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Abstract

This thesis addresses the pricing and hedging issues on the newly-developed financial
and insurance products, including simplified hedges for path-dependent options, variable
annuities tied with state-dependent fees, and defaultable reverse mortgage contracts.

In Chapter 1, we present a method to construct a simplified alternative derivative that
resembles a given highly path-dependent derivative. Path-dependent derivatives are typi-
cally difficult to hedge. Traditional dynamic delta hedging does not perform well because
of the difficulty to evaluate the Greeks and the high cost of constantly rebalancing. We
propose to price and hedge path-dependent derivatives by constructing simplified alter-
natives that preserve certain distributional properties of their terminal payoffs, and that
can be hedged by semi-static replication. The method is illustrated by a geometric Asian
option and by a lookback option in the Black-Scholes setting, for which explicit forms of
the simplified alternatives exist. An extension to a Heston stochastic volatility model is
discussed as well.

In Chapter 2, we model and study the benefits of charging state-dependent fees in
variable annuities tied to the market volatility. Variable annuities (VAs) and other long-
term equity-linked insurance products are typically difficult to hedge in incomplete markets.
A state-dependent fee structure tied to market volatility is proposed in these products to
contribute to the risk sharing mechanism between policyholders and insurers and also to
reduce the hedging difficulty. We provide criteria for the fair-fee determination in the
context of reducing the risk related to writing the VA contract. A method of optimal
static hedging as a benchmark compared to other strategies is proposed in the stochastic
volatility setting. We formulate our problem with guaranteed minimum accumulation
benefits (GMABs), but it is also applicable to other equity-linked insurance contracts.

In Chapter 3, we propose a pricing scheme based on default risk models for Home
Equity Conversion Mortgages (HECM). HECM Reverse mortgages are designed to allow
elder homeowners aged 62 or over to convert the equity in their homes to regular revenues
or a line of credit and to retain full ownership of their property for the whole life of the
loan. Unlike a traditional mortgage, reverse mortgage loans do not need to be paid off as
long as the borrowers remain in their home and pay due obligations such as home insurance
and property taxes. HECM are non-recourse reverse mortgage loans insured by the Federal
Housing Administration (FHA). HECM reverse mortgages confront a rising default risk in
the wake of 2008, jeopardising the financial soundness of FHA’s Mutual Mortgage Insurance
Fund. The fairness of the HECM insurance premium has therefore been challenged. In
this chapter, we initiate to price the reverse mortgage contract according to borrowers’
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individual credit and default risk. The proposed method achieves a closed-form valuation
with mortality risk, interest rate risk, housing price risk, and default risk. The impact on
fair HECM insurance premiums of these risks is then investigated. Our work demonstrates
that the proposed pricing solution and the corresponding newly-designed rating system
will provide HECM lenders a better payment arrangement for the risk management and
also support the effectiveness of recent policy changes in the HECM program.

The products described as above are designed in incomplete markets, which renders
perfect hedging of these contracts impossible. The goal of Chapter 4 is to develop optimal
static hedging in the context of minimizing the shortfall risk either for path-dependent op-
tions, hedging liabilities with insufficient budget, or hedging liabilities under the stochastic
volatility environment. The shortfall risk is defined as the expectation of the potential loss
from the imperfect hedging strategy, weighted by some loss function reflecting the hedger’s
risk preferences. In Chapter 4, we take examples on the Asian option and the GMAB con-
tract in Chapter 2 and further develop the optimal static hedging for our products under
the Heston-type stochastic volatility environment.
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Chapter 1

Simplified Hedge for Path-dependent
Derivatives

This chapter is based on the published manuscript in the International Journal of Theoret-
ical and Applied Finance by Bernard and Tang (2016).

Path-dependent derivatives have payoffs that depend on past and current values of the
underlying variables. Pricing highly path-dependent options usually requires numerical
methods and intensive computations. For instance, Forsyth, Vetzal, and Zvan (1999) use
PDE techniques to price lookback options, Petrella and Kou (2004) use Laplace transforms
to price barrier and lookback options, Fang and Oosterlee (2011) and Kwok, Leung, and
Wong (2012) use Fourier transforms to price exotic derivatives. Approximation of discretely
monitored path-dependent options by continuously monitored path-dependent options can
lead to accurate approximations (Broadie, Glasserman, and Kou (1997), Fuh, Luo, and Yen
(2013)). Monte Carlo methods are always a possible alternative: they have the advantage to
incorporate flexible and general modeling assumptions but they are typically slow. Under
the assumption of a Black-Scholes market, prices of certain path-dependent derivatives
are known explicitly (e.g., geometric Asian options by Kemna and Vorst (1990), lookback
options by Conze and Viswanathan (1991)).

In this chapter, we present a method to construct a simplified alternative derivative that
resembles a given highly path-dependent derivative. This construction preserves certain
distributional properties of the original path-dependent payoff but it is simpler in that
it only depends on the underlying asset at a finite number of dates. As a consequence,
it can then be easily hedged by semi-static replication. Moreover, since the cost of the
hedging program typically increases with the number of transactions, hedging the simplified
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alternative instead of the original path-dependent derivative will lower the hedging cost
because it requires only a limited number of rebalancing dates.

Our work makes use of the concept of cost-efficiency of Dybvig (1988a,b), further de-
veloped by Bernard, Boyle, and Vanduffel (2014). Cost-efficiency consists of minimiz-
ing the cost of achieving a desired distribution at some given maturity time. Bernard,
Moraux, Rüschendorf, and Vanduffel (2015) extend this study to include state-dependent
constraints. One application of this work is to “simplify” highly path-dependent payoffs by
preserving distributional properties. For example, a geometric Asian option with maturity
T can be correlated at more than 97 % with a payoff involving only the underlying value at
time T/2 and at time T . This payoff has the same distribution at time T as the geometric
Asian option and the same joint distribution with ST/2 as the geometric Asian option. This
chapter builds on this idea and shows how it is possible to add additional constraints to
construct path-dependent derivatives that are even closer to the path-dependent option
under study. For example, we show how to construct a derivative depending on the un-
derlying process at three dates such that it has the same distribution at maturity as the
geometric Asian option, and also the same joint distribution with the underlying price at
T/3 and 2T/3 as the geometric Asian option. It is clear that there is a trade-off between
getting the alternative payoff as close as possible to the original path-dependent payoff and
keeping it as simple as possible. We then propose to hedge path-dependent derivatives by
hedging their simplified alternatives with semi-static hedging techniques.

The semi-static approach offers several advantages over dynamic hedging. Traditional
dynamic delta hedging does not perform well in particular because of the difficulty to
evaluate Greeks and the high cost of constantly rebalancing. When volatility is high,
dynamic hedging is expensive. If there are random jumps in the underlying price, then
dynamic hedges may result in large errors. By contrast, semi-static hedging is more robust
to model risk: it requires fewer portfolio adjustments and random jumps in the underlying
price do not significantly affect its performance. A significant literature on static hedging
focuses on barrier options. Derman, Ergener, and Kani (1995) introduce a static replicating
approach to hedge barrier options in a binomial tree model using standard options with
varying maturities. Carr and Bowie (1994), Carr and Chou (1997), and Carr, Ellis, and
Gupta (1998) develop static hedges for barrier options using standard call and put options.

The remainder of this chapter is organized as follows. Section 1.1 describes the frame-
work and the main assumptions of the model for the underlying stock price. Section 1.2
illustrates why only hedging the distribution of the terminal payoff of a path-dependent
option may result in significant hedging errors. In Section 1.3, we formulate the theoretical
results that we then use to improve the approximation by using additional information.
Section 1.4 illustrates the method with geometric Asian options and lookback options in
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the Black-Scholes model. We show how to apply several criteria, based on correlation, vari-
ance and Value-at-Risk to select the best simplified alternative. We compare the hedging
performance of the selected alternative with the cheapest payoff with the same distribution.
The results in Sections 1.2-1.4 are under the Black-Scholes framework. Section 1.5 proposes
two extensions. First, we generalize the construction respectively to obtain explicit forms
and approximations of multivariate derivatives in the cases of geometric Asian options and
any other path-dependent derivatives that are closer to the original path-dependent payoff
than the alternative bivariate derivatives derived in Section 1.4. Second, we discuss how
to deal with the example of the Heston stochastic volatility model. Conclusions are given
in Section 1.6.

1.1 Market Model

1.1.1 Black-Scholes Model

For ease of exposition, we mostly use the Black-Scholes model to illustrate the methodology.
A class of Lévy markets and the Heston stochastic volatility model will be presented in
Section 1.1.4. In the Black-Scholes market, the price process St follows

dSt
St

= µdt+ σdWt,

where Wt is a standard Brownian motion under the physical measure P, µ is the drift and

σ is the volatility. The solution for the stock price is ST = S0 exp
((
µ− σ2

2

)
T + σWT

)
,

with cdf FST at time T given by

FST (x) = P(ST ≤ x) = Φ

 ln
(
x
S0

)
− (µ− σ2

2
)T

σ
√
T

 , (1.1)

where Φ is the cdf of a standard normal random variable. Let r denote the continuously
compounded risk-free interest rate. The Black-Scholes market is arbitrage-free and com-
plete and the (unique) state-price density at time t (ensuring that (ξtSt)t is a martingale)

can be computed explicitly as ξt = e−rte−
1
2(µ−rσ )

2
te−(µ−rσ )Wt . Consequently, ξT can be writ-
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ten as an explicit function of the stock price ST as follows

ξT = α

(
ST
S0

)− θ
σ

, (1.2)

where α = exp
(
θ
σ

(
µ− σ2

2

)
T −

(
r + θ2

2

)
T
)

and θ = µ−r
σ

.

Definition 1.1.1 recalls the expression of the price of a European derivative with matu-
rity T using the physical and risk-neutral measures respectively.

Definition 1.1.1. The prices at time 0 and at time t of a payoff XT paid at T are computed
as

c0(XT ) := EP[ξTXT ] = EQ[e−rTXT ]

and

ct(XT ) := EP

[
ξT
ξt
XT |Ft

]
= EQ[e−r(T−t)XT |Ft]

respectively, where Q denotes the risk-neutral probability, and ξt = e−rt
(
dQ
dP

)
t
.

1.1.2 Cost-efficiency Approach

We first construct simplified alternatives to a given highly path-dependent payoff using
the concept of cost-efficiency. Formally, the “cost-efficient” payoff is the cheapest strategy
with distribution F : it is the solution to the following optimization problem

min
{XT |XT∼F}

c0(XT ) (1.3)

where {XT |XT ∼ F} denotes the set of payoffs XT that have the distribution F and c0(XT )
is the initial budget needed at 0 to pay XT at T . Bernard, Boyle, and Vanduffel (2014)
prove that the optimization (1.3) has a unique (a.s.) solution F−1(1 − FξT (ξT )), when
the initial price is computed as c0(XT ) = EP[ξTXT ] and the cdf of ξT , FξT , is distributed.
Intuitively, the outcomes of the payoff with the distribution F are rearranged in reverse
order of the values taken by ξT (which was first observed by Dybvig (1988a,b)). The cost-
efficiency problem (1.3) is then extended by Bernard, Moraux, Rüschendorf, and Vanduffel
(2015) to solve the cheapest strategy that has a given joint distribution with an additional
market variable AT :

min
(XT ,AT )∼G

c0 (XT ) .
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We use the above idea to construct simplified hedges for path-dependent derivatives.
Specifically, to hedge a highly path-dependent option with payoff XT paid at maturity
T (e.g., that depends on the entire path of the underlying), we consider an alternative
derivative that depends for example on the underlying asset prices at a finite number of
dates t0 = 0 < t1 < t2 < .. < tn = T and that is “close” to the original payoff. Let
V (t1, t2, ..., tn) denote the payoff of the alternative derivative such that

XT ≈ V (St1 , St2 , ..., Stn) (1.4)

where the approximation is done through using criteria based on distributional proper-
ties of XT . Typically, we choose a benchmark AT (which can be a multidimensional
vector) and (1.4) means that (V (St1 , St2 , ..., Stn), AT ) has the same joint distribution as
(XT , AT ). Loosely speaking, we write that V (St1 , St2 , ..., Stn) is an approximation for the
path-dependent payoff XT , also called a “simplified hedge”.

1.1.3 Semi-static Hedge

To hedge a path-dependent payoff XT , we derive approximations as given in (1.4) and hedge
V (St1 , St2 , ..., Stn) instead. To do so, we use semi-static hedging techniques by rebalancing
n times the portfolio between 0 (first rebalancing date) and the maturity T . The semi-static
replication to hedge the simplified derivative V (St1 , St2 , ..., Stn) consists of replicating using
European path-independent claims. This method builds on the static hedging strategy
introduced by Breeden and Litzenberger (1978) and extended by Carr and Wu (2013) who
show how to hedge a given payoff h(ST ) where h is twice differentiable with an explicit
portfolio consisting of bonds, stocks, and vanilla call and put options. At time u > 0, the
payoff h(ST ) is replicated by a position h(Su)−h′(Su)Su in the bank account, h′(Su) shares
and h′′(K)dK out-of-the-money put and call options with strike K, for all K ≥ 0, with
maturity T − u. Specifically, at time T , the payoff h(ST ) is decomposed as follows

h (ST ) = [h(Su)− h′(Su)Su] + h′(Su)ST

+

∫ Su

0

h′′(K)(K − ST )+dK +

∫ ∞
Su

h′′(K)(ST −K)+dK. (1.5)

The value at time u of this payoff can then be computed as

Cu [h(ST )] = [h(Su)− h′(Su)Su] e−r(T−u) + h′(Su)Su

+

∫ Su

0

h′′(K)Pu(K)dK +

∫ ∞
Su

h′′(K)Cu(K)dK. (1.6)
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where Pu(K) and Cu(K) denote respectively the prices at time u of a standard European
put and of a call.

The semi-static hedging portfolio for a multivariate derivative V (St1 , St2 , ..., Stn) can be
constructed as follows. For ease of exposition, we first illustrate this construction with a
bivariate derivative with payoff XT = f (St, ST ) for 0 < t < T . The first step is to find its
value at time t, i.e. ct(XT ) = EQ

[
e−r(T−t)f (St, ST ) |Ft

]
. It can be expressed as a function

g(St) of St. If g is twice differentiable, we can apply the above method using puts and
calls with maturity t. Then, formula (1.5) can be applied directly with h = g and u = 0,
T = t. At time t, the static hedge matches perfectly g(St), which is the exact budget
needed at time t to buy the portfolio of bonds, stocks and vanilla calls and puts that will
hedge the final payoff XT = f (St, ST ) in which St is now known. For this second hedge,
we use options with maturity T − t bought at time t at all strikes and apply a second time
the static hedge recalled in (1.5) and h(·) = f (St, ·), St is known, and u = t. In practice,
only a limited number of strikes are available in the market and thus some hedging errors
remain. However, we can expect that transaction costs will be lower than in a delta hedging
strategy as the portfolio is only rebalanced once (at time t) before maturity, and that this
hedge is more robust to model risk than a delta hedge.

It is then straightforward to extend the semi-static hedging strategy to hedge multivari-
ate derivatives. For example, to hedge a payoff of the form V (St1 , St2 , ..., Stn), we choose a
portfolio at time 0 and then rebalance it n−1 times at time ti for i = 1, 2, ..., n−1. At time
ti, we compute EQ[e−r(T−ti+1)V (St1 , St2 , ..., Stn)|Fti+1

], which is a function of St1 , St2 , ..., Sti+1

in which all values are known up to Sti are known at time ti. It is thus a payoff of one
random component Sti+1

and the expression (1.5) can then be applied at time u = ti,
for a maturity T = ti+1. At each date, the proposed hedge matches exactly the cost
needed to pursue the strategy, so that in theory it finally hedges the final maturity pay-
off V (St1 , St2 , ..., Stn) perfectly. Remaining hedging errors come from the fact that only a
limited number of strikes is available in practice.

1.1.4 More General Markets

Most of the derivations in this chapter are given in the Black-Scholes setting. However, it
is possible to apply the methodology to more realistic market models.

One extension is to construct and hedge simplified alternatives in exponential Lévy
markets by applying the methodology of Von Hammerstein, Lütkebohmert, Rüschendorf,
and Wolf (2014) and Rüschendorf and Wolf (2015). Specifically, they provide various theo-
retical and empirical grounds to build the state-price density in general Lévy markets using

6



the Esscher martingale measure, in the case of price processes driven by multivariate NIG-
and VG-processes. Rüschendorf and Wolf (2015) provide an expression for ξT extending
(1.2) and a powerful estimation technique.

We now explain how to extend the Black-Scholes model to use the Heston stochastic
volatility model for which an explicit expression of ξT is also available. In the Heston
model, under the real-world probability measure, the price process St follows the system
of SDEs {

dSt = (r + µSvt)Stdt+
√
vtStdB

S
t , S0 > 0,

dvt = κ (θ − vt) dt+ σ
√
vtdB

v
t , v0 > 0,

(1.7)

where µS governs the equity premium, BS
t and Bv

t are two correlated standard Brownian
motions with correlation ρ such that E

[
dBS

t dB
v
t

]
= ρdt, vt is the variance or squared

volatility, κ > 0 determines the speed of mean reversion for the variance process, θ is
the long-run variance level, and σ is the volatility of volatility. Then, assuming that the
state-price density takes a specific exponential form, Christoffersen, Heston, and Jacobs
(2013) show that the unique state-price density ξT reconciling the physical and risk neutral
measures is given by

ξT = β(T )

(
ST
S0

)ψ
, (1.8)

where

β(T ) = exp

(
δT + η

∫ T

0

vsds+ ζ (vT − v0)

)
,

δ = − (1 + ψ) r − ζκθ,

η = −ψµS +
1

2
ψ + ζκ− 1

2

(
ψ2 + 2ψζσρ+ ψ2σ2

)
,

ψ =
−µS + λρ

σ

1− ρ2
,

ζ =
µSσρ− λ
σ2(1− ρ2)

,

and λ represents the price of volatility risk, which might be determined by the dynamics of
a volatility-dependent asset. These parameters are found by imposing the condition that
the product of the price of any traded asset and the state-price density is a martingale
under the physical probability measure.

Note that the expression of the state-price density ξT in (1.8) extends naturally the one
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in Black-Scholes model in (1.2). However, in the Heston model, ξT does not only depend
on the price process ST but depends also on the variance process (vt)t for t ∈ [0, T ]. We
will slightly adapt the results of Bernard, Moraux, Rüschendorf, and Vanduffel (2015) to
account for this generalization.1

1.2 Cheapest Hedge of a Path-independent Deriva-

tive using Its Distribution Only

In this section, we propose to hedge a path-dependent payoff by the cheapest payoff that
has the same terminal distribution under the physical probability distribution P. We
illustrate this idea with the study of a geometric Asian option. This example is useful to
highlight the limitations of hedging using the distribution of the payoff only. However, it
is important to note that this observation related to the poor performance of the hedge is
also valid for most path-dependent derivatives. In the remainder of the chapter, we suggest
to use additional constraints to ensure that the hedge is effective.

1.2.1 Geometric Asian Call Option and Cheapest Alternative

The payoff of a continuously monitored geometric average GT and a geometric Asian call
option YT are given by

GT = e
1
T

∫ T
0 ln(St)dt, YT = (GT −K)+ ,

where K denotes the strike price. As recalled in Section 1.1.2 the cheapest payoff with the
same distribution F as GT is given explicitly as F−1(1 − FξT (ξT )) where FξT denotes the
cdf of the state price density ξT . In the Black-Scholes setting, when µ > r, this expression
can be simplified to F−1(FST (ST )), which can be explicitly computed for a geometric Asian
option. In this case, it is a power call option,

Y ∗T = d

(
S

1/
√

3
T − K

d

)+

, (1.9)

1They assume that ξt is a decreasing function of St for the ease of exposition but their results hold
more generally.
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where d = S
1− 1√

3

0 e

(
1
2
− 1√

3

)(
µ−σ

2

2

)
T

(proof in the Appendix of Bernard, Boyle, and Vanduffel
(2014)). There is a simple analytical solution for the initial price of the payoff Y ?

T

C0 = S0e
( 1√

3
−1)rT+( 1

2
− 1√

3
)µT−σ

2T
12 Φ(h1)−Ke−rTΦ(h2), (1.10)

where h1 =
ln(S0K )+( 1

2
− 1√

3
)µT+ r√

3
T+ 1

12
σ2T

σ
√

T
3

and h2 = h1 − σ
√

T
3
. Note that letting K tend to

zero provides the cost-efficient payoff Y ∗T that has the same distribution as the geometric
average GT . We denote it by

G∗T = dS
1/
√

3
T . (1.11)

1.2.2 Hedging Performance

Assume that to hedge the original payoff GT , respectively the Asian call payoff YT , we
replicate G∗T (respectively Y ∗T ) instead. The hedging error is then related to the distance
between the original payoff for the geometric average GT and its cost-efficient counterpart
G?
T , respectively between the Asian call YT = (GT −K)+ and Y ?

T . To do so, we use Monte
Carlo simulations, and simulate 50,000 times the geometric average GT (as a log-normal
variable) with the following parameters K=S0=100, r=0.05, µ=0.1, σ=0.2 and T=1.

By construction, the cdf of GT (respectively of YT ) is equal to the cdf of G?
T (respectively

of Y ?
T ), however, these two payoffs are not equal as they do not have the same cashflows.

Let us denote by HG and HY the payoffs of the respective hedging strategies when you
sell GT (resp. YT ) and you replicate it by G?

T (resp. Y ?
T ). To investigate the performance

of this hedge, we thus study the difference between the desired payoff GT (or YT ) and the
cost-efficient one. Given that the prices c?G and c?Y of G?

T and of Y ?
T are strictly smaller than

the respective prices cG and cY of GT and YT , we need to account for this difference. We
assume that the extra premium received at time 0 is invested in a bank account so that the
hedge portfolios are respectively equal to G?

T + (cG− c?G)erT for GT and Y ?
T + (cY − c?Y )erT

for YT . The hedging errors can then be defined by

HG(T ) := G∗T −GT + (cG − c∗G)erT , HY (T ) := Y ∗T − YT + (cY − c∗Y )erT . (1.12)

We display HG(T ) in the left panel of Figure 1.1 and HY (T ) in the right panel.

From the scatterplots in Figure 1.1, it is clear that the hedging performance is rather
poor and that hedging the distribution is not enough. Positive values correspond to gains
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Figure 1.1: Scatterplots of HG(T ) and HY (T ) as a function of GT with K = S0 = 100, r =
0.05, µ = 0.1, σ = 0.2 and T = 1.

and negative values to losses. The hedging errors of the payoff GT , denoted by HG(T ),
range roughly from −20 to 20 when GT takes values between 80 and 150 (the corresponding
relative errors from −16.7% to 18.2%). Similarly, HY (T ), the hedging errors of the payoff
YT , range roughly from−20 to 20 when YT takes values between 0 and 50 (the corresponding
relative errors from −80% to +∞). These errors are very significant and are due to the
fact that cashflows do not match in general, only the distributions of the payoffs between
the original payoffs (GT or YT ) and their cost-efficient counterparts (G∗T or Y ∗T ) are similar.
In particular, the correlation between the target payoff to hedge and the cost-efficient
counterpart is not enough. In the next section, we add an additional constraint to improve
the matching between the original payoff and the simplified alternative. To do so, we
impose for example that the hedge should behave similarly as the original payoff with
respect to some other benchmarks in the market.

1.3 Improved Hedge using Additional Distributional

Information

We propose to improve the hedge discussed in the previous section by including more
information apart from the distribution of the final payoff. Specifically, we assume that we
construct an alternative derivative that has the same joint distribution with a well-chosen
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benchmark in the market as the target path-dependent payoff to hedge. As we will see
next, in the subsequent sections, this technique allows to improve the hedging performance
significantly.

The improved hedge can be constructed by taking the state-price density ξT as bench-
mark as stated hereafter in Theorem 2 and Theorem 4. Equivalently, the benchmark can
also be the terminal underlying price ST when the state-price density ξT is decreasing in
ST . The state-price density plays an important role as it reflects the market: it can be
interpreted as the inverse of the growth optimal portfolio (Platen (2006)). In what fol-
lows, we first choose a benchmark that is either the state-price density ξT at maturity T
or the stock price at maturity ST . We then explain how to extend it to the case of a
general benchmark AT that has a joint density with the state-price density ξT , and could
be multidimensional (a reference vector AT of market variables).

1.3.1 Using Information on the Conditional Distribution of ST
or ξT

To construct the hedge, we apply the following theorem from Bernard, Moraux, Rüschendorf,
and Vanduffel (2015).

Theorem 1 (Payoffs with a given joint distribution with ST and price c). Under the
assumptions that (St, ST ) has a joint density with respect to the Lebesgue measure, and
ξT = g(ST ) where g is a decreasing deterministic function, consider a payoff XT with price
c having joint distribution G with ST . Then, for any 0 < t < T ,

f(St, ST ) := F−1
XT |ST (FSt|ST (St)). (1.13)

has the same price c and the same joint distribution G with ST .

Given that the cost of a strategy is given by the expected value of the product of the
payoff with the state-price density ξT , that the joint cdf between ST and XT is the same
as the joint cdf between ST and f(St, ST ), and that ξT = g(ST ), it follows that

c0(XT ) = E [g(ST )XT ] = E [g(ST )f(St, ST )] = c0(f(St, ST )). (1.14)

The assumptions of Theorem 1 are verified for instance in the Black-Scholes market
model when µ > r. We then propose to extend it to more general state-price densities to
be able to deal, for example, with the Heston stochastic volatility model. In the case when
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the state price density is not decreasing in the underlying stock price, we can modify the
above theorem as follows.

Theorem 2 (Payoffs with a given joint distribution with ξT and price c). Let XT be a
payoff with price c having joint distribution G with ξT in (1.8). Then, for any 0 < t < T ,

f(ξt, ξT ) := F−1
XT |ξT (Fξt|ξT (ξt)). (1.15)

has the same price c and the same joint distribution G with ξT .

Two payoffs that have the same joint distribution with ξT have the same price given
that E[ξTXT ] for a payoff XT only depends on the joint distribution of ξT and XT : when
(ξT , f(ξt, ξT )) ∼ (ξT , XT ) ∼ G, c = c0 (f (ξt, ξT )) = E [ξTf (ξt, ξT )] = E [ξTXT ] = c0 (XT ).
The proof of Theorem 2 is similar to the proof of Theorem 1 (and is thus omitted: it can
be found in Bernard, Moraux, Rüschendorf, and Vanduffel (2015)).

1.3.2 Using Information on the Conditional Distribution with a
General Benchmark Vector AT

We extend the result to construct the cheapest bivariate derivative with the right joint
distribution with a vector AT of market indicators instead of a single market variable.

Theorem 3. Under the same assumptions for the state-price density as in Theorem 1, let
AT be a d-multidimensional vector and assume that (ST , AT ) has joint density with respect
to the Lebesgue measure. Let G be a (d+ 1)-variate cumulative distribution function. The
following optimization problem

min
(XT ,AT )∼G

c0 (XT ) (1.16)

has an almost surely unique solution X∗T which is of the form f(ST , AT ), almost surely
increasing in ST conditionally on AT , and given by

X∗T := F−1
XT |AT (FST |AT (ST )). (1.17)

Theorem 3 is proved in Bernard, Moraux, Rüschendorf, and Vanduffel (2015) in the
case when AT is a one-dimensional benchmark but the proof is identical when AT is a
vector and thus omitted. In the case of the Heston model for instance, the state-price
density is not decreasing in ST and thus the theorem needs to be modified to account for
this generalization. In this case, the above theorem can be formulated using the state-price
density as follows.
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Theorem 4 (Cost-efficiency of the simplified alternatives). Let AT be a d-dimensional
vector such that (ξT , AT ) has joint density with respect to the Lebesgue measure. Let G
be a d+ 1 variate distribution function. The following optimization problem

min
(XT ,AT )∼G

c0 (XT ) (1.18)

has an almost surely unique solution X∗T which is of the form f(ξT , AT ) almost surely
decreasing in ξT conditionally on the benchmark AT and given by

X∗T := F−1
XT |AT (1− FξT |AT (ξT )). (1.19)

The proof follows the characterization of cost-efficiency by Bernard, Boyle, and Vanduf-
fel (2014). X∗T solves (1.18), i.e. it is the cheapest alternative that satisfies the constraint
that the joint distribution with the benchmark (XT , AT ) ∼ G, because X∗T and ξT are
antimonotonic conditionally on AT .

