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Abstract

TrueType is one of the most widely used vectorized font formats. It can be optimally
rendered on screens with different resolutions and different font sizes thanks to hints ex-
pressed as bytecode programs. Font engines execute the bytecode programs to adjust the
outlines of the glyphs. TrueType font bytecode is a highly-dynamic stack-based bytecode
language. It manipulates data with a global stack, and it uses hardware related informa-
tion, such as screen resolutions and font sizes, which are unknown at compile time. Thus,
it is hard to perform static analysis and optimizations on this bytecode.

Fonts are sometimes subsetted to only include the glyphs that appear in a webpage
before sending to the client. Existing font manipulation techniques do not touch the
bytecode, so subsetted fonts contain un-optimized bytecode programs. TrueType bytecode
analysis can help reduce bandwidth demands for serving webpages.

This thesis presents improvements to COI, a tool for manipulating TrueType bytecode.
New features include enhanced abstract execution as well as basic optimizations on COI,
such as tree shaking, no-effect instruction removal, and dead block elimination. Finally, it
completes the cycle by translating the COI back to TrueType bytecode.

We tested our tool on fonts from different font families, including Microsoft Core True-
Type font Arial, and NotoSansTibetan-Bold. Our experiments show that our optimizations
can reduce the size of bytecode by 0.37% to 18.82% of the test fonts in our benchmarks.
On average, we can reduce the size of bytecode of our test fonts by 7.10%. Our optimized
fonts yield the same bitmaps as the original font.
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Chapter 1

Introduction

TrueType is a vectorized computer font format introduced in 1991 by Apple. TrueType
fonts without hinting simply scale the glyphs’ outlines to the actual size of the glyphs
on the screen, and turn on the pixels which fall inside of the outlines. TrueType fonts
with hinting can adjust the shapes of the glyphs’ outlines to make them align with the
rendering devices. TrueType engines can render the hinted glyphs properly on screens with
different resolutions and font sizes thanks to its bytecode programs. The bytecode program
is used as hints to move the glyphs’ control points to their optimal positions, adjusting the
outlines of the glyphs according to the pixels per EM (ppem), which is related to the screen
resolution and font size. The formula for ppem is shown below. Chapter 3 introduces more
details about TrueType and how font engines work.

ppem = point size × dpi / 72

Since the bytecode programs are one of the core components in TrueType fonts, efficient
manipulations of TrueType fonts require the ablility to manipulate the TrueType bytecode.
Current TrueType font manipulation techniques modify the fonts without touching their
bytecodes. For example, the TrueType fonts used by a web page are sent to the client
along with the HTML files, and the font subsetting techniques are always applied to the
fonts to make them contain only the used glyphs in the webpages, to save the network cost
and the device’s memory. Current font subsetting techniques [18] can not optimize the
bytecodes with respect to the subsetted fonts. This makes the subset of the fonts contain
un-optimized bytecode, which detracts from the benefits of fonts subsetting.

Webpages account for 17% of all Internet traffic [21], and almost 70% of websites
contains custom fonts which each website serves 95 KB of fonts on average [12]. We have
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observed that, for some popular fonts, bytecode accounts for almost half of their size—46%
for Microsoft Core TrueType font Arial and 45% of NotoSansTibetan-Bold. So, our tool
can save the bandwidth significantly when a web server transmits millions of webpages
everyday.

1.1 Approach

TrueType font bytecodes are written in a highly dynamic stack based language. The pro-
gram manipulates a stack to handle the values when executing bytecode instructions, and
the instructions get information from graphics state as well, where the values are hardware
related. The dynamic features of TrueType bytecode make it hard to perform analysis
and optimizations on it. Three address codes are widely used in compiler design as an in-
termediate representation, and they are easy to analyze and optimize. Compilers perform
optimizations on three address codes before translating them to lower level languages or
assembly.

Previous work reported in Man’s master’s thesis [15] has proposed a three address code,
COI, and implemented a prototype abstract executor which transforms the bytecode to
COI. The previous project enabled the analysis and optimization of TrueType bytecode.
However, it did not carry out any analysis and optimization, nor did it implement the
inverse conversion from COI to TrueType bytecode.

In this thesis, we propose improvements to COI and the abstract executor, and imple-
mented some basic COI optimizations. We also completed the cycle by translating COI
back to TrueType bytecode, and tested that our optimized fonts do not change the output
bitmap compared to the original fonts at certain resolutions.

1.2 Contributions of Thesis

This thesis is built on previous work which designed COI and implemented an early proto-
type. However, it added a number of novel research contributions in making a font analysis
tool that actually works, in addition to adding engineering efforts. For example, previous
work did not handle jump instructions and uncertain callees, which can be found in a
many widely used fonts, such as the Microsoft Core TrueType font Arial. The research
contributions of this work enabled the analysis and optimization of such fonts.
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We also implemented some basic compiler optimizations on COI such as tree shaking,
dead code elimination and erasing code without effects [4]. Then we transformed COI back
to bytecode. The optimized TrueType fonts generate the same bitmaps as their original
fonts at tested resolutions.

We also designed a TrueType bytecode debugger tool, which can monitor the state
changes step by step.

We re-implemented the abstract executor, greatly increasing its efficiency. Even though
we did more computations and recorded more information, our new executor

1. runs more than 100 times faster;

2. consumes less than 1/50 as much memory as the previous implementation.
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Chapter 2

Related Work

The work of this thesis is based on or inspired by some related works.

2.1 Symbolic Execution and Static Analysis

Symbolic execution is a widely used static analysis technique. In symbolic execution, the
variables are represented by abstract symbolic expressions. Normal execution, where all
the data used are concrete, can be regarded as a special case of symbolic execution [13].
Recently, researchers have proposed concolic execution which combines symbolic execution
and concrete execution to overcome limitations of symbolic execution [16]. Csallner and
Tillmann determined likely program invariants by combining concrete execution with a
simultaneous symbolic execution [9]. Bush and Pincus proposed to detect dynamic errors
using symbolic execution by tracing the execution path [8]. Saxena and Poosankam in-
troduced symbolic variables for loop iterations, and linked these symbolic variables to an
input grammar [19].

Symbolic execution can be used to aid the analysis and optimization of programs. De-
mange, Jensen and Pichardie demonstrated a transformation from Java bytecode to a stack-
less intermediate representation and proved its semantic correctness [10]. Ma and Phang
proposed shortest distance symbolic execution (SDSE) and call-chain-backward symbolic
execution (CCBSE) strategies to find a realizable path to a given program point [14].
Pasareanu, Visser and Bushnell proposed a program analysis tool, Symbolic PathFinder
(SPF) where the variables are represented by symbolic expressions to generate test cases
and to analyze Java bytecode [5]. Shannon and Hajra proposed to symbolically execute
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string class, using forward symbolic execution, which can be used to analyze SQL database
queries [20].

Similarly, we use abstract symbols to represent the data, and develop abstract semantics
to compute over the abstract data. Our abstract executor performs symbolic execution on
TrueType bytecode programs.

Our ultimate goal in this work is to enable the analysis and optimization of TrueType
bytecode programs, which are written in a highly dynamic stack based bytecode language.
The TrueType font engine manipulates a stack to handle the data used by the program, and
some values in TrueType bytecode programs are associated with hardware specifications,
such as screen resolutions, which are not available at compile time.

2.2 Symbolic Range Propagation

Blume and Eigenmann proposed methods to compare abstract symbolic expressions. They
have enabled arbitrary abstract expression comparison during symbolic execution using
range propagation and range comparison [7]. Their work enables compilers to detect po-
tential optimizations such as zero-trip loops and dead code. It is also used to approximate
the program complexity, estimating the loop trip-count. Verbrugge, Co and Hendren pre-
sented a generalized constant propagation to statistically estimate the ranges of variables
within C programs [23].

We are inspired by their work, and introduced a range propagation and comparison
system in our abstract executor. TrueType bytecode programs decide to enter a branch
with respect to the specifications of the rendering hardware, and these information is
unknown at compile time. As we know that some branches of the bytecode programs
are not executed when rendering the fonts on devices with high screen resolutions. Range
propagation and comparison help us locate these dead blocks in TrueType bytecodes which
are not reachable when using the fonts on modern devices. (See 5.4.2 for details).

2.3 Goto Elimination

Similar to assembly languages, TrueType bytecode programs also contain unstructured
jump instructions. There are both conditional and unconditional jump instructions in the
bytecode which may direct the instruction counter to any point of the program theoretically.
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The jump targets in TrueType bytecode programs are unknown at compile time. Jump
instructions can jump across other control-flow structures (i.e jump instructions and if-
then-else blocks), forming complicated logic. So, we made efforts to eliminate the jump or
goto statements in our COI. Peterson, Kasami and Tokura demonstrated an algorithm to
make arbitrary flowgraph well-formed using node-splitting, and proved the equivalence [17].
Erosa and Hendren proposed an algorithm to eliminate goto statements in C programs,
which directly works on high-level abstract syntax tree. Their algorithm applies a sequence
of goto-movement transformations followed by a sequence of goto-elimination transforma-
tions [11].

Similarly, we moved the instruction counter following goto instructions and then mod-
ified the initial control-flow graph of the programs to eliminate jump instructions.

2.4 Three Address Code

Compilers translate the abstract syntax tree to intermediate representations by the end
of the semantic analysis phase. There are many intermediate representations, including
directed acyclic graphs (DAG), stack-based bytecode, and three address code.

Three address code is widely used for intermediate representations since it enables ma-
chine independent optimizations, such as dead block elimination and code motion. It is
possible for compilers to generate target code without the help of intermediate represen-
tations, but the compilers will miss potential of optimizations [4].

The Soot framework converts Java bytecode to three intermediate representations, and
makes it simple to manipulate Java bytecode [22]. This work was initially inspired by
Soot. Analogously, we converted TrueType bytecode to COI, a stack-less three address
representation, which enables basic optimizations widely used by compilers, and thus the
optimization of dynamic TrueType bytecode.

Potential future optimization techniques include inverse-inlining, where code blocks
with the same pattern are factored into a compiler-created function, and leaf function
optimization, where non-leaf functions are translated into leaf functions. In future work,
we will explore more optimization schemes which will work better on TrueType bytecode.

6



2.5 Fonttools and FreeType 2

Fonttools [1] is a TrueType bytecode manipulation tool. It not only performs merging and
subsetting of TrueType fonts, but also converts between the TrueType font format and an
XML-based format. We used Fonttools to manipulate our input and output data. We first
convert .ttf files to the XML-based format, as our input data, and convert our optimized
XML-based format file back to .ttf file using Fonttools.

FreeType 2 [2] is an efficient, highly customized and portable font engine. It not only
supports accessing the contents of TrueType font, but also supports other popular font
formats such as CCF, OpenType and so on. Freetype 2 does not manipulate text layout.
Instead, it provides a low level and easy to use interface to access font files, which fulfills
our needs perfectly.

FreeType 2 generates an array containing the bitmap for each glyph in a TrueType
font, at specific screen resolutions. We use FreeType 2 to verify our output, by comparing
the bitmaps of the original fonts to our optimized fonts with tested resolutions.

2.6 COI: A First Step Towards TrueType Bytecode

Analysis

Man proposed and implemented a prototype abstract executor for TrueType bytecode [15],
which converted the TrueType bytecode programs to a three address code, COI. Her work
is the foundation of this thesis. It also proposed some ideas for bytecode optimizations. A
lot of ideas in the previous work appear in our work.

We proposed many new ideas and introduced new features to COI in this work, to
make the abstract executor stronger, as explained in chapter 5. We also performed basic
optimizations on COI and closed the cycle, by implementing inverse conversion from COI
to TrueType bytecode.
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Chapter 3

Background

3.1 TrueType Font and Font Engines

TrueType font is a vectorized computer font format developed by Apple and Microsoft,
and it has became one of the most common font format on the most popular operating
systems, such as Mac OS, Ubuntu and Microsoft Windows. The glyphs in a TrueType font
are digitized as a specific format to instruct a software, which is called the TrueType font
engine, to draw the glyphs as needed.

