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Abstract

A statistical sample size determination (SSD) method is designed for the maintenance of

engineering components of similar structure within an overall system. The maintenance problem

is defined as a sequential decision-making process, in which the optimal sample sizes are derived

by an approach based on the value of information (VoI) concept.

Firstly, various sample size determination methods are summarized, and their advantages

and disadvantages are discussed. This comparison highlights that, in many cases, the

VoI-based approach is superior to traditionally used methods. Existing standards for engineering

components are then categorized, based on the comparison, and the rationale behind each

standard is described. Potential advantages of using a VoI-based approach are suggested and

discussed.

Secondly, the theoretical superiority of VoI-based methods is demonstrated in the context of

a diagnostic inspection problem, in which the traditional SSD method, the hypothesis-testing

approach, can be defined. After the hypothesis-testing context is translated into a sequential

decision-making problem, theoretical and numerical results are compared for the VoI-based and

traditional methods.

Thirdly, the models for condition-based maintenance problems are defined with a

time-dependent degradation process called the gamma process. The models mathematically

describe how temporal and parameter uncertainties of the degradation process affect VoI-based

analysis. Computational calculation techniques are introduced and compared with each other.

Additionally, the model is generalized as a dynamic programming problem and formulated as a

multiple-inspection problem.

Finally, the effectiveness of the SSD approach is demonstrated through application to an

iv



actual degrading system. Based on data from nuclear power plants, numerical analyses are

shown for both single and two inspection cases. The results provide operators with guidelines for

maintenance and inspection policies that minimize the expected cost throughout the remaining

lifetime of the system.
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Chapter 1

Introduction

As our society matures, the cost of sustaining the built public infrastructure, such as roadways,

bridges, and power plants, becomes enormous. Maintenance techniques for operating repairable

engineering systems are now essential, and effective maintenance strategies are pursued for better

safety and economic benefits. Although a large budget is allocated for infrastructure investment,

still a significant funding gap exists between what is actually needed and the available funding.

For example, according to the American Society of Civil Engineers (2016), federal, state, and

local governments in the US will fund only 57% of the budget required for 2016 to 2025, which

is an estimated 3.3 trillion U.S. dollars. In addition to promoting political efforts to increase the

budget, authorities need to make the cost for infrastructure maintenance as low as possible, but

also compatible with component safety.

In the maintenance of engineering components, which components and when to replace

them are the main concerns and have been addressed by using many optimization approaches.

Maintenance strategies can be roughly classified into two groups: time-based maintenance

and condition-based maintenance. With time-based maintenance, which is sometimes called

age-based replacement, components will be replaced at their scheduled times. This policy

can be understood as an optimized strategy without inspection. Operators make plans based
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not on individual degradation processes, but on a general tendency. Thus, with a time-based

maintenance policy, operators risk replacing components that still have a long remaining lifetime,

which is wasteful. With condition-based maintenance, on the other hand, periodic inspection is

scheduled, and decisions to replace a component or not are based on its inspected condition.

Although time-based maintenance has been the majority choice for decades because of its

easier implementation, condition-based maintenance has recently received attention as monitoring

technologies develop. Pandey et al. (2009) reveal that condition-based maintenance is preferable

when the uncertainty associated with degradation is relatively small, although in some cases

time-based maintenance is better than condition-based maintenance. Most condition-based

maintenance optimization studies propose determining the replacement criteria and inspection

intervals needed for preventive maintenance (PM) based on the assumption that the conditions

of all components are observed at each periodic inspection.

Nuclear power plants are one of the most critical infrastructures to be operated under a

need to balance considerations of safety with those of generation efficiency. In order to remain

operating, plants have to ensure authorities that they satisfy regulatory standards, and so must

undergo inspections by an independent regulator. Sustained and efficient generation is desired

by operating corporations, as it drives profit. To maintain safety and generation efficiency at

high levels simultaneously, each component of a plant is regularly inspected. Usually, a nuclear

power plant has a planned maintenance outage for two to eight weeks every two years (Garland,

2014). By inspecting components, operators can replace only those that are faulty or unlikely

to satisfy required performance until the next inspection outage. Since a nuclear power plant

consists of many sub systems, which comprise a number of components, the probability of failure

for each component should be kept low. Otherwise, the whole system would need to be shut down

often because even failure of one component may affect and stop the whole system. To avoid
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this frustrating situation, during a maintenance outage, components are inspected and those that

have a higher probability of failure are replaced immediately. In terms of safety, the larger the

sample size inspected, the less the uncertainty about current and future states of the components.

However, inspections of nuclear power plant components usually become expensive because

of several difficulties, such as the high-radiation area and the large number of components. For

example, a 600 MWe (electric) CANDU reactor core has 380 fuel channels, which are pressure

tubes (see Figure 1.1 (Garland, 2014)). Once the wall thickness of a single pipe drops below a

set threshold, heavy water leakage can occur. The actual strategy in a maintenance outage is

to inspect only a part of all components and estimate the others’ conditions from the newest

inspection outcomes and previous data. Thus, sample size determination becomes an important

problem in balancing the safety or generating efficiency requirement with management cost.

1.1 Research Motivation

Standards and guidelines for sample size determination (SSD) have been published and used at

actual sites, but they are missing theoretical rationale or rely on methods that ignore inspection

cost. For example, the minimum sample sizes for components of CANDU reactors are summarized

as guidelines (National Standards of Canada, 2014). Although the guidelines have worked well

at actual operating sites, no theoretical rationale exists for the sample sizes and requirements

for sample selection. Several other standards such as National Standards of Canada (2014)

rely on traditional SSD methods, but these methods focus only on safety and cannot include

cost-effectiveness in the inspection policy.

Except for the traditional SSD techniques, few SSD methods have been developed for

condition-based maintenance. Since condition-based maintenance is based on data obtained from
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Figure 1.1: Reactor core of a CANDU 600 (Garland, 2014)
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periodic inspection, SSD is ignored in most studies. The assumption of full-inspection needs

to be revisited to include the inspection problem. As the example points out, there are cases

like nuclear power plants where the sample size of each inspection needs to be considered in the

condition-based maintenance strategy.

An SSD approach, proposed by Raiffa and Schlaifer (1961), called the value of information

(VoI) concept, is gaining attention in structural health monitoring (Faber and Sorensen,

2002; Straub and Faber, 2004a,b; Bensi, 2010; Pozzi and Der Kiureghian, 2011; Straub, 2014;

Memarzadeh and Pozzi, 2016; Konakli et al., 2016). It is used for calculating the benefit of

obtaining information, and with it, operators can find a reasonable balance between the cost

of inspection and the pay-off of the results. Despite noteworthy contributions of these studies,

several limitations remain. First, these studies still have difficulty in dealing with system-level

problems. Thus, SSD cannot be carried out with the existing VoI-based analyses. Second,

these studies are not focused on applying the method to deterioration models and so have been

applied to realistic degradation process models and do not explain how to extend the method to

those degradation models. Third, they fail to show how much the VoI-based method can reduce

the expected cost compared with traditional SSD methods. These studies, relying on Bayesian

statistics, use different terminologies from frequentist statistics, making comparisons difficult.

As another approach for an inspection decision problem, the partially observable Markov

decision process (POMDP) has been developed for condition-based maintenance in recent years

(Papakonstantinou and Shinozuka, 2014a,b,c; Memarzadeh and Pozzi, 2016). The approach

focuses on measurement errors and optimizes not only maintenance actions but also inspection

policy. It successfully generalizes multiple-inspection problems by simplifying the states of a

system, observation outcomes, and maintenance/inspection actions as discrete values. Schöbi and

Chatzi (2016) extend the POMDP for continuous-state problems. However, it still cannot deal
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with the SSD problem in the analysis scheme because it has focused only on a single-component

system. Moreover, it has not considered other types of uncertainties, such as parameter and

temporal uncertainties.

1.2 Objectives

The overall goal of this thesis is to develop widely applicable SSD methods for investigating

system-level condition-based maintenance problems, and thus enhance decision-making for

engineering-component maintenance. In particular, the thesis covers the following questions and

approaches to solving them:

• What are the basic characteristics of SSD methods based on VoI concept within the context

of engineering-component maintenance problems? The author develops a simple model that

represents the maintenance problem and shows how the VoI-based SSD methods work;

• How do the proposed SSD methods differ from frequentist techniques? The author compares

these two approaches and shows the strengths and weaknesses of each;

• How can a system-level maintenance problem be defined for a time-dependent degradation

process? The author applies a stochastic degradation process modelled as a gamma process,

with which one can include temporal and parameter uncertainties. Because of the nature

of the process, one can describe all possible system conditions in a simple manner. Note

that the system is defined as a group of homogeneous components whose degradation levels

can be treated as independent and identically distributed random variables, although they

become dependent once their distribution parameters share a common parameter. The

system is repairable, and each component can be replaced;

• How can an SSD method be applied to multiple-component multiple-inspection problems?
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The author explains how to combine the SSD method with dynamic programming. As an

example, the VoI-based method is demonstrated with data from a real operating system.
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1.3 Thesis Overview

The thesis organization is illustrated in Figure 1.2. The thesis is organized in the following

manner.

• Chapter 2 reviews the relevant literature on SSD methods, discusses the advantages and

disadvantages of each technique, and confirms the superiority of the VoI-based SSD method.

• Chapter 3 provides an SSD analysis for diagnostic inspection of a component population.

An inspection and replacement problem is defined and is combined with a binomial states

model. This chapter provides hypothesis-testing-based and VoI-based methods for finite

population cases, compares these two methods, and discusses their differences.

• In Chapter 4, the VoI-based SSD method is applied to a linear degradation process model,

a random rate model. First, a two-stage decision-making problem is defined, and the

VoI-based SSD method is formulated for both single-component and multiple-component

system cases. A numerical example is demonstrated, and the characteristics of the method

are analysed.

• Chapter 5 deals with a gamma process model, which is a time-dependent stochastic

degradation, in maintenance problems with temporal uncertainties. It starts with a

single-component case and develops it into a multiple-component system case. The author

demonstrates the given approach on a realistic numerical example of maintenance of nuclear

power plant components.

• Chapter 6 extends the model developed in Chapter 5 to a case with parameter uncertainty.

A single-component case is introduced and used to define a multiple-component system

case. The author also discusses the impacts of reducing different types of uncertainties:

temporal and parameter uncertainties.
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• Chapter 7 extends the proposed model to the two-inspection problem by formulating it as a

dynamic programming situation. It derives a general model for multi-inspection problems

and demonstrates a two-inspection problem with data from a real operating system.

• Chapter 8 summarizes the contributions of the research and points out avenues to follow in

future work.

Figure 1.2: Graphical overview of the thesis
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Chapter 2

Literature Review

This chapter reviews the relevant literature on sample size determination (SSD) methods. The

SSD methods were originally developed as a part of statistical experimental design in the early

twentieth century. Since sample size is a key factor of frequentist statistic analysis such as

hypothesis-testing and parameter estimation, as a part of designing these analyses, a variety

of SSD methods were derived. These methods have been widely used for a long time and are

still in the major approach of SSD. Although it is still in the minority, another SSD method,

VoI-based method, has been getting attention over the last decade. These methods have developed

independently and have never been compared with one another. This chapter summarises these

methods and builds a basis for comparison.

2.1 Uncertainties and Random Variables in Degradation

Processes

Inspection data contribute to reducing uncertainties about component deterioration. The

uncertainties can be categorized into three types: measurement error, temporal uncertainty, and

random effects (Verbeke and Molenberghs, 2009; Yuan, 2007). In addition to these three, in the
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context of Bayesian statistics, we need to include parameter uncertainty, which is an uncertainty

in a underlying mathematical model. First, measurement error is a gap between observed data

and the true state of the same component at the same time. This uncertainty is dominant

when we estimate the current states of inspected pipes. Second, temporal uncertainty means

uncertainty for a future state. Even though we know the true current state, future states cannot

be predicted exactly since the degradation process is stochastic. This temporal uncertainty needs

to be considered when estimating the future states of inspected pipes. Third, random effects

represent the heterogeneity of a pipe compared with other pipes that should have the same

characteristics theoretically. Random effects appear in problems estimating other pipes based

on the data of already-inspected pipes. Parameter uncertainty represents imperfect information

about population parameters, which are treated as random variables in the context.

Uncertainties can be classified into two groups: aleatory and epistemic. Aleatory uncertainties

arise from natural or unpredictable variation and are in general not reducible, whereas epistemic

uncertainties are from lack of knowledge about the focusing random variables and can be reduced

by increasing inspection accuracy and/or the size of sampling inspection. Measurement error and

parameter uncertainty are classified as epistemic uncertainties, and temporal uncertainty and

random effect are aleatory uncertainties.

Under the context of inspection planning, operators can “reduce” temporal uncertainties

by planning a new inspection at a future time. Adding another decision-making time and

inspecting components, the operators can reduce the time interval in which they need to forecast

the degradation process of the components. In the inspection planning, both the aleatory and

epistemic uncertainties need to be considered.
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2.2 Degradation Process

The object of inspection is to observe the condition of a component that is degrading during

system operation. Obtained outcomes update information about the degradation process and

consequently contribute to better prediction of future conditions. For the prediction, operators

select and use a mathematical degradation model, which is essential for maintenance planning.

The overall classification of degradation models is illustrated in Figure 2.1. Probabilistic

degradation models can be generally classified into two groups: random variable and stochastic

process models. The random variable models assume that the randomness exists among

components, but the path of degradation process is deterministic. The randomness is represented

by vector of random variables. Thus, they do not include aleatory uncertainties so that the future

condition can be precisely predicted if no measurement errors exist in the observation of current

contritions. The stochastic process models include temporal uncertainties, which are aleatory

uncertainties, and are associated with progression of degradation over time. The process itself

includes uncertainties so that a future is still uncertain even if the current state is observed without

measurement errors. Note that the models satisfy the Markov property as long as they assume

independent increments, which is more restrictive than the Markov property (van Noortwijk,

2009).

The stochastic process models can be split into two subgroups based on whether they

assume discrete or continuous states. Discrete-state models are classified as discrete-time

Markov processes, which discretize time and consequently have discrete-states. The deterioration

progression is modelled as transitions between states that are defined by probability matrix. The

models are usually used in the Markov decision process (MDP) or its derivation, the partially

observable Markov decision process (POMDP). The continuous-state models, which are identical

to continuous-time Markov processes, are vary, such as the gamma process, the Wiener process
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Figure 2.1: Classification of degradation models

(also called the Gaussian process or the Brownian motion with drift,) and the inverse-Gaussian

process (Ye et al., 2015).

A gamma process is a continuous-time Markov process with stationary, independent, and

gamma distributed increments (Abdel-Hameed, 1975). With a gamma process, the distribution

of a future state follows a gamma distribution wherein one of the parameters is proportional to

a time interval between the two inspection timings. Because of their simple mathematical form

and memoryless property, gamma processes have been used in modelling a variety of degradation

phenomena (Yuan, 2007). Large applicability of gamma processes has been shown, including

for diverse materials and failure modes, such as sand nourishment erosion (van Noortwijk and

Peerbolte, 2000), rock rubble displacement in sea bed protection (van Noortwijk et al., 1995),

concrete creep (Cinlar et al., 1977), scour-hole development on concrete surface (van Noortwijk

and Klatter, 1999), corrosion of carbon steel pressure vessels (Kallen and van Noortwijk, 2005),

fatigue crack growth (Lawless and Crowder, 2004), feeder wall thinning corrosion (Yuan et al.,

2008), and diameter expansion of fuel channels (Yuan et al., 2006).

13



When the increments follow a normal distribution, the continuous-time Markov process is

the Wiener process (van Noortwijk, 2009). Although the Brownian motion, with which the

increments can be negative values, is inadequate for modelling the deterioration process, because

of mathematical advantages, the Wiener process has been widely used in a wide range of

applications such as bridge beam degradation (Wang, 2010) and magnetic head wearing (Ye

et al., 2013).

Similar to the gamma process, the inverse-Gaussian process is a monotonically increasing

degradation process with independent and inverse-Gaussian distributed increments. The process

is flexible for modelling heterogeneous degradation of systems because of its easiness to include

random effects. The inverse-Gaussian process was first introduced by Wang and Xu (2010) and

has gained attention recently. The usefulness of the process for condition-based maintenance,

especially for heterogeneous system, has been investigated by Qin et al. (2013), Ye and Chen

(2014), Chen et al. (2015), and Peng et al. (2017).

2.3 Value of Information Analysis

The value of information concept is defined in Bayesian decision analysis. Bayesian decision

analysis can be understood as a branch of statistical decision theory. Building on game theory,

which was originally proposed by von Neumann and Morgenstern (1947), Wald (1950) initiated

and developed the statistical decision theory. In the theory, a decision maker plays a game

against an opponent, “nature.” Nature controls randomness in the decision problem, and the

decision maker takes an action through calculating possible consequences and their probability

of occurrence. Since then, statistical decision theory has been introduced, and extended by many

researchers, such as Blackwell and Girshick (1954), Chernoff and Moses (1959), Ferguson (1967),

Hadley (1967), Weiss (1961), and DeGroot (1970). In certain of these studies, Bayesian decision
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analysis, including the VoI concept, was proposed, by Pratt et al. (1995), Raiffa and Schlaifer

(1961), and Schlaifer (1959). Since then Bayesian decision analysis has been applied to many

fields, including civil engineering problems; one initial study of civil engineering applications was

produced by Benjamin and Cornell (1970). The use of VoI and its derivations has become frequent

over this last decade, especialy in healthcare science (Steuten et al., 2013).

VoI is a value for a given observation result, and its expected value with respect to

as-yet-unknown obtaining inspection outcomes is called the expected value of sample information

(EVSI). The EVSI is a function of sample size and represents by how much the decision maker

benefits from the observed data because that data reduces uncertainty about a component’s true

state. The EV SI has the following attributes:

• is an expected value of the VoI;

• treats the observation outcomes as probabilistic variables;

• is a function of one or more parameters of inspection, such as sample size;

• identifies an operator’s expected benefit from observed data.

As a utility function against sample size, the expected net gain of sampling (ENGS) is defined as

EVSI minus observation cost. Maximizing ENGS, we can determine the optimal sample size.

2.3.1 Random Variables and Sets of Options

Typical Bayesian pre-posterior decision analysis is shown in Figure 2.2, which pictures the whole

decision process, relations among the four key variables, and consequences for each possible set

of four values. The terminal cost C(e, z, a, x) is determined by four values (e, z, a, x) from four

data sets: the set of possible experiments (E), the set of potential outcomes of all experiments

in the set (Z), the set of possible terminal acts (A), and the set of possible “states of the world”
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(X). Note that E and A are the set of possible options for a decision maker, and Z and X are

treated as random variables in this study. Using z (results of e), the decision maker updates the

estimate of x and chooses an action, a, because it maximizes the expected terminal cost. Even

though the true state is pre-determined by chance, the node for x comes last because the decision

maker is only able to know the true value through a consequence of his/her decision.

In Bayesian pre-posterior analysis, the terms “prior” and “posterior” mean before and after

experiments, respectively, and “pre-posterior” is used when we are considering a posterior

situation but are actually still in a prior situation. Bayesian pre-posterior decision analysis is

an optimization of the whole decision problem from the perspective of a decision maker before

observations. In detail, this analysis is done to find the options of e and a that minimize the

expected cost related to unknown values z and x.

2.3.2 Cost Function

The cost function can be separated into two parts as follows:

C(e, z, a, x) = C(a, x) + Cost(e, z), (2.1)

where C(a, x) is the re-defined “cost function,” which is used in most VoI analysis and also used

in Chapter 3; and Cost(e, z) is the total inspection cost; for instance, a simple model is a linear

function of a sample size, n, as Cost(e, z) = Cost(n) = n · CI , where CI is the cost for an

observation. For later analysis, we also define “prior cost” as a cost without experiment and

“posterior cost” as a cost in a case with a certain e and z, excluding the cost for the experiment;

respectively, the two are represented as C(a, x) and C(a, x | e, z) in Figure 2.2. Within this

Bayesian pre-posterior analysis, EVSI can be calculated with two different expected costs.
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Figure 2.2: Extended decision tree for a Bayesian pre-posterior analysis

2.3.3 Prior Analysis

A prior analysis is the optimisation of the expected cost with respect to actions, A, without any

new information. Decision makers evaluate the expected cost of each action based only on prior

information, EX [C(a,X)]. The prior information is summarized as a probability density (or

mass) function; this is called a prior distribution. There are no updates about unknown values,

X. Through the analysis, decision makers obtain the best action and its expected consequence,

mina{EX [C(a,X)]}, without sampling inspection.

2.3.4 Posterior Analysis

A posterior analysis is the optimization of expected cost with respect to A when decision makers

have specific outcomes, such as Z = z, from a sampling inspection, E = e. Decision makers use

z to update information about the unknown values, X. Combined the obtained outcomes with a
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prior distribution of X, a posterior distribution is derived. This updating can be calculated with

the classical Bayes rule:

P [X = x | Z = z] =
P [Z = z | X = x]P [X = x]

P [Z = z]
, (2.2)

where P [X = x | Z = z] is a posterior probability that a random variable X becomes a value x,

which means that X = x; P [X = x] is a prior probability of X = x; P [Z = z] is a probability

of the occurrence of Z = z; and P [Z = z | X = x] is the probability of the occurrence of Z = z

conditional on X = x, which is called a likelihood. If we treat only the observation Z = z as

fixed, P [Z = z] is also a constant value; we can then re-write Equation (2.2) as a function of x

as follows:

fX|Z(x | z) = L(x | Z = z) · fX(x) · const, (2.3)

where fX|Z(x | z) is a posterior distribution; fX(x) is a prior distribution; and L(x | Z = z) is

a likelihood function, equalling P [Z = z | x]. Note that the likelihood function is L(x | Z = z),

not l(Z = z | x), since it is a function of x, not Z = z, although the form is derived from

P [Z = z | x]. Decision makers can thus derive the best action and its expected consequence,

mina EX|z [C(a,X | e, z)].

2.3.5 Pre-posterior Analysis

Pre-posterior analysis is an optimization of the whole decision problem at the time of inspection

planning. Decision makers can observe additional samples, thereby reducing his/her uncertainty

of the true state, X, and want to minimize the expected cost with respect to inspection options, E.

As the sample size increases, the expected cost decreases. By incorporating the as-yet-unknown
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sampling inspection outcome, we obtain the expected cost: EZ
[
mina EX|z [C(a,X | e, z)]

]
. This

analysis determines the options of e and a that minimize expected costs on unknown values Z

and X.

Comparison between the expected cost with and without the additional observation is called

the Expected Value of Sample Information (EVSI); this comparison represents the additional

expected benefit from the observations. EVSI is described as a function of a sample size, n, as

follows:

EV SI(n) = min
a
{EX [C(a,X)]} − EZ

[
min
a

EX|z [C(a,X | e, z)]
]
. (2.4)

Since EVSI is an expected value prior to additional observations, the second term is an expectation

for both an uncertain event and the as-yet-unknown observations.

2.3.6 Expected Net Gain of Sampling (ENGS)

While a larger sample size helps to estimate the true state of the world, the observations involve

more costs as the sample size increases. Extracting the observation cost from EVSI, we define

another net benefit as the Expected Net Gain of Sampling (ENGS):

ENGS(n) = EV SI(n)− nCI (2.5)

where CI is the cost for each sample observation. This ENGS is a function of sample size n, and

we estimate the optimal sample size that maximizes the ENGS.
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A more-detailed definition is as follows:

ENGS(n) = min
a
{EX [C(a,X)]} − EZ

[
min
a

EX|z [C(a,X | e, z)]
]

= min
a

∫
µ∈M

C(a, x)fX(x)dx

−
∫
z∈Z

[∫
x∈X

min
a
{C(a, x | n, sn)fX|z(x | e, z)dx}

]
fZ(z | z)dz, (2.6)

where EX|z [g(X)] is an expectation of g(X) on X, conditional on a given condition of Z = z;

and fX|z(x | e, z) is a posterior probability density or mass function of a random variable, X,

conditional on e and z. Since ENGS is an expected value prior to new observations, the second

term is an expectation for both an uncertain event and the as-yet-unknown observations. This

ENGS is a function of sampling inspection options, that is, n in the N component problem, and

we estimate the optimal sample size that maximizes the ENGS.

2.4 Sample Size Determination Methodologies

SSD methods that are used for decision-making problems are classified here based on the ideas

behind the methods. A typical separation criterion is whether the method uses a Bayesian

approach or not. In statistics, researchers have argued for more than a hundred years, divided by

their basic stances: frequentist or Bayesian (McGrayne, 2011). A frequentist treats probability as

frequency after infinite trials, or a large sample size, and considers that unknown parameters are

fixed values, and data is just an appearance of the value with randomness. On the other hand, a

Bayesian assumes that given data is a set of definite values, and unknown parameters can only

be estimated based on the data. A Bayesian treats probability as a subjective expression for an

unknown value based on known information. In that sense, Bayesian statistics has an affinity for
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decision-making problems.

Based on the main idea behind them, SSD methods are classified into three groups,

according to their principles: optimal sample size maximizing expected utility, minimum sample

size satisfying given requirements (frequentist), and minimum sample size satisfying given

requirements (Bayesian). The first group takes a Bayesian approach; the methods in this group

use prior knowledge and new observations. The second group uses a frequentist approach; the

methods do not consider prior information but use given safety criteria. The third group combines

prior information with some safety criteria. Comparing these three groups, this chapter provides

an overview of this research.

2.4.1 Value of Information Approach (Bayesian)

As a straightforward requirement for SSD, considering expectations of random variables, the

utility maximization approach finds the optimal sample size that minimizes a total cost or

maximizes a total value. This is a fully Bayesian approach, which is needed to determine a

utility function (Adcock, 1997; Lindley, 1997). With a fully Bayesian method, sample size is

determined by maximizing the expected utility; for example, Lindley (1997) demonstrates a

method for maximizing a logarithmic utility function. The SSD method with VoI concept can be

classified as a utility maximization approach.

Several studies have applied the VoI concept in structural health monitoring (Faber and

Sorensen, 2002; Straub and Faber, 2004a,b; Bensi, 2010; Pozzi and Der Kiureghian, 2011; Straub,

2014; Memarzadeh and Pozzi, 2016; Konakli et al., 2016). For example, inspection optimization

methods can combine a fatigue-crack-growth model with the VoI concept (Madsen, 1997; Straub,

2014). Straub and Faber (2004a) propose an approach to determine what percentage of the

inspection should be performed with EVSI analysis.
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Despite the large potential of contributing to component-maintenance problems, the method

is still not generalized for condition-based maintenance since its calculation is computationally

expensive. Thus, a variety of simplified models have been proposed, whose major characteristics

are summarized in Table 2.1. Most avoid complexities by simplifying the system to a

single-component (Pozzi and Der Kiureghian, 2011; Straub, 2014; Konakli et al., 2016) and/or by

simplifying degradation processes as descretized conditions with transition among them (Faber

and Sorensen, 2002; Straub and Faber, 2004a,b; Memarzadeh and Pozzi, 2016).

The studies for single-component systems focus on optimizing the timing and threshold

of maintenance actions by using inspection data. Konakli et al. (2016) have challenged

the full-inspection assumption in condition-based maintenance by using a partially observable

Markov decision process (POMDP) recently developed for condition-based maintenance

(Papakonstantinou and Shinozuka, 2014a,b,c; Memarzadeh and Pozzi, 2016). The approach

focuses on measurement errors and optimizes not only maintenance actions but also inspection

policy. It successfully generalizes multiple-inspection problems by discretizing the values of

system states, observation outcomes, and maintenance/inspection actions. However, the study

still cannot deal with SSD problems in the analysis scheme because it focuses only on a

single-component system. Moreover, it ignores other types of uncertainties, such as parameter

and temporal ones.

Studies extending the VoI concept to multiple-component problems have struggled to

overcome the computational cost of integrating all possible inspection outcomes, since the space

of the outcome becomes n dimensional if we identify each component’s outcome separately.