Section 1.3 has given the theoretical results that are needed to improve the hedging
of path-dependent derivatives. The next section provides examples to illustrate their use
in the Black Scholes setting. We provide several extensions in Section 1.5 including an
example in the Heston stochastic volatility model.

1.4 Examples for the Construction of a Simplified Hedge

as a Bivariate Derivative in the Black-Scholes Set-

ting

In this section, we develop two examples in the Black-Scholes setting. We first illustrate the
approach using a geometric Asian option, which we study in full detail. We then develop
an additional example using the lookback option. In Section 1.5.1, we will explain how to
deal with any path-dependent derivative in the Black-Scholes market model.
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1.4.1 Example of Hedging the Geometric Asian Option with a
Bivariate Derivative that Has the Right Joint Distribution
with ST

In the Black Scholes setting, ξT is a decreasing function of ST . We can thus apply Theorem
1. By applying Theorem 1 to the payoff GT in the Black-Scholes model, we construct
RT (t) = f(St, ST ) such that

(RT (t), ST ) ∼ (GT , ST ) , (1.20)

and the initial cost of GT is equal to the bivariate derivative RT (t). We can compute RT (t)
by applying (1.13) in Theorem 1 and we find that

RT (t) = S
1
2
− 1

2
√
3

√
T−t
t

0 S
T
t

1
2
√
3

√
t

T−t
t S

1
2
− 1

2
√
3

√
t

T−t
T , (1.21)

where t is freely chosen in (0, T ). Details on how (1.13) becomes (1.21) can be found
in Bernard, Moraux, Rüschendorf, and Vanduffel (2015). Note that there is no unique-
ness. For example, 1 − FSt|ST (St) is also independent of ST , we can thus also consider
HT (t) := F−1

XT |ST (1 − FSt|ST (St)) as a suitable bivariate derivative (0 < t < T ) satisfy-

ing the constraint about the joint distribution as in (1.20). In this case, one obtains

HT (t) = S
1
2

+ 1
2
√
3

√
T−t
t

0 S
−T
t

1
2
√

3

√
t

T−t
t S

1
2

+ 1
2
√
3

√
t

T−t
T .

By definition, this bivariate derivative preserves the dependence between GT and ST .
Compared to the original contract, however, it is weakly path-dependent as it only depends
on St and ST and not on the entire path of the underlying S. Consequently, both the call
option written on RT (t) and the call option written on GT have the same joint distribution
with ST . More formally, one has(

(RT (t)−K)+, ST
)
∼
(
(GT −K)+ , ST

)
. (1.22)

(RT (t)−K)+ is therefore a bivariate alternative equivalent to the fixed strike (continuously
monitored) geometric Asian call.

To implement the semi-static hedge, we will need to know the price of this call option
with payoff (RT (t)−K)+ at any time. It can be priced explicitly at time 0. Indeed, the
equality of joint distributions exposed in (1.22) implies that the call option written on
RT (t) has the same price as the original fixed strike (continuously monitored) geometric
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Asian call YT . The price at time 0 is therefore

c0((GT −K)+) = c0((RT (t)−K)+) = S0e
− 1

2

(
r+σ2

6

)
T

Φ(d̃1)−Ke−rTΦ(d̃2), (1.23)

where d̃1 =
ln(S0/K)+ 1

2

(
r+σ2

6

)
T

σ
√
T/3

and d̃2 = d̃1−σ
√
T/3 (see Kemna and Vorst (1990)). Again,

letting K tend to zero provides the price of the alternative payoff corresponding to the
geometric average GT .

The pricing formula in (1.23) works for all choices of t in the payoff RT (t) to be paid
at time T . In addition, given the log-normal property of RT (t), it is possible to compute
explicitly the no-arbitrage price of RT (t) at any time u for a given time t. This price will
be useful to implement the semi-static hedge.

Proposition 1. The price of (RT (t)−K)+ conditional on Fu at any time u, t ∈ [0, T ],
can be computed explicitly

cu
(
(RT (t)−K)+) =


e−r(T−u)

[
e

(
mR1

+
vR1
2

)
Φ
(
mR1

+vR1
−lnK

√
vR1

)
−KΦ

(
mR1

−lnK
√
vR1

)]
, u ≤ t,

e−r(T−u)

[
e

(
mR2

+
vR2
2

)
Φ
(
mR2

+vR2
−lnK

√
vR2

)
−KΦ

(
mR2

−lnK
√
vR2

)]
, u ≥ t,

(1.24)
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where

mR1 =

(
1

2
− 1

2
√

3

√
T − t
t

)
lnS0 +

(
r − σ2

2

)
T

2
+

(
1

2
+

1

2
√

3

√
T − t
t

)[
lnSu −

(
r − σ2

2

)
u

]
,

vR1 = σ2

(1

2
+

1

2
√

3

√
T − t
t

)2

(t− u) +

(
1

2
− 1

2
√

3

√
t

T − t

)2

(T − t)

 ,
mR2 =

lnS0

2
− lnS0

2
√

3

√
T − t
t

+
1

2
√

3

T

t

√
t

T − t
lnSt

+

(
1

2
− 1

2
√

3

√
t

T − t

)[
lnSu +

(
r − σ2

2

)
(T − u)

]
,

vR2 =

(
1

2
− 1

2
√

3

√
t

T − t

)2

σ2(T − u).

Taking u = 0, the price in Proposition 1 is exactly equal to the initial price in (1.23)
which is consistent with the property (1.14). To prove Proposition 1, apply Lemma 6

(given in Appendix A) with a = 1
2
− 1

2
√

3

√
T−t
t
, b = T

t
1

2
√

3

√
t

T−t and c = 1
2
− 1

2
√

3

√
t

T−t .

Choosing among RT (t) by correlation. The construction in Theorem 1 depends on
t. Thus there is an infinite number of bivariate derivatives satisfying the constraint that
the joint distribution with ST is preserved. Maximizing the correlation or equivalently
minimizing the variance2 of the difference between ln (RT (t)) and ln (GT ) is nevertheless
a possible way to select the intermediary time t. The covariance between ln(RT (t)) and
ln(GT ) is given by

cov (ln (RT (t)) , ln (GT )) =
σ2

2

(
T

2
+

√
t
√
T − t

2
√

3

)
.

and, by construction of RT (t), standard deviations of ln (RT (t)) and ln (GT ) are both

equal to σ
√

T
3
. So maximizing the correlation coefficient is equivalent to maximizing the

2 The expansion of var (lnGT − lnRT (t)) = σ2
lnGT (t) + σ2

lnRT (t) − 2ρσlnGT (t)σlnRT (t). We can see that

the following equivalence holds: max
t
ρ (lnRT (t), lnGT )⇔ min

t
var (lnGT − lnRT (t)).
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covariance and thus maximizing f(t) = (T − t) t. This is obtained at t∗ = T
2

and the
maximal correlation ρmax between ln(RT (t)) and ln(GT ) is

ρmax =
3

4
+

√
3
√

(T − t∗) t∗
4T

=
3

4
+

√
3

8
≈ 0.9665, (1.25)

reflecting that the newly designed bivariate derivative is highly correlated to the geometric
average, while being considerably simpler.

Note that both the maximum correlation and the optimum RT (T
2
) are robust to changes

in market parameters, given that the derivations do not involve the volatility parameter
σ, the interest rate r or the instantaneous expected return µ.

Remark. Minimizing the value-at-risk (VaR) under P is another possible way to select
the value for t. Given a confidence level α ∈ (0, 1) we define the loss function as L :=
lnGT − lnRT (t), then V aRα(L) is the level α-quantile, i.e. V aRα(L) = inf{l ∈ R : P(L >
l) ≤ 1 − α} = inf{l ∈ R : FL(l) ≥ α}. We evaluate V aRα(L) at different chosen times t
and find out the optimal RT (t) that minimizes the VaR of the loss function L:

min
t
V aRα [lnGT − lnRT (t)] . (1.26)

Note that (lnGT , lnRT (t)) follows a bivariate normal so that L := lnGT − lnRT (t) also
follows a normal distribution with µL = 0 and variance σ2

L. The expression of V aRα(L)
can be simplified as

V aRα(L) = µL + σLΦ−1(α) = σLΦ−1(α). (1.27)

From equation (1.27), minimizing V aRα(L) is equivalent to minimizing σ2
L, which is also

equivalent to maximizing the correlation coefficient ρ (see Footnote 2). From (1.25), we
take ρ∗max = 0.9665 when t = 0.5T to compute minσL = 0.02989 and thus we obtain
minV aRα(L) = 0.0695 when α = 99%. In more general market settings, or for more
general path-dependent derivatives, minimizing VaR will generally not be the same as
maximizing correlation.

We now hedge the geometric average of the stock price GT and a call on this average
YT using the above constructions RT (t∗) and (RT (t∗) − K)+. We compute the hedging
errors as HG and HY in (1.12):

LG(T ) := Rg
T −GT , LY (T ) := Ry

T − YT , (1.28)

where Rg
T := RT (T

2
) and Ry

T := (RT (T
2
)−K)+ (where the time t∗ has been set to the optimal

value T
2
). Note that the initial costs do not matter in the formulas as the alternative payoff

17



has the same cost as the original path-dependent derivative. The payoffs of the alternative
derivatives Rg

T and Ry
T are now “closer” to the original payoffs GT and YT , and thus the

performance of the hedge is improved.
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Figure 1.2: Empirical cdfs of LG(T ) (on the left panel) and of LY (T ) (on the right panel)
on top of the cdfs of HG(T ) and HY (T ).

Figure 1.2 illustrates the fact that the hedging performance when hedging with the
bivariate derivative Rg

T (resp. Ry
T ) is greatly improved compared to the use of the cost-

efficient payoff G∗T (resp. Y ∗T ). The empirical cdfs in Figure 1.2 are now steeper and the
chance of the difference approaching zero becomes larger in both cases. Note that a perfect
hedge would consist of a payoff for the difference equal to 0 almost surely and thus a cdf
equal to F (x) = 0 for all x < 0 and 1 for all x ≥ 0.

1.4.2 Example of hedging the geometric Asian option with a bi-
variate derivative that has the right joint distribution with
St for t ∈ (0, T )

Given the benchmark AT = St, we apply Theorem 3 to the payoff GT = e
1
T

∫ T
0 ln(St)dt in the

Black-Scholes setting and find a payoff MT (t) := f(ST , St) such that

(MT (t), St) ∼ (GT , St) . (1.29)

We find the following explicit expression of MT (t) by applying Theorem 3,
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MT (t) = a · Sbt · S
p
T , (1.30)

where

a = S
t

2T
0 e

(
µ−σ

2

2

)(
(T−t)2

2T
−p(T−t)

)
, b = 1− p− t

2T
, p =

√
4T 3 − 12tT 2 − 3t3 + 12t2T

12T 2 (T − t)
, (1.31)

and t is freely chosen in (0, T ). Details on how (1.17) becomes (1.30) are given in Appendix
1.6.

Using (1.29), both the call option written on MT (t) and the call option written on GT

have thus the same joint distribution with St. More formally,(
(MT (t)−K)+, St

)
∼
(
(GT −K)+ , St

)
. (1.32)

Similar to the RT (t) case, we can derive the explicit form of the call price on MT (t) by
log-normality. The pricing formula at time t is given in the following proposition.

Proposition 2. For t ∈ [0, T ], the price of (MT (t)−K)+ at time u can be computed using
Definition 1.1.1.

cu
(
(MT (t)−K)+) =


e−r(T−u)

[
e

(
mM1

+
vM1
2

)
Φ
(
mM1

+vM1
−lnK

√
vM1

)
−KΦ

(
mM1

−lnK
√
vM1

)]
, u ≤ t,

e−r(T−u)

[
e

(
mM2

+
vM2
2

)
Φ
(
mM2

+vM2
−lnK

√
vM2

)
−KΦ

(
mM2

−lnK
√
vM2

)]
, u ≥ t,

(1.33)
where

mM1 = ln a+
(
1− t

2T

)
lnSu +

(
r − σ2

2

) [
T
2

+ p (T − t)− (T−t)2
2T
−
(
1− t

2T

)
u
]
,

vM1 = σ2
[
T
3
− (b2 + p2 + 2bp)u

]
,

mM2 = ln a+ b lnSt + p
[
lnSu +

(
r − σ2

2

)
(T − u)

]
,

vM2 = p2σ2 (T − u) ,

and a, b and p are given by (1.31).

The proof of Proposition 2 follows immediately from Lemma 6 given in the Appendix. �

We select the best alternative by maximizing the correlation of log-returns between the
alternative and the geometric average. The correlation coefficient for MT (t) is derived in
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the Appendix and is equal to

ρ =

(
1− p− t

2T

)
3t

T

(
1− t

2T

)
+

3p

2
. (1.34)

Due to the complexity of this expression, Figure 1.3 illustrates the pattern of the
correlation coefficient ρ with respect to the chosen time t on (0,1). We observe that the
maximum correlation (ρ∗max = 0.9650) is achieved while taking t equal to t∗ = 0.48. Note
that it is also robust to market changes as it does not depend on µ, r and σ.
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Figure 1.3: Correlation coefficient ρ (lnMT (t), lnGT ) with respect to the chosen time t by
benchmark St.

We then note that as ln(MT (t)) is normally distributed, the minimum VaR is achieved
when correlation is maximum between ln(MT (t)) and ln(GT ). We report our results in
Table 1.1 hereafter.

t∗ max ρ min std.dev. minV aR99%

RT (t) 0.5 0.9665 0.0299 0.070
MT (t) 0.48 0.9650 0.0306 0.071

Table 1.1: Comparison between RT (t) and MT (t) in terms of correlation, standard devia-
tion and Value-at-Risk of the loss function.

20



Similarly to (1.12), we define the hedging errors as follows

DG(T ) := M g
T (t∗)−GT + (c0(GT )− c0(M g

T (t∗))) erT , (1.35)

DY (T ) := My
T (t∗)− YT + (c0(YT )− c0(My

T (t∗))) erT ,

where M g
T (t∗) and My

T (t∗) are the optimal simplified bivariate derivatives to the geometric
Asian average GT and the geometric Asian call YT respectively. Note that the initial price
of (MT (t)−K)+ at u = 0 in (1.33) is not the same as the initial price of (GT −K)+ in
(1.23). Finally, we find that the cdfs of DG(T ) and DY (T ) are very close to that of LG(T )
and LY (T ) in Figure 1.2. This example illustrates that the choice of the benchmark may
not always be significant. In this case the benchmark can be chosen to be St∗ or ST and
the hedging performance is similar.

The above example deals with the geometric Asian option but the methodology is not
specific to that option and other derivatives can be considered as well. Next, we briefly
illustrate the methodology with the Lookback option. We then explain how to deal with a
general path-dependent payoff in Section 1.5.1.

1.4.3 Approximating a Lookback Option with a Bivariate Deriva-
tive

In this section, we develop a second example. Specifically, in the Black-Scholes setting, we
consider AT = St as benchmark and derive the corresponding simplified alternative for a
lookback call option with strike K and payoff

LT =

(
max
u∈[0,T ]

{Su} −K
)+

.

that has the same joint distribution with the chosen benchmark St. To do so, we need the
conditional distribution of LT given St. We make use of the properties of the Brownian
bridge that can be found for instance in Beghin and Orsingher (1999).

Specifically, assume that 0 < t < T , then the conditional distribution of LT given
AT = St depends on the value of S0 and St. Since LT given AT = St has a non-negative
payoff, FLT |St(`) = 0 when ` < 0. When ` ≥ 0, it depends on S0, St and K:

In the case when S0 ≥ K or St ≥ K, the Lookback option always terminates in-the-
money as LT > 0 almost surely. Note that FLT |St(`) = 0 if 0 ≤ ` ≤ max (S0, St) − K.
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When ` > max (S0, St)−K, we have

FLT |St(`) = P
(
LT ≤ `

∣∣St = s
)

= P
(

max
u∈[0,T ]

{Su} ≤ K + `
∣∣St = s

)
= P

(
max
u∈[0,T ]

{
1

σ

(
µ− σ2

2

)
u+Wu

}
≤ x

∣∣∣∣ 1σ
(
µ− σ2

2

)
t+Wt = η

)
,

where x = 1
σ

ln
(
K+`
S0

)
and η = 1

σ
ln
(
s
S0

)
. By Beghin and Orsingher (1999) for any x > 0,

when η < x, i.e. when ` > s−K,

FLT |St(`) = 1− e−2x(x−η)/t −
(
1− e−2x(x−η)/t

)(
1− Φ(d1) + e

2 1
σ

(
µ−σ

2

2

)
(x−η)

(1− Φ(d2))

)
,

(1.36)

where Φ is the standard normal cumulative distribution function, d1 = x−η√
T−t−

√
T−t
σ

(
µ− σ2

2

)
and d2 = x−η√

T−t +
√
T−t
σ

(
µ− σ2

2

)
. When η ≥ x, i.e. when ` ≤ s −K, FLT |St(`) is equal to

0. In the case exposed above, FLT |St(`) is invertible for any y ∈ (0, 1) since it is continuous
and strictly increasing from R+ to (0, 1).

In the case when S0 < K and St < K, it is easy to check that x > 0 and η < x. Thus
formula (1.36) holds as well. In the case when S0 < K and St ≥ K, we first note that
x > 0. Then, for 0 ≤ ` ≤ St − K, i.e., for η ≥ x, FLT |St(`) = 0. When ` > St − K, i.e.
when η < x, formula (1.36) holds for positive FLT |St(`).

To construct an approximate bivariate derivative for LT , we need FLT |St as computed
above and we need the distribution of ST conditional on St as well, which we recall here

yS := FST |St(ST ) = Φ

 ln ST
St
−
(
µ− σ2

2

)
(T − t)

σ
√
T − t

 ,

and by Theorem 3, the simplified payoff for LT is then written as L∗T = F−1
LT |St(yS).

The original payoff LT and the corresponding simplified alternative L∗T do not have the
same initial costs. Thus we define the hedging error of the Lookback call option LT by the
alternative payoff L∗T as KY (T ) := L∗T −LT +(c0(LT )− c0(L∗T )) erT . We then represent the
cdf of the hedging error in Figure 1.4 for t = T/2.

We observe from Figure 1.4 that the distribution of hedging errors for KY (T ) has some
spread and may incur losses of size up to 40. It means that hedging a lookback option with
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one intermediary date is not enough and that we need to impose additional constraints on
the simplified derivative to achieve a better hedge.
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Figure 1.4: cdfs of KY (T ) with the parameters: S0 = 100, K = 110, µ = 0.1, σ = 0.2,
T = 1 and chosen time t = 0.5.

1.5 Extensions

Here, we extend the previous results in several directions. First, we explain how to deal
with the hedge of a general path-dependent derivative with several intermediary distribu-
tional constraints. We then illustrate on an example the case when the benchmark is a
multivariate vector. In this case, the simplified alternative depends on a finite number
of dates (and not only on one intermediary date). Finally, we discuss the more general
market model of Heston to incorporate stochastic volatility.

1.5.1 General Path-dependent Derivative Approximated by a
Multivariate Derivative

In the previous section, we have approximated path-dependent payoffs with bivariate
derivatives. However, even though the hedging errors are significantly reduced compared
to the case of hedging the terminal distribution only, they can remain significant as it is
the case for the Lookback option. We now show how to extend the construction method to
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multivariate derivatives to improve the hedge considered in the previous section. Specifi-
cally, we choose a benchmark vector AT = (A1, ...An) and then construct a simple payoff

V
(n)
T such that (VT , AT ) ∼ (XT , AT ), where XT is the target payoff to hedge. Applying

Theorem 4 in Section 1.3

V
(n)
T := F−1

XT |AT (1− FξT |AT (ξT )) (1.37)

where both FXT |AT and FξT |AT need to be estimated and where we chooseAT = (St1 , ..., Stn).
In the Black-Scholes model (and in more general market model), it is always possible to
proceed numerically and develop an approximation of the path-dependent derivative by
a simplified multivariate alternative payoff using numerical methods when explicit closed-
form expressions for the conditional distributions appearing in the approximation (1.37)
are not available.

There exists an extensive literature on nonparametric estimation of conditional distri-
butions such as Hall, Wolff, and Yao (1999), Cai (2002), Hansen (2004) and Hall and Yao
(2005). Hall and Yao (2005) show that conventional nonparametric estimators can suffer
poor accuracy and slow convergence rates and suggest approximating the distribution of a
random variable Y given a dependent random n-variate vector X, Y |X, by that of Y |θTX
instead, where the unit vector θ is selected so that the approximation is optimal under a
least-squares criterion. We use this technique to approximate by the conditional distribu-
tions to the n-variate benchmark vector AT = (St1 , St2 , · · · , Stn) (F̂XT |AT and F̂ST |AT ).

1.5.2 Example of the Hedge of an Asian Option with a Trivariate
Derivative in the Black-Scholes Model

We now illustrate the idea of the previous paragraph in the Black-Scholes market by
the explicit construction of a trivariate derivative VT that approximates the Asian option
YT = (GT −K)+ in the sense that (St1 , St2 , VT ) ∼ (St1 , St2 , YT ). To do so, we first find

(VT (t1, t2), St1 , St2) ∼ (GT , St1 , St2)

for t1 < t2. To do so, we apply Theorem 3 to the payoff GT and find a trivariate payoff
VT (t1, t2) = f(ST , St1 , St2) such that

(St1 , St2 , VT (t1, t2)) ∼ (St1 , St2 , GT ) . (1.38)
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The explicit form of VT (t1, t2) by applying Theorem 3 can be expressed as

VT (t1, t2) = aSbt1S
c
t2
SdT , (1.39)

where

a = S
t1
2T
0 e

(
µ−σ

2

2

)[
(T−t2)

2

2T
−
√

(T−t2)h

]
, b =

t2
2T

, c = 1− t1 + t2
2T

−
√

h

T − t2
,

d =

√
h

T − t2
, h =

T

3
− t2 +

t22
T
− t1t2 (t2 − t1) + t32

4T 2
. (1.40)

Details on how (1.17) becomes (1.39) are shown in Appendix 1.6.

We are able to compute the price of (VT (t1, t2)−K)+. The trivariate derivative VT (t1, t2)
is more path-dependent than RT (t) or MT (t) (see Section 1.4) but it is still less path-
dependent than the original Asian option. The call option on VT (t1, t2) and the call option
on GT have the same joint distribution with St1 and St2 , i.e,(

(VT (t1, t2)−K)+, St1 , St2
)
∼
(
(GT −K)+ , St1 , St2 ,

)
. (1.41)

(VT (t1, t2)−K)+ is therefore a trivariate equivalent to the fixed strike (continuously moni-
tored) geometric Asian call. Applying Lemma 6, Proposition 3 provides the pricing formula
for the call on VT (t1, t2).

Proposition 3. Let t1, t2 ∈ [0, T ]. The price of (VT (t1, t2)−K)+ at any time u is given
by

cu
(
(VT (t1, t2)−K)+) =



e−r(T−u)

[
e

(
mV1+

vV1
2

)
Φ
(
mV1+vV1−lnK

√
vV1

)
−KΦ

(
mV1−lnK
√
vV1

)]
, u < t1,

e−r(T−u)

[
e

(
mV2+

vV2
2

)
Φ
(
mV2+vV2−lnK

√
vV2

)
−KΦ

(
mV2−lnK
√
vV2

)]
, t1 ≤ u < t2,

e−r(T−u)

[
e

(
mV3+

vV3
2

)
Φ
(
mV3+vV3−lnK

√
vV3

)
−KΦ

(
mV3−lnK
√
vV3

)]
, u ≥ t2,

(1.42)
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where

mV1 = ln a+
(
1− t1

2T

)
lnSu + (r − σ2)

[
T
2

+
√

(T − t2)h− (T−t2)2

2T
−
(
1− t1

2T

)
u
]
,

vV1 = σ2
[
T
3
−
(
1− t1

2T

)2
u
]
,

mV2 = ln a+ b lnSt1 + (c+ d) lnSu +
(
r − σ2

2

)
[ct2 + dT − (c+ d)u] ,

vV2 = σ2 [c2 (t2 − u) + d2 (T − u) + 2cd (t2 − u)] ,

mV3 = ln a+ b lnSt1 + c lnSt2 + d lnSu +
(
r − σ2

2

)
d (T − u) ,

vV3 = d2σ2 (T − u) ,

and a, b, c, d and h are defined in (1.40).

The initial price of VT (t1, t2) at u = 0 in (3) is not the same as the initial price of GT .

The previous results show that the criteria of correlation, variance and VaR between
lnVT (t1, t2) and lnGT are equivalent under the assumption of log-normality. We compute
the correlation coefficient for lnVT (t1, t2) and lnGT , which is given by

ρ =
3t1t2
2T 3

(
T − t1

2

)
+

3t2
T 2

(
T − t2

2

)(
1− t1 + t2

2T
−
√

h

T − t2

)
+

3

2

√
h

T − t2
, (1.43)

where h can be found in (1.40). Detailed derivations are in Appendix 1.6. Maximizing
the above correlation is a non-linear optimization problem with respect to t1 and t2 under
the constraint such that 0 < t1 < t2 < T . The generalized reduced gradient algorithm
solves that ρmax is equal to 0.9839 while t∗1 = 0.32 and t∗2 = 0.64, which is about 2% higher
correlation compared to those of MT (t) and RT (t).

t∗1 t∗2 max ρ min std.dev. min VaR99%

VT (t1, t2) 0.32 0.64 0.9839 0.0207 0.048

Table 1.2: Correlation, standard deviation and Value-at-Risk of the loss function for
VT (t1, t2) and GT under the optimal chosen time.

We define the error corresponding to the approximation by hedging strategy VT (t1, t2)
of the geometric average.

JG(T ) : = V g
T (t∗1, t

∗
2)−GT + (c0(GT )− c0(V g

T (t∗1, t
∗
2))) erT ,

JY (T ) : = V y
T (t∗1, t

∗
2)− YT + (c0(YT )− c0(V y

T (t∗1, t
∗
2))) erT . (1.44)
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where V g
T (t∗1, t

∗
2) and V y

T (t∗1, t
∗
2) are the optimal simplified trivariate derivatives to the geo-

metric Asian average GT and the geometric Asian call YT respectively.
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Figure 1.5: cdfs of JG(T ) (on the left panel) and of JY (T ) (on the right panel) on top of
the cdfs of HG(T ), HY (T ), LG(T ), LY (T ), DG(T ) and DY (T ).

From Figure 1.5, we see that the theoretical deviation between the geometric average
or the Asian call and the corresponding simplified derivatives is very small and thus it is
satisfactory to replace the hedging of the path-dependent derivative by the hedging of the
simplified one.

1.5.3 Simplified Alternative in the Heston Volatility Model

We now illustrate the construction method of the simplified alternative for the geometric
Asian call option in the Heston stochastic volatility model using Theorem 4. To do so, we
numerically evaluate the corresponding simplified payoff with the (quadruplet) benchmark

AT =
(
ξt, St, vt,

∫ t
0
vsds

)
. There is no guarantee that the constructed payoff has the same

initial cost. We thus define, similarly as before, the hedging error at maturity time T under
the Heston stochastic volatility model as

IG(T ) := X∗,gT −GT + (cG − cX∗,g) erT , IY (T ) := X∗,yT − YT + (cY − cX∗,y) erT , (1.45)

where X∗,gT is the simplified alternative for GT in the Heston stochastic volatility model,
cX∗,g is its cost at time 0 andX∗,yT is the simplified alternative for YT in the Heston stochastic
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volatility model, cX∗,y is its cost at time 0. Note that cX∗,y = c0

(
(X∗,gT −K)

+
)

.