When the font glyphs are requested, the font engine creates a bitmap for each glyph,
and the bitmaps can be shown on the screen.

TrueType font glyphs can be displayed on screens with different resolutions precisely,
because font engines create the optimal bitmaps for the glyphs whenever the font is initially
imported to an application or whenever the user changes the size of the font.

3.2 TrueType Bytecodes

To create optimal bitmaps for different resolutions and font sizes, font engines execute
the bytecode programs in the TrueType font files. By executing the bytecode programs,
the font engine adjusts the outlines of the glyphs in the font, hence makes them in their
optimal positions on the rendering screen.

TrueType font engine manipulates a stack to handle data used by the program, and
the bytecode instructions also access and modify the values in graphics state, where the
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values are associated with rendering devices. The dynamic features of bytecodes is the
motivation of our work. It is almost impossible to perform analysis and optimizations
directly on TrueType bytecode. So, we enabled analysis and optimizations of bytecode
programs by converting them to a three address code, COI, and translated the optimized
COI back to TrueType bytecode.

3.3 Components of TrueType Font

For the purpose of understanding our project, we introduce some important components
of TrueType font. A TrueType font contains:

• a control value table (cvt),

• a font program,

• a control value program,

• a set of glyphs.

The control value table contains the values associated with font features and is useful
when rendering the font on an application. The cvt has default values even when the
concrete environment is not given. However, control value table is optional, and some
fonts do not have cvt.

The font program and the control value program are TrueType bytecode programs.
Whenever an application requests that a font be rendered, a font engine executes the font
programs first. The font program defines a set of functions with integer identifiers, which
can be used by other programs through CALL[] or LOOPCALL[] bytecode instructions.
This is similar to defining functions in other programming languages. Font creators have
presumably factored the code which can be re-used into functions.

The font engine executes the control value program whenever the font is initially im-
ported or the user changes the font size. It resets the default values in the cvt and graphics
state of the font for the specific screen and font size.

The font also contains a set of glyphs. Each glyph consists of a sequence of control
points and a bytecode program, which is called a glyph program. The font engine executes
the glyph program of each glyph to adjust the positions and the shapes of the outlines to
make them optimal to the rendering screen.
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The bytecode programs are stack-based. The engine uses a stack to manipulate the
data when executing the bytecode programs, and some bytecode instructions use hardware
related data which are unknown statically.

There are more components in a TrueType font, which are irrelevant for our work.
For example, head table contains the information about the font such as the font version
number and modification date; kern table contains the inter-character spacing for glyphs.
The apple TrueType reference manual provides detailed TrueType components [6]. The
knowledge of the components above is sufficient to understand our work.

3.4 Glyph Representation in TrueType

A TrueType font contains a set of glyphs. Each glyph consists of two core parts, the master
outline of the glyph, and a glyph program.

The master outline of a glyph is defined by a set of contours, and it is device inde-
pendent. Contours are closed curves, which are building blocks of glyph shapes. They
are defined by a spline of continuous quadratic Bezier curves, whose control points are the
point sequence defined in the glyph.

Theoretically, a second order Bezier curve is represented by 3 control points, one of
which is off curve, and the other two are at the ends of the curve. Since the curves are 1st
order continuous, one or two of the control points can be implied by their adjacent curves,
hence omitted. The points are order sensitive, since they are not only used to define the
track of the contour, but are also used to define the orientations.

The font engine executes each glyph program to move the control points of the outline
to their optimal positions, before the font needs to be rendered (see section 3.5).

3.5 How Font Engines Render a Glyph

As we introduced in previous sections, font engines render fonts whenever applications
request that fonts are displayed. A font engine renders fonts as follows.

The font engine first executes the font program. It identifies FDEF[] and ENDF[] in-
structions as delimiters. Every bytecode instruction between a pair of FDEF[] and ENDF[]
is in the body of a function. The engine puts the set of program functions into a function
table for future use. Note that the engine only executes the font program once, when the
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font is initially accessed. The execution of the font program is similar to declaring and
defining functions in Java.

Then the font engine executes the control value program. The control value program
is executed whenever the application initially requests the font or asks for a new size to be
rendered. This bytecode program resets the default values of the control value table and
the graphics state for the specific devices and font sizes.

Finally, the font engine draws the bitmap for each requested glyph in the font. Because
the glyph program may modify the values in the control value table and the graphics state,
the font engine always resets the values in the cvt and the graphics state to their defaults,
before drawing the next glyph.

The procedure of rendering a glyph is as follows. Figures 3.1, 3.2 and 3.3 show the
procedure [6].

1. The engine scales the master outline of a glyph to its desired size, changing the
coordinates of the points from device independent to device dependent. The font
engine stretches the master outline by multiplying the coordinates by a scalar, which
can be calculated with the formula below. This transformation is device dependent, as
seen from the formula. The outline of the glyph is called a scaled outline (Figure 3.1)
after this transformation.

scalar = point size × resolution / (72 × points per inch × units per em)

2. Then the engine executes the glyph program to adjust the scaled outline to its optimal
position to the device and the font size. The key effect of executing the glyph function
is to move the scaled outline’s control points. This procedure is called grid-fitting.
The purpose of grid-fitting is to eliminate the effect of chance relationships to the
grid and to control key dimensions. The adjusted outline is then called the grid-fitted
outline. In this case (Figure 3.2), the font engine makes both vertical lines of the
Capital H wider a little bit.
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Figure 3.1: The engine transforms the master outline to device dependent outline by
multiplying the coordinates to a scalar.
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Figure 3.2: The engine adjusts the scaled outline by executing the bytecode programs.

3. A part of the font engine, which is called the scan converter, turns on the pixels
which fall within or on the grid-fitted outline by applying some rules to create the
bitmap (Figure 3.3) of the glyph with respect to the specific screen and font size.

Figure 3.3: The engine (scan converter) turns on the pixels fall within or on the grid-fitted
outlines to generate the bitmap.

A font engine does subtler work to render a font, but for our purpose, it is sufficient to
know these steps. The Apple TrueType Reference Manual [6] provides more details.
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Chapter 4

Motivation

In previous chapters, we have introduced TrueType fonts and the their bytecode programs.
We also described briefly how font engines draw bitmaps for glyphs whenever an application
requests that a font displayed. In this chapter, we discuss our motivation of TrueType
bytecode analysis and optimization, and why we need a three address code representation
to analyze and optimize the bytecodes.

4.1 TrueType Bytecode Analysis and Optimization

Many TrueType bytecodes are generated by auto hinting software [3]. Also, existing font
manipulation techniques [18] modify the TrueType fonts without touching the bytecodes,
which create un-optimized TrueType fonts. Bytecode programs decide to enter different
branches by comparing the ppem with thresholds. Pixels per EM is related to the dpi of
the rendering devices and the font sizes, and it is derived using the formula below. On
some modern devices, the values of ppem are always greater than thresholds, and this
causes some branches to be unreachable.

ppem = point size × dpi / 72

So, analysis and optimization on TrueType fonts may generate more efficient TrueType
bytecode for modern devices, and makes font subsetting techniques more efficient as well.
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4.2 The Difficulty of TrueType Bytecode Analysis

The font engine uses a stack to manipulate the values, and it interacts with graphics
state where the values are associated with rendering devices. It is almost impossible to
know some values before a concrete runtime environment is given. The existence of some
instructions in TrueType bytecodes makes their analysis even harder:

4.2.1 Hardware Specification Related Instructions

Some instructions push hardware or font engine related values on the stack. For example,
GETINFO[] pushes the data about the version of the TrueType font engine as well as the
characteristics of the current glyph on the stack; MPPEM[] measures the current ppem,
which is determined by the current rendering device and the font size.

The outputs of these instructions are abstract without a concrete runtime environment,
and these abstract values are propagated through the symbolic execution. The existence
of these instructions impedes the static analysis of the TrueType bytecode.

4.2.2 Control Flow Instructions

Control Flow instructions in TrueType bytecode include IF[]/ELSE[]/EIF[],
CALL[]/LOOPCALL[] and JMPR[]/JROT[]/JROF[] instructions. These instructions de-
termine the next instructions to be executed.

1. IF[]/ELSE[]/EIF[] instructions form an if-then-else block. The conditions are popped
off the stack, and are statically unknown.

2. CALL[]/LOOPCALL[] instructions make the program execute a pre-defined function.
The target function identifiers are unknown before runtime.

3. JMPR[]/JROT[]/JROF[] instructions moves the instruction counter to a new location
specified by the offset which is popped off the stack. This may change the structure
of the program in an unpredictable way.

In real life, if-then-else blocks can be nested and jump instructions entangle with if-
then-else blocks, forming more complicated control flow structures.
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4.3 Enabling Analysis of TrueType Font Bytecode

As we discussed in the previous section, analysis directly on TrueType bytecode is hard.
We need another form of TrueType font program representation, on which the optimization
techniques can easily apply.

Previous work [15] designed COI, a three address code, and implemented a prototype
abstract executor to convert bytecode to COI. COI enables analysis and optimization on
TrueType font bytecode programs. In this work, we improved the design of COI and the
abstract executor to make it more practical, and implemented basic optimizations on COI.
We also round tripped it by implementing reverse conversion.
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Chapter 5

Methods

Figure 5.1 illustrates the overall organization of our research tool. We have improved on
previous work by adding COI optimization and round-tripping from COI back to TrueType
font bytecode.

5.1 Overall Structure of Project

Our tool performs the following steps on a TrueType font.

• Extracts the bytecode of the control value program, font program and glyph pro-
grams.

• Executes the font program, building the global function table.

• Performs symbolic execution on the control value program and then on each glyph
program separately.

• Generates the COI representation at the same time of symbolic execution. Our
tool records the graphics state and control value table after executing the control
value program and restores the environment to that after executing the control value
program before executing the next glyph program.

• Optimizes COI programs.

• Compiles the optimized COI programs back to TrueType bytecodes.
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• Generates an optimized font, and validates the optimized font by comparing the
bitmaps of the optimized fonts to the initial fonts using external FreeType 2 library.

5.2 Improvements

Our tool builds on the previous work and we improve it in a number of ways. These
improvements not only consist of research contributions, but also result in a tool, which is
for the first time, usable by end users for font manipulation. Our improvements include:

• Completed the symbolic execution of instructions; modelled TrueType bytecode op-
erations in details; enhanced our symbolic execution engine.

• Implemented variable range propagation and comparison in COI.

• Approximated uncertain call destination in TrueType bytecode.

• Handled unstructured jump instructions by modifying the bytecode program struc-
ture.

• Fixed bugs in the previous implementation, such as if-then-else block handling, and
loopcall handling.

• Implemented basic compiler optimizations on COI.

• Implemented round tripping from three address code back to TrueType bytecode.

• Implemented testing of our bytecode transformations by leveraging external FreeType2
library.

• Implemented a GUI debugger to aid users understand the effects of TrueType byte-
code.

• Increased the speed by over 100 times and decreased the memory usage to less than
1/50 of the earlier prototype.
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Figure 5.1: Overall structure of the project
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5.3 Symbolic Execution and COI Generation

We introduce our implementations of symbolic execution and COI generation in this sec-
tion. Section 5.3.1 to section 5.3.5 introduce the ideas and methods we continued to use
from the previous work briefly, and we have revised the explanations and improved the
implementations. Section 5.3.6 to section 5.3.12 discuss our novel inventions.

5.3.1 CFG Construction

The first stage of our tool is to read the bytecode programs from an XML based for-
mat font generated by the external FontTools [1]. We then construct the control flow
graphs for the functions, the control value program and all glyph programs separately.
The CFG construction for non-control-flow instructions is straight forward. We make es-
timation on the successors of the control-flow instructions, such as IF[]/ELSE[]/EIF[] and
JROT[]/JROF[]/JMPR[].

