scale need to be introduced. In contrast 

to the concepts of overall or average properties, such as void ratio 𝑒 and relative density 𝐷𝑟, which are used 

to indicate the average density of a given granular media on a macroscopic scale, concepts in 

micromechanics such as an average coordination number 𝛾  and contact density 𝑚𝑉  are the two 

corresponding fundamental parameters used to represent the contact between neighbouring particles and 

the degree of particle packing intensity. By definition, the average coordination number γ is the average 

number of neighboring particles that each particle is in contact with in an assembly (how many of contacts 

each particle has). It can be calculated by using two times the number of physical contacts 𝑀 (because each 

physical contacts contributes two contacts in an overall scale) divided by the total number of particles 𝑁 in 

any given assembly as equation (2.4): 

γ =
𝑀

𝑁
                                                                                    (2.4) 
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Similarly, the contact density 𝑚𝑣 is the number of contacts 𝑀 per unit volume 𝑉 in a three-dimensional 

system or per unit area 𝐴 in a two-dimensional plane, and can be represented as:  

𝑚𝑣 =
𝑀

𝑉
=

γN

𝑉
                                                                            (2.5) 

Average coordination number γ  and the contact density 𝑚𝑣  are related and both are terms used to 

quantitatively depict the intensity and denseness of particle packing, they are essential to the understanding 

of soils at a microstructural level. In addition, average coordination number is highly correlated with the 

void ratio (Athanasiou-Grivas and Harr, 1980; Smith et al., 1929). Since void ratio e is a fundamental 

parameter in describing soil behavior which various essential concepts in soil mechanics such as the state 

parameter are based on, therefore, the coordination number should be treated as an equally crucial variable 

that indicates a granular material’s behavior. In a given granular system, the average coordination number 

can to some extent indicate the stability of the system. The higher the average coordination number, the 

more stable a system is. Dense packing assemblies generally have high average coordination numbers. The 

minimum value of the average coordination number for a two-dimensional equilibrium system is 3 from a 

consideration of static equilibrium for each particle. 

In the case of concepts with respect to each individual particle, a sense of how the contacts between particles 

orientate or distribute spatially may be need to be introduced. Figure 2.11 presents the concept of contact 

normal, contact vectors, and contact forces given by Bathurst (1988). As illustrated on the figure, the contact 

vector 𝑙𝑐  is the length between a particle’s mass center and its contact point with another particle 

(Rothenburg and Selvadurai, 1981). A similar concept that describes how two particles in contact with each 

other are oriented is the ‘branch length’ used by Satake (1978). But branch length gives no indication on 

the shape of a particle, which is different from the contact vector. Also indicated in Figure 2.11 is the contact 

force and the contact normal direction. Basically, the contact force 𝑓𝑐 is the inter-particle force between 

contacting particles named A and B in the figure, and the contact normal 𝑛𝑐 is the unit vector orthogonal to 

the contact tangent line, which is tangent to both of the contacting particles and traverses the contact point. 

For particles with a round shape, the contact vector would be identical to the particle radius, and the contact 

normal orientation is parallel to the line that connects the contacting disc centers (Bathurst and Rothenburg, 

1988).   
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Figure 2.11 Concept of contact normals, contact vectors, and contact forces (Bathurst and Rothenburg, 

1988) 

2.4.2 Contact normal distribution 

To study the anisotropy characteristic of a granular system, it is necessary to understand how the particulate 

contacts variate in space, because generally anisotropy is created when the number contacts in one direction 

is greater than the others during external loading. This may be achieved by examining the number or 

proportion of contacts that rest in each interval given that the whole plane 2𝜋 is divided into continuous 

groups in the sense that each group has an orientation between 𝜃 and θ + Δθ. Then the contact normal 

distribution can be introduced as a function that is applied to describe the anisotropy characteristic in terms 

of a polar histogram. For example, if the overall quantity of contacts 𝑀 in the assembly is divided into polar 

groups, each one of which has an orientation between 𝜃 and θ + Δθ , then the number of contacts in each 

group or interval can be described intuitively by equation (2.6) (Horne, 1965): 

Δ𝑀 = 𝑀𝑆(𝜃)Δ𝜃                                                                      (2.6) 

where S(𝜃) represents the contact normal distribution function. Since contacts within group 𝜃 and 𝜃 + 𝜋 

coincide, this symmetric property lead to the fact that the contact normal distribution function S (𝜃) should 

equals S(𝜃 + 𝜋). In addition, if we take the integral of  𝑆(𝜃) from 0 to 2𝜋, it yields one (see equation 2.7). 

For an isotropic granular system, the value of 𝑆(𝜃) is 1 2𝜋⁄ .  

∫ 𝑆(𝜃)𝑑𝜃 = 1                                                                        (2.7)
2𝜋

0
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Since a Fourier series can be broadly used to describe a continuous periodic function, and inspired by the 

physical test results of fabric changes from Konishi (1978), Rothenburg (1980) suggested the following 

Fourier series approximation of S(𝜃) for a two-dimensional disc assembly:  

S(𝜃) =
1

2𝜋
{1 + 𝑎𝑛𝑐𝑜𝑠2(𝜃 − 𝜃𝑎) + 𝑏𝑛𝑐𝑜𝑠4(𝜃 − 𝜃𝑏) + ⋯}                                 (2.8) 

where 𝑎𝑛 and 𝑏𝑛 are the second and fourth order coefficients of contact normal anisotropy, 𝜃𝑎 and 𝜃𝑏 are 

the second and fourth order principal directions of contact normal anisotropy. 𝑎𝑛  and 𝑏𝑛  indicate the 

intensity of the contact normals in the principal directions of contact normal anisotropy, usually higher 

values of 𝑎𝑛  and 𝑏𝑛  represent higher levels of anisotropy. Odd terms are cancelled out because of the 

symmetric property of function S(𝜃). Demonstrations of shape of the function S(𝜃) and the associated 

anisotropy parameters 𝑎𝑛, 𝑏𝑛, 𝜃𝑎 and 𝜃𝑏 for both initial and critical states are depicted as Fig. 2.12 (a) and 

(b). Both of the two polar histogram distributions are from a biaxial compression simulation of a 10000 

particle sample - 36 intervals in total are grouped from the whole plane  2𝜋. The smooth red solid line in 

the figure is obtained by the fourth order approximation of equation (2.8). It is seen in this figure that S(𝜃) 

with a fourth order truncation approximates the contact normal distribution well. However, it can be 

imagined that an increasing number of particles and total interval groups should contribute to a smoother 

contact normal distribution, which should be closer to the Fourier series approximation as given by equation 

(2.8).   

 

                                                                              

(a)                                                                      (b) 

Figure 2.12: Contact normal distributions and their approximation by a continuous function S(θ): (a) 

initial state; (b) critical state 

𝑎𝑛 = 0.236   𝑏𝑛 = 0.096  𝜃𝑎 = 1.564   𝜃𝑏 = 2.379 
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2.4.3 Contact force distribution 

Since the contact force 𝑓𝑖
𝑐(𝜃) between any two contacting particles is a vector, it can be converted into the 

summation of two perpendicular vector components in a plane Cartesian coordinate system: the normal 

contact force vector 𝑓𝑛
𝑐 and the tangential contact force vector 𝑓𝑡

𝑐. Each one of them can be associated with 

a directional unit vector in a polar coordinate system 𝑛 = (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃) and 𝑡 = (−𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃) to indicate 

the corresponding force component orientation. So the contact force 𝑓𝑖
𝑐(𝜃) can be rewritten as: 

𝑓𝑖
𝑐(𝜃) = 𝑓𝑛

𝑐(𝜃)𝑛 + 𝑓𝑡
𝑐(𝜃)𝑡                                𝑖, 𝑗 = 1, 2                     (2.9) 

Both normal and tangential contact forces can be statistically counted in a manner analogous to the contact 

normal distribution function. Again, divide the plane 2𝜋 into groups in a continuous pattern, each one of 

the groups lies in the interval between 𝜃  and  𝜃 + 𝜋 , thus the numbers of normal contact forces and 

tangential contact forces that fall within each group would exhibit certain types of distribution in a plane. 

Since each pair of normal contact forces possesses the same magnitude but totally opposite orientation, 

analogous to the contact normal distribution, the normal contact force distribution can also be approximated 

by a Fourier series. A truncated representation of a normal contact force 𝑓𝑛
𝑐(𝜃) with an even term is shown 

in equation (2.10) (Rothenburg, 1980). Only even terms are reserved for the same reason as for the contact 

normal distribution: normal contact forces that fall in the interval of 𝜃 and 𝜃 + 𝜋 coincide. 

𝑓𝑛
𝑐(𝜃) = 𝑓0

𝑐{1 + 𝑎𝑓𝑐𝑜𝑠2(𝜃 − 𝜃𝑛)}                                                        (2.10) 

where 𝑓0
𝑐 is the average contact force in an assembly, 𝑎𝑓 is a second-order coefficient of the average normal 

contact force anisotropy, 𝜃𝑛 is the second-order principal direction of normal contact force anisotropy. 𝑎𝑓 

indicates the extent of the normal contact forces that fall into the direction 𝜃𝑛 throughout the assembly.  

A similar action can be applied to obtain the tangential contact force distribution 𝑓𝑡
𝑐(𝜃), which can also be 

approximated by a truncated Fourier series as given by equation (2.11), but with odd terms (Rothenburg, 

1980): 

𝑓𝑡
𝑐(𝜃) = −𝑓0

𝑐{𝑎𝑡𝑠𝑖𝑛2(𝜃 − 𝜃𝑡)}                                                            (2.11) 

where 𝑎𝑡 is a second-order coefficient of the average tangential contact force anisotropy, 𝜃𝑡 is the second-

order principal direction of tangential contact force anisotropy. Equation (2.11) is satisfied when 𝜃𝑡  is 

equivalent to 𝜃𝑎, otherwise a parameter 𝛼𝑤 should be introduced to counter balance the difference between 

𝜃𝑡 and 𝜃𝑎. A demonstration of the measured normal and tangential contact force distributions for the initial 

and critical states from a 10000 particle biaxial compression simulation with 36 group orientations fitted 

with equation (2.10) and (2.11) is shown in Figs. 2.13 and 2.14, respectively. A better fit may be expected 
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if an assembly with a larger number of particles along with more group intervals is introduced, although 

from the graphs the Fourier series approximations are already fit with the simulation results well. 

 

 

(a)                                                                (b) 

Figure 2.13 Average normal contact forces and their approximation by a continuous function: (a) initial 

state; (b) critical state 

 

            

(a)                                                                    (b) 

Figure 2.14 Average tangential contact forces and their approximation by a continuous function: (a) initial 

state; (b) critical state  

𝑎𝑓 = 0.314     𝜃𝑛 = 1.567    

𝑎𝑡 = 3.1      𝜃𝑡 = 0.747    
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2.4.4 Average stress tensor from microstructure representation 

Previous studies of the stress tensor in a granular assembly indicate that considering the tractions on the 

boundary segments and following Cauchy’s theorem and the Gauss-Green theorem, a macroscopic stress 

tensor 𝜎𝑖𝑗 may be introduced to describe the tractions on the boundary, which has the form of: 

𝜎𝑖𝑗 =
1

𝑉
∑ 𝑓𝑖

𝛽

𝛽∈𝑆

𝑟𝑗
𝛽
                                                                             (2.12) 

where 𝑓𝑖
𝛽

is the boundary force, and 𝑟𝑗
𝛽

 is the location vector that corresponds to that force (Landau and 

Lifshitz, 1980; Drescher and De Josselin De Jong, 1972; Strack and Cundall, 1978). In addition, from static 

equilibrium, considering all contact forces and the associated position vector for each particle, Rothenburg 

(1980) proposed that in an overall sense, boundary forces and internal contact forces are related through 

the boundary force position vector and contact vector as: 

∑ 𝑓𝑖
𝛽

𝛽∈𝑆

𝑟𝑗
𝛽

= ∑𝑓𝑖
𝑐

𝑐∈𝑆

𝑙𝑗
𝑐                                                                    (2.13)  

where 𝑓𝑖
𝑐 is the internal contact forces between contacting particles and 𝑙𝑗

𝑐 is the contact vector from each 

contact. Thus, combining equations (2.12) and (2.13), the macroscopic average stress tensor may be 

represented by the volume average of internal contact forces and their associated contact vector lengths as 

follows: 

𝜎𝑖𝑗 =
1

𝑉
∑𝑓𝑖

𝑐𝑙𝑗
𝑐

𝑐∈𝑉

    𝑖, 𝑗 = 1, 2, 3                                                           (2.14) 

The same form of above representation was also reported by Weber (1966), Hill (1963) and Dantu (1968). 

The second order stress tensor 𝜎𝑖𝑗 is considered to possess the same properties as in continuum mechanics 

and will be treated the same, although this would be strictly true only for an assembly containing an infinite 

number of particles. Nevertheless, it may be a reasonable assumption when an assembly is large.   

Although the macroscopic average stress tensor on the boundary can be described by using the volume 

average of a summation of contact forces and contact vectors, it is indeed very difficult to compute each 

one of the contact forces and contact vectors. Some average values of contact forces and contact vectors 

may be instead adopted as follows as proposed by Rothenburg (1980), and Mehrabadi et al. (1982). 

Considering the collection of all the contact forces in an assembly into 𝜃𝑔  groups, each one of which 

possesses an orientation between 𝜃 and θ + Δθ. Then the number of contacts that fall within each group 

𝑀𝑔 can be approximated by: 
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𝑀𝑔 = 𝑀𝑆(𝜃)Δ𝜃                                                                   (2.15)     

Averaging 𝑓𝑖
𝑐(𝜃)  and 𝑙𝑗

𝑐(𝜃)  for each group, the group average 𝑓𝑖
𝑐(𝜃)𝑙𝑗

𝑐(𝜃)  may be treated as a 

representative value for the following computation given that 𝑓𝑖
𝑐(𝜃) and 𝑙𝑗

𝑐(𝜃) are not dependent on each 

other, and the average stress tensor can thus be modified correspondingly as: 

𝜎𝑖𝑗 =
1

𝑉
∑𝑓𝑖

𝑐(𝜃)𝑙𝑗
𝑐(𝜃)

𝜃𝑔

𝑀𝑆(𝜃)Δ𝜃             𝑖, 𝑗 = 1,2                                 (2.16) 

For an granular assembly with an infinite number of particles and volume, an integral expression can be 

applied to approximate the summation of all group values, which is: 

𝜎𝑖𝑗 = 𝑚𝑣 ∫ 𝑓𝑖
𝑐(𝜃)𝑙𝑗

𝑐(𝜃)𝑆(𝜃)d𝜃
2𝜋

0

            𝑖, 𝑗 = 1,2                                  (2.17) 

where 𝑚𝑣 is the contact density, which is given by equation (2.5). Splitting the average contact force for 

each group into normal and tangential contact force components with the associated directional unit vectors 

as given in equation (2.9), the stress tensor can be presented as: 

𝜎𝑖𝑗 = 𝑚𝑣 ∫ [𝑓𝑛
𝑐(𝜃)𝑛 + 𝑓𝑡

𝑐(𝜃)𝑡]𝑙𝑗
𝑐(𝜃)𝑆(𝜃)d𝜃

2𝜋

0

      𝑖, 𝑗 = 1,2                   (2.18) 

For a granular disc system with an equal diameter 𝑑0, Rothenburg (1980) proposed that the average stress 

tensor 𝜎𝑖𝑗 can be further simplified as: 

𝜎𝑖𝑗 =
𝑚𝑣𝑑0

2
∫ {𝑓𝑛

𝑐(𝜃)𝑛𝑖𝑛𝑗 + 𝑓𝑡
𝑐(𝜃)𝑡𝑖𝑛𝑗}𝑆(𝜃)d𝜃

2𝜋

0

                                    (2.19) 

If instead, a representative average contact vector length 𝑙0
𝑐 is assumed for the assembly: 

𝑙𝑗
𝑐(𝜃) = 𝑙0

𝑐𝑛𝑗                                                                             (2.20) 

then equation (2.18) can be simplified to (Rothenburg, 1980; Rothenburg and Bathurst, 1989): 

𝜎𝑖𝑗 = 𝑚𝑣𝑙0
𝑐 ∫ {𝑓𝑛

𝑐(𝜃)𝑛𝑖𝑛𝑗 + 𝑓𝑡
𝑐(𝜃)𝑡𝑖𝑛𝑗}𝑆(𝜃)d𝜃

2𝜋

0

          𝑖, 𝑗 = 1,2                (2.21) 

Therefore, for a granular disc system with equal diameters 𝑑0, Rothenburg (1980) proposed that the average 

stress tensor 𝜎𝑖𝑗 can be written as: 

𝜎𝑖𝑗 =
𝑚𝑣𝑑0

2
∫ {𝑓𝑛

𝑐(𝜃)𝑛𝑖
𝑐𝑛𝑗

𝑐 + 𝑓𝑡
𝑐(𝜃)𝑡𝑖

𝑐𝑛𝑗
𝑐}𝑆(𝜃)d𝜃

2𝜋

0

                                  (2.22) 
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2.4.5 Stress-force-fabric relationship 

From the derivation in section 2.3.4, the average stress tensor of a granular assembly can be represented by 

using normal and tangential contact forces associated with the microstructure descriptors as shown by 

equation (2.21). Applying the Fourier series approximation for the contact normal anisotropy distribution 

and the normal and tangential contact force distributions as given by equations (2.8), (2.10) and (2.11), 𝜎11, 

𝜎22, and 𝜎12 can be computed. Assuming all orientations of anisotropy are the same, 𝜃0 = 𝜃𝑎 = 𝜃𝑛 = 𝜃𝑡, 

then the stress tensor invariants 𝜎𝑛  and 𝜎𝑡  can be presented accordingly as follows (Rothenburg and 

Bathurst, 1989): 

𝜎𝑛 =
𝜎11 + 𝜎22

2
=

𝑚𝑣𝑙0
𝑐𝑓0

𝑐

2
(1 +

𝑎𝑛𝑎𝑓

2
)                                              (2.23) 

𝜎𝑡 = √[(
𝜎11 − 𝜎22

2
)2 + 𝜎12

2] =
𝑚𝑣𝑙0

𝑐𝑓0
𝑐

4
(𝑎𝑛 + 𝑎𝑓 + 𝑎𝑡)                              (2.24) 

So the sine of the mobilized friction angle 𝜑 can be written as the ratio between the above two stress 

invariant tensors as: 

𝑠𝑖𝑛𝜑 =
𝜎𝑡

𝜎𝑛
=

1
2 (𝑎𝑛 + 𝑎𝑓 + 𝑎𝑡)

1 +
1
2
𝑎𝑛𝑎𝑓

                                                     (2.25) 

When the product of 𝑎𝑛 and 𝑎𝑓 is small, (both of them are less than 0.5 typically), the term 𝑎𝑛𝑎𝑓 2⁄  can be 

neglected. Therefore, the above equation can be simplified as: 

𝑠𝑖𝑛𝜑 =
1

2
(𝑎𝑛 + 𝑎𝑓 + 𝑎𝑡)                                                             (2.26) 

Equation (2.26) is the stress-force-fabric relationship that was proposed by Rothenburg (1980) and verified 

using DEM numerical simulation by Rothenburg and Bathurst (1989). This relationship relates the 

mobilized friction angle with the anisotropy parameters 𝑎𝑛, 𝑎𝑓 , 𝑎𝑡, irrespective of particle size and shape, 

which indicates the shear capacity of a granular system depends on the three anisotropy parameters from 

contact normal, and normal and tangential contact forces.  
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Chapter 3 Methodology 

3.1 General 

This chapter presents in detail the methodology adopted in this research. The numerical computations 

performed in this research employ two main components, which are the Discrete Element Method (DEM), 

and the fluid-coupled DEM algorithm. The DEM method adopted in this research is presented in section 

3.2, it follows closely that used the study conducted by Bathurst, 1985. This method can be applied alone 

to simulate a biaxial compression test in a drained condition. Section 3.3 illustrates the fluid-coupled DEM 

scheme employed in this thesis, which is further developed based on the model proposed by Olivera (2004). 

This further developed algorithm will be applied to simulate a biaxial compression test of granular 

assemblies in an undrained condition. Sections 3.4 and 3.5 summarize the boundary control and calculation 

cycles implemented in the simulation, respectively. And a representation of the calculation of macroscopic 

average stress, strain, and pore pressure applied in this research is shown in section 3.6. In section 3.7, some 

implementation details of the fluid-coupled DEM code is illustrated, especially, the “pore groups” idea 

which aims at dealing the difficulty of effectively computing the pore pressure during the rapid changes in 

pore structure due to creation and disintegration of inter-granular contacts is proposed. It is followed by a 

comparison with behavior of poroelastic configuration in section 3.8. 

3.2 Discrete element method 

The discrete element method (DEM) which was first proposed by Cundall and Strack (1978), applies an 

explicit numerical scheme to demonstrate the mechanical behaviors of assemblies of particles on a granular 

basis according to Newton’s Second Law (Strack and Cundall, 1978). Fig. 3.1 is a flow chart describing 

typical calculation cycles of the DEM. The method incorporates two main components in each 

computational cycle: the force-displacement calculation for each contact between immediate neighbor 

particles, and a motion calculation for each particle using a vectorial summation of all the contact forces 

applied to it. The former is based on application of the force-displacement law to the contact overlap (should 

be small relative to the particle size) between each pair of contacting particles. A vectorial sum of all the 

contact forces that work on each particle then gives the resultant force which is used to calculate the motion. 

The motion is obtained using Newton’s second law on a particle to particle basis. Once the motion is 

determined, a new displacement and a new contact overlap for each particle are obtained and used in a new 

cycle of calculations. The computations are a dynamic process in which the initial movement of the 

boundary particles of the assembly is propagated inwards throughout the whole particle system. The time 

step applied for each cycle of calculation should be small enough to guarantee that the disturbances at each 

step affect only the neighboring particles that the particle being considered is contacting with. To maintain 

the equilibrium of the whole dynamic granular system in each time-step, a damping effect is introduced. 
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Also, the velocities and accelerations from the motion calculation are assumed to be constant within each 

time-step.  

 

Figure 3.1 Flow chart of discrete element method 

3.2.1 Force-displacement law 

A force-displacement law is employed to compute the contact forces between any two immediately 

contacting particles. The following explanations of the force-displacement law employ an elliptical 

geometry as shown in Fig. 3.2, which is equally applicable for disc particles. 

 

Figure 3.2 Concept of normal and tangential displacements and contact forces of ellipse particles 
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The basic form of the force-displacement law in the normal and tangential directions at each contact 

between any two contacting particles is the product of the particle stiffness and the associated displacement 

as described by equations (3.1) and (3.2): 

Δ𝐹𝑛 = 𝑘𝑛Δ𝑛                                                                                 (3.1) 

Δ𝐹𝑠 = 𝑘𝑠Δ𝑡                                                                                 (3.2) 

where Δ𝐹𝑛 and Δ𝐹𝑠 are the increments of a contact force in the normal and tangential directions (see Fig. 

3.2 c), 𝑘𝑛 and 𝑘𝑠 are the contact stiffnesses in the normal and tangential directions, and Δ𝑛 and Δ𝑡 are the 

displacements in the normal and tangential directions respectively (see Fig.3.2 a and b). In terms of the 

explicit numerical scheme, at the end of each time step, the displacements in the normal and tangential 

directions at each particle center has the following forms: 

(𝐹𝑛)𝑁+1 = (𝐹𝑛)𝑁 + (Δ𝐹𝑛)𝑁 = (𝐹𝑛)𝑁 + 𝑘𝑛(Δ𝑛)𝑁+
1
2
                                         (3.3) 

(𝐹𝑠)𝑁+1 = (𝐹𝑠)𝑁 + (Δ𝐹𝑠)𝑁 = (𝐹𝑠)𝑁 + 𝑘𝑠(Δ𝑡)𝑁+
1
2
                                            (3.4) 

To compute the normal and tangential displacement component Δ𝑛 and Δ𝑡 at each contact, the associated 

relative velocity components 𝑣𝑛  and 𝑣𝑡  are integrated. Introducing 𝑛𝑖  and 𝑡𝑖  as the unit vectors 𝑛𝑖 =

{𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃} , 𝑡𝑖 = {−𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃} , where 𝑡𝑖  is obtained from rotating 𝑛𝑖  through 90 degrees, then the 

relative velocity 𝑣𝑅 between any two particles such as P1 and P2  in Figure 3.2 can be expressed as: 

𝑣𝑅 = (𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴) − (𝜃̇𝐴|𝑙𝑐
𝐴| + 𝜃̇𝐵|𝑙𝑐

𝐵|)𝑡𝑖
𝑐                                                     (3.5) 

Projecting 𝑣𝑅 onto the unit vectors 𝑛𝑖 and 𝑡𝑖 respectively gives the relative velocities in the normal and 

tangential directions as: 

𝑣𝑛 = 𝑣𝑅𝑛𝑖 = (𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴)𝑛𝑖 − (𝜃̇𝐴|𝑙𝑐
𝐴| + 𝜃̇𝐵|𝑙𝑐

𝐵|)𝑡𝑖𝑛𝑖 = (𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴)𝑛𝑖                       (3.6)  

𝑣𝑡 = 𝑣𝑅𝑡𝑖 = (𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴)𝑡𝑖 − (𝜃̇𝐴|𝑙𝑐
𝐴| + 𝜃̇𝐵|𝑙𝑐

𝐵|)𝑡𝑖𝑡𝑖 = (𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴)𝑡𝑖 − (𝜃̇𝐴|𝑙𝑐
𝐴| + 𝜃̇𝐵|𝑙𝑐

𝐵|)         (3.7)  

Thus, in terms of each time step Δt, the normal and tangential displacement components Δ𝑛 and Δ𝑡 at each 

contact can be obtained as the integrals of 𝑣𝑛 and 𝑣𝑡:  

(Δ𝑛)
𝑁+

1
2
= [(𝑥̇𝑖

𝐵 − 𝑥̇𝑖
𝐴)

𝑁+
1
2
]𝑛𝑖Δt                        i = 1, 2                          (3.8) 

(Δ𝑠)𝑁+
1
2
= {[(𝑥̇𝑖

𝐵 − 𝑥̇𝑖
𝐴)

𝑁+
1
2
] 𝑡𝑖 − (𝜃̇𝐴|𝑙𝑐

𝐴| + 𝜃̇𝐵|𝑙𝑐
𝐵|)

𝑁+
1
2
}Δt             i = 1, 2       (3.9) 
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where 𝑙𝑐
𝐴 and 𝑙𝑐

𝐵 are contact vectors, which describe the distance between centroid of a particle and the 

midpoint of the contact penetration as indicated as Fig. 2.11. Therefore, combining the stiffness and relative 

displacement in the normal and tangential directions for each contact by the above equations (3.8) and (3.9), 

yields the force-displacement equations (3.3) and (3.4). Vectorially summing up all the contact forces for 

each particle, the contact force at the end of each step is given by. 

