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Highlights 

 Multilevel Monte Carlo sampling (MLMC) provided conservative noise estimates 

 MLMC prediction accuracy could be improved with a priori knowledge of the system 

 MLMC computational cost was an order of magnitude less than Monte Carlo sampling 

 A lower bound on the achievable MLMC mean square error tolerance was observed 

 Using the mean kMC timestep in the multiscale model did not affect its predictions 

 

Abstract 

The purpose of this study is to adapt Multilevel Monte Carlo (MLMC) sampling technique for random noise 

estimation in stochastic multiscale systems and evaluate the performance of this method. The system 

under consideration was a simulation of thin film formation by chemical vapour deposition, where a 

kinetic Monte Carlo solid-on-solid model was coupled with partial differential equations that represented 

mass, energy and momentum transport. The noise in the expected value of the system’s observable (film 

roughness) was estimated using MLMC and standard Monte Carlo (MC) sampling. The MLMC technique 

achieved conservative estimates of noise in the observable at an order of magnitude lower computational 

cost than standard MC sampling. This study highlights the nuances of adapting the MLMC technique to 
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the stochastic multiscale system and provides insight on the benefits and challenges of using MLMC for 

noise estimation in stochastic multiscale systems.  

 

Keywords: noise estimation, multilevel Monte Carlo, kinetic Monte Carlo, stochastic multiscale  

 

1. Introduction  

Many chemical engineering processes involve phenomena that occur at multiple temporal and spatial 

scales, for example: protein crystallization for pharmaceuticals, heterogeneous catalysis that employs 

supported catalysts, semiconductor doping, as well as the manufacturing of thin films for 

microprocessors, micro-electro-mechanical systems (MEMS), solar cells and biomedical device coatings 

(Christofides et al. 2009; Christofides and Armaou 2006; Crose et al. 2015; Kwon et al. 2013; Kwon, 

Nayhouse, Christofides, et al. 2014; Kwon, Nayhouse, Orkoulas, et al. 2014; Raimondeau and Vlachos 

2000; Salciccioli et al. 2011). Some of the techniques employed in the aforementioned applications are 

continuous and plug flow crystallization, ion deposition by sputtering, chemical and physical vapour 

deposition (CVD and PVD, respectively), and plasma-enhanced chemical vapour deposition (PECVD) 

(Christofides and Armaou 2006; Crose et al. 2015, 2017; Kwon, Nayhouse, Christofides, et al. 2014; Kwon, 

Nayhouse, Orkoulas, et al. 2014; Li, Croiset, and Ricardez-Sandoval 2015).  

During these deposition processes, the fluid particles are transferred by diffusion and convection over 

macroscale distances from the gas inlet to the surface of the wafer. Once deposition onto the substrate 

occurs, the mean free path of the adsorbed particles becomes comparable to the range of interactions 

between neighbouring particles (on the order of angstroms and nanometres), as well as the characteristic 

dimensions of the thin film. In addition, the rates of surface events (e.g. migration and/or catalyzed 
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chemical reactions) are orders of magnitude faster than the mass transfer to the substrate. Nevertheless, 

macroscale quantities such as inlet gas mixture concentration and substrate temperature strongly affect 

the microscale properties of the products (e.g. roughness, composition and thickness). Consequently, in 

the industrial mass production and laboratory settings, the macroscale variables are used for process 

optimization and control (Huang et al. 2011).  

In order to better control the properties of the manufactured products and ensure compliance with 

industrial tolerances, various multiscale simulation algorithms have been developed to capture the 

inherent multiscale nature of the underlying processes (Crose et al. 2018; Kwon, Nayhouse, and 

Christofides 2015; Lam and Vlachos 2001; Raimondeau and Vlachos 2000; Salciccioli et al. 2011; Vlachos 

1997, 2005). These algorithms rely on coupled continuum and discrete simulations where the feedbacks 

between the scales are explicitly accounted for; for example, the number of fluid particles that adsorb to, 

react on and desorb from a catalytic surface can be tracked in a simulation and used to update the 

boundary conditions for the equations at various length and time scales (Braatz et al. 2004, 2006; Li, 

Croiset, and Ricardez-Sandoval 2015; Ricardez-Sandoval 2011). The macroscale (continuum) transport 

phenomena are adequately captured using deterministic partial differential equations (PDEs) (Bird, 

Stewart, and Lightfoot 2002). However, the microscale is represented by discrete stochastic simulations 

such as molecular dynamics (MD), Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) 

(Christofides et al. 2009; Frenkel and Smit 2001). To date, the MMC and kMC techniques have been more 

popular in multiscale algorithms because the computational intensity of MD is higher.  

The need for the non-closed-form (i.e. stochastic) simulations arises because at the microscale the mean 

free path of the particles becomes significant (i.e. the continuum hypothesis no longer applies) and the 

innate discrete nature of matter must be considered: particle behaviour at the microscale is governed by 

the random Brownian motion and many-body effects can occur. Furthermore, microscale product 

properties (e.g. the local composition and uniformity of a coating) directly affect product performance; 
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such properties are inaccessible to macroscale calculations. Although microscale simulations are highly 

accurate, they become computationally intractable for experimentally-relevant scales because the 

domain sizes encountered in nature and in man-made devices are on the order of Avogadro’s constant.  

Hence, the multiscale simulation algorithms aim to leverage both the computational efficiency of 

continuum macroscale simulations and the accuracy of the microscale simulations by “informing” the 

continuum scale with the results from the microscale (and vice versa).  

Since microscale simulations incorporate non-closed-form expressions, noise is inherent at the discrete 

scale. This stochasticity also propagates into the calculations done at the macroscale and introduces 

variability in the simulation predictions (hence the name “stochastic multiscale systems”). Accounting for 

the noise expected in the observables would establish a greater degree of trust in the simulations’ 

predictions, as well as minimize model-plant mismatch and enable the design of robust processes. 