To reduce the number of possible outcomes, these studies use discretized inspection outcomes.

Several studies use binary inspection outcomes: failure detected or not (Faber and Sorensen, 2002;

Straub and Faber, 2004a,b). Memarzadeh and Pozzi (2016) apply POMDP to a five-component
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inspection problem; however, they have not discussed how to find the optimal sample size.

Thus, few related studies focus on SSD. Straub and Faber (2005) proposed a method to reflect

the dependency of inspection costs on the number of inspected hot spots, using EVSI as an

evaluation criterion. The authors discuss how the number of inspected hot spots affects the EVSI

but do not analyse their results in terms of SSD. Several other studies in inspection planning have

calculated and analysed the EVSI or VoI in their decision-making problems, but they do not focus

on finding a best sample size. For example, Madsen et al. (1986) combines a fatigue-crack-growth

model with a failure-probability updating feature to produce an inspection optimization method.

Straub (2014) also provides how to derive the EVSI with a fatigue-crack-growth model. The

author compared the cases of one and two measurement(s) on a component and showed how

the measurement error influences the results. In contrast to the physical models, Pozzi and Der

Kiureghian (2011, 2012) apply the VoI concept to a linear degradation model, and the VoI for

each possible posterior regression covariance matrix is calculated as a demonstration. Several

studies apply VoI-based analysis for observation location planning (Krause, 2008; Yoshida, 2015).

Yoshida (2015) proposes an optimizing method for determining inspection locations and a sample

size, by means of a Gaussian random field. These location planning studies have potential uses

in considering the correlation among different components, although this approach has not yet

been discussed in the literature.

Despite implementation of VoI concept in various applicable fields, two limitations remain.

First, they focus on finding the best investigation interval, not the best sample size. Second, they

are not aimed at applying the method to a variety of deterioration models; how to apply the

method to other cases is not clearly explained. Thus, SSD with VoI concept needs to be modelled

and built in a simple form with degradation process models, within the engineering context.

Moreover, all the previous studies have focused on parameter uncertainties and/or
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Table 2.1: Major characteristics of studies
Study Number of Degradation Observation Decision points

components model result in time
Faber and Sorensen (2002) Single No growth (binomial states) Discrete Single

Straub and Faber (2004a) Multiple Random variable (lognormal) Discrete Multiple (two)

Straub and Faber (2004b) Multiple Random variable (crack growth) Discrete Multiple (two)

Pozzi and Der Kiureghian (2011) Single No growth (multinomial states) Continuous Single

Straub (2014) Single Random variable (crack growth) Continuous Multiple (two)

Mamarzadeh and Pozzi (2016) Multiple Markov process Discrete Multiple

Konakli et al. (2016) Single Random variable (linear) Continuous Single

measurement errors and not on temporal uncertainties in their models. As described in Section

2.1, under the context of inspection planning, even temporal uncertainties can be reduced by

setting a new inspection time. The POMDP approach includes temporal uncertainties as the

transition probabilities between each time step; however, no studies evaluates the value of reducing

the temporal uncertainties.

Procedure for Sample Size Determination with Value of Information Concept

A simple maintenance problem within engineering context is illustrated in Figure 2.3. The

procedure for SSD with VoI concept is as follows:

1. Prior analysis

a Calculate the expected cost for each action, a.

b Choose the best action, ao.

2. Posterior analysis
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Figure 2.3: Extended decision tree for a maintenance problem as a Bayesian pre-posterior analysis

c Suppose an observation result, Z = z, is given, then calculate the expected cost for

each action, az.

d Choose the best action, aoz, for each possible observation outcome, z.

3. Pre-posterior analysis

e Consider all possible observation outcomes z ∈ Z and take the expected value of the

cost with aoz, which is the optimal action conditional on z.

f Calculate EV SI(n).

g Calculate ENGS(n).

h Find the sample size n that maximizes the ENGS(n).

2.4.2 Statistical Hypothesis-Testing Approach (Frequentist)

The main idea of the widely used hypothesis-testing approach is to derive a minimum sample size

that satisfies required statistical error limits. For example, for given Type I and type II errors,

and a gray region (where the two types of errors are not satisfied), a minimum required sample

size has been derived by the U.S. Environmental Protection Agency (2006). Note that the type
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I and II errors mean false positive and false negative errors. Details of this approach are further

explained in Section 3.4. Comprehensive details of this approach are described by Cochran G.

(1977), Kraemer and Thiemann (1988), and Desu and Raghavarao (1990). In this section, we

introduce the hypothesis-testing approach with these criteria.

Note that we generalize the frequentist SSD approaches to “hypothesis-testing approach”

although frequentist approaches can be used in two different contexts: hypothesis-testing and

confidence interval estimation. The SSD methods in confidence interval estimation can be treated

as an SSD in hypothesis testing without any restriction on type II errors, in terms of mathematical

calculation. Because operators are concerned only with whether the condition satisfies required

safety criteria in maintenance problems, we introduce only one-sided hypothesis testing cases.

Although these studies have been applied to several practical problems, there are two critical

limitations. First, they cannot consider consequences resulting from sampling. inspection and

maintenance costs do not affect the sample size. Second, this approach cannot combine prior

information in a systematic manner.

With Required Threshold for Type I and II Errors

Suppose we need to estimate an unknown true value under two safety requirements for type I

and II errors. The larger the sample size we observe, the more certainty we have for a decision

based on the observed data. That is, the sample size increases, we have a smaller region in which

the two safety requirements are not satisfied, which is called a “critical region” or “gray region.”

Once the maximum acceptable width of the critical region is given as the third criterion, we

can determine the minimum sample size that satisfies the three restrictions (U.S. Environmental

Protection Agency, 2006). Let x be the unknown true value. At this point, we do not have to

consider how the random variable is distributed, but will return to this issue in a later chapter.
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Let Y be a random variable that represents the observed sample value; as a typical example, we

use sample mean. This random variable contains measurement errors, and is written as

Y = x+ E, (2.7)

where E follows a normal distribution, N(ε; 0, σ2
ε ). We consider that Y follows normal

distribution with the mean at x and the variance at σε. The variance can be known or unknown;

each case has a different formula for SSD. Respectively, the null hypothesis and alternative

hypothesis are

H0 : x ≤ ρF

H1 : x > ρF . (2.8)

We can set a safety criteria, α, for the maximum acceptable probability of rejecting H0 in error

when H0 is true, which is called “type I error.” Similarly, we can set β as the maximum acceptable

probability, erroneously not rejecting H0 when x = xb − d, which means H1 is true (a type II

error). Let U denote the sample mean of the random variable Y . The sample mean also follows

a normal distribution, with mean x and variance σ2
ε /n.

The following subsections introduce sample size determination methods for known and

unknown cases. We start from the known variance case as it is simpler, and increase the

complexity by changing the assumption of known variance.

With known variance We assume that the variance of measurement error is known. We want

to ensure that the estimation of the true value, x, is reasonably larger than a failure threshold,
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ρF . We test H0 : x ≤ ρF against H1 : x > ρF using the statistic

Z0 =
U − ρF

σε√
n

=
U − x
σε√
n

+
x− ρF

σε√
n

= Z + e(x), (2.9)

where Z follows standardized normal distribution; and e(x) is a function of x, which is defined

as e(x) ≡ x−ρF
σε/
√
n

. With the required probabilities of false positive, α, and false negative, β, the

required minimum sample size is estimated as in the following procedure. We may want to find

the minimum sample size such that

• The test hypothesis is falsely rejected with a probability of no greater than α, and

• Failure to reject the null hypothesis happens with a probability of no greater than β when

the difference between the hypothetical population mean and the true population mean is

as large as d.

The two requirements are summarized as an equation:

Pr [Do not reject H0 | H1 is true] = β ⇔ Pr [Z0 ≤ z1−α | x = ρF + d] = β

⇔ Pr [Z + e(ρF + d) ≤ z1−α] = β

⇔ Pr [Z ≤ z1−α − e(ρF + d)] = β, (2.10)

where z1−α is the 1− α percentile value for the standardized normal distribution; d is a positive

value defined as d ≡ x− ρF , which is called the width of the critical region. The equation (2.10)
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can be modified so:

−z1−β = zβ = z1−α − e(ρF + d)

⇔ −z1−β = z1−α −
d
σε√
n

. (2.11)

Further modifying this equation, we get the minimum requirement for the sample size:

n =

[
(z1−α + z1−β)σε

d

]2

. (2.12)

The meaning of this formula is illustrated in Figure 2.4. For each x, we can draw a probability

density function, f(y). The probability of error should be less than α or β when x ≤ SL or x > SL,

respectively; otherwise, the region in which the probability of error exceeds these criteria should

be in a critical region with the width of d.

With unknown variance For the unknown variance case, we test the same hypotheses (null

and alternative) using another statistic

T0 =
U − ρF

sε√
n

=
U − x
sε√
n

+
x− ρF

sε√
n

= T (n− 1) + e′(x)

≈ Z + e′(x), (2.13)

where s2
ε is the sample variance; T follows the Students t-distribution with the degree of freedom

at n − 1; and e′(x) is a function of x. The approximation in the last line is only reasonable

when n is large enough. With the required probabilities of false positive, α, and false negative,

β, the required minimum sample size is estimated using the following procedure. If the mean is

x = ρF+d instead of ρF , then the statistic, t0, has a noncentral t-distribution with a non-centrality
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Figure 2.4: Illustration of a critical region with α = 0.05 and β = 0.2
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parameter ∆ = ρF−ρF+d
σε√
n

= d
√
n

σε
, where σε is not the sample standard deviation, sε, but rather

the population standard deviation for the random variable Y ; this variance is still unknown and

a nuisance. Similar to the case of a known variance, the minimum requirement for the sample

size is

n =

[
(tn−1; 1−α + tn−1; 1−β)σu

d

]2

, (2.14)

where σu is a known upper bound for the unknown σε. This formula cannot be calculated directly

because of the contradictory scenario; the critical value for t-distribution needs a degree of freedom

prior to calculating of the minimum sample size. Owen provides tables that identify the required

sample size where α, β, and ∆ = d
σε

are set (Owen, 1962). However, this procedure has two

disadvantages: (a) the tables are required and (b) there is a probability that a false positive, α,

need to be one of the four values used in the table.

A method used to overcome these disadvantages is Stein’s two-stage sampling scheme (Stein,

1945). Desu and Raghavarao (1990) describe the two stage t-test in four steps:

• Obtain an initial sample of size n1(> 2). Let s2
1 be the variance of this sample.

• Let c =
(

d
tn1−1,α+tn1−1,1−β

)2
.

• Let n = max
(
n1, bs2

1/cc+ 1
)
, where bac is the maximum integer that does not exceed a.

• Take n− n1 additional observations.

Note that we use n and n1 differently in deriving the critical region of a one-sided α-level test,

d, for testing H0 : x = ρF against the alternative, H1 : x > ρF , giving a power of statistics of at

least 1− β at x = ρF + d as

u > ρF + tn1−1,α
s1√
n
, (2.15)
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where u is the sample mean of sample size, n. Through the above steps, an initial sample size

converges to the proper sample size when the initial sample size is smaller than the proper size.

As another method to calculate the minimum sample size, an approximation of the procedure

used to estimate the sample size has been suggested. This method, used by the U.S.

Environmental Protection Agency (2006), assumes that a new random variable, W = E(Y )+kS,

is approximately normal with E(W ) = x + kσε and variance σ2
W =

(
s2ε
n

)(
1 + k2

2

)
. The details

of deriving the equation were originally described in Eisenhart et al. (1947) and explained well

in Guenther (1981). The approximated minimum required sample size is

n ≥
[z1−α + z1−β]2σ2

ε

d2
+

1

2
z2

1−α ≈
[z1−α + z1−β]2s2

ε

d2
+

1

2
z2

1−α, (2.16)

where we use the approximation of σ2
ε ≈ s2

ε , which is reasonable when n is large enough. We

do not use two sample cases in this thesis. Applications of this normality approximation for a

variety of cases are shown in Guenther (1981) and Schouten (1999).

With Required Level of Significance

Consider a situation in which we need to estimate an unknown true value under two safety

requirements on type I error and its critical region. This situation can represent SSD for a

confidence interval. Let x be the unknown true value. The problem itself is the same as that

in the previous subsection; we use the same hypotheses. Similarly, let Y be a random variable

that represents the observed sample mean and follow the normal distribution with its mean and

variance at x and σ2
y = σ2

z/n, respectively. Note that σ2
z is the variance of individual samples. We

can set a required level of significance at α; the critical region is Z < zα, where Z = (Y −xb)/(σy).
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The critical value is derived as

ycr − xb
σy

= zα

⇔ ycr = xb + zασy. (2.17)

If the sample mean is lower than xcr, operators can reject H0 with α level of significance, and,

consequently, they will take a2, no-action. Otherwise, they should take a1, replacement.

Remember we have the second safety criteria d, the difference between the population mean,

x, and the sample mean, Y . If we assume x = xb is true, we get the SSD equation as follows:

xb − ycr ≤ d ⇔ −zασy ≤ d

⇔ −zα
σz√
n
≤ d

⇔ n ≥ z2
ασ

2
z

d2
. (2.18)

2.4.3 Hypothesis-Testing Approach with Bayesian Probability Updating

The Bayesian approach also offers SSD methods that identify the minimum sample size needed to

satisfy given requirements. This approach uses safety criteria that are compared with an average

variability of the updated probability density/mass distribution (posterior distribution), such as

an average confidence interval of a sample mean. Taking the expectation of values related to

a posterior distribution, a decision maker calculates a minimum sample size that meets given

requirements for the expected values. The main difference from the frequentist approach is that

the Bayesian one uses a prior distribution of an unknown parameter and a likelihood function of

data. Comprehensive introductions to these diverse SSD models are provided by Adcock (1997)

and Pham-Gia and Turkkan (1992). Later Khalifa et al. (2012) extended this method to a finite
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population corrosion inspection problem and derived a closed form formula. As another type of

combined approach, Xing et al. (2016) proposed a sample size determination method based on

Bayesian sequential testing. These approaches still fail to overcome one limitation: they cannot

take cost into consideration in a decision-making problem.

Type I error for the mean value, α, and its interval width, l, are used to restrict the acceptable

variance of the posterior distribution within three methods: the average coverage criterion (ACC),

the average length criterion (ALC), and the worst outcome criterion (WOC). For these methods, l

and α are pre-required. With ACC, a covered area of the posterior distribution with l is calculated,

and the sample size is determined as the covered area becomes more than 1−α percent of all when

l covers the distribution properly, which is called the highest posterior density (HPD) interval.

With ALC method, l′(x) is derived as the covered area that equals 1−α percent of all when l′(x)

is HPD, and then the sample size is chosen, as the expectation of l′(x) is less than l. With WOC,

the worst case is taken into consideration instead of the expectation about observations. For a

normal mean with a known variance case, these three methods (ACC, ALC and WOC) derive

the same sample size (Adcock, 1988, 1997). Pham-Gia and Turkkan (1992) suggest three more

methods for deriving the minimum sample size needed to satisfy given requirements: 1) they use

the posterior variance as a requirement for SSD instead of l and α, 2) they set the maximum

acceptable posterior cost, 3) they set the minimum requirement for EVSI, although observation

cost is not considered in the analysis.

2.5 Comparing Sample Size Determination Methods

Frequentist approach has general versatility; it can be used for parameter estimation with

one-sided and two-sided hypothesis testing or confidence interval estimation. However, the

method cannot reflect observation cost or prior information about an unknown parameter that
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we want to estimate. The hypothesis testing method can only answer whether we can determine

the hypotheses for the sample size and its obtained data; when a sample mean that is not in a

critical region is observed, we can make a decision with a reasonable probability of errors at most

α or β. In other words, the method does not give us any instruction if we get a sample mean

within the critical region.

Bayesian approaches with such minimum requirements as safety criteria are able to consider

prior information and update it with observed data. But these methods are even worse for the

two-action problem because they are proposed for two-sided hypothesis testing; thus, we cannot

simply apply the methods to the problem. Moreover, these models do not take into account

observation costs, so these Bayesian approaches are not suitable for the problem.

The VoI-based SSD method is the way to propose a proper sample size when we want to

consider observation costs and prior information about the unknown value. With a cost function,

which needs to be proposed additionally, we can derive the optimal sample size based on all the

information we have currently.

2.6 Engineering Standards and Guidelines for Sampling Size

Selection

For engineering purposes, various types of standards and guidelines for SSD have been provided.

Table 2.2 summarizes the approach taken by various standards and guidelines for SSD (American

Society for Testing and Materials, 2009, 2015, 2016; Electric Power Research Institute, 1999; U.S.

Department of Defence, 1957, 1989; U.S. Environmental Protection Agency, 2006; U.S. Nuclear

Regulatory Commission, 1998, 2011). The first four standards are for components in a nuclear

power plant, and the other standards and guidelines are used for general components. All can
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Table 2.2: Summary of standards and guidelines for sample size determination
Code number Index Method Category

CSA N285.4 (2011) * Deterministic Operational experience
EPRI TR-017218-R1 (1999) Lot size Deterministic Operational experience

/Cube-root
U.S. NRC NUREG-1475 (2011) Percentage of defective Hypothesis-testing Frequentist

products / Mean value
U.S. NRC NUREG-1505 (1998) Mean value Hypothesis-testing Frequentist
MIL-STD-105D (1989) Percentage of defective Hypothesis-testing Frequentist

products
MIL-STD-414 (1957) Mean value Hypothesis-testing Frequentist
ASTM-E122 (2009) Mean value Hypothesis-testing Frequentist
ASTM-F302 (2015) Lot size Cube-root -
U.S. EPA QA/G-4 (2006) Mean value Hypothesis-testing Frequentist

be classified under three categories of methods: hypothesis-testing, deterministic, and cube-root.

Hypothesis-testing approaches are based on frequentist statistics and have been used for a long

time and in many fields. Deterministic methods rely on operational experiences. The rational

behind the suggested sample sizes is not clear. The cube-root method uses an equation; a sample

size is the cube-root value of the lot size of components. The theoretical background of this

method is not explained by the standards. No standard is based on the VoI concept.

2.6.1 Standards for Nuclear Power Plants in Canada

Guidelines of sampling inspection for nuclear power plants are summarized in CSA N285.4, whose

title is “Periodic inspection of CANDU nuclear power plant components” (National Standards

of Canada, 2014). It describes sampling at the beginning of use and at each periodic inspection

outage. For each component, required sample size and sampling rules are indicated. For example,

the minimum sample sizes for baseline (initial) inspection and each inspection interval are set

at 15 and 10, respectively. Requirements for other components are summarized in Table 2.3.

Although the guidelines have worked well at actual operating sites, no theoretical rationale exists

for the sample sizes and requirements for sample selection.

36



Table 2.3: Sample size requirements for a CANDU reactor
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Figure 2.5: Required sample size for each lot size

2.6.2 Standards for Nuclear Power Plants in the United States

Several documents show guidelines of sampling inspection for nuclear power plants in the United

States. EPRI TR-017218-R1, “Guideline for sampling in the commercial-grade item acceptance

process,” specifies a sampling plan and its sample size (Electric Power Research Institute, 1999).

For either non-destructive or destructive tests and inspections, sample size is determined by

choosing one of three plans, based on the importance of the inspection. The required sample

sizes are summarized in tables, for non-destructive or destructive testing. The sample sizes are

set referring to the acceptable quality level (limit) (AQL), and to the limiting quality (LQ), which

is sometimes called the rejectable quality level (RQL) or lot tolerance percent defective (LTPD),

but more-detailed explanations of each number are not included. Figure 2.5 shows how a required

sample size increases as the lot size becomes larger. Figure 2.6 depicts an example of how the

type I error changes as the lot size increases. Basic analysis of the sample size guideline reveals

inconsistencies in its underlying theory.

NUREG-1475 summarizes statistical theory and some methodologies that can be applied to
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Figure 2.6: Type I error for each lot size

regulating nuclear power plants (U.S. Nuclear Regulatory Commission, 2011). Although this was

originally published as a guideline for licensing and regulating nuclear power plants, it is more

like a textbook of probability and statistics relating to the area. Both frequentist and Bayesian

statistics are described, but only the frequentist SSD approach is detailed. In cases of estimating

a mean or comparing two means, a required sample size is derived in a context of hypothesis

testing. The standard also derive a SSD approach for testing the percent defective, when the

defective occurrence is modelled by a hypergeometric distribution. A required sample size is

derived for an example through trial and error, with several combinations of sample sizes and

rejection regions of the null hypothesis.

NUREG-1505 is a textbook on using nonparametric statistics for final status decommissioning

surveys in nuclear power plants (U.S. Nuclear Regulatory Commission, 1998). This document

explains why and in which cases nonparametric statistics is more important than the parametric

statistics usually used with assumed normality of obtained data; then it introduces two

nonparametric hypothesis testing approaches: the Wilcoxon rank sum test and sign test. How to

derive a required sample size is explained for each.
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2.6.3 Standards for General Engineering Components in the United States

MIL-STD-105E is titled “Sampling procedures and tables for inspection by attributes” (U.S.

Department of Defence, 1989). The guideline was originally used by the military, but has since

been widely used in both military and civilian contexts to determine the AQL of products (Juran

et al., 1974). The term “quality” represents the percent of defective products or total number

of defects per 100 units; the latter can be more than 100 % according to the definition. The

process of sampling is modelled using a Bernoulli process, and the probability of acceptance for

each possible quality of a product is calculated by using Binomial or Poisson distribution. In

the model, AQL needs to be the same as or higher (worse) than the quality at which 95% of

products will be accepted. Figure 2.7 provides an example of the operating characteristic curve

(OCC), which shows the relationship between the probability of acceptance and the quality of

a product. AQL is defined as the quality at which the probability of acceptance is 95% in the

OCC. Similarly, the RQL is defined as an unacceptable quality, which is usually compared with

the quality with which the probability of acceptance is 10%; in other words, the probability of

rejection is 90%. In Figure 2.7, the AQL and RQL are 0.64 and 25.02, respectively. For each

combination of AQL and lot size, the required sample size and acceptance/rejection criteria are

summarized in the tables; however, the derivation process for the guideline is not fully or clearly

explained. As pointed out by Electric Power Research Institute (1999), the required sample sizes

increase intermittently; this characteristic may not be fully representative just before or after an

increase. This guideline has been adopted in several standards, such as ASTM-B602 (American

Society for Testing and Materials, 2016).

MIL-STD-414 specifies sampling plans when a measurement (as opposed to designations of

defective or not) is taken and recorded in the sampling procedure (U.S. Department of Defence,

1957). Although the approach is based on the one in MIL-STD-105D, this standard assumes
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Figure 2.7: Operating characteristic curve of a binomial distribution model with sample of size 8

that measurements follow a normal distribution, and an index calculated from the obtained

measurements is compared with a given acceptable value (Juran et al., 1974).

ASTM-E122 provides a required sample size that is based on a consistent statistical

background (American Society for Testing and Materials, 2009). The approach, classified as a

kind of frequentist approach, is mainly built for estimating a mean value for a certain component’s

parameter, but it can also be applied to a problem with percentages of defective components.

The idea is to find the minimum sample size with which the 3σ range of the sample is the same

or narrower than the range of acceptable error, E. Note that the 3σ range covers most probable

values of an unknown true mean; it reaches more than 99.7 % of all possible occurrences. The

equation for the sample size, n, is as follows:

n =

(
3σ0

E

)2

, (2.19)
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where σ0 is an estimate of the lot or process standard deviation of a random variable X.

This has been written for the field sampling of aerospace fluids in containers (American Society

for Testing and Materials, 2015). This standard suggests the required sample size for the process,

which is calculated with cube-root method. The cube-root method is simply to derive an integer

of a cube-root number of a lot size; the results are summarized in Table 2.4. This method has

been cited and adapted in Electric Power Research Institute (1999).

Table 2.4: Sample plan introduced in ASTM-F302
Quantity of Containers Sample

1 to 10 1
11 to 30 3
31 to 70 4
71 to 150 5
151 to 210 6
211 to 530 8
531 to 1170 10

2.7 Gaps in the Research Literature

SSD methods vary, and they should be chosen based on their appropriateness for specific scenarios.

Currently, hypothesis-testing as a frequentist approach is used widely; however, the method

cannot reflect observation cost or prior information about an unknown parameter that we want

to estimate. An SSD method with VoI concept can overcome both weaknesses, so VoI-based

methods are appropriate for maintenance problems.

Stochastic degradation models have not applied to maintenance optimization analysis focusing

inspection decisions. Most studies assume random variable models or set transition probability

among limited numbers of conditions. The studies using VoI concept focus on measurement

errors and assume the random variable models. In these studies, decision makers focus on
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accuracy of periodical inspection or sensor monitoring instead of deciding whether to inspect

and/or what sample size to inspect. On the other hand, the studies based on the partially

observable Markov decision process (POMDP) assume limited number of conditions, such as

no-damage, lightly-damaged, severely-damaged, and failure, and transition probabilities are set

for each possible condition-change.
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Chapter 3

Diagnostic Inspection of a

Component Population

The aim of this chapter is to illustrate a value of information (VoI)-based sample size

determination (SSD) approach for diagnostic inspections, with due consideration of the cost

consequences of decisions. The proposed approach is formulated within the context of engineering

components maintenance. An example is presented, and the parameter sensitivity is illustrated.

The proposed approach is compared with the hypothesis-testing approach as well to show the

advantages of value of VoI approach.

3.1 Problem Definition

Consider a population of N statistically identical components in an engineering system, which

could be vulnerable to some degradation process. A Decision Maker is interested in finding out the

extent of degradation in the population and replacing any defective components. Note that the

term “defective components” defines components that are going to fail before the next diagnostic

inspection. The cost of inspecting a component is CI . If components experience a degradation
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failure in service, it would result in a cost, CF , resulting from both interruption of the operation

and repair of the system. During an inspection, a component can be preventively replaced at a

cost, CP , such that CP < CF .

Because of large population size, the cost of full inspection, N CI , is so large that the decision

maker prefers not to commit to full inspection at the outset. The reason is that if degradation

affects a fairly small number of components, then full inspection would lead to considerable loss

of inspection resources (costs and time). A preferred approach is to demonstrate via sampling

that the extent of degradation small enough that full inspection is not warranted.

Thus, the decision maker decides to inspect a small sample, n, n < N , and use the information

obtained to make a decision to take one of the following two actions:

a1 : Inspect remaining population of, (N − n), and replace all defective components

(Full inspection)

a2 : Do not inspect remaining component population, and let components fail

in service incurring a cost, CF per failure (Do-nothing option)

A key objective is to find an optimal sample size, n, to support this decision problem.

3.1.1 Percentage of Defective Components

This section describes how to derive the percentage of defective components as the representative

random variable without explicit consideration of time in the model. Assume that the degradation

level at time t, Y (t), follows a random rate model:

Y (t) = Rt (3.1)
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where R is the random corrosion rate that reflects the variability observed in a sample of

deterioration data in a population of similar components. Consider the random variable, R,

which follows a probability density function of f(r) and has a cumulative function of F (r). A

component will fail before the next diagnostic inspection at t if it has a higher corrosion rate than

a threshold ρ, with which a component will fail at t. The probability of failure is calculated as

Pf = 1− F (ρ). (3.2)

This probability can also be interpreted as the percentage of defective components in the

population. When the function, F (r), is not obvious, the rate, Pf , needs to be treated as a

random variable, and can be denoted such as X. Thus, the percentage of defective components

can represent the variable nature of the deterioration in a population of similar components.

3.1.2 Cost Functions

The cost associated with the two actions depends on the percentage of degraded or defective

components, X, in the population. Unless the full inspection of N components is performed,

the defective fraction remains unknown to the decision maker, and so it is treated as a random

variable. The percentage of defective components can be the representative random variable of

this problem.