(𝐹𝑖)𝑁+1
𝑘 = ∑[(𝐹𝑛)𝑁+1𝑛𝑖 + (𝐹𝑠)𝑁+1𝑡𝑖]

𝑛𝑘

𝑛=1

                 𝑖 = 1, 2                   (3.10) 

The corresponding moment of each particle is: 

(𝑀)𝑁+1
𝑘 = |𝑙𝑘| ∑[(𝐹𝑠)𝑁+1]

𝑛𝑘

𝑛=1

                                                               (3.11) 

When calculating the tangential contact force at each contact, Coulomb’s friction law is adopted as a 

criterion to determine if the contact particles slip with respect to each other. This only happens when the 

tangential contact force is equal or greater than the product of the coefficient of the friction and the normal 

contact force: 

𝐹𝑠𝑚𝑎𝑥 = 𝜇𝐹𝑛 = 𝑡𝑎𝑛𝜙𝜇                                                                    (3.12) 

Where 𝜙𝜇 is the smaller of the interparticle friction angles of the two particles in contact. If the calculated 

tangential contact force 𝐹𝑠 is greater than 𝐹𝑠𝑚𝑎𝑥, then 𝐹𝑠 should be set as the value of 𝐹𝑠𝑚𝑎𝑥 preserving the 

sign of 𝐹𝑠.  

3.2.2 Equations of motion 

The above force-displacement relationship is used to compute the contact forces at each contact, and then 

a vectorial summation of the contact forces for each particle is obtained for the following motion 

calculation. According to Newton’s Second Law, the force and moment are related to the acceleration and 

moment of inertia via equations (3.13) and (3.14): 

 (𝐹𝑖)𝑁 = 𝑚(𝑥𝑖̈)𝑁                                             𝑖 = 1, 2                (3.13)  

(𝑀)𝑁 = 𝐼(𝜃̈)𝑁                                                                            (3.14) 

where 𝑚 is the mass of a particle, 𝐼 is the particle’s moment of inertia, 𝐹 and 𝑀 are the net force and 

moment at the center of an elliptical particle, 𝑥𝑖̈ and 𝜃̈  are the two acceleration components, and N 

represents the step number. Based on the central difference scheme, the velocity components at the center 
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of each particle can be related to the force and moment through an integration of the acceleration and 

moment of inertia as follows: 

(𝑥̇𝑖)𝑁+
1
2

= (𝑥̇𝑖)𝑁−
1
2
+ (𝑥𝑖̈)𝑁Δ𝑡 = (𝑥̇𝑖)𝑁−

1
2
+

(𝐹𝑖)𝑁Δ𝑡

𝑚
                 i = 1, 2              (3.15) 

(𝜃̇)
𝑁+

1
2
= (𝜃̇)

𝑁−
1
2
+ (𝜃̈)

𝑁
Δ𝑡 = (𝜃̇)

𝑁−
1
2
+

(𝑀)𝑁Δ𝑡

𝐼
                                               (3.16) 

where Δ𝑡 is the time increment. Hence, from the above two velocity components, the two displacement 

components can be obtained from a further integration. The updated particle center location at the end of 

each step is obtained as: 

(𝑥𝑖)𝑁+1 = (𝑥𝑖)𝑁 + [(𝑥̇𝑖)𝑁+
1
2
] Δ𝑡                           𝑖 = 1, 2                  (3.17) 

(𝜃)𝑁+1 = (𝜃)𝑁 + [(𝜃̇)
𝑁+

1
2
] Δ𝑡                                                              (3.18) 

Therefore, from the above updated center location at the end of each time step Δ𝑡, the updated relative 

displacement between any two contact particles is computed, leading to a new cycle of computation using 

equations (3.3) and (3.4) (see Fig. 3.1). 

3.2.3 Damping 

To maintain the static equilibrium of the granular system throughout the dynamic propagation movement 

during simulation, damping should be incorporated to dissipate the kinetic energy (Bathurst, 1985). From 

Strack and Cundall (1978), two types of damping can be employed in the DEM computations: friction 

damping and viscous damping. The former is applied only during the occurrence of sliding, which reduces 

the inter-particle tangential contact force and displacement through friction. The latter can be further 

divided into contact damping and global damping as illustrated as Fig. 3.3. Both contact damping 

(𝐷𝑛 and 𝐷𝑠) and global damping (𝐷𝑚 and 𝐷𝐼 ) can be represented by dashpots. As their names indicate, 

contact damping (𝐷𝑛 and 𝐷𝑠) occurs at each contact point and global damping (𝐷𝑚 𝑎𝑛𝑑 𝐷𝐼 ) operates on 

the whole particle. The specific functions used to describe each one of them are explained in the following: 

Contact damping (𝐷𝑛 and 𝐷𝑠) is associated with the relative velocities in normal and tangential directions, 

𝑐𝑛 and 𝑐𝑠 are adopted as the contact damping coefficients, which are related to the contact stiffness 𝑘𝑛 and 

𝑘𝑠 in the normal and tangential directions through a coefficient of proportionality β. Equations (3.19) and 

(3.20) describe how 𝑐𝑛 and 𝑐𝑠 affect the relative velocities. 
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(𝐷𝑛)𝑁 = 𝑐𝑛 [((𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴)
𝑁−

1
2
)𝑛𝑖]                                                            (3.19) 

(𝐷𝑠)𝑁 = 𝑐𝑠 [((𝑥̇𝑖
𝐵 − 𝑥̇𝑖

𝐴)
𝑁−

1
2
) 𝑡𝑖 − (𝜃̇𝐴|𝑙𝐴

𝑐| + 𝜃̇𝐵|𝑙𝐵
𝑐 |)

𝑁−
1
2
]          𝑖 = 1, 2                (3.20) 

 

Figure 3.3 Friction damping, contact damping, and global damping 

Once the above damping forces 𝐷𝑛 and 𝐷𝑠 are obtained, they are expressed as 𝐷𝑖 and incorporated into the 

force component to participate the camputation. Thus, in terms of relative velocity, equation (3.15) is 

updated as: 

𝑥̇𝑖𝑁+
1
2
= 𝑥̇𝑖𝑁−

1
2
+ [(

𝐹𝑖 + 𝐷𝑖

𝑚
)
𝑁
] Δ𝑡                   𝑖 = 1, 2                                    (3.21) 

The corresponding anguler velocity component can also be updated accordingly to take the contact damping 

forces into consideration. See equation (3.22) 

𝜃̇𝑖𝑁+
1
2

= 𝜃̇𝑖𝑁−
1
2
+ [(

𝑀𝑖

𝐼
)
𝑁
] Δ𝑡                                𝑖 = 1, 2                             (3.22) 
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The above equations have a half-time step error in the determation of the contact damping values (𝐷𝑛)𝑁 

and (𝐷𝑠)𝑁, which is considered to be negligible (Strack and Cundall, 1978).  

The second type of viscous damping adopted, the global damping (𝐷𝑚 and 𝐷𝐼 ), helps to connect each 

particle to a fixed reference. It acts on the velocity of each particle during the motion computation via the 

coefficients 𝑐𝑚 and 𝑐𝐼, which are related to the mass and moment of inertia  in the following manner: 

𝑐𝑚 = 𝛼𝑚                                                                               (3.23) 

𝑐𝐼 = 𝜔𝛼𝐼                                                                               (3.24) 

where both 𝛼  and 𝜔  are coefficients of proportionality, 𝜔  is applied to amplify the effect of 𝛼  in the 

rotational component. Hence, incorporating the effects of both contact and global damping into each 

particle’s motion equation, the force and moment equations (3.13) and (3.14) can be rewritten as: 

𝑚(𝑥̈𝑖)𝑁 = (𝐹𝑖 + 𝐷𝑖)𝑁 − 𝑐𝑚(𝑥̇𝑖)𝑁                𝑖 = 1, 2                                   (3.25) 

𝐼(𝜃̈)𝑁 = (𝑀𝑛)𝑁 − 𝑐𝐼(𝜃̇)
𝑁
                                                                             (3.26) 

Applying a central difference scheme into the calculation of velocity and acceleration, the velocity and 

acceleration can be written as: 

(𝑥̇𝑖)𝑁 =
1

2
((𝑥̇𝑖)𝑁+

1
2
+ (𝑥̇𝑖)𝑁−

1
2
)                           𝑖 = 1, 2                         (3.27) 

(𝜃̇)𝑁 =
1

2
((𝜃̇)

𝑁+
1
2
+ (𝜃̇)

𝑁−
1
2
)                                                                   (3.28) 

and: 

(𝑥̈𝑖)𝑁 =

(𝑥̇𝑖)𝑁+
1
2
− (𝑥̇𝑖)𝑁−

1
2

Δ𝑡
                         𝑖 = 1, 2                                 (3.29) 

(𝜃̈)𝑁 =

(𝜃̇)
𝑁+

1
2
− (𝜃̇)

𝑁−
1
2

Δ𝑡
                                                                          (3.30) 

Therefore, the updated equation of motion formulae with the viscous damping effects incorporated takes 

the following form: 

(𝑥̇𝑖)𝑁+
1
2

=

(𝑥̇𝑖)𝑁−
1
2
(1 −

𝛼Δ𝑡
2 ) + (𝐹𝑖 + 𝐷𝑖)𝑁Δ𝑡/𝑚

1 +
𝛼Δ𝑡
2

                𝑖 = 1, 2                      (3.31) 
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(𝜃̇)
𝑁+

1
2

=

(𝜃̇)
𝑁−

1
2
(1 −

𝛼Δ𝑡
2 ) + (𝑀)𝑁Δ𝑡/𝑚

1 +
𝛼Δ𝑡
2

                                                               (3.32) 

3.2.4 Critical time step 

To maintain the calculations constantly stable and the granular system in static equilibrium, the time step 

adopted should to be small enough. This may be achieved by setting the time step as a suitable fraction of 

the critical time step. From Cundall and Strack (1979), the critical time step can be found by considering a 

mass connected to ground through a spring with a single degree-of-freedom. So the critical time step can 

be determined as follows: 

Δ𝑡𝑐 = Δ𝑡 = 2𝐹𝑅𝐴𝐶√
𝑚𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
                                                                  (3.33) 

where 𝑘𝑚𝑎𝑥 is the larger of the values of the normal or shear contact stiffness, 𝑚𝑚𝑖𝑛 is the lowest particle 

mass in the assembly, and FRAC is a constant that indicates the number of springs that act on each particle. 

From Strack and Cundall (1978), FRAC can be assigned as value of 0.1 to maintain  computational stability. 

3.3 Fluid-coupled DEM 

3.3.1 Pore pressure generation and fluid-particle interaction 

In an undrained condition, with an applied external load on a granular material, a pore water pressure is 

generated and which reduces the effective stress between particles. This will in turn influence the overall 

behavior of the solid particles macroscopically and microscopically. In order to simulate the process of pore 

pressure generation of individual pores, according to Hakuno et al. (1988), Hakuno (1995), Thallak (1991), 

and Olivera (2004), the fluid in each pore can be assumed to be an elastic material with zero shear modulus. 

Hence, a change of the pore pressure can be represented by assigning a bulk modulus that acts on the 

volumetric strain. Therefore, the two major tasks involved in the study of pore pressure generation are the 

identification of the pores and the determination of the rate of volume change. 

Pore identification 

To calculate the average pore pressure of a granular assembly in an undrained condition following the idea 

proposed by Hakuno et al. (1988), Hakuno (1995), Thallak (1991), and Olivera (2004), it is crucial to 

compute the individual pore pressure within each pore. So the first step is to identify the pores within the 

granular system. Fig. 3.4 shows a subset of a granular assembly that includes a series of pores named A to 

N surrounded by elliptical particles. In this figure, it can be seen that these pores are formed by the contacts 

among particles. So an algorithm for the identification the pores in an assembly can be implemented by 



44 

 

searching the contacts that can constitute a closed circuit. The method of pore identification of this study 

follows the idea that proposed by Thallak (1991), Dullien (1991), and Olivera (2004). Basically, this method 

is based on searching for and storing the contacts that belong to each particle in a group. Then, the contacts 

in each group are sorted in order of the contact normal orientation from 0 to 2π. The construction of a 

closed circuit can be demonstrated by referring to pore L in Fig. 3.4. For example, the construction starts 

from particle a shown in the figure, the contacts belonging to particle a in the order of contact normal 

orientation from 0 to  2π are particles b, c, and d, respectively. So particle b is found and stored as the 

second particle that constitutes a closed circuit. Now the contact searching is switched to start from particle 

b. Particle b is in contact with particle e, a, f, g in the same order of contact normal orientation from 0 to 

 2π. Once the contact searching finds particle a, previous particle e should be taken as the third particle that 

constitutes the closed circuit and is then stored in the same array as particles a and b. Now contact searching 

is switched to particle e, which is in contact with particles i, h, and b. Following the same pattern, particle 

h can be found and stored in the closed circuit array. Then the contact searching is switched to particle h, 

and particle c can be found and stored into the closed circuit array following the same method. At last, the 

contact searching is switched to particle c, and particles h, j, and a are found. Once particle a is found, the 

searching for this close circuit is completed since the searching starts from particle a. So pore L is identified. 

The same process can be applied to form other closed circuits, allowing the pores in the granular system to 

be identified and stored in an array.  

 

Figure 3.4 Subset of a granular assembly showing pore identification 

Individual pore pressure calculations 

To microscopically compute the pore pressure in the assembly using an idea proposed by Hakuno et al. 

(1988), Hakuno (1995), Thallak (1991), and Olivera (2004), it is necessary to know how the individual pore 

pressures vary. The voids may be treated as being 100% saturated and full of fluid. The fluid is regarded as 
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being a pure elastic medium that possesses a certain elastic modulus. Then the volume change of a particular 

pore in an assembly will be equal to the fluid volume change, and the pore pressure variation Δ𝑢𝑖 can be 

related to the volumetric strain of a particular pore by the bulk modulus 𝐵𝑓 in the following form: 

Δ𝑢𝑖 = 𝐵𝑓

Δ𝑉𝑖

𝑉𝑖
                                                                                (3.34) 

where 𝑉𝑖 is the original volume of pore 𝑖, Δ𝑉𝑖 is the change of volume of pore 𝑖, and 𝐵𝑓 is the bulk modulus 

of the fluid. In terms of a two-dimensional assembly, the change of area of pore 𝑖, Δ𝐴𝑖, and the original 

area of pore 𝑖, 𝐴𝑖, should be applied instead of Δ𝑉𝑖 and 𝑉𝑖.  

As for the volume change (area change in terms of a two-dimensional assembly) in any time step for a pore 

surrounded by a group of particles, precise calculations should be conducted to determine the volumetric 

strain and hence obtain the pore pressure of the pore. The area change calculation for a two-dimensional 

assembly case can be explained by referring to Figure 3.5. It is illustrated in the figure that a pore is formed 

by a group of five elliptical particles contact with each other. The penetrations shown in the figure are 

exaggerated for clarity of the explanation. A polygon can be constructed by connecting each ellipse’s 

centroid point to the two corresponding inner intersection points to the pore shown as point m and n in the 

picture. So the area of the void is given by the subtraction from the polygon’s area of the sum of the sector 

areas indicated by shaded areas in the figure.  

 

Figure 3.5 Polygon formation for pore volume computation 

With respect to the computation of each shaded sector area, a method of area normalization can be 

implemented to simplify the whole shaded sector area computation to the use of one algorithm. The 

calculation is based on a coordinate transformation for each particle to make the x abscissa along the major 

axis of the ellipse and the particle center located at the origin. An example of this idea is shown in Fig. 3.6, 

where particle P is taken from the particle group constituting the pore shown in Fig. 3.5. So the normalized 
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sector area that enclosed by the x abscissa and any contact length vector, i.e. 𝑜𝑚⃗⃗⃗⃗⃗⃗  or 𝑜𝑛⃗⃗⃗⃗  shown in this figure 

can be computed as:  

𝐴𝑛 = 𝑅2
1 − 𝑒𝑐

2

2
{𝑎𝑟𝑐𝑡𝑎𝑛 [

1 + 𝑒𝑐

1 − 𝑒𝑐
𝑡𝑎𝑛(𝛼)]}                      0 ≤ α <

𝜋

2
               (3.35) 

where α is the angle that is measured from the major axis of the elliptical particle to a given contact length 

vector. Therefore, the shaded sector area shown in the figure is the difference between the sector area from 

x abscissa to a contact length vector 𝑜𝑛⃗⃗⃗⃗  (corresponding to angle 𝛼2) and the sector area from the x abscissa 

to the contact length vector 𝑜𝑚⃗⃗⃗⃗⃗⃗  (corresponding to angle 𝛼1). 

 

Figure 3.6 Normalized sector for area calculation  

3.3.2 Transient pore pressure calculations 

Soil is a porous media, the fluid inside the pores can flow through the pores in a saturated soil and generate 

a transient excess pore pressure. To simulate fluid flow through a porous media, a flow network in an 

undrained assembly can be constructed by connecting the gravity centers of the polygons that are formed 

by connecting the centres of contacting particles (Olivera, 2004). Fig. 3.7 a shows an example of a subset 

flow network of an undrained granular assembly. The polygons encircling the pores are described by yellow 

broken lines, while the red double lines represent the fluid network. Each red double line segment can be 

treated as a cylindrical conduit that connects the immediately neighbouring pores, as magnified in Fig. 3.7b. 

When a pore pressure difference exists between immediate neighbouring pores (pore I, II, and III), a 

transient fluid flow is induced through the connecting conduit. The magnitude of the flow rate 𝑞 can be 

related to the conduit diameter 𝑑 and length 𝐿 (see Fig. 3.7b) based on the Hagen-Poiseuille theory, which 

has the following form: 
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𝑞 =
𝜋𝑑4

128𝜇̅

(𝑢1 − 𝑢2)

𝐿
                                                                      (3.36) 

 

(a) 

 

(b) 

                                                         Polygon                                    Fluid network 

Figure 3.7  Fluid flow network construction for a subset of a granular assembly 

To obtain the transient excess pore pressure of each pore, from equation (3.34), the change of the volume 

for each pore should be known. For a fully saturated assembly, within one time increment, the total volume 

change of fluid inside any pore 𝑖 is the summation of the pure pore volume change from particle movement 

and the amount of input or output flow volume as determined with the help of equation (3.36). Thus, for a 

fully saturated assembly that encompasses 𝑁 pores, the total volume change of the pore i is: 

Δ𝑉𝑖 = Δ𝑉𝑖
𝑝
+ ∑Δ𝑞𝑗Δ𝑡

𝑛

𝑗=1

                           𝑖 = 1,… ,𝑁                         (3.37) 

where Δ𝑉𝑖
𝑝
is the change of the pore volume from particle movement, Δ𝑞 is the vectorial sum of the input 

and output volumes of fluid from all n conduits of pore 𝑖, and Δ𝑡 is time increment. Substituting equation 

(3.36) into (3.37) gives: 
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Δ𝑉𝑖 = Δ𝑉𝑖
𝑝
+ ∑

𝜋𝑑4

128𝜇̅

(𝑢𝑖 − 𝑢𝑗)

𝐿
Δ𝑡

𝑛

𝑗=1

                           𝑖 = 1,… ,𝑁        (3.38) 

If we introduce 𝑘𝑗 as expressed by equation (3.39) to make the above equation concise, then an updated 

form of above equation is obtained as equation (3.40):  

𝑘𝑗 =
𝜋𝑑𝑗

4

128𝜇̅𝐿𝑗
                                                                                         (3.39) 

Δ𝑉𝑖 = Δ𝑉𝑖
𝛽

+ ∑𝑘𝑗(𝑢𝑖 − 𝑢𝑗)Δ𝑡

𝑛

𝑗=1

                             𝑖 = 1,… ,𝑁            (3.40) 

Combining equations (3.40) and (3.34), the following ordinary differential equation that describes the 

transient pore pressure variation with time is: 

𝑑𝑢𝑖

𝑑𝑡
= {

𝑑𝑉𝑖
𝑝

𝑑𝑡
− ∑𝑘𝑗(𝑢𝑖 − 𝑢𝑗)

𝑛

𝑗=1

}
𝐵𝑓

𝑉𝑖
                                𝑖 = 1,… ,𝑁   (3.41) 

Therefore, the pore pressure for each void can be obtained by solving the above ordinary differential 

equation with the first term on the right hand side 
𝑑𝑉𝑖

𝑝

𝑑𝑡
 directly computed from the pore area change before 

and after each time step for a two-dimensional case.  

3.3.3 Fluid-coupled DEM system 

The transient excess pore pressure of each pore calculated based on Equation (3.41) in the previous section 

can now be coupled with DEM through the particle’s motion equation. Specifically, each pore pressure 

force can be transformed into horizontal and vertical force components that can be added onto surrounding 

particle’s center. An explanation of the force components of each particle converted from the neighbouring 

pore pressure are shown schematically in Figure 3.8. The figure 3.8a shows a particle P surrounded by three 

pores with pore pressures 𝑢1, 𝑢2, and 𝑢3, respectively. Figure 3.8b shows a normalization of particle P by 

coordinate transformation in the manner that orients the elliptical particle’s major axis with the x axis and 

fixes the particle centroid at the origin. After normalization of the major axis as indicated by Figure 3.8b, 

the horizontal and vertical force components for each pore 𝑢𝑖 can be represented as:  

𝐹𝑥
𝑖 = 𝑢𝑖(𝑏𝑥 − 𝑎𝑥)Δ                                                                            (3.42) 

𝐹𝑦
𝑖 = 𝑢𝑖(𝑎𝑦 − 𝑏𝑦)Δ                                                                           (3.43) 
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where Δ is the thickness of the particle, 𝑢𝑖 is he pore pressure in pore 𝑖, and a and b are the intersection 

points that can be determined as follows. The polygon that encircles each void is constructed in a counter 

clockwise manner. It is determined by the first intersection point encountered that forms a polygon which 

starts from particle whose center is a, and whose second contact point is b. Fig. 3.8 parts c, d, and e illustrates 

points a and b for the three pores, respectively. 

          

 

Figure 3.8 Forces converted from nearby pore pressure 

In the manner described above, horizontal and vertical forces derived from the pore pressure of each 

particle’s immediate neighbouring pores can be obtained. Synthesizing the forces from all immediate 

neighbour pores for each particle gives the equation (3.45). The derived pressure forces are then 

incorporated into motion calculations, therefore, the fluid effect and the DEM of particles are coupled to 

describe the particles mechanical behavior under an undrained condition.  

(𝐹𝑖)
𝑢 = ∑ 𝐹𝑖

𝑛

𝑛𝑝

𝑛=1

                                  𝑖 = 1, 2                             (3.45) 
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3.4 Boundary control 

To simulate the increasing load on a granular media, a servo-controlled scheme is used to control an 

assembly’s boundary. Three servo-control modes are employed in this research to simulate loading effects 

on an assembly’s boundary: strain rate controlled boundary, stress controlled boundary and biaxial 

compression testing.  

Strain rate controlled boundary (Mode 2-Constant boundary strain rate test) 

The strain rate controlled boundary, which is named as Mode 2 in the program, applies a constant strain 

rate 𝜖𝑖̇𝑗
𝛽

 to the midpoint of each boundary particle 𝑥𝑗
𝛽

. So the induced velocity for each boundary particle 

𝑥̇𝑖
𝛽

 can be obtained through the product of strain rate and the length connecting the boundary particle 

midpoint location 𝑥𝑗
𝛽

 and the center of the assembly 𝑥𝑗
𝑐  in the manner as following: 

𝑥̇𝑖
𝛽

= 𝜖𝑖̇𝑗
𝛽

(𝑥𝑗
𝛽

− 𝑥𝑗
𝑐)                                                                   (3.46) 

where 𝑥𝑗
𝛽

 is the midpoint location of each boundary particle at the beginning of the calculation. The strain 

rate controlled boundary is applied in the research to prepare granular assembly samples with a prescribed 

initial stress, which is analogous to an isotropic consolidation process. The strain rate controlled boundary 

is also used to perform constant volume method testing, which preserves the total volume of an assembly 

and simulates the case of instant pore pressure dissipation. The strain rates applied on the horizontal and 

vertical boundaries when conducting constant volume method simulation are set as: 

𝜖1̇1
𝛽

= −𝜖2̇2
𝛽

                                                                                         (3.47) 

Stress controlled boundary (Mode 1-Constant stress test) 

A stress controlled boundary is named as Mode 1 in the program. As the name “stress controlled” indicates, 

this mode is designed by setting the value of the stress on the boundary. This target stress is achieved by 

using a strain controlled servo-mechanism. Specifically, a boundary stress 𝜎𝑖𝑗
𝛽

 is prescribed at the start of 

the test, afterwards, the calculated value of the stress 𝜎𝑖𝑗 of the assembly from each cycle is compared with 

the prescribed boundary stress 𝜎𝑖𝑗
𝛽

. Based on their difference, the applied velocity of each boundary particle 

is modified using the following equation: 

𝑥̇𝑖
𝛽

=
𝑔(𝜎𝑖𝑗

𝛽
− 𝜎𝑖𝑗)(𝑥𝑗

𝛽
− 𝑥𝑗

𝑐))

𝜎𝑖𝑗
𝑏                                                            (3.48) 
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where g is the servo gain parameter. This mode of boundary control is applied in this research to achieve 

an equilibrium of the particles in a granular assembly before performing shear testing. It is a critical step in 

producing an isotropic sample. It is also used to prepare samples with different confining stresses. 

Constant 𝛔𝟏𝟏 Test (Mode 3-Biaxial Compression test) 

The constant 𝜎11 test is called Mode 3 in the program. As the name implies, this mode keeps the stress 

component 𝜎11 constant. This boundary control is achieved by keeping the stress in the horizontal direction 

𝜎11 constant using Mode 1, and at the same time applying a strain rate 𝜖2̇2
𝛽

 in the vertical direction, which 

is analogous to a biaxial compression test. The stress component 𝜎11 is kept constant by using the stress-

controlled mode (mode 1), but only the calculated stress component 𝜎11 from each cycle is compared with 

the prescribed boundary stress 𝜎11
𝛽

. The strain rate 𝜖2̇2
𝛽

 in the vertical direction is achieved in the same 

manner as using equation (3.46). Accordingly, the velocity of each boundary particle is updated in each 

cycle. For an undrained testing, the velocity of each boundary particle can be computed using equation 

(3.49):  

𝑥̇𝑖
𝛽

=
𝑔(𝜎𝑖𝑗

𝑏 − (𝜎𝑖𝑗
′ + 𝑢̅𝛿𝑖𝑗)(𝑥𝑗

𝛽
− 𝑥𝑗

𝑐))

𝜎𝑖𝑗
𝑏                                                         (3.49) 

where 𝑢̅  is the average pore pressure. This type of boundary control is used to simulate drained and 

undrained biaxial compression testing in this research. 