Furthermore, since all experimentally measured data contains noise, accounting for the variability in the 

simulated observables would improve the simulations’ ability to predict real-world scenarios. The simplest 

way to estimate this variability is through Monte Carlo (MC) importance sampling. It is also the most 

resource-intensive, because it requires prolonged sampling of the finely discretized system. The high 

computational cost limits the applications of MC sampling for time-sensitive applications, such as online 

process control. More efficient sampling and uncertainty quantification methods have been developed, 

such as Latin Hypercube sampling, Power Series and Polynomial Chaos Expansions (Eldred 2009). More 

recently, Multi Level Monte Carlo (MLMC) sampling has been developed in order to accelerate the 

convergence of estimates of the expected value of interest (Giles 2008).  

The computational intensity of sampling a simulation system can be lessened by MLMC if the finer 

discretization (also referred to as “higher discretization level”) causes an increase in both the precision of 

the results and the computational expense of obtaining the samples. This is because MLMC sampling uses 

many coarse samples obtained at a low computational cost to obtain a control estimate of the expected 
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value of the observable and then refines that approximation using progressively fewer samples of higher 

precision obtained at a growing computational cost. This approach causes the overall computational 

expenditure to be lower than extended sampling at a fine discretization, yet it was demonstrated that the 

results are expected to have the same level of accuracy (Giles 2008, 2015).  

Note that MLMC is a sampling technique rather than a model identification method. However, if the 

conditions for the applicability of MLMC are met (discussed further in section 2.2),  MLMC can be applied 

to data-driven models (Chaffart and Ricardez-Sandoval 2018; Hasenauer et al. 2015; Oladyshkin and 

Nowak 2012) and the reduced order models developed using the subspace identification techniques (Garg 

et al. 2017; Garg and Mhaskar 2017; Meidanshahi et al. 2017) for the efficient estimation of the models’ 

observables in the presence of stochastic noise and/or parametric uncertainty.  

To date, most MLMC implementations have been performed for systems comprised of closed-form 

continuous equations (e.g. stiff stochastic differential equations) subject to various kinds of uncertainty 

(Abdulle and Blumenthal 2013; Giles 2015; Mishra, Schwab, and Šukys 2012; Sauer 2013). To the extent 

of our knowledge, applications of MLMC sampling to stochastic multiscale systems and in the field of 

chemical engineering are limited. Current applications include the modelling of flows in highly 

heterogeneous porous media, estimation of cumulative distribution functions in stochastic oil reservoir 

simulations, and uncertainty quantification in surfactant/polymer enhanced-oil-recovery (Alkhatib and 

Babaei 2016; Guha and Tan 2017; Lu et al. 2016).  

Previously, we used MLMC sampling for uncertainty quantification in three standard chemical engineering 

systems, namely, a mixing tank, a wastewater treatment plant, and a ternary distillation column (Kimaev 

and Ricardez-Sandoval 2018). We found that MLMC outperformed MC sampling, polynomial chaos and 

power series expansion techniques in terms of accuracy, because MLMC estimates of the observables 

were within the specified error tolerances from the benchmark values, unlike the results of the other 
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techniques. MLMC was also more computationally efficient than MC sampling. In this work, we adapt 

MLMC sampling to evaluate the technique’s performance when it estimates the random noise in the 

observables of stochastic multiscale systems. To demonstrate the approach, we applied MLMC to a 

simulation of thin film formation by chemical vapour deposition and estimated the noise in a key 

observable of this system (i.e. thin film roughness at the end of the deposition process). To the extent of 

our knowledge, this is the first application of MLMC to a multiscale system that incorporates non-closed-

form equations. In our chosen system, the discrete scale was simulated using the kMC technique. In our 

application of MLMC, spatial discretization is controlled by the MLMC algorithm, whereas most MLMC 

implementations focus on controlling the temporal discretization. We observed that using the average 

value of the kMC timestep produced the same thin film roughness values as the original multiscale model, 

especially for larger thin films. To our knowledge, this equivalence has not been reported in the literature.  

The remainder of this paper is organized as follows. The next section describes the multiscale system that 

was used in the present analysis for the evaluation of MLMC performance. After the description of the 

model, an overview of the MLMC sampling technique is presented, followed by an explanation of the 

changes made to the multiscale model to enable the application of MLMC. Next, in the results section, we 

compare the amounts of time needed to approximate the maximum variability in the observable using 

MLMC and the standard MC sampling, as well as the accuracy of the estimates. We conclude with a 

discussion of the advantages and potential drawbacks of applying MLMC sampling to multiscale stochastic 

systems.  

2. Theory and calculation  

To demonstrate the principles and approach considered in this work, a case study of a stochastic 

multiscale system involving thin film formation by chemical vapour deposition was considered (Vlachos 

1997, 2005). The model has been developed previously (Christofides and Armaou 2006; Lam and Vlachos 
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2001; Rasoulian and Ricardez-Sandoval 2014; Vlachos 1997), and in this work it has been used to represent 

an industrially-relevant stochastic multiscale chemical engineering process. An overview of the model is 

presented below; further details can be found elsewhere (Christofides and Armaou 2006; Kimaev and 

Ricardez-Sandoval 2017; Rasoulian and Ricardez-Sandoval 2014; Vlachos 1997).  

2.1 Description of the stochastic multiscale model 

The multiscale model consists of the kinetic Monte Carlo (kMC) simulation model coupled with partial 

differential equations (PDEs). The kMC model represents the microscale thin film formation by chemical 

vapour deposition (CVD), while the PDEs describe the macroscale mass transfer of gas particles to the 

substrate in the gas boundary layer above the film (Christofides and Armaou 2006; Rasoulian and 

Ricardez-Sandoval 2014, 2015b, 2015a, 2016; Vlachos 1997). The PDEs are necessary because the 

concentration, temperature and mole fraction profile of the boundary layer differ from the bulk gas phase 

since the gas particles continue to adsorb onto and desorb from the thin film throughout the simulation. 

An overview of the macroscale and fine-scale models is presented next. 