The two cost functions corresponding to the two actions for a certain value, X = x, are defined

as follows:

C(a, x | n,w) =

 C(a1, x | n,w)

C(a2, x | n,w)
=

 (N − n)CI + [(N − n)x+ w]CP

(N − n)xCF + wCP ,
(3.3)
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Figure 3.1: Prior distribution for percentage of defective components.

where w is the number of detected defective components in the inspection sample of size n. Note

that these cost functions do not include the cost of sampling, nCI , as it is a deterministic cost.

In the Bayesian framework, a prior distribution can be assigned to X, which can be updated

as information become available. A discrete probability mass function is chosen to model X, as

shown in Figure 3.1, and defined below:

fX(xi) =

 0.05 forxi = i/100, i = 1, 2, · · · , 20

0 Otherwise.
(3.4)

This distribution is chosen for illustration and it is also used later in the numerical example. The

mean and standard deviation of this distribution are 0.105 and 0.0577, respectively.
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Figure 3.2: Extended decision tree for a maintenance problem as a Bayesian pre-posterior
analysis.

3.2 Value of Information Analysis

The basis for formulating the VoI problem is the Bayesian pre-posterior analysis. The term

“Pre-posterior” is used to denote the consideration of a posterior situation, while the decision

maker is actually still in a prior situation. A component replacement problem is illustrated as

Figure 3.2. This analysis determines the options of n and a that minimize expected costs on

unknown values w and x.

3.2.1 Prior Analysis: No Inspection Data

In the absence of any inspection sample data, the decision maker should choose that action which

minimizes the expected cost. The prior cost function are defined as follows:

C(a, x) ≡

 C(a1, x | n = 0, w = 0)

C(a2, x | n = 0, w = 0)
=

 NCI +NxCP

NxCF .
(3.5)
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The variation of these costs with x is shown in Figure 3.3. In this two-action problem, there is a

break-even value, X = xb, for which the two costs are equal, and it is calculated as

(N − n)CI + (N − n)xbCP = (N − n)xbCF

⇔ xb =
CI

CF − CP
. (3.6)

In the VoI approach, the break-even value, xb, is a key parameter for decision-making. If x > xb,

the optimal action is a1, full-inspection. In case of x < xb, the optimal action is a2, “do-nothing”.

The expected prior cost for each terminal action is calculated as follows:

EX [C(a,X)] =

 EX [C(a1, X)]

EX [C(a2, X)]
=

 Nxb(CF − CP ) +Nx̄CP

Nx̄CF ,
(3.7)

where x̄ is the mean of X. For modifying equations to simpler form, we use CI = xb(CF − CP ),

which is originally derived in Equation (3.6). The optimal action should lead to a smaller cost

than the other option; thus, if a1 is optimal, the necessary condition is derived as

Nxb(CF − CP ) +Nx̄CP < Nx̄CF

⇔ x̄ > xb. (3.8)

If the mean value of the prior distribution is more than the break-even value, xb, the optimal

action is a1, full-inspection. The minimum cost with the prior distribution is calculated thus:

min
a

EX [C(a,X)] =

 Nxb(CF − CP ) +Nx̄CP if x̄ > xb

Nx̄CF if x̄ ≤ xb,
(3.9)
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Figure 3.3: The prior cost functions for the two actions, as a function of defective fraction.

3.2.2 Posterior Analysis

After observing a sample, the decision maker derives a posterior distribution of X. Assuming

that the number of defective components, r, in a sample of n, follows a binomial distribution, its

mass function can be written as

fW (w | n) =
∑
x∈X

fW |X(w | n, xj)fX(xj)

=

20∑
j=1

 n

w

xwj (1− xj)n−w · fX(xj). (3.10)
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The posterior distribution for X is calculated using Bayes’ rule. For a value of w (0 ≤ w ≤ n)

and xk, the updated distribution is given as:

fX|W (xk | n,W ) =
fW |X(w | n, xk)fX(xk)

fW (w | n)

=
xwk (1− xk)n−w · fX(xk)∑20
j=1 x

w
j (1− xj)n−w · fX(xj)

. (3.11)

As an example, posterior distributions of X are computed for n = 6 and w = 0, 2, 4, 6, and

plotted in Figure 3.4. The expected posterior cost is calculated as

EX|W [C(a,X | n,w)] =

 EX|W [C(a1, X | n,w)]

EX|W [C(a2, X | n,w)]

=

 (N − n)xb(CF − CP ) + (N − n)x̄′′(n,w)CP + wCP

(N − n)x̄′′(n,w)CF + wCP ,
(3.12)

where x̄′′(n,w) indicates a mean value of the probability mass function of x posterior to knowing

W = w and is a function of n and w. Note that the posterior distribution is still a discrete

distribution. Similar to Equation (3.8), when x̄′′(n,w) < xb, we take a1 as the optimal action;

otherwise, we take a2. For a given n, if we set hn, which satisfies x̄′′(n, hn) < xb and x̄′′(n, hn+1) >

xb simultaneously, we can calculate the minimum expected posterior cost so:

min
a

EX|W [C(a,X | n,w)]

=

 (N − n)xb(CF − CP ) + (N − n)x̄′′(n,w)CP + wCP if w > hn

(N − n)x̄′′(n,w)CF + wCP if w < hn.
(3.13)
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Figure 3.4: Posterior distributions of the percentage of defective components: An illustration for
w = 0, 2, 4, and 6.

3.2.3 Pre-posterior Analysis

The next step is the pre-posterior analysis, in which the decision maker considers all possible

outcomes of sampling in the following manner:

EW
[
min
a

{
EX|W [C(a,X | n,w)]

}]
=

hn∑
w=0

[
(N − n)x̄′′(n,w)CF + wCP

]
· fW (w | n)

+

n∑
w=hn+1

[
(N − n)xb(CF − CP ) + (N − n)x̄′′(n,w)CP + wCP

]
· fW (w | n) (3.14)

EVSI is a positive comparison between prior and posterior expected costs; this criterion

represents the value of sampling-inspection before the terminal decision. A more-detailed
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definition is as follows:

EVSI(n) ≡ EX [C(ao, X)]− EW
[
EX|W [C(ao(w), X | n,w)]

]
= min

a
{EX [C(a,X)]} − EW

[
EX|W

[
min
a
C(a,X | n,w)

]]
(3.15)

where EX|Z [g(X)] is an expectation of g(X) on X conditional on a given condition of Z = z;

fX|W (x | n,w) is a posterior probability density or mass function of a random variable, X,

conditional on n and w; ao is the optimal action without observation; and ao(w) is the optimal

action under a known sampling-inspection result, w. Since EVSI is an expected value prior to

additional observations, the second term is an expectation for both an uncertain event and the

as-yet-unknown observations.

Thus, with Equation (3.15), the EVSI is derived as follows:

EVSI(n)

= min
a

[EX [C(a,X)]]− EW
[
min
a

{
EX|W [C(a,X)]

}]

=



[
N −

∑n
w=hn+1(N − n)fW (w | n)

]
xb(CF − CP )

−
∑hn

w=0 [(N − n)x̄′′(n,w)(CF − CP )] · fW (w | n) if x̄ > xb

−
∑n

w=hn+1(N − n)xb(CF − CP )fW (w | n) + nx̄(CF − CP )

+
∑n

w=hn+1 [(N − n)x̄′′(n,w)(CF − CP )] · fW (w | n) if x̄ ≤ xb.

(3.16)

EVSI is not a sufficient objective for SSD; the net gain through the observations should be

optimized. Subtracting the costs relating to a sampling-inspection, Cost(n,w), from EVSI, we

define another net benefit as the ENGS:

ENGS(n) = EVSI(n)− Cost(n,w) (3.17)
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This ENGS is a function of sample size n, and we estimate the optimal sample size that maximizes

the ENGS. With Equation (3.17), ENGS is derived as

ENGS(n)

= EVSI(n)− nCI

=

 (N − n)CI
∑hn

w=0

[
1− x̄′′(n,w)

xb

]
· fW (w | n) if x̄ > xb

(N − n)CI
∑n

w=hn+1

[
x̄′′(n,w)
xb

− 1
]
· fW (w | n)− nCI

(
1− x̄

xb

)
if x̄ ≤ xb.

(3.18)

Note that the details of analytical derivations for EVSI and ENGS are presented in the Appendix

A.

3.2.4 Numerical Example

To demonstrate the proposed VoI approach, the following parameter values are chosen: N = 100,

CF = 20, CP = 10, and CI = 1. The prior distribution of defective fraction, X, is shown in

Figure 3.1. The prior values of expected costs of the two actions, a1 (full inspection) and a2

(no inspection) are estimated as 205 and 210, respectively. Thus, a1, i.e., full inspection of the

component population followed by the preventive replacement of defective components found

during the inspection is the best prior action.

The next step is the pre-posterior analysis, which is illustrated for a sample size of n = 6.

Using the procedure described in the previous section, expected of best best action based on

sampling results is estimated as,

EW
[
min
a

{
EX|W [C(a1, X | n = 6, w)]

}]
= 190.53.
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Now, the EVSI and ENGS for n = 6 are computed as,

EVSI(n = 6) = EX|W [C(a1, X | n = 6, w)]− EW
[
EX|W [C(ao(w), X | n = 6, w)]

]
= 14.47,

ENGS(n = 6) = 8.47.

In this manner, the ENGS(n) is computed for n = 0 to n = 100 and plotted in Figure 3.5.

The optimal sample siz is n = 20 for which the ENGS takes a maximum value of 11.84. Note

that the small mounds in each line occur because the inspection outcome is discrete; once the

observed ratio, w/n, overlaps the break-even point, xb, the ENGS line starts to form another

small mound.

In a practical setting this result can be used in the following manner. The decision maker

inspects a random sample of 20 components. Depending on the number of defectives (r), the

following two actions are available:

• If w ≥ 2, i.e., w/n ≥ xb(= 0.1), then choose a1, which means full-inspection of the remaining

population of 80 components;

• If w ≤ 1, i.e., w/n ≤ xb(= 0.1), then choose a2, which no additional inspection required.

3.3 Sensitivity Analysis

This Section evaluates the sensitivity of the optimal sample size to parameters like the break-even

value, xb, the prior mean, x̄′, the inspection cost, CI , and the prior standard deviation, s(x)′.

Let us set a base-line situation in which xb = 0.1, x̄′ = 0.105, CI = 1, and s(x)′ = 0.0577.

Each parameter is shifted from 80% to 120% of its base-line value; all other parameters are fixed.
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Figure 3.5: A plot of ENGS versus the sample size

Figure 3.6 illustrates the fluctuation of optimal sample sizes with changes in parameter values.

Note that the two cases, 80% for x̄′ and 120% for s(x)′, remain blank since a prior distribution

becomes improper in these cases; the distribution of x, which must be within the range between

0 and 1, has a positive probability mass for x < 0.

3.3.1 Break-Even Value, xb

The optimal sample size, no, for each xb is calculated and shown in Figure 3.7. The optimal

sample size tends to increase as xb decreases. When xb becomes smaller, the decision criterion,

hn, decreases since only small numbers of defective components can make the posterior mean,

x̄′′(n,w), be lower than xb. Thus, decision makers have more probability of observing w that is

higher than the decision criterion, hn, and consequently choosing a1 as a terminal action (see

Equation (3.13)). The higher the probability of choosing a1 as a terminal action after sampling

inspection, the more the incentive for decision makers to reduce the size of sampling inspection.
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Figure 3.6: Overall sensitivity analysis for parameters

An inverse movement for the optimal sample size exists around xb = 0.038. This exceptional

move occurs because of small mounds on the ENGS plots (see Figure 3.5). When xb < 0.038,

the peak is in the second mound, and the peak moves to the first mound when xb = 0.038. If

the criterion, xb, is greater than 0.136, the best behaviour for the decision maker is to take a2,

no-action, without any sample, which is a sampling inspection.

Figure 3.8 shows ENGS(no) for each xb. The peak of ENGS(no) value is obtained when xb

is the same as the prior mean, x̄′ = 0.105. Mathematically, this is dome because the derivative

of ENGS with respect to xb is positive when xb < x̄′ and is negative when xb > x̄′ (see Equation

(3.18)).

As xb is set close to x̄′ but is lower than x̄′′, decision makers have more chance to obtain a

smaller x̄′′ than xb, which indicates that the terminal action should be different from the action

chosen based on prior analysis. In other words, in this case, the impact of additional information
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is relatively greater than it would be in other situations.

3.3.2 Mean of Prior Distribution, x̄′

With fixed values of CI , N , xb, and s(x)′ at 1, 100, 0.10, and 0.0432, respectively, the influence

of the probability mean, x̄′, is analysed in Figures 3.9 and 3.10, which are closely related. The

results of sensitivity analysis on xb and x̄′ are roughly symmetrical. Similar to the sensitivity

analysis on xb, the highest ENGS(no) is obtained when x̄′ equals the break-even value, xb = 0.10.

ENGSs decrease as x̄′ deviates from xb = 0.10. The gap between these two parameters represents

the importance of additional information, although this is not directly shown in Equation (3.18);

when the gap equals zero, the ENGS is maximized. If the optimal action is obvious only with

prior information, where a decision maker has a low probability of obtaining inspection outcomes

that suggest the decision maker change the terminal action, the decision maker need not obtain

any sample.

3.3.3 Inspection Cost, CI

As shown in Equation (3.18), the ENGS is proportional to CI , and the optimal sample sizes of all

cases are the same, no = 20. Thus, in this stated problem, we can normalize ENGS by dividing

it by CI or simply set CI as 1. Decision makers need to consider not the abstract values of CI ,

CF , and CP but a ratio between CI and (CF −CP ); xb is a key parameter in the stated problem.

3.3.4 Summary

Several insights have been found in this section. xb is the most sensitive parameter. Decision

makers need to identify relationships among CF , CP , and CI , which derive xb. The relationship
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Figure 3.7: Optimal sample sizes vs. xb

Figure 3.8: ENGS(no) vs. xb

Figure 3.9: Optimal sample size vs. x̄′

Figure 3.10: ENGS(no) vs. x̄′

between xb and x̄′ sets the width of no values, in which the additional sampling is meaningful.

The more vague and difficult terminal decision-making with only prior information is, the more

ENGS(no) a decision maker obtains; in that situation, additional information has more value for

a decision maker. In other words, if the prior information is enough to decide an action to take,

a decision maker has no incentive to obtain any additional sample.

3.4 Hypothesis-Testing Approach

Classical hypothesis-testing, a frequentist approach, has primarily been used to estimate the

sample size required to test a statistical hypothesis regarding the magnitude of defective fraction,

X. In problems related to environmental risk assessment, the U.S. Environmental Protection
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Agency (2006) recommends the hypothesis-testing approach. Here, the sample size is selected to

ensure that statistical errors of Type I and II stay within certain reasonable limits.

There is a smaller range of X in which the two requirements are not satisfied, which called

a gray region. With the gray region’s maximum acceptable width as the third criteria, we can

determine the minimum sample size that satisfies the three restrictions.

3.4.1 Sample Size Analysis

The stated two-action problem can be translated as a hypothesis-testing problem. Respectively,

the null hypothesis and alternative hypothesis are

H0 : x = xb (or x ≥ xb), (then take a1, full-inspection)

H1 : x = x1 = xb − d (or x < xb), (then take a2, no-action),

where d is the gap between the two hypotheses, H0 and H1, and is defined as d = xb − x1. The

decision for the hypothesis-testing here is followed by an option; if we reject the null hypothesis,

the decision maker will take a2, “No-action.” If we fail to reject the null hypothesis, the decision

maker should take a1, “Full-inspection.” We can set a safety criteria, α, for the maximum

acceptable probability of rejecting H0 in error when H0 is true, which is called “type I error.”

It is assumed here that the normal distribution is an adequate approximation of the sampling

distribution of the defective fraction.

In the hypothesis-testing approach, a critical value (xcr), which is the cut-off value for type I

error, works as xb in the VoI-based approach, and is derived as

xcr = xb − z1−α

√
xb(1− xb)

n

N − n
N − 1

. (3.19)
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If the sampling inspection result, r/n, is lower than xcr, decision makers can reject H0 with a less

than α probability of type I error, and, consequently, they will take a2, no-action. Otherwise,

they should take a1, full inspection. Note that xcr is always lower than xb. Similarly, we can set

β as the maximum acceptable probability, erroneously not rejecting H0 when x = xb − d, which

means H1 is true (a type II error). In terms of the power of statistics, the requirement can be

explained as the required power of statistics, 1 − β, at x = xb − d. Here, d can be translated as

the width of a gray region; in it (xb − d ≤ x < xb), our decisions have a higher probability of

errors than β; decision makers have the probability of making type II errors (full-inspection when

x is safer, x < xb) more than β when they obtain the outcome of a sampling inspection that is

r/n > xcr while the true value, x, is in a gray region (xb − d ≤ x < xb). The relationship among

α, β, and d, is illustrated in Figure 3.11. For example, when α = 0.05, β = 0.2, and d = 0.04, the

cases with n = 20, n = 40, and n = 60 do not satisfy the requirements, whereas the other cases

do meet them. Details of how to decide on an action based on an obtained sample is explained by

Higo and Pandey (2016), although they use normal distribution instead of binomial distribution.

Through derivation processes explained by the U.S. Environmental Protection Agency (2006),

assuming X follows the normal distribution with its mean and variance at x and x(1 − x)(N −

n)/(N − 1), respectively, we get the minimum requirement for the sample size:

nmin ·
N − 1

N − nmin
=

[
z1−α

√
xb(1− xb) + z1−β

√
(xb − d)(1− xb + d)

d

]2

⇔ nmin =

N

[
z1−α
√
xb(1−xb)+z1−β

√
(xb−d)(1−xb+d)

d

]2

N − 1 +

[
z1−α
√
xb(1−xb)+z1−β

√
(xb−d)(1−xb+d)

d

]2 , (3.20)

where
√

(N − n)/(N − 1) is the finite population correction factor, which improves the accuracy

in the binomial approximation for a finite population (Sandiford, 1960).
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Figure 3.11: Illustration of three safety criteria and probability of error for each sample size
(α = 0.05, β = 0.2, and d = 0.04).

3.4.2 Numerical Example

The hypothesis-testing approach employs a widely used criteria, called the “20/80 rule”, which

implies that a sample estimate is within 20% of an unknown population parameter with 95%

confidence and 80% statistical power. We can use this rule with reference to the break-even

value, xb, of the defective fraction. To apply this rule, use α = 0.05, β = 0.20, d = 0.02, and

xb = 0.1 in Equation 3.20, which leads to a required sample size n ≥ 92.9. Thus, the minimum

sample size is 93.

The calculated sample size is a function of the width of the grey region, d, as shown in Table

3.1,where d is varied from 10 to 90 percent of the break-even value of xb = 0.10. As the gray

region becomes narrower, the required sample size increases and approaches the lot size, 100.
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Table 3.1: Minimum sample size for each d (for α = 0.05 and β = 0.20)
d d/xb(%) nmin xcr
0.09 90 30 0.024
0.08 80 38 0.036
0.07 70 46 0.046
0.06 60 55 0.055
0.05 50 65 0.064
0.04 40 76 0.072
0.03 30 85 0.079
0.02 20 93 0.086
0.01 10 99 0.093

3.5 Comparison

How to choose a sample size and an action at each decision node and react to any possible

inspection outcome can be summarized as a policy. The policy contains a selected sample size,

and a decision criterion, which is xb for the VoI approach and xcr for the hypothesis-testing

approach. The policies obtained through the two SSD approaches are compared in two scenarios

that are simulated based on x, which is either deterministic or stochastic. The deterministic

case highlights how a decision maker’s bias for x affects the consequences of different policies.

Through the comparison, effective situations for each method can be obtained and summarized.

The stochastic case provides an overall comparison of the two approaches. When the prior

distribution is reasonable, the expected total cost represents how much better one SSD method

is than the other.

3.5.1 Evaluation Scheme

In the deterministic case, the true proportion of the defective components, x, is assumed to be

a given fixed value. After an inspection policy is obtained through each approach “without”
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knowing the exact value of x (with only the prior distribution), the policy is applied to the

scenario that is calculated “with” the given true value, x. The consequence of each policy is

evaluated as a total cost and the two policies are compared. For the VoI approach, given no, xb,

and x, the total cost is calculated as follows:

CV oI = noCI + EW |X
[
min
a
C(a, x | no, w)

]
= noCI +

hno∑
w=0

C(a2, x | no, w)fW |X(w | x, no)

+
no∑

w=hno+1

C(a1, x | no, w)fW |X(w | x, no). (3.21)

Similarly, for the hypothesis-testing approach, given nmin, xcr, and x, the total cost is derived

as follows:

CHT = nminCI +
k∑

w=0

C(a2, x | nmin, w)fW (w | x, nmin)

+

nmin∑
w=k+1

C(a1, x | nmin, w)fW |X(w | x, nmin), (3.22)

where k is the decision criterion, defined as k = bnmin · xcrc. Note that bxc is the floor function,

which returns the closest integer of less than x.

The stochastic case represents the situation where all information about x can be summarized

as a prior distribution (a probability mass function of x). In this case, given the probability of

occurrence for each possible x, the expected total cost is derived; for example, that for the VoI

approach is
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EX [CV oI ] = noCI +
∑
x∈X

hno∑
w=0

C(a2, x | no, w)fW |X(w | x, no)fX(x)

+
∑
x∈X

no∑
w=hno+1

C(a1, x | no, w)fW |X(w | x, no)fX(x). (3.23)

3.5.2 Certain x Case

For each possible x, the costs for each approach are calculated and summarized in Figure 3.12.

The VoI approach reduces the cost if x is less than xb, which is set at 0.10. However, once x

becomes larger than xb, the VoI approach raises the cost, since the decision can be wrong if the

sample of a sampling-inspection does not represent the group. This result indicates that if the

decision maker sets a prior distribution conservatively, the VoI approach can provide a lower

total cost. For instance, if the true percentage of defective components is 0.01, and we set a prior

distribution with its mean at 0.105, the difference between the cost with VoI approach is less than

the cost with the hypothesis-testing approach with the d = 0.02 case by more than 18 times CI .

3.5.3 Uncertain x Case

With the prior distribution shown in Figure 3.1 as an example of reasonable estimation for the

occurrence of each X = x, the expected costs for each approach are compared (Table 3.2). The

results indicate that the VoI approach is best when the prior distribution is proper. For example,

if we take the “20/80 rule,” the expected cost with the rule is higher than that with the VoI

approach by 10.4 times CI .
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Figure 3.12: Total costs for each approach for x = 0.01 to x = 0.20.

Table 3.2: Expected total cost for each approach.
Approach Expected total cost Sample size

Hypothesis-testing d=0.02 203.6 93
approach d=0.04 200.4 76

d=0.06 197.1 55
d=0.08 196.6 38

VoI-based approach 193.2 20

Qualitative Comparison

The VoI approach is more suitable for the stated problem than the hypothesis-testing approach,

and the limitations of the hypothesis-testing approach are apparent. When we consider fewer

failure cases such as x = 0.01, we cannot set a reasonable gray region. In addition, when x is too

small, approximation using normal distribution for binomial distribution is inappropriate.
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3.6 Summary

Diagnostic inspections are carried out to evaluate the condition of a large population of

(statistically) similar components found in an engineering system like a power plant or processing

unit. There are two possible actions for the engineer. Either inspect every component and

replace potentially defective components, or take no action and deal with component failures

as they occur. The problem can be formulated as a statistical decision problem in which the

information collected by the inspection of a relatively small sample can play a key role.

This chapter presents a systematic VoI approach to determine the optimal sample size as a

function of consequential costs associated with the two actions. The comparison between the

VoI-based and a traditional approach shows that the VoI approach is preferable to the traditional

approach of statistical hypothesis-testing.

The major insights found for diagnostic inspection problems are summarized as follows:

• The more vague and difficult terminal decision-making with only prior information is, the

more ENGS(no) a decision maker obtains; in that situation, additional information has

more value for a decision maker;

• The most sensitive parameter in the diagnostic inspection problem is the break-even value,

xb, which represents the balance of costs: inspection, replacement, and failure costs;

• The highest VoI is expected when the break-even value, xb, and the mean of prior

distribution, x̄′, are the same, in which case, the decision maker has the highest risk of

taking an inappropriate action based only on prior information;

• The VoI approach is economically more effective unless prior information is irrelevant;

• The VoI approach is more advantageous when the decision maker sets a prior distribution

conservatively.
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Chapter 4

Inspection Problem with the

Random Rate Degradation Model

In this chapter, the value of information (VoI)-based sample size determination (SSD) method

is modelled with one of the simplest and the most typical random variable models: the random

rate model. This model, which assume a linear degradation process, is first introduced, and

then mathematically formulated in the context of a sequential decision-making problem. A

numerical example is demonstrated, and insights about using SSD with random variable models

are discussed.

4.1 Problem Definition

Consider a population of N statistically identical components in an engineering system, which

could be vulnerable to some degradation process and fail if not replaced in time. The system is

known to be decommissioned at t2, and operators intend to inspect each component with cost of

CI and replace them if needed at an earlier time t1 < t2. A component would break and result

in a cost, CF , if its level of degradation reaches the safety limit, ρF . Broken components will
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be replaced immediately after failure. During an inspection, a component can be preventively

replaced at a cost, CP , such that CP < CF .

For better estimation of the parameter and prediction of the components’ states, X(t2),

inspection will be held at t1 on selected components. Thus, the problem can be defined as a

two-stage decision-making problem. At the first stage, size of sampling inspection is determined,

and at the second stage, based on the inspection outcome of X(t1), operators will decide whether

to replace individual components, either the inspected or other, un-inspected components. Note

that we assume inspection and replacement actions take no time, and these two stages are in t1.

What operators have to do first is to determine which components will be inspected. For simpler

notation, we use X1 and X2 instead of X(t1) and X(t2), respectively.

The major concern of the operators are the risk of a component breaking between t1 and

t2, P [X2 > ρF | X1 < ρF ]. Although the sampling inspection at t1 costs CI , it also reduces

uncertainty in P [X2 > ρF | X1 < ρF ], and consequently, reduces the probabilities of taking an

improper action such as replacing safe components.

The assumptions we set in this stated problem are summarized as follows:

• Degradation of components follows a random rate model;

• Components are statistically independent of one another;

• The probability of a replaced component failing before t2 is negligible;

• Every component survives until t1 (x1 < ρF ).

When the nominal life of a component, t1, is longer than the remaining system life, t2 − t1, the

third assumption is reasonable. The fourth assumption is set to avoid unnecessary calculations

in the analysis. The cost arising before t1 cannot be reduced and is the same for any consequence

because operators no option prior to t1.
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4.1.1 Two-Stage Decision-Making Problem

Operators have to decide whether to inspect a component and whether to replace it. At t1,

this problem can be formulated as a sequential decision involves two decisions: inspection

and replacement. Figure 4.1 illustrates the two-stage decision-making for a single component

inspection problem. At the inspection stage, the operators’ options are

e(t1) =

 e1 : Inspect

e2 : Not inspect.
(4.1)

The two actions at the replacement stage for each component are defined as

a(t1) =

 a1 : Replace

a2 : Do not replace.
(4.2)

The probability of a component breaking between t1 and t2, P [X2 > ρF | X1 < ρF ], will also

be evaluated, based on its estimated state for time t2. Note that Xi represents a component’s

condition at ti. Although the sampling inspection at t1 costs CI , it also reduces uncertainty in

P [X2 > ρF | X1 < ρF ], and consequently, reduces the probabilities of taking an improper action

such as replacing safe components.

4.2 Value of Information Analysis

The VoI approach based on random rate model is derived in this section. Because of the

assumption for the degradation model, a future condition is precisely predictable once the

component is inspected.
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Figure 4.1: Extended decision tree for a single-component inspection problem

4.2.1 Random Rate Model

A random rate model is the simplest case of the random variable model, which is widely used for

maintenance decision problems (e.g., Pandey (1998); Stewart and Rosowsky (1998); Hong (2000);

Pandey et al. (2009)). Under the model, once the corrosion rate for a component is observed, its

future degradation level is precisely predictable. Thus, whether the inspected component will fail

before the next diagnostic inspection is obvious. In the random rate model, the deterioration is

assumed to linearly proceed over time with a random degradation rate R. The degradation level

is formulated as

X(t) = Rt. (4.3)
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The degradation has always non-negative increments; R is assumed to follow a gamma distribution

with the probability density function expressed as follows:

fR(r | µ) = ga(r; 1/ν2, 1/µν2). (4.4)

Note that, with the random rate model, X(t2) of a component can be estimated without any

uncertainties once R for the component is revealed through observation of X(t1).