3.5 Calculation cycles 

Based on all the above explanations of how the Fluid-coupled DEM is achieved, and the associated 

boundary control scheme, a calculation cycle flow chart can be established as shown in Figure 3.9. In this 

figure, the left column is the DEM computation portion and the right column demonstrates the pore pressure 

generation and its effect on granular particles. 
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Figure 3.9 Flow chart of fluid-coupled DEM compupation 

3.6 Representation of macroscopic average stress, strain and pore pressure 

When exploring the undrained characteristics of a granular media using the micromechanics method, it is 

critical to obtain macroscopic representations of the average stress, strain and pore pressures through 

micromechanical descriptors. As indicated by equation (2.14) from chapter 2, the macroscopic average 

stress tensor 𝜎𝑖𝑗 can be expressed in terms of the volume average (area average in a two-dimensional case) 

of the product summation of each inter-particle contact force 𝑓𝑖
𝑐 and the associated contact vector 𝑙𝑗

𝑐. This 

research adopts this average stress tensor representation, which is rewritten for a two-dimensional case as 

equation (3.50). 

𝜎𝑖𝑗 =
1

𝐴
∑𝑓𝑖

𝑐𝑙𝑗
𝑐

𝑐∈𝐴

    𝑖, 𝑗 = 1, 2                                                               (3.50) 

The average strain tensor 𝜀𝑖𝑗 computed for each cycle follows the modified two-dimensional equation that 

was proposed by Cundall et al. in 1979, which is shown as equation (3.51)  

𝜀𝑖𝑗 =
1

𝐴
∑ [

1

2
(Δ𝑥𝑗

𝛽
+ Δ𝑥𝑗

𝛽+1
) 𝑒𝑖𝑆

𝛽]

𝑛

𝛽=1

                     𝑖, 𝑗 = 1,2               (3.51) 
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where 𝐴 is the total area of the assembly, 𝑆𝛽 is the line that connects the neighbouring boundary particles, 

𝛽 indicates the boundary particles serial numbers in sequence from 1 to 𝑛, Δ𝑥𝑗
𝛽

 is the displacement of the 

boundary particle 𝛽, and 𝑒𝑖 is the unit vector that is orthogonal to the boundary line segment 𝑆𝛽.  

The macroscopic average pore pressure representation follows the idea proposed by Olivera in 2004. The 

volume (area in a two-dimensional case) is adopted as the weight to perform a weighted average calculation 

of the pore pressure for each pore. This is because when calculating each individual pore pressure (see 

equation 3.34), the change of each pore area was combined with the assigned bulk modulus 𝐵𝑓. Therefore, 

the macroscopic average of the pore pressure can be represented as:  

𝑢̅ =
∑Δ𝑢𝑖𝐴𝑖

∑𝐴𝑖
                                                                                      (3.52) 

3.7 Fluid-coupled DEM code implementation details 

3.7.1 Evolution of the void system 

In an effort to simulate an undrained granular system response under loading using the aforementioned 

fluid-coupled DEM, a crucial step is to identify the voids in the system and recognize how their areas evolve 

throughout the test. Then each pore pressure is determined using the pore pressure computation method of 

equation (3.41). And the transformed forces from each pore’s pressure can be applied to its encircled 

particles to achieve fluid-coupled DEM. However, each pore’s area is changing constantly. In an undrained 

simulation, with an applied boundary load, the pore structure changes rapidly due to the creation and 

disintegration of inter-granular contacts. For example, voids in the system of pores may keep the same 

encircling particles when none of the contacts constituting the void is lost. Or the void may change when 

any pair of immediately neighboring particles constituting the encircled particles lose their connection, or 

any particle in the void constituting group connects with a new neighboring particle in the same group. 

More common is an extremely complex modification of pore space when both coalescence and subdivision 

of voids is taking place affecting a group of voids simultaneously. Hence, to handle the rapid changes in 

pore structure and accurately compute pore area change from the subsequence of two cycles, an idea of 

“pore group” may be applied. This idea keeps track of “pore groups” where some voids may coalesce due 

to contact disintegration or some voids are subdivided into parts due to contact creation, therefore, forms a 

robust pore identification mechanism.  

An explanation of how a group of voids evolves in a pores system will be given with the help of Figure 

3.10. Figure 3.10 (a) shows one type of pore group evolution in a granular system in an undrained condition 

under loading, and Figure 3.10 (b) presents an simplified example of complicated pore group evolution 

scenario. During a step cycle during testing, the left of Figure 3.10 (a) shows three individual pores (I, II 
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and III) being formed by sixteen particles named sequentially from No. 1 to 16. During particle movement, 

in the following time step, contacts in this three pore system change, either by being lost or by new contacts 

being created. On the right hand side of Fig. 3.10 (a) which exhibits a case of a typical void formation. 

Specifically, the contact between particles 3 and 4 breaks, which results in the formation of pore IV as 

indicated on the right of Fig. 3.10 (a). Thus, when computing the volumetric strain of pore IV, the area of 

pore IV should be compared to the area summation of pores I and II in the previous step. Meanwhile, with 

the forming of pore IV in the pore system, a new contact is created between particles 6 and 14, thereby 

forming two separated pores V and VI. In this case, the area summation of the pores V and VI  should be 

compared with the area of pore III when calculating the volumetric strain of pores V and VI. They share 

the same value of pore pressure in this case. 

 

(a)                 

                                                                   

(b) 

Figure 3.10 Example of pores evolution 
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A simplified example of more complicated pore group evolution scenario is shown in Figure 3.10 (b). In 

this case, two pores (VI and VII) are formed originally by the same sixteen particles already named 

sequentially from No. 1 to 16 in the previous section in a given step cycle during testing (see left of Fig. 

3.10 (b)). Again, through the action of particle movement, in the following time step, contacts in this two 

pore system may change, either by being lost or by new contacts being created. A simplified complicated 

case of void formation that may appear is exhibited on the right of Fig. 3.10 (b). Specifically, a new contact 

between particles 3 and 4 is created, thereby forming a new pore VIII. Meanwhile, the contact between 

particles 6 and 7 breaks, and a new contact between particles 6 and 14 is created, which results in the 

formation of pores IX and X as indicated on the right of Fig. 3.10 (b). Thus, when computing the volumetric 

strain of pores VIII, IX, and X, the area of these three pores should be grouped together and compared to 

the area summation of pores VI and VII in the previous step. Pores VIII, IX, and X share the same value of 

pore pressure when computing the corresponding transformed forces exerted on the particles.  

3.7.2 Local liquefaction 

In addition to the above pores changes due to contact creation and disintegration, during an undrained 

simulation, with the particle movement and pore area variation, a situation of “local liquefaction” as shown 

as Fig. 3.11 may appear repeatedly, especially when the granular assembly is very loose. It is seen in Figure 

3.11 (a) that in a given time step, three pores i, ii and iii are formed in the pore system which are separated 

by particles 1, 2, 3, and 4 respectively. In the following time step, movement of particles 1 to 4, causes pore 

iv to be formed by particles 1, 2, and 3, which is inside pore v. This creates local liquefaction in pore v. 

When calculating the change of pore areas in this case, pores iv and v should be seen as one group in 

comparing their area summation with the area of the group made up of pores i, ii and iii from the previous 

step. Furthermore, since pore iv is completely inside pore v, it can be seen as floating in pore v, so that 

when performing the pore pressure force transformation onto the particles, the overall pressure forces 

applied to particles 1, 2, and 3 should all be zero, the same as particle 4. In other words, the area of the 

groups iv and v should be the area of v after subtracting the areas of particles 1 to 4. When it comes to the 

next cycle, the possible cases of the void evolutions of pore groups iv and v may be as shown as Figure 

3.11c or d. For the case exhibited in Figure 3.11c, pores vi and vii constitute one group whose area should 

be compared with the combined area of groups iv and v when computing the volumetric strain. In this case 

particles 2 and 3 are no longer floating inside the pore. However, for the case shown in Figure 3.11d, the 

pore iv breaks, which creates pore viii whose area should be compared to the area from the previous group 

of pores iv and v to calculate the area change. Particles 1 to 4 are still floating inside the pore viii, so the 

overall transformed pressure force attributed to them is zero. 
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       (a)                                                                   (b) 

 

       (c)                                                                   (d) 

Figure 3.11 Local liquefaction formation and pores evolution 

3.8 Comparison of fluid-coupled DEM model with behavior of a poroelastic 

configuration 

In order to compare the proposed fluid-coupled DEM model with the behavior of a poroelastic 

configuration, two simulations targeted at testing the pore pressure dissipation in the system of pores were 

conducted: a pore pressure dissipation test and a pore pressure equalization test. For ease of testing, a 

rectangular assembly with 10000 disc particles were prepared to perform the comparison. Fig. 3.12 shows 

the schematic rectangular assembly, and Fig. 3.13 shows the grain size distribution of the disc particles in 

the assembly.  

In the two tests, a particular scheme of fixing all particle centers to their coordinates is applied, so that 

particles cannot move and the voids in the assembly can be considered to be small reservoirs that are 

connected to each other through the applied conduit pipes which have already been shown in section 3.3.2. 

Since there is no volume change of each pore from particle movement in this case, the volume change is 
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only due to the fluid flowing through the conduit pipes that results from the pore pressure gradient between 

the neighboring pores. Therefore, the two tests allow the effectiveness of the fluid flow scheme to be tested. 

The diameter of the conduit pipes applied in this section is 80 um. 

 

Figure 3.12 Rectangular assembly of 10000 disc particles  

 

Figure 3.13 Grain size distribution of the particles in the rectangular assembly 
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3.8.1 Pore pressure dissipation simulation 

The comparison of the proposed fluid-coupled DEM model with behavior of a poroelastic configuration 

can be performed by simulating the excess pore pressure variations during a consolidation process and 

comparing the results with that from the classical Terzaghi’s theory of one-dimensional of consolidation. 

The simulation of the process of consolidation is achieved by initially setting a pore pressure of 50 kPa for 

all the pores in the rectangular assembly shown in Fig. 3.12 at the beginning of the test. Once the test starts, 

the pore pressures of the pores at the top and bottom boundaries are set to zero instantly. Since the particles 

are not allowed to move, pore pressure dissipation can only occur from the middle layer of the assembly to 

the top and bottom boundaries due to the pressure gradient. This process resembles a one-dimensional 

consolidation process with two-way drainage paths.  

Equation (3.53) shows the partial differential equation that describes the one-dimensional consolidation 

process that was proposed by Terzaghi (Terzaghi, 1951). The analytical solution to this equation for a two 

way paths drainage case starting from uniform pressure distribution is shown as equation (3.54).  

𝜕𝑢𝑒

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢𝑒

𝜕𝑧2
                                                                           (3.53) 

𝑢𝑒 = ∑
2𝑢𝑖

𝑀
(𝑠𝑖𝑛

𝑀𝑧

𝑑
) exp(−𝑀2𝑇𝑣)

𝑚=∞

𝑚=0

                                               (3.54) 

where 𝑢𝑒 is the excess pore pressure, 𝑐𝑣 is the coefficient of consolidation, 𝑀 and 𝑇𝑣 are two parameters 

having the representation shown as equations (3.55) and (3.56). 

𝑀 =
𝜋

2
(2𝑚 + 1)                                                                        (3.55) 

𝑇𝑣 =
𝑐𝑣𝑡

𝑑2
                                                                                   (3.56) 

Fig. 3.14 shows a comparison of the simulated pore pressure variations at different height of the assembly 

with that obtained from the analytical solution of the Terzaghi’s one-dimensional consolidation theory at 

selected cycles during the progress of the test. The horizontal axis is the pore pressure and the vertical axis 

represents the vertical height of the assembly. The simulated pore pressure value of each pore is plotted 

with respect to the vertical coordinate of the pore’s center of gravity which is represented by color blue. 

The black lines in the figure represent the theoretical excess pore pressure values at different heights of the 

assembly computed by using equation (3.54). From the comparison, it can be seen that, the simulated results 

perfectly match the analytical solution at all the selected cycles. Therefore, the behavior of the proposed 

fluid-coupled DEM model is very close to that of the poroelastic configuration. 



59 

 

 

 

        

Figure 3.14 Comparison of the pore pressure dissipation from the proposed scheme with that from 

Terzaghi’s one-dimensional consolidation theory 
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3.8.2 Pore pressure equalization simulation 

With the above background that all the particles are restrained from moving, and fluid can only flow through 

the pores through the connecting conduit pipes, a test aimed at examining the equalization process of the 

pore pressures from pores in different locations in the assembly is also conducted. Different pore pressure 

values from 0 to 50 kPa are first assigned randomly to the pores in the assembly at the beginning of the test. 

Subsequently, the fluid in the assembly is allowed to flow freely without applying any external load for a 

certain time period. After this period, the pore pressure variations with time factor Tv for some randomly 

selected pores are examined and see if they all converge to a single value. Theoretically, it should take an 

unlimited time for all the pore pressures to become equal.  

Results of the pore pressure variations during the simulation for six pores selected randomly in different 

regions in the assembly is shown as Fig. 3.15. It can be seen from the figure that although the initial assigned 

pore pressures of the six pores are very different, after about time factor Tv equals to 0.8, they all merge 

together. The pore pressure changes of all the six pores are rapidest at the begging of the test. Gradually, 

all the rates of change slowed down and approached zero at the end of the test when all six plots merged 

together with almost the same pore pressure of 25 kPa. 

 

Figure 3.15 Pore pressure equalization process from 6 pores in different locations with different initial 

pore pressures. 

3.8.3 Selection of the diameter of the conduit pipes 

To correctly simulate the undrained behavior of a granular media using the proposed further developed 

fluid-coupled DEM, a reasonable estimate of the value of the diameter d of the assumed conduit pipe (Fig. 
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3.7) is necessary to correctly simulate the transient excess pore pressure dissipation among the connected 

pores. A determination of the diameter d for the conduit pipes can be achieved by conducting some tests of 

fluid flow through the rectangular assembly shown in Fig. 3.12 and employing the Darcy’s law as follows. 

First of all, a vertical pressure gradient i can be assigned at the top and bottom boundaries of the rectangular 

assembly to generate a fluid flow through the network of conduits in the assembly. Subsequently, we bring 

the flow network system to a steady state in which the pressure gradient is uniformly distributed inside the 

assembly. In this state, the total amount of the fluid that flows into the assembly at the top boundary due to 

the pressure gradient should be the same as the amount of fluid that flows out of the assembly at the bottom 

boundary. Next, we compute the volumetric flow rate of the fluid flow into the assembly in the vertical 

direction, which is the summation of the volumetric flow rates of all the pipes on the top boundary of the 

assembly. According to the Hagen-Poiseuille’s equation (3.36), the total volumetric flow rate into the 

vertical direction of the assembly is: 

𝑄𝑖𝑛 = ∑ 𝑞𝑛

𝑚

𝑛=1

                                                                                (3.57) 

Since Darcy’s Law indicates that the volumetric flow rate can be computed by using the relationship shown 

in equation (3.58), where k is the coefficient of permeability, and A is the cross sectional area. Thus by 

combining equations (3.57) and (3.58), the coefficient of permeability k can be written as equation (3.59). 

𝑄𝑖𝑛 = 𝑘𝑖𝐴                                                                                        (3.58) 

𝑘 =
𝑄𝑖𝑛

𝑖𝐴
=

∑ 𝑞𝑛
𝑚
𝑛=1

𝑖𝐴
                                                                              (3.59) 

Now a relationship between the coefficient of permeability k and the conduit diameter d can be obtained by 

repeating the test taking various diameter values for the conduit pipes. Fig. 3.16 shows calculated results 

for the coefficient of permeability k plotted versus the conduit diameter d. It can be seen from the figure 

that k increases rapidly with a small increase in d. It is worthy of note that the relationship between k and d 

shown in Fig. 3.16 is exclusive to the network constructed in this research.  

Based on Fig. 3.16, an appropriate value of the conduit diameter can be selected considering the grain size 

distribution shown in Fig. 3.13. From Fig. 3.13, it can be seen that the average diameter of the grains (𝐷50) 

in the assembly is about 0.44 mm, which falls in the range of fine to medium sand. Since the typical value 

of coefficient of permeability for coarse sand is between 1.0 and 0.01 cm/s, and for fine sand it is between 

0.01 to 0.001 cm/s (Das & Sivakugan, 2016), therefore, based on Fig. 3.16, for the adopted fine to medium 



62 

 

size particles, the conduit diameter is selected as 80 µm, which will be used in the undrained simulations in 

Chapter 4. 

 

Figure 3.16 Relationship between coefficient of permeability k and conduit diameter d 
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Chapter 4 Simulations of Undrained Behaviors of Granular Media 

4.1 General background 

This chapter presents the results of the undrained simulations of assemblies of disc particles under different 

initial states using the proposed further developed fluid-coupled DEM. It is targeted at studying the 

macroscopic and microscopic characteristics of a granular media when it is subjected to undrained shearing. 

Based on the classic soil mechanics, a series of simulations are performed on assemblies with a variety of 

initial void ratios and confining stresses. To evaluate the feasibility and practicality of the proposed further 

developed fluid-coupled DEM in describing the undrained monotonic compression process of granular 

media, results from simulations are compared with those from laboratory monotonic undrained triaxial 

compression tests reported in the literature. In addition, a comparative study of a constant volume 

simulation is conducted to compare its response with that of the proposed further developed fluid-coupled 

DEM model. The aim is to study the macroscopic and microscopic responses influenced by pore pressure 

that are not captured by the constant volume method.   

The characteristics of the assembly and flow network of conduit pipes along with the simulation test 

parameters are presented in Section 4.2. The undrained biaxial compression simulations using the further 

developed fluid-coupled DEM under different initial void ratios and confining stresses are presented in 

Section 4.3. Section 4.4 presents some results for the undrained responses of sand under different initial 

conditions for laboratory monotonic triaxial compression tests obtained from the literature. These results 

are qualitatively compared with the simulated results of Section 4.3 to show the consistency of the further 

developed fluid-coupled DEM and the laboratory methods. A comparison between the undrained simulation 

results from the proposed further developed fluid-coupled DEM and those from the constant volume 

method is shown in Section 4.5.  

4.2 Characteristics of the assembly and flow network 

4.2.1 Physical characteristics and properties of the granular system 

Internal particles 

The simulations in this chapter are conducted on assemblies of discs, each one of which contains about 

10000 particles. The reason for choosing discs instead of ellipses is that round particles are more prone to 

show the phenomenon of liquefaction (Yang and Wei, 2012; Keramatikerman and Chegenizadeh, 2017; 

Ashmawy et al., 2003). Hence, in order to better demonstrate the micromechanical characteristics of 

liquefaction and thereby obtain a full picture of undrained behavior of granular media, disc particles are 

employed to perform the undrained simulations. The grain size distribution of the disc particles in the 
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assemblies adopted in this chapter follows that given in Fig. 3.13. So the grain sizes of the particles are 

uniform and in the fine to medium sand range. The physical properties of the disc particles such as Young’s 

modulus, Poisson’s ratio, inter-particle friction coefficient, and density come from quartzite (Franklin and 

Dusseault, 1991), and are listed as Table 4.1. 

Table 4.1  Properties of the particles 

Property Symbol Value 

Young’s modulus E 80 Gpa 

Poisson’s ratio υ 0.25 

Inter-particle friction coefficient µ 0.5 

Density ρ 2.65 g/cm3 

Boundary setting 

It is known that there is a stress concentration at a corner on a boundary when simulations of granular media 

use rectangular boundaries (Olivera, 2004). To avoid this problem, the assemblies in this research adopt a 

circular boundary, which is constituted of 278 continuous and closed lines. Each one of the lines is seen as 

an elliptical particle with the same properties as the internal particles but having an eccentricity of one. 

Since the internal discs can also be seen as elliptical particles with an eccentricity of zero, the computations 

for the whole assembly can be performed by using an unified algorithm applied to the ellipse particles. 

Besides, the issue of membrane penetration that is frequently encountered in undrained laboratory testing 

is avoided in the proposed scheme. 

4.2.2 Characteristics and properties of the flow system 

The construction of the fluid flow system has been introduced in Chapter 3. Since the dynamic effect of the 

fluid flow through the porous media is simulated by using conduit pipes as illustrated in Figure 3.7, values 

of the dimensions of the conduit pipes need to be assigned. The length of each conduit pipe varies, according 

to the distance between the mass centers of neighbouring pores. The diameters of the pipes are assumed to 

be the same, and their value is assigned as 80 µm based on the analysis performed in section 3.8.3. Other 

than dimensions of the conduit pipes, physical properties of the fluid such as the viscosity and the bulk 

modulus are taken as those of water at 20°. The specific values are listed as Table 4.2.  
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Table 4.2 Properties of the fluid system 

Property Symbol Value 

Pipe diameter d 80 µm 

Viscosity (water at 20°) 𝜇̅ 1×10-3 Pa·s 

Fluid bulk modulus (water) 𝐵𝑓 2.0 GPa 

 

4.2.3 Generation of the assembly 

To display a full picture of undrained behaviors, both dense and loose samples are necessary. And to create 

a sample that can trigger the phenomenon of liquefaction, a very high void ratio is critical. Among the most 

frequently used methods of sample preparation in laboratory undrained testing, it is the technique of moist 

tamping that can create a soil structure that induces liquefaction while other methods may only induce a 

limited liquefaction or even strain hardening, even for the same initial states. A sample of soil structure that 

was formed by moist tamping can be observed in the microphotographs that are presented in Figure 2.10. 

The aggregates and macropores are the most conspicuous characteristics of this type of structure that differ 

from the regular particle packing structure that is formed by air pluviation. Such particle structures having 

a variety of aggregates and macropores are generated numerically in this study.  

The generation of the assemblies with different initial void ratios can be achieved by a combined process 

of expanding and shrinking the particle diameters repeatedly a few times, and then removing a certain 

amount of the particles that have no contact with any neighbour particles, which are termed floaters in this 

thesis, from the pores. The process of repeating the expansion and shrinking of the particle diameters is 

analogous to compaction, so the aggregates can be formed while maintaining equilibrium. By removing the 

floaters from the granular system, macropores can be formed without influencing the equilibrium of the 

whole system. The specific steps of the sample generation are as follows: 

1. Create an initial assembly, then increase the boundary stress to the target level uniformly in both x and y 

directions by using mode 2 that was introduced in section 3.4. Both loading and relaxation are applied 

alternately resulting in a homogeneous assembly system. 

2. Increase all internal particle diameters by 5%, which will produce large contact forces inside the 

assembly.  

3. Alternate between loading and relaxation using mode 2 under the target boundary stress value, until 

equilibrium is achieved again. 
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4. Decrease the diameter of all particles to the original value, which will induce the loss of some contacts 

and the formation of some floaters within the assembly. 

5. Bring the assembly to the target boundary stress value again using mode 2, until the whole system 

achieves an equilibrium condition. 

6. Repeat the steps from 2 to 5 several times, so that the assembly can form many floaters inside the pores. 

7. Remove different amounts of floaters from the system to create samples with different initial void ratios. 

4.3 Undrained biaxial compression simulation tests 

4.3.1 Effect of initial void ratio 

4.3.1.1 Summary of the test program 

To examine the influence of the initial void ratio on the undrained response of the granular assembly, a 

group of four samples, A, B, C, and D are prepared with different initial void ratios (see Figure 4.1). The 

different values of initial void ratio for the samples were achieved by controlling the number of floaters in 

the assembly while maintaining the condition that the main structures of all four samples were similar. The 

initial number of floaters of the four samples (from A to D) are 215, 705, 1245, and 1380, respectively. 

They are obtained by removing different amounts of floaters from the pores of the initial sample. Sample 

A is obtained by removing all the floaters in the assembly, sample B is obtained by removing two floaters 

per void, sample C is obtained by removing one floater per void, and sample D is the original sample 

without removing any of the floaters. After removing the different amount of floaters, all four assemblies 

are brought into an equilibrium state again, during which process the number of floaters in all the samples 

varied a bit. The above floater removal approach creates samples with a range of initial void ratios and 

helps the samples to exhibit a full picture of undrained behavior. Besides, the samples with different initial 

void ratios obtained by removing different number of floaters can help us study of how the number of 

floaters affects the undrained behavior of the granular assembly. The specific initial physical properties of 

each sample are shown as Table 4.3.      
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(a)                                                                                    (b) 

 

(c)                                                                                         (d) 

Figure 4.1 Initial granular assemblies with different void ratios (different number of floaters) before 

undrained shearing: (a) Sample A, (b) Sample B, (c) Sample C, (d) Sample D 

The undrained biaxial compression simulations for all the four samples are conducted using mode 3 

introduced in section 3.4, which maintains the average stress 𝜎11
  constant, and meanwhile, increases the 

average stress 𝜎22
  by applying a constant strain rate 𝜖2̇2

𝛽
 (at the boundary). The confining stresses for all 
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four tests are set as 100 kPa. The associated undrained simulation test parameters such as the damping 

coefficient, time step, and the value of vertical strain rate employed in this section are listed in Table 4.4.  

Table 4.3 Summary of initial physical properties of the tests 

Test Sample 

Number of 

floaters 

(𝒏𝒇) 

Initial average 

coordination number 

 (𝛄) 

Void ratio 

 (𝒆) 

Confining stress (kPa) 

(𝝈𝟏) 

A A 215 3.2045 0.3636 100 

B B 705 3.2246 0.2970 100 

C C 1245 3.2493 0.2383 100 

D D 1380 3.2669 0.2181 100 

 

Table 4.4 Parameters for the undrained testing 

Property Symbol Value 

Global damping 𝛼 0.76×105 /sec 

Contact damping β 0.0 sec 

Rotational damping ω 1.0 

Time step Δt 5.28×10-7 sec 

Vertical strain rate 𝜀22̇  1.0×10-2 /sec 

 

4.3.1.2 Mechanical results from the simulation 

Some mechanical results from the four undrained biaxial compression simulations with different initial void 

ratios A, B, C, and D are shown as Figs. 4.2 to 4.4, respectively. Figure 4.2 is the stress-strain response of 

the four samples under shearing, Figure 4.3 shows the pore pressure variations throughout the testing, and 

Figure 4.4 presents the stress paths of the four undrained tests. All four samples are sheared to 10% strain 

where a steady state is reached in samples A, B, and C. Only sample D still shows the tendency to dilation 

at the end of the simulation. In general, the behavior of the four tests that can be divided into two groups. 