2.1.1 Continuum (macroscale) model 

The following momentum, energy and mass transfer equations, respectively, are used to simulate the gas 

boundary layer (Lam and Vlachos 2001):  
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The parameters used in equations (1)-(3) and other equations in the multiscale model have been 

described in Table 1, and their values can be found in (Kimaev and Ricardez-Sandoval 2017). The solution 

of equations (1)-(3) is simplified using the axisymmetric flow assumption. It is also assumed that the gas 
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concentration along the radial direction is uniform (Rasoulian and Ricardez-Sandoval 2014). Furthermore, 

the steady state assumption allows the equations of momentum and energy transfer, (1) and (2), 

respectively, to be solved once at the beginning of the simulation and removes the need to regularly 

recalculate their solutions. Only the mass transfer equation (3) is solved repeatedly throughout the 

simulation whenever the kMC and PDE parts of the model are coupled at the surface of the thin film 

through equations (10), (11) and (15).  

Equations (1)-(3) are subject to the following boundary conditions in the bulk (𝜂 → ∞): 

 𝑇 = 𝑇𝑏𝑢𝑙𝑘 (4) 

 𝜕𝑓

𝜕𝜂
= 1 (5) 

 𝑥 = 𝑋 (6) 

and at the thin film surface (𝜂 → 0): 

 𝑇 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (7) 

 𝑓 = 0 (8) 

 𝜕𝑓

𝜕𝜂
= 0 (9) 

 𝜕𝑥

𝜕𝜂
=

𝑆𝑐(𝑅𝑎 − 𝑅𝑑)

√2𝑎𝜇𝑏𝜌𝑏

 (10) 

The boundary condition (10) needs to be updated throughout the simulation. Since the macroscale 

calculations cannot correctly compute the rates of adsorption and desorption, 𝑅𝑎 and 𝑅𝑑, respectively, 

the information about these rates needs to be estimated from the microscale kMC calculations.  

2.1.2 Microscale kinetic Monte Carlo model 

The kMC model is an on-lattice solid-on-solid model where a cubic lattice represents the thin film 

structure and periodic boundary conditions simulate the bulk behaviour. Only the first nearest neighbours 

of a particle are assumed to interact (the one atom underneath and up to four on the sides). Three surface 
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events are modelled: adsorption, desorption and migration. Their rates are calculated by equations (11), 

(12) and (13), respectively (Lam and Vlachos 2001):  

 
𝑊𝑎 =

𝑆0𝑃𝑥|𝜂→0

√2𝜋𝑚𝑅𝑔𝑇𝐶𝑡𝑜𝑡

𝑁2 (11) 

 
𝑊𝑑 = ∑ 𝑀𝑖𝑘𝑑0𝑒−

𝑖𝐸+𝐸𝑑
𝑅𝑇

5

𝑖=1

 (12) 

 
𝑊𝑚 = ∑ 𝑀𝑖𝑘𝑑0𝑒−

𝑖𝐸+𝐸𝑚
𝑅𝑇

5

𝑖=1

 (13) 

The choice of one of the three events is determined by the results of equations (11)-(13) and a uniform 

random number drawn from the open interval (0,1) as per (Vlachos 1997). Whenever an event is 

performed, the kMC time is incremented according to equation (14), which relies on another uniform 

random number 𝜍 from the interval (0,1) and the total rate of the system (Vlachos 1997):  

 ∆𝑡𝑘𝑀𝐶 = −
ln 𝜍

𝑊𝑎 + 𝑊𝑑 + 𝑊𝑚
 (14) 

The phenomena at the macro and micro scales affect each other: the mole fraction of the precursor 

adsorbing from the gas phase (𝑥|𝜂→0), obtained by solving PDE (3) together with boundary conditions (6) 

and (10), affects the rate of adsorption (𝑊𝑎) of the kMC equation (11). The rate 𝑊𝑎 then influences ∆𝑡𝑘𝑀𝐶  

of equation (14). In turn, the kMC model keeps track of the number of adsorbed and desorbed atoms, 𝑁𝑎 

and 𝑁𝑑, and increments the kMC time by ∆𝑡𝑘𝑀𝐶  after each event occurs. Eventually, when the kMC time 

reaches the coupling time interval ∆𝒯, the macroscale rates of adsorption and desorption (𝑅𝑎 and 𝑅𝑑, 

respectively), are updated:  

 
𝑅𝑎 − 𝑅𝑑 =

𝑁𝑎 − 𝑁𝑑

2𝑎𝑁2∆𝒯
 (15) 

The duration of the coupling time interval ∆𝒯 was chosen such that it would allow a sufficient number of 

kMC events to occur in between the coupling instances to enable the gas concentration above the thin 

film surface to reach steady state (Vlachos 1997). The numeric value of ∆𝒯 can be found elsewhere 
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(Kimaev and Ricardez-Sandoval 2017). The outcome of equation (15) is subsequently used to update the 

macroscale boundary condition (10), thus completing the feedback loop (i.e. the coupling) between the 

two scales in this model, which is summarized in Figure 1. Additional details of the implementation can 

be found in previous studies (Christofides and Armaou 2006; Rasoulian and Ricardez-Sandoval 2014; 

Vlachos 1997).  

For the present analysis, the roughness 𝑅 of the thin film is considered as the main observable of interest 

because it is susceptible to noise and it must be below a threshold for the thin film’s electrical conductivity 

to be acceptable (Chen et al. 2017; Ketenoğlu and Ünal 2013; G. Palasantzas and Barnaś 1997; George 

Palasantzas 1998). Roughness can be calculated as the number of broken bonds on the surface of the film 

(Christofides et al. 2009; Raimondeau and Vlachos 2000):  

 𝑅 = 1 +  
∑ ∑ (|ℎ𝑞+1,𝑧 − ℎ𝑞,𝑧| + |ℎ𝑞−1,𝑧 − ℎ𝑞,𝑧| + |ℎ𝑞,𝑧+1 − ℎ𝑞,𝑧| + |ℎ𝑞,𝑧−1 − ℎ𝑞,𝑧|)𝑁

𝑧=1
𝑁
𝑞=1

2𝑁2
 (16) 

where ℎ𝑞,𝑧 is the number of gas particles adsorbed at the lattice site (𝑞, 𝑧). Note that equation (16) relies 

on the absolute values of the differences in the numbers of atoms at the adjacent lattice sites.  