All components can be categorized to two conditions: r < rF2 and rF2 ≤ r < rF1. Note

that the condition of rF1 ≤ r is excluded from the analysis because of the assumption that the

components survive at t1. The two thresholds, rF1 or rF2 is the degradation rate that reaches

ρF at t1 or t2, respectively. In maintenance decision, rF2 becomes a key decision criterion about

the inspected outcome r. Note that the criterion satisfies FR(rF2) = FX2(ρF ) and is defined as

rF2 =
ρF
t2
. (4.5)

4.2.2 Probability Density Functions of Random Variables

The operators’ knowledge about µ is summarized as its prior distribution. For simplicity, we take

an inverse-gamma distribution as it is a conjugate distribution for a gamma distribution.

fM (µ) = Iga(µ;α, β)

=
βα

Γ (α)

(
1

µ

)α+1

exp

(
−β
µ

)
. (4.6)
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Figure 4.2: Two decision thresholds, rF1 and rF2, in the random rate model

where α and β are coefficients selected based on prior information. With inspection outcomes of

n components at t1, the posterior distribution of M becomes

fM (µ | sn) = Iga

(
µ;α+

n

ν2
, β +

sn/t1
ν2

)
. (4.7)

Note that the posterior distribution is still inverse-gamma distribution, which is the conjugate

distribution for the gamma distribution. With the posterior distribution, we can calculate the

expected costs of un-inspected components.

For convenience, Equation (4.4) is rewritten as

fR(r | µ) = ga(r; 1/ν2, 1/µν2). (4.8)
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Based on the equation, the probability density function of x1 is derived as

fX1(x1 | µ) = fR(r | µ)

∣∣∣∣ drdx1

∣∣∣∣
= ga(x1/t1; 1/ν2, 1/µν2) · 1/nt1

= ga(x1; 1/ν2, 1/µt1ν
2). (4.9)

Because of the additivity nature of a gamma distribution, the probability density function of Sn

becomes

fSn(sn | µ) = ga(sn;n/ν2, 1/µt1ν
2). (4.10)

The unconditional distribution of Sn is derived as

fSn(sn) =

∫ ∞
0

fSn(sn | µ)fM (µ)dµ. (4.11)

The probability density function of r unconditional on µ is derived as

fR(r) =

∫ ∞
0

fR(r | µ)fM (µ)dµ. (4.12)

4.2.3 Prior Analysis

Operators, based on the prior distribution, have to assign an expected cost for evaluating and

estimating the risk between t1 and t2 as follows:

EM [C(a,M)] =

 CP if a = a1

CFEM [P [R ≥ rF2 | R < rF1]] if a = a2.
(4.13)
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Note that P [R ≥ rF2 | R < rF1] is calculated as

P [R ≥ rF2 | R < rF1] =
FR(rF1)− FR(rF2)

FR(rF1)
, (4.14)

where FR(r) denotes the cumulative density function of fR(r | µ). Comparing the two expected

costs for the two actions, operators will take the one that leads to lower cost. The expected

optimal cost without inspection is calculated thus:

Coprior = min
a

EM [C(a,M)]

= min (CP , CFEM [P [R ≥ rF2 | R < rF1]]) . (4.15)

That selected minimum expected cost is the baseline for evaluating how much a sampling

inspection contributes to the effectiveness of an operators’ decision.

4.2.4 Inspected Components

Since the random rate model is a deterministic process, whether the component fails depends on

whether the observation, r, is greater than rF2. Thus, operators do not have to use the posterior

distribution of µ and calculate the expected posterior costs. Conditional on the situation of r,

the posterior costs with optimal action become

C(ao,M | x1 ≥ rF2t1) = CI + min (CP , CF )

= CI + CP , (4.16)

C(ao,M | x1 < rF2t1) = CI + min (CP , 0)

= CI . (4.17)
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Note that operators can always avoid failure of the inspected component because that the

inspection outcome add certainty on the operators’ decision, hence the analysis for inspected

components excludes the cost of failure, CF , in the formula. Operators will take an action that

leads to lower cost than another; the minimum cost is

Coinsp = min
a
C(a,M | x1)

=

 CI + CP if r ≥ rF2

CI if r < rF2

. (4.18)

The optimal expected pre-posterior cost for an inspected component is calculated as follows:

ER
[
Coinsp

]
= CI + CP

∫ rF1

rF2
fR(r)dr∫ rF1

0 fR(r)dr

= CI + CP

∫∞
0 [FR(rF1)− FR(rF2)]fM (µ)dµ∫∞

0 FR(rF1)fM (µ)dµ
(4.19)

For the VoI analysis for a single-component problem, the ENGS is calculated as the gap

between the two expected costs, shown in Equations 4.15 and 4.19, as follows:

ENGSsingle = Coprior − ER
[
Coinsp

]
. (4.20)

Note that this ENGS represents the net benefit of the perfect information about the future

state for a single-component. No influence of the parameter uncertainty in the analysis for a

single-component.
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4.2.5 Un-inspected Components

For a multiple-component problem, the influence of the parameter uncertainty on un-inspected

components need to be identified. Although an un-inspected component has no obtaining

information for its own, operators can improve the estimation of its condition at t2 through

reducing parameter uncertainty. With the posterior distribution in Equation (6.20), the expected

cost for an un-inspected component is derived as

Cnon(a) = EM |sn [C(a,M | e2, n, sn)]

=

 CP if a = a1

CFEM |sn [P [X2 > ρF | X1 < ρF ]] if a = a2,
(4.21)

Similar to Equation (3.8), we define the break-even value for the sum of the observation, snb, as

it satisfies the following equation:

EM |snb [P [R ≥ rF2 | R < rF1]] =
CP
CF

. (4.22)

By using the break-even value as a decision criterion, we can obtain the minimum expected cost

as follows:

Conon = min
a
Cnon(a)

=

 CP if sn > snb

CFEM |sn [P [R ≥ rF2 | R < rF1]] if sn ≤ snb
. (4.23)
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Thus, the expected pre-posterior cost for an un-inspected component is calculated as follows:

ESn [Conon] = CF

∫ snb

0

∫ ∞
0

P [R ≥ rF2 | R < rF1]fM (µ | sn)fSn(sn)dµdsn

+CP

∫ ∞
snb

∫ ∞
0

fM (µ | sn)fSn(sn)dµdsn. (4.24)

4.2.6 Optimal Decision for Inspection

The ENGS is defined as the difference between prior and pre-posterior expected costs, represented

respectively, as

Cprior(n) = N min
a

EM [C(a,M | e2)] (4.25)

Cprepost(n) = nER
[
Coinsp

]
+ (N − n)ESn [Conon] . (4.26)

We can obtain the ENGS(n) thus:

ENGS(n) = Cprior − Cprepost (4.27)

Then, we can derive the optimal sample size, no, with which operators will obtain the highest

ENGS, as follows:

no = arg max
n

ENGS(n). (4.28)

4.3 Numerical Example

The initial settings are imposed as N = 100, CF = 100, CP = 10, CI = 1, t1 = 25, t2 = 30,

1/ν2 = 9, and ρF = 3.0. The prior distribution for µ is given as Iga (µ; 540, 47.16), derived from
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observed data. The mean and the coefficient of variance (COV) are 0.087 and 0.043, respectively.

4.3.1 Single-Component Problem

The optimal action of the prior analysis is “replace,” with its expected cost of 10. The

pre-posterior cost is derived as 2.94. The optimal decision is to replace the component if the

observed degradation rate, r, is greater than the decision-criterion, rF2 = 0.1. Then, the ENGS,

which is the gap between the two costs, is 7.04.

The impacts of the replacement and failure costs are is analysed. Figure 4.3 shows the ENGS

for each possible combination of CF and CP . It indicates that the ENGS is proportional to

CP /CF ; as CF increases or CP decreases, operators are expected to obtain higher ENGS. The

ENGS has its peak when CP /CF is around 20% and drops off as CP /CF becomes smaller than

that peak value. Since P [R ≥ rF2 | R < rF1] with the initial settings is 0.196, when CP /CF is

around the value, operators cannot make their decision with confidence relying only on their

current information.

4.3.2 Multiple-Component Problem

The ENGS for each possible sample size is numerically obtained for a multiple-component

inspection problem with a random rate model. We use the same initial settings. Without

inspection, the optimal action for the prior analysis is a2, “do-not-replace.” The ENGS is derived

as shown in Figure 4.4. The optimal sample size is 100. For any sample size, most of the

ENGS is obtained from inspected-components. The percentage of the benefit from un-inspected

components is at most 5 % of the ENGS. Thus, the optimal sample size is determined based on

the balance between inspection and replacement costs, CI and CP , respectively.
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Figure 4.3: ENGS for each possible combination of CF and CP for a single-component problem
with a random rate model (CI = 1)

Figure 4.4: ENGS and its origin at each sample size (CI = 1, CP = 10, and CF = 100)
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4.4 Summary

This chapter has presented a VoI-based SSD method for maintenance problems with the random

rate degradation model. The procedure is mathematically formulated in the structure of a

two-stage decision-making problem. The formulated mathematical method is applied to a

numerical example.

Numerical example illustrated several findings for SSD strategies as follows:

• The benefit obtained by reducing parameter uncertainty is limited;

• No optimal sample size is found (zero or the population size is suggested);

• Because of the nature of the random rate model, an inspection outcome provides perfect

information about the future state of the inspected component.
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Chapter 5

Inspection Problem with the Gamma

Process Degradation Model:

Without Parameter Uncertainty

This chapter provides a simple but flexible mathematical sample size determination (SSD)

model for a multiple-component system undergoing a realistic degradation process, the gamma

process model. The proposed model illustrates how reducing temporal uncertainty contributes

to benefiting from inspections even without epistemic uncertainties. The model provides the

basis of value of information (VoI)-based SSD approach on condition-based maintenance. Under

an assumption of statistical independence among component degradation levels, the model

is applied to a practical case study and demonstrates how the ENGS is evaluated for both

previously inspected and un-inspected components. The evaluation indicates prioritization rule

for components for which previous inspection data is available.
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5.1 Problem Definition

The same problem introduced in Chapter 4 is adopted except the degradation model. The gamma

process model is applied to the VoI-based SSD method instead of the random rate model. In this

chapter, no parameter uncertainty is included in the analysis; the components are statistically

independent. The assumptions we set in this stated problem are:

• Degradation of components follows the gamma process model;

• Components are statistically independent of one another;

• The probability of a replaced component failing before t2 is negligible;

• Every component survives until t1 (x1 < ρF ).

When the nominal life of a component, t1, is longer than the remaining system life, t2 − t1, the

third assumption is reasonable.

5.1.1 Two-Stage Decision-Making Problem

The two-stage decision-making for a single-component inspection problem introduced in Chapter

4 is used (see Figure 4.1). The degradation of components is assumed to follow a stochastic

degradation model, the gamma process. Operators have prior information about a parameter of

the process; however, it is desired to update it after new data become available from inspection.

At the inspection-decision stage, the operators take one of the following two inspection options:

e(t1) =

 e1 : Inspect

e2 : Not inspect.
(5.1)
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Consequently, for each component at t1, the operators make a decision between the following two

actions:

a(t1) =

 a1 : Replace

a2 : Do not replace.
(5.2)

5.1.2 Gamma Process Model

Let us set a random variable, X(t), as a degradation level. If the random variable follows a

gamma process, it has properties as follows:

• X(0) = 0 with probability one;

• ∆X(t) = X(t+ ∆t)−X(t) ∼ ga(∆x; ∆t
ν2 ,

1
µν2 ) for any t ≥ 0 and ∆t ≥ 0; and

• For any choices of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn < ∞, the random variables

X(t0), X(t1)−X(t0), · · · , X(tn)−X(tn−1) are independent,

where ga(∆x; a, b) represents a gamma probability density function with coefficients of a and b;

µ and ν are the mean and coefficient of variance of deterioration in a unit time, respectively. The

distribution of increments within ∆t follows a gamma distribution with the probability density

function expressed as

g(∆x) =

(
1
µν2

)∆t
ν2

Γ
(

∆t
ν2

) ∆x
∆t
ν2−1 exp

(
−∆x

µν2

)
. (5.3)

Then, the cumulative density function of the gamma distribution is defined as

G(ρ) =

∫ ρ

0
f∆X(∆x | µ)d∆x. (5.4)
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5.2 Value of Information Analysis

This section examines the independent component inspection problem, which helps us to

understand the nature of the two-stage decision-making process. The expected net gain of

sampling (ENGS) is calculated and evaluated.

5.2.1 Random Variables

The vector of random variables, Z1 = (X1, X2), is the source of uncertainties. The ENGS

is obtained by reducing these uncertainties through observing Z1. X2 is dependent on the

deterioration level at t1 (X1) as X2 = X1 + ∆X. Under the assumption of x1 < ρF , the

probability density functions of each random variable are as follows:

fX1(x1) =
g(x1)∫ ρF

0 g(x1)dx1
, (5.5)

fX2|X1
(x2 | x1) = g(x2 − x1), (5.6)

The joint distribution of X1 and X2 is

fX1,X2(x1, x2) = fX2|x1
(x2 | x1)fX1(x1)

=
g(x1)g(x2 − x1)∫ ρF

0 g(x1)dx1

=

(
1
µν2

) t2
ν2

(x2 − x1)
∆t
ν2−1x

t1
ν2−1

1

Γ
(

∆t
ν2

)
Γ
(
t1
ν2

) ∫ ρF
0 g(x1)dx1

exp

(
− x2

µν2

)
. (5.7)
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The cumulative density functions of X1 and X2 are

FX1(ρ) =

∫ ρ

0
fX1(x1)dx1, (5.8)

FX2|x1
(x2 | x1)(ρ) =

∫ ρ

x1

fX2|x1
(x2 | x1)dx2 =

∫ ρ−x1

0
g(∆x)d∆x. (5.9)

5.2.2 Structure of Problem

Each possible consequence is evaluated based on its total cost, including any inspection, preventive

replacement, and corrective replacement costs. The total cost is function of a replacement action,

A, and random variables, Z1. Thus, although operators cannot directly observe X2, they can

have better estimation of X2 by updating µ knowing perfect information of X1. The total cost is

defined as follows:

C(a,Z1) =


CP if a = a1

CF if a = a2 and X2 = x2 ≥ ρF

0 if a = a2 and X2 = x2 < ρF .

(5.10)

To make the problem even simpler, let us consider the expected costs in t1 and t2. We get the

costs as

C(a) = EZ1 [C(a,Z1)]

=

 CP if a = a1

CFP [X2 ≥ ρF ] if a = a2

. (5.11)
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Note that P [X2 ≥ ρF ] is calculated as

P [X2 ≥ ρF ] = P [X1 + ∆X ≥ ρF ]

=

∫ ρF

0
[1− F∆X(ρF − x1)]fX1(x1)dx1, (5.12)

where F∆X(ρF − x1), which is a cumulative probability density, denotes the probability that the

increments is less than ρF − x1 so that the component will not fail.

5.2.3 Problem Classification

The stated maintenance problem is classified as decision-making under imperfect information.

Although perfect information of X1 is available, uncertainty still remains on X2 and consequently

on Z1. Thus, since perfect information can be considered as a special case of imperfect information

case, we define the EVSI and ENGS for the problem. However, further discussion of its

classification helps to understand the characteristics of the problem. Because of the perfect

information assumption on X1, the problem can be classified as a special case of the expected

value of partial perfect information (EVPPI). The EVPPI is an expected value under perfect

information on a subset of random variables. If dependence exists between the random variable

in the subset and other random variables that have no direct observations, calculation of EVPPI

becomes computationally expensive (Claxton and Sculpher, 2006; Jalal et al., 2015). Since X2

is dependent on X1, the original assumption breaks and this stated problem can be considered

as the EVPPI with dependence between random variables with and without perfect information.

Chapter 5 defines the problem that is classified as the EVPPI with dependent random variables

but not requires complicated computational calculation, which will be discussed in Chapter 6.
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5.2.4 Prior Analysis

For the prior analysis, we focus on the replacement stage with the given inspection action,

“not-inspect (e2).” Comparing the two expected costs for the two actions in Equation (5.11),

operators will take the one that leads to lower cost. The expected optimal cost without inspection

is calculated thus:

min
a
C(a) = min(CP , CFP [X2 > ρF ])

= min(CP , CF (1− FX2(ρF ))) (5.13)

That selected minimum expected cost is the baseline for evaluating how much a sampling

inspection contributes to the effectiveness of a operators’ decision.

5.2.5 Posterior Analysis

For the posterior and pre-posterior analyses, we consider the case with the given inspection

action, “inspect (e1).” At time t1, the inspection is done and the actual state of the deterioration

is revealed. Suppose X1 = x1 < ρF . The expected maintenance cost of an inspected component,

which is different from the one without inspection, is

C(a | x1) = EZ1|x1
[C(a,Z1 | x1)]

=

 CI + CP if a = a1

CI + CF [1− F∆X(ρF − x1)] if a = a2

. (5.14)
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where [1− F∆X(ρF − x1)] is the probability of failure at t2. The probability is calculated

1− F∆X(ρF − x1) = P [∆X > ρF − x1]

= P [X1 + ∆X ≥ ρF | X1 = x1] . (5.15)

Since operators will take the action of lower expected cost, the minimum expected cost is

min
a
C(a | x1) = CI + min

a
{CP , CF [1− F∆X(ρF − x1)]} (5.16)

5.2.6 Pre-posterior Analysis

Remember that operators have not actually obtained the inspection outcome at the time of

inspection planning, as it is only available after the inspection is undertaken. We thus have to

consider all possible outcomes of the inspection, which follows a gamma distribution. With this,

the expected optimal cost, with inspection, is expressed as

EX1

[
min
a
C(a | x1)

]
= CI + min

a
{CP ,EX1 [CF [1− F∆X(ρF − x1)]]} . (5.17)

5.2.7 Optimal Decision for Inspection

As defined in Section 2, the ENGS is the difference between the two expected optimal costs shown

in Equations (5.13) and (5.17). Thus, we can derive the ENGS for this single-component problem:

ENGS = min
a
C(a)− EX1

[
min
a
C(a | x1)

]
(5.18)

When the value is positive, operators should inspect a component at t1 and consequently choose

a1 if x1 > x1b or a2 if x1 ≤ x1b. When it is negative, they should take an action based only on
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prior information.

5.3 Problem with Previous Inspection Data

The proposed approach can be extended for a case in which data from previous components is

available. Let us assume that, in the past, operators inspected a component at t0 and obtained

its condition, x0. Let us set ∆t01 as t1 − t0, and X(∆t01) be the degradation increment within

∆t01. Once we replace ρF , X1, and x1 with ρF − x0, x0 + X(∆t01), and x0 + x01, respectively,

in the equations derived in Section 5.2, we can apply the approach to the case with previous

inspection data.

5.3.1 Prior Analysis

In this case, Equation (5.13) is modified as follows:

min
a
C(a | x0) = min(CP , CFP [X2 ≥ ρF | X(∆t01) < ρF − x0]) (5.19)

where P [X2 ≥ ρF | X(∆t01) < ρF − x0] is a probability of failure by t2 given x0, with an

assumption that the component will not fail until t1. This probability is calculated as

P [X2 ≥ ρF | X(∆t01) < ρF − x0] = P [X(∆t01) + ∆X ≥ ρF − x0]

=

∫ ρF−x0

0

∫ ∞
ρF−x01−x0

f∆X(∆x)fX(∆t01)(x01)d∆xdx01,

(5.20)

where fX(∆t01)(x01) is the probability density function of the degradation progress within ∆t01.

That selected minimum expected cost is the baseline for evaluating how much a sampling

90



inspection contributes to the effectiveness of an operators’ decision.

5.3.2 Pre-posterior Analysis

Based on Equation (5.17), we calculate the expected optimal cost, with inspection, as

EX(∆t01)|∆t01<ρF−x0

[
min
a
C(a | e1, x0, x01)

]
= CI + CP

∫ ρF−x0

x1b−x0

fX(∆t01)(x01)dx01

+CF

∫ x1b−x0

0
P [X2 ≥ ρF | X(∆t01) < ρF − x0] fX(∆t01)(x01)dx01. (5.21)

5.3.3 Optimal decision for inspection

The object of the decision-making problem is to determine the best inspection action at t1. By

calculating a gap between the two expected optimal costs shown in Equations (5.19) and (5.21),

we can derive the ENGS, for the problem with previous inspection data:

ENGS = min
a
C(a | x0)− EX(∆t01)|∆t01<ρF−x0

[
min
a
C(a | e1, x0, x01)

]
. (5.22)

When the value is positive, operators should inspect a component at t1 and consequently choose

a1 if x1 = x0 + x01 > x1b or a2 if x1 = x0 + x01 ≤ x1b. When it is negative, they should take an

action based only on prior information.

5.4 Practical Example – Nuclear Piping Systems

Feeder pipes comprise an important part of the primary heat transport system of a CANDU

reactor. They connect to a fuel channel and convey coolant from and to pressure tubes
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(Figure 1.1). Wall thinning of the outlet feeders, where flow-accelerated corrosion (FAC) is

the degradation mechanism, is a major concern of operators as it may cause heavy water leakage

when it exceeds the allowable limit. Due to FAC, fatal accidents have occurred in two nuclear

plants: the Surry PWR in the US in 1986 and the Mihama 3 PWR in Japan in 2004.

FAC is a process whereby the protective magnetite layer on carbon steel dissolves due to

the flowing coolant (water or wet steam) (Dooley and Chexal, 2000). Since the corrosion rate

is controlled by the diffusion of iron through the oxide film, the thickness of which reaches a

steady-state, the FAC tends to progress at a constant rate (Garland, 2014). The degradation

process can be reliably assumed to follow a gamma process model (Yuan, 2007). To plan and

conduct well-organized preventive maintenance of the feeder pipes, operators need to implement

inspections, which are very expensive because of the high radiation dose.

The objective of the case study is to evaluate the net gain on sampling (ENGS) for each

component and to identify which components should be inspected in an inspection outage at t1.

We demonstrate the VoI-based approach using this case study. In the case study, the procedure

theoretically developed in this chapter is illustrated with real numbers.

5.4.1 Data

At a site, 61 of 380 components were previously inspected: 50 feeder pipes with two measurements,

and 11 pipes with three consecutive measurements. The measured minimum thickness of the

fourteen-probe ultrasonic testing bracelet has been stored for each pipe at each inspection outage

time. The measurement locations are approximately the same between the outages. The initial

wall thickness is estimated at 5.3 mm. The data on the inspected degradation level is illustrated

in Figure 5.1. Based on the data, the parameters of the gamma process, µ and ν, are estimated

through the maximum likelihood estimation (MLE); the parameters are estimated at (µ, ν) =
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Figure 5.1: Inspected data of 50 feeder pipes with two measurements and 11 pipes with three
consecutive measurements

(0.0836, 0.584). We impose several initial settings: CF = 100, CP = 10, CI = 1, t1 = 25, t2 = 30,

and ρF = 3.0.

5.4.2 Single-Component without Previous Inspection

As a first step of a demonstration, we show the VoI-based analysis for a single-component

inspection problem step by step. Since the probability of failure between t1 and t2 is P [X2 ≥ ρF ] =

0.0391, operators can obtain the prior expected cost introduced in Equation (5.13), as

C(a) =

 10.0 if a = a1

3.91 if a = a2
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Comparing the two expected costs for the two actions, without inspection, operators will take a2,

“do not replace,” with its expected cost 3.91.

For better understanding of pre-posterior analysis, let us consider a fictitious situation where

we obtain X1 = 2.50. Based on Equation (5.14), the cost function of an inspected component is

C(a | x1) =

 11.0 if a = a1

23.1 if a = a2

The minimum expected cost is minaC(a | x1) = 11.0, and the optimal action given X1 = 2.50 is

a1, “replacement.” Note that the break-even value of x1, x1b, is 2.38.

Remember that operators have not actually obtained any sampling inspection outcome. We

thus have to consider all possible outcomes and their probability of occurrence. The expected

optimal cost with inspection, which is formulated in Equation (5.17), is calculated as

EX1

[
min
a
C(a | x1)

]
= 2.14,

The object of the decision-making problem is to determine the best (most cost effective)

inspection at t1. By calculating a gap between the two expected optimal costs formulated in

Equation (6.17), we can derive ENGS:

ENGS = 3.91− 2.35

= 1.56.

Since the value is positive, operators should inspect a component at t1 and consequently choose

a1 if x1 > 2.38 or a2 if x1 ≤ 2.38.
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Table 5.1: Number of components for each inspection decision
Inspection decision Do not inspect Inspect

Previously inspected components 46 15
Components without inspection 0 319

5.4.3 Value of Inspection with Previous Observation Data

For each component, we derive ENGS, decide if the component should be inspected or

reinspected, and summarize the results in Table 5.1. This analysis shows that 334 components

have a positive ENGS, meaning they should be inspected. Note that 15 are previously inspected

components, and all the previously un-inspected components have positive ENGS. Only five

components have higher ENGS values than the components that have never been inspected

before. This result indicates that inspecting components inspected previously tends to be less of

a priority than is examining un-inspected components.

The optimal plan is to inspect 334 out of 380 components; the accumulated ENGS is 512,

which is the total contribution of the inspection at t1. Figure 5.2 illustrates the relation among

x0, t0, and ENGS for each component. The components for which operators have a low risk to

make an incorrect decision have a negative ENGS, and the components where the risk is high

have positive ENGS.

5.5 Summary

This chapter has presented a VoI-based SSD method for maintenance problems, one that

considers temporal uncertainty in the model. First, we introduced the method with the baseline

mathematical model and showed the general characteristics of the stated problem. The model was

extended to the case of previous inspection data. We have demonstrated the proposed method
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Figure 5.2: ENGS for each component with previous inspection data

through a realistic numerical example. The results provide operators with not only the sample

size but also the priority of inspection, which is useful if a large sample size is not feasible because

of other restrictions such as resources.
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Chapter 6

Inspection Problem with Gamma

Process Degradation Model: With

Parameter Uncertainty

This chapter extends the sample size determination (SSD) model proposed in Chapter 5 for

a maintenance and inspection for multiple-components that are dependent each other through

the shared parameter uncertainty. Because of the dependency, operators need to take all the

conditions of all inspected components in their consideration so that the SSD model used in

Chapter 5 cannot be applied to the multiple-component system. The additivity characteristics

of the gamma distribution mean that only the sum of the observation outcomes needs to be

considered – as a representative variable – instead of considering the conditions of each component

separately. This simplification is critical for the updating process in pre-posterior analysis.

Moreover, the impacts of epistemic (parameter) and aleatory (temporal) uncertainties are

explicitly compared. These uncertainties have not been comprehensively analysed; the traditional

value of information (VoI) concept considers only parameter uncertainties, and the studies with

partially observable Markov decision process (POMDP) mainly focus on measurement errors. The
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VoI-based approach with a time-dependent degradation process is modelled and quantitatively

analysed with both uncertainties included.

6.1 Problem Definition

The same problem used in Chapter 5, which is originally introduced in Chapter 4, is adopted

except that the degradation model includes parameter uncertainty in it. Because of the parameter

uncertainty, the degradations of components are independent only if the parameters of the

degradation model are given. Thus, the degradations are conditional independent with the

parameter uncertainty. The assumptions we set in this stated problem are summarized as follows:

• Degradation of components follows the gamma process model;

• Components are statistically independent of one another given parameters of the

degradation model;

• The probability of a replaced component failing before t2 is negligible;

• Every component survives until t1 (x1 < ρF ).

When the nominal life of a component, t1, is longer than the remaining system life, t2 − t1, the

third assumption is reasonable.