We set the successors of an IF[] instruction to be its following instruction, the ELSE[]
instruction (if applicable) and the EIF[] instruction in the same level. We assume the
successor of other control-flow instructions to be their next instruction at this stage, and
we will modify the CFG at symbolic execution stage.

CALL[] and LOOPCALL[] are also control flow instructions, but we treat them as
non-control-flow instructions at this stage.

5.3.2 Abstract Executor

Traditionally, a TrueType font engine concretely executes the bytecode, so it has explicit
inputs and outputs and produces concrete bitmaps for each glyph.

Instead of executing the TrueType bytecode with a concrete font engine, we execute
the bytecode programs with our abstract executor.

The primary difference between our abstract executor and a font engine is that the
values in the program stack and in the components of graphics state, such as the control
value table, storage area could be uncertain. So, the abstract executor does not have a
complete runtime context.

Decision making instructions, such as IF[] instruction, direct the program to different
branches. When a font engine concretely executes a bytecode program, the program can
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only enter one of the branches. Since we don’t have a concrete runtime context and the
values on the stack could be uncertain, we symbolically execute all possible branches.

Non-control-flow instructions are simply executed in sequence, but control-flow instruc-
tions require special treatment. Previous work handled control-flow instructions as follows.

• Function Call

A function call instruction sends the flow of control to the first instruction of a pre-
defined function and stores the instruction after the call instruction on a call stack.
The instruction counter resumes executing the caller after it finishes executing the
callee function.

Since function calls can be nested and recursive, the abstract executor uses a stack
to store call records. When a function is called, the abstract executor pushes a new
instance of call record on the stack, and it pops off the top call record at return. This
behaves like function call management at runtime in other programming languages.

The LOOPCALL[] instruction is specific to TrueType fonts. It calls a function mul-
tiple times consecutively. The font engine reads the iteration count from the graphics
state at runtime.

Because the stack elements could be uncertain in symbolic execution, the call targets
are also uncertain sometimes. This is similar to dynamic dispatch in Object Oriented
languages or function pointers in C. Section 5.3.10 explains how our abstract executor
supports uncertain callees in our new implementation.

• If-then-else Block

We assume that the program can enter either branch at runtime. So, we execute
the then-branch first and restore the environments to the status before entering else-
branch. Then we execute the instructions in the else-branch. We finally merge the
environments of the two branches at the end (see section 5.3.9 for details), which is
a standard abstract execution technique.

5.3.3 Stack Depth

As implemented in previous work, we track the stack depth when performing symbolic
execution. Since we generate three address code at the same time as symbolic execution,
we assign identifiers associated with the stack depth to variables.
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5.3.4 Uncertain Variables

The value of a COI variable could be either concrete or uncertain. An Uncertain variable
is introduced in two possible ways.

1. By executing an instruction which pushes an uncertain hardware related
value to the stack. For example, MPPEM[] pushes the ppem to the program stack;
MPS[] instruction pushes the point size on the stack.

2. By environment merging. If the values of the same variable in different branches
are not the same or the value of the variable is uncertain in either branch, the variable
in the merged environment becomes uncertain.

We previously asserted that the stack depths are the same at the end of the two branches
of an if-then-else block. We generalized this assertion in this work to that the stack effects
are the same in arbitrary number of branches of the program. This could happen when a
callee is uncertain. We handle uncertain callees by executing all possible functions, where
the number of possible functions can be arbitrary.

5.3.5 COI Translation

In this section, we briefly introduce how the previous implementation converted byte-
codes to COI. We still use these ideas in our work to represent abstract data types, to
convert arithmetic instructions, to express the parameters of instructions, to translate
CALL[]/LOOPCALL[] instructions and so on.

• Abstract Data Types

An instruction may push an abstract graphics state value on the stack. We de-
fined some abstract data types for these instructions. For example, MPPEM pushes
a PPEM X or a PPEM Y to the stack, where PPEM X refers to the ppem value with
respect to horizontal coordinate, and PPEM Y is respect to vertical coordinate.

• Assignment statement

Figure 5.2 shows some examples of assignment statements. Instructions which push
values on the stack generate assignment statements, such as PUSH[], DUP[], SWAP[],
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1. PUSHB[ 9 ]
2. SRP0[ ]
3. MPPEM[ ]

$var 1 := 9
$graphics state[rp0] := $var 1
$var 1 := PPEM X

Figure 5.2: Assignment statements

and MPPEM[] instructions. The instructions which modify values in the indexed
storage area, such as WS[] (i.e write storage) instruction, also generate assignment
statements.

The left hand side of an assignment statement is either a variable name which is
determined by the stack depth, or a graphics state entry. The right hand side can be
one of a constant, uncertain data type, variable, graphics state entry or binary/unary
operation depending on which instruction generates the assignment statement.

• Action statement

Instructions which perform TrueType specific actions generate action statements. For
example, point moving instructions, such as MDRP[], generate action statements.

• Binary and Unary Operations

We treated arithmetic and logic operations as binary and unary operations. Binary
operations include ADD[], SUB[], MUL[], DIV[], GTEQ[], LT[] and so on. Unary op-
erations are NOT[] and NEG[]. We translated these instructions in a straight forward
way, combined with an assignment statement.

1 1. ADD[ ] $var_1 := $var_2 + $var_1

2 2. NEG[ ] $var_1 := - $var_1

Listing 5.1: Binary and Unary Statements

Listing 5.1 shows examples of statements that represent binary operations and unary
operations.
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• Arguments

The values consumed by an instruction go to the argument list of the corresponding
COI statements.

For example, SHZ[] shifts the zone using reference point, which is is popped off the
stack. We translated SHZ[] as following. $var 1 is the variable of the top element on
the stack, and it is in the argument list of the shz action statement.

1 shz($var_1)

• CALL[] and LOOPCALL[]

A CALL[] instruction is translated to a special assignment statement. We put return
values on the left hand side of the assignment statement. A function that returns void
does not have the left hand side component. The right hand side of the assignment
statement is a call expression followed by its call destination and the argument list.
Section 5.3.7 explains how our new implementation finds the parameters and return
values of functions.

LOOPCALL[] is similar, but it also indicates the iteration count on the right hand
side.

Listing 5.2 shows examples.

1 1. $var_1 ,$var_2 := call 0 ($var_1)

2 2. loopcall 0 5 ()

Listing 5.2: CALL and LOOPCALL

5.3.6 Detailed Modeling of Point Moving and Graphics State
Instructions

From this section, we emphasize our improvements and innovations.

One of our improvements is that we modelled point moving instructions (such as
MDAP[], MDRP[]) and graphics state instructions (such as SRP0[], SDS[]) in more de-
tails. The previous implementation only took care of the stack effects of these instructions,
which we found to be insufficient.
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Some point moving instructions have side effects, such as setting zone pointers and
setting reference points. A better modelling of these instructions helps us to locate in-
structions with no effects (see section 5.4.2). For example, if an instruction has a side
effect of changing the reference point 0 to p, we don’t need to execute a set reference point
0 (SRP0[]) instruction right after it which sets the reference point to p again.

Take the MDRP[] instruction as an example. The previous implementation modelled
it simply by popping a point number p off the stack. In fact, MDRP[] moves point p so
that the distance from its new position to the current position of reference point 0 is the
same as the distance between the two points in the original uninstructed outline, and then
adjusts it to be consistent with the Boolean settings [6]. So, it uses some graphics states,
such as zp0 (zone pointer), zp1, rp0 (reference point), freedom vector, etc. We deep copy
these states when abstract executing these instructions and store it in the data structure
of the COI, and we execute their side effects as well in this work.

5.3.7 Parameters and Return Values of Functions

A TrueType CALL[] instruction generates a call statement in COI, where the left hand
side indicates the return values and the variables in the parentheses on the right are the
arguments consumed by the function.

1
2 PUSHB [0] $var_3 := 0

3 CALL[ ] $var_1 , $var_2 := call $var_3 ( $var_2 , $var_1 )

Listing 5.3: Function call with parameters and return values

In Listing 5.3, the CALL[] instruction calls function 0. Assume that we have 3 elements
on the program stack before executing CALL[]. The top element is the call destination (i.e
0). The instructions in function 0 modify 2 values on the stack.

In the previous implementation, the parameters and return values of a function were
determined by a pre-computed stack effect for the function. If the called function reduced
the depth of the stack, the call statement considered the reduced variables as parameters
and no values were returned; if the called function increased the depth of the stack, the
increased variables were considered as return values of the function and the function did
not take arguments.
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However, we found that the previous approximation was incomplete. The arguments
of a function should be all the values used in the function body, while the return values
of a function should be the values changed by the function, which could be either new
values or modified values. A function can have both parameters and return values. But in
our previous implementation, a function can not have both parameters and return values.
Thus we replaced it with a new function parameter and return value finding mechanism.

In our new implementation, the number of parameters is the depth to which the called
function instructions penetrate the stack, and the number of return values is the difference
between the number of parameters and the stack effect of the function. In this way, every
value used by the instructions of the function is an argument, and every value modified
or written by the function is a return value. Thus, our new implementation can handle
functions with arbitrary return values and parameters.

We also need to assign variable names to arguments and return values. Let the number
of parameters be p, and number of return values be r. The arguments of the function call
are simply the top p elements of the stack before executing the CALL[] instruction, and
the return values are the top r variables of the stack after return from the called function.

In Listing 5.4, assume that we have 3 values on the program stack before executing the
PUSHB[0] instruction. Listing 5.5 shows the instructions of function 0 and the program
stack before calling function 0 ($var 3 is the top element). The values in the stack are
represented by COI variables.

1 PUSHB [0]

2 CALL[ ]

Listing 5.4: A function call example

1 function 0: program stack upon

2 entry to function 0:

3
4 ADD[ ] $var_1

5 ADD[ ] $var_2

6 ENDF[ ] $var_3

Listing 5.5: Function 0 instructions and stack

Function 0 simply performs two additions. The first ADD[] pops two values off the
stack, calculating their sum, and pushes the result back. The second ADD[] pops the
result of the last addition operation and another value off the stack, and pushes the sum
back to the stack again.
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It is obvious that function 0 reads three values on the stack and pushes the sum of
them to the stack.

$var 1 will be the only value on the stack after function 0 returns. The value of $var 1
is changed to be the sum of the top three values by the function. So, we represent the
CALL[] instruction with the following statement.

1 $var_1 := call $var_4 ( $var_3 , $var_2 , $var_1 )

Notice that we interpreted the call destination in the COI statement as a variable.
This was a concrete function id in the previous implementation. Our new implementation
representation is more accurate since the callees are sometimes uncertain (see section 5.3.10
for details).

5.3.8 Range Propagation and Comparison

Inspired by Blume and Eigenmann [7], we designed a range system to track ranges for
COI variables. Since the type of a concrete value in bytecode is one of integer, fixed point
number, or a boolean value, the range of a variable can be represented with extended
integer ( i.e (−∞,+∞) ).

Variable value ranges are helpful for solving the problem of uncertain callees (sec-
tion 5.3.10), narrowing the range of ppem (section 5.4.3), and locating unreachable byte-
code.

The ranges are propagated through arithmetic and logic operations. Instructions writ-
ing to indexed storage (such as WS[] and WCVTP[]) also store ranges of written values.
These ranges can be extracted by indexed storage reading instructions (such as RS[] and
RCVT[]).

The range of a variable is also merged when merging environment of branches, and the
merged range is the smallest connected set which contains both ranges as shown in the
formula below.