 

2.2 Multilevel Monte Carlo sampling technique 

The Multilevel Monte Carlo (MLMC) sampling technique aims to efficiently approximate the expected 

value of an observable of interest, e.g. 𝒫, by combining the estimates obtained at different levels of 

accuracy and computational cost (Giles 2008). The true expected value 𝔼[𝒫] of a random variable 𝒫 is 

given by the following equation:  

 𝔼[𝒫] = 𝔼[𝒫0] + ∑ 𝔼[𝒫𝑙 − 𝒫𝑙−1]

𝐿

𝑙=1

 (17) 
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where 𝐿 is the number of the finest discretization level, 𝒫0 is an estimate of 𝒫 obtained using the coarsest 

discretization level (𝑙 = 0), 𝒫𝑙 is an estimate of 𝒫 obtained using the discretization level 𝑙, and 𝒫𝑙 and 𝒫𝑙−1 

are obtained using the same Brownian path (Giles 2008). During MLMC sampling, the expected value at 

the coarsest level, 𝔼[𝒫0], is calculated first. The 𝔼[𝒫0] value is then refined with 𝔼[𝒫𝑙 − 𝒫𝑙−1], which are 

the expected values of the differences between the successive estimates of 𝒫. It is evident that the right-

hand side of equation (17) will approach 𝔼[𝒫] as 𝐿 → ∞. At the beginning of MLMC sampling, 𝐿 is set to 

2 to ensure that the system is sampled at least at three discretization levels (𝑙 = 0, 1, 2) before the 

convergence of the estimates of 𝒫 is assessed, and that the variance of the estimates of 𝒫 consistently 

decreases with the refinement of the discretization level. During MLMC sampling, 𝐿 may need to be 

increased beyond 2 because samples from finer discretization levels 𝑙 may be needed to decrease the 

variability of the estimates of 𝒫. MLMC sampling continues until the variance of 𝒫𝑙 − 𝒫𝑙−1 from the last 

three levels 𝑙 satisfies 𝜖, which is a user-defined upper bound of the root-mean-square error of the MLMC 

estimate of 𝔼[𝒫]. Upon the completion of MLMC sampling, 𝐿 becomes a finite positive integer greater 

than or equal to 2, such that 𝜖 is satisfied at levels 𝑙 = 𝐿 − 2, 𝐿 − 1 and 𝐿.  

The number of samples at every level 𝑙, i.e. 𝒩𝑙, used to approximate the expected values 𝔼[𝒫0] and 

𝔼[𝒫𝑙 − 𝒫𝑙−1] is diminished by the MLMC scheme to compensate for the growing computational cost 

associated with higher 𝑙 according to the following equation:  

 𝒩𝑙 = ⌈2𝜖−2√𝒱𝑙𝒽𝑙 (∑ √
𝒱𝑙

𝒽𝑙

𝐿

𝑙=0

)⌉ (18) 

where 𝒱𝑙 is the variance of the estimates 𝒫𝑙, and 𝒽𝑙 is the domain discretization step size at the level 𝑙. 

The values of 𝒱𝑙 need to be known a priori or approximated by conducting preliminary sampling of the 

system of interest at several discretization levels (at least three, 𝑙 = 0, 1, 2). It is common practice to 

decrease 𝒽𝑙 from one discretization level to the next according to a geometric series (Giles 2008, 2015). 
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Thus, the decrease in the calculated 𝒩𝑙 is due to the decaying 𝒱𝑙 and 𝒽𝑙 values. Note that to achieve 

smaller values of the tolerance 𝜖, the 𝒩𝑙 values and the overall computational cost will become larger.  

It is important to mention that MLMC is only applicable to systems where increases in 𝑙 lead to decreases 

in the variance of the estimates of 𝒫. Furthermore, to achieve computational savings with MLMC 

sampling, the cost of computing a sample with a finer discretization should exceed the cost associated 

with coarser discretization. As per the MLMC Theorem, the key condition for the applicability of MLMC is 

for the rate of convergence of the estimates of 𝒫 to be greater than or equal to half of either the rate of 

convergence of the variance of the estimates of 𝒫, or the rate of increase in computational complexity 

due to discretization refinement, whichever of the latter two rates is smaller (Giles 2008, 2015; Kimaev 

and Ricardez-Sandoval 2018). In section 2.3 (below), it is demonstrated that these criteria are met by the 

stochastic multiscale system chosen for this study. More comprehensive discussions of the factors that 

determine the applicability of MLMC sampling, as well as the foundational MLMC Theorem, can be found 

elsewhere (Aslett, Nagapetyan, and Vollmer 2017; Giles 2008, 2015). Also, a thorough description and a 

tutorial example of the MLMC sampling scheme can be found in (Kimaev and Ricardez-Sandoval 2018). 

Although the MLMC technique offers substantial time savings while preserving the accuracy, the method 

is not without shortcomings. The algorithm is heuristic, and its convergence is not guaranteed. The 

greatest time savings can be achieved only with the optimal selection of domain discretization at the 𝑙 =

0 level. If the samples at 𝑙 = 0 exhibit a very high variability (𝒱0) due to a very coarse discretization, 

excessive time will be spent at 𝑙 = 0 because 𝒩0 value will be high, and the overall computational cost 

will increase. However, when the discretization at 𝑙 = 0 is too fine, additional MLMC levels will have to 

use even finer domain discretization, which will result in higher computational costs at each level and 

therefore increase the overall cost of MLMC sampling. A further discussion of the potential drawbacks of 

MLMC can be found elsewhere (Giles 2008, 2015; Kimaev and Ricardez-Sandoval 2018). 