From (1.8), we rewrite the Heston state-price density as

ξT = ξt

(
ST
St

)ψ
× exp

(
δ(T − t) + η

∫ T

t

vsds+ ζ(vT − vt)
)
, (1.46)

and it depends on the quadruplet benchmark AT . By Theorem 4, we construct the bivariate

alternative X∗,gT conditional on the quadruplet AT =
(
ξt, St, vt,

∫ t
0
vsds

)
with the following

procedure:

1. Use the Euler scheme to simulate the dynamics in (1.7) and the state-price density

ξt in (1.8) simultaneously to simulate the quadruplet AT =
(
ξt, St, vt,

∫ t
0
vsds

)
.

2. Given the intermediate state vector AT , by (1.46), we use forward simulation to
generate the future paths of ξt over the period [t, T ] and obtain the random state
prices ξT at maturity. We thus find the distribution of ξT on AT .

3. Compute the quantile q = 1− F̂ξT |AT (ξT ) ∼ Uniform(0, 1)

4. To hedge the original path-dependent payoff XT with conditional cdf F̂XT |AT , we use
Theorem 4 to construct the cheapest alternative X∗,gT with the choice of benchmark

AT =
(
ξt, St, vt,

∫ t
0
vsds

)
. This is given by X∗,gT = F̂−1

XT |AT (q)

5. The costs of the alternative payoff X∗,gT and its corresponding call (X∗,gT −K)+ can
be respectively evaluated by

cgX∗ := EP
[
EP
[
ξTX

∗,g
T

∣∣AT ]] , cYX∗ := EP

[
EP

[
ξT (X∗,gT −K)

+ ∣∣AT]] .
Figure 1.6 illustrates the hedge between the simplified bivariate derivative and the

geometric average under the Heston stochastic volatility model. We find that the correla-
tion between ln(IG(t)) and ln(GT ) is approximately equal to 97%, while the corresponding
correlation between ln(IY (t)) and ln(YT ) is about 91%. Figure 1.6 illustrates that the the-
oretical deviation between the goemetric average or the Asian call and the corresponding
bivariate derivatives in the Heston market is very small and thus satisfactory to replace
the original payoffs by the simplified ones.
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Figure 1.6: Empirical cdfs of IG(T ) (on the left panel) and of IY (T ) (on the right panel)
with the Heston parameters: ρ = −0.5, κ = 0.3, σ = 0.1, θ = v0 = 0.015, λ = −0.02,
K = S0 = 100, r = 0.02, µS = 0.2, T = 1 and chosen time t = 0.5.

1.6 Concluding Remarks

We develop a method to hedge a highly path-dependent payoff using simplified derivatives
that preserve certain distributional properties of the original payoff. Our work builds on the
study of Bernard, Moraux, Rüschendorf, and Vanduffel (2015) and shows how to apply it in
practice in the context of hedging. In particular, we are able to extend it to the case when
one has a finite number of constraints (which corresponds to a n-dimensional benchmark
vector AT ). We illustrate the study by a geometric Asian option and a lookback option
but our method can be extended to hedge other path-dependent options by numerically
approximating their distributions and conditional distributions when they are not available
explicitly. It is also possible to simplify path-dependent payoffs under more general models
than the Black-Scholes setting, such as the Lévy and Heston models that are mentioned in
the chapter. More generally, affine jump-diffusion models can be considered. In another
context, Bernard, Chen, and Vanduffel (2015) use the cost-efficiency theory to find the
utility function of an investor with law-invariant preferences. The use of cost-efficiency
conditional to a benchmark can be used to extend to state-dependent preferences. Another
research direction is to extend the work of Amin and Kat (2003), who use the cost-efficiency
theory to replicate the distribution of hedge fund returns at lowest cost. However, the hedge
fund performance is not exactly “replicated,” only its probability distribution is preserved.
Our work can also be used to provide a closer replication in this context.
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APPENDIX

Proofs

Lemma 5 (Conditional Multivariate Gaussian). Assuming that Σ is positive definite, the
conditional distributions of X2 given X1 and of X1 given X2 are multivariate normal. For
example, X2|X1 = x1 is a multivariate normal with dimension d − k with mean µ̂ =
µ2 + Σ21Σ−1

11 (x1 − µ1) and variance Σ̂ = Σ22 − Σ21Σ−1
11 Σ12, where µ1 = E[X1], µ2 = E[X2]

and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

We use the above method to generate (lnSt, lnST , lnGT ) exactly (without any dis-
cretization for the geometric average). The covariance matrix we derived for this case
is

Σ =

 σ2t σ2t σ2t
T

(
T − t

2

)
σ2t σ2T σ2T

2
σ2t
T

(
T − t

2

)
σ2T

2
σ2T

3

 .
Lemma 6 (Pricing formula). In the Black-Scholes model, the price at time u of the payoff
X = aSbtS

c
T (to be paid at time T ) is equal to

cu(X) =

e
−r(T−t)

[
exp

(
m1 + v1

2

)
Φ
(
m1+v1−lnK√

v1

)
−KΦ

(
m1−lnK√

v1

)]
, if u < t,

e−r(T−t)
[
exp

(
m2 + v2

2

)
Φ
(
m2+v2−lnK√

v2

)
−KΦ

(
m2−lnK√

v2

)]
, if u ≥ t,

where m1, m2, v1 and v2 are explicitly known and given below.

To prove Lemma 6, note that ln(X) is normally distributed with conditional mean m
and conditional variance v conditionally on Fu. i.e. ln(X)|Fu ∼ N(m, v), then the price
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of (X −K)+ at time u is

cu
(
(X −K)+) = e−r(T−u)Eu

[
(X −K)+]

= e−r(T−u)

[
exp

(
m+

v

2

)
Φ

(
m+ v − lnK√

v

)
−KΦ

(
m− lnK√

v

)]
.

Recall that lnX = ln a + b · lnSt + c · lnST . Then for 0 ≤ u < t, both St and ST are
random and

lnX = ln a+ b

[
lnSu +

(
r − σ2

2

)
(t− u) + σWu,t

]
+ c

[
lnSu +

(
r − σ2

2

)
(T − u) + σWu,T

]
,

where Wu,t = Wt −Wu.

m1 = Eu [lnX] = ln a+ b

[
lnSu +

(
r − σ2

2

)
(t− u)

]
+ c

[
lnSu +

(
r − σ2

2

)
(T − u)

]
,

v1 = varu [lnX] = var (bσWu,t + cσWu,T ) = b2σ2 (t− u) + c2σ2 (T − u) + 2bcσ2 (t− u) .

For t ≤ u < T, lnX = ln a+ b lnSt + c
[
lnSu +

(
r − σ2

2

)
(T − u)

]
+ σWu,T ,

m2 = Eu [lnX] = ln a+ b lnSt + c

[
lnSu +

(
r − σ2

2

)
(T − u)

]
,

v2 = varu [lnX] = var (cσWu,T ) = c2σ2 (T − u) .

Derivation of Equation (1.30)

Given the benchmark AT = St, we take X|Y = ln (ST/S0) | ln (St/S0). We thus obtain that
E (X) = E [ln (ST/S0)] =

(
µ− 1

2
σ2
)
T , E (Y ) = E [ln (St/S0)] =

(
µ− 1

2
σ2
)
t, var (X) =

var [ln (ST/S0)] = σ2T , var (Y ) = var [ln (St/S0)] = σ2t, cov (X, Y ) = σ2var (Wt) = σ2t,

and ρX,Y = cov(X,Y )√
var(X)

√
var(Y )

= σ2t
σ
√
Tσ
√
t

=
√

t
T

.
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The conditional expectation and conditional variance of X|Y can be derived as

E (X|Y ) = E [ln (ST/S0) | ln (St/S0)] =

(
µ− 1

2
σ2

)
(T − t) + ln (St/S0) ,

var (X|Y ) =
(
1− ρ2

X,Y

)
var (X) =

(
1− ρ2

X,Y

)
var (ln (ST/S0)) =

(
1− t

T

)
σ2T = σ2 (T − t) .

Thus X|Y follows normal distribution such that

ln (ST/S0) | ln (St/S0) ∼ N

(
ln (St/S0) +

(
µ− 1

2
σ2

)
(T − t) , σ2 (T − t)

)
.

The distribution of ST conditional on St is given by

y = FST |St (ST ) = Φ

(
ln (ST/St)−

(
µ− 1

2
σ2
)

(T − t)
σ
√
T − t

)
.

The couple (ln (GT ) , ln (St)) is bivariate normally distributed with mean and variance
given by E [lnGT ] = ln (S0) +

(
µ− 1

2
σ2
)
T
2
, var [lnGT ] = σ2T

3
, and E [lnSt] = ln (S0) +(

µ− 1
2
σ2
)
t, var [lnSt] = σ2t.

cov

(
ln (St) ,

1

T

∫ T

0

ln (Ss) ds

)
=

σ2

T

∫ T

0

cov (ln (St) , ln (Ss)) ds

=
σ2

T

∫ T

0

(s ∧ t) ds =
σ2

T

[∫ t

0

sds+

∫ T

t

tds

]
=

σ2

T

[
1

2
t2 + t (T − t)

]
=
σ2t

T

(
T − t

2

)
.

The correlation coefficient between ln(St) and ln(GT )

ρ (ln (St) , ln (GT )) =
cov (ln (St) , ln (GT ))√

var (ln (St))
√

var (ln (GT ))
=

σ2t
T

(
T − t

2

)
σ
√
tσ
√

T
3

=
√

3

√
t

T
−
√

3

2

t
√
t

T
√
T
.
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The conditional expectation and conditional variance of ln(GT )| ln(St)

E [ln (GT ) | ln (St)] = ln (S0) +

(
µ− 1

2
σ2

)
T

2
+

σ2t
T

(
T − t

2

)
σ2t

[
ln (St)−

(
lnS0 +

(
µ− 1

2
σ2

))
t

]
= ln

(
S

t
2T
0 S

1− t
2T

t

)
+

(
µ− 1

2
σ2

)
(T − t)2

2T
.

var [ln (GT ) ln (St)] =
(
1− ρ2

)
var (ln (GT ))

=

1−

(
√

3

√
t

T
−
√

3

2

t
√
t

T
√
T

)2
 1

3
σ2T =

(
4T 3 − 12tT 2 − 3t3 + 12t2T

12T 2

)
σ2.

The conditional distribution of GT |St can be expressed as

FGT |St (x) = Φ

 ln (x)− ln
(
S

t
2T
0 S

1− t
2T

t

)
−
(
µ− 1

2
σ2
) (T−t)2

2T

σ
√

4T 3−12tT 2−3t3+12t2T
12T 2

 .

We thus get the form of bivariate derivative M g
T (t) by

M g
T (t) = F−1

GT |St (y)

= exp

(
ln
(
S

t
2T
0 S

1− t
2T

t

)
+

(
µ− 1

2
σ2

)
(T − t)2

2T
+ σ

√
4T 3 − 12tT 2 − 3t3 + 12t2T

12T 2
Φ−1 (y)

)

= S
t

2T
0 S

1− t
2T

t exp

[(
µ− 1

2
σ2

)
(T − t)2

2T
+ p

(
ln (ST/St)−

(
µ− 1

2
σ2

)
(T − t)

)]
,

where y = FST |St (ST ) and p =
√

4T 3−12tT 2−3t3+12t2T
12T 2(T−t) . Thus,

M g
T (t) = S

t
2T
0 S

1− t
2T

t

(
ST
St

)p
exp

[(
µ− 1

2
σ2

)(
(T − t)2

2T
− p (T − t)

)]
︸ ︷︷ ︸

q

= S
t

2T
0 S

1−p− t
2T

t SpT q.
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Derivation of Equation (1.34)

Letting lnM g
T (t) = t

2T
lnS0+

(
1− p− t

2T

)
lnSt+p lnST +ln q = a lnS0+b lnSt+p lnST +c,

we have

cov (lnM g
T (t) , lnGT )

= b× cov

(
ln (St) ,

1

T

∫ T

0

ln (Ss) ds

)
+ p× cov

(
ln (ST ) ,

1

T

∫ T

0

ln (Ss) ds

)
= b

1

T

∫ T

0

cov (lnSt, lnSs) ds+ p
σ2T

2

= b
σ2t

T

(
T − t

2

)
+ p

σ2T

2
=

(
1− p− t

2T

)
σ2t

T

(
T − t

2

)
+ p

σ2T

2
.

Let σlnMg
T (t) and σlnGT be the standard deviations.

ρ (ln (M g
T (t)) , ln (GT )) =

cov (ln (M g
T (t)) , ln (GT ))√

var (ln (M g
T (t)))

√
var (ln (GT ))

=

(
1− p− t

2T

)
σ2t
T

(
T − t

2

)
+ pσ

2T
2

σ2T
3

=

(
1− p− t

2T

)
3t

T

(
1− t

2T

)
+

3p

2
.

Derivation of Equation (1.39)

Since t1 < t2 and by the Markov property, FST |(St1 ,St2)
(ST ) = FST |St2 (ST ). Note that

ln (ST/S0) | ln (St2/S0) ∼ N
(
ln (ST/St2) +

(
µ− 1

2
σ2
)

(T − t2) , σ2 (T − t2)
)
, the distribu-

tion of ST conditional on St2 is given by

z = FST |St2 (ST ) = Φ

(
ln (ST/St2)−

(
µ− 1

2
σ2
)

(T − t2)

σ
√
T − t2

)
,

We then construct the random vector (lnSt1 , lnSt2 , lnGT ) using Lemma 5. The covari-

ance matrix is Σ =

 σ2t1 σ2t1
σ2t1
T

(
T − t1

2

)
σ2t1 σ2t2

σ2t2
T

(
T − t2

2

)
σ2t1
T

(
T − t1

2

)
σ2t2
T

(
T − t2

2

)
σ2T

3

.

Then we decompose the covariance matrix and define the sub-matrices
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Σ11 =

[
σ2t1 σ2t1
σ2t1 σ2t2

]
, Σ12 =

[
σ2t1
T

(
T − t1

2

)
σ2t2
T

(
T − t2

2

) ] = ΣT
21 and Σ22 =

[
σ2T

3

]
.

Note that lnGT ∼ N (µ2,Σ22), by Lemma 5 letting x1 =
[

lnSt1 lnSt2
]T

and µ1 =[
lnS0 +

(
µ− σ2

2

)
t1 lnS0 +

(
µ− σ2

2

)
t2

]T
, then after some tedious calculations, we find

that lnGT | (lnSt1 , lnSt2) ∼ N (m̃, ṽ), where m̃ = ln

(
S

t1
2T
0 S

t2
2T
t1 S

1− t1+t2
2T

t2 e

(
µ−σ

2

2

)
(T−t2)

2

2T

)
and

ṽ = σ2h with h = T
3
− t2 +

t22
T
− t1t2(t2−t1)+t32

4T 2 ,

FGT |St1 ,St2 (x) = Φ

 ln(x)− ln

(
S

t1
2T
0 S

t2
2T
t1 S

1− t1+t2
2T

t2 e

(
µ−σ

2

2

)
(T−t2)

2

2T

)
σ
√
h

 ,

VT (t1, t2) = F−1
GT |St1 ,St2

(z)

= exp

[
ln

(
S

t1
2T
0 S

t2
2T
t1 S

1− t1+t2
2T

t2 e

(
µ−σ

2

2

)
(T−t2)

2

2T

)
+ σ
√
hΦ−1(z)

]
= S

t1
2T
0 e

(
µ−σ

2

2

)[
(T−t2)

2

2T
−
√

(T−t2)h

]
S

t2
2T
t1 S

1− t1+t2
2T
−
√

h
T−t2

t2 S

√
h

T−t2
T = aSbt1S

c
t2
SdT ,

where z = FST |St2 (ST ) and a = s
t1
2T
0 e

(
µ−σ

2

2

)[
(T−t2)

2

2T
−
√

(T−t2)h

]
, b = t2

2T
, c = 1− t1+t2

2T
−
√

h
T−t2

and d =
√

h
T−t2 .

Derivation of Equation (1.43)

For lnVT (t1, t2) = ln a+ b lnSt1 + c lnSt2 + d lnST ,

cov (lnVT (t1, t2), lnGT ) = b× cov

(
lnSt1 ,

1

T

∫ T

0

ln(Ss)ds

)
+ c× cov

(
lnSt2 ,

1

T

∫ T

0

ln(Ss)ds

)
+ d× cov

(
lnST ,

1

T

∫ T

0

ln(Ss)ds

)
= b

σ2t1
T

(
T − t1

2

)
+ c

σ2t2
T

(
T − t2

2

)
+ d

σ2T

2
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ρ (lnVT (t1, t2), lnGT ) =
cov (lnVT (t1, t2), lnGT )√

var (lnVT (t1, t2))
√

var (lnGT )

=
3t1t2
2T 3

(
T − t1

2

)
+

3t2
T 2

(
T − t2

2

)(
1− t1 + t2

2T
−
√

h

T − t2

)

+
3

2

√
h

T − t2
,

where 0 < t1 < t2 < T .
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Chapter 2

Variable Annuity with
State-dependent Fee Linked to
Market Volatility

2.1 Introduction

A variable annuity (VA) is a tax-deferred and unit-linked insurance product that provides
various forms of guarantee riders to investors via equity participation in a collective invest-
ment selected by the policyholder. With a variable annuity, investors make payments until
their retirement and then begin receiving regular retirement income from the insurance
company. VA guarantees can be classified into two broad types: guaranteed minimum
death benefits (GMDBs) and guaranteed minimum living benefits (GMLBs). The GMLBs
include guaranteed minimum accumulation benefits (GMABs), guaranteed minimum in-
come benefits (GMIBs) and guaranteed minimum withdrawal benefits (GMWBs).

In this research, we will work on pricing and hedging issues of variable annuities with a
state-dependent fee structure. Such state-dependent fees can depend on several uncertainty
sources, such as fund value, index value, and market volatility. For example, when the
market is volatile, the hedging program of guarantees in VAs is typically very expensive.
Traditional VAs charge a constant fee rate that does not depend on market conditions. Our
motivation comes from the variable annuity contracts offered by American General Life
in 2014 (see the prospectus dated May 1, 2014 of the “Polaris Variable Annuities Choice
IV”). In this contract, the fee rate adjustment is tied to the change in the market Volatility
Index (VIX) reported by the Chicago Board Options Exchange. We propose to model and
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study the benefits of charging state-dependent fees in VAs that depend on the volatility
level. We expect that the fees will be lower on average for the policyholder and that they
will provide better matching for the insurer between the actual value of the guarantee and
the premium collected by the insurer. We thus expect to improve the hedging program of
VAs using state-dependent fees. Such an approach challenges the existing VA modeling:
see Coleman, Li, and Patron (2006), Milevsky and Salisbury (2006), Bauer, Kling, and
Russ (2008), Chen, Vetzal, and Forsyth (2008), Dai, Kuen Kwok, and Zong (2008), Lin
et al. (2009), Hürlimann (2010), and references therein. Almost all the research to date
has focused on a fixed fee rate, i.e. the policyholder has to pay a constant percentage of
the fund. The pricing and hedging of VAs with state-dependent fees linked to volatility,
however, are realistic and attractive in the insurance industry.

This chapter aims to solve some practical problems arising from the design of variable
annuities with a state-dependent fee. In particular, we investigate the following questions:

(1) How to design a model that takes into account the random evolution of the VA
fund value, the volatility of the fund and the state-dependent fee in response to market
conditions such as the volatility level?

(2) How to find fair values of derivative claims embedded in VAs with a state-dependent
fee structure, and correspondingly how to determine the state-dependent fee rate?

(3) In the incomplete market, the long-term liabilities such as most VAs are typically
difficult to hedge. What will be a benchmark hedging strategy compared to other strategies
when aligned with the state-dependent fees?

To tackle the first issue, a three-factor affine model can be generally used to model
the dynamics of the price of the VA fund, the variance of the fund price and the state-
dependent fee rate. When the fee rate structure has particular properties, such as linearity
with respect to the variance process, we can lower the dimension in the affine framework
and thus reduce the three-factor model to the simpler two-factor one. To solve the second
problem, we develop approaches based on characteristic function. We use the Black-Scholes
Fourier method to price contingent claims on these variables. To determine the state-
dependent fee, it is clear that a fair fee rate for the policyholder will match the expected
liability associated with the guarantee of the VA fund at issue. Depending on the assumed
fee rate structure, we may consider particular constraints, such as minimizing the mean
squared error between the cost of protection and the expected fee collected during the
life of the contract. Alternatively, we can use constraints based on risk measures that
reflect certain fee arrangements between the insurer and the policyholder. For the third
problem, we develop an efficient static hedging strategy in the spirit of Kolkiewicz (2016)
for VA liabilities that can be considered as a benchmark to compare other strategies, such
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as traditional dynamic hedging and short-dated static hedging. This hedging option can
also be used for hedging long-term and path-dependent liabilities such as most VAs that
require working with more general forms of dependency among risk factors.

The continuous-time affine models have played a prominent role in both the term struc-
ture literature and the stochastic volatility literature due to their analytic tractability. The
early literature focused on specific models; for example, Vasicek (1977) and Cox, Ingersoll,
and Ross (1985) deal with single-factor term structure models, Chen (1996), Balduzzi,
Das, Foresi, and Sundaram (1996) deal with multiple-factor term structure models, and
Hull and White (1987) and Heston (1993) with asset price models with stochastic volatil-
ity. A more recent strand of the literature focuses on broader classes of models rather
than specific cases. For the case of affine term structure models, we refer to Duffie and
Kan (1996) and Duffie, Filipović, and Schachermayer (2003), for systematic treatments,
Dai and Singleton (2000), for an empirical investigation and classification scheme, Duf-
fee (2002) and Cheridito, Filipović, and Kimmel (2007), for extended market price of risk
specifications, Collin-Dufresne, Goldstein, and Jones (2008) and Joslin (2006), for alternate
classification schemes, and Duffie, Pan, and Singleton (2000), for additional applications of
affine processes. Furthermore, the square-root diffusion, which is a particular example of
affine models, became the central component of many important financial models, includ-
ing the CIR interest rate model (Cox, Ingersoll, and Ross (1985)) and the above mentioned
models. The attractiveness of the square-root diffusion is motivated by several essential
properties, including positivity, mean-reversion, and closed-form solution for the transition
density function. In particular, the European calls and puts under affine models have the
closed-form solution that makes the calibration to market prices quick and efficient. Com-
bined with the ability to capture volatility smiles and skews, all these make affine models
a viable tool in many pricing applications, including modeling of equity, foreign exchange
and credit products.

It is often possible to find the characteristic function of the joint distribution of the
involved factors under affine models. Therefore, we can price options using some of the
existing techniques based on characteristic functions. A simplest, but not the most efficient
approach, is to take an integral of the payoff function over the probability distribution
obtained by inverting the corresponding Fourier transform. There is a growing interest in
applying such methods to pricing, which is due to the fact that more realistic models are
often more conveniently represented through characteristic functions than through their
probability distributions. Inside the field of Finance, Stein and Stein (1991) first used the
Fourier inversion method to find the distribution of the underlying asset with the stochastic
volatility model. Heston (1993) demonstrated the importance of the characteristic function
in finding a closed-form solution for options with stochastic volatility. Bakshi, Kapadia, and
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Madan (2003) provided an economic foundation for characteristic functions, and advanced
the approach of Heston (1993) and Stein and Stein (1991) in many significant ways. In
particular, the authors developed valuation formulas for a wide variety of contingent claims.
Duffie, Pan, and Singleton (2000) extended the Fourier methods to a broader range of
stochastic processes, the class of exponential affine jump diffusions. A numerically very
efficient methodology is introduced in Carr and Madan (1999), who employed the use of
fast Fourier transform (FFT) algorithms by mapping the Fourier transform directly to call
option prices with arbitrary strikes via the characteristic function at one time. Lee (2004)
generalized the use of FFT to price with multidimensional state variables in the framework
of Duffie, Pan, and Singleton (2000) and Bakshi, Kapadia, and Madan (2003). In Carr
and Wu (2004), the authors extended the Carr and Madan (1999) methodology to general
claims and applied it to time changed Lévy processes, the class of generalized affine models
(Filipović (2001)) and quadratic activity rate models (Leippold and Wu (2002)).

There is a quite limited number of studies on pricing variable annuity funds based
on affine models. Benhamou and Gauthier (2009) priced variable annuity contracts with
stochastic interest rate and volatility models. Guan and Liang (2014) used a three-factor
affine model to search optimal management of DC pension plans. In both papers, they
specified the models with either CIR or Ornstein-Uhlenbeck process for dynamics that
will produce closed formulas for pricing with characteristic functions by time-invariant
Riccati equations. Cui, Feng, and MacKay (2017) price a guaranteed minimum maturity
benefit with VIX-linked fees in a Heston-type stochastic volatility setting. Their numerical
examples show that the VIX-linked fee reduces the sensitivity of the insurer’s liability to
market volatility when compared to a VA with the traditional fixed fee rate. Kouritzin and
MacKay (2018) further assess the effectiveness of the VIX-linked fee structure in decreasing
the sensitivity of the insurer’s liability to volatility risk for a GMWB contract. Despite
the similar framework of modeling VA contracts with the VIX-linked fee structure, our
contributions are two-fold: (1) We address the fee-rate determination of the VIX-linked fee
structure in the context of minimizing the risk related to writing a GMAB contract with
state-dependent fees. Specifically, we want to minimize the expected shortfall between the
GMAB liability and the fees to be collected. (2) We formulate the optimal hedging strategy
for a GMAB with state-dependent fees under the Heston-type stochastic volatility model.
The proposed hedging strategy is further discussed in Chapter 4.

Market consistent valuation. VAs issuers face new challenges as Solvency II regu-
lations request a market consistent valuation of liabilities. Reserve requirements for VA
products are then highly “scenario dependent” and are not known at time of issue. Tech-
nical provisions and solvency capital requirements change over time depending on market
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conditions (e.g., interest rates, volatility, equity prices). A widely used interpretation of the
market-consistent approach is that the values of liabilities should be equal to the amount
that the insurer would pay to transfer its remaining contractual obligations immediately
to another entity. For certain types of insurance liabilities, this approach is relatively easy
to adopt. In many other cases, however, the correct approach is less clear. In particular,
insurance liabilities containing options and guarantees are typically valued using stochas-
tic simulation precisely because a market price for the liability cannot be observed in the
market. In such cases, a suitably calibrated economic scenario generator (ESG), which
can reproduce the market prices of instruments that reflect the nature and term of the
liabilities being valued, is likely to be used.

The issuer’s income on most VAs is typically computed as a fixed percentage fee of the
fund under management and fluctuates as a function of the underlying value. However,
VAs are long term contracts and market conditions will change throughout the term of
the contract. For example, the market value of guarantees goes up when equity goes down
and volatility goes up. Moreover, when equity goes down, the volatility typically increases.
Our analysis highlights the need to use models with sufficient degrees of freedom to capture
all relevant market data in the valuation of VA products. To illustrate this point, we then
look at a more realistic extension of the simple Black-Scholes model, such as the Heston
volatility model. The Heston volatility model incorporates both stochastic processes for
equity values and equity volatility. In the context of market consistency, the pricing formula
can be a suitable ESG by associating the calibration of the market prices of guarantees
with the state-dependent fees tied to the Heston market volatility.

2.2 Polaris Choice IV Contract

Our proposed design of state-dependent fees is inspired by the design of a recent VA
contract called Polaris Choice IV issued in the U.S. insurance market.

The Polaris Choice IV is a variable annuity launched by American General Life in May
2014. In the Accumulation Phase, it builds assets on a tax-deferred basis. In the In-
come Phase, it provides the policyholder with guaranteed income through annuity income
payments. The Polaris Choice IV allows the policyholder to invest in Variable Portfolios
which, like mutual funds, have different investment objectives and performance. Policy-
holders can gain or lose money if they invest in these Variable Portfolios. The amount of
money that accumulates in the contract then depends on the performance of the selected
Variable Portfolios.
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To grow and secure income, including rising lifetime income, the policyholder may
elect one of the optional Living Benefits, all of which are guaranteed minimum withdrawal
benefits, for an additional fee. These Living Benefits may offer protection in the event that
the contract value declines due to unfavorable investment performance, certain withdrawal
activity or changing longevity risk. The two typical living benefits from the Polaris Choice
IV are called Polaris Income Plus and Polaris Income Builder. They impose an investment
requirement on the policyholder so that he needs to invest in high-risk variable portfolios
that are predetermined in the contract. In these two benefits, the policyholder may add
a 6% Income Credit to the Income Base, the amount on which guaranteed withdrawals
are based, each year for the first 12 Benefit Years. In the Polaris Income Plus, the 6%
Income Credit is reduced but not eliminated in any Benefit Year in which cumulative
withdrawals are less than 6% of the Income Base and not greater than the Maximum
Annual Withdrawal Amount applicable to the selected income option, thereby providing a
guarantee that income can increase during the first 12 years even after starting withdrawals.
In the Polaris Income Builder, the 6% Income Credit is only available in years when no
withdrawals are taken. If the investors do not withdraw during the first 12 years, the
investors will be eligible for the Minimum Income Base that is equal to 200% of the first
Benefit Year’s Eligible Purchase Payments. Unlike many other single-premium contracts
in the market, Polaris Choice IV allows subsequent purchase payments of as little as $100
for the policyholder aged 86 or younger. Such a flexible premium allows the investor to
make additional payments to the annuity after it is issued, but also leads to an increase of
the annual fee, which is calculated as a percentage of the Income Base.