[a, b] ∪ [c, d] = [min(a, c),max(b, d)]

For example, if a variable’s range is [−2, 2] after exiting a then branch, while it is
[−1,∞) at the end of the else branch, then the merged range of the variable after this
if-then-else block is [−2,∞).
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The priority of our range system is soundness. We then try our best to narrow the
range. So, it is our goal that the actual range of variables are subsets of ranges we get (i.e
R′ ⊆ R, where R is the actual range and R′ is the range we compute).

The lower bound and upper bound are the same for concrete values. They are initially
introduced by push instructions. For instance, PUSHB[1] generates a variable with range
[1, 1].

5.3.9 Environment Merging

Values that depend on program input are only known at runtime. We don’t know the the
values when performing symbolic execution. TrueType bytecode can propagate uncertain
values in two ways.

The first way, which can initially introduce uncertain values, is through instructions
which push hardware related values. For instance, the MPPEM[] instruction pushes the
ppem of the current rendering context; and MPS[] measures the current point size and
pushes it on the stack. It is in principle impossible to know the values that will be pushed
by these instructions before executing the code concretely, although we can estimate them
for certain target display classes.

The second way is by environment merging. For example, in the COI, there may be a
variable $var defined in both branches of an if-then-else block, and $var still exists after
the program leaves the block. We merge the values of $var in the two branches right
after leaving the if-then-else block. If $var has different values in different branches or
it is uncertain in either of the branches, then $var gets a merged range as described in
Section 5.3.8.

The previous implementation only merged the stack (represented as COI variables).
However, merging values of graphics state and indexed storage areas (i.e., control value
table and storage area) is also important, because two branches of a program may have
different effects on graphics state and indexed storage. These values may be retrieved for
further computation. Failure to merge these values leads to inaccurate range propagation
and COI generation.

Consider the following COI in Listing 5.6. The then-branch sets storage area 1 to 5,
but the else-branch sets storage area 1 to 10. The program reads the value of storage area
1 after the if-then-else block.
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1 if ($var_1) {

2 $var_1 := 1

3 $var_2 := 5

4 storage_area[$var_1] = $var_2

5 }else{

6 $var_1 := 1

7 $var_2 := 10

8 storage_area[$var_1] = $var_2

9 }

10
11 $var_1 := 1

12 $var_1 := storage_area[$var_1] // $var_1 is uncertain ,

13 // and it has range of [5, 10]

Listing 5.6: Storage area merging example

In our new implementation, we not only merge the values in the graphics state and
indexed storage, but also the ranges of variables, as stated in section 5.3.8.

We generalized environment merging to support merging arbitrary number of branches.
A CALL[] instruction may have an uncertain destination, and all of these candidate func-
tions are considered as branches. Arbitrary branch merging enables us to execute every
possible function at a CALL[] instruction. This is one of the techniques we used to solve
the uncertain callee problem (section 5.3.10).

We asserted that the stack effect of different branches are the same at environment
merging. We found that there exist bytecode programs in some fonts violate this assertion.
If it happens in the control value program, our tool exits immediately and the tool does
not work on this font. If it happens in a glyph program, we stop executing the current
glyph program, and try the next glyph, which means our tool does not work on this glyph.
In this case, we can not remove the uncalled functions, since our symbolic execution is
incomplete, and we do not know whether the skipped glyph programs call the unused
functions we found.

5.3.10 Uncertain Callee

The CALL[] instruction is one of the control-flow instructions which influences the next
instructions to be executed. The environment can be different when returning from dif-
ferent functions. The destination of a call instruction depends on the stack and thus can
potentially be uncertain, which impedes the symbolic execution.
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Uncertain callees sometimes occur in real life TrueType bytecode. Consider the code
in Listing 5.7, which can be found in Microsoft Core TrueType font Arial. Assume that
only one variable is on the stack before executing the first instruction. Assume $var 1 is
uncertain and has range (−∞,+∞).

1
2 // stack height = 1 ; $var_1 has range (−∞,+∞)
3
4 DUP[ ] $var_2 := $var_1

5 ROUND [01] $var_2 := ROUND [01]( $var_2)

6 PUSHB [64] $var_3 := 64

7 SUB[ ] $var_2 := $var_3 - $var_2

8 PUSHB [0] $var_3 := 0

9 MAX[ ] $var_2 := max($var_3 ,$var_2)

10 DUP[ ] $var_3 := $var_2

11 PUSHB [44, 192] $var_4 := 44

12 $var_5 := 192

13 ROLL[ ] $var_6 := $var_5

14 $var_5 := $var_3

15 $var_3 := $var_4

16 $var_4 := $var_6

17 MIN[ ] $var_4 := min($var_5 ,$var_4)

18 PUSHW [4096] $var_5 := 4096

19 DIV[ ] $var_4 := $var_5 / $var_4

20 ADD[ ] $var_3 := $var_4 + $var_3

21 CALL[ ] call $var_3 ( )

Listing 5.7: TrueType bytecode from Arial with uncertain callee

The abstract executor pops the call destination off the stack which is unknown at static.
The uncertainty of the program in Listing 5.7 was introduced initially by copying $var 1,
which is the input of this function. Note this is much easier to see in COI on the right than
bytecode: The call target is indicated as $var 3, and we can follow its value explicitly. In
this program, $var 3 at the bottom is uncertain.

Next, we re-examine the above code from Listing 5.7, but now include the ranges for
the COI variables. Listing 5.8 shows the ranges of the variables on the left hand side of
the COI statements.

1
2 $var_2 := $var_1 (−∞,+∞)
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3 $var_2 := ROUND [01]( $var_2) (−∞,+∞)
4 $var_3 := 64 [64, 64]
5 $var_2 := $var_3 - $var_2 (−∞,+∞)
6 $var_3 := 0 [0, 0]
7 $var_2 := max($var_3 ,$var_2) [0,+∞)
8 $var_3 := $var_2 [0,+∞)
9 $var_4 := 44 [44, 44]

10 $var_5 := 192 [192, 192]
11 $var_6 := $var_5 [192, 192]
12 $var_5 := $var_3 [0,+∞)
13 $var_3 := $var_4 [44, 44]
14 $var_4 := $var_6 [192, 192]
15 $var_4 := min($var_5 ,$var_4) [0, 192]
16 $var_5 := 4096 [4096, 4096]
17 $var_4 := $var_5 / $var_4 [0, 3]
18 $var_3 := $var_4 + $var_3 [44, 47]
19 call $var_3 ( )

Listing 5.8: TrueType code with uncertain callee, now with the ranges of the assigned
variables on the left

We know that the candidate call destination ranges from 44 to 47 by following the
propagation of variable ranges. We deal with uncertain callees by symbolically executing
every candidate function, which is analogous to standard treatments of dynamic dispatch.

We complete executing the whole bytecode program when we try a candidate function.
If the symbolic execution fails at some point, we recover the program state back to that
before the CALL[], and try the next candidate function. If the execution completes suc-
cessfully, the candidate function is marked as called, and then we restore the environment
and go to the next candidate.

All working candidate functions may be called under different concrete run time envi-
ronments, and the called functions will be kept within the font program in the optimization
stage. If two candidate functions have different stack effects, but both enable the rest of
the program to execute, then we mark both of them as called functions. According to our
experiments, the stack effects of all valid candidate functions are the same.
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5.3.11 Vest

This thesis introduces the novel concept of a vest. A vest temporarily modifies the control-
flow structure of a CFG for the duration of one compilation pass. We originally anticipated
that control-flow targets would change more dynamically than what we found in practice.
Although vests are novel, they are less useful than we had originally expected, and we do
not use the full generality of vests in our transformations. We have implemented vests in
our abstract executor and use this mechanism to handle some cases of jump instructions.

Every instruction in a COI CFG can possess a vest. A vest is a pointer to another
instruction. Vests can be recursive (i.e. a vest can also have a vest). When our abstract
executor executes an instruction with a vest, it moves the execution to the vest instruction,
and takes off the vest if the vest instruction does not have another vest.

Consider the following example.

1 PUSHB [0] (line 3)

2 PUSHB [1]

3 PUSHB [2] (line 2)

In the code above, the 3 instructions are in program order (i.e. the 1st line’s successor is
the 2nd line, and the 2nd line’s successor is the 3rd line). The instruction in the parentheses
after each instruction is its vest. According to rules we defined, the executor executes line
2 and line 3 in order, but line 1 will not be executed since the execution is not directed
back to line 1 in this program.

The abstract executor works as follows. The execution starts from line 1. The abstract
executor’s instruction counter moves to line 3 directly without executing line 1 since line
1 has a vest pointing to line 3. Then the execution directly moves to line 2, since line 3
has a vest pointing to line 2. Line 2 does not have a vest and it is executed. In the next
step, the instruction counter moves to line 3 by following the natural control flow. Line
3 has no vest anymore (the vest is taken off at the first visit) and it is executed. The
instruction counter finally moves forwards to the successor of line 3. Hence, line 1 has not
been executed.

Figure 5.3 illustrates the situation. The diagram on the left hand side is the control flow
of the original instructions. Right hand side is the flow diagram after we assign vests to the
instructions and apply our rules. The nested square represents the vest of the instruction;
the lines with arrows indicate the control flow; the numbers next to the lines indicate the
order; and the descriptions tell what happens at each step.
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PUSH[1]

PUSH[3]

PUSH[2]

PUSH[1]

PUSH[2]

PUSH[3]

PUSH[3]

PUSH[2]

Start;
take off the vest;
proceed to the vest inst.

Take off the vest;
proceed to the vest inst.

No vest, execute
the instruction.

No vest, execute
the instruction.

End.

1

2

34

5

Start.

End.

Figure 5.3: Flow diagram of instructions with vests

As we described in section 5.3.1, we estimated the CFG for control-flow instructions at
CFG construction stage. We use vests to modify the control flow of the bytecode programs
temporarily, enabling our abstract executor to handle the jump instructions (section 5.3.12
describes how we use vests). Our framework returns the CFG to its initial state after the
pass finishes.

5.3.12 Unstructured Jumps

To our surprise, we found complicated unstructured jump instructions in real life fonts.
Some jump instructions were entangled with other jump instructions as well as if-then-else
blocks, forming more complicated logic.

In this work, we propose a novel method for processing jump instructions. We deal
with jump instructions by converting them to loops, and by modifying the initial control
flow. We ensure that there is no jump or goto statements in the COI.
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In our benchmark suite, there exist implicit jump offsets (i.e. hard to know statically).
We need symbolic execution to determine the offsets of jump instructions. We only deal
with jump instructions with concrete offsets, and flag an error if a jump instruction has an
uncertain offset. Fortunately, every offset we have seen so far is a concrete integer.

We also aim to statically determine the jump conditions for conditional jump instruc-
tions (i.e. JROT[], JROF[]) by popping a boolean variable off the program stack.

Finally, we examine whether a jump instruction jumps across if-then-else blocks. We
have different methods for handling jump instructions with respect to three specifications;

1. conditional or unconditional;

2. jump forwards or backwards;

3. jump across control flow structure or not.

We demonstrate some cases with respect to the specifications above.

Unconditional / Forward / Not across

A forward unconditional jump instruction which does not cross any layer of if-then-else
blocks is simple. We move the instruction counter to the target simply. Every instruction
that the instruction counter skipped will not be executed and translated to COI. As a
result, the optimized bytecode will not contain these skipped instructions. Figure 5.4
shows an example of this kind of jump instruction.

Unconditional / Backward / Across

A jump instruction with negative offset has the similar role of a while loop, so we in-
terpret a backward unconditional jump as a while loop. A backward unconditional jump
instruction must cross an IF[] to potentially terminate. We flag an error if we execute a
backward unconditional jump instruction which does not cross control-flow structures.