Both samples A and B exhibited strain softening and developed liquefaction, while samples C and D 

displayed strain hardening. The specific characteristics of the undrained behavior for each test are illustrated 

as follows. 

Test A 

Sample A exhibits a very traditional strain softening type of response, and liquefaction is achieved, which 

typically occurs in a very loose sample. It is shown in Fig. 4.2 that the shear stress of sample A increases 
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rapidly during initial shearing until it reaches a peak strength of 19 kPa at about 0.3% shear strain. With 

continued shearing the shear stress decreased from this peak to 2.5 kPa at about 1.2% strain. Meanwhile, 

the corresponding pore pressure shown in Figure 4.3 increases rapidly at an almost constant rate from the 

beginning to about 1.2% strain, its value attains 99% of the confining stress. Subsequent shearing did not 

alter the shear stress much, there was only a small little reduction of the shear stress until the end of the test, 

indicating the achievement of a steady state condition. The residual strength obtained for this test is about 

0.71 kPa. The corresponding pore pressure also did not change much, it only increases very slowly to a 

maximum value of 100 kPa, and then almost maintains that value until the end of the test. The stress path 

of test A presented in Figure 4.4 is consistent with the stress-strain curve and pore pressure variations in 

Figs. 4.2 and 4.3. While the shear stress increases to its peak value and there is an initial rapid pore pressure 

generation, the stress path starts from point (100, 0) then goes up and at the same time turns to the left in 

the figure because of the increasing shear stress and decreasing mean effective stress. The peak strength 

appears when the mean effective stress equals to 85 kPa. Continued shearing after the peak strength leads 

to the stress path going downwards and further to the left towards the origin due to the continuous softening 

of the sample and increasing pore pressure. At a large strain, the stress path maintains 0.71 kPa of shear 

stress and 1.6 kPa of mean effective stress until the end of the test, which is in a good agreement with the 

residual strength and the maximum pore pressure shown in Figs. 4.2 and 4.3. 

 

Figure 4.2 Stress-strain responses for assemblies with different void ratios 
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Test B 

Similar to the behavior of test A, test B also triggered liquefaction, but with a higher peak strength and 

residual strength, as shown by the stress-strain response in Figure 4.2 and the stress path in Figure 4.4. 

During the initial shearing of test B, the shear stress increases rapidly at a rate of which is higher than that 

of test A. Along with the initial rapid increase of the shear stress, the pore pressure built up rapidly. 

Subsequently, the rate of the shear stress increase gradually reduces, and a peak strength of 29.1 kPa occurs 

at 0.74% strain, which is higher than that of test A. The pore pressure generation rate also reduces with the 

arrival of the peak strength. Afterwards, the shear stress decreases after reaching its peak value until 

reaching a value of 6.8 kPa at about 2.4% strain. The rate of decrease is lower than that of test A during 

strain softening. The pore pressure continued growing at first at a high rate and then gradually slowed down 

until about 2.4% strain it reached 91% of the confining stress value. The following shearing did not alter 

the shear stress and pore pressure much. There were small reductions in the shear stress and increases in 

the pore pressure until 5% strain, where the shear stress and pore pressure both achieved and maintained 

constant values indicating the achievement of a steady state. The residual strength of sample B is a bit 

higher than that of sample A, and the maximum pore pressure of sample B is a bit lower than that of sample 

A. In accordance with the stress-strain response and pore pressure variations, the stress path of test B also 

reveals the process of strain softening. As seen in Figure 4.4 the stress path of test B behaves very similarly 

to that of test A. It also goes upwards and to the left during initial shearing but with a higher peak strength 

and residual strength compared to test A. Therefore, sample B has a lower potential for strain softening and 

liquefaction than sample A. 

Test C 

Very different from tests A and B, test C exhibits a strain hardening response under a condition of undrained 

shearing. As shown in Figure 4.2 the shear stress increases from the beginning to the steady state condition, 

at different rates for each strain level. The rate of shear stress increase from the initiation of shearing until 

0.3% strain is higher than that of test A and B at this stage. It gradually reduces until 0.3% strain, where the 

corresponding pore pressure reaches its peak value of 25 kPa. Subsequently, the shear stress continued 

increasing almost at a constant rate until 1.9% strain, while the pore pressure gradually decreased to the 

value of zero. From 1.9% to 3.7% strain, the shear stress further increases but at a bit lower rate than in the 

former stage. The corresponding pore pressure further decreases to a negative value, which indicates the 

microstructure tends to change from contraction to dilation. Continue shearing induces the further increase 

of shear stress with decreasing rate, until about 8.5% strain, the increase of shear stress almost terminated 

and stayed at a value of 140 kPa, and the pore pressure also stopped reducing and maintained a value of -

70 kPa, indicating the arrival of a steady state condition. The stress path of test C, shows a completely 
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different response than that of tests A and B. From the start of the test, the shear stress increases with a 

small decrease of the mean effective stress due to the initial positive pore pressure generation. Afterwards, 

at a shear stress between 30 and 40 kPa only, corresponding to the strain at which the peak pore pressure is 

reached, the mean effective stress stops reducing and starts to increase due to the reduction of the pore 

pressure. Continued shearing causes both shear stress and mean effective stress to increase further with a 

constant slope until the end of the test. The corresponding decreasing pore pressure and rising shear stress 

indicate the occurrence of strain hardening. At the end of the test, the stress path terminated at a shear stress 

of 140 kPa with a mean effective stress of 240 kPa, which agrees with the residual shear strength and pore 

pressure shown in Figs. 4.2 and 4.3. 

 

Figure 4.3 Pore pressure variations for assemblies with different void ratios 

Test D 

Test D also exhibits a strain hardening response but with a much higher shear strength at large strains than 

that of test C. The overall behavior of test D is quite similar to that of test C except that it did not achieve 
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highest rate among the four tests from initial shearing until 0.3% strain, where the increasing rate decreases. 

The corresponding pore pressure increased from zero to a peak value of 20 kPa during this initial shearing. 

After 0.3% strain, strain hardening initiated with almost constant rate of shear stress increase until the end 

of the test, and the pore pressure decreases at a constant rate from its peak value until the end of the test. 
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The pore pressure enters into the negative zone at 1.1% strain, which indicates the tendency to dilation. The 

stress path of test D is very close to that of test C, initially, it also goes up and to the left due to the generation 

of a positive pore pressure. Subsequently, it keeps going up but turns to the right and forms an “elbow”, 

which corresponds to the point at which the pore pressure drops from its peak value. With further shearing 

the stress path increases to the right with a nearly constant slope, which is in good agreement with the 

decrease of pore pressure into the negative region and a steadily increasing shear stress. It is worth noting 

that at the point where the shear stress value equals 62 kPa and the mean effective stress equals 125 kPa, 

the stress path of test D merges with that of test C, indicating that the same critical stress ratio is achieved 

for both samples. 

 

Figure 4.4 Stress paths for assemblies with different void ratios 

Comments 

Based on the three undrained mechanical features exhibited from Figure 4.2 to Figure 4.4, it can be seen 

that the four undrained tests displayed two different types of behaviors, strain softening and strain 
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addition, as the void ratio decreases, the pore pressure at all stages decreases. As an indication of the shear 

stress and pore pressure variations, the stress path changes from turning left (strain softening) to turning 

right (strain hardening) with a decrease of the void ratio.   

4.3.1.3 Micromechanical behaviors from the simulation 

Figs. 4.5 to 4.8 presents the responses of descriptors that describe the micromechanical properties of the 

assembly (the average coordination number γ, the number of floaters 𝑛𝑓, the contact normal anisotropy 

parameter 𝑎𝑛, and the normal contact force anisotropy parameter 𝑎𝑓). Based on the responses of these 

descriptors throughout simulations, the corresponding mechanical undrained behaviors of each test can be 

understood. The specific micromechanical characteristics of each test are illustrated as follows. 

Test A 

It is shown as Figure 4.5 that from the beginning of shearing to 0.3% strain, the average coordination 

number γ decreased a bit, while the number of floaters 𝑛𝑓, the contact normal anisotropy parameter 𝑎𝑛 and 

the normal contact force anisotropy parameter 𝑎𝑓 shown in Figs. 4.6 to 4.8 all increased rapidly, which 

indicates contact creation mainly occurs vertically while contact disintegration is primarily in the horizontal 

direction. This corresponds to the initial rapid shear stress increase to the peak value and fast pore pressure 

generation stage shown in Figs. 4.2 and 4.3. From 0.3% to 1.2% strain, the rate of decrease of γ increases 

especially after 0.7% strain, and the rate of increase of both 𝑛𝑓 and 𝑎𝑛 does not vary much, while the rate 

of increase of 𝑎𝑓 decreases a bit. These responses indicate the occurrence of an increasing number of contact 

losses in the vertical direction along with a large number of contact losses in the horizontal direction. This 

corresponds to the main portion of the strain softening and rapid pore pressure generation seen in Figure 

4.2 and Figure 4.3. From 1.2% to 6% strain, γ further decreases but at a decreasing rate, 𝑛𝑓  keeps on 

increasing at high rate, 𝑎𝑛 increases at a decreasing rate, while 𝑎𝑓 slowly reduced. These responses suggest 

that a large number of contacts disintegrate in both directions, and the sample is totally liquefied. From 6% 

and 8% strain,  𝑎𝑛  decreases to some degree, while the other three descriptors do not change, which 

indicates that with the progress of liquefaction, more and more contacts are lost in the vertical direction. 

From about 8% strain, a steady state is achieved, and all four descriptors remain at almost constant values 

until the end of the test. 
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Figure 4.5 Average coordination number γ variations of assemblies with different void ratios 
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of the four micromechanical descriptors, all of which maintained almost constant values, therefore, a steady 

state prevailed until the end of the test. 

Test C 

The micromechanical behavior of test C is very different from that of tests A and B. The initial shearing 

leads to a slow growth of γ and a dramatic reduction of the number of floaters 𝑛𝑓. The associated 𝑎𝑛 and 

𝑎𝑓 values both increase faster than those of test A and B in this stage. This response demonstrates a large 

number of contacts are created vertically with the help of floaters in the pores and only a small number of 

contacts disintegrate horizontally. This response is most distinct from the beginning of the test to 0.5% 

strain. Afterwards, the microstructure tends to change from contraction to dilation as seen in Fig. 4.3. Until 

8.5% strain, strain hardening manifests itself, where γ, 𝑎𝑛  and 𝑎𝑓  all steadily increase and 𝑛𝑓  steadily 

reduces. Contact creation is predominant in this stage, and in both directions along with the generation of 

negative pore pressure exhibited in Fig. 4.3. After 8.5% strain, all the four descriptors maintain almost 

constant values which agrees with the unchanged shear strength seen in Fig. 4.2 and constant pore pressure 

in Fig. 4.3, so the granular system have reached a steady state. 

 

Figure 4.6 Number of floaters nf variations for assemblies with different void ratios 
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to its peak value. In this stage, the changing rates of all descriptors for sample D shown in Figs. 4.5 to 4.8 

are very close to those of test C in this stage. Hence, similarly to the micromechanical behavior of test C, 

contact creation in the vertical direction is predominant in this stage with the help of the floaters inside the 

pores. After 0.4% strain, the granular assembly starts to show the tendency to dilation. Manifested in Figs. 

4.7 and 4.8 is the continuous rising of 𝑎𝑛  and 𝑎𝑓  at a decreasing rate. The rate of reduction of floater 

numbers 𝑛𝑓 also become lower, but γ still keeps increasing at the same rate. This response demonstrates 

that in this stage, contact creation is predominant in the granular assembly, and that it occurs in both 

directions, which matches the mechanical behavior of a continuous reduction of the pore pressure and the 

tendency to dilation of the system. By the end of simulation, γ still continue increases, although the other 

three descriptors stop varying much. This means the construction of contacts in both directions continues 

due to the tendency to dilation until the end of simulation, which is in accordance with the non-stop increase 

of the shear stress at the end of simulation shown in Fig. 4.2. It can be expected if shearing of sample D is 

continued to an even larger strain it will reach the steady state and all the four descriptors will stop changing 

and stay at constant values like sample C.  

 

Figure 4.7 Contact normal anisotropy parameter an for assemblies with different void ratios 
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Figure 4.8 Normal contact force anisotropy parameter af for assemblies with different void ratios 
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continuously dropped and more contact creation occurred in both directions until the arrival of the steady 

state shown in test C, which did not exhibit in test D until the end of simulation. Therefore, besides the 

impact of void ratio, for the adopted assemblies, it is the number of floaters 𝑛𝑓 that affects the behavior of 

the undrained granular assembly.  

4.3.2 Effects of confining stress 

4.3.2.1 Summary of the test program 

To examine the influence of the confining stress on the undrained response of the granular assembly, a 

group of three samples (E, F, and G) were prepared in addition to sample B that has already shown in 

section 4.3.1. Samples E, F, and G have close void ratios but different values of confining stresses from 

200 kPa to 400 kPa in intervals of 100 kPa. They were prepared based on sample B, but varied by increasing 

the confining stress of sample B to different levels from 200 kPa to 400 kPa first, then bringing them into 

the equilibrium state for testing. Some physical properties for each sample in this group are shown as Table 

4.5.      

Table 4.5 Summary of initial physical properties of the tests 

Test Sample 

Number of 

floaters 

(𝒏𝒇) 

Initial average 

coordination 

number 

 (𝛄) 

Void ratio 

 (𝒆) 

Confining stress 

(kPa) 

(𝝈𝟏) 

B B 705 3.2246 0.2970 100 

E E 309 3.3079 0.2955 200 

F F 267 3.3440 0.2941 300 

G G 238 3.3729 0.2929 400 

Similar to the simulations present in section 4.3.1, the undrained biaxial compression simulations for all the 

four samples are conducted using mode 3 introduced in section 3.4, which maintains the average stress 𝜎11
  

constant, and meanwhile, increases the average stress 𝜎22
  by applying a constant strain rate 𝜖2̇2

𝛽
 (at the 

boundary). The associated simulation parameters for undrained biaxial compression testing in this section 

also follow the values presented in Table 4.4.  

4.3.2.2 Mechanical results from the simulation 

Some mechanical responses from the simulation for the four undrained biaxial compression tests with 

similar void ratio but different confining stresses B, E, F, and G are shown as Figs. 4.9 to 4.11, respectively. 
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All four samples were sheared to about 10% strain, where all had achieved steady states. Figure 4.9 gives 

the stress-strain responses under shearing, Figure 4.10 shows the pore pressure variations throughout the 

testing, and Figure 4.11 presents the stress paths for the four undrained tests. Overall, the behaviors seen in 

the graphs of the four tests are very similar, all of them exhibit strain softening and liquefaction. From B to 

G, the peak shear strength and maximum pore pressure both become higher with greater confining stresses. 

The stress paths of all four samples merge at the same critical stress ratio line after the occurrence of the 

peak shear strength. Since the responses of the four samples are very similar, and specific behavior of 

sample B has been interpreted in section 4.3.1, here the interpretation of the undrained behavior of the four 

samples will only focus on comparing their responses influenced by the confining stresses. 

Stress-strain Responses 

The stress-strain curves shown in Fig. 4.9 indicate that all four samples show the strain softening type of 

response. They all liquefied after the initiation of the strain softening, and the steady states were achieved 

at large strains. The residual strengths for all four samples are very low, which means all four granular 

assemblies lost most of their strength by the time they reached the steady state. The values of the residual 

strength for the four tests are very close, increasing from B to G. These are the similarities of the four tests, 

nevertheless, there are indeed some discrepancies among them. It can be seen from Fig. 4.9, that the most 

conspicuous characteristic of the responses is that as the value of the confining stress increase from B to G, 

the peak shear strength becomes higher, but the duration of the peak strength becomes shorter. In addition, 

the strains it took to complete strain softening becomes greater from B to G. Thus, the confining stress 

affects the peak shear strength and the extent of strength reduction significantly.  

Pore Pressure Variations 

The pore pressure variations of the four tests presented in Fig. 4.10 agree with the above stress-strain 

responses. Specifically, all four tests exhibit a very high pore pressure build up rate at the initial sharing. 

From B to G, the initial pore pressure built up rate increases in sequence, which is consistent with the 

sequence of initial shear stress growth rate illustrated in Fig. 4.9. Subsequently, the pore pressure increase 

rates for all four samples are gradually reduced while the shear stress climb to their peak value and then 

initiate strain softening. From B to G, the duration of this reduction in the rate of pore pressure increase 

decreases. A similar trend is shown in the sequence of the peak shear strength durations shown in Fig. 4.9. 

Afterwards, the rate of pore pressure increase for all four tests increased again as strain softening continued.  

Near the end of strain softening the pore pressure increase slowed down, as it approached 98% of each 

confining stress. The maximum pore pressure achieved at the end of the tests increase from B to G, in the 

same sequence as the peak shear strengths of Fig. 4.9. Therefore, the confining stress has a strong impact 
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on the initial pore pressure build up rate and the maximum pore pressure value at the steady state, both of 

which increase with increasing confining stress. 

 

Figure 4.9 Stress-strain responses for assemblies with different confining stresses 

 

Figure 4.10 Pore pressure variations for assemblies with different confining stresses 
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Stress Paths 

The stress path plots for the four tests presented in Fig. 4.11 are consistent with the stress-strain responses 

shown in Fig. 4.9 and the pore pressure variations given in Fig. 4.10. Although started with different points 

from 100 kPa to 400 kPa in the horizontal axis, the shear stress of all four tests all initially increase to the 

peak value with the decrease of mean effective stress, which then start to reduce with further reduction of 

the mean effective stresses following almost the same slope. It can be seen from Fig. 4.11 that the process 

of the shear stress increases to the peak and the following initiation of the strain softening are less rounded 

from B to G. This is in accordance with the sequence of the duration of the peak shear strength and the 

duration of the pore pressure increasing rate reduction. Until the steady state, all the four stress paths stop 

variating and in the sequence of less close to the origin point from B to G following the critical stress ratio 

line. From the above illustration of the stress path variations of the four tests, it can be seen that the confining 

stress affects the stress path to a large extent, mainly in the initial starting point and the peak shear strength 

value. 

 

Figure 4.11 Stress paths for assemblies with different confining stresses 

Comments 

In general, the three mechanical response results exhibited in Figs. 4.9 to 4.11 demonstrate that although 

the undrained behaviors of the four samples are quite similar in terms of the overall pattern, the confining 
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stress affects the undrained behavior significantly, especially on the peak shear strength value and the pore 

pressure build up rate. The specific reasons that the confining stress has a strong impact on the undrained 

behavior of the granular system and in particular the different durations of the peak shear strength are 

considered from the point of view of micromechanics in the following section. 

4.3.2.3 Micromechanical behaviors from the simulation 

Figs. 4.12 to 4.15 shows the micromechanical descriptors (the average coordination number γ, the number 

of floaters 𝑛𝑓 , the contact normal anisotropy parameter 𝑎𝑛 , and the normal contact force anisotropy 

parameter 𝑎𝑓 ) responses of the four samples under undrained shearing. The overall undrained 

micromechanical behaviors of the four tests are quite similar and can be divided into three stages that are 

associated with the corresponding stress-strain responses. 

First Stage 

The first stage lasts from the beginning of the tests until the peak shear strength is reached – see Fig. 4.9. 

In this stage, the average coordination numbers γ for samples E, F, and G shown in Fig. 4.12 all slowly 

decreased while only that of sample B γ shows a small increase. From samples E to G, the rate decrease of 

γ increases slightly. The corresponding contact normal anisotropy parameter 𝑎𝑛 and the normal contact 

force anisotropy parameter 𝑎𝑓 in this stage both increase rapidly for all four tests, which indicates that 

contact creation mainly occurs vertically while contact integration mainly occurs horizontally. From B to 

G, the rate of increase of both 𝑎𝑛 and 𝑎𝑓 reduces a bit, which means that more contact is lost vertically in 

samples F and G that in samples B and E. This is related to the increasing rate of the initial pore pressure 

build up from B to G, which is also indicated from the fact that the number of floaters for all four tests in 

this stage drop with different degrees after the first instant change upon the shearing. Since the initial pore 

pressure build up rate increases from B to G, the decreasing rate of the number of floaters 𝑛𝑓 become less 

accordingly due to the less connections of the floating particles with neighbour particles in the vertical 

direction from high pore pressure. 

Second Stage 

The second stage lasts from the peak shear strength to the end of strain softening for each test. In this stage 

γ continues to decrease for all four tests coincident with the development of the strain softening. The rates 

decrease of γ for the four tests are similar and in all cases, higher than in the previous stage indicating a 

drastic softening in this stage. When the strain softening nears its end, all four γ values stop their rapid 

decrease. The contact normal anisotropy parameter 𝑎𝑛 in this stage still increases for all four tests, but at a 

much lower rate than in the former stage. The normal contact force anisotropy parameter 𝑎𝑓 in this stage 
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decreases temporarily, then increases slowly. From the responses of γ, 𝑎𝑛, and 𝑎𝑓, it can be concluded that 

less net contact creation occurs vertically. From B to G the increasing rate of 𝑎𝑛  and 𝑎𝑓  decreases in 

sequence, which can be attributed to the reason that the contact lost happened in both directions are more 

drastic in sample F and G than in samples B and E in this stage. This is consistent with the higher strain 

softening rate in samples F and G compared to samples B and E shown in Fig. 4.9. The number of floaters 

in this stage for all four tests switches from decreasing to increasing, although the decrease lasted longer in 

samples B and E than in samples F and G because a lower pore pressure generation rate has less effect on 

contact creation due to the connection of floaters in the vertical direction. Correspondingly, the peak shear 

strength in Fig. 4.9 lasted much shorter in samples F and G than samples B and E, which is because of the 

relatively higher pore pressure build up rate prevented the vertical contact construction through connecting 

with the floaters. Afterwards, the number of floaters 𝑛𝑓 in all samples increase but with a rate that decreases 

from B to G, which agrees with the decreasing rate of increase of 𝑎𝑛 in this stage.  

Third Stage 

The third stage lasts from the end of the strain softening to the steady state at the end of the test. In this 

stage, γ further decreases but at a very much low rate than in the previous two stages for all four tests until 

the achievement of a constant coordination number at a large strain. The terminal values of  γ for all four 

tests are similar with a small discrepancy, which is in consistent with the associated residual strengths of 

Fig. 4.9. The number of floaters 𝑛𝑓  and the contact number anisotropy parameter 𝑎𝑛 in this stage both 

increase slowly until reaching a constant value, which announced the arrival of the steady state. The values 

of all parameters at the steady state are close with a bit difference, which agrees with their close values in 

residual strength. 

Comments 

From the above interpretations of the micromechanical responses for the four tests in the three stages, it can 

be concluded that the micromechanical responses shown by the descriptors are in a good agreement with 

the mechanical undrained behaviors. The confining stress affects both mechanical and micromechanical 

responses greatly. The influence on the mechanical behavior mainly manifests itself with the association of 

the peak shear strength and the pore pressure build up rate. With respect to the micromechanical responses, 

the confining stress controls the rate of change of the four micromechanical descriptors in the course of 

reaching their steady state.  
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Figure 4.12 Average coordination number γ variations for assemblies with different confining stresses 

 

Figure 4.13 Number of floaters nf variations for assemblies with different confining stresses 
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Figure 4.14 Contact normal anisotropy parameter an for assemblies with different confining stresses 

 

Figure 4.15 Normal contact force anisotropy parameter af for assemblies with different confining stresses 
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4.4 Comparison of simulated results with laboratory test results 

4.4.1 Introduction 

In this section, a comparison is made between simulated results from section 4.3 and results from undrained 

monotonic triaxial tests selected from the literature. The comparison of the simulated results and laboratory 

test results is made in terms of the effect of initial void ratio and confining stress as presented in section 

4.3. The selected laboratory test results that were employed to perform the comparison are from undrained 

monotonic triaxial tests on Alaskan 140-5 sand, which were reported by Jefferies and Been in 2006 

(Jefferies and Been, 2006). (Supporting data can be downloaded from http://www.golder.com/liq.) The 

Alaskan 140-5 sand is a fine sand with 5% of fines passing a No. 200 sieve. Its 𝐷50 is 140μm, its maximum 

and minimum void ratios are 0.856 and 0.565 respectively, and its specific gravity is 2.7. These physical 

properties of the Alaskan 140-5 sand are close to the properties we assigned to the assemblies when doing 

the simulations. In addition, all the selected results of Alaskan 140-5 sand were obtained by using samples 

prepared by a moist tamping technique, which creates a structure of aggregates and macropores that is 

similar to the structure of the assemblies developed in this research. Therefore, the results of Alaskan 140-

5 sand are selected for the comparison. A specific comparison of the results obtained using the two methods 

for different void ratios and various confining stresses are as follows. 

4.4.2 Comparison of the results from varying the void ratio 

Figs. 4.16 to 4.18 presents a group of results from undrained monotonic triaxial testing of the Alaskan 140-

5 sand, which were sheared under a confining stress of 200 kPa. The three samples in this series of tests 

have different initial void ratios of 0.872, 0.785, and 0.715 respectively. All of them were sheared to a large 

strain of over 15%. It can be seen from Fig. 4.16 that the stress-strain curves from the three tests display 

two types of undrained behavior. The one with the highest void ratio of 0.872 exhibits strain softening while 

the other two tests both show the strain hardening. Their associated pore pressure variations shown in Fig. 

4.17 confirm this response pattern. The sample with a void ratio of 0.872 developed very high pore pressures 

that are close to its confining stress at a large strain, while the other two samples both induce negative pore 

pressures after reaching an intermediate strain indicating that the tendency to dilation was triggered due to 

the low void ratio. Consistent with Figs. 4.16 and 4.17, the stress paths shown in Fig. 4.18 also exhibit the 

same response. Only the stress path of the sample with a void ratio of 0.872 turns to the left towards the 

origin after passing the peak strength due to a continuous generation of positive pore pressure, which 

indicates the occurrence of liquefaction. While the stress paths of the other two tests both turn to right with 

the increase of shear stress following almost the same slope demonstrating the occurrence of strained 

hardening.  

http://www.golder.com/liq
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The above undrained behaviors of the Alaskan 140-5 sand are very similar to those of the undrained 

simulations shown in Figs. 4.2 to 4.4, although the undrained tests of the Alaskan 140-5 sand were 

conducted under a confining stress of 200 kPa while the simulated results were performed under a 100 kPa 

as the confining stress. Both of the two groups of results reveal the same behavior in that there is a higher 

potential for liquefaction when the samples are loose, while the tendency to strain harden and dilate will be 

displayed if the sample is dense. The only difference between the two groups of undrained behaviors is that 

compared to the simulated results, all the Alaskan 140-5 sand showed a higher strength at comparable levels 

of shear strain. In addition to the effect of confining stresses, the disc particles that were employed in the 

simulation may contribute to this difference, since the studies reported by Li (2013), Li et al. (2013), and 

Matsushima and Chang (2011) indicate a higher degree of roundness of particles usually results in a lower 

resistance. Other than these, the two groups of test results are very close to each other and show very similar 

responses of granular media under undrained shearing.  