6.2 Single-Component Problem

This chapter builds the model with both temporal (aleatory) and parameter (epistemic)

uncertainties. Based on the problem with only temporal uncertainty defined in Chapter 5,

the single-component problem is first stated for illustrative reason, and the full model is next

introduced.
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6.2.1 Prior and Posterior Distribution

The prior distribution of M is assumed to follow an inverse-gamma distribution as it is a conjugate

distribution for a gamma distribution.

fM (µ) = Iga(µ;α, β)

=
βα

Γ (α)

(
1

µ

)α+1

exp

(
−β
µ

)
. (6.1)

where α and β are coefficients selected based on prior information, which can be previous data

or experts’ knowledge.

Once inspection outcome is obtained as X1 = x1, through a Bayesian updating procedure, a

posterior distribution of M is obtained:

fM (µ | x1) = Iga

(
µ;α+

t1
ν2
, β +

x1

ν2

)
. (6.2)

6.2.2 Random Variables

The vector of the random variables, Z2 = (M,X1, X2), is the source of uncertainties. The ENGS

is obtained by reducing these uncertainties through observing Z2. Under the assumption of

x1 < ρF , the conditions at t1 and t2 are estimated based on the probability density functions

(PDFs) of X1 and X2, respectively, as follows:

fX1|M (x1 | µ) =
g(x1)∫ ρF

0 g(x1)dx1
, (6.3)

fX2|M,X1
(x2 | µ, x1) = g(x2 − x1), (6.4)
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The increment of the degradation level between t1 and t2, ∆x, has the following PDF:

f∆X|M,X1
(∆x | µ, x1) = g(∆x) (6.5)

The joint distribution of M and X1 is

fM,X1(µ, x1) = fX1(x1 | µ)fM (µ)

=
g(x1)∫ ρF

0 g(x1)dx1
Iga(µ;α, β)

=

(
x1
ν2

) t1
ν2 βα

x1Γ( t1
ν2 )Γ(α)

∫ ρF
0 g(x1)dx1

(
1

µ

)α+
t1
ν2 +1

exp

(
− 1

µ

(
β +

x1

ν2

))
, (6.6)

The marginal distribution of X1 is derived as

fX1(x1) =

∫ ∞
0

fM,X1(µ, x1)dµ

=
Γ(α+ t1

ν2 )

Γ( t1
ν2 )Γ(α)

(
x1
ν2

) t1
ν2 βα

x1

(
β + x1

ν2

)α+
t1
ν2
∫ ρF

0 g(x1)dx1

. (6.7)

Note that the cumulative density function of X1 is difficult to calculate the general form. To

evaluate the integrations, the sample from the marginal distribution is created from the joint

distribution, fM,X1(µ, x1), using Gibbs sampling. See Section 6.4.1 for more detail. Another

approximation method for calculating the integrations is introduced in Section 6.4.3.
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For the posterior analysis, the joint distribution of M and X2 given X1 = x1 is

fM,X2|X1
(µ, x2 | x1)

= fX2|M,X1
(x2 | µ, x1)fM (µ | x1)

=

(
x2−x1
ν2

)∆t
ν2 (β + x1

ν2 )α+
t1
ν2

(x2 − x1)Γ(∆t
ν2 )Γ(α+ t1

ν2 )

(
1

µ

)α+
t1+∆t

ν2 +1

exp

(
− 1

µ

(
β +

x1 + (x2 − x1)

ν2

))
, (6.8)

The marginal distribution of X2 given X1 = x1 is

fX2|X1
(x2 | x1) =

∫ ∞
0

fM,X2|X1
(µ, x2 | x1)dµ

=

(
x2−x1
ν2

)∆t
ν2 (β + x1

ν2 )α+
t1
ν2 Γ(α+ t1+∆t

ν2 )

(x2 − x1)(β + x1+(x2−x1)
ν2 )

α+
t1+∆t

ν2
Γ(∆t

ν2 )Γ(α+ t1
ν2 )

, (6.9)

The cumulative density functions (CDFs) of X1 and X2 are

FX1|M (ρ) =

∫ ρ

0
fX1|M,X2

(x1 | µ, x2)dx1, (6.10)

FX2|M,X1
(ρ) =

∫ ρ

x1

fX2|M,X1
(x2 | µ, x1)dx2 =

∫ ρ−x1

0
g(∆x)d∆x, (6.11)

FX2|X1
(ρ) =

∫ ρ

x1

fX2|X1
(x2 | x1)dx2

=

∫ ρ−x1

0

(
∆x
ν2

)∆t
ν2 (β + x1

ν2 )α+
t1
ν2 Γ(α+ t1+∆t

ν2 )

∆x(β + x1+∆x
ν2 )

α+
t1+∆t

ν2 Γ(∆t
ν2 )Γ(α+ t1

ν2 )

d∆x. (6.12)

Note that FX2|X1
(ρ) is the same as F∆X(ρF − x1), which is the CDF of ∆x.
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6.2.3 Prior Analysis

First, as a prior analysis, operators need to know the best possible decisions when no

sampling-inspection data is available. The total cost is dependent on an action, A, and random

variables, Z2 = (M,X1, X2). Operators, based only on the prior distribution of M , evaluate each

action by estimating the risk between t1 and t2. Equation (5.11) is modified as follows:

EZ2 [C(a,Z2)] =

 CP if a = a1

CFEM [P [X2 > ρF ]] if a = a2,
(6.13)

Note that, for convenience, x(ti) for i = 1, 2 is shortened to xi. According to the assumption,

although operators do not know what X1 is, we assume that all possible values as a x1 satisfies

0 < x1 < ρF .

Comparing the two expected costs for the two actions, operators will take the one that leads

to lower cost. The expected optimal cost without inspection is calculated thus:

min
a

EZ2 [C(a,Z2)] = min (CP , CFEM [P [X2 > ρF | X1 < ρF ]]) . (6.14)

6.2.4 Posterior Analysis

Suppose that operators have obtained an outcome for a sampling inspection, X1 = x1 < ρF . The

operators will then choose the best action according to a comparison between the expected costs

with updated information about X2 and M . With the posterior distribution in Equation (6.2),

operators will take an action that leads to lower cost than another; the minimum expected cost
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is

min
a

EZ2|x1
[C(a,Z2 | x1)] = CI + min

a

{
CP , CFEM |x1

[1− F∆X(ρF − x1)]
}
. (6.15)

6.2.5 Pre-posterior Analysis

Remember that the inspection outcome, X1, is a random variable. We calculate the expected

optimal cost, with inspection, as

EX1

[
min
a

EZ2|x1
[C(a,Z2 | x1)]

]
=

∫ ρF
0 mina EZ2|x1

[C(a,Z2 | x1)] fX1(x1)dx1∫ ρF
0 fX1(x1)dx1

. (6.16)

By calculating a gap between the two expected optimal costs shown in Equations (6.14) and

(6.16), we can derive the ENGS for this single-component problem:

ENGS = min
a

EZ2 [C(a,Z2)]− EX1

[
min
a

EZ2|x1
[C(a,Z2 | x1)]

]
(6.17)

For single-component problem, the decision of inspection is contingent only on the timing

of inspection (t1), if other parameters are kept constant. Alternatively, if t1 is fixed, then the

decision of inspection is dependent on the relative inspection cost.

6.3 Multiple-Component Problem

This section expands the model proposed in Section 6.2 to an N -component system problem by

having accumulated the features of the single-component problem. Through the analysis with

the model, we can answer what sample size is the best for the group of homogeneous components.
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Table 6.1: Prior and pre-posterior analysis for multiple-component problem
E Z A X

Prior n = 0 No a(prior) for all the x
(1)
2 , x

(2)
2 ,

analysis outcomes components · · · , x(N)
2

Pre Each inspected x
(i)
1 and a(i) for each i x

(1)
2 ,

-posterior component n s
(−i)
n−1 (i = 1, 2, · · · , n) · · · , x(n)

2

analysis Un-inspected sn a(non) for all the non- x
(n+1)
2 ,

components inspected components · · · , x(N)
2

In the N -components problem, operators can select an inspection sample size, n, which

represents the action at the inspection stage, e(t1) = n. Note n = 0 means no inspection.

By observing the inspection outcomes of n components, z = (x
(1)
1 , x

(2)
1 , · · · , x(n)

1 ), operators

can choose a set of actions for the N components, a(t1) = (a(1), a(2), · · · , a(N)). They then

determine a consequence for each component based on all the components’ states at time t2,

x = (x
(1)
2 , x

(2)
2 , · · · , x(N)

2 ), obtained by following a mathematically modelled stochastic degradation

process, which has an unknown parameter, M . As the size of sampling inspection, n, increases,

operators can reduce uncertainty in their estimation for X2 through the observed x
(i)
1 and updated

knowledge about parameter M from z = (x
(1)
1 , x

(2)
1 , · · · , x(n)

1 ). For the n components to be

inspected, we consider the upper path of the decision tree in Figure 4.1, and for un-inspected

components, we calculate the possible consequences based on the lower path of the decision tree.

The problem is summarized in Table 6.1. Note that a(prior), a(i), and a(non) are one of the two

actions: replace (a1) and do-not-replace (a2).

6.3.1 Random Variables

The random variables that affect the total expected cost are summarized as a vector, Z3 =

(M,X1, Sn−1, X2). X1, X2, and Sn−1 are conditional independent variables, which are

independent if µ is known. Because of the additivity characteristics of the gamma process,
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the probability density function of Sn−1 is derived as follows:

fSn−1(sn−1 | µ) = ga(sn−1;nt1/ν
2, 1/µν2). (6.18)

The probability density function of X1 and Sn−1 unconditional on µ is derived as

fX1,Sn−1(x1, sn−1) =

∫ ∞
0

fX1(x1 | µ)fSn−1(sn−1 | µ)fM (µ)dµ

=
Γ(α+ nt1

ν2 )

Γ( t1
ν2 )Γ( (n−1)t1

ν2 )Γ(α)

(
x1
ν2

) t1
ν2 sn−1

ν2

(n−1)t1
ν2 βα

x1sn−1

(
β + x1+sn−1

ν2

)α+
nt1
ν2

(6.19)

Figure 6.1 illustrates the joint distribution of X1 and Sn−1 when n = 10.

With inspection outcomes of n components at t1, the posterior distribution of M becomes

fM (µ | x1, sn−1) = Iga

(
µ;α+

nt1
ν2

, β +
x1 + sn−1

ν2

)
. (6.20)

Note that the posterior distribution is still inverse-gamma distribution, which is the conjugate

distribution for the gamma distribution. With the posterior distribution, we can calculate the

expected costs of both inspected and un-inspected components.

Based on the posterior distribution, the distribution of ∆X is derived as follows:

f∆X|X1,Sn−1
(∆x | x1, sn−1) =

∫ ∞
0

f∆X|M (∆x | µ)fM |X1,Sn−1
(µ | x1, sn−1)dµ

=
Γ(α+ nt1

ν2 + t2−t1
ν2 )

Γ(α+ nt1
ν2 )Γ( t2−t1

ν2 )

(
∆x
ν2

) t2−t1
ν2

(
β + x1+sn−1

ν2

)α+
nt1
ν2

∆x
(
β + x1+sn−1+∆x

ν2

)α+
nt1
ν2 +

t2−t1
ν2

.

(6.21)
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Figure 6.1: Joint distribution of X1 and S9 (n = 10)

6.3.2 Prior Analysis

The total cost is functional on a replacement action, A, and random variables, Z3 =

(M,X1, Sn, X2). In the prior analysis, since n = 0, the vector of Z3 becomes the same as

Z2, which is used for single-component problem. Since there is no observation results for prior

analysis, the optimal decisions for every components are the same. The optimal decisions can be

derived by Equation (6.14).
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6.3.3 Posterior Analysis

The changes of the model appear when we are updating information about M based on inspection

outcomes, x
(1)
1 , x

(2)
1 , · · · , x(n)

1 . In a general problem, we have to evaluate all possible combinations

of each component’s state, and doing so is one of the difficulties of applying the VoI concept

to maintenance problems. However, with the gamma process model and its conjugate prior

distribution, inverse-gamma distribution, we can use a sum of the outcomes, sn = x
(1)
1 + x

(2)
1 +

· · ·+ x
(n)
1 = x

(i)
1 + s

(−i)
n−1, as a representative random variable of all possible outcomes.

With these modified posterior distribution and random variables, we can calculate the

pre-posterior costs for both inspected and un-inspected components. By summing up the value

for each component, we can derive the ENGS of a system.

6.3.4 Pre-posterior Analysis

Since the prior distribution of M is the same as in the single-component problem, and the prior

cost for both inspected and un-inspected components is the same as the one defined in Section

6.2.3, for convenience, we rewrite the prior cost as follows:

min
a

EZ3 [C(a,Z3)] = min
a
{CP , CFEM [P [X2 > ρF ]]} . (6.22)

For the ith inspected component, the operator makes the replacement decision based on two pieces

of evidence. The first one is the actual condition of the component, x
(i)
1 . Without measurement

error, this inspection outcome eliminates completely the temporal uncertainty. The second piece,

which is indirect, is the sum of conditions of the other n− 1 components, denoted by s
(−i)
n−1. The

sum reduces the parameter uncertainty by contributing to the updating of the model parameter

of the gamma process.
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Inspected Components

The expected pre-posterior cost for an inspected component is calculated as follows:

Cinsp(a) = EZ3|sn

[
C(a,Z3 | e1, n, x

(i)
1 , s

(−i)
n−1)

]
=

 CI + CP if a = a1

CI + CFEM |sn
[
P
[
∆X > ρF − x(i)

1

]]
if a = a2,

(6.23)

After comparing the costs of each action, operators can choose an action that leads to lower

expected cost. For a multiple-component problem, we need to consider the two random variables,

X(i)(t1) and S
(−i)
n−1 , simultaneously, thus the break-even values, which are criteria for choosing a

better action, form a line in a two-dimensional space of (x
(i)
1 , s

(−i)
n−1), as shown in Figure 6.2. Note

that h1(x
(i)
1 , s

(−i)
n−1) = 0 represents the break-even line on which the expected costs from the two

actions become the same and is formulated as

h1(x
(i)
1 , s

(−i)
n−1) = CP − CFEM |sn

[
P
[
∆X > ρF − x(i)

1

]]
. (6.24)

Then, with the break-even values, we can describe the minimum expected cost as

Coinsp = min
a
Cinsp(a)

= CI + min
a

{
CP , CFEM |sn

[
P
[
∆X > ρF − x(i)

1

]]}
=

 CI + CP if h(x
(i)
1 , s

(−i)
n−1) < 0

CI + CFEM |sn
[
P
[
∆X > ρF − x(i)

1

]]
if h(x

(i)
1 , s

(−i)
n−1) ≥ 0,

(6.25)
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Figure 6.2: Cost of taking a2 and optimal actions after observing s
(−i)
n−1 and x

(i)
1 (n = 10, CI =

3, CP = 10, andCF = 100)
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Un-inspected Components

Although an un-inspected component has no obtaining information for its own, operators can

improve the estimation of its condition at t2 through reducing parameter uncertainty. With the

posterior distribution in Equation (6.20), the expected cost for an un-inspected component is

derived as

Cun(a) = EZ3|sn [C(a,Z3 | e2, n, sn)]

=

 CP if a = a1

CFEM |sn [P [X2 > ρF ]] if a = a2,
(6.26)

Similar to Equation (3.8), we define the break-even value for the sum of the observation, snb, as

it satisfies the following equation:

EM |snb [P [X2 > ρF ]] =
CP
CF

. (6.27)

By using the break-even value as a decision criterion, we can obtain the minimum expected cost

as follows:

Coun = min
a
Cun(a)

= min
a

{
CP , CFEM |sn [P [X2 > ρF ]]

}
=

 CP if sn > snb

CFEM |sn [P [X2 > ρF ]] if sn ≤ snb
. (6.28)
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6.3.5 Optimal Decision for Inspection

The ENGS is defined as the difference between prior and pre-posterior expected costs, represented

respectively, as

Cprior(n) = N min
a

EZ3 [C(a,Z3 | e2)] (6.29)

Cprepost(n) = nE
X

(i)
1 ,S

(−i)
n−1

[
Coinsp

]
+ (N − n)ESn [Coun] (6.30)

We can obtain the ENGS(n) thus:

ENGS(n) = Cprior − Cprepost (6.31)

Then, we can derive the optimal sample size, no, with which operators will obtain the highest

ENGS, as follows:

no = arg max
n

ENGS(n). (6.32)

6.4 Computational Algorithms

The calculation of ENGS involves the evaluation of several multi-dimensional integrations and

minimization operators. For example, in Equation (6.30), the first term involves an integration

with respect to x
(i)
1 and s

(−i)
n−1. The two variables are dependent on each other, unconditional on

µ; that is, they are conditional independent. Although the joint probability density function can

be analytically derived, large values in gamma functions make numerical calculation difficult. To

calculate these multiple-integrations, we employ a numerical calculation method, Markov Chain

Monte Carlo (MCMC). How the MCMC simulations are organized with minimization operators
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is explained in this section. The original algorithms are introduced first, and two approximation

methods, memoization and PMF, are adopted to reduce the computational cost.

6.4.1 Gibbs Sampling

With MCMC, a set of random variables can be simulated from a joint probability density function.

One of the most-popular MCMC methods is Gibbs sampling, whose underlying Markov chain

consists of a series of conditional probability density functions. In this study, since the conditional

probability density functions of unknown variables are given, the Gibbs sampling approach is

employed.

To generate a sample of Nsim sets of (µ,∆x) from the joint probability density function,

fM (µ,∆x | x1, sn−1), we use the conditional distributions

fM (µ | x1,∆x, sn−1) = Iga

(
µ;α+

(n− 1)t1 + t2
ν2

, β +
sn−1 + x1 + ∆x

ν2

)
(6.33)

f(∆x | µ, x1, sn−1) = ga

(
∆x;

t2 − t1
ν2

,
1

µν2

)
. (6.34)

The algorithm can be summarized as in Algorithm 1. Note that Nburn−in is the size of a burn-in

period, where the obtained sample seems to be biased and is not used for further calculation. As

in Algorithm 1, to generate (µ, x1, sn−1), we use the conditional distributions

fM (µ | ∆x) = Iga

(
µ;α+

t2 − t1
ν2

, β +
∆x

ν2

)
(6.35)

f(∆x | µ) = ga

(
∆x;

t2 − t1
ν2

,
1

µν2

)
. (6.36)

The algorithm can be summarized as in Algorithm 2.
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Algorithm 1 Gibbs sampling for (µ,∆x) given (x1, sn−1)

Obtain (x1, sn−1)
Set (µ0,∆x0).
for i from 1 to Nburn−in +Nsim do

Generate µi from fM (µ | x1,∆x, sn−1)
Generate ∆xi from f(∆x | µ, x1, sn−1)

end for

Algorithm 2 Gibbs sampling for (µ, x1, sn−1)

Set (µ0, x0
1, s

0
n−1).

for i from 1 to Nburn−in +Nsim do
Generate µi from fM (µ | xi−1

1 , si−1
n−1)

Generate xi1 from fX1|M (x1 | µi)
Generate sin−1 from fSn−1|M (sn−1 | µi)

end for

6.4.2 Evaluation of ENGS

The calculation processes of ENGS for single- and multiple-component problems are described as

computational algorithms.

Single-Component Problem

To derive EGNS, the expected prior and pre-posterior costs derived respectively in Equations

(6.13) and (6.16) need to be numerically calculated. Algorithm 3 illustrates how to obtain the

expected prior cost. Given µ from the prior distribution, fM (µ), the probability of failure is

derived using cumulative density function, FX2(ρF ). The expectation is calculated through Monte

Carlo simulation (MCS).

Algorithm 4 explains the simulation process of the expected pre-posterior cost. After x1 and

sn−1 are generated through MCMC (Gibbs sampling), µ is simulated from a posterior distribution,

fM (µ | x1). Given µ, the probability of failure is calculated. Note that NK and NJ are the
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Algorithm 3 Calculation of expected prior cost

Generate NK of µ from fM (µ) using MCS
for k from 1 to NK do

Calculate probability of failure, 1− FX2(ρF ), using fX2|M (x2 | µk)
end for

Calculate EZ2 [C(a2,Z2)] ≈
∑NK
k=1 CF (1−FX2

(ρF ))

NK
Determine mina EZ2 [C(a,Z2)]

Algorithm 4 Calculation of expected pre-posterior cost: Single-component

Generate NJ of x1 from fM (µ, x1) using Gibbs sampling
for j from 1 to NJ do

Generate NK of µ from fM (µ | x1,j) using MCS
for k from 1 to NK do

Calculate probability of failure, 1− F∆X,k(ρF − x1,j), using f(∆x | µk)
Calculate CF (1− F∆X,k(ρF − x1,j))

end for

Calculate EZ2|x1,j
[C(a2,Z2 | e1, x1,j))] ≈

∑NK
k=1 CF (1−F∆X,k(ρF−x1,j))

NK
Determine mina EZ2|x1,j

[C(a,Z2 | e1, x1,j)]
end for

Calculate EX1

[
mina EZ2|x1,j

[C(a,Z2 | e1, x1)]
]
≈

∑NJ
j=1 mina EZ2|x1,j

[C(a,Z2|e1,x1,j)]
NJ

simulation sample sizes for inner and outer loops, respectively.

Multiple-Component Problem

Algorithm 3 is also used for multiple-component problems; the expected prior cost is the cost for

a single-component multiplied by N . As described in Section 6.3.4, the expected pre-posterior

costs for inspected and un-inspected components need to be separately considered. For inspected

components, the algorithm used to numerically calculate the expected pre-posterior cost is as

in Algorithm 5. The algorithm for un-inspected components has the same logic, but a slight

difference exists in calculating the probability of failure in the internal loop of the algorithm, as

follows in Algorithm 6.

114



Algorithm 5 Calculation of expected pre-posterior cost: Multiple-component (inspected)

Generate NJ sets of vector, (x1, sn−1), from fM (µ, x1, sn−1) using Gibbs sampling
for j from 1 to NJ do

Generate NK of µ from fM (µ | x1,j , sn−1,j) using MCS
for k from 1 to NK do

Calculate probability of failure, 1− F∆X,k(ρF − x1,j), using f(∆x | µk)
Calculate an expected cost of taking a2, CF (1− F∆X,k(ρF − x1,j))

end for

Calculate EZ3|sn [CF (1− F∆X(ρF − x1,j)) | e1, n, x1,j , sn−1,j)] ≈
∑NK
k=1 CF (1−F∆X,k(ρF−x1,j))

NK
Determine mina EZ3|sn [C(a,Z3 | e1, n, x1,j , sn−1,j)]

end for

Calculate EX1,Sn−1

[
mina EZ3|sn [C(a,Z3 | e1, n, x1, sn−1)]

]
≈

∑NJ
j=1 mina EZ3|sn [C(a,Z3|e1,n,x1,j ,sn−1,j)]

NJ

Algorithm 6 Calculation of expected pre-posterior cost: Multiple components (un-inspected)

Generate NJ of sn = x1 + sn−1, from fM (µ, x1, sn−1) using Gibbs sampling
for j from 1 to NJ do

Generate NK of µ from fM (µ | sn,j) using MCS
for k from 1 to NK do

Calculate probability of failure, 1− FX2,k(ρF ), using fX2|M (x2 | µk)
Calculate an expected cost of taking a2, CF (1− FX2,k(ρF ))

end for

Calculate EZ3|sn [CF (1− FX2,k(ρF ))] ≈
∑NK
k=1 CF (1−FX2,k

(ρF ))

NK
Determine mina EZ3|sn [C(a,Z3 | e2, n, sn,j)]

end for

Calculate ESn

[
mina EZ3|sn [C(a,Z3 | e1, n, sn)]

]
≈

∑NJ
j=1 mina EZ3|sn [C(a,Z3|e2,n,sn,j)]

NJ

6.4.3 Approximate Methods for ENGS Evaluation

To reduce computational cost, we discretize the continuous random variables and adopt two

methods: memoization and probability mass function (PMF) method.
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Method 1: Memoization Technique

Memoization is used to speed up computational calculations by storing the results of previous

calculations and returning them when the same inputs occur again. First, the space of the

observation result, X1, is discretized. Here, xdisc1,j is a discretized value and represents x1 around

it. Then, once a reasonable range of possible x1 has been determined, the variation of the input

of x1 becomes finite. Due to the limited number of inputs, the memorization technique speeds up

the algorithm. Algorithm 7 is for simulating the expected pre-posterior cost with memoization

technique.

For a single-component problem, Algorithm 4 is modified to become Algorithm 7. Similarly,

memorization is applied to Algorithms 5 and 6 for inspected and un-inspected components in a

multiple-component problem, as shown in Algorithms 8 and 9, respectively.