The bytecode in Figure 5.5 calculates the sum of integers from 1 to 10 and writes the
final result to a location in the storage area. We interpret it as a while loop. Note that the
jump instructions are not translated explicitly, and we ensure there are no jump statements
in COI.
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PUSHB[ 0, 1 ]
PUSHB[ 5 ]
JMPR[ ]

PUSHB[1, 2, 3] // 4 bytes

PUSHB[ 10 ]

Figure 5.4: An example of unconditional forward jump not crossing control flow structures

PUSHB[ 0, 0 ]
WS[ ]
PUSHB[ 10 ]
DUP[ ]
PUSHB[ 0 ]
GT[ ]
IF[ ]

DUP[ ]
PUSHB[ 0 ]
RS[ ]
ADD[ ]
PUSHB[ 0 ]
WS[ ]
PUSHB[ 1 ]
SUB[ ]
PUSHW[ -19 ]
JMPR[ ]

EIF[ ]

$var 1 := 0
$var 2 := 0
storage area[$var 1] := $var 2
$var 1 := 10
$var 2 := $var 1
$var 3 := 0
$var 2 := $var 2 > $var 3
while($var 2){

$var 2 := $var 1
$var 3 := 0
$var 3 := storage area[$var 3]
$var 2 := $var 2 + $var 3
$var 3 := 0
storage area[$var 2] := $var 3
$var 2 := 1
$var 1 := $var 1 - $var 2
$var 2 := $var 1
$var 3 := 0

}

Figure 5.5: An example of unconditional backward jump crossing an if else block
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PUSHB[100]
MPPEM[ ]
GTEQ[ ]
IF[ ]

PUSHB[0]
RS[ ]
PUSH[0]
CALL[ ]
PUSHB[11]

JMPR[ ]
PUSHB[0]
POP[ ]

EIF[ ]
PUSHB[1]
RS[ ]
PUSHB[1]
CALL[ ]
PUSHB[1]

$var 1 := 100
$var 2 := MPPEM(pv)
$var 1 := $var1 >= $var2
if($var 1){

$var 1 := 0
$var 1 := storage area($var 1)
$var 2 := 0
call $var 2($var 1) }

else{
$var 1 := 1
$var 1 := storage area($var 1)
$var 2 := 1
call $var 2($var 1)

}

$var 1 := 1

Figure 5.6: An example of unconditional forward jump over a single-branch block

Unconditional / Forward / Across

There are some jump structures in our benchmarks where the offsets are positive and
they jump across if-then-else blocks. We will change the structure of initial if-then-else
blocks accordingly. We have introduced our novel vests, in section 5.3.11. Now, we use
vests to process these kinds of jump instructions.

Figures 5.6 and 5.7 show two examples where a forward unconditional jump instruction
changes the structure of the initial if-then-else block.

In Figure 5.6, if the condition is True, the bytecode reads storage area 0, and calls
function 0 with the value of storage area 0 as the parameter; otherwise, it reads storage
area 1 and calls function 1 with value of storage area 1.
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In Figure 5.6, the if-then-else block contains only a then-branch, and there is an uncon-
ditional jump instruction in the then-branch which jumps forwards across the if-then-else
block. The instructions between the EIF[] and the target instruction will not be executed
if the program enters the then-branch; they will be executed only if the condition fails. We
interpret this as an if-then-else block with both then-branch and else-branch, where the
then-branch consists of instructions between IF[] and JMPR[], and the else-branch consists
of instructions between EIF[] and the target instruction.

We handle this case with the following algorithm:

1. create an ELSE[] instruction, and set its successor to the successor of the EIF[];

2. set the vest of target to the ELSE[], and set the vest of the ELSE[] to the EIF[];

3. change the successor of EIF[] to the target instruction.

4. adjust the second and the third successors of IF[] to the ELSE[] and EIF[];

5. continue executing the program at the target instruction.

In Figure 5.7, if the ppem of the current device is greater than or equal to 100, the
program calls function 0 with value of storage area 0 and sets cvt[1] to 100; if the ppem
of the current device is smaller than 100, the program calls function 1 with the value of
storage area 1.

Since the if-then-else block contains both branches, we handle this case slightly differ-
ently:

1. set the vest of the target instructon to the ELSE[];

2. adjust the successor of the last instruction before the ELSE[] to point to the first
instruction after the EIF[];

3. adjust the successor of EIF[] to the target instruction;

4. adjust the successor of the last instruction before the JMPR[] to the EIF[];

5. restore the state to that from before executing the IF[] instruction, and resume the
execution at IF[].
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PUSHB[100]
MPPEM[ ]
GTEQ[ ]
IF[ ]

PUSHB[0]
RS[ ]
PUSHB[0]
CALL[ ]

ELSE[ ]
PUSHB[1]
RS[ ]
PUSHB[1]
CALL[ ]
PUSHB[6]

JMPR[ ]
EIF[ ]
PUSHB[1, 100]
WCVTP[ ]
PUSHB[1]

$var 1 := 100
$var 2 := MPPEM(pv)
$var 1 := $var1 >= $var2

if($var 1){
$var 1 := 0
$var 1 := storage area[$var 1]
$var 2 := 0
call $var 2($var 1)
$var 1 := 1
$var 2 := 100
cvt[$var 1] := $var 2 }

else{
$var 1 := 1
$var 1 := storage area[$var 1]
$var 2 := 1
call $var 2($var 1)

}

$var 1 := 1

Figure 5.7: An example of unconditional forward jump over a double-branch if-then-else
block
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PUSHB[ 20, 10 ]
MPPEM[ ]
GTEQ[ ]
JROT[ ]
...
...

...

...
PUSHB[ 1 ]

PUSHB[ 20, 10 ]
MPPEM[ ]
GTEQ[ ]
IF[ ]

JMPR[ ]
ELSE[ ]

POP[ ]
EIF[ ]
...
PUSHB[ 1 ]

Figure 5.8: Jump relative on true. We adjust a JROT[] instruction to an if-then-else block
where there is an unconditional jump in the then branch

Conditional Jump Instructions

To handle a conditional jump instruction (JROT[], JROF[]), we first transform it into
an unconditional jump instruction wrapped within an if-then-else block, as shown in fig-
ures 5.8 and 5.9.

We then adjust the target offset properly to keep the target unchanged, and we pop the
offset value in the branch where the jump will not take place. Then we resume the execution
from the IF[] instruction and handle it as an normal unconditional jump instruction.

A backward conditional jump instruction not crossing any if-else block acts as a do-
while loop. This is exactly the same as how we handle an unconditional jump instruction.

An example of compound control flow structure

Figure 5.10 demonstrates complicated real life TrueType bytecode with compound
jumping logic from Microsoft Core TrueType font Arial. The COI in Listing 5.9 is the
output of our abstract executor.
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PUSHB[ 20, 10 ]
MPPEM[ ]
GTEQ[ ]
JROF[ ]
...
...

...

...
PUSHB[ 1 ]

PUSHB[ 20, 10 ]
MPPEM[ ]
GTEQ[ ]
IF[ ]

POP[ ]
ELSE[ ]

JMPR[ ]
EIF[ ]
...
PUSHB[ 1 ]

Figure 5.9: Jump relative on false. We adjust a JROF[] instruction to an if-then-else block
where there is an unconditional jump in the else branch

Figure 5.10 contains both conditional and unconditional jump instructions, and all of
of the jump instructions jump over control-flow structures. Some of the jump instructions
even jump directly to the end of the function. Our abstract executor can handle all the
compound control-flow structures like this in the tested fonts by modifying initial control
flow. Our COI representation does not contain jump or goto statements.
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GT[ ]
JROF[ ]
PUSHB[26, 26, 64]
PUSHW[-32]
RCVT[ ]
DUP[ ]
ROLL[ ]
EQ[ ]
IF[ ]

SWAP[ ]
POP[ ]
PUSHB[63]

ELSE[ ]
SWAP[ ]

EIF[ ]
SUB[ ]
WCVTP[ ]
JMPR[ ]
PUSHB[20, 0]

ROLL[ ]
GT[ ]
JROF[ ]
PUSHB[26, 64, 32]
RCVT[ ]
DUP[ ]
ROLL[ ]
EQ[ ]
IF[ ]

SWAP[ ]
POP[ ]
PUSHB[63]

ELSE[ ]
SWAP[ ]

EIF[ ]
SUB[ ]
WCVTP[ ]
ENDF[ ]

Figure 5.10: A complicated compound real life bytecode with jump instructions from Arial

1
2 $fpgm_24_30 := $fpgm_24_30 > $fpgm_24_31

3 if( $fpgm_24_30 ){

4 $fpgm_24_28 := 26

5 $fpgm_24_29 := 26

6 $fpgm_24_30 := 64

7 $fpgm_24_31 := -32

8 $fpgm_24_32 := 26

9 $fpgm_24_32 := cvt[$fpgm_24_32]

10 $fpgm_24_33 := $fpgm_24_32

11 $fpgm_24_34 := $fpgm_24_33

12 $fpgm_24_33 := $fpgm_24_31
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13 $fpgm_24_31 := $fpgm_24_32

14 $fpgm_24_32 := $fpgm_24_34

15 $fpgm_24_32 := $fpgm_24_32 = $fpgm_24_33

16 if( $fpgm_24_32 ){

17 $fpgm_24_32 := $fpgm_24_31

18 $fpgm_24_31 := $fpgm_24_30

19 $fpgm_24_30 := $fpgm_24_32

20 $fpgm_24_31 := 63

21 }else{

22 $fpgm_24_32 := $fpgm_24_31

23 $fpgm_24_31 := $fpgm_24_30

24 $fpgm_24_30 := $fpgm_24_32 }

25 $fpgm_24_30 := $fpgm_24_31 - $fpgm_24_30

26 cvt[$fpgm_24_29] := $fpgm_24_30

27 }else{

28 $fpgm_24_29 := 20

29 $fpgm_24_30 := 0

30 $fpgm_24_31 := $fpgm_24_30

31 $fpgm_24_30 := $fpgm_24_28

32 $fpgm_24_28 := $fpgm_24_29

33 $fpgm_24_29 := $fpgm_24_31

34 $fpgm_24_29 := $fpgm_24_29 > $fpgm_24_30

35 if( $fpgm_24_29 ){

36 $fpgm_24_28 := 25

37 $fpgm_24_29 := 64

38 $fpgm_24_30 := 32

39 $fpgm_24_31 := 25

40 $fpgm_24_31 := cvt[$fpgm_24_31]

41 $fpgm_24_32 := $fpgm_24_31

42 $fpgm_24_33 := $fpgm_24_32

43 $fpgm_24_32 := $fpgm_24_30

44 $fpgm_24_30 := $fpgm_24_31

45 $fpgm_24_31 := $fpgm_24_33

46 $fpgm_24_31 := $fpgm_24_31 = $fpgm_24_32

47 if( $fpgm_24_31 ){

48 $fpgm_24_31 := $fpgm_24_30

49 $fpgm_24_30 := $fpgm_24_29

50 $fpgm_24_29 := $fpgm_24_31

51 $fpgm_24_30 := 63

52 }else{
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53 $fpgm_24_31 := $fpgm_24_30

54 $fpgm_24_30 := $fpgm_24_29

55 $fpgm_24_29 := $fpgm_24_31 }

56 $fpgm_24_29 := $fpgm_24_30 - $fpgm_24_29

57 cvt[$fpgm_24_28] := $fpgm_24_29

58 }

59 }

Listing 5.9: A compilcated compound real life bytecode with jump instructions from Arial

5.4 Optimizations

One of our goals in developing a framework for TrueType bytecode analysis was to enable
bytecode optimization. We implemented some basic optimizations widely used in compilers
to optimize our COI, including removing uncalled functions (tree shaking), erasing code
with no effects and dead block elimination.

5.4.1 Uncalled Functions

We continue to remove uncalled functions from the global function table as the previous
implementation did. The previous abstract executor did not handle call instructions with
uncertain callees and neither did it work on jump instructions. Thus, it skipped the
glyphs containing these structures. Hence, it was not safe to remove the uncalled functions
identified by the previous tool, since the symbolic execution was incomplete. We have
improved the accuracy of uncalled function removal by handling the jump instructions and
uncertain callee correctly, and it is safe to remove uncalled functions now. When generating
bytecodes for function program, we only generate bytecodes for functions which are called
or potentially called.