 

Figure 4.16 Stress-strain responses for Alaskan 140-5 sand with different void ratios 

(http://www.golder.com/liq) 
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Figure 4.17 Pore pressure variations for Alaskan 140-5 sand with different void ratios 

(http://www.golder.com/liq) 

 

Figure 4.18 Stress paths for Alaskan 140-5 sand with different void ratios (http://www.golder.com/liq) 
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4.4.3 Comparison of the results for varying confining stresses 

Figs. 4.19 to 4.21 shows a series of four undrained test responses of the Alaskan 140-5 sand with close void 

ratios but were sheared under different confining stresses varying from about 100 kPa to 400 kPa. The four 

samples have void ratios of 0.881, 0.872, 0.924, and 0.857 respectively for the sequence corresponding to 

100 to 400 kPa pressure. All of them are sheared to a large strain of about 17% that triggered liquefaction. 

It can be seen from Fig. 4.19 that the stress-strain curves of the four tests all display a strain softening type 

of undrained behavior. From the test with the lowest confining stress to the one with the highest confining 

stress, the peak strength increases and the strain softening duration lasts longer. At large strains, all the four 

residual strengths are quite close to each other. Consistent with Fig. 4.19, the pore pressure variations in 

the four tests of Fig. 4.20 agree with their stress-strain responses. They all display a very high pore pressure 

build up rate during initial shearing, which gradually slow down and approach maximum values at large 

strains that are close to their confining stresses representing the initiation of the strain softening and the 

occurrence of liquefaction. The stress paths shown in Fig. 4.21 are in accordance with the stress-strain and 

pore pressure variations shown in Fig. 4.19 and Fig. 4.20. They started with different initial confining stress 

from about 100 kPa to 400 kPa, and the shear stress of all four tests all initially increase to their peak value 

with the decrease of mean effective stress, which then start to reduce with a reduction of the mean effective 

stresses following similar slopes. At the steady state, all the four stress paths terminated at low residual 

strengths and low mean effective stresses, which is in accordance with the residual strengths and maximum 

pore pressures shown in Figs. 4.19 and 4.20. 

The above undrained behaviors of the Alaskan 140-5 sand sheared under different confining stresses are 

very similar to those of the simulated results shown in Figs. 4.9 to 4.11. Only at large strains, the residual 

strengths from the simulations are closer to each other than the undrained tests of Alaskan 140-5 sand, since 

the initial void ratios of the four assemblies for the simulations are very close to each other while the initial 

void ratios of the four Alaskan 140-5 sand samples have larger differences. Also the duration of 

corresponding peak strength exhibited by the two groups of tests are different, which can also be shown 

from the temporarily slow increase of the pore pressure generation rate and the associated relatively straight 

stress path at the intermediate strain range of the simulated results. All these responses can be attributed to 

the fact that there are many floaters in the assemblies that were adopted for simulation. Except for these 

two main differences, the undrained behaviors of simulations and experiments are very close to each other, 

all of them exhibit significant strain softening and liquefaction, and show that a higher peak strength is 

achieved when the associated confining stress is higher. In terms of the pore pressure variation, both exhibit 

the same pattern of a higher initial pore pressure build up rate and a much higher maximum pore pressure 

with a higher confining stress. Therefore, on the whole, the results of simulations and experiments are very 
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close to each other and show very similar responses of granular media under undrained shearing with 

different confining stresses.  

 

Figure 4.19 Stress-strain responses for Alaskan 140-5 sand with different confining stresses 

(http://www.golder.com/liq) 

 

Figure 4.20 Pore pressure variations for Alaskan 140-5 sand with different confining stresses 

(http://www.golder.com/liq) 
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Figure 4.21 Stress paths for Alaskan 140-5 sand with different confining stresses 

(http://www.golder.com/liq) 
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very close to 1. Furthermore, the slope of all five plots from the laboratory testing are about 0.5 to 0.7, 

which is reasonably close to the slope of 0.4 obtained from the proposed simulations. The differences in 

slope among the six plots may be due to the fact that the grain size distribution and the particle shapes vary, 

for example, some of the samples are sub-rounded while the others are sub-angular while the simulated 

results are obtained using the perfect round discs. Therefore, different slopes in the trend lines exhibit, 

however, the pattern of the relationship between the maximum shear strength and the confining stress is 

clearly linear. 

 

Figure 4.22 Relationship between the peak shear strength and the confining stress from the undrained 

fluid-coupled DEM simulation 
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Figure 4.23 Comparison of the relationship between the peak shear strength and the confining stress for 

different type of soils (http://www.golder.com/liq) 
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interaction between the particles and the fluid are very complicated, so the computational time is very large. 

The constant volume method saves time but lacks a calculation of the pore pressure effect, hence, the 

validity of its results is questionable. Therefore, it is worthwhile to compare the undrained behaviors 

obtained from the aforementioned two methods to determine which one is more feasible. 

In this section, both mechanical and micromechanical results of undrained simulations obtained from the 

further developed fluid-coupled DEM model are compared with those that come from using the constant 
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volume method. The preservation of the volume is achieved by setting the constant strain rates 𝜖1̇1
𝛽

 and 𝜖2̇2
𝛽

 

at the boundary to equal values but of opposite signs using mode 2 that was introduced in section 3.4. To 

conduct a comprehensive comparison, exactly the same samples (A, B, C, and D) and confining stress (100 

kPa) presented in Table 4.3 were selected to perform the constant volume method modelling. The 

parameters used for the constant volume method simulations also follow the values given in Table 4.4. 

4.5.2 Comparison of the results 

4.5.2.1 Comparison of the mechanical responses 

A comparison of the mechanical responses from using the further developed fluid-coupled DEM and the 

constant volume method for samples A to D introduced in section 4.3.1 is presented in Figs. 4.24 and 4.25. 

Fig. 4.24 shows a comparison of the stress-strain responses of the two methods, and Fig. 4.25 compares the 

stress paths obtained from using the two methods. Because no values of pore pressure variations are 

produced by the constant volume method, a comparison of the mechanical responses is restricted to the 

stress-strain curve and the stress path plot. For ease of comparison, the results for samples A and B, both 

of which show a strain softening type of response, are plotted together and presented in Fig. 4.24a and Fig. 

4.25a, while the results for samples C and D, both of which exhibited strain hardening, are combined and 

shown in Fig. 4.24b and Fig. 4.25b.  

Stress-strain response 

It can be seen from Fig 4.24a that for samples A and B, the peak strength obtained from the fluid-coupled 

DEM is higher than that from using the constant volume method, although they occur at the same strain 

level. After the initiation of strain softening, the residual strengths at large strains from the fluid-coupled 

DEM method are lower than those from the constant volume method. A similar pattern also appears for 

sample C, which can be seen from Fig 4.24b. The initial shear stress of sample C from the fluid-coupled 

DEM method is a bit higher than that from the constant volume method, subsequently, during strain 

hardening, the shear stress obtained from the fluid-coupled DEM increases at a lower rate than that given  
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        (a) 

  

(b) 

Figure 4.24 Comparison of stress-strain responses between using fluid-coupled DEM and using constant 

volume method 
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by the constant volume method and it gradually fall to a value below that of the plot from the constant 

volume method at 2% strain and last for the end of simulation. Unlike the results from the former three 

samples, the stress-strain responses given by the two methods for sample D fall close to each other until 

about 5% strain, then the shear stress from the constant volume method becomes higher than that from the 

fluid-coupled DEM until the end of the simulations. It is conspicuous that the discrepancy of the initial peak 

strength values between the two methods decreased from A to C and almost disappeared for sample D. 

However, at large strains, the two methods result in different stress-strain behavior for all four tests.   

Stress Path  

In comparing of the stress paths obtained from the two methods, it can be seen from Fig. 4.25a that the 

samples A and B, the stress paths obtained from the fluid-coupled DEM are above those from the constant 

volume method. In addition, they also terminated at lower residual strengths and mean effective stresses 

than the stress paths given by the constant volume method. For samples C and D, the difference between 

the stress paths given by the two methods is much less than that from samples A and B. The stress path 

from the constant volume method shows a bit lower shear stress and mean effective stress values at the 

“elbow” compared to those obtained using the fluid-coupled DEM. After passing the “elbow”, all plots 

almost merge together with the increase of mean effective stress and shear stress  
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(b) 

Figure 4.25 Comparison of the stress paths between using fluid-coupled DEM and using constant volume 

method 

until at about a mean effective stress of 250 kPa, the stress path obtained from constant volume method of 

test C diverge a bit from the other three plots. Above all, the stress path obtained by using the fluid-coupled 

DEM situated above the stress path from using the constant volume method for samples A and B. While 

for samples C and D, the stress paths from using the two methods almost merge together, although they 

terminate at different points. From samples A to D the discrepancy of the initial peak strength obtained 

from using the two methods become less and less, however, the discrepancy of the mean effective stress 

where the steady state is achieved for the two methods becomes greater and greater. 

4.5.2.2 Comparison of the micromechanical responses 

Comparisons of the micromechanical responses given by the fluid-coupled DEM and constant volume 

method for samples A to D are shown in Figs. 4.26 to 4.29. Variations of the four micromechanical 

descriptors, which are the average coordination number γ, the number of floaters 𝑛𝑓, the contact normal 

anisotropy parameter 𝑎𝑛 , and the normal contact force anisotropy parameter 𝑎𝑓  are presented for both 

methods. As in the previous section, each descriptor depicted in Figs. 4.26 to 4.29 is studied by separating 

the four samples into two groups, where samples A and B are grouped together and samples C and D are 

shown together.  
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Average coordination number 𝛄 

Fig. 4.26 shows the variations of the average coordination number γ under shearing using the two methods. 

It can be seen from the figure that for samples A, B, and C, values of γ obtained by using the fluid-coupled 

DEM all fall below those taken from  the constant volume method. This pattern is conspicuous at strains 

greater than 1%. Besides, from samples A to C, the difference in the values of γ from the two methods 

reduced for values of the strain range greater than 1%. The results for sample D given by the two methods 

do not show much difference until almost the end of simulation. The two plots merge at the beginning of 

the tests and remain together throughout the tests. The huge difference in the values of γ obtained from two 

methods for the loose samples A and B is attributed to the fact that the induced pore pressure helped break 

the contacts in the horizontal direction at an early stage of shearing and later helped break the contacts in 

the vertical direction. This pore pressure effect can also explain the large difference in the values of the 

contact normal anisotropy parameter 𝑎𝑛 obtained by using the two methods for the loose samples A and B 

shown in Fig. 4.28. The results of γ for the loose sample obtained by using the constant volume method 

does not exhibit this phenomenon since there is no pore pressure computation involved, therefore, the values 

of γ do not deviate much from the critical value which is typically obtained from the drained testing. The 

pore pressure effect on γ reduces when the sample become less loose since there less positive pore pressure 

is generated, and the induced contact disintegration becomes less drastic. When the sample is dense enough, 

the pore pressure effect on γ under shearing almost disappears because although the granular system tends 

to dilate, both negative pore pressure and preserved volume value help to suppress the tendency to dilation 

by constructing contacts in both directions. Therefore, the impact of pore pressure on γ is only pronounced 

in a very loose sample like sample A. 

Number of floaters 𝒏𝒇 

Fig. 4.27 presents the number of floaters 𝑛𝑓 variations of the four samples computed from the two methods. 

The comparison for samples A and B is shown in Fig. 4.27a, and the comparison for samples C and D is 

shown in Fig. 4.27b. Similar to the differences in γ, the number of floaters 𝑛𝑓  also exhibited different 

degrees of discrepancy among the four samples using the two methods. It is shown in Fig. 4.27 that the 

number of floaters 𝑛𝑓 computed from the two methods is quite similar at the initiation of shearing, (only 

sample B shows a small difference). After the initial shearing stage, all number of floaters computed from 

the fluid-coupled DEM for the four samples become higher than those of the constant volume method until 

the end of the test. In addition, as we move from samples A to D, the difference in the floater numbers 

between two methods reduces. Although the number of floaters 𝑛𝑓 obtained by using the fluid-coupled 

DEM are higher than those from using the constant volume method for all the four samples, the reasons are 
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different. For samples A and B, the higher number of floaters 𝑛𝑓 are produced because of the high positive 

pore pressure value at intermediate and large strains. Since the positive pore pressures are very high in 

samples A and B, they break the contacts between particles in both vertical and horizontal directions, thus, 

creating a higher number of floaters. For samples C and D, a higher number of floaters from using the fluid-

coupled DEM at intermediate and large strain occurs because of the microstructure tendency changes from 

contraction to dilation. Hence, the negative pore pressure takes part of the responsibility for resisting the 

external load, and the number of floaters is higher than given by the constant volume method. This 

interpretation can be justified by the fact that the strain at which the number of floaters 𝑛𝑓 given by the two 

methods deviated from each other, for samples C and D is the strain at which the pore pressures stop 

increasing and start to decrease in Fig. 4.3. This deviation of the two methods for sample C gradually 

disappeared after the assembly enter into the steady state where the tendency to dilation terminates. Based 

on the above analysis of the variations in the number of floaters 𝑛𝑓, it can be concluded that the pore 

pressure affects the number of floaters 𝑛𝑓 significantly.    
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(b) 

Figure 4.26 Comparison of the average coordination number γ between using fluid-coupled DEM and 

using constant volume method 
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(b) 

Figure 4.27 Comparison of the number of floaters nf between using fluid-coupled DEM and using 

constant volume method 

Contact normal anisotropy parameter 𝒂𝒏 

The contact normal anisotropy parameter 𝑎𝑛  responses extracted using the two methods for the four 

samples are shown in Fig. 4.28. It can be seen in Fig. 4.28a that at the initial stage of shearing, the plots 

given by the two methods for samples A and B are similar. However, after the initial stage, the gap between 

the results widened rapidly until the steady state was reached. For samples C and D, it can be seen in  Fig. 

4.28b that the difference between the plots obtained from the two methods continues for sample C although 

the amount is not large; while for sample D, the difference almost vanishes, and 𝑎𝑛 values computed by 

using the two methods superimposed. The above differences in 𝑎𝑛 values for the fours samples obtained 

by using the two methods can be attributed to the pore pressure effect. It was already shown in the previous 

section that when the sample is very loose, i.e. sample A, the pore pressure breaks the contacts in the 

horizontal direction with an increase in vertical load, which results in the formation of a high degree contact 

normal anisotropy. However, when using the constant volume method, the contacts in both directions only 

evolve following particles’ movement in both directions. There is no extra force breaking the contacts from 

inside the system. Unlike in the loose sample, a negative pore pressure is generated in the dense sample, 

which does not break contacts, but on the contrary, it helps with creating new contacts in both directions. 

This is in accordance with the result of the constant volume test in which the vertical load leads to the 
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connection of the floaters with the surrounding particles in both directions although mainly in the vertical 

direction. Therefore, 𝑎𝑛values obtained by using the two methods are similar for a dense sample, but not 

for a loose sample. 

 

(a) 

 

(b) 

Figure 4.28 Comparison of the contact normal anisotropy parameter an between using the fluid-coupled 

DEM and using the constant volume method 
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Normal contact force anisotropy parameter 𝒂𝒇 

A comparison of the normal contact force anisotropy 𝑎𝑓 variations obtained by using the two methods for 

the four samples is seen in Fig. 4.29. Similar to the behavior of the contact normal anisotropy parameter 

𝑎𝑛, the difference in 𝑎𝑓values after the initial shearing stage, is very large for samples A and B, much less 

for sample C, and almost disappears for sample D. The reason for these differences is similar to the 

differences of 𝑎𝑛 among four samples. Since the positive pore pressure breaks the contacts in the horizontal 

direction when the fluid-coupled DEM is used for the loose sample, while this mechanism does not exist 

for the constant volume method. Thus, a large number of normal contact forces in the horizontal direction 

are broken accordingly results in a high 𝑎𝑓 value when using the fluid-coupled DEM. However, in the dense 

sample, a negative pore pressure is generated, which helps with the creation of contact forces in both 

directions. Therefore, 𝑎𝑓 values obtained by using the two methods are similar if the sample is very dense. 

From the above comparison of 𝑎𝑓 for the four samples, it can be concluded that the pore pressure has a 

great impact on the 𝑎𝑓 if the sample is loose, while its impact reduces with decreasing void ratio of the 

sample. 
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(b) 

Figure 4.29 Comparison of the normal contact force anisotropy parameter af  between using the fluid-

coupled DEM and using the constant volume method 

4.5.3 Comments 

From the above analysis of the comparisons of the mechanical and micromechanical responses between the 

two methods, it can be seen that the discrepancy between the results given by the two methods is large for 

all the parameters presented above in the loose sample due to the effects of the positive pore pressure. This 

effect reduces with decreasing void ratio of a sample, and almost disappears for a dense sample up to 

intermediate strain level. Therefore, it can be concluded that the constant volume method may be applicable 

to the simulation of the undrained response of a very dense sample until certain strain level is reached, 

however, for a loose sample it fails to capture the pore pressure effect on the early breaking of contacts in 

the horizontal direction and later in both directions.  
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Chapter 5 Permeability Effect on the Static Liquefaction susceptibility  

5.1 General background 

This chapter presents a study of the effect of permeability on the static liquefaction susceptibility. In section 

5.2, a test program aimed at simulating the permeability effect on the liquefiable granular assemblies under 

undrained shearing is designed. The corresponding results and analysis of the mechanical and 

micromechanical undrained behaviors of the liquefiable assemblies are presented in section 5.3. A 

comparison of the simulated results and related results from laboratory testing reported in the literature is 

shown in section 5.4. 

5.2 Summary of the test program 

To study the influence of permeability on the undrained response of the liquefiable granular assembly, a 

group of five simulation tests (I, II, III, IV, and V) are designed with exactly the same structure as Sample 

A from section 4.3.1 but different values of conduit diameters for the fluid flow through the granular system. 

The five different conduit diameters are selected based on the analysis performed in section 3.8.3. In test 

III, the conduit diameter is selected as 80 µm, which is exactly the same as those tests conducted in chapter 

4. The conduit diameters of test II and I were selected to be double and quadruple of that in test III, they 

correspond to the permeability in the coarse sand range based on Fig. 3.16. The conduit diameters of tests 

IV and V are selected to be one fifth and two fifths of that in test III, they correspond to the permeability in 

the silty clay and clay range according to Fig. 3.16. Therefore, the five diameters are selected as 320 µm, 

160 µm, 80 µm, 32 µm, and 16 µm, respectively. Besides, the same as the undrained simulations performed 

in chapter 4, the viscosity and the bulk modulus values for the fluid assigned in this chapter are also those 

of water at 20°, the values of which are 1 × 10−3𝑃𝑎 ∙ 𝑠 and 2.0 GPa, respectively. 

The five samples are sheared by undrained biaxial compression simulation under a confining stress of 100 

kPa. All of them are sheared to 15% strain to attain a steady state. Some physical properties of each sample 

such as the initial average coordination number γ, the initial number of floaters 𝑛𝑓, and the conduit diameter 

d are shown as Table 5.1. The undrained biaxial compression simulation for each of the above samples is 

conducted using mode 3 introduced in section 3.4, which maintains the average stress 𝜎11
  constant, and 

meanwhile, increases the average stress 𝜎22
  by applying a constant strain rate 𝜖2̇2

𝛽
 (at the boundary). The 

associated parameters for the simulations in this section also follow the values already presented in Table 

4.4.  
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Table 5.1 Summary of initial physical properties of the tests 

Test 

Number of 

floaters 

(𝒏𝒇) 

Initial average 

coordination number 

 (𝛄) 

Void 

ratio 

 (𝒆) 

Diameter of 

conduit (µm) 

(d) 

Confining stress 

(kPa) 

(𝝈𝟏) 

I 215 3.2045 0.3636 320 100 

II 215 3.2045 0.3636 160 100 

III 215 3.2045 0.3636 80 100 

IV 215 3.2045 0.3636 32 100 

V 215 3.2045 0.3636 16 100 

 

5.3 Simulation results 

5.3.1 Mechanical behaviors from simulations 

Figs. 5.1 to 5.3 demonstrates the mechanical responses of the five undrained biaxial compression 

simulations with different conduit diameters. Figure 5.1 gives the stress-strain responses under shearing, 

Figure 5.2 shows the pore pressure variations throughout the tests, and Figure 5.3 presents the stress paths 

for the five undrained tests. It can be seen from the three figures that the diameter of the conduits affects 

the undrained response greatly, it controls almost the whole undrained behavior, especially the peak 

strength values. Tests II, III, and IV all show different levels of the peak strength followed by strain 

softening and liquefaction. Test I also displays strain softening and liquefaction after reaching the peak 

strength, but its strength regains a bit at the end of the test. Different from tests I to IV, test V exhibits initial 

strain hardening followed by strain softening and liquefaction. The specific characteristics of the five 

undrained behaviors seen in the three pictures are as follows: 

Stress-strain response 

The stress-strain curves from Fig. 5.1 show that all five tests exhibited strain softening but with different 

strength reductions. From I to V, the peak strength increases markedly. The residual strengths of tests II, 

III and IV all reach similar values, although the strain softening is initiated at different level of strain. This 

behavior indicates that within the conduit diameter range for tests II, III and IV (32-160 µm) the 

permeability does not alter the residual strength much. The stress-strain curve of test I is very close to that 

of test II, it reaches almost the same peak and minimum strengths as those of test II. However, test I softens 

a little earlier than test II, and in addition, test I displays strain hardening at about 10% strain after reaching 

the quasi-steady state. The similarity of the two overall responses of tests I and II is probably due to the 
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permeability of both of them being high enough (in the coarse sand range) for the individual pore pressure 

to dissipate among the voids. Therefore, there is very little change in the overall strength behavior. 

Nevertheless, the difference between the two stress-strain behaviors during the strain that the stress 

softening and at the large strain may be due to the fact that the permeability of test I is twice that of test II, 

so the pore pressure dissipation rate among the pores is higher for test I than for test II, which induces an 

earlier softening and a regaining of strength after reaching the minimum strength of test I. This effect can 

also be seen in tests III, IV, and V, which have even smaller diameters and dissipation rates. Compared to 

tests I and II, tests III, IV, and V show conspicuously higher peak strengths at much larger strains, but the 

residual strengths of III and IV merge with that of II, while the residual strength of test V is much higher 

than that of the other four tests. This indicates that the permeability although it does not affect the residual 

strength at ultimate state when it is within a certain range, it does affect the initial stages under shearing, 

including the peak strength and strain softening phase. In addition, Fig. 5.1 shows that compare to tests I 

and II, the strain softening stages of tests III, IV and V last much longer and the steady states are reached 

at much larger strain. This is because the permeabilities of III, IV, and V are much lower than those of tests 

I and II, thus, the dissipation among the pores is much slower in tests III, IV, and V than in tests I and II, 

and strain softening takes longer. It is worthwhile to note that unlike tests I, II, III and IV, test V exhibits 

strain hardening from a very small strain of about 0.2%, it hits the maximum strength value of 80 kPa at 

1.6% strain. Afterwards, it starts to soften until it reaches the steady state at about 13.5% strain. The 

temporary strain hardening is due to the extremely low permeability (in the clay range) which impedes the 

dissipation and equalization of the pore pressures among the pores, therefore, the granular system of test V 

tends to dilate at an early stage of the test. This effect disappeared gradually with the later very slow 

dissipation of the pore pressures among the voids. 
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Figure 5.1 Stress-strain responses for assemblies with different conduit diameters 

Pore pressure variations 

The pore pressure variations of the five tests in Fig. 5.2 are consistent with their stress-strain responses 

shown in Fig. 5.1. The initial pore pressure build up rate before 0.2% strain for all five tests are similar, 

only test V is slightly higher than the other four tests due to its much lower permeability. This corresponds 

to the initial rapid shear stress increase stage in Fig. 5.1. After 0.2% strain, the pore pressure build up rate 

of tests I and II increases slightly, while it decreases significantly for tests IV and V, only test III maintains 

a constant rate of increase. The pore pressure of tests I, II, and III continues rapid increasing after 0.2% 

strain until reaching a value close to the confining stress of 100 kPa. Subsequently, there is a difference 

between the three tests in their individual maximum pore pressure values. In test I, the pore pressure reduces 

a bit until the end of test, which corresponds to the small strain hardening stage shown in Fig. 5.1. The pore 

pressure of test II almost maintain the maximum value, while the pore pressure of test III increases a bit 

until the end of the test. The pore pressure of test IV also increases to its peak value after 0.2% strain but at 

a reducing rate, and the peak occurs at the strain where its minimum shear strength is achieved in Fig. 5.1. 

The response of the pore pressure for test V is very different from that of the other four tests, it hits its initial 

peak value at a very low strain of about 0.4%. Subsequently, it gradually reduces to almost zero and then 

starts to increase again. Afterwards, the pore pressure of test V keeps on increasing until about 13.5% strain, 

it almost reaches its maximum value and then maintains this value indicating the sample enters into the 
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steady state. The very different pore pressure behavior of test V is a result of its very low permeability (in 

the clay range). When the permeability is very low, the generated individual pressure from each pore cannot 

dissipate into the neighbor pores rapidly, so the individual pore pressures generated initially are not uniform. 

This also explains why the overall initial pore pressure build up rate of test V is somewhat higher than that 

for the other four tests. Test V starts to show the tendency to dilate due to the very poor fluid connection 

between neighbor pores restricted the dissipation of pore pressure. Hence, the pore pressure reduces 

significantly accordingly. Upon achieving zero pore pressure, the tendency to dilate stopped, and the pore 

pressure gradually recovered with continue shearing. On the contrary, in tests I, II, and III, the generated 

individual pore pressures dissipate rapidly because of the relatively high permeability, therefore, they tend 

to keep on contracting with shearing, and there is softening after the peak strength. The permeability of test 

IV is also low (in the silty clay range), so the pore pressure build up rate reduces significantly after 0.2% 

strain due to the tendency to dilation. However, in this case, the permeability is not low enough to inhibit 

the connections among the pores, therefore, the tendency for contraction is still predominant in this test, 

and the pore pressure continue increases, but at a low rate. 