Method 2: Probability Mass Function

The basic idea of the method introduced in this section is simple and common. Operators just

need to use PMFs instead of PDFs, although this idea has a specific name, “PMF method,”

in this thesis for convenience. This method is meaningful only if the PDF can be analytically

derived, although the algorithms with MCS or MCMC are possible for any situations. Thus,

by combining the gamma process model for the degradation process with its conjugate prior

distribution, inverse gamma, for a parameter, µ, we can derive analytical joint and marginal

distributions of random variables without using MCS or MCMC. By the definition of probability

density, the PMF can be derived from PDF as follows:

fXdisc(xdiscj ) =

∫ xdiscj +w
2

xdiscj −w
2

fX(x)dx, (6.37)
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Algorithm 7 Memoization method: Single-component

Discretize the field of X1

Generate NJ of x1 from fM (µ, x1) using Gibbs sampling
for j from 1 to NJ do

Obtain the closest discretized variable, xdisc1,j

if xdisc1,j has never selected before then

Generate NK of µ from fM (µ | xdisc1,j ) using MCS
for k from 1 to NK do

Calculate probability of failure, 1− F∆X,k(ρF − xdisc1,j ), using f(∆x | µk)
Calculate an expected cost of taking a2, CF (1− F∆X,k(ρF − xdisc1,j ))

end for

Calculate EZ2|xdisc1,j

[
CF (1− F∆X(ρF − xdisc1,j ))

]
≈

∑NK
k=1 CF (1−F∆X,k(ρF−xdisc1,j ))

NK

Determine mina EZ2|xdisc1,j

[
C(a,Z2 | e1, x

disc
1,j

]
else

Obtain mina EZ2|xdisc1,j

[
C(a,Z2 | e1, x

disc
1,j

]
from previous calculation

end if
end for

Calculate EX1

[
mina EZ2|x1

[C(a,Z2 | e1, x1)]
]
≈

∑NJ
j=1 mina E

Z2|xdisc
1,j

[C(a,Z2|e1,x1,j)]

NJ

where fXdisc(xdisc) and fX(x) denote the PMF and PDF of X, respectively; w is the interval of

the discretized value of X. When w is small enough, the PMF can be approximated as follows:

fXdisc(xdiscj ) ≈ wfX(xdiscj ). (6.38)

If the discretized region has upper and lower bounds, the PMF needs to be normalized as

fXdisc(xdiscj ) ≈
fX(xdiscj )∑
j∈J fX(xdiscj )

, (6.39)
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Algorithm 8 Memoization method: Multiple-component (inspected)

Discretize the two dimensional field, (X1, Sn−1)
Generate NJ sets of (x1, sn−1) from fM (µ, x1, sn−1) using Gibbs sampling
for j from 1 to NJ do

Obtain the closest pair of discretized variables, (xdisc1,j , s
disc
n−1,j)

if (xdisc1,j , s
disc
n−1,j) has never selected before then

Generate NK of µ from fM (µ | xdisc1,j , s
disc
n−1,j) using MCS

for k from 1 to NK do
Calculate probability of failure, 1− F∆X,k(ρF − xdisc1,j ), using f(∆x | µk)
Calculate an expected cost of taking a2, CF (1− F∆X,k(ρF − xdisc1,j ))

end for

Calculate EZ3|xdisc1,j ,s
disc
n−1,j

[
CF (1− F∆X(ρF − xdisc1,j ))

]
≈

∑NK
k=1 CF (1−F∆X,k(ρF−xdisc1,j ))

NK

Determine mina EZ3|xdisc1,j ,s
disc
n−1,j

[
C(a,Z3 | e1, n, x

disc
1,j , s

disc
n−1,j

]
else

Obtain mina EZ3|xdisc1,j ,s
disc
n−1,j

[
C(a,Z3 | e1, n, x

disc
1,j , s

disc
n−1,j

]
from previous calculation

end if
end for

Calculate EX1,Sn−1

[
mina EZ3|x1,sn−1

[C(a,Z3 | e1, n, x1, sn−1)]
]
≈

∑NJ
j=1 mina E

Z3|xdisc
1,j

,sdisc
n−1,j

[
C(a,Z3|e1,n,xdisc1,j ,sdiscn−1,j)

]
NJ
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Algorithm 9 Memoization method: Multiple-component (un-inspected)

Discretize the field of Sn
Generate NJ of sn = x1 + sn−1 from fM (µ, x1, sn−1) using Gibbs sampling
for j from 1 to NJ do

Obtain the closest discretized variable, sdiscn,j

if sdiscn,j has never selected before then

Generate NK of µ from fM (µ | sdiscn,j ) using MCS
for k from 1 to NK do

Calculate probability of failure, 1− FX2,k(ρF ), using f(∆x | µk)
Calculate an expected cost of taking a2, CF (1− FX2,k(ρF ))

end for

Calculate EZ3|sdiscn,j
[CF (1− FX2,k(ρF ))] ≈

∑NK
k=1 CF (1−FX2,k

(ρF ))

NK

Determine mina EZ3|sdiscn,j

[
C(a,Z3 | e2, n, s

disc
n,j

]
else

Obtain mina EZ3|sdiscn,j

[
C(a,Z3 | e2, n, s

disc
n,j

]
from previous calculation

end if
end for

Calculate ESn

[
mina EM|sn [C(a,Z3 | e2, n, sn)]

]
≈

∑NJ
j=1 mina E

Z3|sdiscn,j
[C(a,Z3|e2,n,sdiscn,j )]

NJ
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Algorithm 10 PMF method: Single-component

Discretize the field of X1

for each xdisc1,j in J, do

Calculate fXdisc(xdisc1,j )
Discretize the field of X2

Calculate an expected probability of failure, EM |xdisc1,j

[
1− F∆X(ρF − xdisc1,j )

]
,

using f(∆x | x1,j)

Calculate an expected cost of taking a2, CFEM |xdisc1,j

[
1− F∆X(ρF − xdisc1,j )

]
Determine mina EZ2|xdisc1,j

[
C(a,Z2 | e1, x

disc
1,j

]
end for
Calculate EX1

[
mina EZ2|x1

[C(a,Z2 | e1, x1)]
]
≈
∑
j∈J mina EZ2|xdisc1,j

[C(a,Z2 | e1, x1,j)] fXdisc(xdisc1,j )

where J is the set of all numbers for descretized X and is a finite integer. With the subset of J ,

L, which includes all j that satisfy xdiscj < ρF , the cumulative mass function is derived as follows:

FXdisc(ρ) ≈
∑

j∈L fXdisc(xdiscj )∑
j∈J fX(xdiscj )

(6.40)

Based on the approximated PMF method, Algorithms 4, 5, and 6 are modified as Algorithms

10, 11, and 12, respectively.

6.4.4 Efficiency of Algorithms

To illustrate the efficiency of the algorithms, 100 of ENGSs are simulated with each combination

of the simulation sample sizes of outer and inter loops, NJ and NK , respectively. Oakley et al.

(2010) show that the simulation sample size of an outer loop largely contributes to reducing the

standard deviation in simulation results, although the sample size of an inner loop changes the

results somewhat. We confirm the influence of each simulation sample size and compare the

results of original and memoization methods with large NJ and small NK . For this process, we

use Intel Core(TM)2 Duo with CPU 2.80 GHz and RAM 4.00 GB.
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Algorithm 11 PMF method: Multiple-component (inspected)

Discretize the two dimensional field, (X1, Sn−1)
for j in J do

for k in K do
Calculate fXdisc,Sdiscn−1

(xdisc1,j , sn−1,k)

Calculate an expected probability of failure, EM |xdisc1,j ,s
disc
n−1,k

[
1− F∆X,k(ρF − xdisc1,j )

]
,

using f(∆x | xdisc1,j , sn−1,k)

Calculate an expected cost of taking a2, CFEM |xdisc1,j ,s
disc
n−1,k

[
1− F∆X,k(ρF − xdisc1,j )

]
Determine mina EZ3|xdisc1,j ,s

disc
n−1,k

[
C(a,Z3 | e1, n, x

disc
1,j , s

disc
n−1,j

]
end for

end for
Calculate EX1,Sn−1

[
mina EZ3|x1,sn−1

[C(a,Z3 | e1, n, x1, sn−1)]
]

≈
∑

j∈J
∑

k∈K mina EZ3|xdisc1,j ,s
disc
n−1,j

[
C(a,Z3 | e1, n, x

disc
1,j , s

disc
n−1,k)

]
fXdisc,Sdiscn−1

(xdisc1,j , sn−1,k)

Tables 6.2 and 6.3 summarize the results of the simulations; an average, a standard deviation,

and a simulation time (minute) of each simulation setting are compared to one another. Table

6.2 demonstrates the same conclusion about the efficient balance of NJ and NK . Increasing NJ

reduces the standard deviation more than that of NK . This result consistent with the insights

from the study by Oakley et al. (2010).

Table 6.3 indicates that the PMF method is more accurate and computationally more efficient

than the other two methods, although, as a Monte Carlo tequnique, the memoization method is

more efficient than the original method, with almost the same average and standard deviations.

For illustrative purpose, the simulation results of the two approximation methods are compared

for n from 1 to 50. Figure 6.3 indicates that the results from the two methods match well,

although the plots with the memoization method has errors obtained through MCSs.
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Algorithm 12 PMF method: Multiple-component (un-inspected)

Discretize the field of Sn
for k in K do

Calculate fSdiscn
(sn,k)

Calculate an expected probability of failure, EM |sdiscn,k
[1− FX2,k(ρF )], using fX2|Sn(x2 | sn,k)

Calculate an expected cost of taking a2, CFEM |sdiscn,k
[1− FX2,k(ρF )]

Determine mina EZ3|sdiscn,k

[
C(a,Z3 | e2, n, s

disc
n,k

]
end for
Calculate ESn

[
mina EM |sn [C(a,Z3 | e2, n, sn)]

]
≈
∑

k∈K mina EZ3|sdiscn,k

[
C(a,Z3 | e2, n, s

disc
n,k )

]
fSdiscn

(sn,k)

6.5 Numerical Example

We demonstrate the VoI-based approach using an example in which we impose several initial

settings: N = 100, CF = 100, CP = 10, CI = 1, t1 = 25, t2 = 30, 1/ν2 = 9, and ρF = 3.0.

These settings represent the maintenance problem of feeder channels in the CANDU 600. Based

on observed data from the feeder channels, a parameter uncertainty for µ is set as a random

variable, whose prior distribution for µ is given as Iga (µ; 1102, 97.84). With the PMF method,

Equation (2.6) is numerically solved.

6.5.1 Single-Component Problem

For the given single-component problem, the ENGS is calculated at 1.51; the operators

should inspect the component to make better maintenance decisions. The expected prior and

pre-posterior costs are 3.65 and 2.14, respectively. This result indicates that if the inspection

cost, CI , is less than 2.51, the optimal decision is “inspect the component.”

Figure 6.4 shows the ENGS for each possible combination of CF and CP , and indicates that

the ENGS is almost proportional to CP /CF ; as CF increases or CP decreases, operators are
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Table 6.2: Computational efficiency with different outer and inner simulation sample sizes
Method Original method
Outer sample size (NJ) 100 1,000 1,000
Inner sample size (NK) 1,000 100 1,000

Average 18.7 12.2 13.0
Standard deviation 49.1 16.8 19.4
Time (minute) 26.4 26.3 60.2

Table 6.3: Computational efficiency with the original and two approximated methods
Method Original method Memoization method PMF method
Outer sample size (NJ) 1,000 10,000 100,000 1,000 10,000 100,000 N.A.
Inner sample size (NK) 1,000 100 100 1,000 100 100 N.A.

Average 13.0 13.1 12.9 12.4 13.2 12.9 12.8
Standard deviation 19.4 6.0 1.8 18.0 5.5 1.8 0
Time (minute) 60.2 60.2 411.9 36.6 21.3 95.5 9.2

expected to obtain higher ENGS. The ENGS has its peak when CP /CF is around 5% and drops

off as CP /CF becomes smaller than that peak value. This tendency indicates an important

characteristic of the VoI; VoI rises more when additional information has a high potential to

reverse decisions originally based on the initial condition and prediction model. Since P [X2 > ρF ]

with the initial settings of 0.037, when CP /CF is around that value, operators cannot confidently

make their decision relying only on their current information.

6.5.2 Multiple-Component Problem

The optimal sample size is numerically obtained for a multiple-component inspection problem.

We use the same initial settings. Without inspection, the optimal action for the prior analysis is

a2, “do-not-replace.” For each sample size, the cost for an inspected/un-inspected component is

calculated, and consequently, the ENGS is derived, as shown in Figure 6.5. The optimal sample

size is 100.
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Figure 6.3: ENGS of the PMF and memoization (NJ = 100, 000 and NK = 100) methods for
each sample size (CI = 3, CP = 10, and CF = 100)

Quantitative Classification of Optimal Sample Sizes

Figure 6.5 illustrates the sources of the ENGS for each sample size. As a sample size becomes

larger, the contribution of inspected components surprisingly tends to linearly increase because

the expected optimal cost for an inspected component, C̄oinsp, is almost constant with respect to n.

This result indicates that the VoI from inspected components is obtained mostly by reducing the

temporal uncertainty instead of the parameter uncertainty. On the other hand, the contribution

of un-inspected components, obtained by reducing parameter uncertainty, has its peak around

n = 20.

The extent of the constant characteristics of C̄oinsp is examined for different amounts of prior

information, represented by the variance of the prior distribution. If a sampling inspection greatly

reduces C̄oinsp through parameter updating, C̄oinsp would no longer be constant with respect to

sample size. Figure 6.6 shows that the constant characteristics are universal. Although the
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Figure 6.4: ENGS for each possible combination of CF and CP for a single-component problem
with parameter uncertainty (CI = 1)
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Figure 6.5: Contributions of inspected and un-inspected components for ENGS (CI = 1, CP =
10, and CF = 100)

expected optimal cost becomes more costly as the amount of prior information decreases (the

variance increases), the expected costs do not change for any sample size.

Through the previous calculations, the following approximations can be proposed:

• E
X

(i)
1 ,S

(−i)
n−1

[
Coinsp

]
= C̄oinsp is a constant value with respect to n;

• dC̄oun(n)
dn > 0;

• d2C̄oun(n)
dn2 < 0;

where C̄oun(n) = ESn [Coun]. Then, based on Equation (6.31), the derivative of ENGS(n) with

respect to n is obtained as follows:

dENGS (n)

dn
= C̄oun(n)− C̄oinsp − (N − n)

dC̄oun(n)

dn
(6.41)
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Figure 6.6: C̄oinsp in cases with different amounts of prior information (CI = 1, CP = 10, and
CF = 100)

Thus, no = N when

lim
n→N−0

dENGS (n)

dn
= C̄oun(N)− C̄oinsp − 0 > 0

⇔ C̄oinsp < C̄oun(N), (6.42)

and no = 0 when

lim
n→+0

dENGS (n)

dn
= C̄oun(n)− C̄oinsp −N lim

n→+0

dC̄oun(n)

dn
< 0

⇔ C̄oinsp > Cprior −N lim
n→+0

dC̄oun(n)

dn
, (6.43)

where we assume C̄oun(0) = Cprior. Since dC̄oun(n)
dn > 0 for any n, if C̄oinsp > Cprior, then no = 0.

An insight from the results is that operators may be able to avoid a part or all of the calculation

steps. Based on Equations (6.42) and (6.43),
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• If C̄oinsp < Coun(N), the optimal sample size is always n = N ;

• If C̄oinsp > Cprior, the optimal sample size is always n = 0;

• Operators need to calculate ENGS for sample sizes most likely below 0.4N , only if Cprior <

C̄oinsp < Coun(N).

The contribution of un-inspected components is large when operators have only a little prior

information, where the contribution rapidly increases and peaks at less than n = 10. On the

other hand, when operators have much prior information, the contribution becomes relatively

small, comparable with the contribution of inspected components although its peak can be more

than 0.4N . Thus, a realistic sample size, except n = 0 or n = N , is mostly in the range of

1 ≤ n < 0.4N .

Impact of Cost Balance

The optimal sample size for each case of different inspection costs is analysed as in Figure 6.7.

As the inspection cost increases, the ENGS to be obtained through inspection is reduced. When

CI is 1 or 2, the optimal sample size is 100, which is the population size, because the expected

value of to-be-obtained information is higher than the inspection cost even at n = 100.

When CI ≥ 3, full-inspection is no longer the optimal choice. The optimal sample sizes are

n = 14 for the case of CI = 3 and n = 7 for the case of CI = 4. The ENGS is positive until

n = 40 or n = 13 for the case of CI = 3 or CI = 4, respectively. Figure 6.8 depicts the ENGS

for each sample size in the case of CI = 3. The width of the positive ENGS range, named the

“beneficial sample size range,” represents the flexibility of size-of-sampling inspection decisions.

If the range is wide, operators can reasonably take a conservative sample size that is not optimal

but is still beneficial for them. In these cases, the expected prior cost is in between the expected
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Figure 6.7: ENGS for different inspection costs, CI (CP = 10 and CF = 100)

Figure 6.8: ENGS for the case with CI = 3, CP = 10, and CF = 100)
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Figure 6.9: Optimal sample size for different failure costs, CF (CI = 3 and CP = 10)

pre-posterior costs for inspected and un-inspected components; the benefit of reducing temporal

uncertainty is not enough to compensate for the inspection cost, but the benefit of reducing

parameter uncertainty contributes to making the ENGS positive. When n is more than four, the

optimal action at the inspection stage is “do-nothing.”

The influence of the failure and replacement costs, CF and CP , respectively, on the optimal

sample size is analysed. As CF becomes larger, the optimal sample size increases and reaches

the population size (see Figure 6.9). In contrast, when CP is changed as shown in Figure 6.10,

the optimal sample size has a maximum around CP = 7. These results indicate that the optimal

sample size is more sensitive with CF than CP .

130



Figure 6.10: Optimal sample size for different replacement costs, CP (CI = 3 and CF = 100)

Impact of Prior Information

The influence of the amount of prior information is analysed as in Figure 6.11. With the fixed ratio

of α/β, α and β are changed from 10 % to 130 % of the original values, (α, β) = (1102, 97.8).

As the amount of prior information increases, the optimal sample size linearly decreases and

drops to zero at 130 %. This explains that a certain amount of information exists at which

operators should not take into account additional information that reduces uncertainties in

terms of cost-benefit analysis. At between 120 % and 130 % of the amount of the original

information, the ENGS becomes negative over all n, although the peak of the ENGS contributed

by un-inspected components continues to linearly decrease even after 130 %.

Impact of Inspection Timing

We have compared costs with different inspection timings. Figure 6.12 shows that the sooner

operators can carry out an inspection, the smaller the ENGS value they will obtain; however, the
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Figure 6.11: Optimal sample sizes for different prior information (CI = 3, CP = 10, and CF =
100)

optimal sample sizes are similar. In cases of t1 = 25, t1 = 20, and t1 = 15, the optimal sample

sizes are n = 13, n = 10, and n = 0, respectively. When the probability of failure before t1 is

significantly low and ignorable, the later operators inspect components, the more they can reduce

both the temporal and parameter uncertainties.

6.6 Summary

This chapter has developed the VoI-based sample size determination method for the maintenance

decision-making problem under an assumption of dependent components through shared

parameter uncertainty. Based on the model defined in Chapter 5, we have developed the

model so as to deal with both temporal (aleatory) and parameter (epistemic) uncertainties in

the maintenance problem. With the gamma process, we demonstrated how the observation

and following updating process can be simplified in the mathematical equations. Computational
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Figure 6.12: ENGSs with different inspection timings (CI = 3, CP = 10, and CF = 100)

algorithms are introduced and computationally efficient algorithms have been discussed. We have

demonstrated the proposed method through a numerical example. In addition to the optimal

sample size, we propose a new index for sampling inspection, the “beneficial sample size range,”

which represents the flexibility of SSD. By changing major parameters of the model, we explored

how the proposed method can apply to a variety of cases.

The major insights found for sample size determination strategies are as follows:

• The optimal sample size is sensitive against parameters of cost and prior distribution;

• The most sensitive parameter is inspection cost;

• If C̄oinsp < Coun(N), the optimal sample size is always n = N ;

• If C̄oinsp > Cprior, the optimal sample size is always n = 0;

• Operators generally need to calculate ENGS for sample sizes below 0.4N , only if Cprior <

C̄oinsp < Coun(N).
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Chapter 7

Two-Inspection Problem: Value of

Information Analysis

Repeated inspection has been a common situation in condition-based maintenance studies.

Periodic inspection, which is one of the repeated inspection policies, is widely used, for instance,

Pandey et al. (2009). Under the inspection policy, a component is inspected periodically without

consideration of different inspection options. The policy is simple, flexible, and an optimal

solution is easy to find, but sample size determination (SSD) cannot be included in the analysis.

The inspection actions need to be defined as a part of a sequential decision problem. A series

of studies has developed optimization approaches for the condition-based maintenance problem

including inspection actions by modelling the problem as a partially observable Markov decision

process (POMDP).

Studies using POMDPs still use a fixed action interval but enable decision makers to decide

an inspection action at each horizon. These studies successfully generalize the discrete case

of inspection optimization in a condition-based maintenance problem for a single-component

system(Papakonstantinou and Shinozuka, 2014b,c,a; Papakonstantinou and Memarzadeh, 2017).

The proposed method discretizes all the factors in the problem: state of the component,
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inspection and maintenance actions, and observation outcomes. Schöbi and Chatzi (2016)

extend the POMDP model for continuous-state problem. However, these studies focus only

on a single-component system and cannot be applied for a multi-component problem. The SSD

problem cannot be formulated with their approaches. Memarzadeh and Pozzi (2016) propose

a method for multi-component system and evaluate the expected value of sample information

(EVSI) for two predetermined scenarios: optimistic and pessimistic. The study offers insights

into how much impact the first inspection has for the given scenarios, but it cannot explain how

the first inspection affects the following inspection actions.

This chapter describes how to determine the sample size for a multiple-component system

maintenance problem with multiple inspections. The study adopts dynamic programming as a

basis for the method for modelling and solving the problem. First, the background and main

ideas of dynamic programming are introduced. Classifying the related studies that use dynamic

programming for maintenance problems, we highlight the limitations of these studies. Similar

to Chapter 6, we explain how the gamma process contributes for modelling a condition-based

maintenance model with multiple-inspection problems. A mathematical derivation process for

the net benefit of inspection (ENGS) guides readers to an understanding of maintenance problems

as dynamic programming problems. Numerical analysis with a real case study shows the

applicability of the stated method in realistic situations.

7.1 Problem Definition

Let us assume that operators are going to choose an inspection and maintenance policy for an

N -component system in operation. The situation is the same as that in the problem described in

Chapter 6, except that there is now the chance of a second inspection and/or maintenance at t2.

Note that, in this chapter, t1 and t2 denote the first and second inspection/maintenance times,
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Figure 7.1: Decision tree for two-inspection problem

and t3 is the system-decommission time.

We have two decision-making horizons, t1 and t2, and each horizon is divided into two

stages: inspection and maintenance. The operators are at t1 and need to take a combination of

inspection and maintenance actions, which are, respectively, deciding on the size of the inspection

sampling and making a decision to replace or not for each component. At the inspection stage,

the inspection decision is for the whole system (all components), whereas at the maintenance

stage, decisions are for individual components. Specifically, during the inspection stage, the

operators determine a cost-effective scope (size) for the sampling inspection, n(i), and during the

maintenance stage at ti, they need to decide which (if any) components to replace and consider all

components individually (“replace,” a
(i)
1 , or “do-nothing,” a

(i)
2 ). As a rough sketch, the problem

can be illustrated as a repeat of the problem used in Chapter 6 (see Figure 7.1).

136



7.2 Dynamic Programming for Condition-based Maintenance

Dynamic programming was characterized and studied by Bellman (1957) based on statistical

sequential analysis (Wald, 1947). Dynamic programming describes a class of problems that can

be divided into sub-problems. A decision-maker first optimizes these sub-problems and gradually

extends his/her focusing problem toward the whole problem. For example, if the problem involves

a multiple-horizon (times) decision-making problem, the analysis starts from the last horizon,

and then the focusing horizon moves backward, using the results obtained for later horizons. The

optimized value at a certain horizon, V (xt), can be simplified as a Bellman equation:

V (xt) = max
at∈A

(R(xt, at) + γV (T (xt, at)), (7.1)

where xt and at are a state of a system and a decision maker’s action at t, respectively; R(xt, at)

is the reward obtained at t; T (xt, at) is a transition for the next horizon given xt and at; and

γ denotes a constant discount rate with which we estimate a net present value. When T (xt, at)

represents probabilistic transition, the decision maker needs to evaluate an expected future value

as follows:

V (xt) = max
at∈A

(
R(xt, at) + γ

∫
xt+1∈X

V (xt+1)P [xt+1 | xt, at] dxt+1

)
. (7.2)

Note that summation is used instead of integration if the state-space of a system is discrete.

Although dynamic programming has been developed and applied primarily in computer science,

several studies have adopted it for maintenance problems. Since general dynamic programming

is computationally expensive, its simplified forms, Markov decision process (MDP) and POMDP,

have been widely adopted.
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7.2.1 Markov Decision Process

MDP is defined as a mixture of a Markov process and a decision-making process. In a Markov

process, a future condition depends only on a current state. In other words, it is memoryless; the

history of previous conditions does not affect its stochastic transition to the future condition. A

gamma process is one example of a continuous-state Markov process. By modelling a component’s

degradation as a Markov process, maintenance decision problems have been defined as MDPs.

For simple formulations, a discrete-state Markov process is adopted in most studies. For

example, Ahmadi (2016) presents a condition-based maintenance model based on an MDP for

a single-component system. Nguyen et al. (2013) apply a MDP model for analysing optimal

maintenance, including the influence of spare parts inventory.

7.2.2 Partially Observable Markov Decision Process

To include the inspection decision problem in a condition-based maintenance optimization,

POMDP has been developed based on MDP. Instead of an actual state of a component, the

belief of a decision maker is updated based on observation results. POMDP has been developed

in reinforced learning, an area of machine learning, but has gained attention in maintenance

decision problems in recent years. In the context of structural health monitoring, inspection

actions are combined with maintenance actions, and optimal policies for each possible initial

belief are determined. For example, Faddoul et al. (2011) analyse a two sequence inspection

problem through which they explain the approach in a POMDP. Zhang and Revie (2017) develop

a partially observable semi-Markov decision process (POSMDP) for continuous-time imperfect

inspection problems.
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7.3 Single-Component Problem

This chapter builds the model for a two-inspection problem in which the operators’ primary focus

is determining the sample size for the first inspection, n(1). In that context, the prior analysis

means the optimization of the expected cost without the first sampling inspection and “with”

the second sampling inspection. In short, the prior analysis consists of the pre-posterior analysis

described in Chapter 6. Based on the problem in Chapter 6, the single-component problem is

first stated for illustrative reasons, and the multiple-component model is next introduced.

The assumptions we set in this stated problem, which have already been introduced in

Chapters 5 and 6, are re-written as follows:

• Degradation of components follows the gamma process model;

• Components are statistically independent of one another;

• The probability of a replaced component failing before t3 is negligible;

• Every component survives until t1 (x1 < ρF ).

7.3.1 Random Variables

The vector of the random variables, Z4 = (M,X1, X2, X3), is the source of uncertainties. The

ENGS is obtained by reducing these uncertainties through observing Z4. The probability density

functions (PDFs) and cumulative density functions (CDFs) of X1 and X2 are the same as those

shown in Section 6.2.2, although several notations need to be modified from ∆t and ∆x to ∆t12

and ∆x12. The condition at t3, X3, is estimated based on the PDF, as follows:

fX3|M,X1
(x3 | µ, x1) = g(x3 − x1), (7.3)

fX3|M,X2
(x3 | µ, x2) = g(x3 − x2), (7.4)
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The increments of the degradation level over ∆t13 = t3 − t1, ∆X13, and ∆t23 = t3 − t2, ∆X23,

have the following PDFs

f∆X13|M,X1
(∆x13 | µ, x1) = g(∆x13), (7.5)

f∆X23|M,X2
(∆x23 | µ, x2) = g(∆x23). (7.6)

The joint distribution of M and X3 given X1 = x1 is

fM,X3|X1
(µ, x3 | x1)

= fX3|M,X1
(x3 | µ, x1)fM (µ | x1)

=

(
x3−x1
ν2

)∆t13
ν2 (β + x1

ν2 )α+
t1
ν2

(x3 − x1)Γ(∆t13
ν2 )Γ(α+ t1

ν2 )

(
1

µ

)α+
t1+∆t13

ν2 +1

exp

(
− 1

µ

(
β +

x1 + (x3 − x1)

ν2

))
, (7.7)

The marginal distribution of X3 given X1 = x1 is

fX3|X1
(x3 | x1) =

∫ ∞
0

fM,X3|X1
(µ, x3 | x1)dµ

=

(
x3−x1
ν2

)∆t13
ν2 (β + x1

ν2 )α+
t1
ν2 Γ(α+ t1+∆t13

ν2 )

(x3 − x1)(β + x1+(x3−x1)
ν2 )

α+
t1+∆t13

ν2
Γ(∆t13

ν2 )Γ(α+ t1
ν2 )

, (7.8)

The joint distribution of M and X3 given X2 = x2 is

fM,X3|X2
(µ, x3 | x2)

= fX3|M,X2
(x3 | µ, x2)fM (µ | x2)

=

(
x3−x2
ν2

)∆t23
ν2 (β + x2

ν2 )α+
t2
ν2

(x3 − x2)Γ(∆t23
ν2 )Γ(α+ t2

ν2 )

(
1

µ

)α+
t2+∆t23

ν2 +1

exp

(
− 1

µ

(
β +

x2 + (x3 − x2)

ν2

))
, (7.9)
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The marginal distribution of X3 given X2 = x2 is

fX3|X2
(x3 | x2) =

∫ ∞
0

fM,X3|X2
(µ, x3 | x2)dµ

=

(
x3−x2
ν2

)∆t23
ν2 (β + x2

ν2 )α+
t2
ν2 Γ(α+ t2+∆t23

ν2 )

(x3 − x2)(β + x2+(x3−x2)
ν2 )

α+
t2+∆t23

ν2
Γ(∆t23

ν2 )Γ(α+ t2
ν2 )

, (7.10)

The CDFs of X3 are

FX3|M,X1
(ρ) =

∫ ρ

x1

fX3|M,X1
(x3 | µ, x1)dx3 =

∫ ρ−x1

0
g(∆x13)d∆x13, (7.11)

FX3|X1
(ρ) =

∫ ρ

x1

fX3|X1
(x3 | x1)dx3

=

∫ ρ−x1

0

(
∆x13
ν2

)∆t13
ν2 (β + x1

ν2 )α+
t1
ν2 Γ(α+ t1+∆t13

ν2 )

∆x13(β + x1+∆x13
ν2 )

α+
t1+∆t13

ν2 Γ(∆t13
ν2 )Γ(α+ t1

ν2 )

d∆x13 (7.12)

FX3|M,X2
(ρ) =

∫ ρ

x2

fX3|M,X2
(x3 | µ, x2)dx3 =

∫ ρ−x2

0
g(∆x23)d∆x23, (7.13)

FX3|X2
(ρ) =

∫ ρ

x2

fX3|X2
(x3 | x2)dx3

=

∫ ρ−x2

0

(
∆x23
ν2

)∆t23
ν2 (β + x2

ν2 )α+
t2
ν2 Γ(α+ t2+∆t23

ν2 )

∆x23(β + x2+∆x23
ν2 )

α+
t2+∆t23

ν2 Γ(∆t23
ν2 )Γ(α+ t2

ν2 )

d∆x23. (7.14)

7.3.2 Baseline Case: No inspection at t1

The major structure of the optimization analysis without the first sampling inspection is actually

the same as the structure of the pre-posterior analysis in Section 6.2, except for the shift of the

time horizon and the additional maintenance decision at t1. In both cases there is a chance to

inspect once in the whole decision-making process. The expected optimal cost with no inspection
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at either t1 or t2 is calculated thus:

EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e
(2)
2 , a

(1)
2 , a(2)o, X2 < ρF )

]
= min

a(2)
EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e
(2)
2 , a

(1)
2 )
]

= min
a(2)

(
CP , CF

EM [FX2(ρF )− FX3(ρF )]

EM [FX2(ρF )]

)
. (7.15)

where a1 = (e(1), e(2), a(1), a(2)) is the vector of the inspection and maintenance action taken at

t1 and t2; e
(j)
i and a

(j)
i denote e(j) = ei and a(j) = ai, respectively; a(j)o means the optimal action

at tj .