ACCEPTED M
ANUSCRIP

T



2.3 MLMC sampling applied to stochastic multiscale systems 

When applying the MLMC sampling technique to a system, it is necessary to identify the key discretization 

domains that affect the variability of the observable values generated by the system, as well as the 

computational cost associated with the level of accuracy. The majority of current MLMC implementations 

discretize the time domains of their respective simulation systems because the systems are represented 

by time-dependent differential equations and smaller integration timesteps yield results of lower 

variability. In the case of stochastic multiscale systems, domains other than temporal (e.g. spatial) may 

have a greater influence on the accuracy of simulations’ outcomes. For example, in systems that combine 

discrete particle simulations (e.g. kMC) with continuous differential equations, the number of particles 

considered in the discrete simulation domain may have a stronger impact on the noise in the observables 

than the integration timestep used to integrate the continuous differential equations.  

Once the discretization domain is chosen, the sequence for discretization level refinement needs to be 

selected. The levels should be chosen such that the variability of the observables is reduced in an optimal 

way. On the one hand, a slow refinement of the discretization would reduce the variance, but the overall 

computational cost would be unnecessarily high since too many levels would be sampled by the MLMC 

scheme. On the other hand, a drastic refinement of discretization could quickly make higher discretization 

levels (and the total cost) computationally intractable; for example, decreasing the integration timestep 

of a large system of differential equations by an order of magnitude with every additional level could make 

the costs of sampling prohibitive after a few levels have been added by the MLMC scheme. For efficient 

MLMC sampling, a geometric sequence is commonly used for discretization level refinement (Giles 2015). 

The optimal value of the refinement factor is system-specific (Giles 2008, 2015):  

 ℳ =
∆𝑡𝑙+1

∆𝑡𝑙
 (19) 
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where ℳ is the optimal refinement factor (e.g. ½, ¼), and ∆𝑡𝑙 and ∆𝑡𝑙+1 represent the integration 

timesteps used by MLMC while sampling a time-dependent system at the successive discretization levels 

𝑙 and 𝑙 + 1, respectively.  

In the stochastic multiscale kMC-PDE model considered in this work, the size of the lattice of the kMC thin 

film model (represented by 𝑁, see section 2.1.2) directly affects the variance of the roughness observable 

at the end of the batch, as demonstrated in Figure 2. Using a relatively large lattice (e.g. 𝑁 = 100) 

substantially decreases the noise in the observable (i.e. surface roughness); however, the simulation time 

grows with lattice size. For example, on an Intel® CoreTM i7-4770 CPU @ 3.40 GHz with 32 GB of RAM, a 

multiscale simulation from 0 𝑠 to 100 𝑠 at 𝑇 = 800 𝐾 would take approximately 18.2 seconds of CPU time 

for 𝑁 = 30, 122.7 seconds for 𝑁 = 100, and 472.5 seconds for 𝑁 = 150. The relationships between 

lattice size, observable’s variability and computational cost indicate that MLMC sampling is indeed 

applicable to this stochastic multiscale system.  

The current heuristic approach to approximating roughness is to use six 𝑁 = 30 lattices, find the 

roughness time trajectories from each lattice, find the average trajectory, and use it as an adequate 

representation of results that would be obtained from 𝑁 = 100 and 𝑁 = 150 simulations, as illustrated 

in Figure 3 (Christofides et al. 2009). Substantial CPU time savings can be achieved when the simulations 

are run in parallel. MLMC sampling can also take advantage of parallel computing, but one can approach 

the selection of the number and size of lattices in a more objective manner because MLMC tracks the 

decay in the variability of the estimates of the observable with each discretization level and adjusts the 

number of samples accordingly, as per equations (17) and (18).  

Since larger thin film lattice sizes impact both the observable’s estimates and the computational cost, the 

𝑁 values can be considered as discretization levels in the spatial domain. To adapt the MLMC sampling 

algorithm to the present multiscale model, we established an empirical relationship using least squares 
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regression between the lattice size 𝑁, temperature 𝑇, and the kMC timestep ∆𝑡𝑘𝑀𝐶, since they are already 

related through the kMC rate of adsorption 𝑊𝑎. This rate is calculated based on √𝑇 and 𝑁2 in equation 

(11) and is inversely related to ∆𝑡𝑘𝑀𝐶 through equation (14). In this work, only 𝑁 and 𝑇 were manipulated. 

Thus, an empirical relationship was established using 𝑁 and 𝑇 as the independent variables. Note that 

since 𝜍 of equation (14) is a uniform random number, variability is present in the kMC timestep. Hence, 𝑁 

and 𝑇 are related to the mean value of the kMC timestep (∆𝑡̂𝑘𝑀𝐶) as follows:   

 ∆𝑡̂𝑘𝑀𝐶 = (𝛼𝑇 + 𝛽)𝑁−2 (20) 

where the 𝛼 and 𝛽 model coefficients were found by least squares regression. This model was validated 

by examining its quality of fit to the mean kMC timestep values collected from the multiscale model at 

various 𝑁 and 𝑇 values (discussed in detail in section 3.1 below). For the purposes of this study, equation 

(14) of the kMC PDE model was replaced with equation (20). Note that if another stochastic multiscale 

model were considered for MLMC sampling, an empirical relationship different from equation (20) may 

need to be established.  