 

Figure 5.2 Pore pressure variations for assemblies with different conduit diameters 
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Figure 5.3 Stress paths for assemblies with different conduit diameters 

Effective stress paths 

The stress paths of all five tests shown in Fig. 5.3 are consistent with the associated stress-strain responses 

and the pore pressure variations shown in Fig. 5.1 and 5.2. The stress paths of tests I to IV all exhibit a 

strain softening type of behavior. They all start from the same point of (100, 0) due to the same confining 

stress of 100 kPa applied. Subsequently, with the decrease of the mean effective stress due to the generation 

of positive pore pressure, the corresponding shear stress of the four tests I, II, III, and IV all initially increase 

to the peak shear strength then start to soften with different changing rate until reaching the minimum 

strength, where all four tests liquefied. The stress paths of tests I and II are very close to each other, the 

only difference between them is that the stress path of test II being slightly higher that of test I throughout 

the whole simulations. The stress path of test III is also similar to those of tests I and II, but it displays a 

higher peak strength and a bit lower minimum strength at the steady state. In test IV, the overall stress path 

is similar to those of tests I, II, and III, but it exhibits a distinctly higher peak strength although its residual 

strength is quite close to those of the three former tests. Unlike tests I, II, III, and IV, the stress path of test 

V behaves quite differently. Although it also starts with the same point as those of the other four tests, 

however, it goes to a different direction after the initial increase of the shear stress indicating the tendency 
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to dilation and the occurrence of strain hardening. In this stage, with the increase of mean effective stress, 

the shear stress of test V also increases and follows an almost constant slope until reaching about 80 kPa. 

Afterwards, the stress path turns back and almost retrace the route and following a constant slope that is 

close to that of test IV. This corresponds to the reduction of the shear strength after the end of strain 

hardening and the recovery of the pore pressure after reaching zero value shown in Figs. 5.1 and 5.2. Then 

both the mean effective stress and the shear stress further decrease until achieving the steady state. 

Eventually, the stress path of test V terminates at a residual strength of 9 kPa with a mean effective stress 

equals to 12.5 kPa, both of them are higher than those in the other four tests, which is consistent with 

responses shown in Figs. 5.1 and 5.2.  

5.3.2 Micromechanical Responses from the Simulation 

Figs. 5.4 to 5.7 presents the micromechanical descriptors variations for the five tests. Fig 5.4 gives the 

change of the average coordination number γ during the tests, Fig. 5.5 shows the variation of the number 

of floaters 𝑛𝑓, Fig. 5.6 displays the development of the contact normal anisotropy parameter 𝑎𝑛, and Fig. 

5.7 shows changes in the normal contact force anisotropy parameter 𝑎𝑓 . In order to study how the 

permeability affects the undrained behavior of the five tests, these descriptors should be incorporated to our 

analysis. The specific characteristics of each test are illustrated as follows. 

Micromechanical behavior of test I 

It is shown in Fig. 5.4 that the average coordination number γ of test I did not change during initial shearing 

up to 0.25% strain, but both the contact normal anisotropy parameter 𝑎𝑛 and the normal contact force 

anisotropy parameter 𝑎𝑓 increased at a high rate, and the number of floaters 𝑛𝑓 also increased rapidly. This 

indicates that the contacts were mainly created vertically and broken horizontally, but the totally number 

of contact creations and disintegrations were in balance. Subsequently, γ starts to decrease rapidly, while 

the increasing rate of 𝑎𝑛  and 𝑎𝑓  both reduce a bit compare to the first stage, and 𝑛𝑓  temporarily stays 

constant. This means compared to the former stage, more contact breaks happened in both the vertical and 

horizontal directions in this stage along with the high pore pressure build up rate. This corresponds to the 

strain softening phase shown in Fig. 5.1, so the rapidly decreasing γ indicates that the strain softening is a 

result of the large number of contacts lost in both the vertical and horizontal directions. Beyond 0.5% strain, 

γ reduces gradually to the minimum value, 𝑛𝑓 gradually increases to the maximum value, and the associated 

𝑎𝑛 and 𝑎𝑓 both increase slowly to the initial peak values, which indicates that there is a small amount of 

contact creation in the vertical direction while many further contacts are lost in both directions along with 

the slow continuous pore pressure generation. All the four descriptors do not vary much with further 

shearing until about 8% strain where the quasi-steady state is reached. Afterwards, γ increases a bit and 𝑛𝑓 
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decreases a bit until the end of the test.  The associated 𝑎𝑛 and 𝑎𝑓 also both increase in this stage indicating 

a bit more contacts are created in the vertical direction compare to the previous stage, which is in accordance 

with the small strain hardening shown in Fig. 5.1. 

Micromechanical behavior of test II 

The overall micromechanical response of test II is similar to that of test I, but the changes are greater than 

in test I over the whole strain range. As in test I, initial shearing did not alter γ until 0.25% strain was 

reached, but 𝑛𝑓, 𝑎𝑛, and 𝑎𝑓 all increased rapidly, which means the contact loss mainly happened in the 

horizontal direction and the contact creation was mainly in the vertical direction. This is in accordance with 

the initial rapid shear stress increase and rapid pore pressure generation stage of Figs. 5.1 and 5.2. 

Subsequently, γ reduces rapidly, but the rate of increase of 𝑛𝑓 and 𝑎𝑛 remains the same as in the previous 

stage, while the rate of increase of 𝑎𝑓 temporarily slows down followed by a rapid increase. These behaviors 

indicate contact losses in both directions as occurred in test I in this stage, however, changes in all 

descriptors are greater and last longer than in test I. This may be because the lower permeability of test II 

causes the individual pore pressures to take longer to dissipate. Thus, the locally high pore pressure breaks 

more contacts and results in a higher contact normal anisotropy and a greater number of floaters. Seen in 

the stress-strain response in Fig. 5.1 is a bit higher peak strength and a somewhat longer strain softening 

process in test II compare to those of test I. After the occurrence of strain softening shown in Fig. 5.1, γ 

continues to reduce gradually to a minimum value of about 2.94, and the associated 𝑛𝑓, 𝑎𝑓 and 𝑎𝑛 all slowly 

increase at a much lower rate than in the previous stage. At about 8% strain, the steady state is reached, and 

all four descriptors fluctuate about the steady state values until the end of the simulations. The value of γ 

in the steady state is much lower than that of test I, 𝑛𝑓 and 𝑎𝑛 are both much higher than those of test I, 

while 𝑎𝑓 at the end of simulation from the two tests are quite close. Therefore, the liquefaction in test II is 

more complete than that in test I. 

Micromechanical behavior of test III 

The overall micromechanical response of test III is similar to that of tests I and II, but the changes are 

greater and it exhibits more distinct values at the steady state. With the initial shearing to the peak strength 

shown in Fig. 5.1, γ reduces a bit, while 𝑛𝑓, 𝑎𝑛 and 𝑎𝑓 all increase rapidly at similar rates to those of tests 

I and II in the same strain range. Hence, contacts are primarily created in the vertical direction and 

disintegrations in the horizontal direction, which is similar to the behavior in tests I and II, but more contact 

is lost in this stage than in the other two tests.  Afterwards, concurrent with the decrease of the shear stress 

until 1.2% strain shown in Fig. 5.1, γ reduces greatly, while 𝑛𝑓, 𝑎𝑛and 𝑎𝑓 all increase at the same rate as in 

the first phase, which indicates that contact disintegration is predominant in this stage and happens in both 
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directions although it is more prominent in the horizontal direction. From 1.2% to 5.2% strain, γ further 

reduces but with a somewhat lower rate than in the previous phase, 𝑛𝑓 continues increasing at almost the 

same rate, while 𝑎𝑛 and 𝑎𝑓 both increase at a much lower rate initially which then reduces further. These 

responses indicate that the contact disintegration continues in both directions but is more severe in the 

vertical direction than in the previous stage. From 5.2% to 8% strain, γ and 𝑎𝑓 both almost stopped reducing 

while 𝑛𝑓 increases a bit and 𝑎𝑛 reduces a bit indicating more contact lost occurs in the vertical direction. 

After 8% strain, all four descriptors stop changing and maintain at almost constant values until the end of 

simulation indicating the achievement of steady states. The value of γ at the steady state of test III is much 

lower than that of tests I and II, while values of  𝑛𝑓 and 𝑎𝑓 are both much greater than those of tests I and 

II, only 𝑎𝑛 is close to that of test II. The same explanations proposed in the previous section apply here, 

these responses occur because the even lower permeability of test III causes the individual pore pressures 

take more time to dissipate among the pores. Furthermore, in the process of pore pressure dissipation, the 

local higher pore pressure breaks more contacts which results in a lower strength and a higher normal 

contact force anisotropy parameter 𝑎𝑓.  

Micromechanical behavior of test IV 

During the initial shearing, test IV behaves very differently from tests I, II, and III in terms of all four 

micromechanical descriptors presented in Figs. 5.4 to 5.7. γ decreases rapidly during the first 0.25% strain, 

while 𝑎𝑛 and 𝑎𝑓  both increase much faster than those in tests I, II, and III, although the initial rate of 

increase of floater numbers is almost the same as that in tests I, II, and III. This behavior suggests that the 

contact creation primarily occurs in the vertical direction and contact is lost primarily in the horizontal 

direction but the contact lost is much more drastic than in the former three tests at the comparative stage. 

This corresponds to a phase of initial rapid shear stress increase and pore pressure build up. The initial very 

rapid loss of contact and contact normal anisotropy construction is due to the very low permeability that 

inhibited a dissipation of the individual pore pressures, so that some relatively high pore pressures from 

local pores break the horizontal contacts when the vertical load is increased. From 0.25% to 1% strain, γ 

continue to reduce but with a much lower rate, while 𝑛𝑓, 𝑎𝑛, and 𝑎𝑓 all further increase at a somewhat lower 

rate. Contact creation is still primarily in the vertical direction and loss of contact primarily in the horizontal 

direction but both are less drastic that the previous stage. During this phase the shear stress slowly increases 

to and temporarily maintains its peak value followed by the subsequent strain softening. After 1% strain, γ 

decreases rapidly again until about 8.5% strain, 𝑛𝑓  initially further increases with constant rate then 

suddenly jumps at about 6% strain. 𝑎𝑛 also slowly increases but with decreasing rate while 𝑎𝑓 does not 

vary much initially but reduced a bit at about 6% strain. This indicates a loss of contact in the vertical 
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direction as well as in the horizontal direction, and results in the strain softening shown in the stress-strain 

curve in Fig. 5.1. At about 8.5% strain, all four descriptors stopped varying much and maintained constant 

values until the end of the test indicating the achievement of a steady state. All the four descriptor values 

except for 𝑎𝑛 in the steady state of test IV are close to those of test III. 𝑎𝑛 in test IV is a bit higher than that 

of test III. 

Micromechanical behavior of test V 

The micromechanical behavior of test V is different from that of the other four tests. γ drops very rapidly 

at the beginning of shearing associated with a very rapid increase of 𝑛𝑓, 𝑎𝑛, and 𝑎𝑓 until about 0.2% strain. 

The response during this stage is similar to that of test IV. The contact lost is mainly in the horizontal 

direction and there is contact creation in the vertical direction. This results in a very fast initial shear stress 

increase and pore pressure build up, because the extremely low permeability induced locally high pore 

pressures in some pores that broke the contacts horizontally and created the contact normal anisotropy 

rapidly. This effect is more significant in test V than test IV because of the even lower permeability. From 

0.2% to 0.6% strain, the rate decrease of γ and the rate of increase of 𝑛𝑓, 𝑎𝑛, and 𝑎𝑓 all reduce greatly. This 

indicates that the loss of contact is still primarily the horizontal direction but it is not as drastic as in the 

previous stage. The corresponding pore pressure shown in Fig. 5.2 does not change much in this stage, but 

the shear stress shown in Fig. 5.1 increases rapidly exhibiting strain hardening. This is due to the fact that 

the granular system tends to dilate since the very low permeability inhibited it from dissipating pore 

pressure. From 0.6% to 4.0% strain, γ only slightly reduces, 𝑛𝑓 initially continues at 400 and then slowly 

increases beyond 1.6% strain, 𝑎𝑛 slowly increases until 1.6%, and maintains an almost constant value, and 

𝑎𝑓 decreases significantly. This behavior indicates that from 0.6% to 1.6% strain, the amount of contact 

creation in the vertical direction and contact disintegration in the horizontal direction are almost the same, 

but are much lower than in the previous stage, which is consistent with the reduction of pore pressure. The 

tendency of dilation still continues but is less intense with the slowly pore pressure dissipation. From 1.6% 

to 4.0%, γ and 𝑎𝑛 both did not vary much, but 𝑛𝑓 increased gradually and 𝑎𝑓 decreased greatly. This is 

because there are more contact disintegrations in both directions as well as contact creation mainly in the 

vertical direction. After 4% strain, γ reduces gradually again, 𝑛𝑓 and 𝑎𝑛 continue to increase slowly, while 

𝑎𝑓 slowly decreases. This corresponds to the pore pressure reconstruction and strain softening stage seen 

in Figs. 5.1 and 5.2, during which the stress path reverses following the critical stress ratio line shown in 

Fig. 5.3. Loss of contact occurs in both directions in this stage. At about 13.5% strain, all four descriptors 

stopped varying and almost maintained constant values announcing the arrival of steady state. The steady 

state values of all descriptors except 𝑎𝑓 for test V are close to those of tests III and IV. 
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Figure 5.4 Variations of the average coordination number γ for assemblies with different conduit 

diameters 

 

Figure 5.5 Number of floaters nf variations for assemblies with different conduit diameters 
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Figure 5.6 Contact normal anisotropy parameter an changes for assemblies with different conduit 

diameters 

 

Figure 5.7 Normal contact force anisotropy parameter 𝑎𝑓 variations for assemblies with different conduit 

diameters 
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Comments 

Based on the above analysis of both mechanical and micromechanical responses of the five undrained 

simulations in which the conduit diameters were varied, some conclusions can be drawn as follows: 

1). The contact variations for all five tests follow the pattern that they are initially broken mainly in the 

horizontal direction with the initiation of shearing to the peak strength, and subsequently, disintegration 

occurs in both directions with greatly increasing pore pressure. The occurrence of strain softening can be 

related to a large scale loss of contact in both directions. 

2). The overall mechanical behaviors of tests I and II  shown from Fig. 5.1 to Fig. 5.3 did not reveal much 

difference between the two tests, only small difference was exhibited in level of the peak and the residual 

strengths, and the maximum pore pressure values. However, the micromechanical responses of the two tests 

displayed in Fig. 5.4 to Fig. 5.7 presents very different behaviors for all four descriptors. Compared to test 

I, test II exhibited a more drastic strain softening, a much lower value of γ, and much higher values of 𝑛𝑓, 

𝑎𝑛 and 𝑎𝑓. Hence, the liquefaction in test II is more complete than that of test I although they displayed 

similar mechanical responses, which indicates that a micromechanical study of the undrained behavior is 

necessary to understand the corresponding mechanical behavior. 

3). The overall undrained responses of all parameters shown in Figs. 5.1 to 5.7 for test I, II, and III are quite 

similar, but vary in the magnitude of the peak and residual strengths. The strain softening shown in test III 

is more severe and complete than that of tests I and II, and a greater number of contacts are lost and a higher 

anisotropy parameter can be seen. There is a large number of contact disintegrations in the vertical direction 

at the end of strain softening, which makes test III the most liquefied one of the five tests.  

4). The undrained behaviors of tests IV and V are very different from those of tests I, II, and III due to their 

much lower permeabilities. Both of them present an initial rapid contact loss associated with a rapid 𝑎𝑛 and 

𝑎𝑓 increase. Observations of local pore pressure in voids show that in samples of high permeability pore 

pressures do not vary significantly from one void to another, i.e. pore pressure equalization takes place. On 

the other hand, in samples of low permeability the variation of pore pressure from void to void is much 

greater, and, in fact pore pressure in some voids is negative, resulting in high local strength, as evidenced 

by areas of high force concentration seen in Figure 5.8(e). Areas of negative pore pressures effectively 

“strengthen” the sample and lead to higher macroscopic strength. 

5). At large strains, the residual strength of V is somewhat higher than those in the other four tests, although 

its overall value of γ is lower than those of tests I and II. This is related to the non-uniform fluid paths 

created inside the assembly of tests V. These paths decrease the contact lost in both directions in the strain 
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softening stage. Because the permeability in the local flow path is much higher than the original 

permeability, fluid flows through this path first during shearing, which results in some locally incomplete 

liquefaction. However, the residual strengths for test V is not very high because the very low permeability 

makes the non-uniform fluid paths slow to evolve. It can be imagined that if the permeability is low enough, 

the residual strength will be much higher or even that strain hardening would be revealed.  

6). The above non-uniform fluid paths are not obvious in tests I, II, and III because the higher permeability 

provides better connections between pores, hence, less contact lost exhibited initially when the pore 

pressure is dissipated by fluid flow. Therefore, the liquefaction usually does not happen in a coarse grained 

soil. Comparing the contact force variations of the five tests at large strains (see Fig. 5.9), it can be seen 

that liquefaction occurred uniformly at the center of samples I, II, and III, while incomplete liquefaction is 

exhibited in the center of tests IV and V. Some local regions that are not liquefied can be seen at the steady 

state in tests IV and V.  This phenomenon helps explain why soils with very small grain sizes are less 

liquefiable sometimes.   

 

(a) Test I                                                                 (b) Test II 

 

(c) Test III                                                                 (d) Test IV 
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(e) Test V 

Figure 5.8 Distribution of contact forces at early stage (non-uniform fluid paths are exhibited in tests IV 

and V ) 

 

(a) Test I                                                                 (b) Test II 

 

(c) Test III                                                                 (d) Test IV 
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(e) Test V 

Figure 5.9 Distribution of contact forces at large strains 

5.4 Comparison of simulated results with experimental data taken from the 

literature 

A comparison study of the simulated stress-strain responses for the assemblies with varied conduit 

diameters presented in Fig. 5.1 with those of two groups of laboratory monotonic triaxial compression tests 

reported by Pitman et al. (1994) was made. Fig. 5.10 represents two groups of deviator stress versus axial 

strain plots for varying constituents reported by Pitman et al. (1994). They were obtained by using a clean, 

uniform, sub-rounded quartz sand as the base sand, and adding different amounts and types of additional 

constituents. Fig. 5.10a was obtained by adding 0 to 40% of non-plastic crushed quartz fines below 74 μm 

varied in increments of 10%, and Fig. 5.10b was obtained by adding in increments of 10% from 0 to 40% 

of clean, sub-rounded, non-plastic quartz sand with a gradation between 0.25 and 0.075 mm. The 𝐷50 and 

𝐷10 of the base sands are 0.39mm and 0.22mm, respectively, and the 𝐶𝑢 is 1.7. All the ten stress-strain plots 

shown in Fig. 5.10 are obtained by performing a strain controlled monotonic triaxial compression test under 

a confining stress of 350 kPa. The moist tamping technique was adopted when preparing the loose samples 

with different percentages of additional materials. 
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(a) 

 

(b) 

Figure 5.10 Plots of deviator stress vs. axial strain for varying different percentages of additional constituents. (a) 

various percentages of crushed silica fines (b) various percentages of silica sand (Pitman et al., 1994) 

It can be seen from the stress-strain responses exhibited in Fig. 5.10a that with the increasing percentage of 

the non-plastic fines from 0 to 40%, the behavior of the stress-strain curves changes from strain softening 

(0% fines) to limited liquefaction (10-30% fines), then to strain hardening (40% fines). However, the stress-

strain plots shown in Fig. 5.10b are all very close to each other, although the samples of them varied in the 

percentages of fine sand between 0 to 40%. Two associated groups of SEM photographs at varying the 
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scales for the 20% and 40% crushed silica fines samples used in Fig. 5.10a are shown in Fig. 5.11. It can 

be seen from Fig. 5.11 that the Ottawa sands are surrounded by the crushed silica fines, which in terms of 

fluid connectivity of the system resembles the loose assembly with low permeability of the previous section.  

Compared to Fig. 5.1, it can be seen that the early stages of the stress-strain response exhibited in Fig. 5.10a 

agrees with that Fig. 5.1. Both show that the peak strength increases with increasing percentages of the fine 

component (and lower permeability). This phenomenon is not shown in the plots of Fig. 5.10b since the 

samples were prepared by varying the percentages of silica sand with a gradation between 0.25 and 

0.075mm. The permeability for sands within this gradation does not vary much, so the stress-strain behavior 

for all five groups of Fig. 5.10b are close to each other. Similar behavior is seen in the stress-strain curves 

for tests I and II shown in Fig. 5.1. Since the permeability of the two tests are close to each other, it would 

be expected that their mechanical behavior would be similar throughout the whole strain range. 

At intermediate and large strains, the stress-strain behavior of the Ottawa sand with different percentages 

of non-plastic fines shown in Fig. 5.10a is different than the simulated undrained stress-strain response 

shown in Fig. 5.1. This may be because the simulations directly control the permeability, which restrains 

the rate of individual pore pressure dissipation based on different assigned values of the conduit diameters. 

However, the process of pore pressure dissipation takes place slowly as the shear reaches intermediate and 

large strains. Thus, the five tests obtained from simulations display similar responses at intermediate and 

large strains, although test V exhibits strain hardening at an early stage. Unlike the simulation results, the 

various permeabilities for the laboratory test results presented in Fig. 5.10a were indirectly achieved by 

controlling the percentage of fines, in which case the constitution of the sample itself was changed, thus, 

all five samples display different behaviors at intermediate and large strains. Therefore, based on a 

comparison of the results from the undrained simulations and the two groups of laboratory tests, it can be 

concluded that permeability affects the stress-strain behavior of undrained sand, especially during the initial 

shearing stage, and the value of the peak and residual strengths. 
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(a)  

 

(b) 

Figure 5.11 SEM photographs of the crushed silica fines sample (a) 20% fines (b) 40% fines (Pitman et al., 1994) 
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Chapter 6 Consistency of the Critical State Line and the Steady State Line 

6.1 General background 

This chapter presents a study of the consistency between the critical state line from drained simulations and 

the steady state line from undrained simulations. The main objective of this study is to explore the physical 

legitimacy of treating liquefaction as a critical state phenomenon. In section 6.2, a series of drained biaxial 

compression simulations on the granular disk assemblies using the DEM are conducted to a large strain. 

The results are presented in terms of the impacts of the initial void ratio and confining stress on the drained 

behavior of granular media. The critical state point selected from each test is applied for the construction 

of the critical state line. Section 6.3 introduces some undrained simulations in addition to those already 

presented in chapter 4. They are used to construct the steady state line for a wide range of void ratios. In 

section 6.4 the consistency between the critical state line and the steady state line is examined in terms of 

both mechanical and micromechanical descriptors based on the simulated results from sections 6.2, 6.3 and 

4.3. A comparison of the consistency obtained in this study with that from the laboratory tests reported in 

the literature is then presented at the end of the chapter. 

6.2 Drained simulations to the critical states 

In order to construct a critical state line of the granular media adopted in this research, a series of biaxial 

compression simulations are conducted to simulate drained behavior up to the point where a critical state 

is reached. Since the initial void ratio and the confining stress are the two main factors affecting a granular 

media’s drained behavior, the biaxial compression simulations and their corresponding results obtained in 

this chapter will be described in terms of these two aspects in the following.  

6.2.1 Effect of initial void ratio 

6.2.1.1 Summary of the test program 

To demonstrate the impact of initial void ratio on the drained behavior of the granular media used in this 

research, a group of four biaxial compression simulation tests (DA, DB, DC, and DD) were conducted using 

granular assembly samples that are exactly the same as those already presented in Table 4.3 of section 4.3.1. 

All the four assemblies are sheared to very large strain (about 40% strain) to guarantee the achievement of 

the critical state. The associated physical properties of the disc particles used in the simulations such as 

Young’s Modulus, Poisson’s Ratio, inter-particle friction coefficient, and density follow those of Table 4.1 

in section 4.2.1. The biaxial compression simulations for the four samples all use mode 3 that was 

introduced in section 3.4, which maintains the average stress 𝜎11
  constant, and meanwhile, increases the 

average stress 𝜎22
  by applying a constant strain rate 𝜖2̇2

𝛽
 (at the boundary). The parameters for the biaxial 
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compression simulations such damping effect, time step and vertical strain rate follow the values shown in 

Table 4.4. 

6.2.1.2 Simulation results 

Mechanical behaviors from simulations 

Figs. 6.1 to 6.4 shows the mechanical behaviors for the four drained biaxial compression tests with different 

initial void ratios DA, DB, DC, and DD, respectively. Figure 6.1 gives the stress-strain responses of the 

four samples under shearing, Figure 6.2 shows the volumetric strain variations throughout the four tests, 

Figure 6.3 presents the stress paths for the four drained tests, Figure 6.4 exhibits the void ratio changes of 

the four assemblies throughout the test. From these figures, it can be seen that the initial void ratio affects 

the drained mechanical behavior of the granular assemblies significantly. Overall, sample A fails at a very 

early stage of about 0.5% strain due to its extremely high void ratio. Sample B exhibits a typical loose 

sample type of response under shearing. Sample C displays some dilation under shearing, and sample D 

shows a classical dense sample type of response. A detailed interpretation of the mechanical drained 

behaviors of the four samples is reported as follows: 

Test DA 

Sample A fails at a very early stage of straining due to the extremely high initial void ratio. We see in Fig. 

6.1 that the shear stress of sample A increases rapidly during the initial shearing and reaches its peak 

strength of 16.7 kPa at a strain of only 0.25%. Subsequently, the shear stress decreases and failure suddenly 

occurs at about 0.5% strain. The corresponding volumetric strain variations shown in Fig. 6.2 show a 

continuous contraction of sample A from beginning of the simulation until failure. It initially contracts 

slowly then suddenly contracts rapidly and fails. The void ratio of sample A shown in Fig. 6.4 decreases 

from the start of the test until sudden failed failure occurs.  

Test DB 

Sample B displays a typical loose sample type of behavior throughout the simulation. It exhibits very high 

rate of increase of the shear stress upon initial shearing and reaches an initial peak strength of 44 kPa at 

1.5% strain. During this process, the corresponding volumetric strain and void ratio of sample B both 

change at an almost constant rate indicating that contraction occurs during the shearing. Subsequently, from 

1.5% to 3% strain, the shear stress maintains the peak value, and then reduces to 29 kPa at 4% strain. From 

3% to 4% strain, the rate of change of volumetric strain and void ratio both suddenly increase corresponding 

to the sudden shear stress drop due to the macropores formed in the assembly when preparing the sample. 