If another situation arises in which operators have an inspection result X2 = x2, the expected

cost with inspection at t2 given X2 = x2 is formulated as

min
a(2)

EZ4|X2

[
C(a1,Z4 | e(1)

2 , e
(2)
1 , a

(1)
2 , x2)

]
= CI + min

a(2)

(
CP , CFEM |X2

[1− F∆X23(ρF − x2)]
)
.

(7.16)

Similar to the cost in Equation (6.16), if operators do not actually have inspection results, X2

needs to be considered as a random variable. The expected cost with respect to X2 becomes

EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e
(2)
1 , a

(1)
2 , a(2)o, X2 < ρF )

]
= EX2|X2<ρF

[
min
a(2)

EZ4|X2

[
C(a1,Z4 | e(1)

2 , e
(2)
1 , a

(1)
2 , x2)

]]

=

∫ ρF
0 mina(2) EZ4|X2

[
C(a1,Z4 | e(1)

2 , e
(2)
1 , a

(1)
2 , x2)

]
fX2(x2)dx2

EM [FX2(ρF )]
. (7.17)

Note that this expected optimal cost is for the case of the component not failing before t2, whose

probability is FX2(ρF ). Based on the derived expected costs, the ENGS(2), which is the net
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benefit of inspection at t2 (not t1), is derived as follows:

ENGS(2)(e(2) | e(1)
2 , a

(1)
2 ) = EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e
(2)
2 , a

(1)
2 , a(2)o, X2 < ρF )

]
−EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e
(2)
1 , a

(1)
2 , a(2)o, X2 < ρF )

]
.(7.18)

Thus, operators can determine the optimal inspection action at t2 that leads to lower expected

cost than the other option as follows:

e(2)o = arg max
e(2)

ENGS(2)(e(2) | e(1)
2 , a

(1)
2 ). (7.19)

At the maintenance stage at t1, the operators choose an action between a1, replacement, and

a2, no-action. The choice is based on which option has a lower expected cost. The “prior” cost

of the two-inspection problem is

Cprior = min
a(1)

(
CP , FX2(ρF )EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e(2)o, a
(1)
2 , a(2)o, X2 < ρF )

]
+CF (1− FX2(ρF ))) , (7.20)

where EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e(2)o, a
(1)
2 , a(2)o, X2 < ρF )

]
is the expected cost with optimal

inspection and action at t2, e(2)o and a(2)o, respectively, given e
(1)
2 . The consequence of each

combination of inspection and action options is summarized in the lower half (e(1) = e2 case) of

Tables 7.1, 7.2, 7.3, and 7.4. These tables show the calculation procedures.
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Table 7.3: Costs arising between t1 and t3
e(1) x1 a(1) State e(2) x2 EZ4|X2<ρF

[
C(a1,Z4 | a(1)

2 , a(2)o, X2 < ρF )
]

e1 X a1 —
a2 Fail —

Survive e1 X CI + mina(2)(CP , CFEM|X2
[1− F∆X23(ρF − x2)]

e2 × mina(2)(CP , CF
EM|X1 [F∆X12

(ρF−x1)−F∆X13
(ρF−x1)]

EM|X1 [F∆X12
(ρF−x1)]

)

e2 × a1 —
a2 Fail —

Survive e1 X CI + mina(2)(CP , CFEM|X2
[1− F∆X23(ρF − x2))]

e2 × mina(2)(CP , CF
EM [FX2

(ρF )−FX3
(ρF )]

EM [FX2
(ρF )]

)

Table 7.4: Expected pre-posterior cost for each combination of options at t1
e(1) x1 a(1) EZ4

[
C(a1,Z4 | e(1)

1 , e(2)o, a
(1)
2 , a(2)o

]
e1 X a1 CI + CP

a2 CI + CFEM|X1
[1− F∆X12(ρF − x1)]

+EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e(2)o, a
(1)
2 , a(2)o, X2 < ρF )

]
EM|X1

[F∆X12(ρF − x1)]

e2 × a1 CP
a2 CFEM [1− FX2(ρF )]

+EZ4|X2<ρF

[
C(a1,Z4 | e(1)

2 , e(2)o, a
(1)
2 , a(2)o, X2 < ρF )

]
EM [FX2(ρF )]

7.3.3 Posterior Analysis: Inspection and Maintenance at t2

Suppose that operators have obtained an outcome for a sampling inspection, X1 = x1 < ρF .

The operators will then choose the best action according to a comparison between the expected

costs with updated information about M , X2, and X3. Because of the assumption, a replaced

component will not fail. With the same posterior distribution as in Equation (6.2), the optimal

expected cost arising between t2 and t3, given a(1) = a2 and e(2) = e2, is calculated as

EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e
(2)
2 , a

(1)
2 , a(2)o, X2 < ρF )

]
= min

a(2)
EZ4|X1,X2<ρF

[
C(a1,Z4 | e(1)

1 , e
(2)
2 , a

(1)
2 , x1)

]
= min

a(2)

(
CP , CF

EM |X1
[F∆X12(ρF − x1)− F∆X13(ρF − x1)]

EM |X1
[F∆X12(ρF − x1)]

)
. (7.21)
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When a(1) = a2, e(2) = e1, and X2 = x2 < ρF are given, the optimal expected cost is

EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e
(2)
1 , a

(1)
2 , a(2)o, X2 < ρF )

]
= EX2|X2<ρF

[
min
a(2)

EZ4|X2

[
C(a1,Z4 | e(1)

1 , e
(2)
1 , a

(1)
2 , x2)

]]
= CI + min

a(2)

(
CP , CFEX2|X2<ρF

[
EM |X2

[1− F∆X23(ρF − x2)]
)]
. (7.22)

In the two-inspection problem, the second inspection decision is included in the posterior

analysis part. Based on the derived expected costs, the ENGS(2), which is the net benefit of

inspection at t2, is derived as follows:

ENGS(2)(e(2) | e(1)
1 , a

(1)
2 , x1) = EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e
(2)
2 , a

(1)
2 , a(2)o, X2 < ρF )

]
−EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e
(2)
1 , a

(1)
2 , a(2)o, X2 < ρF )

]
.

(7.23)

Thus, given the inspection outcome at t1 as X1 = x1, the optimal inspection action at t2 is

determined as

e(2)o = arg max
e(2)

ENGS(2)(e(2) | e(1)
1 , a

(1)
2 , x1). (7.24)

The consequences of inspection and replacement options are summarized in the upper half (e(1) =

e1 case) of Tables 7.1 and 7.2.

7.3.4 Pre-posterior Analysis: Inspection and Maintenance at t1

Given the posterior expected cost for each possible X1, we take an expectation of the posterior

cost with respect to X1. The expected cost arises between t1 and t3, with the optimal action
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derived as

min
a(1)

EZ4

[
C(a1,Z4 | e(1)

1 , e(2)o, a
(1)
2 , a(2)o)

]
= min

a(1)

(
CP ,EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e(2)o, a
(1)
2 , a(2)o, X2 < ρF )

]
F∆X12(ρF − x1)

+CF (1− F∆X12(ρF − x1))) , (7.25)

where EZ4|X2<ρF

[
C(a1,Z4 | e(1)

1 , e(2)o, a
(1)
2 , a(2)o, X2 < ρF )

]
is the expected cost with e(2)o and

a(2)o, given e
(1)
1 . The pre-posterior cost is calculated as

Cprepost = EX1

[
min
a(1)

EZ4

[
C(a1,Z4 | e(1)

1 , e(2)o, a
(1)
2 , a(2)o)

]]
. (7.26)

By calculating a gap between the two expected optimal costs, we can derive the ENGS(1), which

is the net benefit of inspection at t1, for this single-component problem:

ENGS(1) = Cprior − Cprepost. (7.27)

The consequences of inspection and replacement options are summarized in the upper half (e(1) =

e1 case) of Tables 7.3 and 7.4.

7.3.5 Computational Algorithm

Same as the Chapter 6, the PMF method is applied to calculating the expected pre-posterior cost

for the two-inspection problem. The algorithm for the two-inspection problem with the PMF

method is described as Algorithms 13.
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Algorithm 13 Two-inspection single-component problem with PMF method

Discretize the field of X1

for each xdisc1,j in J, do

Calculate fXdisc(xdisc1,j )
Discretize the field of ∆X12

# For replacement decision at t2 given e(2) = e1

for each ∆xdisc12,i in I, do

Calculate f(∆xdisc12,i )
Discretize the field of X3

Calculate an expected probability of failure, EM|xdisc1,j ,∆xdisc12,i

[
1− F∆X23(ρF − xdisc1,j −∆xdisc12,i )

]
,

using f(∆x23 | x1,j ,∆x
disc
12,i )

Calculate an expected cost of taking a2, CFEM|xdisc1,j ,∆xdisc12,i

[
1− F∆X23(ρF − xdisc1,j −∆xdisc12,i )

]
Determine a(2)o by comparing the expected costs of taking a1 and a2,

given xdisc1,j and ∆xdisc12,i

end for
Calculate E∆X12

[
mina(2) EZ4|xdisc1,j ,∆x12

[
C(a1,Z4 | e(1)

1 , e
(2)
1 , xdisc1,j ,∆x12)

]]
≈
∑
i∈I mina(2) EZ4|xdisc1,j ,∆xdisc12,i

[
C(a1,Z4 | e(1)

1 , e
(2)
1 , xdisc1,j ,∆x

disc
12,i )

]
f(∆xdisc12,i )

# For replacement decision at t2 given e(2) = e2

Discretize the field of X3

Calculate an expected probability of failure,
E
M|xdisc

1,j
[F∆X12

(ρF−xdisc1,j )−F∆X13
(ρF−xdisc1,j )]

E
M|xdisc

1,j
[F∆X12

(ρF−xdisc1,j )]
,

using f(∆x12 | x1,j) and f(∆x13 | x1,j)

Calculate an expected cost of taking a2, CF
E
M|xdisc

1,j
[F∆X12

(ρF−xdisc1,j )−F∆X13
(ρF−xdisc1,j )]

E
M|xdisc

1,j
[F∆X12

(ρF−xdisc1,j )]

Determine a(2)o by comparing the expected costs of taking a1 and a2, given xdisc1,j

# For inspection decision at t2
Determine e(2)o by comparing the expected costs of taking e1 and e2, given xdisc1,j

end for
# For replacement decision at t1
Calculate an expected cost of taking a2, CFEM|xdisc1,j

[
1− F∆X12(ρF − xdisc1,j )

]
+EM|xdisc1,j

[
F∆X12(ρF − xdisc1,j )

]
EZ4|xdisc1,j

[
C(a1,Z4 | e(1)

1 , e(2)o, a(2)o, xdisc1,j )
]

Determine a(1)o by comparing the expected costs of taking a1 and a2, given xdisc1,j

# For expected pre-posterior cost calculation
Calculate EX1

[
mina(1) EZ4|x1

[
C(a1,Z4 | e(1)

1 , e(2)o, a(2)o, x1)
]]

≈
∑
j∈J EX1

[
mina(1) EZ4|xdisc1,j

[
C(a1,Z4 | e(1)

1 , e
(2)
1 , xdisc1,j )

]]
fXdisc(xdisc1,j )
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7.3.6 Numerical Example

We demonstrate the VoI-based approach using an example in which we impose several initial

settings: CF = 100, CP = 10, CI = 3, t1 = 25, t1 = 27, t3 = 30, 1/ν2 = 9, and ρF = 3.0. These

settings represent the maintenance problem of a feeder channel in the CANDU 600. Based on

observed data from the feeder channels, a parameter uncertainty for µ is set as a random variable,

whose prior distribution is given as Iga (µ; 1102, 97.84). With the PMF method, Equation (7.27)

is numerically solved.

The ENGS is derived as a negative value, −0.154, which means that the optimal inspection

is e2, “do not inspect,” at t1. Consequently, the optimal action at t1 and inspection at t2 are

determined as a(1)o = a2 and e(2)o = e1, respectively. If the inspection outcome is less than 2.65,

the optimal action at t2 is a2; otherwise a(2)o = a1.

Influence of Re-inspection at t2

Although at t1 operators should not inspect the component, the decision-making after taking e
(1)
1

is analysed to identify the priority of re-inspection at t2. The ENGS(2) given e
(1)
1 becomes positive

only if the observation outcome at t1 is between 2.42 and 2.5, and the maximum ENGS(2) is 2.65,

obtained for the case of x1 = 2.45. The ENGS(2) without inspection at t1 (given e
(1)
2 ) is calculated

as 1.73, which represents the ENGS at t2 for inspection of an as-yet un-inspected component. The

re-inspection priority for an inspected component becomes higher than the first inspection for

an un-inspected component only if 2.44 < x1 < 2.47, which occurs with a probability of 2.55 %.

Therefore, the influence of re-inspection at t2 on the whole decision-making problem is concluded

to be limited.
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7.4 Multiple-Component Problem

This section expands the model proposed in Section 7.3 to an N -component system problem.

7.4.1 Additional Assumptions

In addition to the assumptions introduced in Section 7.3, several others are adopted in the

problem:

• Inspected components at t1 will not be re-inspected at t2;

• An upper limit for the inspection sample size exists;

• The sum of the observed degradation level, Sn, is conditionally independent on each

component’s degradation level, X(t);

The first assumption is supported by the numerical results of the single-component problem

in Section 7.3.6. The numerical analysis indicates that only 8.2 % of previously inspected

components have higher priority than un-inspected components, so that the first assumption

becomes reasonable in light of the second assumption by which operators can inspect only the

components with high priority. The second assumption reflects the reality of operations where

full-inspection is not feasible because of limited resources.

For simplification, Sn is derived by using the PDF that is conditionally independent on X

instead of calculating Sn = Sn−1 +X. This approximation becomes reasonable when the sample

size is large enough. Table 7.5 shows the averages and variances of Sn and Sn−1 + x1 when

x1 = 2.5 is given. These two distributions are close enough; the Kullback-Leibler divergence

and the histogram intersection, which are indices showing the difference (similarity) between

distributions, are calculated at 0.0528 and 87.1 %, respectively. Note that the Kullback-Leibler
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Table 7.5: Statistics for Sn and Sn−1 + x1

Sn Sn−1 + x1

Average 22.68 22.91
Variance 0.67 0.52

divergence was first introduced by Kullback and Leibler (1951) and has been used to evaluate

how much one distribution differs from another distribution. For more detail, see Appendix C.

7.4.2 Random Variables

Let us set the vectors of variables for the whole system, U =
(
S(1), S(2)

)
, and variables for a

specific component, W = (X1, X2, X3). The random variables that affect the total expected cost

are summarized as a vector, Z5 = (M,U ,W ). The PDFs for X1, X2, and X3 with only the prior

information are the same as the PDFs in Section 7.3.1. The PDFs for S(1) and S(2), respectively

given n(2) and n(2), are

fS(1)(s(1) | µ) = ga(s(1);n(1)t1/ν
2, 1/µν2), (7.28)

fS(2)(s(2) | µ, s(1)) = ga(s(2);n(2)t2/ν
2, 1/µν2). (7.29)

With the prior distribution of µ, the joint distribution of S(1), X1 and µ is formulated as

fX1,S(1),M (x1, s
(1), µ) = fX1(x1 | µ)fS(1)(s(1) | µ)fM (µ). (7.30)
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The terms including µ can be summarized as an inverse-gamma distribution,

Iga
(
µ;α+ (n(1)+1)t1

ν2 , β + s(1)+x1
ν2

)
, so that Equation 7.30 can be modified as

fX1,S(1),M (x1, s
(1), µ) =

Γ(α+ (n(1)+1)t1
ν2 )

Γ( t1
ν2 )Γ(n

(1)t1
ν2 )Γ(α)

(
x1
ν2

) t1
ν2

(
s(1)

ν2

)n(1)t1
ν2

βα

x1s(1)
(
β + x1+s(1)

ν2

)α+
(n(1)+1)t1

ν2

·Iga

(
µ;α+

(n(1) + 1)t1
ν2

, β +
s(1) + x1

ν2

)
. (7.31)

Thus, the marginalized distribution of S(1) and X1 with respect to µ is

fX1,S(1)(x1, s
(1)) =

∫ ∞
0

fX1,S(1),M (x1, s
(1), µ)dµ

=
Γ(α+ (n(1)+1)t1

ν2 )

Γ( t1
ν2 )Γ(n

(1)t1
ν2 )Γ(α)

(
x1
ν2

) t1
ν2

(
s(1)

ν2

)n(1)t1
ν2

βα

x1s(1)
(
β + x1+s(1)

ν2

)α+
(n(1)+1)t1

ν2

. (7.32)

After the observation of S(1) = s(1), the posterior distribution of µ becomes

fM (µ | s(1)) = Iga

(
µ;α+

n(1)t1
ν2

, β +
s(1)

ν2

)
. (7.33)
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With the posterior distribution, the PDFs of X2 and S(2) can be derived as

fX2(x2 | s(1)) =

∫ ∞
0

fX2(x2 | µ)fM (µ | s(1))dµ

=
Γ(α+ n(1)t1+t2

ν2 )

Γ( t2
ν2 )Γ(α+ n(1)t1

ν2 )

(
x2
ν2

) t2
ν2

(
β + s(1)

ν2

)α+
n(1)t1
ν2

x2

(
β + s(1)+x2

ν2

)α+
n(1)t1+t2

ν2

, (7.34)

fS(2)(s(2) | s(1)) =

∫ ∞
0

fS(2)(s(2) | µ)fM (µ | s(1))dµ

=
Γ(α+ n(1)t1+n(2)t2

ν2 )

Γ(n
(2)t2
ν2 )Γ(α+ n(1)t1

ν2 )

(
s(2)

ν2

)n(2)t2
ν2

(
β + s(1)

ν2

)α+
n(1)t1
ν2

s(2)
(
β + s(1)+s(2)

ν2

)α+
n(1)t1+n(2)t2

ν2

, (7.35)

and similarly, the joint distribution of X2 and S(2), given S(1) = s(1), is

fX2,S(2)|S(1)(x2, s
(2) | s(1))

=

∫ ∞
0

fX2(x2 | µ)fS(2)(s(2) | µ)fM (µ | s(1))dµ

=
Γ(α+ n(1)t1+(n(2)+1)t2

ν2 )

Γ( t2
ν2 )Γ(n

(2)t2
ν2 )Γ(α+ n(1)t1

ν2 )

(
x2
ν2

) t2
ν2

(
s(2)

ν2

)n(2)t2
ν2

(
β + s(1)

ν2

)α+
n(1)t1
ν2

x2s(2)
(
β + s(1)+x2+s(2)

ν2

)α+
n(1)t1+(n(2)+1)t2

ν2

. (7.36)

Once operators observe s(1) and s(2), the PDF of µ is further updated as

fM (µ | s(1), s(2)) = Iga

(
µ;α+

n(1)t1 + n(2)t2
ν2

, β +
s(1) + s(2)

ν2

)
. (7.37)

The PDF of X3, which will be used for calculating the probability of failure between t2 and t3, is
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derived as follows:

fX3|S(1),S(2)(x3 | s(1), s(2)) =

∫ ∞
0

fX3(x3 | µ)fM (µ | s(1), s(2))dµ

=
Γ(α+ n(1)t1+n(2)t2+t3

ν2 )

Γ( t3
ν2 )Γ(α+ n(1)t1+n(2)t2

ν2 )

(
x3
ν2

) t3
ν2

(
β + s(1)+s(2)

ν2

)α+
n(1)t1+n(2)t2

ν2

x3

(
β + s(1)+s(2)

ν2

)α+
n(1)t1+n(2)t2+t3

ν2

(7.38)

7.4.3 Baseline Case: No Inspection at t1

The total cost depends on inspection and replacement actions, a2 = (e(1), e(2), n(1), n(2), a(1), a(2)),

and random variables, Z5 = (M,U ,W ). As in the single-component problem, the optimization

analysis without the first sampling inspection is actually the same as the pre-posterior analysis

in Section 6.3, except for the shift of the time horizon and the additional maintenance decision

at t1. In this section, the expected cost without any inspection is first introduced, and the case

with sampling inspection of n(2) components is analysed for both un-inspected and inspected

components.

No Inspection at Either t1 or t2

If operators have no observation outcome for either t1 or t2, a parameter uncertainty cannot be

updated. Thus, the prior distribution is used for calculating expected cost. The expected optimal

cost with no inspection at either t1 or t2 is calculated:

min
a(2)

EZ5|X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , n(1) = 0, n(2) = 0, a

(1)
2 )
]

= min
a(2)

(
CP , CF

EM [FX2(ρF )− FX3(ρF )]

EM [FX2(ρF )]

)
. (7.39)
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Un-inspected Components at t2

Suppose operators inspect n(2) components at t2 and obtain a sum of the inspected degradation

level at s(2). The optimal expected cost of a component with no inspection at either t1 or t2 is

calculated thus:

min
a(2)

EZ5|S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , n(1) = 0, n(2), a

(1)
2 , s(2))

]
= min

a(2)

(
CP , CF

EM |S(2) [FX2(ρF )− FX3(ρF )]

EM [FX2(ρF )]

)
. (7.40)

The expected pre-posterior cost becomes

ES(2)

[
min
a(2)

EZ5|S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , n(1) = 0, n(2), a

(1)
2 , s(2))

]]
= ES(2)

[
min
a(2)

(
CP , CF

EM |S(2) [FX2(ρF )− FX3(ρF )]

EM [FX2(ρF )]

)]
. (7.41)

Inspected Components at t2

The expected cost of a component with inspection at t2, given X2 = x2 and S(2) = s(2), is

min
a(2)

EZ5|X2,S(2)

[
C(a2,Z5 | e(1)

2 , e
(2)
1 , n(1) = 0, n(2), a

(1)
2 , x2, s

(2))
]

= CI + min
a(2)

(
CP , CFEM |S(2) [1− F∆X23(ρF − x2)]

)
(7.42)

The expected cost unconditional on X2 and S(2) becomes

EX2,S(2)|X2<ρF

[
min
a(2)

EZ5|X2,S(2)

[
C(a2,Z5 | e(1)

2 , e
(2)
1 , n(1) = 0, n(2), a

(1)
2 , x2)

]]
= CI + ES(2),X2|X2<ρF

[
min
a(2)

(
CP , CFEM |S(2) [1− F∆X23(ρF − x2)]

)]
, (7.43)
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Table 7.6: Costs arising between t2 and t3 given n(1) = 0, a(1) = a2, and X2 < ρF : Prior analysis
n(2) s(2) e(2) x2 a(2) State Cost Probability

n(2) X e1 X a1 CI + CP 1
a2 Fail CI + CF EM |S(2) [1− F∆X23(ρF − x2)]

Survive CI EM |S(2) [F∆X23(ρF − x2)]

e2 × a1 CP 1

a2 Fail CF
E
M|S(2) [FX2

(ρF )−FX3
(ρF )]

EM [FX2
(ρF )]

Survive 0
E
M|S(2) [FX3

(ρF )]
EM [FX2

(ρF )]
0 × e2 × a1 CP 1

a2 Fail CF
EM [FX2

(ρF )−FX3
(ρF )]

EM [FX2
(ρF )]

Survive 0
EM [FX3

(ρF )]
EM [FX2

(ρF )]

Note that this expected optimal cost is for a case in which the component will not fail before t2,

a case whose probability is FX2(ρF ). The consequences of inspection and replacement options

are summarized in Tables 7.6 and 7.7.

Optimal Inspection at t2

Based on the derived expected costs, the expected cost for each inspection option e(2) is derived

as in Table 7.8. Thus, the ENGS(2) is derived as follows:

ENGS(2)(n(2) | n(1) = 0, a
(1)
2 )

= N min
a(2)

EZ5|X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , n(1) = 0, n(2) = 0, a

(1))
2

]
−(N − n(2))ES(2)

[
min
a(2)

EZ5|S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , n(1) = 0, n(2), a

(1)
2 , s(2))

]]
−n(2)EX2,S(2)|X2<ρF

[
min
a(2)

EZ5|X2,S(2)

[
C(a2,Z5 | e(1)

2 , e
(2)
1 , n(1) = 0, n(2), a

(1)
2 , x2)

]]
.(7.44)
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Table 7.7: Costs arising between t1 and t3 given n(1) = 0, a(1) = a2, and X2 < ρF : Prior analysis

n(2) s(2) e(2) x2 a(2) EZ5|X2<ρF

[
C(a2,Z5 | a(1)

2 , X2 < ρF )
]

n(2) X e1 X a1 CI + CP
a2 CI + CFEM |S(2) [1− F∆X23(ρF − x2)]

e2 × a1 CP

a2 CF
E
M|S(2) [FX2

(ρF )−FX3
(ρF )]

EM [FX2
(ρF )]

0 × e2 × a1 CP

a2 CF
EM [FX2

(ρF )−FX3
(ρF )]

EM [FX2
(ρF )]

Table 7.8: Total costs for inspected and un-inspected components: Prior analysis

n(2) s(2) e(2) x2 EZ5|X2<ρF

[
C(a2,Z5 | a(1)

2 , a(2)o, X2 < ρF )
]

n(2) X e1 X n(2)
{
CI + ES(2),X2|X2<ρF

[
mina(2)

(
CP , CFEM|S(2) [1− F∆X23(ρF − x2)]

)]}
e2 × (N − n(2))ES(2)

[
mina(2)

(
CP , CF

E
M|S(2) [FX2

(ρF )−FX3
(ρF )]

EM [FX2
(ρF )]

)]
0 × e2 × N mina(2)

(
CP , CF

EM [FX2
(ρF )−FX3

(ρF )]
EM [FX2

(ρF )]

)

The optimal inspection action at t2 is determined as

n(2)o = arg max
n(2)

ENGS(2)(n(2) | n(1) = 0, a
(1)
2 ). (7.45)

The average cost with the optimal inspection at t2 is

EZ5

[
C(a2,Z5 | e(1)

2 , e(2)o, n(1) = 0, n(2)o, a
(1)
2 , a(2)o)

]
=

1

N

{
(N − n(2))ES(2)

[
min
a(2)

(
CP , CF

EM |S(2) [FX2(ρF )− FX3(ρF )]

EM [FX2(ρF )]

)]

+n(2)

{
CI + ES(2),X2|X2<ρF

[
min
a(2)

(
CP , CFEM |S(2) [1− F∆X23(ρF − x2)]

)]}}
. (7.46)

At the maintenance stage at t1, the operators choose an action between a1, replacement, and a2,
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no-action, with which the expected cost is lower than the cost with the other option. The “prior”

cost of the two-inspection problem is

Cprior = min
a(1)

(
CP , FX2(ρF )EZ5

[
C(a2,Z5 | e(1)

2 , e(2)o, n(1) = 0, n(2)o, a
(1)
2 , a(2)o)

]
+CF (1− FX2(ρF ))) . (7.47)

7.4.4 Posterior Analysis: Inspection and Maintenance at t2

Suppose that operators have obtained an outcome for a sampling inspection, s(1) and x1. The

operators will then choose the best action according to a comparison between the expected costs,

using updated information about M , X2, X3, and S(2). The consequences of all inspection and

action options are summarized in Tables 7.9, 7.10, and 7.11.