The living benefits of Polaris Income Plus and Polaris Income Builder aim to increase
the Income Base for a larger withdrawal amount but also lead to increase an annual fee
which is calculated as a percentage of the Income Base. The fee for Polaris Income Plus
and Polaris Income Builder is assessed against the Income Base and deducted from the
contract value at the end of each benefit quarter. The Initial Annual Fee Rate is guaranteed
not to change for the first benefit year. Subsequently, the fee rate may change quarterly
subject to the parameters identified in the contract. Any fee adjustment is based on a
non-discretionary formula tied to the change in the Volatility Index (VIX), an index of
market volatility reported by the Chicago Board Options Exchange. In general, as the
average value of the VIX decreases or increases, the fee rate will decrease or increase
accordingly, subject to the maximums and the minimums described in the contract. The
non-discretionary formula used in the calculation of the Annual Fee Rate applicable after
the first Benefit Year is of the form

Initial Annual Fee Rate + [0.05%× (Average Value of the VIX− 20)], (2.1)
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where the initial annual fee rate is set to 1.1% for a policyholder aged from 65 to 85 at the
inception of the contract.

In the following, we simplify the above fee-rate formula by assuming a linearity between
the fee rate and the volatility factor to analyze the state-dependent fees in the stochastic
affine model.

2.3 Affine Model

Given a VA fund that is fully invested in a market equity S, we need a model for the
dynamics of the market index. In this chapter, we formulate the VA pricing problem
under the framework of affine models. We use this set-up to analyze VA products with
fees that depend on the market volatility. The advantage of affine models is that they lead
to closed-form representations of characteristic functions. We give a definition of affine
models in Section 2.3.1. In Section 2.3.2, we start with the classic stochastic volatility
model of Heston (1993).

2.3.1 Definition

In this section we introduce affine models, which rank now among the most popular models
in theory and practice. For instance, the very first term structure model, the Vasicek model,
is an affine model. Other popular models such as Cox-Ingersoll-Ross (CIR), Hull-White
(HW) or Longstaff and Schwartz are also of this type. Their popularity is due to the fact
that they often produce explicit formulas for option prices. An affine model is defined as
follows:

Definition 2.3.1. Suppose that a state vector Yt follows

dYt = µ(Yt)dt+ σ(Yt)dW (t). (2.2)

The system (2.2) is said to be of affine form if

µ(Yt) = a0 + a1Yt, for (a0, a1) ∈ Rn ×Rn×n, (2.3)(
σ(Yt)σ(Yt)

T
)
ij

= (c0)ij + (c1)TijYt, with (c0, c1) ∈ Rn×n ×Rn×n×n, (2.4)

for i, j = 1, . . . , n.
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In the class of affine diffusion processes, a closed-form solution of the characteristic
function exists. For any u ∈ Rn, it is known that the discounted joint characteristic
function of Y is given by

φ(u, Yt, t, T ) = EQ [exp
(
−rτ + iuTYT

)
Ft
]

= eA(u,τ)+BT (u,τ)Yt , (2.5)

where τ := T − t and the interest rate r is constant. The coefficients A(u, τ) and BT (u, τ)
have to satisfy the following complex-valued Riccati equation{

d
dτ
B(u, τ) = aT1B(u, τ) + 1

2
B(u, τ)T c1B(u, τ),

d
dτ
A(u, τ) = −r +BT (u, τ)a0 + 1

2
BT (u, τ)c0B(u, τ),

subject to the terminal condition A(u, 0) = 0 and B(u, 0) = iu. In general the solutions
to the above system of ordinary differential equations have to be computed numerically.
However, there are some models for which A and B can be represented in analytical forms.

In the context of affine models with stochastic interest rate, stochastic volatility or
hybrid models with stochastic interest rate and volatility, expression (2.5) provides an
explicit form for the characteristic function of the logarithm of the asset price. Closed-
form prices of European options can be obtained by inverting this characteristic function
(see Duffie, Pan, and Singleton (2000)). Below we derive characteristic functions for models
that we use to analyze VAs with a state-dependent fee structure.

2.3.2 The Affine Heston Model

We consider a probability space (Ω,F ,P) with the natural filtration {Ft, t ≥ 0} for the
stochastic VA fund jointly with its stochastic volatility, where P is the physical probability
measure. In the Heston framework of Christoffersen, Heston, and Jacobs (2013), the VA
fund value Ft has the following dynamics

dFt
Ft

= µdt+
√
vtdW̃x(t), F0 > 0,

dvt = κ∗ (v̄∗ − vt) dt+ γ
√
vtdW̃v(t), v0 > 0,

(2.6)

where µ is the physical return. W̃x(t) and W̃v(t) are two correlated standard Brownian
motions under P with correlation ρ. κ∗ > 0, determines the speed of adjustment of the
volatility towards its long-run mean v̄∗ > 0, and γ > 0 is the volatility of the volatility. The
variance process vt is strictly positive when the Feller condition, 2κ∗v̄∗ > γ2, is satisfied.
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In the Heston model, the risk-neutral measure used for pricing purposes is obtained by
specifying a so-called “market price of volatility risk” Λ(F, v, t); = λ

√
v for some constant λ,

which is assumed to be proportional to the volatility. Then under the resulting risk-neutral
measure Q, the fund value follows the dynamics

dFt
Ft

= rdt+
√
vtdWx(t), F0 > 0,

dvt = κ (v̄ − vt) dt+ γ
√
vtdWv(t), v0 > 0,

(2.7)

where r > 0 is a constant risk-free rate, κ = κ∗+λ, v̄ = κ∗v̄∗/(κ∗+λ), and λ is the volatility
risk premium. Wx(t) and Wv(t) are Q-Brownian motions with dWx(t)dWv(t) = ρx,vdt and
|ρx,v| < 1.

The above model is not in the class of affine processes, whereas under the log-transform
for the underlying asset, xt = logFt, the process becomes{

dxt =
(
r − 1

2
vt
)
dt+

√
vtdWx(t)

dvt = κ (v̄ − vt) dt+ γ
√
vtdWv(t), v0 > 0,

(2.8)

and hence it is affine.

For the option payoff U (x, v, t) on F , the Heston PDE in terms of the log price xt is
given by

∂U

∂t
+

1

2
v
∂2U

∂x2
+

(
r − 1

2
v

)
∂U

∂x
+ργv

∂2U

∂v∂x
+

1

2
γ2v

∂2U

∂v2
−rU+[κ(v̄−v)−λv]

∂U

∂v
= 0. (2.9)

Duffie, Pan, and Singleton (2000) characterized the discounted characteristic function
of the log-price for underlying asset in the Heston model. It has the form of

φH(u, xt, vt, τ) := EQ (exp (−rτ + iuxT )Ft) = exp (A(u, τ) +B(u, τ)xt + C(u, τ)vt) ,
(2.10)

where the functions A(u, τ), B(u, τ) and C(u, τ) are known in closed form. Because of the
form of the characteristic function, we cannot get its inverse analytically, and a numerical
method for integration, such as Fourier methods, has to be used.

According to Heston (1993), an analytical representation of a European call option on
the fund F with no dividend is given by

C(Ft, vt, t, T ) = FtP1 −Ke−r(T−t)P2, (2.11)
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where

Pj(xt, vt, τ,K) =
1

2
+

1

π

∫ ∞
0

<
(
eiu ln(K)φj(u,xt,vt,τ)

iu

)
du,

φj(u, xt, vt, τ) = exp [E(u, τ) + F (u, τ)vt + iuxt] ,

E(u, τ) = ruiτ +
a

σ2

[
(bj − ρσui+ d)τ − 2 ln

(
1− gedτ

1− g

)]
,

F (u, τ) =
bj − ρσui+ d

σ2

[
1− edτ

1− gedτ

]
,

for j = 1, 2, a = κθ, b1 = κ + λ − ρσ, b2 = κ + λ, g =
bj−ρσui+d
bj−ρσui−d , u1 = 1

2
, u2 = −1

2
and

dj =
√

(ρσui− bj)2 − σ2(2ujui− u2).

2.4 Pricing a GMAB with State-dependent Fee

In this section we discuss the problem of pricing a guaranteed minimum accumulation
benefit (GMAB) with state-dependent fees. In Section 2.4.1, we formulate the pricing
problem with state-dependent fees and find the corresponding characteristic function of
the logarithm of the fund value under the Heston-type stochastic volatility model. In
Section 2.4.2, the Black-Scholes Fourier method is introduced for the option pricing using
the characteristic function. In Section 2.4.3, we price the GMAB with a state-dependent
fee structure using the characteristic function derived in Section 2.4.1.

2.4.1 Heston Model with State-dependent Fee

Motivated by Polaris Choice IV, we tie the fee rate with the market condition. We expect
that inclusion of a state-dependent fee will lead to a more adequate coverage of the true
hedging cost of VA guarantees. In general, a state-dependent fee ct(Ft, vt, t) may depend
on the time from inception, the value of the fund Ft and value of “variance” or squared
volatility vt. We consider a simple case where the fee rate is a linear function of the current
market variance, i.e., ct = a+ bvt, a and b > 0 are constant and vt is the squared volatility.
We define Ft(a, b) := Ft assuming that a fee is continuously deducted from the fund value
at the rate ct(vt) := ct = a+ bvt. With a constant risk-free rate r, the drift term of the VA
fund, Ft(a, b), is given by

µt = r − ct = r − a− bvt.
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Then, assuming a Heston model for volatility and using (2.8), we arrive at the following
description of the dynamic of the log price of the fund value dxt =

(
r − ct(vt)−

1

2
vt

)
dt+

√
vtdWx(t) = (r∗ − b∗vt) dt+

√
vtdWx(t),

dvt = κ (v̄ − vt) dt+ γ
√
vtdWv(t), v0 > 0,

(2.12)

where r∗ = r − a, b∗ = b + 1
2

and the correlation is given by dWx(t)dWv(t) = ρx,vdt. Due
to the linear fee structure with respect to the variance, we have a model with an affine
structure.

The corresponding symmetric instantaneous covariance matrix for the stochastic pro-
cess in (2.12) is given by

Σt :=

[
vt ρx,vγvt

ρx,vγvt γ2vt

]
. (2.13)

Checking (2.2), (2.3) and (2.4), we can verify that the process in (2.12) is affine and
thus the characteristic function of xT conditional on xt and vt has the following form

φVA(u, xt, vt, τ) = exp (A(u, τ) +B(u, τ)xt + C(u, τ)vt) . (2.14)

The functions of A(u, τ) =: A(τ), B(u, τ) =: B(τ) and C(u, τ) =: C(τ) for u ∈ R and
τ ≥ 0 in (2.14) for the Heston model with state-dependent fee must satisfy the following
system of ODEs (a similar result can be found in Grzelak and Oosterlee (2011)):

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) =
1

2
B(B − 2b∗) + (ρx,vγB − κ)C +

1

2
γ2C2, C(u, 0) = 0,

A′(τ) = r∗B − r + κv̄C, A(u, 0) = 0,

(2.15)

where κ, v̄,γ and ρx,v are defined in (2.12).

The following proposition provides a closed-form representation of φVA (u, xt, vt, τ) in
(2.14).

Proposition 4. The solution of the ODE system in (2.15) is given by

B(u, τ) = iu,

C(u, τ) =
−a1 − C1

2a2 (1−Ge−C1τ )

(
1− e−C1τ

)
,

47



A(u, τ) =

∫ τ

0

(r∗iu− r)ds+ κv̄

∫ τ

0

C(u, s)ds = (r∗iu− r)τ + κv̄IC(τ),

where the parameters a0 = 1
2
(iu)(iu−2b∗), a1 = ρx,vγ(iu)−κ, a2 = 1

2
γ2, C1 =

√
a2

1 − 4a0a2,

G = −a1−C1

−a1+C1
. and IC(τ) = 1

2a2

[
(−a1 − C1)τ − 2 ln

(
1−Ge−C1τ

1−G

)]
. Thus, the characteristic

function for xT admits the following closed form

φVA(u, xt, vt, τ) = exp (A(u, τ) +B(u, τ)xt + C(u, τ)vt) ,

Proof. Due to the terminal condition B(u, 0) = iu and ∂B(u,τ)
∂τ

= 0, we have B(u, τ) = iu.
For the second ODE, we obtain the following Riccati differential equation with constant
complex-valued coefficients in the form of

∂C(u, τ)

∂τ
= a0 + a1C(u, τ) + a2C

2(u, τ), C(u, 0) = 0. (2.16)

The above Riccati equation can be solved by using a computation software such as Mathe-
matica, and we thus have the explicit formula for C(u, τ) in Proposition 4 with the terminal
condition C(u, 0) = 0.

The solution to the third ODE of A(u, τ) follows directly from the solutions of the first
and the second ODEs.

2.4.2 Pricing of Options using Fourier Analysis

This section employs the Black-Scholes Fourier method for the valuation for a GMAB on
the fund. We first begin with some basic definitions.

Definition 2.4.1. The Fourier Transform F{·} and inverse Fourier transformation F−1{·}
of an integrable function, q(x), are

F{q(x)} =

∫ ∞
−∞

eiuxq(x)dx = φ(u), (2.17)

F−1{φ(u)} =
1

2π

∫ ∞
−∞

e−iuxφ(u)du = q(x). (2.18)

In our framework, we define qT (x) as the risk neutral density function of the logarithm
of the underlying fund, xT = lnFT , for its corresponding characteristic function φVA(u) :=
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φVA(u, xt, vt, τ). We next consider pricing a GMAB using the Black-Scholes Fourier method
such as Ding (2012). Under appropriately modified equivalent probability measures and
letting xT = lnFT (a, b), the price of a European call with spot fund value Ft and log-strike
price g = lnGT is given by

Ct(FT , GT , T ) = e−r(T−t)EQ [(FT −GT )+
]

= e−r(T−t)
∫ ∞

0

(ex −GT )+qT (x)dx

= e−r(T−t)
∫ ∞
g

exqT (x)dx− e−r(T−t)GT

∫ ∞
g

qT (x)dx

= FtP1 − e−r(T−t)GTP2, (2.19)

where the integral e−r(T−t)
∫∞
g
exq(x)dx can be written as FtP1 under the risk-neutral

probability Q. P2 =
∫∞
g
qT (x)dx is the probability Q(xT ≥ g). The characteristic function

for xT = lnFT is φVA(u) =
∫∞
−∞ e

iuxqT (x)dx, and hence

P2 =

∫ ∞
g

(
1

2π

∫ ∞
−∞

e−iuxφVA(u)du

)
dx

=
1

2π

∫ ∞
−∞

φVA(u)

(∫ ∞
g

e−iuxdx

)
du

=
1

2
+

1

π

∫ ∞
0

<
[
e−iugφVA(u)

iu

]
du.

Since the fund value serves as numéraire in P1, we introduce a change of measure from

Q to an equivalent measure Q̃ by a Radon-Nikodym derivative z = dQ̃
dQ = exT

EQ[exT ]
. It is easy

to check that EQ [z] = 1 and z > 0. With this new measure Q̃, the Fourier transform of
P1 is defined as

φ̃VA(u) = EQ̃ [eiuxT ] =

∫ ∞
−∞

eiuxdQ̃(x) =

∫ ∞
−∞

eiux
ex

EQ [exT ]
dQ(x) =

EQ [exT eiuxT ]

EQ [exT ]
=
φVA(u− i)
φVA(−i)

.

Due to the no arbitrage condition EQ[FT ] = Fte
r(T−t), we get φVA(−i) as its character-

istic function and for EQ[exT eiuxT ] we get φVA(u− i). We treat EQ̃[eiuxT ] as a characteristic
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function and invert it accordingly to evaluate the probability

P1 =
1

2
+

1

π

∫ ∞
0

<
[
e−iukφVA(u− i)
iuφVA(−i)

]
du.

Note that the integrals in P1 and P2 can be approximated by Matlab functions using
recursive adaptive Lobatto quadrature to within an error of 10−6 (see for example Gander
and Gautschi (2000)).

2.4.3 Option Pricing in GMAB with State-dependent Fee

In the model (2.12), the dynamic of the fund value Ft in a guaranteed minimum accumu-
lation benefit (GMAB) depends on the market volatility and the state-dependent fee rate.
Given a maturity guarantee GT , the payoff of the GMAB at maturity T is in the form of
max (FT , GT ). The price of the GMAB can be represented either as a sum of a European
call and a discount guaranteed amount or a sum of European put and the initial fund
value. These decompositions are given respectively by

P0 = EQ[e−rT max (FT , GT )] = e−rTEQ[max(FT −GT , 0)] + e−rTGT , (2.20)

and
P0 = e−rTEQ[max(GT − FT , 0)] + e−rTEQ[FT ]. (2.21)

In Proposition 5 below, we present the Black-Scholes Fourier formula based on the
decompositions in (2.20).

Proposition 5. The Black-Scholes Fourier price of a GMAB with the payoff max (FT , GT )
at maturity T and the state-dependent fee structure in (2.12) has the form of

P0 = F0P1 − e−rTGTP2 + e−rTGT , (2.22)

where

P1 =
1

2
+

1

π

∫ ∞
0

<
[
e−iukφVA(u− i)
iuφVA(−i)

]
du,

P2 =
1

2
+

1

π

∫ ∞
0

<
[
e−iukφVA(u)

iu

]
du,

and φVA is the characteristic function given in (2.14).
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2.4.4 Numerical Results

In previous sections, we have developed a pricing method for the GMAB with a state-
dependent fee structure of ct = a + bvt using the Heston model. In the limit when a → 0
and b→ 0, the call price in (2.22) with a state-dependent fee then degenerate to the pricing
with no state-dependent fee in (2.11). By implementing the method we find that the call
price in (2.22) is equal to 32.3 by letting a = b = 0, which is the same as the Heston
call price in (2.11) with the parameters ρxv = −30%, κ = 0.3, γ = 0.5, v̄ = v0 = 0.05,
r = 0.5%, and F0 = GT = 100. Figure 2.1 and Figure 2.2 illustrate the patterns of the VA
call prices and the fund values for different strikes GT and maturities T by specifying a fee
rate in the form of ct = 0.01 + 0.25vt respectively.
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Figure 2.1: VA call prices (in-the-money) obtained by the Black-Scholes Fourier method in
the Heston model with the state-dependent fee structure with the parameters ρxv = −30%,
κ = 0.3, γ = 0.5, v̄ = v0 = 0.05, r = 0.5%, F0 = 100, a = 0.01 and b = 0.25.
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Figure 2.2: VA fund values evaluated at time 0 obtained by the Black-Scholes Fourier
method in the Heston model with the state-dependent fee structure with the parameters
ρxv = −30%, κ = 0.3, γ = 0.5, v̄ = v0 = 0.05, r = 0.5%, F0 = 100, a = 0.01 and b = 0.25.
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2.5 Fee Rate Determination in GMAB

In this section, we study the benefits of charging state-dependent fees in a GMAB contract
when compared to constant fees. We formulate the criteria for the fee rate determination
and consider measuring the risk related to writing a GMAB contract with a state-dependent
fee by the expected shortfall and the Value-at-Risk (VaR) of the difference between the
GMAB liability and the fees to be collected. Charging higher fees from the VA fund value
could be less attractive for the policyholder. We thus study the effect of the fee rate
selection on the fund value.

Unlike standard exchange traded options, most insurance companies charge for the
downside protection by deducting an ongoing fraction of invested assets instead of an
upfront fee (Milevsky and Salisbury, 2006). In other words, a standard guarantee in the
form of an option is financed upfront with a premium which is paid by the buyer of the
option at the inception, whereas a guarantee embedded in a variable annuity is financed
with fees paid by the policyholder during the lifetime of the contract:

P ∗(T, FT , vT ; a, b) ∼ fee(0, T, F0,T , v0,T ;T ), (2.23)

where P ∗(T, FT , vT ; a, b) := (GT − FT )+ denotes the payoff of the GMAB liability put
option at maturity T . In (2.23), fee(0, T, F0,T , v0,T ;T ) denotes the accumulated value at
time T of the fees collected over the entire period [0, T ], in which F0,T and v0,T are the
paths of the fund and the variance in [0, T ] respectively. “ ∼ ” denotes the similarity in
amount that fee(0, T, F0,T , v0,T ;T ) can be financed with state-dependent fees for the put
payoff P ∗(T, FT , vT ; a, b) at T .

The fee(0, T, F0,T , v0,T ;T ) in (2.23) is financed for the purpose of covering the costs of
the GMAB liability put option P ∗(T, FT , vT ; a, b) at maturity T . Any mismatch between
the costs of the liability put option and the fees leads to either overcharging the policyholder
or increasing the hedging difficulty of the issuer when the fees are insufficient. At time
T , we observe that the entire fees collected from 0 to T , fee(0, T, F0,T , v0,T ;T ), can be
decomposed as

fee (0,∆, F0,∆, v0,∆;T ) + fee (∆, T, F∆,T , v∆,T ;T ) ,

where fee (0,∆, F0,∆, v0,∆;T ) denotes the accumulated fees at time T , which are financed
from 0 to ∆. fee (∆, T, F∆,T , v∆,T ;T ) denotes the fees financed from ∆ to T and accumu-
lated to T . The time-T value of fee collected over [0,∆] can be defined as

fee (0,∆, F0,∆, v0,∆;T ) :=

∫ ∆

0

er(T−s)(a+ bvs)Fsds, (2.24)
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Similarly, we define the time-T value of fee collected over [∆, T ] as

fee (∆, T, F∆,T , v∆,T ;T ) :=

∫ T

∆

er(T−s)(a+ bvs)Fsds. (2.25)

We need the above decomposition of fee(0, T, F0,T , v0,T ;T ) for presenting the risk related
to writing a GMAB contract with the state-dependent fees at any ∆, ∆ ∈ [0, T ]. Later we
will use this when formulating a criterion for the fee rate determination.

Definition 2.5.1. Suppose that the fee rate is of the form ct = a+ bvt. The time-∆ value
of expected fee collected from ∆ to time T can be represented as

ξ (∆, T, F∆, v∆; ∆) := EP
[∫ T

∆

e−r(s−∆)(a+ bvs)Fsds|F∆

]
, (2.26)

where the sigma-field F∆ encodes information up to time ∆.

Both the expected fees defined in (2.26) and the corresponding costs of the GMAB
liability put option depend on time, the VA fund value and the market volatility. At
∆ ∈ [0, T ], we are interested in the risk related to writing a GMAB contract, measured
by the proxy liability d(∆) as a difference between the liability put option price and the
expected fees. According to the definition below, d(∆) measures the degree of the expected
fees collected for covering the liability put option at time ∆. Later we will formulate some
criterion on d(∆) to determine the state-dependent fee structure when formulating some
criterion on d(∆). The proxy liability d(∆) is defined in the following way

d(∆) := e−r(T−∆)EP
∆ [P ∗(T, FT , vT ; a, b)− fee(0, T, F0,T , v0,T ;T )]

= e−r(T−∆)EP
∆

P ∗(T, FT , vT ; a, b)− fee (0,∆, F0,∆, v0,∆;T )︸ ︷︷ ︸
known at ∆

−fee (∆, T, F∆,T , v∆,T ;T )


= P ∗(∆, F∆, v∆; a, b)− fee (0,∆, F0,∆, v0,∆; ∆)︸ ︷︷ ︸

cost of put reduced by the fee collected from 0 to ∆

− ξ (∆, T, F∆, v∆; ∆)︸ ︷︷ ︸
expected fee from ∆ to T in money at ∆

, (2.27)

where we define EP
∆ as the expectation evaluated at time ∆ ∈ [0, T ] under the physical

measure P.

In particular, when ∆ = 0

d(0) = P ∗ (0, F0, v0; a, b)− ξ(0, T, F0, v0; 0). (2.28)
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We propose to use Monte Carlo methods to find the representation of ξ (∆, T, F∆, v∆; ∆)
in (2.27), and below we derive an equivalent formula that reduces the computational bur-
den. Recall that the payoff of a GMAB at maturity can be decomposed as

FT + (GT − FT )+ = GT + (FT −GT )+ . (2.29)

Finding values of each component in (2.29) at time ∆ ∈ [0, T ], one obtains

F∆− ξ (∆, T, F∆, v∆; ∆) +P ∗ (∆, F∆, v∆; a, b) = GT e
−r(T−∆) +C∗ (∆, F∆, v∆; a, b) , (2.30)

where C∗ (∆, F∆, v∆; a, b) is the corresponding time-∆ call option price, which can be
evaluated by Equation (2.19). Note that Equation (2.30) is the well-known put-call parity
relationship.

By (2.30), the proxy liability d(∆) in (2.27) can be represented as

d(∆) = C∗(∆, F∆, v∆; a, b) +GT e
−r(T−∆) − F∆ − fee(0,∆, F0,∆, v0,∆; ∆).

Both (2.27) and (2.31) provide a representation of the proxy liability d(∆). By mea-
suring the difference between the liability pt options and the corresponding fees, the third
line in (2.27) appears more straightforward to the nature of d(∆) when compared to the
second line in (2.31). The second line in (2.31) reduces the computational burden with-
out simulating the expected fees in (2.26), while fee(0,∆, F0,∆, v0,∆; ∆) has been realized
from the single path of the fund jointly with the corresponding path of the variance by
∆ ∈ [0, T ]. Later we use (2.31) in the Monte Carlo simulation of the numeric analysis.

Consistency between (2.27) and (2.31). The issuer charges an ongoing fee for the
GMAB policyholder that pays the GMAB put option out. The net liability of a GMAB
at time ∆ should be the cash inflow (fees collected in [∆, T ]) minus that of cash outflows
(reduced costs of put option), which implies (2.27). For the policyholder, the cash outflow
at ∆ is the investment in VA fund F∆ and the realized fees in [0,∆] paying to the issuer
before ∆. The cash inflow that the policyholder receives is the guarantee amount and
the bonus if the fund value at maturity is positive, which implies (2.31). Under the fair
condition, both of the net liabilities at time ∆ to the insurer and the policyholder should
be equal. In particular, d(0) is set to be zero in both representations.
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2.5.1 Comparison between State-dependent Fees and Constant
Fees

Indicated by Polaris Choice IV, the state-dependent fee rate structure of ct = a+bvt is pre-
selected for all new policies. This means the policy issuer will determine the parameters
of a and b prior to the contract sale to the policyholder. Both parameters in the fee
rate structure are assumed to remain the same to each new policyholder whenever his/her
contract comes into effect and whatever the market condition is.

Our goal is to determine the pre-selected fee rate ct under some fair conditions. To show
the advantage of charging the state-dependent fee rate instead of the constant one, we first
simplify the state-dependent fee rate as ct = bvt, that is, we take a = 0. We then determine
the sensitivity parameter b and the constant fee rate c by letting a market-consistent
expected proxy liability, d(0), be zero at time 0. Since the contract has to come into
effect with the pre-selected fee structure even when the market condition changes, we then
compare the effects of charging state-dependent fees and constant ones respectively against
different market conditions. We conclude that the volatility-dependent fee outperform its
constant counterpart when the average volatility is high and vice versa.

