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Abstract

Projecting onto irregular textured surfaces found on buildings, automobiles and theatre
stages calls for the development of radiometric and geometric compensation algorithms that
require no user intervention and compensate for the patterning and colourization of the
background surface. This process needs a projector–camera setup where the feedback from
the camera is used to learn the background’s geometric and radiometric properties. In
this thesis, radiometric compensation, which is used to correct for the background texture
distortion, is discussed in detail. Existing compensation frameworks assume no inter–
pixel coupling and develop an independent compensation model for each projector pixel.
This assumption is valid on background with uniform texture variation but fails at sharp
contrast differences leading to visible edge artifacts in the compensated image.

To overcome the edge artifacts, a novel radiometric compensation approach is presented
that directly learns the compensation model, rather than inverting a learned forward model.
That is, the proposed method uses spatially uniform camera images to learn the projector
images that successfully hide the background. The proposed approach can be used with
any existing radiometric compensation algorithm to improve its performance. Comparisons
with classical and state-of-the-art methods show the superiority of the proposed method
in terms of the perceived image quality and computational complexity.

The modified target image from the radiometric compensation algorithm can exceed
the limited dynamic range of the projector resulting in saturation artifacts in the compen-
sated image. Since the achievable range of luminance on the background surface with the
given projector is limited, the projector compensation should also consider the contents
of the target image along with the background properties while calculating the projector
image. A novel spatially optimized luminance modification approach is proposed using
human visual system properties to reduce the saturation artifacts. Here, the tolerance of
the human visual system is exploited to make perceptually less sensitive modifications to
the target image that in turn reduces the luminance demands from the projector. The pro-
posed spatial modification approach can be combined with any radiometric compensation
models to improve its performance. The simulated results of the proposed luminance mod-
ification are evaluated to show the improvement in perceptual performance. The inverse
approach combined with the spatial luminance modification concludes the proposed pro-
jector compensation, which enables the optimum compensated projection on an arbitrary
background surface.
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Chapter 1

Introduction

1.1 Motivation

Projector technology [37, 58, 30, 28] has been revolutionized in the last decade and it
continues to increase the achievable resolution and contrast ratio of modern projectors. The
power consumption and size of the projectors is also reducing dramatically [17] to make
the projectors more portable. The rapidly increasing availability of high-end portable
projectors has led to the increased use of three-dimensional objects, such as buildings,
automobiles, and artistic structures, as projection surfaces for high-definition displays.
Currently, projectors are used in every automobile show to highlight various features of
a car. Projectors are also used during ceremonies and in theaters to dynamically change
the perception of the scene on the stage. Niagara falls is regularly illuminated by the
high–end laser projectors to attract more visitors during holidays. Disney theme parks are
well known for using large scale projections as a part of their entertainment. On a smaller
scale, projection technology can be used with 3D objects to create non-intrusive virtual
reality experiences. Museums and art exhibitions have used this technology to restore the
appearance of degraded artistic structures. Also, the emergence of the pocket sized pico
projectors [17] has led to widespread use of projectors in households. Pico projectors are
an affordable option to achieve High–Definition theatre experience on the go. More and
more people are opting for the affordable high-end projectors, instead of a traditional LCD
screen, for media consumption.

The ubiquitous use of projectors in households is only limited by the unavailability
of projection screens. To obtain the stated resolution and contrast, a high quality pro-
jection screen is needed for the entire projection area. The currently available projection

1



(a) (b) (c)

(d) (e) (f)

Figure 1.1: Application of the projection technology by Christie Digital Systems in (a) 2018
Asian paralympic games, (b) illumination of Berlin palace, (c) theatre illumination, (d)
360-degree ship bridge simulator, (e) 3D projections and (f) to restore a decommissioned
plane1. The projector technology is successful in compensating for the 3D nature of the
underlying object. However, the texture of the surface is still causing visible artifacts in
the projection.

screens are substantial in size and are commonly expensive for household usage. Hence
there is a need for modern projectors to shift from using a traditional projection screen
to a nearby surface for projection. Using an arbitrary surface requires manual calibration
to correct for image distortions. For projection on non-planar and 3D objects, projec-
tors use geometric calibration to model the shape of the object and correct for structural
distortions. However, modern projectors fail to compensate for the background texture.
Existing approaches use high luminance projectors to mask the background texture, which
is expensive. Otherwise, manual calibration is needed to neutralize the distortions, which
consumes an enormous amount of time. Image processing techniques[47, 27] can be used
to automatically understand the surface characteristics and use it to modify the target
image such that un-distorted projections can be obtained on the surface. In this thesis,
we explore different image processing techniques which can be used to develop automatic
real–time projector compensation without human interference.

2



1.2 Problem Statement

Projector compensation is the process of achieving un–distorted image or video on a non-
planar and textured background. It involves correcting for the geometric and radiometric
distortions of the background. A projector–camera setup is used to understand the required
surface properties [47]. A geometric model is developed from the learned properties that
define the structure of the surface from the view point of the camera [53, 6, 31]. Geometric
calibration results in an un–distorted image on the background surface which is degraded by
the underlying texture of the surface. Radiometric compensation, which can correct for the
texture degradation, is developed by projecting and capturing a series of colored images and
using them to understand the surface’s texture properties [47, 27, 64]. The compensation
model, developed from the learned properties, modifies the intensities of the image with
respect to the background such that the modified image combines with the background
surface to present the desired image without any degradation. In case of a radiometrically
extreme background surface or a limited dynamic range projector, image enhancement
techniques [60, 26, 30] can be used as a part of projector compensation to reduce the
brightness demands on the projector and obtain an optimum projector performance.

Geometric calibration is a well studied problem and current state of the art models can
achieve sub-pixel accuracy from the camera viewpoint [63, 39]. Radiometric compensation
is developed on top of the given geometric calibration model. The current radiometric
framework uses a pixel–based approach, where a compensation function is developed for
each projector pixel. Each compensation model is developed independently and the frame-
work assumes no inference between adjacent pixels [47, 25]. This assumption works for
background surface with smooth texture variations but fails at the background edges with
sharp contrast difference [47].

The main aim of projector compensation is to reduce the perceptual difference between
the desired target image and the compensated image on the background surface. Since the
corrections are made with respect to the camera, the objective is to reduce the error between
the target image and the compensated camera image. Two types of errors are encountered
during compensation: the radiometric error, due to the incorrect learning/modelling of
the background properties, and the saturation error, because of the physical limitations of
the projector [28]. The projector compensation framework should be designed to minimize
both radiometric and saturation error. The objective of this thesis is to provide a robust
projector compensation framework, which can be used with any projector and camera

1Images are taken from Christie Digital Systems linkedin page:
https://www.linkedin.com/company/christie-digital-systems/

3



to provide the perceptually optimum projection of the desired image on any background
surface.

1.3 Thesis Contribution and Organization

The next chapter reviews the current literature on different components of the projector
compensation framework. State of the art models for the camera, projector and geo-
metric calibration are provided. Different radiometric compensation models are discussed
by categorizing them into the linear and non-linear model. Various image enhancement
techniques which are proposed for improving the perceptual performance of the projector
compensation are also discussed.

The projector–camera setup required for the compensation framework is discussed in
Chapter 3. The necessary camera and projector calibration to be performed as a part of
the experimental setup is elaborated. Since the camera forms the eye of the setup, the
influence of camera parameters on the performance of the compensation model is examined
in detail.

Chapter 4 discusses the assumptions of the existing radiometric compensation algo-
rithms. Notably, the assumption of no interference between pixels is examined in detail.
Experimental verification was provided by developing the same radiometric compensation
model with different calibration sets to prove that the assumption will lead to artifacts at
the background texture’s edge.

Inspired from the results of Chapter 4, a novel inverse framework is proposed in Chap-
ter 5, which can be used with any radiometric compensation algorithm to improve its per-
formance. The proposed framework inherently learns the inter–pixel dependencies without
an increase in computational complexity. The results of the inverse model are compared
with the linear and state of the art non-linear models to justify the improvement in per-
formance.

To reduce the brightness demands of the projector, a novel luminance modification ap-
proach is proposed in Chapter 6. Here, the modification is localized and spatially optimized
for the human visual system. This approach can be used with the proposed or existing
radiometric models to reduce artifacts due to device limitations. The combination of the
inverse model with the spatially optimized luminance modification concludes the proposed
projector compensation framework.

4



Chapter 2

Literature Review

2.1 Introduction

Radiometric compensation is the process of manipulating the incoming image to a projector
such that the projected image modulates with the background to provide the desired
appearance for an observer. This process utilizes a projector–camera system such that
the projector projects an image onto the background surface, and the camera provides
feedback in order to learn the geometric and radiometric properties of the surface. For a
given target image, the compensated projector image is obtained by modifying the target
image with respect to the learned properties. Projecting the compensated image gives the
appearance of a non-distorted target image on the surface.

Imaging systems, such as camera and projector, have an inherent non-linear response
while converting the digital intensity values to/from the scene irradiance. These responses
are modelled as the radiometric response function. This chapter starts by reviewing the
literature on the camera response function required for radiometric compensation. The ge-
ometric calibration needed to map the camera and projector image pixels are discussed in
Section 2.3. Existing radiometric compensation along with the state of the art algorithms
are discussed in detail. In conjunction with radiometric compensation, image enhance-
ment techniques are proposed in the literature to improve the perceptual quality of the
compensated image. In general, the proposed techniques are used to reduce the saturation
artifacts encountered due to the limited dynamic range of the projector.
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2.2 Camera and Projector Response Function

In most imaging systems [22], there is a non-linear relationship between the scene irradiance
reading and the digital intensity values. The non-linearity can be due to the inherent
gamma mapping in the device, analog/digital conversion, or introduced intentionally by the
manufacturer to enhance the visual quality. Computer vision applications model the non-
linearity as the response function of the device and uses it to establish linear relationship
between the intensity values and scene irradiance. Extensive research has been done in
the field of camera response functions [22, 24, 21, 23, 38, 21, 4, 33]. The most common
approach uses a set of images captured with varying exposure values to calculate the
camera response function [13, 41, 44]. Lin and Matsushita et al. [42] proposed to use
noise distribution in the image to find the required function. Lee et al. [35] proposed a
rank minimization framework to solve for the response function. Modern projectors have
the manual setting to change the inherent non-linearity. But for traditional projectors,
Grossberg et al. [25] proposed a framework to calculate the projector response function
along with the radiometric compensation model assuming camera response function is
known.