Next, it was necessary to establish the rule for selecting the kMC lattice sizes to enable MLMC sampling 

to systematically define each discretization level. Substituting equation (20) into equation (19) yields:  

 ℳ =
(𝛼𝑇 + 𝛽)𝑁𝑙+1

−2

(𝛼𝑇 + 𝛽)𝑁𝑙
−2  (21) 

which, upon simplification, results in: 

 
𝑁𝑙+1

𝑁𝑙
= √ℳ−1 (22) 

Equation (22) can be further rearranged to yield the rule for selecting the lattice sizes 𝑁𝑙  during MLMC 

sampling of the modified kMC PDE model: 

 𝑁𝑙 = ⌈𝑁0 × (√ℳ−1)
𝑙
⌉ (23) 
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where 𝑁0 is the user-defined minimum lattice size used by MLMC sampling. Equation (23) ensures a 

systematic selection of discretization levels of the spatial domain of the kMC simulation: the lattice size 

at an MLMC discretization level 𝑙 > 0 will correspond to the ∆𝑡̂𝑘𝑀𝐶  value that is an ℳ factor refinement 

of the mean kMC timestep at the preceding discretization level, in harmony with the existing MLMC 

implementations (Giles 2008, 2015; Giles, Nagapetyan, and Ritter 2015; Higham 2015).  

3. Results and discussion 

3.1 Establishing the 𝛼 and 𝛽 constants 

To estimate the 𝛼 and 𝛽 coefficients of equation (20), ∆𝑡𝑘𝑀𝐶 values of equation (14) were collected from 

various simulations of the original, unmodified kMC PDE model. In total, 105 simulations were conducted, 

where the lattice sizes ranged from 20 to 120, inclusive, with increments of 5, at temperatures from 

800 𝐾 to 1200 𝐾, inclusive, with increments of 100 𝐾. The temperature range was selected based on the 

expected operating conditions for an actual thin film deposition system. The mean kMC timestep values, 

∆𝑡̂𝑘𝑀𝐶, were calculated for each of the 105 simulations and the results have been plotted in Figure 4 (red 

markers). It can be seen that all 105 ∆𝑡̂𝑘𝑀𝐶 values were distinct from each other. Their uniqueness was 

further verified from their statistical distributions. Since each simulation was run from 0 𝑠 to 100 𝑠 with 

the coupling interval ∆𝒯 = 0.1 𝑠, the kMC and PDE scales were coupled 1000 times in every simulation. 

The mean kMC timestep values were calculated for every coupling interval of every simulation, and their 

histograms were plotted (one histogram per simulation). The statistical distributions from all simulations 

were normal or close to normal, with sharp peaks that coincided with the data (red dots) presented in 

Figure 4 and very short tails that did not overlap with distribution tails from other simulations (the 

distributions were not shown for brevity). Thus, it was concluded that the variability of the mean kMC 

timesteps was sufficiently low to be neglected.  
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Next, the 𝛼 and 𝛽 coefficient values of equation (20) were obtained from least squares regression 

(−7.594 × 10−4 𝑠 ∙ 𝐾−1 and 1.106 𝑠, respectively). The resulting surface plot, where ∆𝑡̂𝑘𝑀𝐶  was 

calculated according to equation (20), has also been presented in Figure 4. A very close agreement 

between the two datasets was demonstrated: the average ∆𝑡𝑘𝑀𝐶 of the original model (red markers in 

Figure 4) and ∆𝑡̂𝑘𝑀𝐶  from equation (20) (surface plot in Figure 4) have negligible residual errors (between 

-4.4% and 1.7%, not shown for brevity). Therefore, the dataset considered for 𝑁 and 𝑇 was sufficient to 

obtain an accurate empirical relationship.  

Next, the method of calculating the kMC timestep in the multiscale model was modified: equation (14) 

was replaced with equation (20). To verify that the modified kMC model can produce sufficiently accurate 

results, multiscale simulations were conducted with lattice sizes 𝑁 = 50 and 𝑁 = 100 at the 

temperatures of 940 𝐾 and 1140 𝐾. These temperature values were chosen because they were not used 

to identify the coefficients of equation (20) and because they represent the two regimes of the multiscale 

model, the lower-temperature adsorption-dominated regime that produces thin films with higher 

roughness (940 𝐾) and the higher-temperature migration-dominated regime that results in smoother thin 

films (1140 𝐾). For each temperature, two kinds of simulations were carried out: with the original 

multiscale model where ∆𝑡𝑘𝑀𝐶  was calculated by equation (14) after each kMC event, and with the 

modified multiscale model where the fixed ∆𝑡̂𝑘𝑀𝐶 was calculated from equation (20) once at the beginning 

of the simulation and used throughout without alterations. The comparison is presented in Figure 5, with 

8 roughness time trajectories from the original model and 1 representative roughness trajectory (no 

averaging) from the modified model in each subplot. Clearly, the replacement of equation (14) by 

equation (20) preserved the accuracy of predictions. The predictions from the modified model 

approached the average of the time trajectories obtained from the original model, especially for larger 

lattice sizes (𝑁 = 100), as shown in Figure 5. Note that the use of a fixed kMC timestep did not affect the 

computational costs. Additional testing has been performed to corroborate this observation (omitted for 
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brevity). To the extent of our knowledge, such a result has not been reported for this stochastic multiscale 

system. Also, note that fixing the kMC timestep did not eliminate the noise from the roughness time 

trajectories, since the kMC portion of the multiscale model continued to use uniform random numbers to 

choose among the adsorption, desorption and migration surface events, as discussed in section 2.1.2.  

 

3.2 Estimating the noise via MC and MLMC sampling 

To compare the computational cost and accuracy of estimating the noise in the roughness observable of 

the multiscale model by the two sampling techniques, Monte Carlo and Multilevel Monte Carlo, multiscale 

simulations were conducted with the original model and the modified model (with equation (20) 

substituted for equation (14)) at three temperature settings: 940 𝐾, 1040 𝐾 and 1140 𝐾. The focus of 

this work was to estimate the maximum noise in the average of the last five roughness values (i.e. at 

seconds 96-100, inclusive, of each simulation). The average is denoted from henceforth by  𝑅𝑓.  

While MC sampling relied on the original model, the MLMC scheme used the modified version, i.e. the 

model that uses a fixed kMC timestep. MC sampling was performed using 𝑁 = 100. Larger lattices were 

not sampled because the substantial increase in computational cost was not justified by the observed 

changes in the roughness trajectory. For example, a negligible difference can be observed between 𝑁 =

100 and 𝑁 = 150 in Figure 3, yet the computational cost is more than 3 times higher for 𝑁 = 150. 