Fee rate structure of the form bvt. We first examine a fee rate structure of ct = bvt
by directly associating the fee rate as a fraction of the current variance. We thus define
the market-consistent proxy liability under the state-dependent fee rate of ct = bvt as

db(0) : = P ∗b (0, F0, v0; a = 0, b)− ξ(0, T, F0, v0; 0)

= C∗b (0, F0, v0; a = 0, b) +GT e
−rT − F0, (2.31)

where P ∗b denotes the time-0 price of the GMAB put option under the state-dependent
fee rate ct = bvt. C∗b is the corresponding time-0 call price, which can be evaluated by
Equation (2.19).

Applying the fair condition that the expected fees collected in [0, T ] are equal to the
liability put at time 0, we obtain the value of b∗ that solves (2.31). This condition identifies
b∗ as a root of the equation from

db(0) = P ∗b (0, F0, v0; a = 0, b∗)− ξ(0, T, F0, v0; 0)

= C∗b (0, F0, v0; a = 0, b∗) +GT e
−rT − F0 = 0, (2.32)

There exists a root in (2.32) since the expected fees ξ(0, T, F0, v0; 0) are charged from
the fund by matching the costs of the liability put option P ∗b (0, F0, v0; a = 0, b∗) on the
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fund. An increasing b∗ is expected to raise the level of average fees tied with the market
variance and to reduce the fund value during the contract life. When b∗ increases, both
the expected fees charged from the fund and the costs of the put option will increase until
P ∗b (0, F0, v0; a = 0, b∗) equals ξ(0, T, F0, v0; 0). In (2.32), we solve for b∗ with the call option
C∗b (0, F0, v0; a = 0, b∗) using put-call parity, instead of simulating ξ(0, T, F0, v0; 0) directly
with the put option by Monte Carlo.

To better illustrate the advantage of charging the state-dependent fees, similarly, we
define a market-consistent proxy liability dc(0) under a constant fee rate c as

dc(0) : = P ∗c (0, F0, v0; a = c, b = 0)− ξ(0, T, F0, v0; 0)

= C∗c (0, F0, v0; a = c, b = 0) +GT e
−rT − F0, (2.33)

where P ∗c denotes the time-0 price of the GMAB put option under the constant fee rate
ct = c. C∗c is the corresponding time-0 call price, which can be evaluated by Equation
(2.19).

At time 0, a fair constant fee rate c∗ solves the equation

dc(0) = P ∗c (0, F0, v0; a = c∗, b = 0)− ξ(0, T, F0, v0; 0)

= C∗c (0, F0, v0; a = c∗, b = 0) +GT e
−rT − F0 = 0, (2.34)

We used the equations (2.32) and (2.34) to get b∗ and c∗ for the following values of
the parameters: ρxv = −30%, κ = 3, γ = 0.5, v̄ = v0 = 0.015, r = 2%, F0 = 100,
GT = 100. We find the roots for both equations by using the Matlab “fzero” function. For
the state-dependent fee structure in (2.32), we obtained b∗ = 1.543, while c∗ = 0.0196 for
the constant fee rate. Note that (2.32) and (2.34) imply the same costs of a GMAB to the
policyholder under both fee rate structures.

Next, we show how the proxy liabilities in (2.31) and (2.33) can vary under the constant
and the state-dependent fees respectively for new policies. Since a new policyholder may
purchase/enter the contract at any time, the market conditions may vary from the time
when the pre-selected parameters were set. A desirable pre-selected fee rate structure is
expected to be less sensitive to market conditions so that the pre-selected structure can
provide the policy issuer with the consistent valuation, even under new market conditions.
For example, the proxy liabilities, db(0) and dc(0), can vary from the mean level of market
squared volatility/variance v̄. For the pre-determined parameters of b∗ and c∗, Figure 2.3
illustrates the effect of the proxy liabilities on the change of the mean levels of market
variance in the long term, given the levels of current variance v0. We find that the proxy
liability dc(0) under the constant fee rate increases as a function of the long-term variance
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level v̄ and then becomes positive for the larger mean level to which the volatility reverts.
Under the state-dependent fees, on the contrary, the proxy liability dv(0) turns negative
for the larger mean level of market variance. When db(0) or dc(0) is greater than zero,
the expected fees cannot sufficiently mitigate the costs of the corresponding liability put
option for the issuer at time 0. The above findings suggest that if the long-term mean
variance v̄ is lower than the value of v̄ that we used for solving (2.32) and (2.34), then the
constant fee structure is better for covering the costs of the GMAB liability put option,
while the state-dependent fee structure is better for a higher v̄. All the illustrations in
Figure 2.3 have quite similar shapes and positions whatever the levels of v0 are. Based on
our findings, both the costs of the GMAB liability put option and the total fees financed for
the entire life of the contract are mainly dependent on the level of market mean variance v̄.
Assuming three levels of v̄, the initial variance v0 has very minor impacts on the difference
between the liability guarantee and the fees for a long-term contract life of T = 20 years.
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Figure 2.3: Comparison between the market-consistent proxy liabilities and the current
variance level under the constant fee rate (red line) and state-dependent fee rate (blue
line) respectively, given the levels of current variance v0 = 0.01 (left panel), 0.015 (middle
panel) and 0.03 (right panel) with the parameters of ρxv = −30%, κ = 3, γ = 0.5, r = 2%,
F0 = GT = 100 and T = 20.

Figure 2.4 illustrates the effect that a change of v0 has on the proxy liability. In these
graphs, we consider three different levels of the mean variance, and the equations (2.31) and
(2.33) are solved for v0 with the fee structures that we determined in (2.32) and (2.34).
The illustrations in Figure 2.4 are consistent with the ones in Figure 2.3, in which the
state-dependent fee rate is better than the constant one in the scenario with a higher v̄
and vice versa. In Figure 2.4, db(0) decreases as a function of the current variance v0 and
turns negative for a higher v0 under the state-dependent fees. This also suggests that the
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state-dependent fee rate can be better than its counterpart when the current variance is
higher than the one we used to calculate the fee structure.
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Figure 2.4: Comparison between the market-consistent proxy liabilities and the current
variance level under the constant fee rate (red line) and state-dependent fee rate (blue
line) respectively, given the levels of average variance v̄ = 0.01 (left panel), 0.015 (middle
panel) and 0.03 (right panel) with the parameters of ρxv = −30%, κ = 3, γ = 0.5, r = 2%,
F0 = GT = 100 and T = 20.

In Figure 2.5, we illustrate the patterns of the proxy liabilities on the change of maturity
T under different mean levels of market variance. For a long-term liability, a higher mean
level of the market variance raises the expected state-dependent fees faster, while the
embedded option payoff can be pulled down by a growing fund value by T . Therefore,
either db(0) or dc(0) turns smaller for a larger T . As Figure 2.5 suggests if the mean level
of market variance is lower than the one we used to calculate the fee structure, the constant
fee rate is better than the state-dependent one and vice versa.

According to the previous findings, the mean level of the market variance has a sig-
nificant impact on the associated state-dependent fees in the long run. This can also be
shown from the distributions of the variance process in the Heston model. It is well known
that the transition distribution of vt|vu, where t > u, follows a non-central chi-squared
distribution

vt|vu = v ∼ γ2(1− exp(−κ(t− u)))

4κ
χ2
d (λ) , ν :=

4v̄κ

γ2
, λ :=

4κ exp(−κ(t− u))

γ2(1− exp(−κ(t− u)))
v,

where χ2
ν(λ) denotes the noncentral chi-squared random variable with ν degrees of freedom

and noncentrality parameter λ. For t → ∞, vt converges to the stationary distribution
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Figure 2.5: Comparison between the market-consistent proxy liabilities and the maturity T
under the constant fee rate (red line) and state-dependent fee rate (blue line) respectively,
given the levels of average variance v̄ = 0.01 (left panel), 0.015 (middle panel) and 0.03
(right panel) with the parameters of ρxv = −30%, κ = 3, γ = 0.5, r = 2%, F0 = GT = 100
and v0 = 0.015.

(see for example, Drǎgulescu and Yakovenko (2002))

Π∗(v) =
αα

Γ(α)

vα−1

v̄α
e−αv/v̄, α =

2κv̄

γ2
,

which is the probability density function of a Gamma distribution.

In Figure 2.6, we present both the one-year transition distribution for instantaneous
variance vt and the stationary distribution for the mean level of market variance v̄. We
find that both distributions are much more skewed to the right for higher mean variance
level than those for lower mean variance level. The right skewness of the above variance
distributions suggests that the expected state-dependent fees increase as a function of the
mean level of the market variance v̄.

2.5.2 Determination of a and b

We now generalize the fee rate structure by considering ct = a+bvt, where a 6= 0 and b > 0.
At time ∆ ∈ [0, T ], we want to determine ct by minimizing the risk of the proxy liability
quantified by its expected shortfall E[d+(∆)], where d+(∆) := max (d(∆), 0). By the
definition of the proxy liability d(∆) in (2.27), this ensures that the issuers can optimally
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Figure 2.6: One-year transition probability densities of vt|v0 (left panel) and the corre-
sponding stationary distribution Π∗(v) (right panel).

cover the ongoing GMAB liability put option by collecting expected fees under a given fee
rate structure ct, at a fixed ∆, ∆ ∈ [0, T ]. In practice, the issuers select ∆ in need for the
optimization purpose of ct at a target time. The optimization problem is governed by the
global constraint d(0) = 0 and that leads to the following optimization problem

(a∗, b∗) = arg min
a,b

EP [d+(∆; a, b)
]

(2.35)

with a nonlinear constraint
d(0; a, b) = 0.

Note that we add the arguments of a and b to the notation of expected shortfall d+(∆)
and proxy liability d(0) as d+(∆; a, b) and d(0; a, b) respectively. The expected shortfall is
a coherent risk measure that has good theoretical properties (see, for example, Artzner,
Delbaen, Eber, and Heath (1999) and Acerbi, Nordio, and Sirtori (2001)).

We next determine the pair of (a, b) by solving the problem (2.35). In practice, the issuer
may be faced with minimizing the expected shortfall at different time periods over the life of
the contract. We therefore investigate the fee rate pattern and the corresponding shortfall
risk EP [d+(∆; a, b)] at times ∆ = 0.2, 0.8, 2.0, 2.2, 3.8, 4.0, 4.2, 4.4, 5.0 and 6.0 respectively.

We now explain the numerical procedure that we have used to determine the optimal
pair of a and b for each fixed ∆:
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1. Using the Euler scheme (see for example, Andersen (2008)), simulate a path of the
fund prices Ft (in the form of log-return of the fund value xt) jointly with the variance
process vt, for t ∈ [0, T ], by discretizing the time by N = 100 intervals. We fix the
random numbers for simulating both the underlying and the variance paths under
different state-dependent fees.

2. For a fixed ∆ ∈ [0, T ], determine d(∆; a, b) in (2.31) using the path of the fund
value jointly with the path of the corresponding variance from the previous step. We
approximate fee(0,∆, F0,∆, v0,∆; ∆) in (2.31) by integrating along the fund-value and
volatility paths according to (2.24).

3. Repeat Steps 1 - 2 for M = 50, 000 times and find EP[d+(∆); a, b], as well as the
Value-at-Risk of d(∆; a, b), based on M numbers of d(∆; a, b).

4. Use Matlab “fmincon” function (function-minimization-with constraint) to minimize
EP[d+(∆; a, b)] with the global constraint d(0; a, b) = 0, and thus obtain the optimal
pair (a∗, b∗) at ∆.

5. Given the optimal pair of (a∗, b∗) at ∆, compute the corresponding EP[d+(∆); a∗, b∗]
and the Value-at-Risk of d(∆; a∗, b∗) based on M numbers of d(∆; a∗, b∗).

Given the mean levels of market variance, Figure 2.7 illustrates the feasible pairs of
(a, b) only satisfying the condition d(0; a, b) = 0 at time 0. It shows that the sensitivity
parameter b increases as a function of the location parameter a in the linear fee rate
structure of ct. In the Polaris contract, the location parameter a determines the initial fee
rate, which is then adjusted by the degree of the market variance change associated with
the sensitivity parameter b. Therefore, the larger sensitivity of the state-dependent fees to
the market variance leads to lower initial fees in the contract.

In Table 2.1, the optimal pairs of (a∗, b∗) have been determined for the issuer who wants
to minimize the shortfall risk EP[d+(∆; a, b)] at a specific ∆ ∈ [0, T ], under the condition
that the embedded option is fairly priced at time 0. We observe that the Value-at-Risk
on the proxy liability d(∆; a∗, b∗) turns smaller and becomes negative for the reason that
the state-dependent fee charged in percentage from the fund value can be high in the long
run. As illustrated in Figure 2.8, the distribution of d(∆; a∗, b∗) shifts to the left when ∆
increases. This is because the percentage fee charged from the fund value is significantly
larger than the ongoing GMAB put liability. As shown in Figure 2.9, the fund value
grows well over the time under the physical measure P. By the definition of d(∆; a, b) in
(2.27), the increase of F∆ devalues the reduced liability put option P ∗(∆, F∆, v∆; a, b) −
fee (0,∆, F0,∆, v0,∆; ∆) and increases the expected fees ξ (∆, T, F∆, v∆; ∆) at ∆ ∈ [0, T ].
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Figure 2.7: Plot of feasible pairs of (a, b) constrained by d(0) = 0 with the parameters of
ρxv = −30%, κ = 3, γ = 0.5, v0 = 0.01, r = 2%, F0 = 100, GT = 100, and T = 20, under
v̄ = 0.01, 0.03 and 0.05 respectively.

This implies that the issuer’s ongoing risk related to writing the GMAB contract by ∆ can
be significantly reduced by charging percentage fees.

The pairs of optimal (a∗, b∗) in Table 2.1 are determined at different ∆ that satisfy
the issuer’s need. Alternatively, the issuer may consider minimizing the proxy liability
d(∆; a, b) over a period of time but not limited to a specific ∆. We thus formulate the
optimization problem on averaging the expected shortfalls in the sense that

(a∗, b∗) = arg min
a,b

1

n

n∑
i=1

EP [d+(∆i; a, b)
]

(2.36)

with a nonlinear constraint
d(0; a, b) = 0,

where ∆i ∈ [0, T ] for i = 1, 2, · · · , n.

For example, we take the average of the expected shortfalls in (2.36) based on n = 11
numbers of ∆i, from the time set of {0.2, 0.8, 2, 2.2, 3.8, 4, 4.2, 4.4, 4.6, 5, 6} with the same
parameters as in Table 2.1. This is a subjective choice of the time set, but it illustrates the
feasibility of such an approach. We find the optimal pair of a∗ = 0.0043 and b∗ = 1.2133.
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∆ optimal (a∗, b∗) EP [d+(∆; a∗, b∗)] VaR0.90 (d(∆)) VaR0.95 (d(∆)) VaR0.99 (d(∆))

0.2 (−0.0023, 1.7673) 0.1883 0.4424 0.5394 0.7493
0.8 (−0.0692, 8.2517) 0.1210 0.4557 0.8786 1.7410
2.0 (0.0066, 1.0283) 0.1834 0.7372 1.3302 2.3067
2.2 (0.0069, 1) 0.2394 0.5052 0.6249 0.8791
3.8 (0.0088, 0.8481) 0.0076 -2.6014 -1.8181 -0.6339
4.0 (0.0074, 0.9622) 0.0073 -3.2129 -2.2966 -0.9134
4.2 (0.0057, 1.0958) 0.0056 -3.8236 -2.7442 -1.1093
4.4 (0.0046, 1.1935) 0.0050 -4.6303 -3.3984 -1.5361
4.6 (0.0031, 1.3090) 0.0042 -5.3149 -3.9097 -1.7734
5.0 (0.0012, 1.4669) 0.0034 -7.0832 -5.3604 -2.7361
6.0 (−0.0036, 1.8744) 0.0016 −12.7982 −10.0377 −5.7922

Table 2.1: Optimal pairs of (a∗, b∗) that solve the problem (2.35) with the parameters of
ρxv = −30%, κ = 3, γ = 0.5, v0 = 0.015, v̄ = 0.015, µ = 15%, λ = −0.02, r = 2%,
F0 = 100, GT = 100, and T = 20. N = 100 intervals and M = 50, 000 paths.

The corresponding minimum expected average shortfall is 1
n

∑n
i=1 EP [d+(∆i; a

∗, b∗)] =
0.0707.

Under the higher mean levels of market variance, charging the volatility-dependent fees
reduces the risk of the proxy liability for the issuer by providing more cash flows to cover the
GMAB liability put option. We have determined the optimal state-dependent fee rate by
the optimization on the expected shortfall of the proxy liability. In practice, the optimal fee
rate can be determined by minimizing the expected shortfall of the proxy liability d(∆; a, b)
at a selected ∆ by the issuer. An optimization based on averaging the expected shortfalls
of the proxy liability can provide the issuer with the optimal state-dependent fee rate over
a period of time.

2.5.3 Expected Present Value (EPV) of the VA fund

Although the state-dependent fees vary when the market volatility changes, they reduce
the VA fund value. In a GMAB, the policyholder can receive either the guarantee or the
fund value at maturity, whichever is larger. Therefore, charging higher fees from the fund
value could be less attractive for the policyholder. Thus, we are motivated to study the
effect of the fee rate selection on the fund value.
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Figure 2.8: Probability densities of d(∆) at ∆ = 0.2, 0.8, 2.0, and 4.0 with the correspond-
ing optimal (a∗, b∗).
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Figure 2.9: Probability densities of F∆ at ∆ = 0.2, 0.8, 2.0, and 4.0 with the corresponding
optimal (a∗, b∗).
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Given the characteristic function φVA(u) in (2.14), we can evaluate the EPV of the
GMAB fund with the state-dependent fees. The probability density function of the log-
return of the fund value is given by p(x) = 1

2π

∫∞
−∞ e

−iuxφVA(u)du. The expected present
value of the fund value at time 0 is

e−rTEQ[FT (a, b)] =

∫ ∞
−∞

g(x)p(x)dx =
1

2π

∫ ∞
−∞

∫ ∞
−∞

g(x)e−iuxφVA(u)dudx

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

se−iu(ln s)φVA(u)du
1

s
ds

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−iu(ln s)φVA(u)duds. (2.37)

In Table 2.2, we use the optimal pairs of (a∗, b∗) from Table 2.1 to calculate the EPV
of the fund at ∆ = 0 by (2.37). For a twenty-year lifelong contract, the Heston constant
fee rate of 1.96% returns the EPV of the fund value as 67.57. By charging the volatility-
dependent fees, we observe that the fund value gets lower when the sensitivity parameter
b is larger. Since the market volatility reverts to the mean level, a significant sensitivity
of the state-dependent fees to the volatility enlarges the amount of average fees collected
from the VA fund and that pulls down the fund value fast when the market volatility is
high. To keep the VA contract more attractive, the issuer needs to control the level of
the sensitivity parameter b in his fee rate structure without dampening the fund value too
much to the policyholder. For example, a pair of (a, b) can be selected for matching the
corresponding expected fund value with the one charged by the constant fee rate.

(a∗, b∗) e−rTEQ[FT (a∗, b∗)]

(0.0069, 1) 65.80
(0.0066, 1.0283) 65.67
(0.0031, 1.3090) 65.18

(−0.0023, 1.7673) 64.05
(−0.0692, 8.2517) 46.73

No fee : (0, 0) 100
Heston constant fee : (0.0196, 0) 67.57

Table 2.2: EPV of the fund value, e−rTE[FT (a, b)], with the parameters ρxv = −30%,
κ = 3, γ = 0.5, v̄ = v0 = 0.015, r = 2%, F0 = 100, GT = 100 and T = 20.
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2.6 Concluding Remarks

In this chapter, we propose a new product design that allows to better align the costs of
the VA guarantees and the corresponding fees collected from the policyholder under the
market-consistent conditions. The proposed design has a state-dependent fee linked to
the market volatility and is inspired by designs of recent VAs issued in the U.S. insurance
market.

We have formulated an affine model to tackle the problem of modeling and pricing VAs
with fees tied to market volatility. Then, we have studied the benefits of charging the state-
dependent fee rate in a GMAB contract when compared to its counterpart, the constant
fee rate. Our findings suggest that the mean level of the market variance has a significant
impact on the state-dependent fees in the long run. If the long-term mean variance is
low, the constant fee structure is better for covering the costs of the GMAB liability put
option, while the state-dependent fee structure is better for the higher mean variance.
To determine the state-dependent fee rate, we have formulated the criteria for the fee rate
determination and considered measuring the risk related to writing a GMAB contract with
the state-dependent fee by the expected shortfall and the Value-at-Risk (VaR). Charging
higher fees from the VA fund value could be less attractive for the policyholder. We thus
have studied the effect of the fee rate selection on the fund value. Our numerical results
have shown that, when market volatility becomes high, a significant sensitivity of the state-
dependent fees to the market volatility enlarges the amount of expected fees collected from
the VA fund and that pulls down the fund value very fast. To keep the VA contract more
attractive, the issuer needs to control the level of the sensitivity parameter in his fee rate
structure without dampening the fund value too much to the policyholder.

The proposed state-dependent fee tied to the market volatility aims to facilitate the risk
management of the guarantees but cannot replace a hedging program. It allows the VA
products to automatically “re-price” themselves over time. This is an important advantage
and allows to avoid recent stress of insurers that constantly update the guarantees they offer
and corresponding fees as market conditions change. Our formulation with the proposed
VA products is under the stochastic volatility environment. Stochastic volatility typically
leads to an incomplete market in which perfect hedging strategies do not exist for many
contingent claims. To tackle the hedging issues in the VA program, an optimal static
hedging strategy can be developed as a benchmark to compare to other hedging strategies.
The main idea behind the theory of efficient hedging introduced by Föllmer and Leukert
(2000) is to find a hedge that can minimize the expected shortfall from replication where the
shortfall is weighted by some loss function, given either limited budget or in the incomplete
market. Kolkiewicz (2016) developed a general method of constructing static hedging
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strategies for path-dependent options that minimize the shortfall risk for a given time
interval. In Chapter 4, the optimal static hedging options in the Heston-type stochastic
volatility model will be developed to fulfill the needs for hedging VA products.
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Chapter 3

Reverse Mortgage with Default Risk
Models

3.1 Introduction

A reverse mortgage (RM) is essentially a financial product designed to allow elder home-
owners aged 62 or over to convert the home equity to either a lump sum, annuity payments,
a line of credit or any combination of these. The homeowners retain full ownership of their
property for the whole life of the loan. A reverse mortgage is different from a traditional
mortgage in that it does not require the borrower to make monthly payments to the lender
to repay the loan. Instead, loan proceeds are periodically paid out from the collateral house
value to the borrower. In the United Sates, reverse mortgages are offered by the Home
Equity Conversion Mortgage (HECM) program, which is issued by the Federal Housing Ad-
ministration. According to the recent brief by Moulton and Haurin (2015), only about two
percent of eligible seniors have reverse mortgages, but the demand for reverse mortgages
has generally been rising since 2005, and many anticipate that this trend will continue as
more people reach retirement with inadequate income from traditional sources.

One important feature of reverse mortgage loans is the “non-recourse” property, which
means that the lender can only reclaim the loan by seizing the collateral house but can
never seek out the borrower for any compensation when the house value does not cover
the loans they already paid. With the non-recourse feature, when the loan is terminated,
the borrower only needs to repay the loan amount or proceeds from the sale of the house,
whichever is less. From the lender’s perspective, the non-recourse feature in reverse mort-
gage loans incurs the risk that can be summarized as the “crossover risk” as illustrated in
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Figure 3.1. In the case that the loan value exceeds the collateral house value, the lender
is limited to recover only the proceeds from the sale of the house when a reverse mortgage
loan is terminated. Any excess of the loan value over the house value is then considered
as a loss to the lender. On the other hand, if the loan is terminated before the crossover,
any excess of the proceeds from the sale will revert back to the borrower, rather than be-
coming the lender’s gain. Thus, the crossover risk is unilaterally taken by the lender. The
crossover risk is a combination of three major underlying risks: termination risk, interest
rate risk and house price risk. The termination risk indicates that the borrower could live
in the house too long so that the loan value accumulates to a point where it exceeds the
house value. In the literature, the termination risk typically accounts for a combination of
mortality and mobility. In this chapter, we also consider the risk source from default and
it is directly related to the termination of reverse mortgages. It is obvious that the loan
repayment is capped by the house price. A high interest rate environment and a depressed
real estate market can obviously exacerbate the crossover risk.

Figure 3.1: Illustration of “crossover risk”.

Recently, HECM programs confront a rising default risk in the wake of the financial
crisis, which is jeopardising the financial soundness of reverse mortgages. In reverse mort-
gages, the default risk is the risk that the borrower does not pay the property taxes or the
homeowner’s insurance, or fails to maintain the home in “saleable” condition that causes
the contract termination. This constitutes a violation of the mortgage and the lender can
call the loan due. According to Moulton, Haurin, and Shi (2016), ten percent of all active
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HECM loans were in default, which affected more that 54, 000 senior homeowners in 2013.
The major consequence of defaults on reverse mortgage is the foreclosure. If the foreclosure
is approved, the bank becomes the owner and sells the property through the traditional
route to recoup its loss. After that, the borrower receives the remaining balance amount
from the bank. The borrower must recover the default and pay off the debt in order to
avoid a foreclosure. By law, the lender must allow the borrower to recover the default to
prevent or stop a foreclosure. The U.S. Department of Housing and Urban Development
(HUD) now begins to require lenders to verify that borrowers can afford to pay property
taxes and insurance before selling reverse mortgage (i.e. a mandatory “financial assess-
ment”). If not, the borrowers may be turned down for the loan. The rising default risk is
a serious concern to the social economy. First, the high default rates place more seniors
at risk of foreclosure, creating significant personal and community impact. Second, it cre-
ates mismatch between the cash income and the guarantee to the lenders, and that causes
negative impact on their solvency. In the extreme case, systemic defaults may impair the
soundness of lending institutions and it is costly to the borrower. To mitigate the default
rate, HUD has responded by restricting initial withdrawals and introducing underwriting
criteria. According to the analysis of Moulton, Haurin, and Shi (2016), the combined im-
pact of the policy changes could reduce property tax and insurance default by as much as
50 percent.

In this chapter, we are motivated to determine the reverse mortgage payments according
to borrowers’ individual credit and default risk. We thus propose a new pricing scheme
for the HECM program that allows the loan payments to better reflect the individual
borrower’s default level. From the borrower’s perspective, the newly-designed payment can
be interesting compared to the flat one that is applicable to all the borrowers in the current
HECM program. Such pricing scheme is also expected to provide a risk sharing mechanism
between the lender and the borrower by shifting default risk to the insured. Due to the
complexity of reverse mortgages, pricing these contracts typically involves statistical and
stochastic models in analytic studies. For example, Chen, Cox, and Wang (2010) price the
non-recourse provision of reverse mortgages and compare it with the insurance premiums.
They use a generalized Lee-Carter model with asymmetric jump effects to fit the mortality
data and model the house price index via an ARIMA-GARCH process. Lee, Wang, and
Huang (2012) propose a valuation framework with mortality risk, interest rate risk and
housing price risk to determine the premiums when the present value of premiums equals
the present value of contingent losses. Ji, Hardy, and Li (2012) develop a semi-Markov
multiple state model to determine the premiums for the No-Negative-Equity-Guarantee in
reverse mortgages. Kogure, Li, and Kamiya (2014) use a Bayesian multivariate framework
that involves several risks of mortality rates, interest rates and house prices to determine the
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insurance premiums in the reverse mortgages. Shao, Hanewald, and Sherris (2015) analyze
the combined impact of house price risk and longevity risk on the pricing and risk profile
of reverse mortgage loans in a stochastic multi-period model. These studies determine the
insurance premiums or the fair loan payments in the absence of modelling the default risk
of the borrower. However, as a credit product, the scheduled payment (pricing) on a reverse
mortgage is expected to reflect the borrower’s default risk. In practice, the lender is willing
to enroll the borrowers with low-default risk to secure the solvency of the program. Some
recent empirical studies begin to investigate the financial demand and outcomes of reverse
mortgage loans in the presence of default risk and mortality risk. For example, Moulton,
Haurin, and Shi (2016) identify factors associated with reverse mortgage default, including
large upfront withdrawals from the HECM, lower initial credit scores, high property taxes
relative to income, low levels of available revolving credit, and a prior history of delinquency
on the mortgage or property taxes. Nakajima and Telyukova (2017) find that poor health
will be one of the most influential factors that drive seniors to take out a reverse mortgage,
with the intent of using home equity to help offset current and future medial expenses.
Moulton, Loibl, and Haurin (2017) estimate potential demand in reverse mortgages based
on their survey data of the senior population. Loibl, Haurin, Brown, and Moulton (2018)
analyze the long-term borrowers’ outcomes of reverse mortgage contracts as a financing
tool. By considering an annuity reverse mortgage with default risk, the borrower will receive
annuity payments when she survives without default and a non-negative balance when she
is in foreclosure or dies before default. Our pricing scheme initiates to customize the fair
annuity loan payments according to the level of the borrower’s default risk and provides the
lender with a better payment arrangement from the perspective of risk management. This
pricing method can also be extended to find the fair annuity loan payments in accordance
with the level of borrower’s mortality risk and health conditions.