2.3 Geometric Calibration

After camera calibration with the radiometric response function, the geometric calibration
between the projector and camera should be obtained. The pixel correspondence from the
mapping is necessary to correlate the camera pixels to its corresponding projector pixels.
The geometric calibration is calculated for a fixed projector–camera setup. Structured
light patterns [53, 6, 31] are used to obtain geometric calibration for planar or non-planar
textured backgrounds. Salvi et al. [53] provides a comprehensive review of the existing geo-
metric calibration algorithms. Gray code structured light projection proposed by Inokuchi
et al. [31] uses a sequence of m binary coded image pattern as shown in Fig 2.1 with
hamming distance of one between images to encode 2m pixels. Each pixel in the projector
image is marked by the unique binary code and the captured camera image’s pixels are
decoded to find its corresponding projector pixel. Sansoni et al. [55] and Wiora et al. [63]
proposed to use a combination of gray code and phase shift coding to achieve sub-pixel
accuracy. The acquired geometric calibration between projector and camera is also used
to compensate for the geometric distortion caused by the background surface.

In order to support dynamic projector–camera setting, Park et al. [48] embedded the
structured light pattern with incoming projector images and simultaneously detected and
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(a) Projector images

(b) Camera images

Figure 2.1: Examples of gray scale structured light pattern. Every pixel in the projector
image is encoded using (a) the binary coded image sequence and (b) the camera image
pixel values are decoded to find the corresponding projector pixel.

corrected for any change in projector–camera setup in real time. Recently, Bokaris et al. [8]
proposed a robust calibration model by analyzing the characterization of DLP projectors,
and proposed an algorithm which can achieve complete re-calibration with just one frame
delay.

2.4 Radiometric Compensation

Radiometric compensation is required to correct for the projection image’s texture distor-
tion due to the background surface. To understand the surface’s texture characteristics,
a calibration set is formed by projecting a series of colored images and capturing their
responses. The radiometric functions fr developed from the calibration set, model the
transformation of the projector image intensity P (x1, y1) by the projection surface to pro-
duce the captured camera image intensity C(x2, y2):

C(x2, y2) = fr(P (x1, y1)) (2.1)

Where projector image’s pixel location at (x1, y1) corresponds to camera image’s pixel
location at (x2, y2). The function is developed for each projector–camera pixel pair, as

7



the background texture and colour can vary, essentially arbitrarily, from pixel to pixel.
The radiometric function is inverted to form the compensation function f−1r , which can be
applied to the target image intensity T (x1, y1) to yield the compensated projector image
intensity Pc(x1, y1):

Pc(x1, y1) = f−1r (T (x1, y1)) (2.2)

Cc = S(Pc) (2.3)

where S represents the transformation by the background surface. Cc is the camera cap-
tured compensated image, ideally equivalent to the target image T . Since the radiometric
function is developed for each projector pixel, it is necessary for the model to be simple and
efficient. Different Models are used to define the different radiometric function depending
on the scenario at hand. Broadly, radiometric functions can be categorized into either
linear or non-linear models. The following subsection discuss each category in detail.

2.4.1 Linear Models

For a projector–camera system, Nayar et al. [47] proposed to model the input irradiance
of the camera CL for channel L in terms of the brightness output of the projector PK for
channel K as

CL =
∑
K

∫
wK(λ)S(λ)qL(λ)PKdλ (2.4)

Here, wK is the spectral response of the projector for channelK, S is the spectral reflectance
of the surface in the viewing direction of the camera, and qL is the quantum efficiency of
the camera for channel L. The Projector IP and Camera IC pixel values are related to the
irradiance values as follows,

PK = rP (IP ) (2.5)

IC = rC(CL) (2.6)

where rP and rC represent the projector and camera response function. For a three color
channel projector–camera system, (2.4) can be represented as

C = V P, (2.7)

where

C =

cRc
G

c
B

, V =

vRR
v
RG

v
RB

v
GR

v
GG

v
GB

v
BR

v
BG

v
BB

, P =

pR

p
G

p
B

 (2.8)
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v
KL

=

∫
wK(λ)s(λ)qL(λ)dλ (2.9)

In principle the camera’s and projector’s spectral responses can overlap with each other in
arbitrary ways [47], so it is necessary for the radiometric model to be able to capture all
inter-channel dependencies. The model in (2.7) separates the non-linear projector/camera
response function from the radiometric function and uses a linear system of equations to
model the transformation of the projector brightness output. The color mixing matrix V
captures the coupling of the camera and projector color channels and their interaction with
the spectral reflectance of the background [47]. As with f(), the color mixing matrix V
needs to be modelled separately for every projector pixel.

Yoshida et al. [64] improved Nayar’s model in (2.7) by adding a constant term to
consider the effects of environmental light and projector offset as

C = V P +K, (2.10)

where

V =

vRR
v
RG

v
RB

v
GR

v
GG

v
GB

v
BR

v
BG

v
BB

 , P =

pR

p
G

p
B

 , K =

kR

k
G

k
B

 (2.11)

Bimber et al. [7] proposed a channel independent model, where the radiometric function
is modeled as a diagonal matrix, thus the model does not consider the spectral response
overlap between the projector and camera. Grossberg et al. [25] proposed to use a minimal
set of six images to calculate the color mixing matrix V and projector response function.

Lee et al. [36] increased the speed of the radiometric compensation by eliminating the
spectral overlap using color filters and modelling the color mixing matrix as a diagonal
matrix. Chen et al. [10] studied the color mixing property of the projector–camera system
and presented a method to separate the spectral overlap matrix from the color mixing
matrix, where a single matrix was then calculated for the entire system to describe the
spectral overlap between the projector and camera. Futji et al. [18] extended the linear
model for dynamic environments by using a co-axial projector–camera system where the
geometric correspondence between the projector and the camera is independent of envi-
ronmental changes. Here, the color mixing matrix V was separated into a diagonal matrix
A, which captures the spectral reflectance of the surface, and dense Vf , which represents
the overlap between the projector and camera spectral responses:

C = AVfP
′ (2.12)

A is calculated for each projector pixel whereas, a single Vf matrix is used for all projec-
tor pixels. Mihara et al. [43] proposed a compensation model, which uses a high spatial
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resolution camera to capture the background spectral reflectance variation inside a single
projector pixel, such that Yoshida’s linear model (2.10) is developed for each of the multiple
camera pixels within a projector pixel.

The previously mentioned models assumes a Lambertian surface for the projection
background. Park et al. [49] used multiple projectors and camera to use a non–Lambertian
surfaces for projection. Here, the projectors are arranged such that at least one diffuse
projector is available for each point at the projection surface which does not produce
specular reflection for a given camera viewpoint.

2.4.2 Non-Linear Models

Chiu et al. [11] used the projector–camera system and a non-linear radiometric compen-
sation model to remove the textured content on presenter’s face during presentation. A
non-linear radiometric model, based on (2.7), was presented along with an adaptation
scheme for dynamic ambient light. The per-pixel linear model was extented to a cubic
version as follows,

P ′ =

 p
cubic

p
quadratic

p
linear

 (2.13)

Grundhofer et al. [28, 27] proposed a non-linear compensation model, which does not
require pre-calibration of the camera or projector response function. The algorithm uses
a sparse sampling of the projector gamut and thin plate spline interpolation to generate
the mapping from the projector’s input image to output image of the camera in RGB
space. The target image is automatically scaled to maximize the achievable luminance and
contrast [28].

Both linear and non-linear models assume each camera pixel intensity depends on only
one projector pixel intensity and environmental light. But in practical scenarios, there is
inter–pixel coupling between projector pixels resulting in many-to-many relationships be-
tween the projector and camera. The limitations of the discussed radiometric compensation
models are discussed in Chapter 4.

2.5 Image Enhancements

The compensated projector image Pc calculated from the linear or non-linear model does
not consider the physical limitations of the projector or camera. In practical scenarios, Pc
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intensity values can go beyond the dynamic range of the projector. The projector clips the
image values at its limits and projects a saturated image. Since the required brightness is
not projected on the given background, the compensated camera image Cc deviates from
the target image leading to artifacts at the saturated regions. The saturation artifacts are
not due to the incorrect learning of the background surface, and are caused by the limited
dynamic range of the projector.

2.5.1 Multi–Projector Setup

Different approaches are proposed in the literature to solve for saturation artifacts. Multi-
ple projectors can be used to solve for the limited dynamic range of a single projector, by
using more then one projector to attain the required brightness level that hides the back-
ground texture. Bimber et al. [7] proposed to use multiple projectors, where the required
brightness is distributed evenly among all the overlapping projectors for a given point on
the projection surface. Miyagawa et al. [45] used state equations, which are controlled
using camera feedback, to distribute brightness among multiple projectors. Tsukamoto
et al. [59] came up with multiple projector brightness distribution framework using two
Degree of Freedom (DOF) control structure. Here, the communication bandwidth is op-
timized by using a centralized feed–forward mechanism. Theoretical and experimental
verification was provided to demonstrate the successful performance in still and moving
images.