Throughout MC sampling, the maximum and minimum observed 𝑅𝑓 values, as well as the difference 

between them, were updated whenever a new batch of 80 multiscale simulations finished running. In 

total, 6000 simulations were performed at each temperature.  

MLMC sampling used equation (23) as the rule for setting the spatial domain discretization at each MLMC 

level. The minimum lattice size used in equation (23), i.e. 𝑁0, was set to 20, since that was the smallest 𝑁 

value that did not cause extreme noise in the predictions made by the present kMC PDE model. The 
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optimal refinement factor (ℳ) was set to ½ because it was the smallest value that did not cause MLMC 

to sample computationally intractable lattice sizes at higher discretization levels.  

MLMC sampling was performed for each of the three temperatures; the root-mean-square error tolerance 

𝜖 was set to 0.3 and 0.2 at each temperature. To ensure adequate sampling, 64 MLMC runs were 

performed at each combination of the temperature and 𝜖 values. Once all MLMC sampling runs were 

completed, the differences between the maximum and minimum estimated 𝑅𝑓 values were calculated at 

each setting. Figure 6 and Table 2 compare the 𝑅𝑓 noise bounds obtained by MC and MLMC sampling.  

Based on the results summarized in Figure 6, it was observed that MC sampling exhibited creeping noise 

in roughness values due to the asymptotic behaviour of max 𝑅𝑓 − min 𝑅𝑓 values. MC sampling achieved 

noise bounds of 0.679 for 𝑇 = 940 𝐾, 0.289 for 1040 𝐾 and 0.140 for 1140 𝐾. It should be noted that 

these noise estimates could increase with additional MC sampling. In this study, the computational cost 

of MC became prohibitive after such a long sampling time (i.e. over 200 hours).  

From Figure 6 and Table 2, it was apparent that MLMC could produce conservative estimates of noise in 

𝑅𝑓 values and offered an order of magnitude time savings compared to MC sampling: the computational 

requirements of MLMC were between 6.5 hours (at 1140 𝐾, 𝜖 = 0.3) and 38.2 hours (at 940 𝐾, 𝜖 = 0.2), 

whereas the MC sampling time ranged from 208.3 hours (at 𝑇 = 940 𝐾) to 349.8 hours (at 𝑇 = 1140 𝐾), 

as per Table 2. It could also be observed that the MLMC and MC results at 940 𝐾 and 1140 𝐾 showed 

consistent trends: all MLMC and MC noise estimates at 1140 𝐾 were smaller than at 940 𝐾 (e.g. for 𝜖 =

0.2, MLMC results were 0.809 at 940 𝐾 and 0.307 at 1140 𝐾, while MC results were 0.679 at 940 𝐾 and 

0.140 at 1140 𝐾). However, at 1040 𝐾, the MC estimate (i.e. 0.289) was between the MC noise values 

from 940 𝐾 and 1140 𝐾 (0.679 and 0.140, respectively), while MLMC produced a result higher than at 

940 𝐾 (for 𝜖 = 0.3, at 1040 𝐾 the result was 1.175, higher than 1.054 at 940 𝐾). Thus, at 1040 𝐾, MLMC 

diverged from the trends in the noise bounds observed at 940 K and 1140 K. One possible explanation to 
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this behaviour is that the multiscale system started to transition into the lower-noise migration-

dominated regime and caused MLMC 𝑅𝑓 noise estimate to become overly conservative. This issue could 

be mitigated to some extent by decreasing 𝜖 from 0.3 to 0.2 at 𝑇 = 1040 𝐾, but for 𝜖 = 0.2 the MLMC 

result at 1040 𝐾 was still very close to the value at 940 𝐾 (0.803 versus 0.809, respectively). The obvious 

shortcoming of this approach to tuning the 𝜖 value is that to obtain a more accurate noise estimate, the 

selection of 𝜖 has to be guided by some a priori knowledge of the system behaviour. Thus, despite the 

computational time savings offered by MLMC sampling, MC sampling may still need to be conducted for 

a short amount of time to obtain an approximation of the noise that can validate the estimates from 

MLMC. The greatest computational savings from MLMC were observed in the low-noise regime, i.e. at 

1140 𝐾, where MLMC required at most 9.8 hours of CPU time (for 𝜖 = 0.2), whereas MC sampling took 

349.8 hours. Since the CPU times required by MLMC were on the order of hours, online applications of 

MLMC for stochastic systems would still be challenging. However, the usage of high performance 

computing clusters could enable online applications by leveraging the parallelization of MLMC sampling. 

Furthermore, using larger 𝜖 values could also reduce the computational costs.  

Note that smaller 𝜖 were considered (e.g. 0.1). At 𝑇 = 940 𝐾 and 1040 𝐾, setting 𝜖 to 0.1 caused MLMC 

to sample large, computationally intractable thin film lattices. Such MLMC sampling runs were terminated 

before completion and their results could not be obtained. At 1140 𝐾, MLMC runs with 𝜖 = 0.1 were able 

to achieve roughness estimates because the multiscale system was in the low-noise regime at that 

temperature, but the approximations did not improve upon the presented results. This behaviour of 

MLMC is different from what we observed previously for closed-form systems (Kimaev and Ricardez-

Sandoval 2018). This result suggests that there is a lower bound on the 𝜖 error tolerance that can be 

achieved by MLMC for the case of stochastic systems.  

Furthermore, it is imperative for MLMC to use the same Brownian path when the samples of the 

observable are obtained at two subsequent discretization levels, as discussed in section 2.2 and in (Giles 
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2008). When MLMC is applied to systems represented by continuous equations, the discretization level is 

the only source of discrepancies between the samples. Due to the application of MLMC sampling to a 

stochastic multiscale system, an additional source of variability arises: the inherent noise associated with 

the non-closed-form expressions will cause deviations in the results of different simulation runs even 

when all parameter values and the discretization level are the same. To ensure that MLMC uses the same 

Brownian path when sampling the observables of a stochastic multiscale system at two subsequent 

discretization levels, the same seed must be provided to the random number generators in the simulations 

performed at both discretization levels.  