5.4.2 Instructions with No Effects

There exist some bytecodes which neither have any effect on program state nor move any
points. Using mechanisms we introduced in the previous sections, we can easily locate
these instructions and remove them from the bytecode program.

43



As discussed in section 5.3.6, we modelled the execution of instructions in more detail.
If we know that an instruction changes the state, but the state has already been that the
instruction will change it to, then the instruction has no effect.

As with any program optimization, this transformation must preserve program behav-
ior. It then tries to identify as many no-effect instructions as possible. Of course, our tool
finds a subset of the complete set of no-effect instructions.

1 ... ...

2 PUSHB[ ] PUSHB[ ]

3 9 9

4 MDRP [10110] MDRP [10110]

5 ... ...

6 PUSHB[ ]

7 9

8 SRP2[ ]

9 ...

Listing 5.10: An example of locating no-effect instructions

In Listing 5.10 above, SPR2[] is an instruction without effect; the reasons are as follows:
MDRP[] sets reference point 2 to 9 as a side effect. Then the following SRP2[] instruction
has no other effect besides popping an element off the program stack, since SRP2[] sets
the reference point 2 to the top element of the stack, and the value of reference point 2 has
been set to 9 by MDRP[] before executing SRP2[]. Thus, we can remove SRP2[] and the
second PUSHB[], and the optimized code will be that shown on the right.

5.4.3 Dead block Elimination

Dead blocks are instructions which are not possible to be reached. This happens mostly
at if-then-else blocks and at conditional jump structures.

In section 5.3.8, we introduced abstract range propagation. Variable range propagation
enables us to restrict the ranges of unknown values.

The MPPEM[] instruction pushes the current value of ppem on the stack. The formula
for calculating ppem is given again below. Ppem is associated with the point size and
the screen resolution, and it is unknown to our abstract executor. Modern devices such
as smart phones and laptops have high screen resolutions, and we can assume the value
of ppem to be bigger than a device dependent threshold. Table 5.1 shows the screen
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Device Resolution DPI ppem

Apple iPhoneX 1125 × 2436 463 57.875
Google Pixel 1920 × 1080 441 55.125
Microsoft Surface 1366 × 768 148 18.500
Nokia Lumia 520 480 × 800 233 29.125
Samsung Galaxy S8 2960 × 1440 568 71.000
Amazon Fire 1024 × 600 170 21.250
Lenovo ideapad 1366 768 × 2436 118 14.750
Lenovo Yoga 2 Pro 3200 × 1800 276 34.500

Table 5.1: Resolutions and dpi of popular devices and ppem at point size 9

resolutions of selected popular modern devices as well as the values of ppem when point
size is 9. If we assume the resolution of rendering devices are not smaller than 80 dots per
inch (dpi), and the font sizes in webpages are not smaller than 9, we can restrict the lower
bound of ppem to 10 according to the formula below.

ppem = point size × dpi / 72

Many if-then-else blocks’ conditions are derived, directly or indirectly, by comparing
the ppem to some thresholds. According to our experiments, some of the threshold are
smaller than the ppem values shown in table 5.1. Thus, one of the if-then-else branches will
not be reached when the fonts are rendered on modern devices. It is therefore possible to
specialize fonts by removing bytecode for rendering on devices that are no longer common
today. We set the lower bound of ppem values to a concrete value to find and eliminate
the unreachable blocks under the assumption.

1 PUSHB[ ] $var_1 := 10

2 10

3 MPPEM[ ] $var_2 := PPEM(pv)

4 GTEQ[ ] $var_1 := $var_1 >= $var_2

5 IF[ ] if( $var_1 ){

6 ... ...

7 ELSE[ ] }else{

8 ... ...

9 EIF[ ] }

10 ... ...

Listing 5.11: A dead block example
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We demonstrate an example in Listing 5.11. The bytecode compares ppem with 10. It
enters the then-branch if the ppem is smaller than or equal to 10; it enters the else-branch
otherwise. If we assume that the ppem on rendering devices are not smaller than 10, we
can erase the instructions for the then-branch and also the IF[]/ELSE[]/EIF[] instructions.

5.5 Inverse Conversion and Validation

After we finish the optimizations on COI, we then convert the COI back to bytecode and
replace the original TrueType bytecodes with the optimized bytecodes. Since COI is a three
address code intermediate representation, we can perform the inverse conversion simply by
pattern matching, which is similar to the code generation phase of a compiler.

We manage a stack of COI variables to mimic the program stack when generating the
bytecode. When a new COI variable is assigned, we push an element on the stack; we pop
elements when a statement consumes variables as parameters. Note that if a statement
both assigns variables and consumes variables, we pop parameter variables first, and then
push the new assigned variables. Finally we append the translated bytecodes for the
corresponding COI statement to the current bytecode block.

Most non-control-flow bytecode instructions have a one-to-one mapping to COI state-
ments. DUP[], MINDEX[], CINDEX[], SWAP[], ROLL[] are special, which can be indicated
by surrounding statements as well as the top few elements of the variable stack.

1 $var_1 := 96 PUSHB [96]

2 $var_2 := PPEM(pv) MPPEM[ ]

3 $var_1 := $var_1 >= $var_2 GTEQ[ ]

Listing 5.12: One-to-one mapping statements

In Listing 5.12, it is easy to see that line 1 corresponds to a PUSHB[] instruction, which
pushes 96 on the stack. The second line corresponds to an MPPEM[] instruction, and the
third line can be interpreted as a GTEQ[] instruction. Both statements in line 1 and line 2
push a variable to the COI variable stack, and the statement in line 3 consumes 2 variables
on the stack and pushes a variable to the variable stack. When we translate line 1 and
line 2, we push $var 1 and $var 2 on the stack; we then pop 2 variables consumed by the
third statement and push the new $var 1 variable on the stack.
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1 $fpgm_24_32 := $fpgm_24_31 $fpgm_24_32 := $fpgm_24_31

2 $fpgm_24_31 := $fpgm_24_30 $fpgm_24_33 := 10

3 $fpgm_24_30 := $fpgm_24_32

4 $fpgm_24_32 := 10

Listing 5.13: Translation of COI copy and assignment statements

When we see an assignment statement which copies a variable from another variable,
we translate it to one of a DUP[], MINDEX[], CINDEX[], SWAP[], or ROLL[] instruction.
We look ahead to the following one or more instructions, and check the top elements in
the variable stack to choose a proper bytecode instruction.

Consider the statements on the left hand side of Listing 5.13. If the top 2 variables’
identifiers are $fpgm 24 31 and $fpgm 24 30 on the variable stack, and the following 3
statements swap the 2 variables. If $fpgm 24 32 is not used by the next fourth statement,
we can translate the first 3 lines of the statements combined to a SWAP[] instruction.

Consider the code on the right hand side of Listing 5.13. The first assignment state-
ment assigns a new variable with the top variable on the variable stack, and the following
instruction assignments a constant to a new variable. We translate the first statement to
a DUP[] instruction.

Since we ensured that no jump statements exist in our COI, the only control-flow
statements we need to handle are if-then-else blocks and while blocks. We manipulate a
block stack to track which block we are currently in. We push a new block to the block
stack if we see either an if-then-else block or a while block. We pop the top block, and
extend the instructions of this block to the next top if we have finished translating the
statements in a block. We translate and append the instructions to the current block
which is indicated by the top block instance on the stack. If the stack is empty, the current
block is the main block.

We translate COI statements back to TrueType bytecode for global functions, the
control value program and glyph programs separately, and replace the bytecode programs
of the original TrueType font file with the optimized ones.

Finally, we implemented a program to render both the original font and the optimized
font with different font sizes and resolutions using the external FreeType 2 [2] library, and
check whether the bitmaps match each other. If the bitmaps of the optimized font match
the original font, we can draw a conclusion that the optimized font is equivalent to its
origin under the test conditions.
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5.6 A Round Trip Example

We show a simple round trip example in this section. We made up this simple bytecode
program, and it clearly demonstrates the translations and optimization stages of our tool.
Assume that Figure 5.11 is a bytecode program of a font, and the font contains two simple
global functions.

Figure 5.12 shows our COI representation of the bytecode programs according to the
rules defined in section 5.3. Note that we have a declaration for each function, which is
similar to high level programming languages, such as Java.

We assume that the lower bound of ppem is 10. Thus, the condition of the first if-
then-else block is always true under the assumption, and this makes the storage area 0
concrete. Function 0 is called in the then branch who has a single instruction MDRP[ ].
As we mentioned in section 5.4.2, MDRP[ ] instruction has a side effect of resetting the
reference point 2, so the statement in line 22 has no actual effects. Finally, the program
extracts the value in storage area 0, which is 8 in this case, and compares it to 0. Thus
the condition of the second if-then-else branch is always false under the assumption, and
it causes the then-branch of the second if-then-else block unreachable.

Figure 5.13 shows the optimized COI representation. Since function 1 is uncalled
under the assumption, we can remove function 1 from the global function table. We finally
perform inverse translation, and get the optimized bytecode programs in Figure 5.14.

5.7 Limitations

Though our tool generates COI for most TrueType bytecode programs successfully, it does
not work in some cases in which the stack depth assertion is violated. We can make some
simple cases work by using some tricks. However, we have to skip all complicated cases.
We can not remove the uncalled functions of the fonts whose bytecode programs have this
problem, because the symbolic execution of the bytecode programs is not complete.
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PUSHB[9 8]
MPPEM[ ]
LTEQ[ ]
IF[ ]

PUSHB[9 0 0 8]
WS[ ]

CALL[ ]
ELSE[ ]

PUSHB[0 8 7 1 0 0]
WS[ ]
CALL[ ]

EIF[ ]
SRP2[ ]
PUSHB[ 0 ]
RS[ ]
MPPEM[ ]
EQ[ ]
IF[ ]

PUSHB[0 8]
WCVTP[ ]

EIF[ ]

function 0:

MDRP[10110]

function 1:

WS[ ]
MDRP[10110]

Figure 5.11: A simple bytecode program
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1. $var 1 := 9
2. $var 2 := 8
3. $var 3 := ppem(pv)
4. $var 2 := $var 2 <= $var 3
5. if ($var 2) {
6. $var 2 := 9
7. $var 3 := 0
8. $var 4 := 0
9. $var 5 := 8
10. storage area[$var 4] := $var 5
11. call $var 3 ($var 2)
12. }else{
13. $var 2 := 0
14. $var 3 := 8
15. $var 4 := 7
16. $var 5 := 1
17. $var 6 := 0
18. $var 7 := 0
19. storage area[$var 6] := $var 7
20. call $var 5 ($var 4, $var 3, $var 2)
21. }
22. graphics state[rp2] := $var 1
23. $var 1 := 0
24. $var 1 := storage area[$var 1]
25. $var 2 := ppem(pv)
26. $var 1 := $var 1 == $var 2
27. if ($var 1)
28. {
29. $var 1 := 0
30. $var 2 := 8
31. cvt[$var 1] := $var 2
32. }

function 0 ($arg 1)
{

MDRP ($arg 1)
}

function 1 ($arg 1, $arg 2, $arg 3)
{

storage area[$arg 2] := $arg 3
MDRP ($arg 1)

}

Figure 5.12: COI representation of the bytecode programs
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1. $var 2 := 8
2. $var 3 := ppem(pv)
3. $var 2 := $var 2 <= $var 3
4. $var 2 := 9
5. $var 3 := 0
6. $var 4 := 0
7. $var 5 := 8
8. storage area[$var 4] := $var 5
9. call $var 3 ($var 2)
10. $var 1 := 0
11. $var 1 := storage area[$var 1]
12. $var 2 := ppem(pv)
13. $var 1 := $var 1 == $var 2

Figure 5.13: Optimized COI representation
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PUSHB[ 8 ]
MPPEM[ ]
LTEQ[ ]
POP[ ]
PUSHB[ 9 0 0 8 ]
WS[ ]
CALL[ ]
SRP2[ ]
PUSHB[ 0 ]
RS[ ]
MPPEM[ ]
EQ[ ]
POP[ ]

function 0:

MDRP[10110]

Figure 5.14: Optimized bytecode programs
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5.8 Bytecode Debugger

We also developed a graphical tool which loads a font and performs symbolic execution on
each single glyph. We can view the values and ranges of variables in the program stack
and the graphics state for each single step.