They result in a temporary loss of strength of the sample during shearing, which explains the fact that 

sample A failed shortly after reaching its peak strength. After the temporary drop of the shear stress, 
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continued shearing of sample B leads to a stress increase and to a much higher value at a nearly constant 

rate until about 28% strain where the rate of increase starts to reduce gradually to zero. The corresponding 

volumetric strain and the void ratio continue to show a contraction at a much lower rate than in previous 

stage. The sample reaches the critical state at about 40% strain, where the volumetric strain and the void 

ratio both stop changing and maintain almost constant values. 

Test DC 

Unlike sample B, sample C did not contract under shearing but displayed a small dilation. During initial 

shearing, the shear stress increases rapidly and reaches a much higher stress than sample B did in the same 

strain range. The volumetric strain changes in this stage indicate a small contraction. Subsequently, the 

shear stress increases very slowly and reaches 80 kPa at about 5% strain. It then fluctuated about 80 kPa 

with very little increase with further shearing until the end of the simulation when the critical state is 

achieved. During this process, the volumetric strain increased after the initial small contraction. It reached 

0.2% volumetric strain at 5% shear strain, then it started to fluctuate between 0.2% and 0.3% of 𝜀𝑣 until the 

end of the test, indicating the occurrence of a small dilation of sample C with shearing until the critical state 

was reached. The void ratio of sample C barely changed throughout the test, it only increased from 0.238 

to 0.242 at very low rate of increase distributed uniformly throughout the simulation.  

Test DD 

Sample D shows a typical medium dense type of behavior and exhibits a higher peak strength than the other 

samples throughout the simulation until the critical state is reached. It is shown in Fig. 6.1 that the shear 

stress of sample D increases more rapidly upon initial shearing, than for the other tests. The corresponding 

volumetric strain in this stage shows a small contraction. The shear stress reaches a value of 80 kPa at 2% 

strain. Afterwards, the rate of increase reduces, and the shear stress increases slowly to its peak value of 

about 100 kPa at 12% strain and then maintains that value with some fluctuations until 35% strain. The 

volumetric strain in this stage keeps on increasing but at a decreasing rate after the initial contraction. From 

35% strain to the end of the test, the shear stress reduces a bit while the associated volumetric strain almost 

remains constant, indicating the achievement of the critical state. The void ratio of the sample slowly and 

uniformly increases from the beginning of simulation until about 35% strain when it reaches a maximum 

value of 0.243. It then almost maintains value of 0.243 until the end of test indicating the achievement of 

the critical state.  
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Figure 6.1 Drained stress-strain responses for assemblies with different initial void ratios 

 

Figure 6.2 Drained volumetric strain variations for assemblies with different initial void ratios 
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Figure 6.3 Drained stress paths for assemblies with different initial void ratios 

 

Figure 6.4 Drained void ratio variations for assemblies with different initial void ratios 
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Comments 

Comparing the drained behavior of the four samples shown in Figs. 6.1 to 6.4, it can be seen that the stress-

strain responses, the volumetric strain variations, and the void ratio changes for the four samples differ 

markedly. However, the stress paths for all the tests shown in Fig. 6.3 merge because the same confining 

stress is applied to all the assemblies. The slope of all of the stress paths shown in the figure are equal to 2 

as expected. The highest point of the stress path of test DD shown in Fig. 6.3 is a bit higher than the other 

three tests due to its higher peak shear strength, which is evident in Fig. 6.1. The initial rate of shear stress 

increase increases for the sequence A to D. Sample A fails very early, sample B contracts and develops 

typical loose type of behavior, sample C dilates a bit, while sample D displays more dilation and typical 

medium dense type of behavior. At very large strains, all samples other than sample A, which was failed at 

a very early stage, merge to similar shear stress and void ratio values indicating the achievement of the 

critical state. The critical void ratio of samples B, C, and D is all about 0.245. 

Micromechanical behaviors from simulations  

Figs. 6.5 to 6.8 present variations of the micromechanical descriptors of the four samples during drained 

shearing. Fig. 6.5 shows the changes of the average coordination number γ, Fig. 6.6 displays the changes 

in the number of floaters 𝑛𝑓, Fig. 6.7 presents the contact normal anisotropy parameter 𝑎𝑛 variations, and 

Fig. 6.8 presents the normal contact force anisotropy parameter 𝑎𝑓 changes. Based on the variations of these 

descriptors throughout the drained simulations for the four samples, the micromechanical behaviors of them 

under shearing are interpreted as follows: 

Test DA 

Sample A failed at very early stage. It can be seen from Figs. 6.5 to 6.8 that at initial shearing, both the 

average coordination number γ and the number of floaters 𝑛𝑓 increase, and meanwhile, both the contact 

normal anisotropy parameter 𝑎𝑛 and the normal contact force anisotropy parameter 𝑎𝑓 increase steadily. 

These responses indicate in this stage although overall the contact creation is predominant and occurs 

mainly in the vertical direction, many contacts are lost in both directions as shown by the growth in the 

number of floaters. Continued shearing induced a failure of the sample at about 0.5% strain, where γ, 𝑎𝑛, 

and 𝑎𝑓 all suddenly dropped indicating a significant loss of contact in both directions and resulting in a  

failure of the sample. The failure at a very early stage is due to the macropores formed during the creation 

of the very loose sample. During shearing, the movement of particles destroys the macropores which made 

the system become less stable and led to failure. This is consistent with the rapid reduction of the volumetric 

strain shown in Fig. 6.2.  
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Test DB 

At the beginning of the shearing of sample B, γ, 𝑎𝑛, and 𝑎𝑓 all increase rapidly while 𝑛𝑓 dropped abruptly, 

which indicates that vertical contact creation is predominantly and aided by connections made with the 

floaters in the macropores. Subsequently, continued shearing leads to all four micromechanical descriptors 

remaining temporarily constant, which corresponds to the temporarily constant shear stress stage seen in 

Fig. 6.1. These responses indicate that the initial fast contact creation in the vertical direction obtained by 

making connections with the floaters is terminated, and in addition, that the contact creation and contact 

disintegration in this stage are in balance. From 3% to 4% strain, γ, 𝑎𝑛, and 𝑎𝑓 all drop a bit suddenly, while 

𝑛𝑓 increases a bit, which is in accordance with the sudden drops of shear stress in this stage shown in Fig. 

6.1. Contact disintegration is predominant in this stage and mainly in the vertical direction. As already 

explained in the above, it is the macropores generated when preparing the samples that results in the 

suddenly contact loss in the vertical direction upon the application of load. After this temporary drop, from 

4% strain to the end of the test, 𝑎𝑛 and 𝑎𝑓 both grow steadily and gradually approach to their maximum 

values at a very large strain, then stay at this maximum value until the end of the test. γ does not vary much, 

it only increases a bit and reaches the maximum value and then maintains at this value until the end of test. 

𝑛𝑓 did not change until about 15% strain, then it decreased a bit and then fluctuated about a constant value 

until the end of test. These responses indicate that the contact creation in the vertical direction and the 

contact disintegration in the horizontal direction continued to develop in this stage leading to the critical 

state where contact creation and disintegration in the assembly is in balance. 

Test DC 

Upon initial shearing to about 2% strain, γ, 𝑎𝑛, and 𝑎𝑓  of sample C all increase very rapidly while 𝑛𝑓 

decreases significantly indicating contact creation is primarily in the vertical direction due to connections 

made with the floating particles under loading. Higher values of γ, 𝑎𝑛, and 𝑎𝑓 and a lower value of 𝑛𝑓 of 

sample C compared to those of sample B which can be seen in this stage is due to a larger number of initial 

floating particles created  in sample C during its preparation. From 2% to 12% strain, 𝑎𝑛 and 𝑎𝑓 both slowly 

increase to their peak values, γ slowly reduces a bit, while 𝑛𝑓 does not change much, which indicates that 

in this stage contact creation is still primarily in the vertical direction and contact disintegration is in the 

horizontal direction. The small reduction of γ occurs because a small number of contact disintegration 

happened in both directions due to the dilation of the sample in this stage, which can also be seen in Fig. 

6.2. From 12% strain to the end of the test, all the four descriptors maintain almost constant values, which 

means that contact creation and disintegration in both directions are in balance, and the system comes to 

the critical state. 
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Test DD 

The micromechanical behavior of sample D in terms of the responses of descriptors shown in Figs. 6.5 to 

6.8 is similar to that of sample C. From the beginning to about 2% strain, the four descriptors respond  

similarly to those of sample C but more strongly. γ, 𝑎𝑛, and 𝑎𝑓  all increase rapidly while 𝑛𝑓  decreases 

abruptly. Contacts are made rapidly in the vertical direction through connections with the floaters that were 

created in the macropores during specimen fabrication, and contacts are mainly lost in the horizontal 

direction. From 2% to 10% strain, 𝑎𝑛 and 𝑎𝑓 both increase slowly, while γ and 𝑛𝑓 remain nearly constant. 

This means that in this stage, although contact creation is still primarily in the vertical direction while 

contact disintegration is mainly in the horizontal direction, however, the responses are less intense 

compared to the previous stage due to initiation of dilation in sample D (see Fig. 6.2). Subsequently, from 

10% to about 35% strain, γ and 𝑎𝑓 both decrease a bit, 𝑎𝑛 first increases and then decreases a bit, while 𝑛𝑓 

remains nearly constant. These responses indicate that a number of vertical contact disintegration occurs in 

this stage along with the horizontal contact lost accompanied by dilation, which agrees with the mild strain 

softening seen in Fig. 6.1. From 35% strain to the end of the test, all the four descriptors remain constant 

indicating that contact creation and disintegration in both directions are in balance and the assembly enters 

into the critical state.  

Comments 

Comparing the variations of the micromechanical descriptors of the four samples shown in Figs. 6.5 to 6.8, 

it can be seen that samples C and D exhibit similar responses, which are distinctly different from that of 

samples A and B. The difference in the micromechanical behaviors between samples C and D occurs 

because a number of contact lost occurs in the vertical direction of sample D at an intermediate strain range 

due to the severe dilation of the assembly under shearing. 

Due to the connections made with the floating particles in the macropores during initial shearing of all the 

samples except sample A, γ, 𝑎𝑛, and 𝑎𝑓 all increase rapidly while there is a significant decrease in the 

number of floaters 𝑛𝑓. The different initial peak values of 𝑎𝑛 is due to the different initial number of floaters 

𝑛𝑓 in the samples. All descriptors change more slowly after the initial stage of shearing and then slowly 

evolve until a critical state is reached. Since the void ratio of sample D is low, it dilates and results in some 

loss of contacts in both directions before reaching the critical state. At the critical state, the descriptors 

shown in Figs. 6.5 to 6.8 for all tests merge together and contact creation and disintegration enter into a 

balance in both directions. For all four samples, the average coordination number 𝛾 at the critical state is 

about 3.3 and the number of floaters 𝑛𝑓 at the critical state is about 400. 
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Figure 6.5 Average coordination number γ variations for assemblies with different initial void ratios 

 

Figure 6.6 Number of floaters nf variations for assemblies with different initial void ratios 
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Figure 6.7 Contact normal anisotropy parameters an variations for assemblies with different initial void 

ratios 

 

Figure 6.8 Normal contact force anisotropy parameter af changes for assemblies with different initial void 

ratios 
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6.2.2 Effect of confining stress 

6.2.2.1 Summary of the Test Program 

To construct a critical state line for the adopted granular assemblies, and meanwhile, study the effect of 

confining stress on the drained behavior of granular media, a group of thirteen simulation tests (D1, D2, 

D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, and D13) were designed with close initial void ratios but 

different confining stresses that varied from 50 kPa to 1600 kPa. The significantly different confining 

stresses allows the construction of the critical state line for a wide range of mean effective stress. It can be 

seen from Fig. 6.4 that under the same confining stress, even if the void ratios of the samples are very 

different at the beginning of the tests, they become very similar at the ultimate state. Therefore, a series of 

biaxial compression tests with different confining stresses are necessary to obtain the critical void ratios on 

the critical state line. In addition, to avoid the impact of the initial fabric of the granular assemblies on the 

critical state and maximize the differences between the initial conditions of drained and undrained 

simulations, a different sample preparation method is employed for the same disc particles in this section. 

The method resembles the air pluviation method in laboratory testing, the process of which is summarized 

as follows: 

1. Create an initial assembly and set a very high value of coefficient of contact friction (i.e. 10) for the 

particles in the assembly. Subsequently, increase the boundary stress to the target level uniformly by using 

mode 2 introduced in section 3.4. Loading and unloading are applied alternately and are continued until an 

assembly with uniformly distributed stresses is achieved. 

2. Decrease the contact friction coefficient between the particles slowly from 10 to 0.5 under the target 

confining stress using mode 1.  

3. Continue to adjust the boundary stress to the target value using mode 1 with a coefficient of contact 

friction of 0.5, until the whole system achieves an equilibrium condition so that a loose sample is created. 

Similar to the drained biaxial compression simulations with different initial void ratios conducted in the 

previous section, the simulations in this section for the above samples were also conducted using mode 3, 

which maintains the average stress 𝜎11
  constant, and meanwhile, increases the average stress 𝜎22

  by 

applying a constant strain rate 𝜖2̇2
𝛽

 (at the boundary). The associated physical properties of the disc particles 

applied in the simulation such as Young’s Modulus, Poisson’s Ratio, and inter-particle friction coefficient 

also follow those of Table 4.1 in section 4.2.1. The parameters for the biaxial compression simulations such 

as damping effect, time step and vertical strain rate follow the values shown in Table 4.4. And some initial 

physical properties for each sample used in this section are shown as Table 6.1.      

 



135 

 

Table 6.1 Summary of initial physical properties of the tests 

Test Sample 

Number of 

floaters 

𝒏𝒇 

Average coordination 

number 

𝛄 

Void ratio 

(𝒆) 

Confining stress 

(kPa) 

(𝝈𝟏) 

D1 D1 765 3.2441 0.2547 50 

D2 D2 817 3.3269 0.2545 100 

D3 D3 496 3.3083 0.2518 200 

D4 D4 476 3.3622 0.2504 300 

D5 D5 414 3.3873 0.2492 400 

D6 D6 484 3.3930 0.2478 500 

D7 D7 317 3.4291 0.2465 600 

D8 D8 298 3.4459 0.2453 700 

D9 D9 272 3.4676 0.2441 800 

D10 D10 243 3.5017 0.2417 1000 

D11 D11 195 3.5244 0.2394 1200 

D12 D12 174 3.5509 0.2372 1400 

D13 D13 183 3.5749 0.2349 1600 

6.2.2.2 Simulation results 

For the purpose of explaining the effect of confining stress on the drained behavior of granular media and 

avoiding repetition, in this section, the interpretation will only be based on samples D1 to D5 in terms of 

both mechanical and micromechanical descriptors. The impact of confining stress on the drained behavior 

of the rest of the samples in this section are similar to those shown by D1 to D5. The specific results of the 

rest tests are presented in Appendix A. 

Mechanical behaviors from simulations 

Figs. 6.9 to 6.12 show the results of biaxial compression simulations (drained) using samples D1 to D5. 

Figure 6.9 shows the stress-strain responses, Figure 6.10 shows volumetric strain variations, Figure 6.11 

presents the stress paths changes, and Figure 6.12 exhibits the void ratio variations. From these figures, it 

can be seen that confining stress affects the mechanical behavior of the granular assemblies significantly. 

Since all the five samples display a typical loose type of behavior similar to that of test DB shown in the 
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previous section, hence, in this section the interpretation of mechanical behaviors for samples D1 to D5 

will mainly focus on a comparison of the impacts of the confining stress in the five simulations. A detailed 

interpretation is given in the following: 

Stress-strain response 

The overall stress-strain responses of all five samples shown in Fig. 6.9 are quite similar, all of them display 

the typical behavior of a loose sample. They all show a rapid initial shear stress increase followed by a slow 

reduction of the rate of stress increase until a maximum is reached and maintained to a large strain. The 

differences between the five samples are in their initial rates of increase of shear stress and the maximum 

shear stress values at the critical state. For tests D1 to D5, the initial rate of shear stress increase and the 

maximum shear stress at the critical state both increase with increasing confining stress.  

 

Figure 6.9 Drained stress-strain responses for assemblies with different confining stresses 
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intermediate strain. Further shearing results in a bit volumetric strain increase until at about 30% it becomes 

stable as the critical state is reached.  

The effect of the confining stress on the volumetric strain variations is exhibited in an increase in the initial 

rate of increase and in the maximum value of the volumetric strain. The increase in the confining stress 

from D1 to D5 result in lower initial rate of increase of the volumetric strain. However, this pattern is not 

strictly exhibited in Fig. 6.10 because the initial void ratios of the five samples are not exactly the same but 

decrease a bit with higher confining stress from D1 to D5. Therefore, some irregularities are exhibited. 

 

Figure 6.10 Drained volumetric strain changes for assemblies with different confining stresses 

Stress path behaviors 

The stress path variations for all the five samples shown in Fig. 6.11 are very similar. Although starting 

from different values due to different confining stresses were applied, they all increase linearly with the 

same slope of 2 as expected. The shear stress of all five samples increases with increasing mean effective 

stress. The impact of different confining stress is with the increase of mean effective stress from sample D1 

to D5, the maximum shear stress on the corresponding stress path grows proportionately, which is also 

evident in Fig. 6.9.  
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Figure 6.11 Drained stress paths changes for assemblies with different confining stresses 

Void ratio variations 

The void ratio variations of the five samples under shearing are very similar too. They all display contraction 

due to their initial high void ratios. The initial rate decrease of void ratio for all five samples shown in Fig. 

6.12 are similar although they start from different initial void ratios. After the initial shearing, the rate of 

decrease of void ratio for all samples slowly reduces to zero at an intermediate strain range and then increase 

a bit before the curve becomes flat at the critical state. From Fig. 6.12, the effect of the confining stress on 

the void ratio variations are not obvious, this is because the initial void ratios are not exactly the same 

among the five samples although they are close to each other. Since the different confining stresses from 

samples D1 to D5 are achieved by increasing the confining stress from that of the same original sample, 

with the growth of the applied target confining stresses, the void ratios decrease accordingly. Therefore, the 

state parameters of these samples are close to each other leading to very similar void ratio responses.  
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Figure 6.12 Drained void ratio variations of assemblies with different confining stresses 

Comments 

Comparing the drained behavior of the five samples shown in Figs. 6.9 to 6.12, it can be seen that the 

overall responses of the stress-strain relationship, the volumetric strain variations, the stress paths, and the 

void ratio changes for the five samples are all similar, although some specific differences can also be seen. 

The effect of confining stress on the drained behavior of granular media mainly manifests itself in changes 

in the initial rate of increase of shear stress and volumetric strain, and the peak and ultimate values of the 

shear stress, volumetric strain, and void ratio. From D1 to D5, the initial rate of shear stress increase and 

the peak strength value both increase while the initial rate of volumetric strain increases and the maximum 

and ultimate values of volumetric strain all decrease. With respect to the void ratio changes, the maximum 

and ultimate values of void ratio both decrease for the sequence D1 to D5. However, the volumetric strain 

and void ratio variations are not strictly exhibited in Fig. 6.10 and Fig. 6.12 because the initial void ratios 

of the five samples are not exactly the same but decrease a bit with higher confining stress from D1 to D5. 

Therefore, some irregularities are exhibited. With respect to the stress paths, confining stress affects the 

highest point on the stress paths of the five samples although the slope of them are the same. 
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Micromechanical behaviors from simulation 

Figs. 6.13 to 6.16 present the variation of the micromechanical descriptors of the five samples D1 to D5 

during drained shearing. Fig. 6.13 shows the changes of average coordination number γ, Fig. 6.14 displays 

the number of floaters 𝑛𝑓  variations, Fig. 6.15 presents the contact normal anisotropy parameter 𝑎𝑛 

variations and Fig. 6.16 presents the normal contact force anisotropy parameter 𝑎𝑓 changes. Based on the 

responses of these descriptors throughout the simulations, the impact of the confining stress on the 

micromechanical behaviors of the five samples are described as follows: 

Average coordination number 𝛾 

The overall average coordination number 𝛾 responses of the five samples shown in Fig. 6.13 are similar 

although different at an early stage. From 0 to 10% strain, the average coordination number 𝛾 in these five 

tests all increases but with reduced increasing rate from samples D1 to D5. Subsequently, the increasing 

rate of all five samples slows down and upon reaching the critical state at a large strain fluctuates around 

the critical state value until the end of shearing. Hence, the effect of the confining stress on the average 

coordination number 𝛾 mainly lies in the initial increasing rate of 𝛾, with the increase of confining stress 

from samples D1 to D5, the growth of γ in the early state decreases .  

 

Figure 6.13 Average coordination number γ changes of assemblies with different confining stresses 
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Number of floaters 𝑛𝑓 

Fig. 6.14 shows the variations of 𝑛𝑓 for the five samples during shearing. It can be seen from the figure that 

the 𝑛𝑓 values for all five tests are quite close to each other although their initial values are very different. 

At the beginning of simulations, 𝑛𝑓 values from all the tests increase instantly and greatly. Afterwards, it 

starts to decrease for all samples. The reduction rates for all the samples are initially high and then gradually 

reduce and then maintain constant values when the samples enter into the critical state. In sequence from 

samples D1 to D5 (as the confining stress increases), the initial reduction rate decreases, and the overall 

value of 𝑛𝑓 also decreases, although the difference of 𝑛𝑓 among the five samples was small. 

 

Figure 6.14 Number of floaters nf variations for assemblies with different confining stresses 

Contact normal anisotropy 𝑎𝑛 

The contact normal anisotropy parameter 𝑎𝑛 curves for all five tests shown in Fig. 6.15 are very close to 

each other, although it is somewhat higher for the samples with lower confining stresses. The initial rapid 

creation of the contact normal anisotropy is conspicuous for all the five samples, which is associated with 

the abrupt drop of 𝑛𝑓 shown in Fig. 6.14 indicating that a large amount of contact creation occurred in the 
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for all five samples are different, however, the different confining stresses counterbalanced this effect and 

thereby resulted in very similar 𝑎𝑛 responses for all the five samples. Specifically, γ increases in tests D1 

to D3 as a large number of vertical contacts are constructed by making connections with the floaters, leading 

to a rapid increase of 𝑎𝑛. In tests D4 and D5, although less vertical contacts are constructed through the 

connections with floaters compared to those in tests D1 to D3, however, due to the higher confining stresses 

applied in these tests, there are more contacts lost in the horizontal direction which is consistent with the 

much smaller increase of γ for samples D4 and D5 shown in Fig. 6.13. The result is that overall 𝑎𝑛 

responses very close to each other for all five samples.  

 

Figure 6.15 Contact normal anisotropy parameter an variations for assemblies with different confining 

stresses 

Normal contact force anisotropy parameter 𝑎𝑓 

Similar to the response of 𝑎𝑛 for the five samples shown in the above, the curves for the normal contact 
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number of normal contact forces that are created vertically through connections made with the floaters, 

therefore resulting in a rapid increase of 𝑎𝑓. In tests D4 and D5, although there is less normal contact force 

creation in the vertical direction from the floater effect than in tests D1 to D3, however, due to the higher 
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confining stresses that are applied in tests D4 and D5, more normal contact force is lost in the horizontal 

direction. Therefore, the overall values of 𝑎𝑓 are about the same for the five samples.  

 

Figure 6.16 Normal contact force anisotropy parameter 𝑎𝑓 for assemblies with different confining stresses 

Comments 

Comparing the variations of the micromechanical descriptors of the five samples shown in Figs. 6.13 to 

6.16, it can be seen that all five samples exhibit similar overall responses with some differences due to the 

different confining stresses applied. In general, the impact of the confining stress on the average 

coordination number 𝛾 mainly lies in the initial increasing rate, while the impact of the confining stress on 

the number of floaters 𝑛𝑓 is primarily the initial reduction rate and the overall value. Specifically, with the 

increase of confining stresses from sample D1 to D5, the growth of γ in the early state decreases, and the 

initial reduction rate and the overall value of 𝑛𝑓 also both decrease, although the difference of 𝑛𝑓 among 

the five samples was small. Different from the variations of 𝛾 and 𝑛𝑓, plots of 𝑎𝑛 and 𝑎𝑓 for all five samples 

almost merge through out the tests due to the counterbalancing effects of 𝛾, 𝑛𝑓, and the confining stress. 

Therefore, the confining stress effect on 𝑎𝑛 and 𝑎𝑓 in these series of tests are not obvious since the initial 

void ratio and the number of floaters for the five samples are not exactly the same. 
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6.3 Undrained simulations to the steady states 

6.3.1 Summary of the test program 

To construct a steady state line for the granular assemblies adopted in this research, a series of undrained 

simulations sheared to the steady state are needed. Since the void ratio of the granular assembly does not 

change during the undrained simulation, a small number of simulations with different initial void ratios can 

be performed to construct a steady state line. Following this idea, in addition to the undrained simulations 

already presented in Chapter 4, a group of seven simulation tests (U1, U2, U3, U4, U5, U6, and U7) are 

designed to supplement the void ratio range for the formation of the steady state line. All the seven samples 

were prepared based on the loose sample A in section 4.3.1, but the void ratios were decreased through 

increasing the confining stress to different levels using mode 1. After bringing the samples to their target 

level of void ratios, their associated confining stresses are recorded. Subsequently, the assemblies are 

brought into an equilibrium state for the following undrained simulations. The initial physical properties 

for the seven samples are shown as Table 6.2.      

Table 6.2 Summary of initial physical properties of the tests 

Test Sample 
No. of floaters 

(𝒏𝒇) 

Initial average 

coordination number 

 (𝛄) 

Void ratio 

 (𝒆) 

Confining stress (kPa) 

(𝝈𝟏) 

U1 U1 783 3.3296 0.2825 350 

U2 U2 673 3.4023 0.2789 650 

U3 U3 564 3.4740 0.2746 1000 

U4 U4 284 3.5740 0.2613 1700 

U5 U5 171 3.6535 0.2523 2500 

U6 U6 132 3.7087 0.2454 3100 

U7 U7 133 3.8301 0.2348 4900 

Similar to the undrained biaxial compression simulations conducted in chapter 4, the simulations in this 

section for the above samples were  also conducted using mode 3, which maintains the average stress 𝜎11
  

constant, and meanwhile, increases the average stress 𝜎22
  by applying a constant strain rate 𝜖2̇2

𝛽
 (at the 

boundary). The associated physical properties of the disc particles and the fluid applied in the simulations 

also follow those of Tables 4.1 and 4.2 in section 4.2.1. And the parameters for the biaxial compression 
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simulations such as damping effect, time step and vertical strain rate follow the values already shown in 

Table 4.4. 