Note that multiple approaches for adapting the multiscale model for MLMC sampling were explored in 

this study. The coupling timestep ∆𝒯 between the kMC and PDE scales was considered as the 

discretization level in MLMC sampling. However, when ∆𝒯 was small, it resulted in longer simulation times 

and produced the same roughness trajectories. However, when ∆𝒯 was large, it caused discontinuities in 

the roughness time trajectory, indicating numerical instability encountered at the coupling of the two 

scales. In addition, without a systematic way of selecting the lattice sizes, MLMC runs could become 

excessively long, since the simulation times of individual multiscale simulations within the MLMC scheme 

could require computationally prohibitive lattice sizes at higher MLMC discretization levels.  

4. Conclusions  

In this study, the Multilevel Monte Carlo (MLMC) sampling technique was adapted to stochastic multiscale 

systems. As a case study, MLMC was applied to a model that represented thin film formation by chemical 

vapour deposition. Unlike in most other MLMC implementations, which discretize the time domain, in this 

work the spatial discretization domain was used in the MLMC scheme. MLMC and Monte Carlo (MC) 

sampling techniques were used to estimate the noise in the system’s observable, i.e. roughness of the 

thin film. The greatest computational efficiency of MLMC was observed when the system was in the low-
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noise regime. However, while the potential computational time savings offered by MLMC were an order 

of magnitude compared to MC sampling, MLMC overestimated the noise values obtained from MC. The 

tuning of the root-mean-square-error tolerance (𝜖) of the MLMC technique improved the accuracy of the 

noise estimates, but it relied on a priori knowledge of the system’s behaviour. It was also found that unlike 

for the case of closed-form systems of equations, in stochastic multiscale systems MLMC could not satisfy 

every imposed 𝜖 at every set of simulation conditions, which suggests the existence of a lower bound on 

the error tolerance.  
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Figure 1: The multiscale feedback loop between equations (3), (11), (15) and (10) (from the top, in clockwise order).  

 

Figure 2: The decay of variance in roughness at the end of the batch due to increasing thin film lattice size. For brevity, results at 
only two temperature values have been shown. ACCEPTED M
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Figure 3: A comparison of roughness time trajectories from different thin film lattice sizes. 

 

Figure 4: A comparison between the mean kMC timesteps obtained from simulations (red markers) and the kMC timesteps 
calculated from equation (20) (surface plot). Note that 𝛼 was found to be −7.594 × 10−4 𝑠 ∙ 𝐾−1 and 𝛽 was 1.106 𝑠.  
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Figure 5: A comparison between the time trajectories of roughness produced by the original multiscale simulation and the 
modified model with a fixed kMC timestep. 
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Figure 6: A comparison of the estimates of noise in 𝑅𝑓 from MC and MLMC sampling. 
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Table 1: The parameters of the multiscale model 

Symbol Meaning 

𝑎 hydrodynamic strain rate 

𝐶𝑡𝑜𝑡 concentration of sites on the film surface 

𝐸 energy associated with a single bond 

𝐸𝑑 energy required for desorption 

𝐸𝑚 energy required for migration 

𝑓 dimensionless stream function 

𝑖 number of neighbours of an atom (between one and five) 

𝑘𝑑0 event frequency constant 

𝜇𝑏 viscosity of bulk gas 

𝑚 precursor molecular weight 

𝑀𝑖 number of adsorbed surface atoms with a particular number of neighbours (𝑖) 

𝜂 dimensionless distance away from thin film surface 

𝑁 number of adsorption sites along an edge of the square thin film (set by the user) 

𝑁𝑎 number of adsorbed atoms 

𝑁𝑑 number of desorbed atoms 

𝑃 chamber pressure 

𝑃𝑟 Prandtl number 

𝜌 density of gas boundary layer 

𝜌𝑏 density of bulk gas 

𝑅𝑎 rate of adsorption from the gas boundary layer 

𝑅𝑑 rate of desorption to the gas boundary layer 

𝑅𝑔 gas constant 

𝑆0 sticking coefficient 

𝑆𝑐 Schmidt number of the depositing gas species 

𝜏 dimensionless time, equals to 2𝑎𝑡 

𝑡 time  

∆𝑡𝑘𝑀𝐶 kMC timestep 

∆𝒯 kMC-PDE coupling time interval 

𝑇 substrate temperature (set by the user) 

𝑇𝑏𝑢𝑙𝑘 bulk temperature of the gas 

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 temperature of the substrate and the thin film 

𝑊𝑎 rate of adsorption onto the thin film 

𝑊𝑑 rate of desorption from the thin film 

𝑊𝑚 rate of migration on the thin film 

𝑥 mole fraction of the depositing gas species, varies with 𝜂 and 𝜏 

𝑋 mole fraction of the gas species in the bulk (i.e. at 𝜂 → ∞) 

𝜍 uniform random number on the (0,1) interval  
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Table 2: Summary of MC and MLMC results. 

𝑇 (K) Sampling 
method 

CPU time 
(hours) 

𝑚𝑎𝑥 𝑅𝑓 − 𝑚𝑖𝑛 𝑅𝑓 

 MC, 𝑁 = 100 208.3 0.679 

940 MLMC, 𝜖 = 0.3 21.0  1.054  

 MLMC, 𝜖 = 0.2 38.2 0.809 

 MC, 𝑁 = 100 217.6 0.289 

1040 MLMC, 𝜖 = 0.3 12.7 1.175 

 MLMC, 𝜖 = 0.2 28.5 0.803 

 MC, 𝑁 = 100 349.8 0.140 

1140 MLMC, 𝜖 = 0.3 6.5 0.347 

 MLMC, 𝜖 = 0.2 9.8 0.307 
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