2.5.2 Gamut Mapping

Multiple projectors can effectively solve the limited brightness capability of a single projec-
tor, but it also increases the overall complexity and cost of the required setup. Saturation
artifacts can be reduced with a single projector by modifying the contrast of the incoming
images to fit inside the projector gamut. Ashdown et al. [5] presented a five stage frame-
work where the target image is first converted to a perceptual uniform CIELUV color
space. Chrominance and luminance fitting was carried out in the CIELUV color space, as
linear change in this color space will lead to linear changes in perceptual sensitivity. The
fitted target image is converted to RGB color space and combined with the radiometric
compensation algorithms for projection. Park et al. [50] proposed to use a local adaptive
mapping depending on the projection surface and target image intensity for each pixel.
The adaptive mapping function is constrained to have smooth variation across pixels to
avoid abrupt color changes. Huang et al. [29] decoupled the surface reflectance properties
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from the color mixing matrix and then proposed luminance reallocation to solve for the
clipping errors.

2.5.3 Anchoring Theory

Anchoring theory of lightness perception [19] is also used to solve for saturation artifacts.
Luminance is a physical quantity which can be measured. Lightness, on the other hand,
is a subjective brightness perceived by the human visual system. Lightness of a scene is
determined by the brightest point of the scene or “anchoring point”. The human visual
system first spots the anchoring point and identifies it as white and then perceives the
lightness of scene with respect to the anchoring point. Wang et al. [61] proposed to use the
anchoring theory for brightness scaling and hue adjustments. The algorithm identifies and
scales the value of the anchor point using the CIECAM02 [46] color appearance model.
Huang et al. [30] extented the model and put forth a radiometric compensation framework
using anchoring theory to reduce clipping errors and to improve the overall quality of
the compensated image. Subjective tests were conducted to verify the superiority of the
proposed framework.

2.5.4 Human Visual System

Ramasubramanian et al. [52] used human visual system properties derived from exper-
imental data to calculate the threshold map of an image given its viewing conditions.
The threshold map incorporates the luminance masking, contrast sensitivity and contrast
masking properties to calculate the maximum possible luminance deviation for a particular
pixel until the human visual system notices the difference. This threshold is calculated for
each pixel separately and combines together to form the threshold map. The properties of
the threshold map was used by Wang et al. [60] to calculate the global scaling factor which
optimizes the trade off between overall brightness and saturation artifact error. Grund-
hofer et al. [26] used the threshold map to propose global and local changes to the target
image to reduce the saturation artifact. The global changes depend on the saturation error
and average luminance of the image. The local changes are calculated by the Gaussian
smoothed saturation error and the changes are limited by the values from the threshold
map. Temporal adaption for the global change is also provided as the part of the paper.
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2.6 Summary

In this chapter, different components of the projector–camera system were discussed. Most
commonly used camera response function and geometric calibration algorithms were pre-
sented along with recent advances. Linear and non-linear radiometric compensation algo-
rithms were discussed in detail. Image enhancements methods used in combination with
radiometric compensation models were categorized and state of the art solution in each
category was explained. Next, Chapter 3 explains the projector–camera setup in detail.
Chapter 4 discusses the common assumptions and limitations in the existing radiometric
compensation models.
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Chapter 3

Projector–Camera Setup

In the previous chapter, we discussed the state of the art radiometric compensation and im-
age enhancement techniques. The compensation models require a projector–camera setup
as shown in Fig 3.1. The camera provides continuous feedback of the projection, which
can be used to learn the geometric and surface reflectance properties of the background.
The learned properties are used to make corrections to the incoming image. Here, all the
corrections are made with respect to the position and reading of the camera. For different
position and viewing angles of the observer, the background reflectance properties of the
projection surface changes. Hence, the developed geometric model is valid only near the
camera viewpoint. As the observer moves away from the camera viewpoint, the compen-
sated image starts to deviate from the desired image. Similarly, the radiometric corrections
are made with respect to the intensity values captured by the camera. In this chapter,
we discuss the parameters of the camera and their influence on the performance of the
compensation. The details of the projector–camera setup used for the implementation of
the geometric and radiometric models are also explained.

3.1 Camera Calibration

A 5M-pixel Gigabit Ethernet machine vision camera is used as a part of the projector–
camera setup. The camera should be calibrated to have a monotonic response to the
projector intensity values considering most of the existing radiometric models [47, 64,
25] assume a linear relationship between the projector and camera. Since cameras are
developed to capture maximum details of the scene, different image processing techniques
are embedded as part of the image capturing process [44]. One of the main purpose of
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Figure 3.1: Projector–camera system for radiometric compensation. The camera provides
a continuous feedback to understand the surface reflectance properties of the projector
screen.

the embedded techniques is to automatically choose the white balance and exposure value
of the camera. White balance defines the sensitivity of the RGB channels to different
environmental conditions, which in turn affect the chrominance reading of the camera
[3]. Different white balance settings lead to different chrominance readings of the static
scene. Similarly, the exposure of the camera affects the luminance reading of the scene
[34]. Automatic adjustment of white balance and exposure by the camera will lead to
inconsistent readings. Most modern cameras come with “automatic” adjustment as the
default setting for the white balance and exposure. In order to achieve monotonic response
for projector values, we need to have constant white balance and exposure value. In Point
Grey cameras, this was accomplished by manually changing the setting to have constant
exposure and white balance value in the software provided.

Having constant white balance and exposure value ensures a monotonic response for
the projector intensity values. In order to achieve a linear response, the camera’s gain and
gamma parameters values should be adjusted. Human perception of brightness approx-
imately follows a power function, where the relative difference between the darker level
of luminance is more sensitive than brighter levels [51]. The camera uses the following
gamma correction to take advantage of the brightness perception property to optimize the
bits usage while encoding an image:

Vout = V γ
in (3.1)
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Figure 3.2: Projector–Camera system used for experiments

where V is the camera intensity value. The camera response functions [42, 35, 25] explored
in Section 2.2 tries to model this gamma correction (3.1) of the camera. For the camera
used in the experiments, we have manually set γ to 1 in order to avoid the non-linear
transformation. Similarly, the gain of the camera [2] was set to 0 to avoid amplification.
By manually adjusting the camera parameters, we avoided the need to calibrate the camera
with the camera response function.

The linear response of the camera enables us to directly use the linear radiometric mod-
els discussed in Section 2.4.1. Since the compensation model uses the camera reading for
correction, the exposure value of the camera plays a significant role in model performance.
Different exposure values lead to different luminance readings of the same static scene [34].
Due to the limited dynamic range of the camera, an arbitrary exposure value can lead to
saturation of camera reading and incorrect learning of the background properties resulting
in artifacts in the compensated image. The aim of the camera is to capture the modulation
of the projector intensity with the background surface. Hence, the camera’s exposure value
should be calibrated to capture the entire range of the achievable luminance on the back-
ground surface. In our experiments, the shutter speed was varied between 50ms - 100ms
to control the exposure for different backgrounds.

The exposure values also act as the brightness parameter of the compensation image.
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(a) Camera image (b) Transformed camera image

Figure 3.3: The transformation of the (a) camera image into (b) the projector coordinate
system

The compensation model calculates the projector image value such that the modulation
with the background results in the desired intensity value on the compensated camera
image. A relatively higher exposure value will require low luminance demand from the
projector to achieve the desired intensity in the camera image. As we reduce the exposure
value of the camera and develop a new compensation model, the modified projector image
brightness is increased to attain the same desired intensity in the camera image. Hence
the brightness of the compensated image is inversely proportional to the exposure value
of the camera. This property can also be used to avoid saturation of the projector image
during radiometric compensation. The saturation of the projector is further discussed in
Chapter 6.

3.2 Projector Calibration

The Christie Digital single chip 1920 × 1200 DLP projector was used in our projector–
camera setup. The projector was connected to the computing device and used as a second
monitor to project the image. The gamma modification by the operating system for display
monitors was turned off to obtain a linear relationship between the projector and camera [1].
Similar to the camera, the non–linear transformation of the projector’s gamma correction,
was manually turned off to avoid the need for the projector response function.
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3.3 Projector–Camera setup

The projector–camera setup of our experiment is shown in Fig 3.2. The camera is placed as
close as possible to the projector to reduce the geometric distortions on the camera image.
The entire setup was covered to ensure a minimum influence of ambient light. An exam-
ple of a camera image is shown in Fig 3.3. To extract meaningful background property
from the camera image, we require the camera–to–projector pixel location mapping. The
pixel correspondence was acquired from the geometric calibration process. The gray scale
structured light pattern [31] was used to obtain the geometric calibration as described in
Section 2.3. The calibration will help in transforming the camera image to the projector
coordinate system as shown in Fig 3.3. Having both the projector and camera image in
the same coordinate system helped us to directly compare the images and extract back-
ground properties. This transformation was also used to calculate the error between the
compensated camera image and the target image. The existing radiometric compensa-
tion frameworks [47, 27, 22] use pixel–level models developed for a static projector–camera
setup. Any change in the projector–camera setup will lead to incorrect pixel correspon-
dence and an ineffective compensation model. So the setup should remain static between
model development and compensation. The same projector–camera setup is used for all of
the experiments described in the following chapters.
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Chapter 4

Limitations of Radiometric
Compensation

We wish to examine the basic assumptions underlying the existing radiometric models and
their implications on the performance of the associated radiometric compensation algo-
rithms. The following assumptions are made in both the linear and non-linear radiometric
models:

• The camera is capable of capturing the entire range of the projector gamut without
saturation,

• Each camera pixel intensity is modelled as a function of only one projector pixel
intensity,

• Environmental light is constant during model development and validation.

The camera plays a significant role in radiometric compensation as it forms the eye of
the projector–camera system, and corrections to the projector image are made with respect
to the values of the camera image. The visual quality of the radiometric compensation
strongly depends on the ability of the camera to accurately capture the intensity and
contrast of the background surface. Due to constraints on the portability and cost of the
projector–camera system, off-the-shelf cameras with limited dynamic range are frequently
used in practical scenarios, and as a result the camera could become saturated and might
not be able to capture the entire range of the projector gamut. This saturation in the
calibration images would lead to artifacts in the compensated image.
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The radiometric function is developed for a static projector, camera, background and
environment. Recent advances have led to use of dynamic projection using a coaxial pro-
jector and camera setup and real time geometric calibrations [18]. But existing algorithms
still assume constant environmental light during radiometric function development and
evaluation. Outdoor projection or indoor projection with changing environmental bright-
ness can cause artifacts in the compensated camera image depending on the degree of
brightness variation.