6.3.2 Simulations results 

Since different initial void ratios of samples U1 to U7 were prepared through increasing the confining stress 

from the very loose sample A in section 4.3.1, they are in essence the same as preparing the samples with 

different confining stresses. Hence, it can be expected that the effect of confining stresses on the associated 

undrained responses will be similar to those already reported in section 4.3.2. Therefore, to avoid repetition, 

the undrained behaviors of samples U1 to U7 will not be interpreted in this section. The specific undrained 

simulation results for these seven samples are presented in Appendix B. 

6.4 Consistency of the critical state line and the steady state line 

6.4.1 Comparison of the critical state line and the steady state line in terms of void ratio 

versus mean effective stress 

Based on the drained and undrained simulations performed in the above sections, a critical state line from 

drained simulations and a steady state line from undrained simulations were constructed. Fig. 6.17 presents 

a comparison of the critical state line and the steady state line in terms of the relationship between void 

ratio 𝑒 and the logarithm of the mean effective stress p’. All the critical state points and the steady state 

points shown in the figure are selected at large strain from each test where the whole assembly comes into 

a stable state and almost all descriptors stop changing. Since grain crushing may occur at high confining 

stress, only mean effective stresses that are less than 3000 kPa are considered. Besides, due to the difficulty 

of conducting drained test under very low confining pressures, only mean effective stresses that were 

greater than 75 kPa were included in the drained simulations. 

It can be seen from Fig. 6.17 that at the same mean effective stress level, the void ratios at the steady state 

from undrained simulations are in general somewhat higher than those of the critical states from the drained 

simulations. Both the critical state line obtained by connecting each critical state point and the steady state 

line obtained by connecting each steady state point have shallow slopes. A representation of the comparison 

of the critical state line and the steady state line from the drain and undrained monotonic triaxial 

compression tests on an Erksak sand that was reported by Been, Jefferies and Hachey in 1991 is shown in 

Fig. 6.18 (Been et al., 1991). It can be seen from the figure that the critical state and the steady state data 

from the drained and undrained tests at comparable mean effective stress levels are quite close to each other, 

although some of the critical state points shown in the figure are below the steady state points at the same 

mean effective stress. However, it was stated by Been et al. that some of the dense samples were still dilating 

at the end of the tests and that shear localization also occurred. Therefore, from both the simulation and the 
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laboratory results, it is reasonable to assume that the critical state line and steady state line are almost the 

same in terms of void ratio versus mean effective stress relationship, although they are not exactly the same. 

The steady state line has a somewhat higher slope than the critical state line in terms of void ratio versus 

mean effective stress in general. 

 

Figure 6.17 Comparison of the critical state from drained simulations and the steady state from undrained 

simulations in terms of the void ratio 

 

Figure 6.18 Comparison of the critical state from drained tests and the steady state from undrained tests 

(Been et al., 1991) 
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6.4.2 Consistency of the critical state line and the steady state line in terms of the average 

coordination number versus mean effective stress 

Due to the fact that the void ratio and the average coordination number are correlated (Athanasiou-Grivas 

and Harr, 1980; Smith et al., 1929), and both of them vary with the density of a sample, a comparison was 

made between the critical state line and the steady state line in terms of the average coordination number γ 

versus the mean effective stress as shown in Fig. 6.19. Data for the critical state and the steady state are 

selected at the same points as the data of Fig. 6.17 but here they are represented by the average coordination 

number γ instead of the void ratio. Again the mean effective stress range of 75 kPa to 3000 kPa is selected 

for conducting the comparisons to avoid the grain crushing effect that may occur at high confining stresses 

during consolidation and shearing, and the difficulty of conducting drained testing under low confining 

stresses.  

It can be seen from Fig. 6.19 that in the comparison range used, the critical state points and the steady state 

points in terms of the average coordination number γ versus mean effective stress almost merge into one 

unified linear curve. The differences between the critical state line and steady state line shown in Fig. 6.19, 

are much smaller than when the data were plotted in terms of void ratio versus the mean effective stress.  

The reason that the average coordination number γ indicates a greater consistency of the critical state line 

and the steady state line than that obtained by using the void ratio may be understood from the definitions 

of the two variables. Although both of them can indicate the denseness of a given sample of granular 

material, the void ratio describes the overall volume of voids to that of the total volume of the particles, 

whereas the average coordination number γ describes the compactness of the particles. So the former can 

describe how much space that the voids occupy in a sample, which depends on both the voids and the 

particles, while the latter describes the intensity and denseness of particle packing which only depends on 

the particles themselves. Since the critical state and the steady state are the states that a granular media 

exhibits at an ultimate condition, they are properties that should only be related to the granular material 

type itself. Therefore, if the critical state line and the steady state line are the same for a given granular 

media, the average coordination number γ should give better consistency since it comes purely from the 

consideration of the particles. Besides, in an undrained testing, the void ratio does not change throughout 

the test due to the constraint of the fluid from flowing outside the sample, which is a prescribed boundary 

condition that cannot vary depending on the extent of shearing. In contrast, the average coordination number 

in an undrained test can change with shearing and represent the stableness of the system, therefore, it can 

indicate the shearing condition at the steady state more precisely. 
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Figure 6.19 Comparison of the critical state from drained simulations and the steady state from undrained 

simulations in terms of the average coordination numbers γ 
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Chapter 7 Conclusions and Recommendations 

7.1 General 

In this study, a further developed version of the fluid-coupled DEM model that was first proposed by Olivera 

in 2004 was developed to simulate the undrained behavior of a two-dimensional granular media and 

interpret its behavior using micromechanical descriptors. The key modification relates to the development 

of a robust pore identification mechanism that can handle rapid changes in pore structure due to creation 

and disintegration of inter-granular contacts. The algorithm keeps track of “pore groups” where some voids 

may coalesce due to contact disintegration while other voids are subdivided into parts due to contact 

creation. More common is an extremely complex modification of pore space when both coalescence and 

subdivision of voids takes place affecting a group of voids simultaneously.   

Using this “pore groups” idea incorporated by a fluid-coupled DEM scheme, an undrained biaxial 

compression simulation of a large circular assembly made up of 10000 disc particles was performed under 

different initial conditions. The simulation yielded reasonable results and showed undrained behavior 

similar to that of laboratory tests. A qualitative comparison of the simulated results with physical data from 

laboratory tests showed a high level of similarity. Based on the variations of the micromechanical 

descriptors extracted from the simulation, a micromechanical study of the undrained behaviors of granular 

media under different initial conditions was conducted. An analysis of the granular media undrained 

behaviors from the micromechanical framework was performed.  

Using the successful simulation of the undrained behavior of a granular media obtained from the proposed 

further developed fluid-coupled DEM scheme, a study of the mechanism of liquefaction formation from 

both classical soil mechanics and micromechanics perspectives was conducted using a very loose assembly 

of a granular media. To depict and visualize the liquefaction formation mechanism, disc particles were 

combined with a particular assembly creation method that resembles the moist tamping method of sample 

preparation in traditional laboratory testing to model the occurrence of liquefaction. It is believed that, the 

methodology proposed in this research will also apply to elliptical particles with different values of 

eccentricity. Through the simulations conducted on a very loose sample, factors that affect the occurrence 

of liquefaction were analyzed and studied. Particularly, the influence of permeability on the liquefaction 

susceptibility was studied by using five different values of conduit pipe diameter. The results demonstrated 

that the permeability affects the peak and residual strengths to a very large extent.  

With respect to the ultimate state, a comparison of the critical state line from drained simulation tests and 

the steady state line from undrained simulation tests was performed by using both the void ratio versus the 

mean effective stress relationship and by using the newly proposed average coordination number versus the 

mean effective stress relationship. The results indicate that compare to the void ratio, the average 
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coordination number can describe the granular media’s property at the ultimate state more effectively due 

to its representation of the overall denseness. 

The following sections highlight specific conclusions and recommendations derived from this thesis, and 

some suggested future work. Section 7.2 gives the conclusions drawn from this thesis, section 7.3 includes 

recommendations and some proposed future work. 

7.2 Conclusions 

7.2.1 Pore pressure evolution scheme 

In the methodology of this thesis, the main idea is to compute the contact interactions between each pair of 

neighboring particles, and couple the fluid flow effects with nearby particles in the deformation of an 

assembly. This follows closely from the approach proposed by Olivera in 2004. The computations of the 

individual pore pressures are accomplished through detecting each pore’s volumetric strain from each step. 

This combined with the bulk modulus of the water yields updated individual pore pressures. However, to 

successfully simulate the undrained behavior, especially the liquefaction behavior of a granular media, an 

effective scheme to describe pores evolution is essential. This is because the individual pores are changing 

all the time and are frequently separated into or combined with other pores rapidly due to the movement of 

particles. More common is an extremely complex modification of pore space when both coalescence and 

subdivision of voids takes place affecting a group of voids simultaneously. The proposed method keeps 

track of “pore groups”, which groups related neighbour pores before and after contact creation or 

disintegration in each successive step successfully solved this problem. This resulted in a robust pore 

identification mechanism and an accurate computation of the pore pressure forces on the ambient particles. 

The idea of “pore groups” is also very effective in correctly computing the pore pressures when the 

phenomenon of local liquefaction occurs. Since the local liquefaction usually results in a few particles 

floating inside the pores, when computing pore pressure effect of these pores, the volume of these particles 

are deducted from their outside pores directly so that a comparison of these newly formed pores’ volume 

and the pore group’s volume in the previous step can be achieved. Consequently, a correctly converted pore 

pressure force from the pores onto the involved ambient particles results. 

7.2.2 Comparison study on the fluid-coupled DEM model with behavior of a poroelastic 

configuration 

In order to evaluate the effectiveness of the proposed further developed fluid flow scheme, a comparison 

study was conducted on a rectangular assembly of 10000 disc particles. Two simulation tests, a pore 

pressure equalization test and a pore pressure dissipation test were performed on the assembly. The particles 
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movements are restricted in these two tests to examine the pore pressure dissipation among the pore system. 

From this comparison study, two main results related to the pore pressure dissipation were obtained: 

 In the pore pressure equalization testing, the initial assigned pore pressures of the six selected pores 

were very different at the beginning of the test, but all tended to merge together after 1 second.  The 

pore pressure changes for all the six pores were rapid at the beginning of the tests, and then 

gradually slowed down to almost zero by the end of the tests. The ultimate pore pressure for all 

pores was about 25 kPa. So the proposed fluid flow scheme can be taken as effective. 

 For the pore pressure dissipation test, a comparison of the simulated pore pressure variations with 

those obtained from an analytical solution of Terzaghi’s classical one-dimensional consolidation 

theory at selected cycles was studied. From the comparison, the simulated pore pressures at 

different heights of the assembly perfectly matched those derived from the analytical solution at 

the same height. Therefore, the proposed fluid flow scheme can be taken as effective.  

7.2.3 Undrained simulation results 

In chapter 4, a series of undrained biaxial compression simulations under different initial conditions were 

conducted and compared with those derived by using the constant volume method. The assemblies with 

different initial void ratios that were used to conduct the simulations were generated through a special 

process, which combines the alternation between cyclic and compacted mode of the assembly, and a floater 

removing scheme after the completion of all alternation actions. The reason for adopting this technique to 

generate the samples is that assemblies created by this method results in a structure of aggregates and 

macropores, which resembles the samples prepared by using the moist tamping technique. A qualitative 

comparison of the simulated results with physical data from the literature showed a very high level of 

similarity. The conclusions from these simulations are listed as follows: 

 Under the same confining stress, the initial void ratio controls the undrained behavior of the 

granular assembly. The lower the initial void ratio, the less likely is the occurrence of liquefaction, 

and the more likely is strain hardening. In terms of the micromechanical behavior, the initial number 

of floaters affects the undrained behavior of the granular system greatly. The higher the number of 

floaters in the pores, the more stable will be the assembly. For the samples that exhibited 

liquefaction, contacts were mainly disintegrated in the horizontal direction in the initial shearing 

stage, which then turned into disintegrate in both directions corresponding to the strain softening 

stage. In these samples, a reduction of the average coordination number and an increase of the 

number of floaters were characteristically displayed accompanied by the generation of the pore 

pressure until the steady state was reached, and both reached their ultimate values.  



152 

 

 When the initial void ratios of the assemblies are the same (i.e. the same loose sample which can 

trigger liquefaction) but the confining stresses are increased, their undrained behaviors are 

characterised by corresponding increases in the values of the peak strength combined with higher 

pore pressure generation rates, although their residual shear strengths were very close to each other. 

The simulated micromechanical behaviors show that the initial number of floaters in the assembly 

affects the durations of the peak shear strength. The higher the number of floaters, the longer is the 

duration of the peak shear strength.  A higher confining stress also induces a higher rate decrease 

of the initial average coordination number and a lower rate of the construction of initial anisotropy. 

During initial shearing, contacts are lost in both directions due to a rapid pore pressure generation, 

rather than the predominant loss of connections in the horizontal direction when the confining stress 

is low. Therefore, under the same initial void ratios, the confining stresses determine the undrained 

behavior of the granular assembly. 

 A comparison of the results of undrained simulations on the samples with different initial void 

ratios by using the fluid-coupled DEM and using the constant volume method demonstrates that 

the two methods yield similar undrained responses for dense and very dense samples until an 

intermediate strain range, however, they resulted in very different behaviors when the simulated 

material was loose. The constant volume method yielded a much lower peak strength than that 

obtained by using the fluid-coupled DEM scheme. With regards to the micromechanical response, 

applying the fluid-coupled DEM to the very loose sample yields a faster reduction of the average 

coordination number and a more rapid growth of the number of floaters accompanied with a higher 

rate of construction of the contact normal anisotropy and normal contact force anisotropy. All of 

these behaviors were absent in the simulations that used the constant volume method because it 

failed to capture the pore pressure contribution to breaking the contacts in the horizontal direction 

in the early part of a test and to breaking contacts in both directions at a later stage in the test. 

Therefore, the constant volume method may be capable of simulating the undrained response of a 

very dense sample up to an intermediate strain range, but it should not be used for the loose samples. 

7.2.4 Effects of permeability 

A study of the effect of permeability on liquefaction susceptibility was performed in this research. Five 

undrained simulation tests were conducted using exactly the same liquefiable samples under the same 

confining stress but different conduit diameters representing different values of permeabilities. The results 

indicate that the permeability affects the undrained behaviors of the liquefiable granular assembly 

significantly, especially the peak and residual strength values and the pore pressure generation rate. Some 

of the simulation results are given in the following: 
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 The mechanical undrained behaviors affected by the decreasing values of permeability are mainly 

manifested as: a higher peak strength value accompanied by a faster pore pressure generation rate 

upon initial shearing, a slower strain softening process accompanied by a reduced rate of increase 

in pore pressure in the medium strain range, and a higher residual strength accompanied by a lower 

maximum pore pressure if the applied permeability is low enough. These behaviors are due to the 

much lower pore pressure dissipation rate from the reduced permeability. If the permeability is low 

enough, strain hardening can be seen in the early stages of shearing accompanied by the tendency 

to dilation of the assembly which results from the restriction of the pore pressure dissipation among 

the pores due to the very low permeability.  Strain hardening is transformed into strain softening 

with continuing shearing due to the very slow pore pressure dissipation process but the resulting 

residual strength is still higher than samples with higher permeabilities. 

 Micromechanically, all the five tests exhibit a similar liquefaction pattern in terms of the overall 

contact variations. They all display the occurrence of vertical contact creation and horizontal 

contact disintegration in the initial shearing stage, which subsequently turns into contact 

disintegrations in both directions in the following strain softening stage. At the steady state, the 

contact creation and disintegration come into a balance indicating the steady state is achieved. The 

differences in the undrained micromechanical responses among the five tests with decreasing 

permeabilities are mainly the rate of horizontal contact loss during initial shearing and the rate and 

duration of contact loss in the intermediate strain range corresponding to strain softening. The initial 

contacts lost in the horizontal direction increase with a lower permeability due to a faster pore 

pressure generation and a reduced the pore pressure dissipation among the pores. While in the 

intermediate strain range, a lower coordination number, a higher number of floaters, and a higher 

contact normal anisotropy parameter are induced when the permeability is lower because the pore 

pressure dissipation takes longer time and the pore pressure has time to break more contacts in both 

directions.  

 In samples of high permeability, pore pressures do not vary significantly from one void to another. 

On the other hand, in samples of low permeability, the variation of pore pressure from void to void 

is much greater. Pore pressure in some voids is negative, resulting in high local strength. Areas of 

negative pore pressures effectively “strengthen” the sample and lead to higher macroscopic 

strength. 

 A very low permeability can induce the formation of non-uniform fluid flow paths and incomplete 

liquefaction upon shearing, which leads to a locally higher permeability and allows a higher amount 

of fluid to pass between pores. Thus, the non-uniform fluid paths help reduce the number of contacts 
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lost in both directions in the strain softening stage, and thereby lead to a higher residual strength at 

the steady state.   

 A higher permeability provides better connections of fluids between the pores, so that there is less 

initial loss of contact and less occurrences of liquefaction in the coarse grained soil. When the 

permeability is very low, the non-uniform fluid paths and incomplete liquefaction are triggered, 

which explains why soils with small grains are less liquefiable than those of medium grain sizes.   

 When the permeability is relatively high (in coarse sand range), the mechanical undrained 

behaviors of two granular assemblies with two different high permeabilities may be close to each 

other, however, their micromechanical behaviors can be very different.  

7.2.5 Comparison of the critical state line and the steady state line 

A comparison between the critical state line and the steady state line is carried out in this research. The 

critical state line and the steady state line that are frequently used in classical soil mechanics are employed 

to perform the comparison in the macroscopic scale. Both of them are expressed in terms of the relationship 

between the void ratio and the mean effective stress. Since the average coordination number is a parameter 

from micromechanics which not only indicates the denseness of the samples but also reflects particles’ 

structure and compactness, it is employed accompanied with the mean effective stress in this research to 

represent the critical state line and the steady state line and perform the comparison of the two lines in the 

microscopic scale. Based on the comparison of the critical state line and the steady state line using the 

relationships between the void ratio and the mean effective stress and also between the average coordination 

number and the mean effective stress, the following two main conclusions can be drawn: 

 The critical state and the steady state, both of which are the ultimate states of a granular media 

under shearing are almost consistent when described by the critical state line and the steady state 

line. Both void ratio and the average coordination number from the two states converge together 

with somewhat variations when plotted with respect to the mean effective stress. 

 Compared to the plots obtained by using the void ratio versus the mean effective stress, the plots 

of the average coordination number versus the mean effective stress show a greater consistency of 

the critical state line and the steady state line. This can be explained by the different definitions of 

the two variables. The former describes the overall volume ratio of total voids to total particles 

which depends on both the particles and the voids, whereas the latter describes the compactness of 

the particles which only depends on the particles themselves. Therefore, the average coordination 

number gives a better consistency since it comes purely from a consideration of the particles. In 

addition, unlike the average coordination number, the void ratio does not change throughout an 

undrained test due to the constraint of the fluid from flowing outside of the sample, so it is a 
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prescribed boundary condition that cannot vary according to the specific shearing condition. 

However, the average coordination number can change anytime with shearing and represents the 

stability of the system, therefore, it can indicate the shearing condition at the steady state more 

precisely. 

 There appears to be no distinction in values of induced asymptotic anisotropy in drained and 

undrained conditions, however, this topic requires further studies. 

7.3 Recommendations and future work 

Based on the study of the proposed further developed fluid-coupled DEM and the micromechanical study 

of the undrained behavior of the granular media, some recommendations for future study are put forward 

in the following. 

 Model improvement and computational efficiency 

The further developed fluid-coupled DEM model that currently used detects the contacts between 

neighbouring particles and computes the pore pressure for each pore, and then calculates the 

weighted average pore pressure as a representation of macroscopic pore pressure using each pore’s 

volume as a weight. Although the fluid flow scheme has been shown as very effective and the 

results from the undrained simulations are close to the physical data from the laboratory test, the 

computational requirement of this method on a large assembly is strenuous. Thus, in addition to a 

parallel algorithm that may be applied to help save computational time, other methods such as the 

one proposed by (Nakase et al., 1999), which considers square cells to compute the volume change, 

might be modified for use with the proposed further developed fluid-coupled DEM to save 

computing time.  

 Three dimensional model 

The proposed further developed fluid-coupled DEM model in this research has been shown as very 

effective in simulating the undrained behavior of a two-dimensional granular assembly. The fluid 

flow scheme should be equally effective in a three dimensional condition, just the flow network 

system is more complex. Therefore, the proposed model should be able to be extended to a three-

dimensional case to depict the micromechanical undrained behavior of the granular media in a more 

practical perspective.  

 Induced asymptotic in drained and undrained conditions 

The values of induced asymptotic in drained and undrained simulations obtained in this research 

do not show much difference. However, to verify that there is no distinction between them requires 

additional tests using different samples under different initial conditions. Particularly, samples 

prepared using different methods are necessary. This study will be conducted in the future work. 
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 The phenomenon of quasi-steady state 

The granular assembly samples adopted in chapter 4 to study the effect of initial void ratios onto 

the undrained behaviors are obtained by a particular floater removing scheme. The different initial 

void ratios of the samples are achieved by removing a certain amount of floaters each time to 

guarantee the stability and the isotropy of the assembly. The two samples that exhibited the 

phenomenon of strain softening were obtained by removing two and all the floaters from each pore 

respectively, while the two samples displayed the phenomenon of strain hardening were obtained 

by removing one and no floaters from each pore. Although the phenomenon of the quasi-steady 

state is captured in the simulations of a loose assembly with a very high permeability in chapter 5, 

it is known from classical soil mechanics, that under the same confining stress, the quasi-steady 

state is usually displayed in a soil sample whose relative density is between the relative densities 

that can trigger strain softening and strain hardening. Hence, it can be expected that a quasi-steady 

state can be caught by using the adopted granular assembly but removing a certain amount of 

floaters. Theoretically, the number of removed floaters should be between the removed floaters that 

induced the strain softening and the number that induced strain hardening. With addition of an 

undrained simulation for samples that display a quasi-steady state under shearing, a full picture of 

liquefaction potential classification in terms of the average coordination and the mean effective 

stress may be achieved. This study will be conducted in the future work. 

 Under cyclic loading 

As illustrated in chapter 2, to understand seismically induced liquefaction, two aspects are 

important: the onset condition and the post-seismic stability (Ishihara, 1993). The latter is 

controlled by the steady state strength, which has been shown to have a unique value no matter if 

it is from static or cyclic load (Baki et al., 2012; Castro, 1969; Dobry et al., 1985; Vaid and Chern, 

1985; Yang et al., 2009). The current study has shown the mechanism of the static liquefaction 

through the use of micromechanics descriptors. The former is governed by cyclic strength, which 

should be studied under cyclic loading conditions. Due to the success of applying the proposed 

further developed fluid-coupled DEM to the analysis of the static liquefaction, a similar fluid-

coupled DEM scheme may be applied to cyclic load conditions by alternating the boundary control 

between the biaxial compression and tension. Therefore, it should be feasible to examine the 

micromechanics characteristics of sand’s cyclic strength and describe the onset condition of the 

liquefaction using a fluid-coupled DEM but under cyclic load. 
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Appendix A  Drained Simulation Results 

 

Figure A.1 Stress-strain responses for Tests D6 to D9 

 

Figure A.2 Stress-strain responses for Tests D10 to D13 
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Figure A.3 Volumetric strain changes for Tests D6 to D9 

 

Figure A.4 Volumetric strain changes for Tests D10 to D13 
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Figure A.5 Stress paths for Tests D6 to D9 

 

Figure A.6 Stress paths for Tests D10 to D13 
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Figure A.7 Void ratio variations for Tests D6 to D9 

 

Figure A.8 Void ratio variations for Tests D10 to D13 
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Figure A.9 Average coordination number γ changes for Tests D6 to D9 

 

Figure A.10 Average coordination number γ changes for Tests D10 to D13 
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Figure A.11 Number of floaters nf variations for Tests D6 to D9 

 

Figure A.12 Number of floaters nf variations for Tests D10 to D13 
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Figure A.13 Contact normal anisotropy parameter an variations for Tests D6 to D9 

 

Figure A.14 Contact normal anisotropy parameter an variations for Tests D10 to D13 
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Figure A.15 Normal contact force anisotropy parameter af variations for Tests D6 to D9 

 

Figure A.16 Normal contact force anisotropy parameter af variations for Tests D10 to D13 
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Appendix B   Undrained Simulation Results 

 

Figure B.17 Stress-strain responses for Tests U1 and U2 

 

Figure B.2 Stress-strain responses for Tests U3 and U4 
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Figure B.3 Stress-strain responses for Tests U5 and U6 

 

Figure B.4 Stress-strain responses for Test U7 
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Figure B.5 Pore pressure variations for Tests U1 and U2 

 

Figure B.6 Pore pressure variations for Tests U3 and U4 
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Figure B.7 Pore pressure variations for Tests U5 and U6 

 

Figure B.8 Pore pressure variations for Test U7 
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Figure B.9 Stress paths for Tests U1 and U2 

 

Figure B.10 Stress paths for Tests U3 and U4 
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Figure B.11 Stress paths for Tests U5 and U6 

 

Figure B.12 Stress path for Test U7 
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Figure B.13 Average coordination number γ variations for Tests U1 and U2 

 

Figure B.14 Average coordination number γ variations for Tests U3 and U4 
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Figure B.15 Average coordination number γ variations for Tests U5 and U6 

 

Figure B.16 Average coordination number γ variations for Test U7 
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Figure B.17 Number of floaters nf variations for Tests U1 and U2 

 

Figure B.18 Number of floaters nf variations for Tests U3 and U4 
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Figure B.19 Number of floaters nf variations for Tests U5 and U6 

 

Figure B.20 Number of floaters nf variations for Test U7 
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Figure B.21 Contact normal anisotropy parameter an for Tests U1 and U2 

 

Figure B.22 Contact normal anisotropy parameter an for Tests U1 and U2 
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Figure B.23 Contact normal anisotropy parameter an for Tests U5 and U6 

 

Figure B.24 Contact normal anisotropy parameter an for Tests U7 and U8 
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Figure B.25 Normal contact force anisotropy parameter af for Tests U1 and U2 

 

Figure B.26 Normal contact force anisotropy parameter af for Tests U3 and U4 
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Figure B.27 Normal contact force anisotropy parameter af for Tests U5 and U6 

 

Figure B.28 Normal contact force anisotropy parameter af for Test U7 
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