The contributions of this research are threefold. First, we propose a pricing approach
for deriving a fair level of periodic annuity payments under the prevalent HECM program
in the presence of default risk from the borrower. This pricing allows HECM to provide
the market fair payments depending on the borrower’s default risk. Second, the proposed
pricing formula achieves an analytic solution for reverse annuity mortgages in the presence
of default risk. This allows to investigate the relation between fair payments and risk
factors. Third, we introduce a rating scheme for the reverse mortgage contract to enhance
the application of our pricing scheme in practice. Our model suggested in this chapter
offers a great degree of flexibility regarding the assumptions about the risk factors while
keeping analytical tractability.

The remaining body of this chapter is organized as follows. In Section 3.2, we formulate
the pricing problem through a different perspective from the existing literature, in which
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the modelling of default risk is naturally implemented in Section 3.3. We specify various
risks involved in the HECM program and provide the model assumptions in Section 3.4.
In Section 3.5, we characterize the pricing of defaultable reverse mortgage and investigate
the interaction among fair loan payments and risk factors such as mortality rate, interest
rate and hazard rate. In Section 3.6, we introduce a rating scheme to the current HECM
program for enhancing the application of the pricing method. Section 3.7 concludes the
chapter.

3.2 Problem Setup

In this section, we consider a reverse mortgage (RM) contract, in which the collateral
house value can be converted into initial withdrawals, periodic annuity payments and a
non-negative balance as a loan payable to the borrower during the lifetime of the contract.
Given an initial withdrawal, the pricing of an RM contract is equivalent to finding the rate
for the periodic annuity loan payments. We use the following notations: H(t) is the spot
price of the collateral house price at time t, t ∈ [0, T ]. L(t) is the accumulated annuity
loan payments of an RM contract at the same date t, t ∈ [0, T ], prior to the maturity
T . π(0) is the initial lump-sum withdrawal by the borrower at inception of the contract.
The outstanding RM contract value after the immediate initial withdrawal is defined as
H̃(0) := H(0)−π(0). For t ∈ [0, T ], we define the outstanding RM contract value as H̃(t),
which fully tracks the price change of the collateral house H(t). The non-negative balance

at time t is thus defined as Bal(t) :=
(
H̃(t)− L(t)

)+

, t ∈ [0, T ].

Since the collateral house is the only asset that lenders may use to reclaim the loan,
the lender faces a so-called “crossover risk” when the accumulated annuity loan payments
L(t) exceed the value of the outstanding RM contract H̃(t). For t ∈ [0, T ], the crossover
risk is defined as

Loss(t) :=
(
L(t)− H̃(t)

)+

, (3.1)

which is the loss that the lender faces at time t.

Many lenders are unwilling to enter the market, for fear of crossover risk caused by
the non-recourse clause. To encourage the lenders to participate and offer RMs, premium
charges will be collected to compensate for the crossover risk unilaterally taken by lenders.
In accordance with the principle that the present value of an insurance premium equals
the present value of the expected loss, we assume that the RM contract will be terminated
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by its maturity T . Then, we obtain

EPV of premium charges = EPV of
(
L(T )− H̃(T )

)+

. (3.2)

The premiums for the crossover risk in (3.2) are charged by taking values from the
borrower’s collateral house to the lender until the maturity T . In the HECM program, an
initial charge equals 100p0% of the initial house value H(0) at the inception of the contract,
and the annual premium is 100pa% of the outstanding contract value H̃(t). It is clear that
more premium charges should be taken for more significant crossover risk.

The non-recourse clause benefits the RM borrower when the accumulated annuity loan
payments L(T ) exceeds the outstanding contract value H̃(T ). In such a case, at maturity
T , the borrower only needs to repay the amount of H̃(T ) at most. When the crossover risk
does not occur, the borrower pays back the value of L(T ) and keeps the remaining positive
balance H̃(T ) − L(T ) after the sale of the collateral house by the lender. At maturity T ,
the borrower repays the RM lender with the amount

min
(
L(T ), H̃(T )

)
,

and thus the borrower’s remaining non-negative balance value is given by

Bal(T ) = H̃(T )−min
(
L(T ), H̃(T )

)
=
(
H̃(T )− L(T )

)+

. (3.3)

Due to the non-recourse feature, after the initial withdrawal π(0), the borrower will re-
ceive either the amount of accumulated annuity loan payments or the outstanding contract
value at maturity, whichever is more:

max
(
L(T ), H̃(T )

)
= L(T ) +

(
H̃(T )− L(T )

)+

= L(T ) +Bal(T ). (3.4)

The initial contract value of RM, H(0, T ), is thus given by

H(0, T ) : = π(0) + EPV of max
(
L(T ), H̃(T )

)
+ EPV of premium charges

= π(0) + EPV of L(T ) + EPV of Bal(T ) + EPV of Loss(T ).

(3.5)

As illustrated in Figure 3.2, the right-hand side of the second equation in (3.5) represents
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the expected values of discounted cash flow claims during the lifetime of a defautable
RM contract. The first three terms include the borrower’s loan reception of the initial
withdrawals, the annuity loan payments and the non-negative balance amount when the
contract is due. These terms indicate that the RM contract can be treated as a scheduled
long-term debt in the form of loan payments by the policy issuer (lender) to the borrower.
We thus can formulate the pricing issue on reverse mortgages in the spirit of Madan, Bakshi,
and Zhang (2006), where the defaultable long-term corporate bond has been formulated and
priced. The fourth term of the second equation in (3.5) represents the costs of the crossover
risk defined in (3.1), which are paid as premiums to the lender by taking values from the
borrower’s collateral house. In particular, the crossover risk can be caused by the borrower’s
default, which results in the early termination of the RM contract. Therefore, the costs of
the crossover risk depend on both the payoff and the conditioning event (default), and have
to be priced accordingly. In reverse mortgages, the default risk is the one that the borrower
does not pay the property taxes or homeowner’s insurance, or fails to maintain the home in
“saleable” condition that causes the contract termination by foreclosure. If the foreclosure
is approved, the bank becomes the owner and sells the property through the traditional
route to recoup its loss. To encourage the borrowers out of default, the borrowers are
expected to be rewarded when they maintain the RM contract well without default. On
the contrary, the lenders are expected to penalize the borrowers for the default at which
time the lenders’ hedging becomes more difficult. By the introduction of default probability,
we propose to find a fair annuity loan payment schedule that provides a better alignment
between the borrower’s default risk and the annuity loan payment in a defaultable RM
contract.

3.3 Reverse Mortgage with Default Risk

In this section, we propose a model for default risk in reverse mortgage contracts with the
pricing scheme in (3.5). As we demonstrate below, our model leads to analytical pricing
formulae.

Let τ denote the random time when default occurs before the termination of the contract
at T . We then associate the unit step function χ(t) with τ :

χ(t) =

{
1 t ≥ τ,

0 otherwise.
(3.6)
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Figure 3.2: Composition of a reverse mortgage contract value.

For spot interest rate r(t), let b(t) := exp
(∫ t

0
r(s)ds

)
be the accumulation of the

money market account. Denote by {c(t) : t > 0} the rate of continuous-annuity payment.
Then, for t ∈ [0, T ], the accumulated annuity loan payments can be represented as L(t) =∫ t

0
b(t)
b(s)

c(s)ds. Under the risk-neutral valuation, the time-0 contract value of the defaultable
reverse mortgage with a random default time τ and contract duration T from time 0 is
then given by

H(0, T ) = π(0) + EQ
[∫ T

0
upx

1

b(u)
c(u)1{τ≥u}du

]
+ EQ

[∫ T

0
upxµu

1

b(u)
Bal(u)1{τ≥u}du

]
+ EQ

[∫ T

0
upxµu

1

b(u)
Loss(u)1{τ≥u}du

]
+ EQ

[∫ T

0
upx

1

b(u)
(1− w(u))Bal(u)fτ (u)du

]
+ EQ

[∫ T

0
upx

1

b(u)
(1− w(u))Loss(u)fτ (u)du

]
, (3.7)
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where EQ is the expectation operator under the pricing measure Q. fτ (t) is the probability
density function of τ . π(0) is the initial lump-sum withdrawal amount at time 0. tpx is
the survival probability that age (x) survives until time t. µt is the force of mortality of
age (x) at time t. w(t) is the recovery rate that enables the borrowers to recover their
defaults before foreclosure. In practice, the maturity T is the limiting year, at which time
the survival probability, Tpx, for age (x) is zero.

The first three expectations in (3.7) refer to the cash flows before the default occurs,
while the cash flows at the occurrence of the default can be represented by the last two
expectations in (3.7). In the absence of default, the cash flows include the receipts of
annuity payments when the borrower is alive, the non-negative balance amount when
the contract is due, and the corresponding premiums for the crossover risk at borrower’s
death. To be specific, the first expectation accounts for the borrower’s receipt of annuity
payments prior to default when he is alive. The second and third expectations amount to
the EPV of the non-negative balance and the corresponding premiums for the crossover
risk at borrower’s death prior to his default respectively. In the presence of default at
which time the borrower is still alive, the foreclosure (due) payout to the borrower and the
corresponding premiums for the crossover risk at his default are respectively represented
by the fourth and fifth expectations. We assume that the due payouts for both death
and default by the borrower amount to the same values as the non-negative balance value
Bal(t).

For a surprise default time that is a stopping time, there exists a positive process h(t),
called the hazard rate process, such that χ(t) −

∫ t
0

(1− χ(s))h(s)ds is a martingale (see
Bielecki and Rutkowski (2013) for example). We refer to h(t) as a risk-neutral hazard
rate process under Q. For simplicity, we assume that the default does not depend on the
loan status, the house price, mortality and interest rate but rather only depends on the
borrower’s ability to maintain the house out of foreclosure. And thus, the hazard rate
process h(t) is independent of other variables in our model. Heuristically speaking, h(t)dt
models the probability of default in the interval (t, t+ dt), the instantaneous likelihood of
default. We thus have

P (τ ≥ t) = EQ [1− χ(t)] = exp

(
−
∫ t

0

h(s)ds

)
, (3.8)

and the probability density function for τ

fτ (t) = −dP (τ ≥ t)

dt
= h(t) exp

(
−
∫ t

0

h(s)ds

)
. (3.9)
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In particular, assuming that h(t) = h > 0 is constant, one obtains

P (τ ≥ t) = e−ht and fτ (t) = he−ht. (3.10)

By substituting (3.8) into (3.7), it follows that

H(0, T ) = π(0) + EQ
[∫ T

0
upx

1

b(u)
P (τ ≥ u) c(u)du

]
+ EQ

[(∫ T

0
upx

1

b(u)
P (τ ≥ u) + upx

1

b(u)
(1− w(u))fτ (u)

)
Bal(u)du

]
+ EQ

[(∫ T

0
upx

1

b(u)
P (τ ≥ u) + upx

1

b(u)
(1− w(u))fτ (u)

)
Loss(u)du

]
= π(0) + EQ

[∫ T

0
upx

1

b(u)
exp

(
−
∫ u

0

h(s)ds

)
c(u)du

]
+ EQ

[∫ T

0

(h(u)(1− w(u)) + µu) upx
1

b(u)
exp

(
−
∫ u

0

h(s)ds

)
(Bal(u) + Loss(u)) du

]
.

(3.11)

The pricing equation (3.11) reduces the problem of pricing a defaultable reverse mortgage
contract to that of pricing non-defaultable one with an altered discount rate and cash flow
claims. In particular, the corresponding expression for a non-defaultable reverse mortgage
contract can be simplified as

H(0, T ) = π(0) + EQ
[∫ T

0
upx

1

b(u)
c(u)du

]
+ EQ

[∫ T

0
upxµu

1

b(u)
Bal(u)du

]
+ EQ

[∫ T

0
upxµu

1

b(u)
Loss(u)du

]
. (3.12)

The three expectations in (3.12) represent the cash flows for a non-defaultable RM
contract. The first expectation accounts for the borrower’s receipt of the annuity loan
payment when he is alive. The second expectation represents the return of the borrower’s
non-negative balance amount for his death and the corresponding premiums, which are
payable to the issuer for the crossover risk due to the contract termination, can be repre-
sented by the third expectation.
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3.4 Model Specifications and Assumptions

In this section, we propose a model to evaluate the defaultable RM contract in (3.11). In
our problem, RM lenders face four main sources of risk: house price risk, interest rate risk,
mortality risk and default risk in a reverse annuity mortgage. We incorporate these risk
factors in the valuation of an RM contract. Next, we specify the corresponding models for
these risk factors to provide an analytical formula of our defaultable RM contract.

3.4.1 House Price Dynamics

The existing literature pertaining to house price modelling suggests two perspectives. First,
discrete time models assume that the house price returns exhibit autocorrelation (Case and
Shiller (1989) and Ito and Hirono (1993) for example) and generalized autoregressive con-
ditional heteroscedasticity (e.g. Nothaft, Gao, and Wang (1995), Chen, Cox, and Wang
(2010) and Li, Hardy, and Tan (2010)). Second, continuous time models employ tradi-
tional geometric Brownian motion or a jump diffusion model to capture the dynamics of
house prices (see Kau, Keenan, Muller, and Epperson (1992), Bardhan, Karapandža, and
Urošević (2006) and Lee, Wang, and Huang (2012)).

We assume that the logarithm of outstanding RM contract value x(t) = ln H̃(t) follows
a geometric Brownian motion. Under the risk-neutral measure Q, the model is then written
in the following way:

dx(t) =

(
r − δ − 1

2
σ2
x

)
dt+ σxdWx(t), (3.13)

where r is the constant risk-free rate, δ is the constant rental rate (or maintenance yield)
for the house, σx is the volatility of house prices, and Wx(t) is a Wiener process under the
risk-neutral measure Q. We model H̃(t) as a geometric Brownian motion, which seems a
simple and analytically tractable yet adequate choice commonly used in the literature such
as Bardhan, Karapandža, and Urošević (2006).

3.4.2 Mortality Models

As mortality rates continue to improve, longevity risks are critical. In recent years, financial
markets have produced solutions by providing a variety of securities with payoffs tied to
certain mortality or longevity indexes and reverse mortgage is typically a good example.
To implement the no arbitrage approach on pricing a mortality-linked product, the first
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step is to estimate the distribution of future mortality rates in the real-world probability
measure. Then the real-world distribution is transformed to its risk-neutral counterpart.
Modelling for the mortality rate and the survival probability can be widely selected. For
instance, in the constant force of mortality model we assume the mortality rate µx = µ,
x > 0, and thus the survival probability tpx = e−µt. In the Makeham model, µx =
A + BCx and tpx = StgC

x(Ct−1), in which A, B and C are constant, S = e−A and g =
exp (−B/ lnC). In the Gompertz model, the mortality µx = αβx, such that the survival

probability tpx = exp
(
−α
lnβ
βx(βt − 1)

)
. In this chapter, we focus on static mortality models

such as constant force of mortality and the Makeham model for the purpose of illustration.
Moreover, our pricing of defaultable reverse mortgages can also be extended to use any
stochastic mortality models such as the Lee-Carter model and the Cairns-Blake-Dowd
(CBD) stochastic mortality model, which are defined in the real-world measure and fitted
to past data.

3.4.3 Other Assumptions and Pricing Formula

In the literature, the hazard rate h(t) can be modeled as a stochastic process, either a mean-
reverting process or a function associated with other stochastic variables. In particular, the
default follows a time-homogeneous Poisson process when the hazard rate h is constant.
A time-inhomogeneous Poisson process is generalized by assuming that the hazard rate
takes a deterministic form of h(t), which is commonly used for the term structure of credit
spreads. Cox process is usually used for modeling the stochastic hazard rate. Our goal
is to find the annuity payment c(t) of reverse mortgages in the presence of default risk
(refers to the level of hazard rate h(t)). For the purpose of illustration, we investigate
with a constant annuity payment rate c(t) = c under the assumption of a constant hazard
rate h(t) = h. With the constant annuity payment rate c, the accumulated annuity loan
payment at time t is given by

L(t) = c×
∫ t

0

e
∫ t
s (r+πr)duds = c×

(
e(r+πr)t − 1

r + πr

)
,

where r is the risk-free rate and πr is the interest rate spread. We also assume that the
recovery rate satisfies w(t) = w for the defaultable reverse mortgage contracts and there
is no rental rate or maintenance yield of the house so that δ = 0. We hereby revise the
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pricing formula in (3.11) in the following way

H(0, T ) = π(0) + c×
∫ T

0
upxe

−(h+r)udu

+ EQ
[∫ T

0

(h(1− w) + µu) upxe
−hue−ru (Bal(u) + Loss(u)) du

]
, (3.14)

where tpx and µt follow the selected law of mortality.

3.5 Characterizing Defaultable Reverse Mortgage Prices

In this section, we further develop the pricing formula in (3.14) and determine the fair
annuity payment by introducing default risk for the existing HECM program. Then, we
study the effect of the fair annuity payment on the risk factors using the proposed formula.

Based on the model assumptions in Section 3.4, the payoffs of Bal(u) and Loss(u),
independent of other model parameters in (3.14), are the only random sources. Thus, the
expectations on the discounted payoffs of Bal(u) and Loss(u) can be characterized as call
and put options respectively, with the underlying H̃(u) and the deterministic strike L(u)
in the Black-Scholes setting. We then evaluate the corresponding prices of call and put
options as follows:

C
(
H̃(0), L(u), 0, u

)
: = e−ruEQ [Bal(u)] = e−ruEQ

[(
H̃(u)− L(u)

)+
]

= H̃(0)e−δuΦ (d1)− c×
(
eπru − e−ru

r + πr

)
Φ (d2) , (3.15)

and

P
(
H̃(0), L(u), 0, u

)
: = e−ruEQ [Loss(u)] = e−ruEQ

[(
L(u)− H̃(u)

)+
]

= c×
(
eπru − e−ru

r + πr

)
Φ(−d2)− H̃(0)e−δtΦ(−d1), (3.16)

where d1 =
ln
(
H̃(0)
L(u)

)
+(r+

σ2x
2

)u

σx
√
u

and d2 = d1 − σx
√
u. Φ is the standard normal cumulative

distribution function.
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We thus have proven the following Proposition 6, which provides the solution for evalu-
ating the initial contract value H(0, T ). Note that the annuity payment rate c also appears
inside the pricing formulas for the calls and puts defined in (3.15) and (3.16) respectively.
By equating H(0, T ) with the house price H(0) at time 0, we find out the fair annuity
payment c given the level of default risk for the reverse annuity mortgage contract.

Proposition 6. The following pricing result of the reverse mortgage H(0, T ) is obtained
by (3.11), equation (3.15) and equation (3.16):

H(0, T ) = π(0) + c×
∫ T

0
upxe

−(h+r)udu

+

∫ T

0

(h(1− w) + µu)upxe
−hu
(
C(H̃(0), L(u), 0, u) + P(H̃(0), L(u), 0, u)

)
du.

(3.17)

The fair regular annuity payment rate c is determined by equating the contract value
H(0, T ) with the house price H(0) at the inception of the contract at time 0.

Based on Proposition 6, we determine the fair RM annuity payment c in accordance
with the borrower’s level of default risk (refer to the level of the hazard rate h). We
use the parameters r = 0.01, πr = 0.02, δ = 0, σx = 0.8, H(0) = 1, 000, 000, T = 25,
µ = 0.01, π(0) = 100, 000, w = 0.1, A = 0.00022, B = 2.7 × 10−6, C = 1.124 and age
x = 62. The above set of parameters is used for the purpose of illustration. We can
verify the results by the Implicit Function Theorem with a broad range of parameters in
the Appendix. In Figure 3.3, we find that in both the constant force of mortality and
Makeham models, the fair payment c first decreases and then increases by h. Note that
we will ignore the increasing phase because the increasing amount of payment inspires the
moral hazard from the borrower with high-default risk and he will stay in the program
longer to get more loans. In practice, the lender will not accept the high-default profiles to
the program. In the decreasing phase, the lender offers a smaller amount of loan payment
by reducing the annuity payment rate to the borrower in higher-default profile.

Empirical studies such as Moulton and Haurin (2015) show that larger initial with-
drawals leads to higher default risk in the RM contract. To secure the HECM program’s
solvency, HUD now restricts the amount that a borrower can withdraw as a lump sum at
the inception of RM loans to 60 percent of the initial collateral house value. Our results
are consistent with the evidence and provide further implications among the default risk,
loan payment and other risk factors. We summarize the findings as follows:
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(1) In Figure 3.4, the hazard rate h increases by the amount of initial withdrawal π(0)
given the level of annuity loan payments satisfying Proposition 6.

(2) In Figure 3.5, the hazard rate h is decreasing in the level of the interest rate r given
the level of annuity loan payments satisfying Proposition 6.

(3) In Figure 3.6, we take the constant force of mortality as an example and investigate the
relation between the mortality and the annuity payment given the levels of the hazard
rate. The annuity payment c is first decreasing and then increasing with respect to
the force of mortality µ.

From the above observation (1), the larger initial withdrawal implies a higher level
of potential default risk by the borrower. This verifies that the policy restriction on the
initial withdrawals by HUD is an effective approach to secure a certain level of the default
risk in the HECM program. The outstanding RM contract H̃(t) becomes less valuable
after a larger initial withdrawal. Then, given a fixed annuity loan payment schedule, the
payoff of the crossover risk in (3.1) becomes more costly, which encourages the borrower to
terminate the contract early by default, for reducing the premiums periodically taken from
his collateral house. The observation (2) implies that the default risk is potentially low
when the market risk-free rate hikes. In the market of high interest rate, the loan payments
from reverse mortgages will accumulate fast. The borrower is willing to stay longer in the
program to receive stable income under the insufficient market liquidity. This potentially
reduces the chance of default by the borrower, but also it may increase the crossover risk
to the insurer at maturity. On the other hand, the borrower is willing to default when the
interest rates are low, at which time the loan payments from the reverse mortgages will
accumulate slowly. Therefore, the lender needs to be more cautious on the solvency of the
HECM program when the default occurs in this period. For the observation (3), we ignore
the increasing phase assuming that the lender is unwilling to offer the RM to the high-
mortality risk profile. Based on the findings by Nakajima and Telyukova (2017) that the
mortality risk (refers to health condition) is one of the most influential factors that drive
seniors to take out a reverse mortgage, the decreasing phase indicates that the borrower
will be authorized smaller annuity loan payments when the borrower is more likely to die
or in poor health condition. Such loan arrangement relieves the hedging difficulty for the
lender in the event of the borrower’s death or poor health condition. The mortality works
the same pattern as the hazard rate to the annuity payment rate because both of them
can be counted as the risk sources of termination in reverse mortgages.
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Figure 3.3: Relations between annual payment c in ten thousands and hazard rate h
under the constant force of mortality (left panel) and the Makeham model (right panel)
respectively.
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Figure 3.4: Relations between hazard rate h and initial withdrawal π(0) in ten thousands
with different annual payment level c under the constant force of mortality (left panel)
and the Makeham model (right panel) respectively with the parameters πr = 0.02, δ = 0,
σx = 0.8, H(0) = 1, 000, 000, T = 25, µ = 0.01, w = 0.1, A = 0.00022, B = 2.7 × 10−6,
C = 1.124 and age x = 62.
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Figure 3.5: Relations between hazard rate h and interest rate r with different annual
payment level c in ten thousands under the constant force of mortality (left panel) and
the Makeham model (right panel) respectively with the parameters πr = 0.02, δ = 0,
σx = 0.8, H(0) = 1, 000, 000, T = 25, µ = 0.01, π(0) = 100, 000, w = 0.1, A = 0.00022,
B = 2.7× 10−6, C = 1.124 and age x = 62.
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Figure 3.6: Relations between constant force of mortality µ and annual payment level c
in ten thousands with different default levels h with the parameters r = 0.01, πr = 0.02,
δ = 0, σx = 0.8, H(0) = 1, 000, 000, T = 25, π(0) = 100, 000 and w = 0.1.
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3.6 Determination of the Hazard Rates

In the previous sections, we have described a new product design for the reverse annuity
mortgages with fixed default probabilities under the risk-neutral probability measure Q.
To enhance the application on the proposed pricing, we design a default rating scheme of
projecting the actual hazard rate in Section 3.6.1. In Section 3.6.2, we propose a parametric
estimation to calibrate the actual hazard rate through the market experience. In Section
3.6.3, we make use of a distortion operator such as the Wang transform to create a risk-
neutral measure Q from the physical measure P and thus obtain a risk-neutral hazard rate
that will be used for pricing from the calibrated actual one.

3.6.1 Design for Default Rating

Denote by hP and hQ the hazard rates under the physical and risk-neutral measures re-
spectively. We propose to determine hP in reverse mortgage contracts from certain rating
categories by the lender. This means the lender can group similar defaultable reverse mort-
gage contracts based on a thorough credit rating of the various elements of the transaction
to assess the borrowers’ default risks. Then, we find hP based on the default history under
the specific category that the target borrower’s rating lies in. A credit rating is an eval-
uation of the credit risk of a prospective debtor (an individual, a business, company or a
government), predicting their ability to pay back the debt, and an implicit forecast of the
likelihood of the debtor defaulting. The current credit ratings in reverse mortgage markets
mainly focus on assessing the likelihood of full repayment from the lender of the original
loans and any accrued interest when the home is due (for example, see the DBRS Rating
process1 and Moody’s global methodology2 for rating reverse mortgage securitizations). As
HECM program begins improving the underwriting criteria for selection of the default risk
profile, it is also possible for rating agencies to serve the needs of market participants by
default ratings for the chance of foreclosure, depending on their credit profile with relevant
risk components such as credit score, prior delinquency on mortgage debt, the presence of
a prior tax lien, and the property tax burden as suggested by Moulton and Haurin (2015).

The reverse mortgage lender may collect the default experience from a similar risk
category and then calibrate the default probabilities based on the market data. In Table

1The introduction to DBRS rating system is available at http://www.dbrs.com/research/230124/

rating-reverse-mortgage-transactions-in-canada-archived.pdf.
2The introduction to Moody’s rating system is available at https://www.moodys.com/research/

Moodys-publishes-global-methodology-for-rating-reverse-mortgage-securitizations--PR_

325140.
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3.1, we have simulated ten censored observations in 25 years life-long reverse mortgage
contracts under a rating category “B”. The durations of both uncensored and censored
observations are presented, in which “1” accounts for the status that the default occurs
before the end of the contract, and otherwise, the status is noted by “0”.

Reverse Mortgage Contracts in Rating Category “B”
Contract Number Duration Default Status

1 25 0
2 21 1
3 23 1
4 25 0
5 20 1
6 25 0
7 23 1
8 25 0
9 25 0
10 25 0

Table 3.1: Simulated censored observations on reverse mortgage contracts in rating cate-
gory “B”. “1” for contract with default and “0” for one without default.