In the projector–camera system, the luminance of one projector pixel can influence the
irradiance reading for multiple camera pixels, known as inter–pixel coupling [40], caused
by one or more of

• Projector optics,

• Projection surface, or

• Camera optics.

That is, a single projector pixel may affect a neighbourhood of camera pixels, and similarly
a camera pixel intensity may be a function of a neighbourhood of projector pixels. The
inter–pixel coupling makes the projector–camera system a many-to-many relation, over
some window size, where the extent of the window is determined by the nature or extent
of the inter–pixel coupling. Under this scenario, the forward approach fails, as the inverse
of the projector to camera transformation is not the same as the camera to projector
transformation. Hence, there is a need to find a more suitable approach to successfully
produce the target image on the background surface.

In this chapter, we look into the inter–pixel coupling in detail. The following section
discusses the brightness leakage which can be observed in the projector–camera setup due
to the inter–pixel coupling. The theoretical explanation is given for inter–pixel coupling by
stating that the projector point spread/blur function can distort the projector images. Ex-
perimental verification is provided by developing the widely used Yoshida’s [64] radiometric
compensation model in Eqn. (2.10) using different sets of projector images and evaluating
its performance under textured and plain background surface.

4.1 Brightness Leakage

For the background shown in Fig. 4.1a, let us consider the case in which only part of the
background screen is illuminated, as shown in Fig. 4.1b, which gives rise to the camera
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(a) Background (b) Projected image (c) Histogram equalized cam-
era image

Figure 4.1: Brightness leakage of the projector–camera system can be seen by (b) illumi-
nating a part of the projector screen and by (c) examining the histogram equalized camera
image of the projector screen. The illuminated regions affect the intensity reading of the
surrounding non-illuminated regions.

image of Fig. 4.1c, which has been histogram equalized [20] to bring out details. Although
only a square region was formally illuminated, the luminance of the illuminated region
is very obviously leaked to adjacent non-illuminated regions, including pixels quite some
distance away. As a result, the captured values in the non-illuminated regions are not an
appropriate function of the corresponding projector intensity since the radiometric model,
which does not consider inter–pixel coupling, associates these values as a contribution from
the background texture. The brightness leakage which is prominent at the projector image
edges or the background’s texture edges causes incorrect learning of the radiometric model
and leads to visible edges in the compensated camera images.

The results of Yoshida’s [64] linear model are shown in Fig. 4.2, from which it can
be observed that the linear model is able to compensate satisfactorily in uniform regions,
but the edges of the background remain visible in the compensated camera image. The
pixel intensities in a horizontal cross-section of the compensated camera image are plotted
in Fig. 4.3, showing that the compensated camera image intensity is deviating from the
target intensity in the vicinity of edges in the projected background. Similar effects can
be observed for all of the edges in the compensated camera image. The difference between
the target image and compensated camera image is shown in Fig. 4.2d. Red indicates the
positive values and green indicates negative values. We can observe significant deviation
at all the background edges and the quantity of deviation is proportional to the contrast
of the edge.
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(a) Projector screen (b) Target image

(c) Resulting compensated camera
image

(d) Difference image (b) - (c)

Figure 4.2: Result of Yoshida’s extended linear model. Edges of the background are clearly
visible in the compensated result (c). The difference between the target and compensated
image is plotted in (d), where red indicates positive values suggesting lower luminance in
compensated image and green indicates negative values. The linear model works properly
in the uniform region but fails near the regions of contrast difference. The arrow in the
compensated camera image (upper right corner of (c)) identifies the row corresponding to
the plot in Fig. 4.3.
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Figure 4.3: Distribution of camera image intensities along a horizontal row as indicated by
the small arrow in Fig. 4.2c. The straight lines show the target values for each channel.
Clearly visible are the sharp deviations from target near regions of contrast difference in
the background.

4.2 Theoretical Analysis of Inter–Pixel Coupling

A major venue for inter–pixel coupling is at the projector. The point spread function of
the projector can blur the input image creating spatial dependencies. Since the blur of
the projector depends on the contents of the input image, different projector images in
the calibration set can lead to different performance by the compensation model. For a
spatially uniform projector image Pu, as shown in Fig. 4.4, the projector’s blur function
will not alter the intensities of the image:

B ∗ Pu = Pu (4.1)

As Pu does not contain any contrast, it will not be affected by the blur B. If the cali-
bration set is developed with similar projector–camera images, the radiometric function f̂
calculated from this set will not be aware of the blur function of the projector:

f̂ = arg min
f
‖f(Pu)− S(B ∗ Pu)‖

= arg min
f
‖f(Pu)− S(Pu)‖

(4.2)
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(a) Projector image (b) Camera image

Figure 4.4: Conventional calibration set with spatially uniform projector image and camera
image of the projection.

where S represents the distortions by the background surface. The compensated projector
image Pc for a given target image T is calculated as follows,

Pc = f̂−1(T ) (4.3)

The calculated Pc, unlike the uniform projector images in calibration set Pu, will not be
spatially uniform in intensity. As the radiometric compensation model did not consider
the effect of B, distortion of the non-uniform Pc by the blur function B will necessarily
lead to artifacts in the compensated camera image:

B ∗ Pc 6= Pc (4.4)

S(B ∗ Pc) 6= S(Pc) = T (4.5)

Using spatially uniform projector images in the calibration set can cause artifacts in the
compensated camera image. Similarly, different kinds of projector images can lead to
various artifacts. So to understand the relationship between the projector image pattern
and the artifacts in the compensated image, we analyzed the error maps of the radiometric
compensation model developed with different sets of projector images.

4.3 Experimental Observation

Two calibration sets were constructed to examine the influence of inter–pixel coupling. The
first set contains textured projector images using natural pictures, whereas the second set
is formed using spatially uniform projector images as shown in Fig. 4.5. The calibration
sets are combined with two different backgrounds. Due to the projector’s point spread
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corresponding camera images

Spatially uniform projector images and its 

corresponding camera images
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Figure 4.5: Comparison between direct projection and compensation by the linear model
developed with spatially uniform and non–uniform calibration images. We can observe
that the different types of calibration images lead to different patterns of artifacts on the
compensated image. 25



function, each calibration sets should result in different radiometric compensation perfor-
mance. By examining the pattern of artifacts in the compensated image with the pattern
in the projector image and background, we can understand the influence of inter–pixel
coupling. Here, four scenarios are explored:

• Plain calibration set with background-1

• Textured calibration set with background-1

• Textured calibration set with background-2

• Plain calibration set with background-2

Plain projector images without contrast are projected and captured by the camera
to form the plain calibration set. Here, the projector images do not contain contrast
difference, whereas the camera images contain the contrast difference of the corresponding
background. The textured calibration set is composed of real world images as projector
images and their corresponding camera images. Here, the camera images contain contrast
difference from the projector images and the background texture.

The results of the experiments are illustrated in Fig 4.5. The RMSE error map between
the target image and the compensated image displays the RMSE error for each projector
pixel. The error map helps in identifying the pattern of artifacts in the compensated
image. For background-2, which does not have any contrast difference, applying the linear
radiometric compensation model gave different pattern of artifacts for plain and textured
calibration sets. The plain calibration set’s error map does not follow any pattern and
contains random noise. The textured calibrations set’s error map might seem arbitrary but
careful observation shows that the pattern of the artifacts is an amalgamation of different
contrast patterns present in the projector images. Fig. 4.6 highlights the similarity in
detail: The pattern in different regions of the error map can be attributed to the pattern
in projector images with the same spatial location.

From the results of background-1, we can observe that the plain training set is not able
to hide the background texture. The linear model delivers satisfactory results in uniform
regions, but deteriorates from the target in regions of contrast difference of the background.
This phenomenon can be clearly observed in the RMSE error maps. In the absence of
contrast in the projector images, the artifacts reflect the contrast pattern of the background.
Using the textured calibration set with background-1 explains the performance of the
radiometric compensation model in the presence of projector and background contrast.
Here, the error map patterns are a combination of contrast from all the projector images
and background texture.
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Target image

Compensated image with non-

uniform training RMSE error map

Figure 4.6: The contrast of the camera images in the calibration set (third row) is being
reflected as artifacts in the compensated camera image. A closer look at the RMSE error
map shows the artifact pattern is an amalgamation of the contrast present in the calibration
set.
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From the results, we can state that the artifacts due to inter–pixel coupling are a
combination of contrast patterns from the projector images of the calibration set and
background. Depending on the application scenario, the background pattern can vary
arbitrarily, but we can control the pattern on the projector images. So we need a framework
which can optimize the performance of the compensation model by using the most suitable
calibration set.
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Chapter 5

Radiometric Artifacts

The previous chapter discussed a key limitation of previously proposed radiometric models.
In particular, that if smooth projector images are used in the calibration set, which give
rise to spatially non-uniform camera images, then the contrast of these images will create
artifacts at background edges. By somehow reducing the contrast of the camera images in
the calibration set, the consequences of inter–pixel coupling can be reduced [54].

A novel inverse approach is proposed to overcome the limitations of inter–pixel coupling.
A key strength is that the proposed approach can be applied to any existing radiometric
compensation strategy to improve its performance. Since the radiometric model is devel-
oped for each pixel in the projector image, the changes are proposed in such a way that
the model’s complexity is not increased. In particular,

1. The compensation function is deduced directly, rather than inverting a learned ra-
diometric function.

2. The calibration set is modified, consisting of spatially uniform camera images, al-
lowing the compensation function to explicitly learn the projector pixel intensities
needed to obtain spatially uniform camera images, maximally hiding the background.

The human visual system is sensitive to abrupt changes in intensity [26]. So the emphasis
of the proposed model is to obtain smooth images on the projection surface which can
completely hide the background texture. In the previous chapter, we studied the impact
of calibration images on the performance of radiometric compensation. Due to the pres-
ence of inter–pixel coupling, existing radiometric compensation models produce artifacts
with patterns similar to the pattern of camera images in the calibration set. So the pro-
posed approach modified the calibration set to contain spatially uniform camera images.
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The smooth camera images reduce the patterning of the artifacts leading to perceptually
pleasing compensated images.