Figure 5.15: A screen shot of our GUI debugger tool.
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Chapter 6

Experimental Results

We tried to run our tool on fonts distributed with Ubuntu 18.04.1. In this thesis, we
report our results on 10 of these fonts which our tool successfully analyzed, covering
Latin, Arabic and Tibetan scripts. These fonts include Microsoft Core TrueType font Ar-
ial, FreeMono-Bold, FreeSans-Bold, Loma-Bold, NotoKufiArabic-Bold, NotoSansTibetan-
Bold. We specifically tried to run our tool on dozens of fonts from the NotoSans family
which is commissioned by Google. Unfortunately, most of these fonts violate the assertion,
and hence our tool does not support those fonts. We execute both the control value pro-
gram and all the glyph programs of these test fonts. For these fonts, our tool can convert
the bytecode programs to the improved COI correctly.

Table 6.1 shows the statistical information on our selected fonts. We performed the
optimizations that we discussed in the previous chapter on the COI of the tested fonts.
Finally, our tool converted the optimized COI back to TrueType bytecode and replaced the
bytecodes in the original font files with the optimized bytecodes. We compared bitmaps
generated by the original fonts to the optimized fonts at different resolutions, and their
bitmaps match at tested conditions.

Problematic TrueType bytecode Our abstract executor requires that the program
stacks have the same depth when merging from different branches. We tried to run our
tool on dozens of fonts from NotoSans family which is commissioned by Google, and most
of them violate the assertion.

We can fix some simple cases such as the program shown in Listing 6.1. However, we
found that sometimes the unbalanced stack depth are recursive, which is not even possible
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Font
Name

#Glyphs Size
#Control Value
Program
Bytecode

#Glyph
Program
Bytecode

#Function
Program
Bytecode

Microsoft Arial 1546 359Kb 1031 52191 1204
FreeMono-Bold 1059 294Kb 55 59945 481
NotoMono-Regular 815 106Kb 187 18173 1365
NotoNaskhArabic-Bold 1368 219Kb 107 28058 1502
NotoSansTibetan-Bold 1270 653Kb 263 114270 1489
UbuntuMono-B 1151 187Kb 105 23670 1206
Loma-Bold 282 82Kb 81 18587 481
OpenSans-Bold 786 220Kb 87 16502 1486
OpenSans-SemiboldItalic 773 208Kb 93 9188 1451
NotoKufiArabic-Bold 397 79Kb 56 6419 1489

Table 6.1: Statistical information on selected fonts

to fix. If this happens in the control value program, our tool stops immediately and we
conclude that our tool does not support the font. If it is in a glyph program, our tool stops
executing the current glyph program and continue executing the next glyph. In this case,
we can not remove the uncalled functions, since the symbolic execution is incomplete.

1 original bytecode modified bytecode

2 ... ...

3 IF[ ] IF[ ]

4 ADD[ ] // stack_size -1 ADD[ ] // stack_size -1

5 ADD[ ] // stack_size -1 ADD[ ] // stack_size -1

6 ELSE[ ] CLEAR[ ] // stack_size =0

7 ADD[ ] // stack_size -1 ELSE[ ]

8 EIF[ ] ADD[ ] // stack_size -1

9 CLEAR[ ] // stack_size =0 CLEAR[ ] // stack_size =0

10 ... EIF[ ]

11 ... // stack_size =0

Listing 6.1: Fixing a simple unbalanced stack if-else block by copying CLEAR to the end
of both branches

In Listing 6.1, the then-branch reduces the depth of the program stack by 2 and the
else-branch reduces the stack depth by 1, which seems to violate our assertion. But there
is a CLEAR[] right after the EIF[], which empties the program stack. We can copy the
CLEAR[] to the end of both branches, such that the stack depth becomes zero after both
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branches without influencing to the result.

We present results of our font optimizations on our ten selected test fonts in the following
sections

6.1 Uncalled Functions

Table 6.2 shows the number of functions and uncalled functions our abstract executor found
in selected fonts. Since the abstract executor was not able to handle jump instructions
and uncertain callee situations in previous work, it skipped glyphs which contain these
structures. Hence it was not safe to remove the uncalled functions in previous work.

Our enhanced abstract executor now correctly handles both jump instructions and un-
certain callees. So, our improved abstract executor identifies uncalled functions accurately,
and the bytecodes of the uncalled functions can be safely removed from the TrueType
fonts.

Function
Name

#Functions
#Uncalled
Functions

#Uncalled
Function
Code

#Called
Functions
in Prep

#Called
Functions
in Glyphs

Microsoft Arial 67 31 415 10 26
FreeMono-Bold 22 5 154 2 15
NotoMono-Regular 69 58 1078 5 6
NotoNaskhArabic-Bold 72 62 1126 4 6
NotoSansTibetan-Bold 71 62 1258 5 4
ubuntuBold-B 63 50 1002 4 9
Loma-Bold 22 5 154 2 15
OpenSans-Bold 71 8 1179 4 4
OpenSans-SemiboldItalic 71 7 1185 4 3
NotoKufiArabic-Bold 71 65 1290 4 2

Table 6.2: Uncalled Functions

We also recorded the number of called functions in both the control value program and
glyph programs. This tells whether the subseting of the fonts reduces the function program
largely. Even though a function is called by another function, it is marked as called in the
control value program if the function is called when executing the control value program,
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and the functions called in glyph programs are similar. The fonts of a family share the
function program, which causes a large number of functions to be unnecessary in some
fonts within the family.

Table 6.2 indicates that a large portion of functions are uncalled in our benchmarks.
Note that these functions are uncalled even without assumptions about minimum ppem.
We found that some fonts share the same set of global functions, and this may cause a
large portion of the functions unused. Most fonts in our benchmarks contain a considerable
number of uncalled functions. For example, 86.1% functions of Microsoft Core TrueType
font Arial are uncalled, comprising 415 lines of bytecode; 84% functions of NotoMono-
Regular are uncalled, comprising 1108 lines of bytecode. We symbolically executed the
control value program and all the glyph programs of our test fonts, and identified the
functions which are possible to be called correctly, so that we can remove the bytecodes of
these uncalled functions safely.

In some test fonts, such as Microsoft Core TrueType font Arial, FreeMono-Bold, most
of the called functions are called within glyph programs. More program functions can be
removed if subsetting is applied to these fonts.

6.2 Instructions Without Effects

One of the optimizations we performed on test fonts is removing no-effect instructions
(section 5.4.2). We focus on the candidate instructions which have potential to be no-
effect. Table 6.3 shows the candidate no-effect instructions.
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Table 6.3: Instructions which potentially have no effects (the Apple TrueType Font Refer-
ence Manual [6])

Number Instruction Operation
1 CLEAR Clears the program stack.
2 FLIPOFF Sets the auto flip Boolean in the graphics state to FALSE .
3 FLIPON Sets the auto flip Boolean in the graphics state to TRUE.
4 CEILING Takes the ceiling of the number at the top of the stack.
5 FLOOR Takes the floor of the value at the top of the stack.
6 ROLL Performs a circular shift of top 3 elements on the stack
7 RTG Sets the round state variable to grid.
8 RTHG Sets the round state variable to half grid.
9 RTDG Sets the round state variable to double grid.
10 RUTG Sets the round state variable to up to grid.
11 RDTG Sets the round state variable to down to grid.
12 SCVTCI Sets control value table cut-in to the top element.
13 SDB Sets delta base to the top element.
14 SDS Sets delta shift to the top element.
15 SMD Sets the minimum distance variable to the top element.
16 SRP0 Sets Reference Point 0 to the top element.
17 SRP1 Sets Reference Point 1 to the top element.
18 SRP2 Sets Reference Point 2 to the top element.
19 SWAP Swaps the top two elements of the program stack.
20 SZPS Sets all three zone pointers to the top element.
21 SZP0 Sets zone pointer 0 to the top element.
22 SZP1 Sets zone pointer 1 to the top element.
23 SZP2 Sets zone pointer 2 to the top element.

For example, executing a CLEAR[] instruction has no effect if the stack depth is 0.
CEILING[] and FLOOR[] do not change anything if the top element on the stack is a
multiple of 64. ROLL[] instruction can be removed if the top 3 elements are identical.
The instructions which set values in graphics state, such as FLIPOFF[]/FLIPON[], do not
have effects if the corresponding values are what they will set them to before executing the
instructions.
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We chose candidate instructions which:

1. do not move control points;

2. modify the values in the graphics state, or the program stack, but may
have no actual effects on the values it intends to modify.

Because the operations of point moving are absolutely abstract to our executor, we
assume all the point moving instructions, such as MIRP[] and MDAP[], are un-removable.

Table 6.5 presents the number of candidate instructions and the number of no-effect
instructions we can identify in our benchmarks using judgments similar to above. For each
test font, the number of candidates is the counts of all candidate instructions in Table 6.3,
and the number of no-effect instructions is the number of instructions which actually have
no effects.

Font
Name

#Candidates
#No-effect
Instructions

Microsoft Arial 6084 244
FreeMono-Bold 5761 49
NotoMono-Regular 1748 48
NotoNaskhArabic-Bold 3919 326
NotoSansTibetan-Bold 41105 9597
UbuntuMono-B 2406 17
Loma-Bold 2171 54
OpenSans-Bold 4866 527
OpenSans-SemiboldItalic 1800 520
NotoKufiArabic-Bold 1322 209

Table 6.5: No-effect instructions in test fonts

This optimization reduces the bytecodes significantly in some fonts, but it does not
yield significant optimization on all the fonts in our benchmarks. For example, We can
locate 9597 instructions out of 41105 candidates in NotoSansTibentan-Bold; and 520 no-
effect instructions in OpenSans-SemiboldItalic, which is 28.8% of its candidates. While in
font FreeMono-Bold, we can only locate 49 no-effect instructions, which is less than 1% of
its total candidate instructions.

Table 6.6 provides more statistical information on no-effect instructions on the test
fonts, with respect to each candidate instruction. It shows the number of appearances
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of each candidate instructions, as well as the number of no-effect instructions out of the
corresponding candidate instruction in our benchmarks. It also shows the percentage of
each instruction out of all candidates and its percentage in all no-effect instructions. This
tells us what kinds of instructions are more likely to be no-effect.

Table 6.6: Statistical information on no-effect instructions in our benchmarks when lower
bound of ppem is 15

Number Instruction Counts No-effect
% in all
Candidates

% in all
No-effects

1 CLEAR 0 0 0 0
2 FLIPOFF 167 0 0.23 0
3 FLIPON 185 20 0.26 0.19
4 CEILING 0 0 0 0
5 FLOOR 0 0 0 0
6 ROLL 66 0 0.09 0
7 RTG 6964 6533 9.78 60.34
8 RTHG 297 1 0.42 0.01
9 RTDG 95 0 0.13 0
10 RUTG 4 0 0.01 0
11 RDTG 212 0 0.29 0
12 SCVTCI 0 0 0 0
13 SDB 2845 765 4.00 7.06
14 SDS 2783 2274 3.90 21.00
15 SMD 1138 45 1.60 0.42
16 SRP0 696 749 9.70 6.90
17 SRP1 34693 237 48.70 2.20
18 SRP2 14739 202 20.70 1.86
19 SWAP 34 0 0.05 0
20 SZPS 0 0 0 0
21 SZP0 0 0 0 0
22 SZP1 0 0 0 0
23 SZP2 0 0 0 0

We set the lower bound of ppem to 15 using our variable range system. We found 64918
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candidate instructions in all the tested bytecode programs, and 10825 of them are actual
no-effect instructions, which is 16.67% of the total size. Thus, these instructions can be
removed from the glyph programs.