3.6.2 Maximum Likelihood Estimation for hP

Next we use the maximum likelihood estimation (MLE) method for estimation on the
constant hazard rate hP. The MLE method is well known in the literature of survival
analysis such as McLachlan and McGiffin (1994). Given the observations, it aims to find the
parameter values that maximize the likelihood function. For uncensored observations, the
probability of a contract that defaults at the end of its duration is given by the probability
density function f(t) evaluated at time ti. For censored observations, the probability of a
duration greater than ti is given by the survival function S(t) evaluated at time ti. Now
suppose that we have r uncensored observations and n − r censored observations with
parameters θ. Then, we write the likelihood function as

L (θ; t1, · · · , tn) =
r∏
i=1

f (ti|θ)
n∏

i=r+1

S (ti|θ) .
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In this section, we estimate solely the hazard rate by MLE, which is independent of
the borrower’s mortality rate to be estimated in Section 3.6.3. For a constant hazard
rate h(t) = h, the default density function is f(t) = he−ht and the survival function is
S(t) = e−ht. The likelihood function for the data in Table 3.1 is L(h) = e−h·25 × he−h·21 ×
· · · × e−h·25 = h4e−h·237. By solving for equation dL/dh = 0, we obtain hP = 0.0169 that
maximizes the likelihood function.

3.6.3 From hP to hQ

In Section 3.6.2, we discuss a method of estimation for the hazard rate hP. To address
the pricing issue with the hazard rate hQ under the risk-neutral measure, we propose to
make use of a distortion operator such as the Wang transform (Wang (2000)) to create a
risk-neutral measure Q, under which the mortality and default-linked reverse mortgages
can be priced. Let Φ(x) be the standard normal cumulative distribution function with
probability density function

φ(x) =
1√
2π
e−x

2/2,

for all x. Wang (2000) define the distortion operator as

gλ(t) = Φ
[
Φ−1(t)− λ

]
,

for 0 < t < 1. Given a distribution with cumulative distribution function F (x), a “dis-
torted” distribution F ∗(x) is determined by λ according to the equation

F ∗(x) = gλ (F (x)) ,

where the parameter λ is called the market price of risk, reflecting the systematic risk of an
insurer’s liability X. Thus, the Wang transform will produce a “risk-adjusted” distribution
F ∗ for a given liability X.

To life insurers, an adverse mortality experience means the insureds die earlier than
expected. In order to account for a risk premium, Lin and Cox (2005) first employ the
Wang transform to adjust the estimated physical survival probabilities for the risk-neutral
ones by

tq
Q
x := Φ

(
Φ−1

(
tq

P
x

)
− λm

)
,

where tqx := 1− tpx is the t-year mortality probability for a x-year old, i.e. the probability
for an individual aged x to die within the next t years, and λm is the market price of
mortality risk from the Wang transform. For the transformation to be of good use, the
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mortalities have to shift downwards, meaning that under the distorted mortalities, people
live longer. This is obtained for λm > 0.

In order to find a suitable transform, Lin and Cox (2005) derive λm from market
prices of annuities: using the current yield curve and physical survival probabilities, the
hypothetical value ä of an annuity contract paying an amount of K annually is derived as
a function of the transform parameter λm, i.e.

äx(λm) = K

∞∑
t=1

tp
Q
xP (0, t) = K

∞∑
t=1

(
1− Φ

(
Φ−1

(
tq

P
x

)
− λm

))
P (0, t).

Here, P (0, t) denotes the current (time 0) value of a zero coupon bond with maturity t.
λm is determined by equating the hypothetical value and the actual market price of the an-
nuity. For example, Lin and Cox (2005) use the 1995 market quotes of immediate annuities
based on the 1995 U.S. Buck Annuity Mortality Tables and the 1995 Treasury yield curve
to get the market price of mortality risk λm for the insured aged (65). The market prices
of mortality risk are 0.1479 for male annuitants and 0.2024 for female annuitants. Bauer
and Ruß (2006) use synthetic German annuity data based on the mortality tables provided
by the German society of actuaries and the German yield curve of December 2005 to get
λm ≈ 0.42 for aged (50). By the estimated λm, we thus obtain tq

Q
x and tp

Q
x . Assuming we

fit the real-world mortality rate with a constant one µP, the risk-neutral mortality rate

µQ
t = − 1

tp
Q
x

d

dt
tp

Q
x =

µPe−µ
Ptφ(A1)

[1− Φ(A1)]φ [Φ−1(B1)]
, (3.18)

where A1 = Φ−1(B1)− λm and B1 = tq
P
x = 1− e−µPt.

Similarly to the survival probabilities, we introduce the market price of default risk by
applying the Wang transform to the physical default probabilities by

tq̃
Q
x := Φ

(
Φ−1

(
tq̃

P
x

)
+ λd

)
,

where tq̃x := 1 − tp̃x is the t-year default probability for a x-year old, i.e. the probability
for an individual aged x to default within the next t years, and λd is the market price of
the default risk in the Wang transform. We expect that a positive risk premium λd should
be rewarded to the lender for bearing the default risk so that the default probability under
the risk-neutral measure Q is larger than the one under the real-world measure P. By the
above transform, we also obtain tq̃

Q
x and tp̃

Q
x . Given a constant real-world hazard rate hP,

90



the risk-neutral hazard rate is given by

hQt = − 1

tp̃
Q
x

d

dt
tp̃

Q
x =

hPe−h
Ptφ(A2)

[1− Φ(A2)]φ [Φ−1(B2)]
, (3.19)

where A2 = Φ−1(B2) + λd and B2 = tq̃
P
x = 1− e−hPt.

To determine the proposed λd, we plug tq
Q
x , tp

Q
x , tq̃

Q
x , tp̃

Q
x , µQ

t , hQt in equation (3.17),
and thus it can be rewritten as

H(0, T ) = π(0) + cd ·
∫ T

0
up

Q
x

[
1− Φ

(
Φ−1

(
uq̃

P
x

)
+ λd

)]
e−rudu

+

∫ T

0

(hQu (1− w)) + µQ
u )up

Q
x

[
1− Φ

(
Φ−1

(
uq̃

P
x

)
+ λd

)]
×

(
C(H̃(0), L(u), 0, u) + P(H̃(0), L(u), 0, u)

)
du,

(3.20)

where tq̃
P
x = 1 − e−hPt, the constant risk-free rate r = − lnP (0,T )

T
and P (0, T ) is the price

of a zero-coupon bond with maturity T . cd is the market-agreed annuity payment rate,
reflecting the implied market price of default risk λd for the defaultable RM contract.

We assume a constant market price of default risk λd. By equating the initial contract
value of the RM, H(0, T ), with the initial (market) house price H(0), one obtains λd that
corresponds to a particular hazard rate hP with a single market-agreed annuity payment
rate cd. When λd is determined, we can project a more customized market-agreed annuity
payment cd to the borrower by matching different hazard rates hP obtained by MLE in
Section 3.6.2. For example, we obtain λd = 1.1463 by using a single market-agreed annuity
payment rate of cd = 25, 000 when hP = 0.0169, with the parameters r = 0.01, πr = 0.02,
δ = 0, σx = 0.8, H(0) = 1,000, 000, T = 25, π(0) = 100, 000 and w = 0.1. One may
doubt if the resulting constant λd is adequate for pricing products over different default-
risk profiles, of which λd may change with the level of hP. If this is the case, we can modify
λd as a convex and decreasing function of hP to capture some economic relation between
the risk-neutral and actual default probabilities (see for example Heynderickx, Cariboni,
Schoutens, and Smits (2016)).
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3.7 Concluding Remarks

Reverse mortgages carry both benefits and drawbacks for homeowners. Senior homeowners
who do not intend to stay in their house over the long term or who have difficulty in
maintaining their home may not be ideal candidates for a reverse mortgage. In this chapter,
we approach the pricing problem from a different angle by considering the reverse annuity
mortgage as a long-term credit product to the borrower that allows the introduction of
modelling the default risk in pricing. We thus have developed a valuation model for
determining the annuity loan payment to the borrowers based on the levels of their default
risk. To enhance the application of pricing, we have also introduced a default rating scheme
and proposed techniques for no-arbitrage valuation on default risk using the real market
data. The pricing is expected to reduce the unqualified candidates with high default risks
from the current HECM program. We illustrate with numerical examples the effect of the
proposed pricing formula on the default risk and the other risk factors. Further implications
based on the findings are summarized as follows:

1. The proposed pricing will encourage the lenders to offer more RM products in accor-
dance with the borrower’s default risk profile. It is designed to reduce the lender’s
hedging difficulty for the crossover risk by shifting the default risk to the insured.

2. Our new product design will also be attractive for the reverse mortgage borrower
with a better default-risk profile compared to the current market offers that do not
differentiate the loan payment from the levels of borrowers’ risk profiles.

3. Our pricing scheme supports the policy effectiveness from HUD by limiting the initial
withdrawals from the HECM program. It also provides policy implications in terms
of market interest rates and mortality levels.

4. HUD now begins to require the lender to verify that the borrower can afford the
program by a financial assessment. Our proposed default rating scheme aims to be
a supplement assessment and to enhance the application of our proposed pricing.

5. The mechanism of the proposed annuity loan payment in this chapter can take effect
voluntarily to the market. Therefore, HUD may use the “pricing” to secure the
default levels of the HECM program.

Despite our pricing scheme designed for reducing the lender’s hedging difficulty, it
cannot replace the existing hedging program. The defaultable reverse mortgage contracts
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have the payoffs conditional on the borrower’s credit risks. An analysis of optimal hedging
will be required for such contracts in a setting where the payoff and the conditioning
event(s) are dependent and have to be priced accordingly. The optimal static hedging
option in Chapter 4 can be a natural solution for hedging the RM contracts embedded
with more complex dependency.
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APPENDIX

Verification of the Patterns in Figure 3.3, Figure 3.4,

Figure 3.5, and Figure 3.6

We now study the relation among the annuity loan payment rate, initial withdrawal, hazard
rate, force of mortality and interest rate. The relations have been illustrated by the patterns
from Figure 3.3 to Figure 3.6, which provide important implications of the proposed pricing
formula in Proposition 6. Below we use the Implicit Function Theorem to verify that such
patterns are consistent with a broad range of parameters. For the purpose of illustration,
we assume a constant force of mortality, µu = µ and upx = e−µu. We are interested in the
derivatives ∂c

∂h
, ∂h
∂π(0)

, ∂c
∂µ

, and ∂h
∂r

. According to the pricing formula in Proposition 6, denote
by the implicit equation

0 = f (h, c, π(0), µ) := −H(0, T ) + π(0) + c×
∫ T

0
upxe

−(h+r)udu

+

∫ T

0

(h(1− w) + µ)upxe
−hu
(
C(H̃(0), L(u), 0, u) + P(H̃(0), L(u), 0, u)

)
du.

Then, we calculate the partial derivatives of the function f with respect to h, c, π(0),
µ and r:

∂f

∂h
= −c×

∫ T

0
upxe

−(h+r)uudu

+

∫ T

0

[1− w − (h(1− w) + µ)u] e−huupx

(
C(H̃(0), L(u), 0, u) + P(H̃(0), L(u), 0, u)

)
du.
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∂f

∂c
= −

∫ T

0
upxe

−(h+r)udu+

∫ T

0

(h(1− w) + µ) e−huupx

(
∂C
∂L

∂L

∂c
+
∂P
∂L

∂L

∂c

)
du

= −
∫ T

0
upxe

−(h+r)udu−
∫ T

0

(h(1− w) + µ) e−huupx

((
H̃(0)

L
− 1

)(
1

σx
√
T

))
du.

where

∂C
∂L

= H̃(0)e−δuφ(d1)
∂d1

∂L
− Φ(d2)− Lφ(d2)

∂d2

∂L
,

∂P
∂L

= Φ(−d2)− Lφ(−d2)
∂d2

∂L
+ H̃(0)e−δuφ(−d1)

∂d1

∂L
,

with d1 =
ln
(
H̃(0)
L(u)

)
+(r+

σ2x
2

)u

σx
√
u

, d2 = d1 − σx
√
u, and Φ and φ are the standard normal cumu-

lative distribution function and probability density function respectively.

∂f

∂π(0)
= 1 +

∫ T

0

(h(1− w) + µ) e−huupx

(
∂C

∂H̃(0)

∂H̃(0)

∂π(0)
+

∂P
∂H̃(0)

∂H̃(0)

∂π(0)

)
du

= −
∫ T

0
upxe

−(h+r)udu−
∫ T

0

(h(1− w) + µ) e−huupx

(
−2φ(d1) +

2L

H̃(0)
φ(−d2)

)
du.

where

∂C
∂π(0)

=
∂C

∂H̃(0)

∂H̃(0)

∂π(0)
= −Φ(d1) + H̃(0)e−δuφ(d1)

∂d1

∂π(0)
− Lφ(d2)

∂d2

∂π(0)
,

∂P
∂π(0)

=
∂P

∂H̃(0)

∂H̃(0)

∂π(0)
= −Lφ(−d2)

∂d2

∂π(0)
+ Φ(−d1) + H̃(0)e−δuφ(−d1)

∂d1

∂π(0)
.

∂f

∂µ
= −c×

∫ T

0

e−(h+µ+r)uudu

+

∫ T

0

[1− w − (h(1− w) + µ)u] e−(h+µ)u
(
C(H̃(0), L(u), 0, u) + P(H̃(0), L(u), 0, u)

)
du.

95



∂f

∂r
= −c×

∫ T

0
upxe

−(h+r)uudu+

∫ T

0

(h(1− w) + µ) e−huupx

(
∂C
∂r

+
∂P
∂r

)
du.

For any T ≥ 5, we find that the signs of all the above derivatives hold for a broad range
of parameters with 0 ≤ h ≤ 0.2, 0 ≤ µ ≤ 0.2, 0 ≤ r ≤ 0.1, 0 ≤ πr ≤ 0.3, 0 ≤ δ ≤ 0.1,
0 < σx ≤ 1 , 0 ≤ π(0) ≤ 500, 000. We have

∂f

∂h
< 0,

∂f

∂c
first < 0 and then > 0,

∂f

∂π(0)
> 0,

∂f

∂µ
< 0,

∂f

∂r
< 0,

and

∂c

∂h
= −∂f

∂h

/
∂f

∂c
first < 0 and then > 0,

∂h

∂π(0)
= − ∂f

∂π(0)

/
∂f

∂h
> 0,

∂c

∂µ
= −∂f

∂µ

/
∂f

∂c
first < 0 and then > 0,

∂h

∂r
= −∂f

∂r

/
∂f

∂h
< 0,

which verify the patterns in Figure 3.3, Figure 3.4, Figure 3.5, and Figure 3.6.
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Chapter 4

Efficient Hedging of Path-dependent
Options under the Heston-type
Stochastic Volatility

In an incomplete market, a hedger is faced with the problem of searching for strategies
which reduce the risk as much as possible. In practice, a superhedging strategy can often
be too expensive. For this reason, Föllmer and Leukert (2000) investigate the possibility of
investing less capital than the superhedging price of the liability. This leads to a shortfall,
the risk of which, measured by a suitable risk measure, should be minimized. Föllmer and
Leukert (2000) used the so-called quantile hedging to determine a portfolio strategy which
minimizes the probability of loss and that leads to partial hedges, using the expected loss
function as risk measure. The resulting dynamic optimization problem of finding a self-
financing strategy that minimizes the shortfall risk can be split into a static optimization
problem and a representation problem. The optimal strategy consists in superhedging a
modified claim ϕ̃H, where H is the payoff of the claim and ϕ̃ is the solution of the statistical
optimization problem, the optimal randomized test.

Kolkiewicz (2016) has developed a general method of constructing static hedging strate-
gies for path-dependent options that minimize the shortfall risk for a given time interval.
Assuming that prices are given by the Black-Scholes model, the author first described the
hedging risk for a path-dependent option using only a European option. Then, Kolkiewicz
(2016) find the hedging option that minimizes the shortfall risk using the expectation of
the shortfall weighted by some loss function. The methodology is applicable to the path-
dependent contracts but not limited to the Black-Scholes setting, in which the underlying
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volatility is assumed to be constant over the life of the derivative. In this Chapter, we
construct the optimal static hedging option under the Heston stochastic volatility models,
which is well known for well capturing the features of the implied volatility surface and
resolving the shortcoming of the Black-Scholes model. Markets are incomplete with respect
to payoffs that are not entirely determined by market prices. The presence of the stochastic
volatility typically leads to an incomplete market in which perfect hedging strategies do
not exist for many contingent claims, depending on the available trading opportunities. In
this chapter, the optimal static hedging options adapted to the stochastic volatility will be
developed in the spirit of Kolkiewicz (2016), as a benchmark to compare other strategies,
such as traditional dynamic hedging and short-dated static hedging. Our hedging option
uses a more general assumption for the asset price process that admits the Heston-type
stochastic volatility to capture the empirical observations. The corresponding optimal
hedging option can also be expected to fulfill the hedging needs for long-term and path-
dependent liabilities such as most VA liabilities, reverse mortgages and simplified hedges
for path-dependent options that require working with more general forms of dependency
among risk factors.

In this chapter, we construct the optimal hedging strategy for a particular GMAB con-
tract with the volatility-dependent fees in the market of Heston-type stochastic volatility.
Our method relies on the Broadie-Kaya approach that can be used to improve the the-
oretical tractability and accuracy for construction of the optimal hedging strategy. The
remaining body of this chapter is organized as follows. In Section 4.1, we formulate the
optimal hedging problem for a path-dependent GMAB contract by minimizing the shortfall
risk at maturity, the fee payment of which is tied with a stochastic equity volatility. In
Section 4.2, a framework of Heston-type stochastic volatility is then introduced. In Sec-
tion 4.2.1, we characterize the path-dependency for the GMAB contract with the equity
index and the path of the equity volatility in the Heston model. In Section 4.2.2, we take
the GMAB liability put option as an example and present the theoretical results for the
optimal hedging strategy for path-dependent options under the Heston model. In Section
4.3.1, we propose to model such path-dependency using the method of Broadie and Kaya
(2006). The proposed method enables us to sample the residual risk naturally for the
GMAB liability put option conditional on the benchmark index. The likelihood ratio for
characterization of the proposed optimal hedging option is derived from the formula of
Drǎgulescu and Yakovenko (2002) in Section 4.3.2. Numerical examples are illustrated in
Section 4.4. Section 4.5 concludes the chapter.
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4.1 Static Hedging of a GMAB Contract

We use the following notation: St is the spot price of the equity index at time t, t ∈ [0, T ],
and Ft is the fund value of a GMAB contract that expires at T , t ∈ [0, T ]. The GMAB
contract has its liability payoff

L := (GT − FT )+ (4.1)

which is in the form of a European put option on the fund FT with the strike GT at maturity
T . Assume that the GMAB fund F fully tracks a non-dividend paying market equity index
S with stochastic volatility. The presence of the stochastic volatility of the equity index
thus makes the market incomplete. Given that the market volatility-dependent fees are
charged from the fund F during the entire life of the contract, we want to hedge the
GMAB liability put option in (4.1). The GMAB liability put option L on the fund F is
path-dependent because it is jointly linked with the index S and the path of the equity
volatility, or equivalently, the path of the equity variance v0,T in [0, T ]. Our objective is to
hedge the path-dependent liability L using only path-independent European-style options
on the equity index S with fixed maturity T .

For a given payoff function h, the performance of the corresponding hedging option can
be measured by the expected shortfall risk in the form of a power function:

EP [((L− h(ST ))+)p] , (4.2)

with p ≥ 1. The hedging option h will be considered optimal for minimizing the expected
shortfall risk in (4.2).

Since the GMAB fund F fully tracks the market index S, the liability L and S are
dependent. We thus define

L(s) := (GT − F s
T )+ |ST = s, s ∈ R+, (4.3)

where we rewrite the fund value as F s
T , which is conditional on the terminal market index

ST = s. We shall refer to these variables L(s) as the residual risk. Let us also define two
sets

SL := {s ∈ R+: interior of supp(L(s)) is nonempty}

and
H0 := {functions h on SL such that h(s) ∈ supp (L(s))},

with Ā denoting the closure of a set A and supp() denoting the support of a random
variable.
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To make the definition of the criterion complete, we define the set of admissible functions
h for a given initial budget VI, which satisfies the following budget constraint

H := {h ∈ H0 : EQ [h(ST )] ≤ V0}, (4.4)

where V0 := VI exp(rT ) and r is the risk-free rate. Note that h is not restricted to be a
linear function of the market index S. In practice, the hedger typically will not be able to
buy or sell an option whose payoff is equal to the hedging option h for the liability put in
(4.1). However, we can approximate a smooth function h closely on bounded intervals by
a piecewise linear function in the form

αs+ β +
m∑
i=1

αi (γi − s)+ ,

for suitably chosen constants α, β, αi and γi, i = 1, · · · ,m. Therefore, a GMAB liability
put option in (4.1) can be hedged by the strategy h that is created synthetically through
a portfolio of vanilla put options on the market index.

4.2 Optimal Static Hedge under the Heston Model

In this section a framework that admits the Heston-type stochastic volatility is considered
for hedging the GMAB contract with volatility-dependent fees. It extends the results of
hedging path-dependent options from the Black-Scholes framework to the Heston model in
the spirit of Kolkiewicz (2016). In Section 4.2.1, we characterize the path-dependency of
a GMAB liability put option with the equity index and the path of equity volatility under
the Heston model. In Section 4.2.2, an optimal static hedge is then generalized under the
Heston model.

4.2.1 GMAB fund under the Heston Model

As motivated in Chapter 2, here we propose the Heston stochastic volatility model as a
natural candidate that accommodates both the pricing and hedging needs for a GMAB
contract with volatility-dependent fees. Consider a probability space (Ω,F ,P) with the
natural filtration {Ft, t ≥ 0}, where P is the physical probability measure. In the framework
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of Heston (1993), the equity index S follows the dynamics{
dSt = µStdt+

√
vtStdW̃x(t), S0 > 0,

dvt = κ∗ (v̄∗ − vt) dt+ σ
√
vtdW̃v(t), v0 > 0,

(4.5)

where µ represents the physical return, and W̃x(t) and W̃v(t) are two correlated standard
Brownian motions under P with correlation ρ. The constant κ∗, κ∗ > 0, determines the
speed of adjustment of the volatility towards its long-run mean θ∗ > 0, and σ > 0 is the
volatility of the volatility.

The Heston market is incomplete and thus there exists an infinite number of equivalent
martingale measures. For pricing purposes, the risk-neutral measure is obtained by spec-
ifying the market price of volatility risk λ. The budget for the optimal hedging problem
relies on the pricing of the GMAB contract in the Heston-type stochastic volatility setting.
Under the risk-neutral probability Q, the Heston model follows the system of stochastic
differential equations

dSt = rStdt+
√
vtStdWx(t),

dvt = κ (v̄ − vt) dt+ σ
√
vtdWv(t),

where Wx(t) and Wv(t) are Brownian motions under Q with dW̃ 1
t dW̃

2
t = ρdt. The process

S models the underlying asst price dynamics and v the (stochastic) variance of S. Here, r is
the risk-free rate of interest, κ = κ∗+λ is the mean-reversion speed of v, v̄ = κ∗v̄∗/(κ∗+λ)
is the long-term average variance, and σ is the volatility of v.

In Chapter 2, we determined a linear fee rate structure of ct := a + bvt at the stage
of pricing a GMAB contract with volatility-dependent fees. Given a volatility-dependent
fee rate, the hedger considers how to hedge with a path-dependent GMAB liability put
option under its budget constraint. We thus want to characterize such path-dependency
for a GMAB liability put option, for which the fund F is fully tracking the equity index
S. In the Heston framework of (4.5), the non-dividend equity index at time t > 0, given
the initial values of S0 and v0, can be written as

St = S0 exp

[
µt− 1

2

∫ t

0

vsds+ ρ

∫ t

0

√
vsdW̃v(s) +

√
1− ρ2

∫ t

0

√
vsdW̃x(s)

]
(4.6)
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and the variance at time t is given by

vt = v0 + κ∗v̄∗t− κ∗
∫ t

0

vsds+ σ

∫ t

0

√
vsdW̃v(s). (4.7)

With the volatility-dependent fee rate ct = a+ bvt, one obtains a GMAB fund at time
t

Ft = F0 exp

[(
µt−

∫ t

0

csds

)
− 1

2

∫ t

0

vsds+ ρ

∫ t

0

√
vsdW̃v(s) +

√
1− ρ2

∫ t

0

√
vsdW̃x(s)

]
.

(4.8)

By (4.6) and (4.8), Ft can be represented as

Ft = St exp

(
−
∫ t

0

csds

)
= St exp

[
−
(
at+ b

∫ t

0

vsds

)]
. (4.9)

Note that F0 = S0. The equation (4.9) indicates that the price of the fund F at
time t can be modified by subtracting continuously the volatility-dependent dividend (fee)
payments in [0, t] from the equity index price S. It shows that the GMAB contract has
path-dependency with the equity index, as well as the path of the variance in [0, t].

By (4.9), we can represent the residual risk L for a GMAB liability put option, condi-
tional on ST = s, as

L(s) = (GT − F s
T )+ |ST = s (4.10)

and

F s
T = s · exp

(
−
∫ T

0

csds

)
= s · exp

[
−
(
aT + b

∫ T

0

vstdt

)]
, (4.11)

where the integrated variance
∫ T

0
vstdt is conditional on ST = s. We use the symbol vst

to account for the variance processes that evolve with the fixed terminal value of the
underlying ST = s. F s

T denotes the terminal fund value FT conditional on the fixed
underlying ST = s, which jointly evolves with the variance path vst in [0, T ].
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4.2.2 Optimal Hedging Option

To define the optimal hedging option, we first define the set of admissible payoff function
h. Let

HhL,hU := {h ∈ H : hL(s) ≤ h(s) ≤ hU(s) for s ∈ SL}, (4.12)

where hL and hU are given bounding functions. By introducing them, we are able to solve
our optimization problem by using the Neyman-Pearson lemma. Because of the budget
requirement, the functions hU and hL do not form binding constraints in our optimization
problem, and as such will have no impact on the optimal hopt. Then, the optimal hedging
problem can be regarded as an optimization problem over functions that take values in a
bounded interval, by representing each admissible function h from HhL,hU as

h = hL + γ (hU − hL) ,

where γ is a function on SL with values in [0, 1]. The optimal hedging option hopt is then
determined as we find out the corresponding optimal ratio γ̃. The bounding functions hL
and hU are given functions that satisfy:

(C1) hL and hU belong to H0 and are continuous.

(C2) hL(s) < hU(s) for s ∈ supp (ST ) ∩ SL.

(C3) EQ [hL(ST )] ≤ V0 ≤ EQ [hU(ST )] <∞.

(C4) EP [(hU(ST )− hL(ST ))p] <∞, where p is defined in the optimization criterion.

Our problem is to find the optimal hedging strategy hopt that minimizes the hedging
risk quantified by using the expected shortfall. Thus, the optimal hedging option hopt
(corresponding to γ̃) is the solution to the optimization problem

hopt : = arg inf
h∈HhL,hU

EP [((L(S)− h(S))+)p] . (4.13)

The above minimization problem can be rewritten as follows

hopt = arg min
γ

EP [(hU(S)− hL(S))p g (S, 1− γ(S); p)] , (4.14)
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where

g(s, z; p) :=
g0(s, z(hU(s)− hL(s))− hU(s))

(hU(s)− hL(s))p
, (s, z) ∈ SL × z ∈ [0, 1]

and
g0(s, z; p) = E

[(
(L(s) + z)+)p] , (s, z) ∈ SL × z ∈ [−hU(s),−hL(s)].

We are also assuming the following conditions:

(C5) For each s ∈ SL, the function z → g(s, z; p), is continuously differentiable at any
z ∈ [0, 1], where at the end points z = 0 and z = 1 we consider one-sided derivatives,
and its derivative is strictly increasing.

(C6) For g0,z(s, z; p) := ∂g0(s, z; p)/∂z, we have

EP [(hU(ST )− hL(ST )) g0,z (ST ,−hL(ST ); p)] <∞.

It can be easily verified that g(s, z; p) is convex and non-decreasing for each s ∈ SL.
Under the assumptions (C5) and (C6), the inverse of the function ∂g(s, z; p)/∂z is well
defined and we denote it by

le(s, y) :=
hU(s)− F−1(1− y)

hU(s)− hL(s)
1[1−αH ,1−αL](y) + 11−αL,∞(y). (4.15)

We now extend the result of optimal hedging option under the Heston-type stochastic
volatility in the spirit of Kolkiewicz (2016), in which the optimal hedging option has been
developed in the Black-Scholes framework. We have the following characterization of the
optimal option in Theorem 7.