As in (2.1), now starting with a camera image C, the inverse model is given as

P = fi(C) (5.1)

C will be a spatially uniform fully compensated camera image, as shown in Fig. 5.2b,
based on the corresponding projector image P . The existing radiometric function models
the background’s surface reflectance and inverts the model to find the compensation func-
tion. Due to the presence of inter–pixel coupling, the compensation function may not be
equivalent to the inverse of the radiometric function. Hence, directly developing the com-
pensation function from the calibration set gives the best estimate of the required function.
By directly learning the inverse function fi:

1. The need to model the brightness spread of the projector–camera system is avoided.

2. Any noise-amplification present in the model inversion stage of the forward approach
is mitigated.

The proposed framework is developed with desired input–output pairs; by training
with uniform camera images and their corresponding (non-uniform) projector images, the
absence of texture in the uniform target images prevents artifacts distracting to the human
visual system from appearing. Using uniform camera images Cu in the calibration set also
lead to non-uniform projector images Pnu. So the compensation function calculated from
the proposed calibration set includes the projector’s blur effects, discussed in Section 4.1,
during model learning as follows,

f̂i = arg min
fi

‖fi(S(B ∗ Pnu))− Pnu‖ (5.2)

The two proposed changes inherently learn the effect of inter–pixel coupling by making
minimum changes to the existing radiometric compensation. The smooth camera images
needed for the calibration set are acquired through an iterative approach. The iterative
approach is only used in the offline process to form the calibration set. The next section
discusses the iterative approach in detail.

5.1 Iterative Approach

One challenge, of course, is how to actually deduce the complex projector image, of Fig. 5.2,
which actually corresponds to a smooth camera image.
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(a) Projector image (b) Camera image

Figure 5.1: Conventional calibration set with a spatially uniform projector image and its
corresponding camera image.

(a) Projector image (b) Camera image

Figure 5.2: In contrast to Figure 5.1, our proposed calibration set has spatially uniform
camera images and a corresponding non-uniform projector image.

Since the goal of this research is to develop and explore the most effective strategies for
radiometric compensation, rather than (for now) a fast and efficient algorithm, we have
chosen a simple but highly robust and reliable iterative approach. The projector image at
the first iteration is set to the target image,

P 0 = T (5.3)

The resulting camera image C can measure the degree to which the target T is matched,
but only after being converted to CP in the coordinate system of the projector, based on
the learned pixel correspondence. The resulting error or inconsistency between camera and
target is easily calculated,

Et = Ct
P − T (5.4)
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(a) Monochrome (b) Colored

Figure 5.3: Camera images of the two background projection screens used in the experi-
ments.

on the basis of which each pixel in P can be updated to reduce the error, thus

P t+1
x,y =

{
P t
x,y +K, if Et

x,y < −τ
P t
x,y −K, if Et

x,y > τ
(5.5)

for some minimum threshold τ . K = 2 and τ = 2 were used during experiments.

The iteration is terminated when the average error across the image is below a pre-
set threshold. In practice, the total number of iterations can be reduced by updating
proportional to the error as

P t+1
x,y = P t

x,y − γ · Et
x,y, (5.6)

for some rate of convergence γ. In practice, for γ = 0.4, It was found that 10 iterations
are sufficient for convergence for the backgrounds shown in Fig 5.3.

By this means we can successfully create the calibration set with spatially uniform
camera images. The iterative approach is only used in the calibration phase and will not
affect the complexity during model evaluation.

Depending on the projector gamut, each background can be characterized with the
achievable range of image intensities without projector saturation. The range of intensities
in the camera images of the calibration set should be spread across this achievable dynamic
range for a robust compensation model.

5.2 Experimental Setup & Results

In this section, the experimental setup required for the proposed framework is discussed in
detail. The proposed framework is applied on the Yoshida’s and Bimber’s linear models to
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Figure 5.4: Target Images

Uncompensated
projection

Bimber’s Model
Yoshida’s
Model

Grundhofer’s
Model

Proposed on
Bimber’s Model

Proposed on
Yoshida’s Model

B
lu
e

G
re
en

G
re
y

P
ea

rs

Figure 5.5: The results of the proposed changes applied to Bimber’s and Yoshida’s model
are compared with existing models on the background shown in Fig. 5.3b. Note in partic-
ular the significant reduction in background contrast remaining in the compensated image
in our proposed approach (last two columns) compared with established methods (middle
three columns). The artifacts encountered at the bottom right of the proposed Yoshida’s
model is due to saturation which is discussed in Chapter 6
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RMSE

Image
Uncom-
pensated

Bimber Yoshida
Grund-
hofer

Proposed
Bimber

Proposed
Yoshida

Blue 56.89 6.46 5.16 4.18 8.02 2.34
Green 71.24 12.96 7.14 5.22 10.63 3.42
Grey 76.85 7.92 7.01 5.37 10.46 3.06
Pears 70.46 8.11 7.49 4.39 9.20 4.08

15 Images
(Avg.)

72.59 8.86 6.70 5.11 9.58 3.23

CIE2000

Image
Uncom-
pensated

Bimber Yoshida
Grund-
hofer

Proposed
Bimber

Proposed
Yoshida

Blue 17.78 3.60 1.63 1.51 6.99 0.98
Green 29.99 10.01 2.11 1.96 6.15 1.12
Grey 28.70 7.40 3.16 3.02 5.85 1.89
Pears 27.22 8.71 2.60 2.06 6.87 1.64

15 Images
(Avg.)

20.54 5.75 2.07 1.96 6.78 1.24

SSIM

Image
Uncom-
pensated

Bimber Yoshida
Grund-
hofer

Proposed
Bimber

Proposed
Yoshida

Blue 0.715 0.966 0.987 0.989 0.973 0.995
Green 0.471 0.744 0.978 0.981 0.884 0.990
Grey 0.260 0.675 0.836 0.843 0.846 0.921
Pears 0.460 0.879 0.973 0.975 0.942 0.987

15 Images
(Avg.)

0.455 0.802 0.914 0.921 0.879 0.974

Table 5.1: RMSE, CIE2000, and SSIM scores for the images in Fig. 5.5. In every single
case, for every image and every metric, the proposed approach applied to Yoshida’s method
offers the best result.
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improve its performance. The performance of the proposed model is then compared with
the state of the art non-linear model to show its superiority.

5.2.1 Implementation

The projector–camera setup was installed as discussed in Chapter 3. After the linearization
of the camera response with the projector intensity values, the gray scale coding algorithm
[31] was used to find the pixel correspondence between the projector and camera. The
nearest neighbour method was used to assert a location for projector pixels for which a
corresponding camera pixel was not found. After geometric calibration, an iterative ap-
proach (5.5), (5.6) was used, typically requiring 8-12 iterations for each image, to form
the calibration set. Intensity values for the calibration set were chosen from those inten-
sity values which do not lead to any saturation in the projector, and a total of ten such
projector–camera pairs were found. The proposed changes were applied to Bimber’s [7] and
Yoshida’s [64] linear radiometric models to evaluate performance. The calibration image
pairs were used to learn the inverse model, as proposed, and this model was calculated
separately for each projector–camera pixel pair.

5.2.2 Comparison Methods

The proposed approach is compared with the un-modified Bimber’s [7], Yoshida’s [64]
model, and Grundhofer’s [28] non-linear model.

For Grundhofer’s non-linear model, the calibration set is created by sampling each
projector channel into N intervals. Combining the RGB channels of the projector, N3

calibration images are obtained as described in [28]. In this paper, each channel was
sampled into N = 5 intervals, resulting in 125 projector–camera images. Thin plate spline
interpolation [15] with radial basis functions is used to model the transformation between
the projector and the camera images, as given in [28]. A regularization term is added
to the weights to reduce the measurement inaccuracies as proposed in [14]. The drift
movement correction and global optimization for maximum luminance and contrast were
not implemented as these were not a part of the radiometric compensation model [28].

For Yoshida’s and Bimber’s linear models, the calibration set of 20–30 pairs of projector–
camera images was developed by choosing intensity values covering all three projector
channels. Yoshida’s and Bimber’s radiometric models were developed as given in [64] and
[7] respectively.
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5.2.3 Evaluation Metrics

To compare the camera and target images, the camera images are converted to the pro-
jector’s coordinate system using the acquired pixel correspondences. The CIE2000 ∆E∗00
[57], Root Mean Square Error (RMSE), and Structural Similarity (SSIM) [62] metrics were
used in evaluating the compensation performance. The RMSE score

‖c, t‖ =
√

(cr − tr)2 + (cg − tg)2 + (cb + tb)2 (5.7)

between camera pixel c and target pixel t is calculated in the RGB color space, whereas
CIE2000 is based on the device–independent CIEL∗a∗b∗ color space, intended to more
accurately reflect human visual perceptual differences between colors.

Broadly speaking, there are two classes of artifacts which appear:

• Radiometric artifacts, due to some limitation in modeling or learning of the back-
ground, that results in the deviation of the camera image from the intended target.

• Saturation artifacts, which arise when the compensated projector intensity falls out-
side of the dynamic range of the projector.

Since our study is explicitly focused on radiometric compensation, only unsaturated pixel
locations are considered for error calculation. The saturation artifacts are explored in
detail in Chapter 6.

5.2.4 Results

The results of spatially uniform target images with two backgrounds are shown in Figs. 5.5
and 5.7. Here, the results of three different spatially uniform images are shown, since their
uniformity represents the most challenging scenario when projecting onto an irregular
background.

Even a casual glance at the compensated camera images shows very clearly that the
conventional models fail to fully hide the background, where it is particularly the back-
ground edges which are visible. It is our assertion that the pixel–level radiometric models,
failing to consider spatial effects, are insufficient to attain a sufficient degree of correction.