According to our experiments, RTG[], SDS[] and SDB[] contribute a lot to no-effect
instructions. About 88.4% of no-effect instructions are one of the three instructions. To
our surprise, about 93.8% of RTG[] (sets the round state variable to grid) have no effects
to the graphics state.

Some instructions, such as FLIPON[], SRP0[], SRP1[], SPR2[], SMD[], also contribute
to no-effect instructions, but the percentages are not so significant.

We also tested the performance of no-effect instruction removal with different lower
bounds of ppem. The lower bounds we chose are 10, 15, 20, 30, 100. To our surprise, the
number of no-effect instructions are the same with different lower bounds we tested.

6.3 Dead Block Elimination

Another optimization we have implemented is dead block elimination (section 5.4.3). We
tested the efficiency of this optimization with different lower bounds of ppem. According
to our experiments, the efficiency of dead block elimination is relative to the lower bound
of ppem.

We split the instances of unreachable blocks into 2 groups. One of the groups contains
the unreachable blocks in the control value program or the glyph programs, and the other
group contains the ones in functions. We can erase the unreachable branches in the first
group, as well as the their IF[]/ELSE[]/EIF[] instructions as soon as we see them, but we
can not remove a branch inside of a function until we ensure that no call to this function
ever enters the branch.

6.3.1 Dead Blocks in Functions

Table 6.8 illustrates the number of visits of if-then-else blocks with concrete conditions in
global functions under the chosen lower bounds of ppem.

As shown in Table 6.8, the number of visited if-then-else blocks with concrete conditions
increases with respect to the lower bound of ppem. We remove the branches in functions
which are never visited. Table 6.9 illustrates the results of dead block removal in functions
with respect to selected lower bounds of ppem. However, the results are not as good as we
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Font
Name

10 15 20 30 100

Microsoft Arial 771 3168 4989 5537 6247
FreeMono-Bold 10024 10046 10068 10109 12862
NotoMono-Regular 1 93 216 396 398
NotoNaskhArabic-Bold 0 123 302 514 592
NotoSansTibetan-Bold 0 140 545 685 722
UbuntuMono-B 29 241 435 584 632
Loma-Bold 2498 2499 2501 2051 3304
OpenSans-Bold 0 2 2 4 6
OpenSans-SemiboldItalic 0 9 23 32 33
NotoKufiArabic-Bold 0 0 7 10 12

Table 6.8: Visits of if-then-else blocks in functions, where the conditions are concrete

expected. We found that even though a lot of function calls only visit one of the branches
of an if-then-else block, but other calls to this function visit the other branch.

Font
Name

10 15 20 30 100

Microsoft Arial 0 0 0 0 10
FreeMono-Bold 23 23 23 23 57
NotoMono-Regular 0 0 0 12 12
NotoNaskhArabic-Bold 0 0 0 0 0
NotoSansTibetan-Bold 0 0 8 8 17
UbuntuMono-B 5 5 5 5 14
Loma-Bold 23 23 23 23 48
OpenSans-Bold 0 4 4 4 4
OpenSans-SemiboldItalic 0 0 0 0 4
NotoKufiArabic-Bold 0 0 0 0 9

Table 6.9: Removable dead code in function programs

Table 6.9 shows that we can only remove very limited lines of dead code from the
function program. Note that the number of removable bytecodes increases with respect to
lower bound of ppem.
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6.3.2 Dead Blocks in Control Value Program and Glyph Pro-
grams

Table 6.10 illustrates the dead code in the control value programs and the glyph programs
of our test fonts with respect to selected lower bounds of ppem. Unlike global functions,
the control value programs and the glyph programs are executed exactly once, so all the
unreachable branches detected can be removed directly.

Font
Name

10 15 20 30 100

Microsoft Arial 0 6 31 108 251
FreeMono-Bold 5 5 5 8 8
NotoMono-Regular 0 0 0 0 6
NotoNaskhArabic-Bold 0 0 0 0 6
NotoSansTibetan-Bold 0 0 0 0 6
UbuntuMono-B 0 0 0 3 3
Loma-Bold 5 5 5 8 8
OpenSans-Bold 0 0 0 0 6
OpenSans-SemiboldItalic 0 9 0 0 6
NotoKufiArabic-Bold 0 0 0 0 6

Table 6.10: Removable dead code in control value programs and glyph programs

For Microsoft Core TrueType font Arial, we can remove 108 lines of code in the control
value program and the glyph programs by dead block elimination when the lower bound
of ppem is 30, and the number becomes 251 if we increase the lower bound of ppem to
100. Dead code elimination is not so effective on other fonts in our benchmarks. In fact,
some test fonts, such as FreeMono-Bold and Loma-Bold, do not even contain if-then-else
blocks in their control value programs or glyph programs, which impedes our optimization
of dead code elimination.

Even though the effectiveness of dead block elimination is limited in our benchmarks,
it is still valuable. Our abstract executor only executes one branch of the if-then-else block
if the condition is concrete, which may make some variables concrete after the block. This
may help us locate more no-effect instructions.
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6.4 Font Subsetting

Some large fonts contain thousands of glyphs. In our benchmarks, Microsoft Core True-
Type font Arial contains 1546 glyphs, and NotoSansTibetan-Bold contains 1270 glyphs.
Web pages usually use a small portion of glyphs in these fonts. Font subsetting technolo-
gies are always applied to the fonts before the required fonts are attached to the webpage
to save limited network bandwidth. However, existing subsetting software only subset the
glyphs [18]. They do not subset the function programs, nor perform optimizations on the
bytecode programs. This may cause the subset fonts to contain un-necessary bytecodes,
which conflicts with the purpose of font subsetting.

Table 6.11 shows how much more bytecodes our tool can remove from the subset fonts
than font subsetting software. We tested the font subsetting optimizations of 10%, 20%
and 50% subsettings. We set the lower bound of ppem to 30 in this test.

Font
Name

50% 20% 10%

Microsoft Arial 652 657 653
FreeMono-Bold 219 224 244
NotoMono-Regular 1107 1110 1110
NotoNaskhArabic-Bold 1162 1162 1229
NotoSansTibetan-Bold 1281 1281 1281
UbuntuMono-B 1019 1019 1019
Loma-Bold 210 215 219
OpenSans-Bold 1198 1198 1198
OpenSans-SemiboldItalic 1195 1195 1195
NotoKufiArabic-Bold 1305 1305 1305

Table 6.11: Bytecode removal with respect to font subsettings when the lower bound of
ppem is 30

Table 6.12 illustrates the number of uncalled functions with respect to the percentage
of subsetting. More functions of a font become uncalled if the font contains smaller subset
of its glyphs for some test fonts.

So, our tool can optimize the bytecode, which enhanced the effectiveness of current font
subsetting technologies.

64



Font
Name

50% 20% 10%

Microsoft Arial 31 37 38
FreeMono-Bold 5 5 5
NotoMono-Regular 59 60 60
NotoNaskhArabic-Bold 63 63 65
NotoSansTibetan-Bold 62 62 71
UbuntuMono-B 50 54 50
Loma-Bold 5 5 5
OpenSans-Bold 64 64 64
OpenSans-SemiboldItalic 64 64 64
NotoKufiArabic-Bold 65 65 65

Table 6.12: Uncalled functions with respect to the percentage of subsetting, when the lower
bound of ppem is 30

6.5 Overall Results

In this section, we show the overall results of our optimizations on our benchmarks. Fig-
ure 6.13 illustrates the performance of every optimization we implemented on our test fonts
when we set the lower bound of ppem to 30. The table also shows the execution time of a
round trip for each test font in seconds. Our new implementation runs much faster than
the previous tool. Our improved tool runs more than 100 times faster, and consumes less
than 1/50 memory as the prototype tool.

Our tool can optimize some fonts in our benchmarks significantly, with basic opti-
mization methods widely used in compilers. As shown in Table 6.13, we can reduce the
bytecodes of NotoKufiArabic-Bold by 18.82% , OpenSans-SemiboldItalic by 15.88%, and
NotoSansTibetan-Bold by 9.36%. We erased over 10,000 bytecodes of NotoSansTibetan-
Bold. However, our optimizations are not so successful on all fonts. For example, we only
reduced the bytecodes of FreeMono-Bold by 0.37%, and Loma-Bold by 1.20%. So, our fu-
ture work will focus on finding better optimization schemes which are designed specifically
for TrueType bytecode.
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Font
Name

time
(sec)

#code
removed

% of code
removed

#code in
uncalled
functions

#no-effect
code

#code of
unreachable
blocks

Microsoft Arial 212 659 1.21 415 244 0
FreeMono-Bold 46 226 0.37 154 49 23
NotoMono-Regular 8 1138 5.76 1078 48 12
NotoNaskhArabic-Bold 19 1452 4.89 1126 326 0
NotoSansTibetan-Bold 96 10863 9.36 1258 9597 8
UbuntuMono-B 21 1024 4.09 1002 17 5
Loma-Bold 11 231 1.20 154 54 23
OpenSans-Bold 7 1710 9.47 1179 527 4
OpenSans-SemiboldItalic 6 1705 15.88 1185 520 0
NotoKufiArabic-Bold 3 1499 18.82 1290 209 0

Table 6.13: Overall effectiveness of optimizations when lower bound of ppem is 30
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Chapter 7

Conclusion

This work advances the state of the art in the area of TrueType bytecode analysis. We
improved the design of the abstract executor and the three address code. Our latest
abstract executor handles all if-then-else blocks and jump instructions in practice, and
we solved uncertain callee problems. Our tool successfully generates COI for TrueType
bytecode programs in more cases. We introduced range propagation and a comparison
system to our abstract executor. We performed some standard analysis and optimizations
on COI with the assistance of the range propagation system. We finally completed the
cycle by implementing the conversion from COI back to TrueType bytecode.

We tested our tool on 10 test fonts from different font families, including Microsoft Core
TrueType font Arial, NotoSansTibetan-Bold, Loma-Bold, and it can successfully reduce
the sizes of the bytecode program by 0.37% to 18.82%. Our tool reduces the bytecode
significantly of some test fonts. For example, we can erase over 10,000 bytecodes from
NotoSansTibetan-Bold, and we can reduce bytecode size by 18.82% of NotoKufiArabic-
Bold. On average, we can reduce the size of bytecode of our test fonts by 7.10%.

To put our work in context, note that web traffic accounts for 17% of all Internet
traffic [21]. Furthermore, almost 70% of websites include custom fonts, and the average
website serves 95 KB of fonts per webpage [12]. We have observed that, for some popular
fonts, bytecode accounts for almost half of their size—46% for Microsoft Core TrueType
font Arial and 45% of NotoSansTibetan-Bold. We can calculate that our techniques can
save about 0.5% of font size. Projected across all Internet traffic, even this modest 0.5%
savings results in much bandwidth world-wide.
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Chapter 8

Future Work

We found that a huge amount of bytecodes consist of point moving instructions, which
are order sensitive. That means any modification (removal, insertion, order switching) to
these instructions may largely affect the resulting bitmaps. The point moving operations
are totally abstract for our abstract executor. It might be a good idea to explore how
font engines adjust glyph outlines, and try to find methods to optimize these point moving
instructions in the future.

For example, we could perform ’symbolic drawing’ on an abstract canvas, along with
the symbolic execution of bytecode programs. We could then replace sequences of point
moving operations by more efficient sequences of instructions.
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