Un-inspected Components at Either t1 or t2

Even when operators are going to inspect n(1) and n(2) components at t1 and t2, respectively,

they still have N − n(1) − n(2) un-inspected components at either t1 or t2 if N > n(1) + n(2). The

optimal expected cost given a(1) = a2, e(1) = e2, e(2) = e2, and x2 < ρF , is calculated as

min
a(2)

EZ5|S(1),S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , a

(1)
2 , n(1), n(2), s(1), s(2))

]
= min

a(2)

(
CP , CF

EM |S(1),S(2) [FX2(ρF )− FX3(ρF )]

EM |S(1) [FX2(ρF )]

)
. (7.48)
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Inspected Components at t2 Only

For n(2) components, given a(1) = a2, e(1) = e2, e(2) = e1, and X2 = x2 < ρF , the optimal

expected cost is

min
a(2)

EZ5|S(1),S(2),X2

[
C(a2,Z5 | e(1)

2 , e
(2)
1 , a

(1)
2 , , n(1), n(2), s(1), s(2), x2)

]
=

(
CI + ES(2),X2|S(1),X2<ρF

[
min
a(2)

(CP , CFEM |S(1),S(2) [1− F∆X23(ρF − x2)]

])
. (7.49)

From Equations (7.48) and (7.49), the average of the optimal expected cost, given e(1) = e2,

is calculated as

EZ5|S(1),S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , a
(1)
2 , a(2)o, , n(1), n(2), s(1), s(2))

]
=

1

N − n(1)

{
(N − n(1) − n(2)) min

a(2)
EZ5|S(1),S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , a

(1)
2 , n(1), n(2), s(1), s(2))

]
+n(2) min

a(2)
EZ5|S(1),S(2),X2

[
C(a2,Z5 | e(1)

2 , e
(2)
1 , a

(1)
2 , , n(1), n(2), s(1), s(2), x2)

]}
. (7.50)

Inspected Components at t1 Only

For n(1) components, when a(1) = a2, e(1) = e1, e(2) = e2, and X2 = x2 < ρF are given, the

optimal expected cost is

min
a(2)

EZ5|X2

[
C(a2,Z5 | e(1)

1 , e
(2)
2 , a

(1)
2 , , n(1), n(2), s(1), s(2), x1)

]
= min

a(2)

(
CP , CF

EM |S(1),S(2) [F∆X12(ρF − x1)− F∆X13(ρF − x1)]

EM |S(1) [F∆X12(ρF − x1)]

)
(7.51)
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Inspection Decision at t2

In the two-inspection problem, the second inspection decision is included in the posterior analysis

part. Based on the derived expected costs, the ENGS(2) is derived as follows:

ENGS(2)(n(2) | n(1), a
(1)
2 )

= N min
a(2)

EZ5|S(1),X1,X2<ρF

[
C(a2,Z5 | e(1)

2 , e
(2)
2 , a

(1)
2 , )

]
−(N − n(1))EZ5|S(1),S(2),X2<ρF

[
C(a2,Z5 | e(1)

2 , a
(1)
2 , a(2)o, , n(1), n(2), s(1), s(2))

]
−n(1) min

a(2)
EZ5|X2

[
C(a2,Z5 | e(1)

1 , e
(2)
2 , a

(1)
2 , , n(1), n(2), s(1), s(2), x1)

]
. (7.52)

The optimal sample size at t2 is determined to be

n(2)o = arg max
n(2)

ENGS(2)(n(2) | n(1), a
(1)
2 , a(2)o). (7.53)
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7.4.5 Pre-posterior Analysis

In the pre-posterior analysis, the expected costs with respect to the two random variables, X1 and

S(1), are considered for both un-inspected and inspected components. The detailed consequence

of each option is shown in Tables 7.12 and 7.13.

The pre-posterior cost for an un-inspected component is calculated as

Cprepostun = min
a(1)

(
CP , CFEM |S(1) [1− FX2(ρF )]

+EM |S(1) [FX2(ρF )]EZ5|X2<ρF

[
C(a2,Z5 | e(1)

2 , n(2)o, a(2)o))
])

(7.54)

The pre-posterior cost for an inspected component is derived as

Cprepostinsp = min
a(2)

EZ5|X2<ρF

[
C(a2,Z5 | e(1)

2 , n(2)o, a(2)o, x1)
]
. (7.55)

By calculating a gap between the two expected optimal costs, we can derive the ENGS for

this single-component problem:

ENGS(1)(n(1)) = NCprior − (N − n(1))Cprepostun − n(1)Cprepostinsp . (7.56)

Finally, the optimal sample size at t1 is determined to be

n(1)o = arg max
n(1)

ENGS(1)(n(1)). (7.57)
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7.5 Numerical Example

We next demonstrate the VoI-based approach using an example in which we impose several

initial settings: N = 319, CF = 100, CP = 10, CI = 1, t1 = 25, t2 = 27, t3 = 30,

1/ν2 = 9, and ρF = 3.0. Note that the population size represents the number of un-inspected

components of a 380-component system. Let us assume that the prior distribution for µ is given

as Iga (µ; 1102, 97.84), derived from observed data. Let us set the options for inspection sample

size at 10, 20, 30, 40, and 50; the sample size of each inspection is limited to 50. The simulation

algorithms adopt the PMF method introduced in Chapter 6.

7.5.1 Illustration of Proposed Policy

Derived from the backward induction illustrated in Section 7.4, an optimal policy is proposed.

The best sample size at t1 is n(1)o = 40 with its ENGS of 67.77. The optimal action, a(1)o,

after inspection of 40 components, depends on the inspection’s outcome. Figure 7.2 illustrates

the optimal action for inspected or un-inspected components and its ranges of X1 and S(1). As

for the 279 un-inspected components, operators will replace them if the sum of the observed

degradation level is more than 96.0. For the 40 inspected components, operators will decide on

an action based on both X1 and S(1). At t2, the optimal inspection is determined relying on S(1).

If 90.5 < S(1) ≤ 96.0, the optimal sample size at t2 is 50; otherwise, no inspection is required.

The optimal action at t2, a(2), is derived based on random variables Z5, and operators determine

policy-a.
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Table 7.14: ENGS(1) of the two-inspection problem for each sample size
Sample size ENGS

10 51.98
20 58.25
30 59.67
40 59.99
50 59.65

Table 7.15: ENGS of one-inspection problem for each sample size at t1
Inspection n(1)o n(2)o Total expected cost Benefit of inspection

t1 and t2 40 0 or 50 1029.9 112.6
t1 20 0 1088.1 54.4
t2 0 30 1089.8 52.7

No inspection 0 0 1142.5 —

7.5.2 Comparison with One-Inspection Problem

The results of the two-inspection problem are compared with those for a one- or no-inspection

problem, as summarized in Table 7.15. Note that the total expected costs are compared instead

of the ENGS, because the baseline of the analysis (prior analysis) of each problem is different.

The results suggest several insights:

• Inspection at t1 is more effective than one at t2 if only one inspection is allowed;

• The benefit of inspection at both t1 and t2 is more than the sum of the benefits of separate

inspections at t1 and t2;

• Synergy between inspection at t1 and t2 is indicated.

Note that the third insight is obvious because the second insight is observed, although the

marginal influence of reducing parameter uncertainty decreases as the total sample size, n(1)+n(2),

increases.
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Figure 7.2: Optimal action, a(1)o, for each combination of observation outcomes of X1 and S(1)

given n(1)o = 40

7.5.3 Sensitivity Analysis

With the same initial settings except for a focusing parameter, the optimal sample sizes are

derived plus the sensitivities of CI , CP , CF , and the parameters of prior distribution, (α, β), are

discussed. To illustrate the influence of the second inspection at t2, the sensitivity analysis for

the two-inspection problem is compared with the analysis for the one-inspection (t1) problem.

Note that the results of a two-inspection problem always show lower expected costs than the

results of a one-inspection problem, because a one-inspection problem is just a special case of a

two-inspection problem.
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Figure 7.3: Optimal sample size with different CI (CP = 10 and CF = 100)

Impact of Cost Balance

Figure 7.3 illustrates the ENGSs with each CI . Although the general trend is similar to the results

of the one-inspection problem shown in Figure 6.7, the detailed behaviour of the ENGS provides

several insights into the difference between the two problems. In the cases where operators have

a chance to inspect at t2, a moderate inspection option (10 ≤ n ≤ 40) becomes optimal when

3 ≥ CI ≥ 10, which is slightly wider than the range calculated with the one-inspection at t1 case,

3 ≥ CI ≥ 8.

The influence of the replacement cost, CP , and the failure cost, CF , are summarized in

Figures 7.4 and 7.5, respectively. For the sensitivity analysis on CP , the optimal sample size

peaks at around CP = 10 and decreases as CP increases. The moderate inspection options

(n(1) = 10, 20, 30 or 40) become optimal when CP is between 5 and 35. In contrast to the results

for CP , the optimal sample size monotonically and non-linearly increases from 0 to 50 as the CF

changes from 50 to 110. In the two-inspection case, the range of CP or CF , where a moderate
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Figure 7.4: Optimal sample size with different CP (CI = 3 and CF = 100)

inspection option (10 ≤ n ≤ 40) becomes optimal, is wider than their range in the one-inspection

at t1 case.

Impact of Prior Information

The influence of the amount of prior information, which represents the precision of prior

distribution, is analysed as in Figure 7.6. With the fixed ratio of α/β, α and β are changed

from 10 % to 250 % of the original values, (α, β) = (1102, 97.8). Similar to the results of the

one-inspection problem, the less prior information operators have, the more the sample size is

optimal, although the optimal sample size can reach only 50, as that is the upper limit possible.

The two-inspection case has positive ENGS even if the operators have at most 2.4 times of the

original prior information, whereas the one-inspection case has positive ENGS when the prior

information is equal to or less than 1.6 times the original.
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Figure 7.5: Optimal sample size with different CF (CI = 3 and CP = 10)

7.5.4 Discussion

Major insights from the numerical-analysis results are as follows:

• The chance of a second inspection enhances the value of inspection at t1;

• Synergy between inspections at t1 and t2 is indicated;

• Regardless of the large population size, moderate inspection options, n(1) = 10, 20, 30, or

40, tend to be optimal within a wider range of CI , CP , and CF .

These insights indicate several findings for a general multiple-inspection problem when they

are combined with the insights in Section 6.5.2. When the inspection cost is low enough to obtain

benefit from reducing only aleatory uncertainty, at each inspection outage, operators should

inspect samples of maximum size until all components have been inspected. Once all un-inspected

components are inspected, the operators need to calculate the ENGS for each component, ignoring

parameter uncertainties, and inspect only the components that have positive ENGS. When the
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Figure 7.6: Optimal sample size with different amounts of prior information (CI = 3, CP = 10,
and CF = 100)

inspection cost is not low enough, the operators need to calculate ENGS for the overall components

and select the appropriate sample size for each inspection outage.

7.6 Generalized Multiple-Inspection Problem

This section generalizes the VoI-based SSD method to multiple-inspection problems as dynamic

programming equations.

7.6.1 Maintenance Stage

For each action, a, the cost is expected to rise between ti and ti+1, and is determined by four

parameters: T
(i)
insp, S

(i)
insp, xlast, and ∆tno. T

(i)
insp denotes the total inspection interval and is defined

as T
(i)
insp =

∑N
j=1 tj,insp; S

(i)
insp is the accumulation of all inspected deteriorations and is defined as

S
(i)
insp =

∑N
j=1 xj,insp; xlast is the latest observed degradation level of a single component; and ∆tno
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denotes the time difference between ti+1 and the last inspection time, tlast. Note that the first two

parameters, T
(i)
insp and S

(i)
insp, update the estimation for the parameter of the degradation process,

µ, and the last two, xlast and ∆tno, affect the probability of failure in an inspection/maintenance

interval. Let us set parameters for parameter updating, Θ(i) =
(
T

(i)
insp, S

(i)
insp

)
, and parameters for

the inspection outcome of a component, θ
(i)
j =

(
x

(i)
j,last,∆t

(i)
j,no

)
. Suppose the optimal expected

cost for each component at ti+1 is given as C
(i+1)
j

(
a(i+1)o | e(i+1)o, n(i+1)o,Θ(i+1), θ

(i+1)
j

)
. The

optimal expected cost is calculated as follows:

C
(i)
j

(
a(i)o | e(i), n(i),Θ(i), θ

(i)
j

)
= min

a(i)

{
CP , CFEM |Θ(i)

[
1− F

X(∆t
(i+1)
j,no )

(ρF − x(i)
j,last)

]
+C

(i+1)
j

(
a(i+1)o | e(i+1)o, n(i+1)o,Θ(i+1), θ

(i+1)
j

)
EM |Θ(i)

[
F
X(∆t

(i+1)
j,no )

(ρF − x(i)
j,last)

]}
.

(7.58)

7.6.2 Inspection Stage

In the inspection stage, we accumulate the expected cost for individual components and obtain

the optimal sample size, n(i). Inspection outcomes update Θ(i−1) and θ
(i−1)
j to Θ(i) and θ

(i)
j ,

respectively; if the jth component is not inspected, θ
(i)
j = θ

(i−1)
j , and if no component is inspected,

Θ(i) = Θ(i−1). The expected prior cost is

C
(i)
prior = min

a(i)

{
CP , CFEM |Θ(i−1)

[
1− F

X(∆t
(i+1)
j,no )

(ρF − x(i−1)
j,last)

]
+C

(i+1)
j

(
a(i+1)o | e(i+1)o, n(i+1)o, n(i) = 0,Θ(i+1), θ

(i+1)
j

)
EM |Θ(i−1)

[
F
X(∆t

(i+1)
j,no )

(ρF − x(i−1)
j,last)

]}
.

(7.59)
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The expected pre-posterior cost for an un-inspected component is

C(i)
un = Eθ(i),Θ(i),M |Θ(i−1)

[
C

(i)
j

(
a(i)o | e(i)

2 , n(i),Θ(i), θ
(i)
j

)]
(7.60)

The expected pre-posterior cost for an inspected component is

C
(i)
insp = CI + Eθ(i),Θ(i),M |Θ(i−1)

[
C

(i)
j

(
a(i)o | e(i)

1 , n(i),Θ(i), θ
(i)
j

)]
(7.61)

Thus, the ENGS(i) is derived as follows:

ENGS(i)(n(i)) = NC
(i)
prior − (N − n(i))C(i)

un − n(i)C
(i)
insp. (7.62)

Finally, the optimal sample size, n(i)o, is determined as follows:

n(i)o = arg max
n(i)

ENGS(i)(n(i)) (7.63)

Note that the optimal expected cost for each component at ti can be derived as

C
(i)
j

(
a(i)o | e(i)o, n(i)o,Θ(i), θ

(i)
j

)
with the obtained n(i)o. Until the time horizon becomes t1,

the backward process is repeated. Once the process reaches t1, the most cost-effective

inspection/maintenance policy is proposed over the whole decision-making problem.

7.7 Summary

A statistical SSD method for system-level condition-based maintenance has been developed for

a two-inspection problem. This study has introduced how the VoI approach can be applied to

a multiple-inspection problem. The two-inspection problem is understood in the context of a
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general sequential decision problem with dynamic programming that indicates how to solve the

problem with backward induction. The analysis process has been formulated in a two-inspection

problem, and used to derive the definition of the ENGS. Numerical analysis with the data from

a real operating situation illustrates how the results support operators in their decision-making.

Based on the method for a two-inspection problem, the VoI-based SSD method is theoretically

generalized to a multiple-inspection problem.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

Based on the value of information (VoI) concept, this thesis has formulated and developed

statistical sample size determination (SSD) methods for the maintenance of engineering

components that follow stochastic degradation process models. These methods provide an

inspection policy in a context of condition-based maintenance by defining maintenance problems

as sequential decision-making problems. The VoI-based methods are applied to two degradation

models: the random rate model and the gamma process model.

Various existing SSD methods are summarized, and their advantages and disadvantages are

discussed. Based on the classification, existing standards for engineering-components are then

categorized, and the rationale behind each standard is described. The categorization reveals

that the existing standards for SSD rely on deterministic criteria that are not theoretically

supported, or the criteria obtained through traditional SSD method: the hypothesis-testing

approach. This study compares the VoI-based method with the hypothesis-testing method by

formulating a situation in which traditional hypothesis-testing approaches have been used as a

Bayesian sequential-decision making problem. The stated problem uses a binomial component’s
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state, in what can be classified as a special case of the random rate model. The superiority of

the VoI-based approach is highlighted through conceptual, theoretical, and numerical analyses.

The VoI-based SSD method is applied to a degradation model, the random rate model.

Through formulating the VoI-based SSD method and demonstrating the model in a numerical

example, the advantages and the limitations of the random rate model are discussed.

Adding the gamma process to extend the model to condition-based maintenances enables

the VoI-based SSD method to be used in realistic maintenance and inspection problems. The

model mathematically describes how temporal and parameter uncertainties of the degradation

process affect VoI-based analysis. Because of the additivity characteristics of the gamma process,

the VoI-based SSD method can be formulated simply. To reduce computational costs, two

computational calculation techniques are introduced and applied to the proposed method. Their

costs and accuracies are compared, and the more effective method, the probability mass function

(PMF) approach, is used in the numerical analysis. An application to a real degrading system

demonstrates the effectiveness of the approach. The sensitivity of each parameter and the

contributions of the reducing parameter and temporal uncertainties are analysed and discussed.

For more-generalized condition-based maintenance applications, the thesis further extends the

model to a multiple-inspection problem by generalizing the model as a dynamic programming

problem. A problem with data from a real operating system is numerically analysed with a

two-inspection problem and shows how the first inspection subsequently affects maintenance and

second-inspection decisions. An optimal inspection and maintenance policy is proposed and

illustrated through the example.

The major insights found for sample size determination strategies are as follows:

• VoI-based SSD has advantages that can be shown qualitatively and quantitatively;
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• In most cases, a re-inspection has lower priority than a first-time-inspection;

• The optimal sample size is sensitive against parameters of cost and prior distribution;

• Reducing temporal uncertainty contributes to increasing ENGS, through the benefit from

inspected components;

• Reducing parameter uncertainty enhances ENGS, mostly from better estimations for

un-inspected components through parameter updating;

• The chance of a second inspection enhances the value of the first inspection.

8.2 Recommendations for Further Research

This study has several opportunities for expansion that warrant further research. First, latent

failure mode should be considered, to make the model applicable to several other fields, where not

only physical failures but also standard violations are important in the maintenance of operating

systems. Under stringent standards and regulations of operation, operators are actually concerned

about the penalty of finding latent failure in components, as this failure may raise concerns about

critical system failure, even though such components may still continue to work safely.

Second, the generalized model for multiple-inspection problems requires computationally

more-efficient techniques for numerical calculations than the proposed method. The maximum

number of time horizons of the current model has been roughly estimated as four, if the SSD

method for the four-inspection problem could be modelled as a simple extension of the current

model for a two-inspection problem. The challenge in solving the problem is to reduce the

computational cost of calculating high-dimensional integrations.

Third, cost functions should be investigated for more-realistic applications. In this study, the

costs of inspection, replacement, and failure are treated as fixed values for any situation; however,
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these costs can be functions of sample size, population size, or time. Moreover, if a system failure

may increase health risks to workers or residents around a site, human lives need to be estimated

in monetary terms to consider the cost-risk trade-off. The well-known value for human life is the

“value of statistical life (VSL),” which is calculated from people’s willingness to pay (WTP) to

avoid risk.
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Appendix A

Derivation of the EVSI and the ENGS:

Chapter 3

This section shows how to derive EV SI and ENGS in Equations (3.16) and (3.18), respectively.

The calculation for expected pre-posterior cost, shown in Equation (3.14), becomes

EW
[
EX|W [C(ao(w), X | n,w)]

]
= EW

[
min
a

{
EX|W [C(a,X | n,w)]

}]
=

hn∑
w=0

[
(N − n)x̄′′(n,w)CF + wCP

]
· fW (w | n)

+

n∑
w=hn+1

[
(N − n)xb(CF − CP ) + (N − n)x̄′′(n,w)CP + wCP

]
· fW (w | n) (A.1)

Thus, the EVSI is derived as follows:

EV SI(n) = mina[EX [C(a,X)]]− EW
[
mina

{
EX|W [C(a,X)]

}]
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=



Nxb(CF − CP ) +Nx̄CP − w̄CP −
∑hn

w=0 [(N − n)x̄′′(n,w)CF ] · fW (w | n) if x̄ > xb

−
∑n

w=hn+1 [(N − n)xb(CF − CP ) + (N − n)x̄′′(n,w)CP ] · fW (w | n)

Nx̄CF − w̄CP −
∑hn

w=0 [(N − n)x̄′′(n,w)CF ] · fW (w | n) if x̄ ≤ xb

−
∑n

w=hn+1 [(N − n)xb(CF − CP ) + (N − n)x̄′′(n,w)CP ] · fW (w | n),

=



[
N −

∑n
w=hn+1(N − n)fW (w | n)

]
xb(CF − CP )

+(N − n)x̄CP −
∑hn

w=0 [(N − n)x̄′′(n,w)CF ] · fW (w | n) if x̄ > xb

−
∑n

w=hn+1 [(N − n)x̄′′(n,w)CP ] · fW (w | n)

−
∑n

w=h+1 [(N − n)xb(CF − CP )] fW (w | n)

+(N − n)x̄CF + nx̄(CF − CP )

−
∑hn

w=0 [(N − n)x̄′′(n,w)CF ] · fW (w | n) if x̄ ≤ xb

−
∑n

w=hn+1 [(N − n)x̄′′(n,w)CP ] · fW (w | n),

=



[
N −

∑n
w=hn+1(N − n)fW (w | n)

]
xb(CF − CP )

−
∑hn

w=0 [(N − n)x̄′′(n,w)(CF − CP )] · fW (w | n) if x̄ > xb

−
∑n

w=hn+1(N − n)xb(CF − CP )fW (w | n) + nx̄(CF − CP )

+
∑n

w=hn+1 [(N − n)x̄′′(n,w)(CF − CP )] · fW (w | n) if x̄ ≤ xb,

(A.2)

where we use

w̄ = nx̄ (A.3)

x̄ =

20∑
i=1

xifX(xi) =

20∑
i=1

xi

n∑
w=0

fX,W (xi, w | n)

=

n∑
w=0

20∑
i=1

xifX|W (xi | n,w)fW (w | n). (A.4)
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The ENGS in Equation (3.18) is derived as follows:

ENGS (n)

= EVSI (n)− nCI = EVSI (n)− nxb(CF − CP )

=



[
1−

∑n
w=hn+1 fW (w | n)

]
(N − n)xb(CF − CP )

−
∑hn

w=0 [(N − n)x̄′′(n,w)(CF − CP )] · fW (w | n) if x̄ > xb

−
∑n

w=hn+1(N − n)xb(CF − CP )fW (w | n)

+n(x̄− xb)(CF − CP )

+
∑n

w=hn+1 [(N − n)x̄′′(n,w)(CF − CP )] · fW (w | n) if x̄ ≤ xb,

=


(N − n)(CF − CP )

∑hn
w=0 [xb − x̄′′(n,w)] · fW (w | n) if x̄ > xb

(N − n)(CF − CP )
∑n

w=hn+1 [x̄′′(n,w)− xb] · fW (w | n)

+n(CF − CP )(x̄− xb) if x̄ ≤ xb,

=

 (N − n)CI
∑hn

w=0 [1− x̄′′(n,w)/xb] · fW (w | n) if x̄ > xb

(N − n)CI
∑n

w=hn+1 [x̄′′(n,w)/xb − 1] · fW (w | n)− nCI(1− x̄/xb) if x̄ ≤ xb,
(A.5)

where we use

x̄−
n∑

w=hn+1

x̄′′(n,w)fW (w | n) =

hn∑
w=0

x̄′′(n,w)fW (w | n) (A.6)

1−
n∑

w=hn+1

fW (w | n) =

hn∑
w=0

fW (w | n). (A.7)
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Appendix B

Posterior Distribution: Chapter 6

The likelihood function of µ is

L(µ | x(1)
1 , x

(2)
1 , · · · , x(n)

1 ) =

n∏
j=1

fX(x
(j)
1 | µ)

=

(
1
µν2

)nt1
ν2(

Γ
(
t1
ν2

))n n∏
j=1

x
(j)
1

t1
ν2−1

exp

(
−
∑n

j=1 x
(j)
1

µν2

)
. (B.1)

The posterior distribution for X is calculated using Bayes’ rule.

fM (µ | x(1)
1 , x

(2)
1 , · · · , x(n)

1 ) =
L(µ | x(1)

1 , x
(2)
1 , · · · , x(n)

1 )fM (µ)∫∞
0 L(µ | x(1)

1 , x
(2)
1 , · · · , x(n)

1 )fM (µ)dµ

=

K
(

1
µ

)α+
nt1
ν2 +1

exp

(
− 1
µ

(
β +

∑n
j=1 x

(j)
1

ν2

))
K
∫∞

0

(
1
µ

)α+
nt1
ν2 +1

exp

(
− 1
µ

(
β +

∑n
j=1 x

(j)
1

ν2

))
dµ

196



=

(
1

µ

)α+
nt1
ν2 +1

exp

(
− 1

µ

(
β +

∑n
j=1 x

(j)
1

ν2

))

= Iga

(
µ;α+

nt1
ν2

, β +
Σn
j=1x

(j)
1

ν2

)
, (B.2)

where K is a normalization factor of the probability distribution and is not a function of µ, as it

is

K =

(
1
ν2

)nt1
ν2 βα(

Γ
(
t1
ν2

))n
Γ (α)

n∏
j=1

x
(j)
1

t1
ν2−1

. (B.3)

Because sn = Σn
j=1x

(j)
1 is the sufficient statistics, the posterior distribution can be simplified as

fM (µ | sn) = Iga

(
µ;α+

nt1
ν2

, β +
sn
ν2

)
. (B.4)

Thus, operators only need to consider the sum of the inspected n components’ conditions, sn, for

updating the PDF of the unknown parameter, µ.
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Appendix C

Indices for Difference between Two

Distributions

This appendix introduces two indices, the histogram intersection and the Kulback-Leibler

divergence, which can represent difference between two distributions, especially for discrete

distributions.

C.1 Histogram Intersection

The simplest method to illustrate the similarity between two distributions is the histogram

intersection (HI). Given histograms of the two distributions (or two PMFs), the HI is calculated

as follows:

HI =
∑
i

min(Q1(i), Q2(i)), (C.1)

where Qj(i) for j = 1, 2 is the probability mass for the ith interval. The index can take a value

between zero, which means no similarity, and one, which indicate that the two distribution is the

same.
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C.2 Kallback-Leibler Divergence

The Kullback-Leibler (KL) divergence was first introduced by Kullback and Leibler (1951) as

a directed divergence between two distributions and has been used to evaluate how much one

distribution is different from another distribution. The KL divergence is one of the statistical

distance measures, which are mostly not metrics and not have to be symmetric. The KL

divergence for two discrete distributions, Q1 and Q2, is defined as follows:

DKL(Q1 || Q2) =
∑
i

Q1(i) log

(
Q1(i)

Q2(i)

)
. (C.2)

Similarly, the KL divergence for two continuous distributions, q1(x) and q2(x), is defined as

DKL(q1(x) || q2(x)) =

∫ ∞
−∞

q1(x) log

(
q1(x)

q2(x)

)
dx. (C.3)

For more detailed properties of the KL divergence, see Kullback (1968).
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