The quantitative report of the RMSE (5.7), CIE2000 [57], and SSIM [62] metrics is
shown in Table 5.1 for Fig. 5.5. It comes as no surprise that in essentially all cases the
channel-independent Bimber method is inferior to the mixed-channel Yoshida method,
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Figure 5.6: Target Images
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Figure 5.7: As in Fig. 5.5, the proposed approach is now applied to the background of
Fig. 5.3a. The results are consistent with those of Fig. 5.5: the proposed approach signifi-
cantly reduces background artifacts.

37



which itself performs less well than the non-linear approach of Grundhofer. It is gratifying
that in every single case, for every image and every metric, the proposed approach applied
to Yoshida’s method offers the best result.

In practice, most radiometric compensation will involve the use of spatially non-uniform
target images; that is, natural scenes, movies, Powerpoint presentations etc. To begin with,
we select the standard Pears image as the target. As can be seen in Figs. 5.5 and 5.7,
artifacts due to poor radiometric compensation tend to be masked by the variability and
texture in the target image; nevertheless the same conclusion is reached, as is borne out in
Table 5.1, that the proposed approach, although based on uniform target images, continues
to outperform competing approaches for non-uniform targets. Table 5.1 lists results for
both the Pears image on its own, and for a mixed set of 15 images, consisting of 7 uniform
targets and 8 natural images.

A more detailed visualization of the performance of the proposed approach is illustrated
in Fig. 5.8. Here, the RMSE and CIE2000 error maps have been plotted for all unsatu-
rated pixels, with darker pixels indicating greater error values. From the error map, it
can be observed that existing models give satisfactory performance in regions of uniform
background contrast, but deviate from the target image in those regions of higher contrast.
Grundhofer’s model performs better than Yoshida’s linear model. But the overall pattern
of the error map is common for both methods. Although the proposed method still has
errors present, as implied by darker pixels in the RMSE and CIE2000 maps, nevertheless
there is nearly a complete absence of patterning due to the background.

5.2.5 Edge Error Metric

The proposed method cannot be claimed to universally improve RMSE or CIE2000 per-
formance for all radiometric models; indeed, in Table 5.1 the proposed approach appears
to increase the RMSE and CIE2000 metrics for Bimber’s method, despite the fact that
the visual results in Figs. 5.5 and 5.7 appear significantly improved with the proposed ap-
proach. The issue, we believe, is that the pixel–wise (i.e., point–wise) RMSE and CIE2000
metrics actually represent a poor measure of the human visual system, which is far more
sensitive to spatially correlated edge-like artifacts. In response, we would propose a metric
more aligned with the human visual system, based on differences of medians. That is,
the human visual system is sensitive to systematic (correlated) differences, such as lines
and edges, but less so to random noise. So we apply a median filter med() to distinguish
between structure and noise, and then apply a differentiator. So given camera and target
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images C, T , we find the RMSE metric

Rij = ‖Cij, Tij‖ (5.8)

and then apply differences to the median,

E =
[
Gx ∗ med(R)

]2
+
[
Gy ∗ med(R)

]2
(5.9)

for Sobel kernels Gx, Gy and convolution operator ∗. The results of median filter on the
error map is shown in Fig. 5.9. For a given image, the overall metric, reported in Table 5.2,
is just the root-mean over the elements of E.

The results in Table 5.2 do, indeed, show that the proposed method produces improved
results, for both channel-independent (Bimber) and channel-coupled (Yoshida) models, for
every tested case.

Table 5.3 offers a comparison of the training and computational complexity of our
proposed approach, applied to Yoshida’s model, in comparison with other linear and non-
linear models. Our proposed approach does require additional camera captures during
calibration, because of the need to iteratively infer the inverse model. At a reasonable
frame rate the total capture and learning time is still quite short, perhaps a few seconds.
However our proposed approach continues to have the modest training data requirements
and low number of parameters in common with the other linear models (Yoshida/Bimber),
in contrast to Grudhofer’s non-linear model.

5.3 Summary

In this chapter, two changes were proposed depending on the limitation of the existing
radiometric compensation algorithms. The calibration set was modified to contain spatially
uniform camera images and the compensation function is directly calculated from the
calibration set. An iterative approach was used to form the proposed calibration set. The
proposed approach can be applied to existing radiometric models to substantially increase
their performance. The proposed changes were applied to the Bimber and Yoshida linear
models and compared with Grundhofer’s nonlinear model.

The application of the proposed inverse approach to Yoshida’s linear model led to the
best performance for every image and every metric tested, including performance superior
to the non-linear model. Based on experimental results, the increased performance of the
inverse model in hiding the background texture is striking, both in terms of image metrics
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RMSE Edge Error

Image
Uncom-
pensated

Bimber Yoshida
Grund-
hofer

Proposed
Bimber

Proposed
Yoshida

Blue 230.11 10.59 7.94 4.26 3.96 0.81

Green 350.31 29.38 15.26 7.84 7.05 1.30

Grey 376.97 19.74 14.42 8.22 5.40 1.38

Pears 179.29 13.26 17.51 4.92 7.26 3.10

15 Images
(Avg.)

297.54 19.73 14.22 6.35 6.22 1.74

CIE2000 Edge Error

Image
Uncom-
pensated

Bimber Yoshida
Grund-
hofer

Proposed
Bimber

Proposed
Yoshida

Blue 31.88 3.49 3.87 0.69 2.61 0.30

Green 139.53 21.44 3.83 2.41 3.82 0.31

Grey 61.89 9.99 2.68 3.09 2.79 1.15

Pears 53.81 11.75 5.57 1.62 5.56 0.77

15 Images
(Avg.)

85.47 12.56 4.44 2.19 3.81 0.71

Table 5.2: Per the median metric illustrated in Fig. 5.9, median edge scores are tabulated
as in Table 5.1. We now observe striking improvements for both Bimber’s and Yoshida’s
methods in all cases.

and to the human eye. For both spatially uniform and non-uniform target images, the
inverse model is able to produce perceptually superior compensated images.

The new framework helps in optimizing the calibration set to get the best performance
from the radiometric compensation algorithms. By performing the iterative method for
a selected few target images, we were able to get enchanced performance from the com-
pensation models. Reducing the radiometric artifacts begins to highlight the saturation
artifacts in the compensated images. Since the saturation artifacts are due to the projector
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Figure 5.8: Error map comparison between Yoshida, Grunhofer and our proposed method.
RMSE and CIE2000 error maps are shown in the second and third rows respectively. The
RMSE error maps show the regions of absolute error and CIE2000 shows the error maps
as perceived by the human eye.

Model #Image Pairs (Q) #Captures #Parameters

Bimber ≈10 Q 6

Yoshida ≈10 Q 12

Grundhofer ≥125 Q ≥125

Proposed ≈10 10*Q 12

Table 5.3: Computational complexity comparison during calibration. With no increase in
model complexity and a few additional camera captures, the proposed model is able to
perform better than the non-linear model.

limitations, image enhancement techniques are used to reduce the perceptual sensitivity
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Figure 5.9: A more effective metric is needed which penalizes edge-like artifacts particu-
larly visible to the eye. Rather than a metric such as RMSE, we propose median-filtered
absolute-differences, such that smooth constant errors and random noise are ignored, but
that correlated edge artifacts are amplified. The illustration here shows Bimber’s method
(top) and our proposed approach applied to Bimber’s Model (bottom), such that our pro-
posed approach makes the RMSE worse, but in fact the compensated image and the median
metric are both improved.

of these unavoidable artifacts. The next chapter discusses the saturation artifacts and the
corresponding artifact sensitivity reduction techniques in detail.
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Chapter 6

Image Enhancement

6.1 Introduction

Radiometric compensation algorithms help in projecting a target image onto a textured
background surface. Ideally, the algorithm should completely hide the background texture
and achieve the desired image appearance on the surface. As described in Chapter 3, the
exposure value of the camera controls the brightness of the compensated projector image,
subsequently the perceived brightness of the projection. By increasing the exposure of the
camera, the brightness of the projection is reduced and vice–versa.

For a fixed camera exposure, the achievable intensity on the background is limited by
the background texture and the dynamic range of the projector. Since the texture vary
arbitrarily from pixel to pixel, each projector pixel has a different range of achievable in-
tensity on a given background. This constrains the range of target images which can be
projected on the background without artifacts. For target image with pixel values out-
side the achievable range, the compensated projector image’s pixel intensity is saturated,
resulting in artifacts at the saturated regions.

Different image enhancement techniques are proposed in the literature [5, 50, 30, 26, 60]
to fit the target image inside the achievable range without noticeable change to the original
image. The popular approach is to use human visual system properties [26, 60] to modify
the target image so that the saturation artifacts are reduced with minimum perceivable
change. The revised target image is then given as input to the radiometric compensation
algorithms for projection. The flowchart of the general framework is shown in Fig. 6.1.
In this chapter, we examine the framework in detail and propose a novel spatially masked
luminance modification model to reduce saturation artifacts.
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Figure 6.1: Flowchart of the image enhancement technique. Radiometric compensation is
used twice: To calculate the initial saturation error and to calculate the final compensated
image for projection.

6.2 Saturation Artifacts

The dynamic range of the projector defines the maximum and minimum intensity values in
each channel of the imaging device. For a given projector–camera setup, the compensated
projector image Pc values, obtained from the compensation algorithm, can go beyond
the dynamic range of the projector. Since the projector is not capable of projecting the
compensated image Pc, it instead projects a saturated image Psc given by

Psc(x, y, c) =


Pc(x, y, c), if Pmin < Pc(x, y, c) < Pmax

Pmin, if Pc(x, y, c) < Pmin

Pmax, if Pmax < Pc(x, y, c)

(6.1)

Pmax and Pmin define the maximum and minimum limits of the projector. c indicates the
projector’s channel. Typically, the modern projectors come with Pmax = 255 and Pmin = 0.
The limitations on the maximum and minimum value create two types of saturation. The
upper saturation at pixel (x, y) for channel c occurs when Pc(x, y, c) > Pmax. The resultant
error can be interpreted as the inability of the projector to mask the background texture
resulting in artifacts. Lower saturation happens when Pc(x, y, c) < Pmin, is caused due to
the presence of environmental light and projector offset.