Theorem 7. Suppose that the assumptions C1 − C6 are satisfied. Then, in the Heston
setting, the solution to the optimization problem in (4.13) can be represented in the form

hopt(s) = hL(s) + γ̃(s) [hU(s)− hL(s)] , (4.16)

where

γ̃(s) = 1− le
(
s, c · (hU(s)− hL(s))1−p dQ∗

dP∗
(s)

)
(4.17)

and a unique c is selected so that

EQ [hopt(ST )] = V0. (4.18)
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The continuous likelihood ratio dQ∗/dP∗ is given in (4.25).

The structure of the optimal test γ̃(s) is given by the Neyman-Pearson lemma. The
proofs of Theorem 7 and the uniqueness of the constant c follow the characterization of
the optimization problem by Kolkiewicz (2016).

4.3 Determination of the Optimal Static Hedge

In practice, one challenge to implement the theoretical result in Theorem 7 is how to find
the distribution of conditional residual risk L(s) that we have defined in (4.3). In the
Black-Scholes setting, a Brownian bridge technique can be developed so that it is possible
to obtain an analytical form of the optimal static hedge for the path-dependent options
or simulate the distribution of L(s) with the Brownian bridge technique, conditional on a
fixed benchmark value, i.e., ST = s (see Kolkiewicz (2016) for example). In the Heston
framework, the bridge techniques for approximating the distribution of L(s) can be hardly
derived due to the complexity of joint distribution between the equity process and its
stochastic volatility, and thus the simulation method is expected to be applied. Another
challenge for constructing the optimal hedging strategy in the stochastic volatility setting
is how to find the likelihood ratio, dQ∗/dP∗, which reconciles the distributions of the
equity index S under both the physical and risk-neutral measures, which is desirable for
determining the optimal ratio γ̃ by the Neyman-Pearson lemma with the Heston model.

To address these challenges, we propose the following methods:

(1) We generally use the forward simulations such as the Euler scheme to produce the
distribution of the residual risk L(s), conditional on ST = s, defined in (4.3). Using Euler
discretization, we simulate M paths of the underlying process, jointly with the correspond-
ing process of stochastic variance. Based on M paths of the underlying process jointly with
the variance process by forward simulation, we collect a sufficient number of the underlying
paths such that the selected values of the terminal underlying ST are located in a small
interval [s, s + δ), δ → 0. We then approximate the conditional terminal values F s

T in
(4.11) by taking sufficient numbers of the terminal underlying ST ∈ [s, s + δ), which are
associated with the corresponding paths vst for ST ∈ [s, s + δ) in [0, T ]. Finally we can
approximate the distribution of L(s) in (4.10) based on the sufficient number of F s

T .

(2) To improve the theoretical tractability and accuracy, the method of Broadie and

Kaya (2006) is proposed for exact simulation of
∫ T

0
vsds so that the volatility-dependent

fees of the GMAB contract can be exactly simulated. We thus produce the vector in (4.22)
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that enables us to simulate the residual risk for a GMAB liability put option jointly with
its benchmark on the market index ST . Then, we can approximate the distribution of
residual risk by sampling a sufficient number of paths within a small range centered at
a benchmark underlying value ST = s. The sampling by the Broadie-Kaya approach is
introduced in Section 4.3.1.

(3) Drǎgulescu and Yakovenko (2002) derived an analytical formula (D-Y formula) for
computing the probability density function of stock log-returns based on the Heston model.
In Section 4.3.2, we use the D-Y formula to derive the likelihood ratio dQ∗/dP∗ as needed
for the optimal test for the construction of the proposed optimal hedging option.

4.3.1 Sampling Path-Dependency by the Broadie-Kaya Approach

In the previous section, we characterized the dependency of a GMAB fund tied with the
market index and its variance process. In our problem, the joint distribution of these vari-
ables is required to construct the proposed optimal hedging strategy for the path-dependent
GMAB liability put option conditional on the equity index. Due to the complexity of prod-
uct designs, Monte Carlo simulations can often be used to sample the residual risk L, which
can be time-consuming for path-dependent payoffs, and somewhat inaccurate because of
sampling errors and biases. For example, we consider the forward simulations by using the
Euler discretization that can be directly used to approximate the paths of the asset price
and variance processes on a discrete time grid. Let [0 = t0 < t1 < · · · < tN = T ] be a
partition of a time interval into N equal segments of length ∆t, i.e., ti = iT/N for each
i = 0, 1, · · · , N . The discretization for the asset price process is

Sti = Sti−1
+ µSti−1

∆t+
√
vti−1

Sti−1

(
ρ∆W̃v(ti) +

√
1− ρ2∆W̃x(ti)

)
, (4.19)

where ∆W̃x(ti) = W̃x(ti)− W̃x(ti−1) and ∆W̃v(ti) = W̃v(ti)− W̃v(ti−1). The discretization
for the variance process is

vti = vti−1
+ κ∗

(
v̄∗ − vti−1

)
∆t+ σ

√
vti−1

∆W̃v(ti), (4.20)

where vti is strictly positive when the Feller condition satisfies, i.e., 2κ∗v̄∗ > σ2.

There are two types of error associated with the Euler scheme: the standard error of
the simulation estimator at the rate O(1/

√
N) and the discretization bias. At the mean
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time, the convergence rate of the error for the Euler discretization is O(s−1/3).

To improve the theoretical tractability and accuracy, we propose to construct the de-
pendency between the residual risk L and the corresponding benchmark on the equity
index by the method of Broadie and Kaya (2006), which works out a theoretically exact
simulation for the Heston model. Using the method of exact simulation, we can obtain the
joint distribution of St and

∫ t
0
vsds. We then sample the joint distribution of St,

∫ t
0
vsds

and Ft, which is desirable for approximating the distribution of conditional residual risk
on the equity index S for the GMAB liability put option as shown in equations (4.10) and
(4.11).

We now recall the exact simulation approach for (4.5) given by Broadie and Kaya (2006)
as follows:

(B1) Simulate vt given v0 = x. It is well known that for t > 0 the distribution of vt|v0

follows a non-central chi-squared distribution

vt|v0 = x ∼ σ2(1− exp(−κ∗t)))
4κ∗

χ2
d

(
4κ∗ exp(−κ∗t)

σ2(1− exp(−κ∗t))
x

)
, d :=

4κ∗v̄∗

σ2
,

where χ2
ν(η) denotes the noncentral chi-squared random variable with ν degrees of

freedom and noncentrality parameter η.

(B2) Generate a sample from the distribution of
∫ t

0
vsds given v0 = x and vt = y. This is

the most expensive step. Broadie and Kaya (2006) obtained its distribution function
by computing the conditional Laplace transform and performing a numerical inversion

of the characteristic function Φ(a) := E
[
exp

(
ia
∫ t

0
vsds|v0, vt

)]
. Φ is given explicitly

as

Φ(a) =
γ(a)e−

1
2

(γ(a)−κ∗)t (1− e−κ∗t)
κ∗ (1− e−γ(a)t)

A(a)

B
exp(C(a)),
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where the terms A(a), B, C(a) and γ(a) are

A(a) : = Id/2−1

(
√
v0vt

4γ(a)e−
1
2
γ(a)t

σ2 (1− e−γ(a)t)

)
,

B : = Id/2−1

(
√
v0vt

4κ∗e−
1
2
κ∗t

σ2 (1− e−κ∗t)

)
,

C(a) : =
v0 + vt
σ2

(
κ∗
(
1 + e−κ

∗t
)

1− e−κ∗t
−
γ(a)

(
1 + e−γ(a)t

)
1− e−γ(a)t

)
,

γ(a) : =
√
κ∗2 − 2σ2ia,

and Iν(x) denotes the modified Bessel function of the first kind and d = 4κ∗v̄∗

σ2 . The
cumulative distribution function F (x) can be obtained by the inversion of Φ as

F (x) =
2

π

∫ ∞
0

sin(zx)

z
< (Φ(z)) dz.

(B3) Recover
∫ t

0

√
vsdW̃v(s) from (4.7) given vt = y, v0 = x and

∫ t
0
vsds = z as∫ t

0

√
vsdW̃v(s) =

1

σ
(y − x+ κ∗v̄∗t− z).

(B4) Conditional on
∫ t

0

√
vsdW̃v(s) and the integrated variance

∫ t
0
vsds, we have

lnSt

∣∣∣∣ ∫ t

0

vsds,

∫ t

0

√
vsdW̃v(s) ∼ N (φ, ϕ) ,

where φ := lnS0 + µt− 1
2

∫ t
0
vsds+ ρ

∫ t
0

√
vsdW̃v(s) and ϕ := (1− ρ2)

∫ t
0
vsds.

From Step (B2) to Step (B4), we can sample the joint distribution of St and
∫ t

0
vsds as(

St,

∫ t

0

vsds

)
. (4.21)

Furthermore, given a specific fee rate structure of ct = a+ bvt, we can also sample the
joint distribution of St and

∫ t
0
vsds, together with Ft in (4.9), as
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(
St,

∫ t

0

vsds, Ft

)
. (4.22)

Based on the joint distribution in (4.22), we want to find the distribution of the residual
risk L(s) in (4.10) given the distribution of terminal fund value F s

T conditional on ST = s.
Since it is not explicit to obtain the conditional fund value F s

T under the Heston framework,
we thus approximate F s

T by collecting sufficient numbers of the underlying path such that
the selected values of the terminal underlying ST are located in a small interval [s, s+ δ),
δ → 0. In (4.22), we jointly simulate St,

∫ t
0
vsds and Ft by the method of Broadie and Kaya

(2006). We take sufficient numbers of terminal underlying ST in [s, s+δ) and jointly collect

the corresponding conditional integrated variances
∫ T

0
vstdt for ST ∈ [s, s + δ). Finally, we

obtain the corresponding numbers of F s
T by (4.11) for the approximate distribution of

L(s). Using the exact simulation of Broadie and Kaya (2006), the volatility-dependent fee
payment can be exactly simulated by a sample of

∫ t
0
vsds, instead of using Monte Carlo

approximation.

4.3.2 Likelihood Ratio in the Heston Model

Drǎgulescu and Yakovenko (2002) enables us to find the likelihood ratio reconciling the dis-
tributions of the equity index S under both the physical and risk-neutral measures, which
is desirable for characterization of our proposed optimal hedging option in the Heston-type
stochastic volatility setting. Drǎgulescu and Yakovenko (2002), hereafter D-Y, derived a
closed-form analytical solution for the probability density function of equity index returns
based on the Heston model. It has shown that the Heston (1993) model adequately de-
scribes the probability density function of empirical security returns and the model can
therefore assist in the valuation of path-dependent options. By setting yt = ln (St/S0)−µt,
we express the Heston model in terms of the centered log-return yt and vt such that

dyt = −vt
2
dt+

√
vtdW̃x(t).

The process is then characterized by the transition probability Pt [y, v|v0] to have log-
return y and variance v at time t given the initial log-return y = 0 and variance v0 at time
t = 0. The time evolution of Pt [y, v|v0] is governed by the following Fokker-Planck (or
forward Kolmogorov) equation:
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∂

∂t
P = κ∗

∂

∂v
[(v − v̄∗)P ] +

1

2

∂

∂y
(vP ) + ρσ

∂2

∂y∂v
(vP ) +

1

2

∂2

∂y2
(vP ) +

σ2

2

∂2

∂v2
(vP ) .

(4.23)

Solving this equation (4.23) yields the following semi-analytical formula for the density
of centered returns y, given a time lag t of the price changes (D-Y formula)

fY (y) := Pt(y) =
1

2π

∫ +∞

−∞
exp [iξy + Ft (ξ)] dξ, (4.24)

which is an expression for the probability distribution of the centered log-returns y for a
frequency t where

Ft (ξ) =
κ∗v̄∗

σ2
Γt− 2κ∗v̄∗

σ2
ln

[
cosh

Ωt

2
+

Ω2 − Γ2 + 2κ∗Γ

2κ∗Ω
sinh

Ωt

2

]
,

in which Γ = κ∗ + iρσξ and Ω = [Γ2 + σ2 (ξ2 − iξ)]1/2.

Let us denote P∗ and Q∗ as the distributions of the underlying asset S under the
physical measure P and the risk-neutral measure Q, respectively. Given the density of
centered returns in equation (4.24), we determine the likelihood ratio dQ∗/dP∗ in the
Heston model

dQ∗

dP∗
(s) =

gQS (s)

gPS(s)
=
fQ
Y (y(s))

fP
Y (y(s))

, (4.25)

where f and g are the probability density functions for the centered return y and the
underlying S respectively. By the change of variable, we obtain gS(s) = fY (y(s))/s.

4.3.3 Numerical Procedures

In the following, we show how to determine the optimal hedging option numerically for
the GMAB liability put option defined in (4.1). For comparison, we are interested in the
minimization of the mean-square error of the loss/profit ignoring the budget constraint, in
which case the optimal mean-square hedging option hms solves

hms(s) := arg inf
h∈L2(S(T ))

EP [(L(s)− h(s))2] , (4.26)
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with L2 (S(T )) denoting the set of measurable and square integrable functions of S(T ).
hms admits a representation given by

hms(s) := EP [L(s)|S(T ) = s] . (4.27)

Using the method of Broadie and Kaya (2006) in Section 4.3.1, the jointly-distributed
vector in (4.22) leads to a continuous distribution of the residual risk L(s) defined in (4.3).
For αH > αL, we take hU(s) = qLαH (s) and hL(s) = qLαL(s), in which qLαH (s) and qLαL(s)
denote the αH and αL-quantiles of the residual risk L(s) respectively.

We present the numerical procedure for how to determine the optimal hedging strategy
hopt for the GMAB liability put option in (4.1) by Theorem 7.

(S1) Determine the feasible pairs of (a, b) constrained by the condition in (2.28). For a
selected pair of (a, b) determined in the pricing stage of a GMAB contract, calculate
the price of a liability put option in (4.1) at time 0 as initial budget VI and that
V0 = erTVI at maturity T .

(S2) Use the exact simulation of Broadie and Kaya (2006) to simulate sufficient sets of ST ,∫ T
0
vsds and FT . Then, take sufficient numbers of terminal underlying ST in [s, s+ δ)

and collect the corresponding conditional integrated variances
∫ T

0
vstdt for ST ∈ [s, s+

δ). Finally, obtain the corresponding numbers of F s
T under the fee rate structure of

ct = a + bvt by (4.11) for the approximate distribution of L(s) = (GT − F s
T )+ in

[s, s+ ∆), ∆→ 0. The mean-square hedging option hms can be approximated using
the following unbiased and asymptotically consistent sample means

hms(s) ≈
1

M

M∑
i=1

(GT − F s
T )+ .

(S3) For selected values αL and αH from the interval (0, 1) such that αL < αH , find the
corresponding empirical quantiles of the distributions of L(s) at each ST = s. Then,
obtain the lower and upper bounding functions hL and hU as the corresponding quan-
tiles of L(s), s ∈ SL.

(S4) To determine hopt in Theorem 7, we need to approximate le(s, y) and γ̃(s). By con-
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structing the mesh of points

M := {(sm(i), zm(j)) : sm(i) = smin + i
∆s

Ks

, i = 0, · · · , Ks

zm(j) = −hU(sm(i)) + j
∆z(i)

Kz

, j = 0, · · · , Kz},

where ∆s := smax − smin and ∆z(i) := hU(sm(i))− hL(sm(i)).

(i) Select ŝ(l), l = 1, · · · , k, in each small interval (sm(i − 1), sm(i)] for approx-
imating the distribution at s = sm(i). Then, obtain a sufficient number of

residual risks of L(sm(i)) =
(
GT − F ŝ(l)

T

)+

|ST = sm(i) in each small inter-

val (sm(i − 1), sm(i)]. From these points, use a kernel density estimator to
find an estimate ŝLi of the density of L(sm(i)), which will be used to evalu-
ate the conditional expectation of E

[
(L(sm(i)) + zm(j))+

∣∣ST = sm(i)
]

for each
equally spaced mesh of points zm(j) from M. This gives the approximation of
ĝ0(sm(i), zm(j); 1). For the bounds hL(sm(i)) and hU(sm(i)), take the 5th and
95th quantiles of the distribution of L(sm(i)) for evaluating g(sm(i), zm(j); p)
over M.

(ii) Use a central finite difference to approximate l̂e(s, y) in (4.15) by inverting the
derivative of ĝ.

(iii) Use the bisection method to fit the value of c by the budget constraint in (4.18).
ˆ̃γ(s) and ĥopt(sm(i)) are then determined by all the elements obtained by the
aforementioned steps with the likelihood ratio dQ∗/dP∗ derived in (4.25).

(S5) Repeat the above processes and get all hopt(sm(i)) for i = 1, · · · , Ks. Finally, we find
the optimal option hopt on ST = s by Theorem 7.

4.4 Numerical Examples

We illustrate the result presented in Theorem 7 on two examples of path-dependent options.
In Section 4.4.1, we find the optimal hedging option for an arithmetic Asian option by
generally using the forward simulations such as Euler scheme. In Section 4.4.2, the optimal
static hedge is implemented for the GMAB liability put option as discussed in the previous
sections.
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4.4.1 Asian Option under the Heston Model

In this section, we find the optimal static hedging for a path-dependent Asian option
under the Heston stochastic volatility model. Consider a K-strike call option on arithmetic
average sampled at discrete time intervals:

(AN −K)+ , (4.28)

where AN =
(∑N

i=1 S(ti)
)
/N and {t1, · · · , tN = T} is a set of monitoring dates. In (4.28),

we are interested in the underlying S and it is directly known from financial data, whereas
variance is a hidden stochastic variable. We define the distributions of conditional residual
risks L(s) by

LAC(s, T ) := (AsN −K)+ |ST = s, s ∈ R+, (4.29)

where AsN is the arithmetic average conditional on ST = s.

The main steps in our procedure to find the optimal static hedge for the Asian option
are similar to the ones for the GMAB liability put options in Section 4.3.3, and can be
outlined as follows:

(P1) Use Monte Carlo to simulate the price of an Arithmetic Asian call option in (4.28)
at time 0, which is the initial budget VI and that V0 = erTVI at maturity T .

(P2) Use the Euler Scheme to simulate M paths of the underlying S. Based on M paths
of the underlying S, collect sufficient number of the underlying paths such that
the selected values of the terminal underlying ST are located in a small interval
[s, s+δ), δ → 0. Then, approximate the conditional arithmetic Asian AsN in (4.29) by
taking sufficient numbers of the underlying paths with the terminal underlying values
ST ∈ [s, s+δ). Finally, approximate the distribution of LAC(s, T ) in [s, s+δ) based on
sufficient numbers of AsN . The mean-square hedging option hms can be approximated
using the following unbiased and asymptotically consistent sample means

hms(s) ≈
1

M

M∑
i=1

(AsN −K)+ .

(P3) The next steps are similar to the ones in steps (S3)− (S5).

In Figure 4.1, we implement the optimal static hedge for an arithmetic Asian call in
(4.28) with the parameters: S0 = K = 100, ρ = −0.3, κ∗ = 3, v̄∗ = 0.02, µ = 0.15,
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r = 0.05, σ = 0.5, λ = −0.15, T = 1, αL = 0.05, αH = 0.95, M = 50, 000, Ks = Kz = 150,
δ = 0.2 and c = 0.80. Depending on the model parameters, the optimal hedging option hopt
significantly outperforms the mean-square one hms. We find that the expected shortfalls
from hopt and hms are 0.702 and 1.701 respectively. The shortfall risk is thus reduced by
58% with hopt, while the corresponding standard deviation is reduced by 56%.
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Figure 4.1: The optimal static hedging option for the arithmetic Asian call (AsN −K)+

conditional on ST = s with the Heston-type stochastic volatility.

4.4.2 Implementation for GMAB

Figure 4.2 illustrates the optimal hedging strategy for the GMAB liability put option in
(4.1) and the distributions of the market index under the Heston-type stochastic volatility,
given the market parameters: S0 = F0 = GT = 100, ρ = −0.3, κ∗ = 3, v̄∗ = 0.02, µ = 0.15,
r = 0.05, σ = 0.5, λ = −0.15, T = 1, αL = 0.05, αH = 0.95, M = 50, 000, Ks = Kz = 150
with the selected pair of a = 0.1513 and b = 1.5. The constant c determined in Step (S4)
is 0.225. The numerical results show that the optimal hedging option hopt outperforms its
counterpart, the mean-square one hms. For µ = 0.15, the expected shortfalls from hopt and
hms are 0.6746 and 0.9663 respectively, which is a reduction of 30.2% in shortfall risk. The
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standard deviation of the shortfall risk from hopt is reduced by 23.72% when compared to
hms.
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Figure 4.2: The optimal static hedging option for the GMAB liability put option
(GT − F s

T )+(red line) conditional on ST = s in the left panel and the probability den-
sities of the underlying ST with the Heston-type stochastic volatility in the right panel.

4.5 Concluding Remarks

The main objective of this chapter is to extend a theoretical result that characterizes an
optimal hedging strategy for a path-dependent GMAB liability in the incomplete Heston
market. The presented numerical results demonstrate both the feasibility of the optimal
hedging method. The optimal static hedging strategy can be considered as a benchmark,
when compared to other strategies with the introduction of the stochastic volatility and
the path-dependent feature on the payoff. We take the GMAB liability put option as
an example but the proposed hedging strategy is not limited to that. For example, the
construction of simplified hedges and most VA liabilities discussed in this thesis can result
in the hedging problem for the path-dependent contracts with the stochastic volatility. For
the reverse mortgage contracts, the proposed optimal hedging options can be developed for
the complexity of the crossover risk, such as hedging with the conditioning event(s) under
the environment of either the stochastic volatility or the stochastic interest rate.
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Chapter 5

Conclusions and Future Research

In this thesis, we explored pricing and hedging issues on various innovative products in
finance and insurance. The innovations of pricing fulfilled the rising market demands for the
products with path-dependent features, such as simplified derivatives, variable annuities
and reverse mortgage contracts. To hedge these products, we relied on the method by
Kolkiewicz (2016) and extended the results that can be applied in different angles. In this
chapter, we propose several lines of future research.

The first direction lies in developing an optimal static hedging strategy for the simplified
derivatives. In Chapter 1, we extended the work of Bernard, Moraux, Rüschendorf, and
Vanduffel (2015) to construct a simplified alternative that resembles a given highly path-
dependent derivative by adding multiple conditional benchmarks. A natural extension is
to construct the simplified alternatives under different criteria in the context of minimizing
its expected shortfall and the Value-at-Risk to the original derivative. Due to the nature of
the simplified derivative, we can generalize the corresponding construction by conditioning
on more benchmark states for improving the performance to meet the given criteria. Since
the simplified derivative is constructed by only preserving certain distributional properties
of the original payoff, the proposed construction can be expected to provide a better
hedging performance to the original payoff than the simplified hedge only keeping its
distributional property. For hedging the simplified derivative itself, we will compare the
hedging performance of the optimal static hedging strategy to the simplified alternative
with that of the semi-static hedging as proposed in Chapter 1, which only involves a limited
number of basis options. The optimal static hedging option for the simplified derivative
can be constructed either in the Black-Scholes framework or more general markets with
stochastic volatility.
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The second area of future research might consider the effect of state-dependent fees
or the state-dependent structure on more complex path-dependent VA products, such
as guaranteed minimum withdrawal benefits (GMWBs) and flexible premium in variable
annuities (FPVAs) introduced by Bernard, Cui, and Vanduffel (2017). Both these contracts
allow the policyholder to make withdrawals or additional payment contributions to the
underlying account of the variable annuity depending on the path of the fund value. In
Chapter 2, the benefits of a GMAB contract tied with the volatility-dependent fees have
been examined. In general, the affine models and dynamic programming framework offer
the possibility to involve more path-dependent features such as the state-dependent fees
tied with the market volatility, underlying processes or surrender strategies in most recent
VA contracts. Charging a state-dependent fee cannot exclude the possibility of the lapse of
the contract, but we expect that it will make the optimal surrender boundary lower than
that of charging a fixed fee rate. In the study of GMWBs, we can consider the strategy
of optimal withdrawals in the presence of state-dependent fees. In the study of FPVAs,
we will study the optimal flexible premiums depending on market conditions such as the
underlying fund and the interest rates, while most current academic research assume that
there is a single premium payment independent of market conditions. We expect that such
flexible premiums can be optimized for covering the costs of liabilities. By modifying the
state-dependent premiums to the fund return in FPVAs, this problem is comparable to the
problem of optimal withdrawals by the policyholder in a GMWB where the withdrawal
rate is subtracted from the fund return. Adding the state-dependency to the VA contracts
leads to the complexity of the hedging strategy. Thus, the corresponding optimal hedging
strategy will be developed for accommodating the hedging needs.

The third direction is to design the defaultable reverse mortgage (RM) contracts in more
general markets and to study the application of the optimal static hedging on the reverse
mortgage markets. Our goal is not limited to hedging a particular defaultable contract:
more general credit-risk derivatives can be considered. In Chapter 3, a novel pricing of the
RM contract was proposed for improving the solvency of the current HECM program in the
presence of the borrower’s default risk. Despite our pricing scheme designed for reducing
the lender’s hedging difficulty, it cannot replace the existing hedging program. To hedge
a defaultable RM contract, we require an analysis of optimal hedging in a setting where
the payoff of the crossover risk and the corresponding conditioning event are dependent
and have to be priced and hedged accordingly. Since the methods by Kolkiewicz (2016)
allow the generosity of dependency, it is possible to build the optimal static hedging option
on the conditioning events, at which the crossover risk arises from the events of default
and death. Existing literature such as Bertus, Hollans, and Swidler (2008) and Fabozzi,
Shiller, and Tunaru (2010) has shown that the house price risk is difficult to hedge due
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to the basis risk between house price index and the corresponding future contracts offered
by the Chicago Mercantile Exchange (CME). The optimal hedging strategy, allowing the
inclusion of basis risk, is then motivated for a solution to minimize the expected shortfall
for the crossover risk using the CME housing future contracts. In Chapter 3, we formulated
the RM pricing problem under the Black-Scholes framework but it can also be extended
to more complex settings by involving stochastic volatility and stochastic interest rates.

For problems in Chapters 2 - 4, we will consider other models, like those based on
Lévy processes. Similarly, hedging problems can also be considered for Lévy processes.
For example, Alonso-Garćıa, Wood, and Ziveyi (2018) extend the Fourier-cosine (COS)
method to the pricing and hedging of variable annuities embedded with GMWB riders.
They demonstrate superior computational efficiency of the COS method to price and hedge
the GMWB riders when the underlying fund dynamics evolve under the influence of the
general class of Lévy processes. The framework developed is general enough to incorporate
complex policyholder behavior decisions and sophisticated contract features such as the
reset provision. They further use the framework to investigate the risk minimisation hedg-
ing strategies under the concepts outlined in Kolkiewicz and Liu (2012). Our problems in
Chapters 2 - 4 can be further generalized in at least two ways. The first one is to search for
the optimal solutions in both the stage of pricing, such as allowing the static and dynamic
policyholder withdrawal behaviour in GMWBs, and the stage of building the optimal static
hedging strategies in the spirit of Kolkiewicz (2016), for more complex path-dependent VA
products. To tackle the complexity, we will adopt a backward recursive dynamic program-
ming algorithm in aid of the COS method as proposed by Alonso-Garćıa, Wood, and Ziveyi
(2018). The second generalization is to model the defaultable reverse mortgage contracts
in the Lévy markets and to price and hedge accordingly with the conditioning events under
more realistic credit-risk modeling. In Chapter 3, we have developed a valuation model for
determining the annuity loan payment based on the levels of default risk, assuming that
the default probability is modeled with an average hazard rate. Further, more realistic
assumptions in Mei (2016) can be considered for modeling the default risk by assuming
that the hazard rate can be stochastically tied with the market conditions such as loan
status, interest rate and house price. And then, the annuity loan payment rate can be
determined accordingly based on the market conditions. Since the RM contracts allow
the lapse by default, it arises the optimal determination for the annuity loan payment in
accordance with the default risk based on market conditions, which is in the same spirit of
the optimal withdrawals for GMWBs. Pricing and hedging such defaultable RM contracts
can be extended in the framework of dynamic programing with the aid of the COS method
by Alonso-Garćıa, Wood, and Ziveyi (2018).
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