Fig. 6.2 shows the results of Yoshida’s linear model. The results are simulated to achieve
ideal radiometric compensation, leaving only saturation artifacts in the compensated cam-
era image Cc. The regions of upper and lower saturation are shown in Fig. 6.3a & 6.3b
respectively, where the color at the pixel represents the saturated channel. We can observe
that the saturation of one or two channels distort the chrominance of Pc, leading to visible
artifacts at the compensated camera image Cc.
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The most popular approach to reduce saturation artifacts is to modify the luminance
of the target image, such that the new compensated projector image values fits inside the
projector gamut. For a saturated pixel, modifying the luminance of the pixel will alter the
brightness demands of the projector, resulting in reduced chrominance distortion at the
Psc. As luminance distortions are much less sensitive than chrominance distortion, target
image modification results in perceptually improved compensated images.

Luminance alteration to the target image reduces the saturation error by introducing
image modification error. Image enhancement techniques are developed to optimize this
trade-off between saturation and modification error. The optimization results in the re-
duction of undesired saturation error by introducing visually pleasing and less sensitive
luminance modification errors. The human visual system properties [56, 9] can be used to
find less perceivable modifications that reduce the saturation error. Wang et al.[60] and
Grundhofer et al.[26] used threshold map constructed using human visual system properties
to calculate the optimum local and global luminance changes.

We start the next section by exploring the saturation artifacts. A local luminance
modification method is suggested to reduce the saturation. A novel spatial modification
framework is proposed to reduce the perceptual sensitivity of the local luminance modifi-
cation.

6.3 Artifact Sensitivity

In this section, we explore the framework where human visual system properties can be
used to reduce the saturation artifact. In particular, we know that abrupt changes in
image luminance are more sensitive to human visual system [56, 9] than gradual change in
luminance. We also understand that luminance manipulation is perceptually less sensitive
and can be masked by the contrast of the image [12]. Using these two properties, the
proposed framework first modifies the luminance at the saturation regions. The sensitivity
of the luminance modification is then reduced using spatial correction by adjusting abrupt
changes to have continuous variation. The proposed framework can be divided into three
modules:

• Identifying the saturated regions;

• Pixel–wise luminance modification;

• Spatial correction to reduce the modified luminance’s perceptual sensitivity,

The framework can be combined with any radiometric compensation algorithm to reduce
saturation artifacts. The following subsections examine each module in detail.
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(a) Projector screen (b) Target image

(c) Compensated Projector image (d) Compensated camera image

Figure 6.2: Results of simulated compensation by Yoshida’s linear model[64]. Due to the
limited dynamic range of the projector, one or more channels of the compensated projector
image are saturated resulting in chrominance artifacts in the final compensated image.

(a) Upper Saturation (b) Lower Saturation

Figure 6.3: Saturated regions of the Yoshida’s linear model from Fig. 6.2. The saturated
pixels are highlighted for (a) upper saturation and (b) lower saturation. The color of the
pixel indicates the saturated channels.
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6.3.1 Saturated Regions

In order to find the saturated regions, the proposed framework requires the radiometric
compensation algorithm to calculate the compensated projector image Pc for the unmodi-
fied target image T . A pixel is considered saturated if the intensity of one or more channels
goes beyond the dynamic range of the projector. Assuming a modern RGB projector takes
values between Pmin and Pmax, upper saturation occurs when at least one channel value
goes beyond Pmax, similarly lower saturation happens when the value goes below Pmin. It
is also possible for a pixel to have upper saturation at one channel and lower saturation
at another. Upper and lower saturation maps which highlight the corresponding saturated
pixels can be constructed as shown in Fig. 6.4e and Fig. 6.4b respectively.

From the results of the Yoshida’s linear model, as shown in Fig. 6.2, we can observe
that the structured saturation artifact are prominent to the human visual system. Arti-
facts from randomly distributed saturated pixels are hardly visible to the observer. These
random artifacts are masked by the content and texture complexity of the image. To avoid
unnecessary alteration to the target image, a median filter is applied to the saturation map
to ignore random saturated pixels. The size of the median filter can be modified depending
on the required degree of tolerance.

Fig. 6.4 shows the impact of median filter on the saturation map. The median filter
helps us to ignore the random saturation artifacts which are less sensitive to the human
visual system. In our experiments we used a 11 × 11 filter. The luminance changes are
applied to the median filtered pixels as defined in the following subsection.

6.3.2 Pixel–Wise Correction

Luminance manipulation is carried out on the saturated pixels returned by the median
filter. In our case, we have defined the luminance of a RGB image I as

L(x, y) =
I(x, y, 1) + I(x, y, 2) + I(x, y, 3)

3
(6.2)

By giving equal importance to each channel, the luminance manipulation is equally dis-
tributed among all the channels of the projector. As discussed in Section 6.2, the upper
saturation is caused due to the projector’s limited brightness. So reducing the luminance
of the target image should reduce the required intensity demand from the projector. So
for upper saturation pixels, the modified target image value Tm(x, y) is defined as

Tm(x, y) = αu(x, y) · T (x, y) (6.3)
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(a) Upper saturated pixels (b) Upper saturation map (c) Median filtered satura-
tion map

(d) Lower saturated pixels (e) Lower saturation map (f) Median filtered saturation
map

Figure 6.4: Result of median filter on the saturated map: un-structured random saturated
pixels which are not prominent in a complex textured image are omitted by the median
filter to avoid unwanted modifications to the target image.
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The αu value is calculated to achieve maximum luminance without saturation at a given
pixel. It depends on the compensated projector image and background characteristics.
The lower saturation is caused due to projector offset and environment light as the camera
will capture non-zero intensity value for a zero projector pixel intensity. This causes the
radiometric compensation algorithm to calculate negative projector intensity to achieve
near-zero target image values. The lower saturation is also caused due to the background
texture, where it is impossible to attain pure red on a pure green background. Since
the saturation is due to low luminance or high contrast demands, the desired change
should try to increase the luminance and reduce the contrast of the target image. So the
modified target image is obtained by simultaneously reducing the contrast and increasing
the brightness. The modified target image Tm at lower saturation pixels is given by

Tm(x, y) = ~Pmax + (T (x, y)− ~Pmax) · αl(x, y) (6.4)

~Pmax =
[
Pmax Pmax Pmax

]′
(6.5)

Here, as the αl is reduced from 1 to 0, the target image contrast is reduced and brightness
is increased from T to ~Pmax. The αu and αl are calculated with respect to the radiometric
compensation algorithm fc. The maximum values of αu and αl which satisfies the following
equations are used for target image modification

~Pmin < fc
(
~Pmax + (T (x, y)− ~Pmax) · αl(x, y)

)
(6.6)

fc(αu(x, y) · T (x, y)) < ~Pmax (6.7)

The maximum values are taken to ensure minimum change to the target image. For
experiments, we have used Yoshida’s linear model described in Section 2.4.1 as radiometric
compensation algorithm. For a target image T , the compensated projector image Pc is
calculated as

Pc = fc(T ) = V −1(T −K) (6.8)

V and K are the parameters of the Yoshida’s linear model from Eqn. 2.10. For an upper
saturation pixel (x, y), which is saturated at channel c, the maximized αu value is given by

αu(x, y) =
Pmax + Vk(c)

Pc(x, y, c) + Vk(c)
(6.9)

Vk = V (x, y)−1 ·K (6.10)

Similarly for a lower saturation pixel, which is saturated at channel c, the maximized αl
value is given by

αl(x, y) =
Pmin + Vk(c)− Vs(c)

Pc(x, y) + Vk(c)− Vs(c)
(6.11)
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(a) Target image (b) Pixel–wise luminance modified
target image
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Figure 6.5: The result of (b) pixel–wise luminance modification on the (a) target image
at the saturated regions shown in Fig 6.4. The luminance modification is obtained by
calculating the (c) αl and (d) αu map for the saturated regions and applying the pro-
posed transformation. The luminance modification reduces the chrominance error at the
saturated regions, but abrupt change in luminance creates artifacts in the modified target
image.

Vs = V (x, y)−1 · ~Pmax (6.12)

The results of pixel–wise luminance correction is shown in Fig. 6.5.

6.3.3 Spatial Correction

Pixel–wise luminance correction helps to avoid saturation artifacts and chrominance dis-
tortions. But an abrupt change in luminance creates artifacts in the compensated camera
image. Since the human visual system is sensitive to these changes, a spatial modification
is needed to form a gradual luminance change across the image that reduces the perceptual
sensitivity of the artifacts. For each saturated pixel, the surrounding pixel’s luminance is
reduced and the amount of luminance reduction is inversely proportional to the distance
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from the saturated pixel. Reducing the luminance of the surrounding pixels also decreases
the overall brightness of the target image. This creates a trade-off between overall bright-
ness and artifact sensitivity.

For a saturated pixel, α indicates the degree of luminance change, as α is increased
towards 1, the change in the target image is continuously reduced. Here, α is used to
indicate both αu and αl. To have a spatially smooth luminance change, a kernel is created
for every saturated pixel which represents the luminance change for the surrounding pixels.
For every saturated pixel, a linear kernel k(x, y) can be created from the α value, as given
by

k(x, y) = α + s ·
√
x2 + y2, (6.13)

A Gaussian kernel can also be created, where the rate of α change follows a Gaussian
distribution as follows,

k(x, y) = 1− (1− α)e−(x
2+y2)/2σ2

(6.14)

where, σ is given by,

σ =
1− α
3 · s

(6.15)

The spatial extent for both kernels is defined for a range of x and y given by

x, y ∈
[
− 1− α
s ·
√

2
,

1− α
s ·
√

2

]
(6.16)

The spatial extent and σ is determined such that the kernel values reaches towards 1 at the
borders, indicating no further changes. After building a kernel for each saturated pixel, a
β map is formed by combining all the kernels from the saturated pixels. It is constructed
by placing the center of the kernel at their corresponding saturated pixel location and
replacing the β maps value with kernel values. In the case of overlapping kernels, the
minimum value from all the overlapping kernels was selected as the final β map’s value.
The minimum value is selected to ensure the least saturation. For unaffected pixels, the β
map takes default value as 1. Two beta maps are obtained from αu and αl maps. Fig. 6.6
shows an example of the βu and βp map for different slope values. The final modified target
image is obtained as given by:

TM1(x, y) = P ′max + β0(x, y) · (P ′max − T (x, y)) (6.17)

TM(x, y) = β1(x, y) · TM1(x, y) (6.18)

Here, the lower saturation correction is followed by the upper saturation. The order of the
saturation correction will not impact the performance of the algorithm. The results of the
spatial correction for different values of slope are shown in Fig. 6.6.
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(a) slope = 0.0120 (b) slope = 0.0024 (c) slope = 0.0006

(d) βu map (e) βu map (f) βu map

(g) βl map (h) βl map (i) βl map

Figure 6.6: The first row shows the results of spatial modification for different values of
slope s. As the slope is reduced, the luminance change is spread over a wider region, reduc-
ing the sensitivity of the modification. However, the overall brightness of the image is also
reduced. The second and third rows show the corresponding βu and βl map respectively.
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6.4 Experiments & Results

The projector–camera system is formed as suggested in Chapter 3. The system was lin-
earized and gray scale coding was used to form the pixel correspondence. Yoshida’s linear
model was used as the radiometric compensation algorithm. The calibration set was formed
as suggested in [64]. The color mixing matrix V and K are calculated from the calibration
set for each projector–camera pixel pair. For target image T , the compensated projector
image Pc was calculated as shown in (6.4). Since the Pc values are saturated by the pro-
jector, Psc from (6.1) is projected and captured by the camera to form the compensated
camera image Cc. But, Cc can’t be evaluated for saturation artifacts due to the presence of
radiometric artifacts. It is impossible to separate the saturation artifacts from the overall
error in a camera captured Cc. But the camera image can be simulated to attain an ideal
compensation removing radiometric artifacts. Instead of projecting Pc and capturing Cc,
the simulated compensation image Sc is obtained by

Sc = V Psc +K (6.19)

Sc contains only the saturated artifacts without radiometric artifacts. The deviation of Sc
from T is examined to understand the saturation artifacts. In this chapter, the compen-
sated images are obtained through simulation.

First, pixel–wise luminance modification was carried out as mentioned in Section 6.3.2.
In order to avoid massive alteration to the target image, the αu and αl values were limited
between αmin to 1. The αmin value is chosen, depending on the tolerated luminance modi-
fication. All of the calculated values outside the range are replaced by their corresponding
limits. Varying the αmin helps in controlling the degree of luminance correction tolerated
in the compensated image. In our experiments we found αmin = 0.7 to be an optimum
tolerance value for the given viewing condition. After pixel–wise luminance correction, the
proposed spatial modification is performed around saturated pixels. A linear and Gaussian
kernel is explored for spatial modifications. For a fixed spatial extent s, Fig. 6.7 compares
the results of the compensation by two kernels. We can observe that the linear kernel is
resulting in a more visually pleasing luminance change than the Gaussian kernel.

The slope value s can be configured depending on the required trade-off between overall
brightness and the saturation artifacts. The simulated images for different slope values are
shown in Fig. 6.6. We can observe that as the slope becomes steeper, the luminance change
seems more noticeable. As expected, steeper slope also lead to minimum brightness reduc-
tion. Experimentally s = 0.0006 was found to have a good trade-off between brightness
and artifacts sensitivity.
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(a) Linear kernel (b) Gaussian kernel

(c) Linear kernel based spatial
modification

(d) Gaussian kernel based spatial
modification

Figure 6.7: Results of spatial modification based on linear and Gaussian kernel is compared.
For the same spatial extent, linear kernels produce perceptually less sensitive luminance
modification.
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The results of the proposed spatial modification with linear kernel and slope s = 0.0006
is compared with the global and pixel–wise correction in Fig. 6.9. Global luminance reduc-
tion is done by multiplying the target image by a single factor. Similar to spatial luminance
correction, the global luminance correction is carried out as follows,

TG1 = P ′max + min(β0) · (P ′max − T (x, y)) (6.20)

TGM = min(β1) · TG1(x, y) (6.21)

Minimum values of β1 and β0 maps are considered for global correction. Here, global lumi-
nance change can be imagined as an brightness sacrifice across all pixels for zero artifact
sensitivity, whereas pixel–wise luminance change maintains maximum achievable luminance
without any artifact sensitivity reduction. The proposed framework achieves a trade-off
between the luminance and artifacts by localized spatial correction around the saturation
artifacts. From the results, we can observe that the proposed spatial modification is al-
most always visually more pleasing than the global or pixel–wise luminance change. The
spatially modified simulated image is also significantly closer to the target image than the
compensated camera image.

6.5 Summary

In this chapter, saturation artifacts due to the limited dynamic range of the projector
are discussed in detail. Two types of saturation encountered due to the upper and lower
limit of the projector gamut are examined. Luminance modification, inspired from human
visual system properties, is suggested as a solution to the saturation artifacts. Pixel–wise
luminance modification was proposed which can be used with any radiometric compensa-
tion algorithm to reduce saturation. Yoshida’s linear model was used as an example to
elaborate the working of the pixel–wise correction model. To further reduce the sensitivity
of the luminance modification, a novel spatial modification was proposed to create smooth
luminance variation across the image making the artifact less sensitive to the human visual
system. Different kernels were explored to understand the nature of the spatial modifi-
cation. The parameter s, which determines the degree of smoothness was optimized for
the trade-off between image luminance and artifact sensitivity. Simulated results of the
proposed model were compared with the global and pixel–wise correction to verify the
improvement in performance.
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Figure 6.8: Target images

(a) Compensated im-
age with saturation.

(b) Global Correction (c) Pixel–wise Correc-
tion

(d) Proposed Spatial
Correction

Figure 6.9: The simulated results of the proposed spatial correction is compared with the
results of global, pixel–wise luminance modified target images. The proposed method is
able to produce perceptually pleasing images similar to the target images. The luminance
change is able to reduce the chrominance error and localized spatial modification is able
to reduce the sensitivity of luminance change.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, different components of the projector compensation framework were dis-
cussed and radiometric compensation was examined in detail. Various assumptions asso-
ciated with the existing radiometric models were studied and their performance on the
background with sharp edges was examined. It was found that the pixel level radiometric
model’s performance was affected by the choice of projector image in the calibration set
and led to background edge artifacts in the compensated image. A novel framework was
proposed that optimized the calibration set used for model development. The proposed cal-
ibration set contains smooth camera images and its corresponding non-uniform projector
images. The smooth camera images were obtained using an iterative approach. The new
framework also suggested to directly learn the compensation model from the calibration
set instead of inverting the learned radiometric model. Due to the inter–pixel coupling, the
compensation model is not equivalent to the inverse of the radiometric model and directly
finding the compensation model from the calibration set produces the best estimate of the
required model.

The proposed framework applied to Yoshida’s and Bimber’s linear models was able to
hide the background’s texture and edges completely. Its performance was compared with
the state of the art non-linear model using RMSE, SSIM and CIE2000 error metrics. A
novel median–based edge error metric was used to compare the ability of the radiometric
models to hide the background edges. The proposed method applied to Yoshida’s linear
model was able to achieve the best performance among the existing linear and non–linear
models. The optimum performance was achieved without any increase in model complex-
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ity. The proposed approach can be combined with any radiometric model to improve its
performance and robustness.

In Chapter 6, two types of saturation artifacts encountered during radiometric compen-
sation were studied. Pixel–wise luminance correction was proposed to reduce the chromi-
nance distortion at the saturated regions. To further reduce the perceptual sensitivity of
the luminance correction, a novel spatial luminance modification method was proposed to
have gradual luminance variation across the image. The simulated results of pixel–wise
correction and spatially optimized correction were compared with the global luminance cor-
rection method to show the superiority of the proposed approach. The approach enables
the use of limited dynamic range projectors for radiometric compensation by modifying
the target image with respect to the projector gamut.

The inverse approach can be combined with the spatial modification to provide a ro-
bust projector compensation framework, which can optimize projection on any arbitrary
background surface using any projector. The inverse approach can be used separately on
existing radiometric compensation model to improve its performance. Similarly, the spatial
modification can be combined with existing radiometric compensation models to reduce
saturation artifacts.

7.2 Future Work

The approaches proposed in this thesis can improve the performance of the existing mod-
els. However, this research can further be extended. For radiometric compensation, the
following extensions can be made:

• The brightness leakage of the projector–camera system can be modelled and incorpo-
rated into the compensation function to completely hide the edge artifacts for smooth
and textured target images.

• The compensation model can be developed such that the corrections are made with
respect to the human visual system, instead of the camera intensity values.

• The pixel based model can be made more efficient by analyzing the background
surface and clustering pixels with similar properties to develop a faster compensation
model.

The proposed image enhancement technique can also be improved by working on the
following:
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• Temporal adaptation of the luminance adjustment is needed to apply the spatial
modification approach to videos.

• Image quality assessment based on the human visual system’s luminance and contrast
sensitivity can be applied to evaluate the performance of the proposed model.

• A successful human visual system based error metric can lead the way for an opti-
mization framework which can automatically estimate the optimum slope s and αmin
described in Sections 6.3 & 6.4.

• Human visual system properties can also be used to chose different spatial extent or
slope value s for each saturated pixel depending on the luminance and contrast of
the surrounding regions, instead of constant slope s for an entire image as described
in Section 6.3.

Future steps provide different ways in which the projector compensation can further be
improved to make ubiquitous use of projectors on any background surface a reality.
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